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Preface

Geometry and group theory

The idea of describing a geometry by a transformation group that leaves that ge-
ometry invariant goes back to Felix Klein. In his inaugural thesis [Kle72] at the
University of Erlangen, Klein demands that a geometry should be considered inde-
pendently from an embedding into the ambient space. Then, so he claims, any result
one can prove depends exclusively on the transformation group of that geometry.
Indeed, if one has a notion of points in the geometry, then for instance the fact that
the transformation group acts transitively on the set of points only depends on the
group and the set of points as a whole, not on single points of that set. Moreover,
in this case one can describe the set of all points as follows. Fix one point p and
consider its full stabilizer Gp in the transformation group G. Then we can identify
the set P of points of the geometry with the set of cosets of Gp in G via the bi-
jection G/Gp → P : gGp 7→ g(p). Proposition B.1.2 on the isomorphism between
flag-transitive geometries and the corresponding coset geometries is an immediate
consequence of Klein’s considerations.

The converse idea of describing groups with geometries is also well developed.
For example, Jacques Tits used his buildings in order to describe the groups of Lie
type as automorphism groups of geometries (e.g., [Tit74]). Other people should
be mentioned here. Hans Freudenthal related several exceptional groups (or rather
real forms of exceptional groups) to the projective plane over the octonions, cf.
[Fre51]. Another interesting example is Bruce Cooperstein’s work on long root
group geometries, see [Coo79] and [Coo83]. More recent is the search for defining
relations of groups by means of simple connectedness of suitable geometries. Tits’
lemma B.2.5, which was proved independently by Antonio Pasini [Pas85], Sergey
Shpectorov [Shp], and Jacques Tits [Tit86], states that a flag-transitive geometry
is simply connected (i.e., there does not exist a non-trivial cover of that geometry)
if and only if the considered group of automorphisms is the universal completion of
the amalgam on its maximal parabolics. Tits’ lemma is a powerful tool of proving
heavy group-theoretic results by geometric means. Examples are the new proof
of the Curtis-Tits theorem by Bernhard Mühlherr ([Müh], also Theorem 3.1.5 of
this thesis) and the new proof of one of Phan’s theorems by Curt Bennett and
Sergey Shpectorov ([BS], also Theorem 3.2.1 and Corollary 3.2.4 of this thesis).
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One should notice that Tits’ lemma only implies results on defining amalgams of a
given group. So, strictly speaking, a new proof of Phan’s theorems has to consist
of two steps, a simple connectedness proof of a geometry and a uniqueness proof of
related amalgams. Bennett and Shpectorov present both steps in their paper [BS].

However, in some cases there is an elegant geometric way of unifying those two
steps. Instead of proving simple connectedness of a geometry one rather gives a local
characterization. In particular, if there is a unique geometry up to isomorphism with
certain local properties, then a local characterization implies simple connectedness
as the universal cover of a geometry has the same local properties. If the geometry
admits a flag-transitive group of automorphisms, then such a local characterization
allows for an immediate identification of this group from internal conditions like
centralizers of involutions. For example, Jon Hall’s local characterization of the
Kneser graphs K(n, 2), for n ≥ 7 (e.g., [Hal87]), implies Theorem 27.1 of [GLS94]
(also Theorem 2.5.5 of this thesis), a local recognition of the symmetric groups of
sufficiently large degree from the structure of centralizers of transpositions. In fact,
precisely this group-theoretic application was one of the motivations of Jon Hall’s
to prove his result on Kneser graphs.

The present thesis

The objective of this thesis is to provide several local characterization results for dif-
ferent graphs and geometries as well as group-theoretic consequences of those results.
In some cases, we prove simple connectedness and do not obtain a complete local
characterization. In Chapter 1 we study graphs on non-incident point-hyperplane
pairs of Desarguesian projective spaces where two pairs are adjacent if the point of
one pair is contained in the hyperplane of the other and vice versa. The reason why
we are interested in these graphs lies in the following group-theoretic description.
If the coordinate division ring of the projective space is distinct from the field of
two elements, there is a one-to-one correspondence between the reflection tori of
the collineation group and the non-incident point-hyperplane pairs of the projective
space by assigning a reflection torus to its center and its axis. In the group theoretic
setting the adjacency relation is equivalent to the commutation relation. We obtain
a local recognition theorem for those graphs, which immediately translates to uni-
versal completion results of certain amalgams and local recognition results of certain
groups. In the final section of Chapter 1 we study graphs on certain non-incident
point-hyperplane pairs in projective spaces that admit a polarity. More precisely,
we investigate graphs on non-singular points and their polars under some polarity,
which arise as induced subgraphs of the above point-hyperplane graphs over division
rings with an involutive anti-automorphism. The results of Chapter 1 have been ob-
tained in collaboration with Arjeh Cohen and Hans Cuypers. Chapter 2 is similar
to the first chapter. Here we investigate graphs on non-intersecting line-hyperline
pairs of Desarguesian projective spaces where two pairs are adjacent if the line of
one pair is contained in the hyperline of the other and vice versa. Naturally, the
results we obtain for these graphs are similar to the results collected in Chapter
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1. From a group-theoretic point of view, one can describe the line-hyperline graph
as the graph on the fundamental SL2’s of the group PSLn+1(F) where n is the
dimension of the projective space and F its coordinate division ring. Again, adja-
cency translates to the commutation relation. Therefore, besides a local recognition
result for the graphs and the companion results in group theory, we are able to give
a characterization of the geometry on the root subgroups of PSLn+1(F) as points
and the fundamental SL2’s as lines from local knowledge about the centralizers of
the fundamental SL2’s. However, this characterization will not be obtained before
Chapter 4, and Chapter 2 simply paves the way towards this result. In Chapter
3 we investigate geometries related to the famous Curtis-Tits theorem and Phan’s
theorems. These theorems are important recognition tools in the classification of
finite simple groups, and we are working toward a uniform geometric approach to
both the Curtis-Tits theorem and Phan’s theorems. Bernhard Mühlherr has re-
cently presented a proof of the Curtis-Tits theorem by way of proving the simple
connectedness of the so-called opposites geometry of certain twin buildings. On
the other hand, Curt Bennett and Sergey Shpectorov managed to improve one of
Phan’s theorems by exploiting properties of a geometry that can be naturally em-
bedded into one of Mühlherr’s opposites geometries. We first give a review of the
results of Mühlherr and Bennett and Shpectorov and then explain the technique of
how we expect one can also re-prove Phan’s other theorems. Going even further,
in the second half of that chapter we present the simple connectedness part of a
new Phan-type theorem which has been obtained by the author in collaboration
with Corneliu Hoffman and Sergey Shpectorov. There is still a lot of work to be
done in this area, and we pose several questions which may lead to further research
beyond our results. In the final Chapter 4 we turn to the area of geometries on long
root subgroups of Chevalley groups. Our approach to the topic is via centralizers
of fundamental SL2’s. We use the results from Chapter 2 to obtain a characteriza-
tion of the geometry on the root subgroups and fundamental SL2’s of the groups
PSLn+1(F). Besides we present characterizations of the corresponding geometries
of symplectic and unitary groups and Chevalley groups of (twisted) type F4. For the
symplectic and unitary groups we again study the centralizers of the fundamental
SL2’s, but we need a different approach to the long root geometries of type F4. Our
findings enable us to locally recognize Chevalley groups of (twisted) type An and
Cn. We expect that the types Bn and Dn can be handled in a similar way, but we
cannot say anything about the exceptional types. It is our understanding that the
approach to the area of geometries on long root subgroups by way of centralizers of
fundamental SL2’s has already been suggested by Bill Kantor in the 1980’s, as the
author was told recently.

The appendices serve as very short introductions to relevant notions. Those
who are not familiar with the concepts of geometry and group theory may be better
served with one of the references given in the appendices. Those who are familiar
with geometry or group theory may find the appendices to be welcome reminders of
basic definitions and important facts of the area. However, the first two chapters of
this thesis are largely self-contained and only require a bit of intuitive understanding
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of the notion of graphs and projective spaces.

A list of theorems

Graphs: simple connectedness

• Theorem 1.7.5 (p. 28):
locally NO

+

6 (F).

• Theorem 1.7.9 (p. 29):
locally NO

−

6 (F).

• Theorem 1.7.10 (p. 29):
locally NU5(F

2).

Graphs: local recognition

• Theorem 1.3.21 (p. 18):
point-hyperplane graphs.

• Theorem 2.5.1 (p. 52):
line-hyperline graphs.

• Theorem 4.4.22 (p. 100):
symplectic hyperbolic line graphs.

• Theorem 4.5.3 (p. 103):
unitary hyperbolic line graphs.

Geometries: simple connectedness

• Theorem 3.7.9 (p. 79):
flipflop geometry of type Cn.

Geometries: local characterization

• Theorem 4.3.6 (p. 92):
linear hyperbolic root geometry.

• Corollary 4.3.7 (p. 93):
linear hyperbolic root geometry.

• Theorem 4.4.23 (p. 101):
symplectic hyp. long root geometry.

• Theorem 4.5.4 (p. 103):
unitary hyp. long root geometry.

Groups: universal completion

• Theorem 1.6.2 (p. 21):
PΓLn(F).

• Corollary 1.7.7 (p. 28):
PSO±

n
(F).

• Theorem 3.8.1 (p. 79):
Sp2n(F).

• Theorem 3.8.4 (p. 81):
Sp2n(F).

Groups: local recognition

• Theorem 1.6.3 (p. 23):
PGLn(F).

• Theorem 2.5.3 (p. 53):
PGLn(F).

• Theorem 4.4.25 (p. 101):
PSp2n(F).

• Theorem 4.5.5 (p. 104):
PGUn(F2).

General notation

As a general rule graphs are denoted by greek capitals (Γ) and vertices of graphs
by boldface latin letters (x). Geometries are denoted by calligraphic latin capitals
(G), elements of geometries by latin letters (p) and subspaces of geometries by
latin capitals (X). Sometimes, geometries are considered as graphs and vice versa,
vertices of graphs as elements of geometries, subspaces of geometries as elements
of geometries or subgeometries. Then we use the notation which seems the most
natural to us. For example, if we choose a vertex of a graph, which will later play
the role of an element of a geometry, it will still be denoted in a boldface latin letter.
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The end of the proof of a lemma, proposition, corollary, or theorem will always
be indicated by 2. If the proof has been given before the statement of the result, or
if the proof is immediate, then the 2 will occur after the statement of the result. If
a significant result is taken from a source other than the present thesis, the source
will occur in parentheses next to the header of the result. If nothing more is said
about the proof, then no 2 will occur. If we believe not to have given the original
reference for a result, then we put an e.g. before the source we have given. To
indicate that we have omitted a significant part of the proof of a result, we finish
the proof or the statement of that result with � instead of 2. We do the same for
the results that logically depend on such results. Corollaries always immediately
depend on a proposition, a theorem, or another corollary. If it is not clear on which
result a corollary depends, that respective result will be indicated next to the header
of the corollary.
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Chapter 1

Point-Hyperplane Pairs

Local recognition of graphs is a problem described, for example, in [Coh90]. The
general idea is the following. Choose your favorite graph ∆ and try to find all
connected graphs Γ that are locally ∆, i.e., graphs whose induced subgraph on the
set of all neighbors of an arbitrary vertex of Γ is isomorphic to ∆. One restricts
the search to connected graphs, because a graph is locally ∆ if and only if all of
its connected components are also locally ∆. There has already been done a lot of
work in this direction, see, e.g., [BC73], [BC75], [BH77], [Hal80], [Ron81], [Vin81],
[BBBC85], [Hal87], [BB89], [Ned93], [Wee94a], [Wee94b].

In this chapter we will study graphs on the non-incident point-hyperplane pairs
of a Desarguesian projective space where a point-hyperplane pair is adjacent to
another point-hyperplane pair if and only if the point of one pair is contained in the
hyperplane of the other pair and vice versa. Alternatively, except for the field of two
elements, one can describe these graphs as the graphs on the reflection tori of the
group PΓLn(F) with distinct tori being adjacent if and only if they commute, see
Proposition 1.5.5. Thus, a local recognition result has applications in group theory.
As opposite elements of the projective geometry are involved, one can expect one
of these applications to be closely related to the Curtis-Tits theorem on defining
relations of subgroups of the group PΓLn(F). See Section 3.1 for a precise statement
of the Curtis-Tits theorem.

The graph on the non-incident point-hyperplane pairs as defined above (see also
Definition 1.1.1) is denoted by Hn(F), where n is the projective dimension of the
projective space and F is its coordinatizing division ring. For n ≥ 2, it is possible to
recover the space Pn(F) from the graph Hn(F), as is shown in Section 1.2. Especially
note Proposition 1.2.8 and its corollaries. We can use this reconstruction of the
projective space to obtain the (full) automorphism group of Hn(F) in Corollary
1.2.10. In later sections we study graphs that are connected and locally Hn(F).
We present a local recognition result for n ≥ 3, see Theorem 1.3.21, as well as an
example of a connected, locally H2(2) graph that is not isomorphic to H3(2) in
Section 1.4.
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Section 1.6 is devoted to the study of group-theoretic consequences of the results
gathered in the preceding sections. In the beginning of the section a result on
universal completions of an amalgam is given. However, this result does not require
the full strength of the local recognition result Theorem 1.3.21. Instead, simple
connectedness of the point-hyperplane graphs is sufficient, a result that is obtained
at a very early stage in Lemmas 1.3.3 and 1.3.6. Later in Section 1.6 we turn to
the problem of embedding related amalgams into PΓLn+2(F), see Theorem 1.6.2,
and the classical problem of recognizing a group from local information on the
centralizers of involutions, see Theorem 1.6.3. Here we fully exploit the results of
Theorem 1.3.21.

In Section 1.7 we study graphs on the reflection tori of certain subgroups of
PΓLn+1(F), namely PΓOn(F) and PΓUn(F). These graphs are induced subgraphs
of the graph Hn(F). This section is not self-contained and heavily relies on [CP92]
and [Cuyb]. It is a report on local recognition results obtained by Hans Cuypers
plus a new idea for improvement of the dimension bound in some cases. More
precisely, we prove the simple connectedness of all graphs belonging to those cases
and conjecture that this allows for improvement of the local recognition result.
Furthermore we include several group-theoretic consequences of our result on simple
connectedness and point out corollaries of Cuypers’ local recognition result as well
as our conjecture.

The contents of this chapter have been obtained in collaboration with Arjeh
Cohen and Hans Cuypers and are taken from [CCG].

1.1 The point-hyperplane graph

Definition 1.1.1 Let n ∈ N ∪ {0} and let F be a division ring. Consider the
projective space Pn(F) = P(V ) of projective dimension n over F, i.e., the projective
space of an (n + 1)-dimensional vector space V over F. The point-hyperplane
graph Hn(F) of Pn(F) is the graph whose vertices are the non-incident point-
hyperplane pairs of Pn(F) in which a vertex (a,A) is adjacent to another vertex
(b, B) (in symbols, (a,A) ⊥ (b, B)) if and only if a ∈ B and b ∈ A.

By definition, we have x 6⊥ x, so the perp x⊥ of x of all vertices of Hn(F) in
⊥ relation to x is the set of vertices in Hn(F) at distance one from x. Moreover,
for a set X of vertices, we define the perp of X as X⊥:=

⋂

x∈X x⊥ with the

understanding that ∅⊥ = Hn(F) and the double perp of X as X⊥⊥:= (X⊥)⊥.

If the division ring F is clear from the context or irrelevant, we sometimes write
Pn and Hn instead of Pn(F), respectively Hn(F), and if F = Fq is finite of order q, we
also write Pn(q) and Hn(q). For a projective space P isomorphic to Pn(F), denote by
H(P) the graph on the non-incident point-hyperplane pairs with mutual inclusion of
the point of one pair in the hyperplane of another as adjacency. Certainly, H(P) ∼=
Hn(F).

A point p of the projective space Pn(F) = (P ,L) determines the set of vertices
vp = {(x,X) ∈ Hn(F) | x = p} of the graph Hn(F). A line l of Pn(F) determines the
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union vl of all sets vp of vertices for p ∈ l. Clearly the map v : P ∪L → 2Hn(F) : x 7→
vx is injective, and p ∈ l if and only if vp ⊂ vl, so we can identify the projective space
with its image under v in the collection of all subsets of the vertex set of Hn(F). We
shall refer to this image in 2Hn(F) as the exterior projective space on Hn(F).

Similarly, one can map points Π and lines Λ of the dual projective space Pn(F)
dual

onto subsets of vertices of Hn(F) of the form wΠ = {(x,X) ∈ Hn(F) | X = Π} and

wΛ =
⋃

Π⊃Λ wΠ for Π running over all points of Pn(F)
dual

containing Λ. This gives
rise to the dual exterior projective space on Hn(F). The subsets vp, vl, wΛ and
wΠ so obtained are called exterior points, exterior lines, exterior hyperlines,
and exterior hyperplanes of Hn(F), respectively. Note that, if F ∼= Fopp, the
projective space Pn(F) is isomorphic to its dual, and so there is an automorphism
of Hn(F) mapping the image under v onto the image under w. (If π is a duality,
then (x,X) 7→ (π(X), π(x)) is such an automorphism of Hn(F).) Also, note that

H(Pn(F)) ∼= H(Pn(F)dual) by the map (x,X) 7→ (X, x). In particular, it will not be
possible to distinguish exterior points from exterior hyperplanes when one tries to
reconstruct the projective space from the graph. Another useful observation is that
the exterior points partition the vertex set of Hn(F). In other words, each vertex of
Hn(F) belongs to a unique exterior point. The same holds for exterior hyperplanes.

One of our goals is to characterize the graph Hn(F) as the unique connected
graph (up to isomorphism) that is locally Hn−1(F), for sufficiently large n. In this
light the following two observations are important.

Proposition 1.1.2
Let n ≥ 1. The graph Hn(F) is locally Hn−1(F).

Proof. Let x = (x,X) be a vertex of Hn(F). Then X ∼= Pn−1(F). Identifying X
with Pn−1(F) by means of this isomorphism, we establish an isomorphism x⊥ →
Hn−1(F) as follows. For any vertex y = (y, Y ) adjacent to x, we have x ∈ Y ,
y ∈ X \ (X ∩ Y ), and dim(X ∩ Y ) = n− 2, so (y,X ∩ Y ) belongs to H(X).

Conversely, for any vertex of H(X), i.e., for any non-incident pair (z, Z) consist-
ing of a point z and a hyperline Z of Pn(F) with z ∈ X , Z ⊆ X , the pair (z, 〈Z, x〉)
is a vertex of x⊥. (Indeed, z 6∈ 〈Z, x〉, since x 6∈ X .)

Clearly, the maps (y, Y ) 7→ (y,X ∩ Y ) and (z, Z) 7→ (z, 〈Z, x〉) are each other’s
inverses. Moreover, the maps preserve adjacency, and the proposition follows. 2

Let P be isomorphic to Pn(F), and let X be a hyperplane of P. By the proof of
the preceding proposition, we can consider the graph H(X) as an induced subgraph
of H(P). Indeed, choose a point x of P that is not contained in X . This defines
a vertex (x,X) of H(P), and we can embed the vertices of H(X) in H(P) by the
map (y, Y ) 7→ (y, 〈Y, x〉), which are precisely the neighbors of the vertex (x,X). If
X is an arbitrary proper subspace of P, we can describe X as the intersection of a
number of hyperplanes and therefore we can embed H(X) into H(P).

For points x, y the symbol xy denotes the unique line through x and y if the
points are distinct and the point x = y if the points are equal.
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Proposition 1.1.3
H0 consists of precisely one point; H1 is the disjoint union of cliques of size two; the
diameter of H2 equals three; the diameter of Hn, n ≥ 3, equals two. In particular,
Hn is connected for n ≥ 2.

Proof. The statements about H0 and H1 are obvious. Let x = (x,X), y = (y, Y )
be two non-adjacent vertices of H2. The intersection X ∩Y is a point or a line, and
xy is a point or a line. The vertices x and y have a common neighbor, i.e., they are
at distance two, if and only if X ∩Y 6⊆ xy. If X ∩Y ⊆ xy, however, it is easily seen,
that they are at distance three. Indeed, choose a ∈ X\ {y} and b ∈ Y \ {x} with
ay 63 b and bx 63 a. Then (x,X), (a, bx), (b, ay), (y, Y ) establishes a path of length
three.

Now let x = (x,X), y = (y, Y ) be two non-adjacent vertices of Hn, n ≥ 3.
The intersection X ∩ Y contains a line. Since x 6∈ X and y 6∈ Y , we find a point
z ∈ X ∩ Y and a hyperplane Z ⊇ xy with z 6∈ Z and, thus, a vertex (z, Z) adjacent
to both x and y. 2

The first main result of this chapter will be a reconstruction theorem of the
projective space from graphs isomorphic to the point-hyperplane graph without
making use of the coordinates, see the next section. This goal will be achieved by
the study of double perps of two vertices, i.e., subsets of Hn of the form {x,y}⊥⊥.

Lemma 1.1.4
Let x = (x,X), y = (y, Y ) be distinct vertices of Hn with {x,y}⊥ 6= ∅. Then the

double perp {x,y}⊥⊥
equals the set of vertices z = (z, Z) of Hn with z ∈ xy and

Z ⊇ X ∩ Y .

Proof. Distinct vertices with non-empty perp only exist for n ≥ 2. The vertices of
{x,y}⊥ are precisely the non-incident point-hyperplane pairs (p,H) with p ∈ X ∩Y
and H ⊃ xy. Let

{

(pi, Hi) ∈ {x,y}⊥ | i ∈ I
}

be the set of all these vertices, indexed

by some set I . Now {x,y}⊥⊥
= ({x,y}⊥)⊥ consists of precisely those vertices

(z, Z) ∈ Hn with z ∈
⋂

i∈I Hi and Z ⊃ 〈(pi)i∈I〉. But since {x,y}⊥ 6= ∅, we have
⋂

i∈I Hi = xy and 〈(pi)i∈I 〉 = X ∩ Y , thus proving the claim. 2

In order to recover the projective spaces Pn and Pn
dual from the information

contained in a graph Γ
φ
∼= Hn, we have to recognize vertices x, y of Γ with x = y

or, dually, X = Y , if φ(x) = (x,X), φ(y) = (y, Y ). Clearly, x = y and X = Y if
and only if the vertices x, y are equal. To recognize the other cases, we make use
of the following definition and lemma.

Recall that the projective codimension of a subspace X of a projective space
P is the number of elements in a maximal chain of proper inclusions of subspaces
properly containing X and properly contained in P. For example, the projective
codimension of a hyperplane of P equals 0.
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Definition 1.1.5 Let n ≥ 2. Vertices x = (x,X), y = (y, Y ) of Hn(F) are in
relative position (i, j) if

i = dim 〈x, y〉 and j = codim(X ∩ Y)

where dim denotes the projective dimension and codim the projective codimension.
Note that i, j ∈ {0, 1}.

Lemma 1.1.6
Let n ≥ 2, and let x, y ∈ Hn. Then the following assertions hold.

(i) The vertices x and y are in relative position (0, 0) if and only if they are equal.

(ii) The vertices x and y are in relative position (0, 1) or (1, 0) if and only if they are

distinct and the double perp {x,y}⊥⊥
is minimal with respect to containment,

i.e., it does not contain two vertices with a strictly smaller double perp.

(iii) The vertices x and y are in relative position (1, 1) if and only if they are

distinct and the double perp {x,y}⊥⊥ is not minimal.

Proof. Statement (i) is obvious. Suppose x and y are in relative position

(0, 1). Then {x,y}⊥ 6= ∅ (since n ≥ 2), and we can apply Lemma 1.1.4. We

obtain {x,y}⊥⊥ = {(z, Z) ∈ Hn | z = x = y, Z ⊇ X ∩ Y }, whence any pair of dis-

tinct vertices contained in {x,y}⊥⊥ is in relative position (0, 1) and gives rise
to the same double perp. Symmetry handles the case (1, 0). If x and y are in

relative position (1, 1) and {x,y}⊥ = ∅, then {x,y}⊥⊥ = Hn, which is clearly

not minimal. So let us assume {x,y}⊥ 6= ∅. Again by Lemma 1.1.4, we have

{x,y}⊥⊥
= {(z, Z) ∈ Hn | z ∈ xy, Z ⊇ X ∩ Y }. This double perp contains a vertex

that is at relative position (0, 1) to x, and we obtain a double perp strictly contained

in {x,y}⊥⊥. Statements (ii) and (iii) now follow from the fact that distinct vertices
x = (x,X) and y = (y, Y ) are in relative position (0, 1), (1, 0), or (1, 1). 2

We conclude this section with a lemma that will be needed later.

Lemma 1.1.7
Let x = (x,X) and y = (y, Y ) be two adjacent vertices in Hn. If x is adjacent to a
vertex (z, Z1) and y adjacent to a vertex (z, Z2), then there exists a vertex (z, Z3)
adjacent to both x and y.

Proof. The statement of the lemma is empty for n < 2, and we can assume n ≥ 2.
We have z ∈ X ∩ Y . Since x and y are adjacent, x ∈ Y and y ∈ X are distinct and
the line xy does not contain z. Hence the choice of a hyperplane Z3 that contains
xy and does not contain z is possible, and we have found a vertex (z, Z3) adjacent
to both x and y. 2
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1.2 Reconstruction of the projective space

This section will concentrate on the unique reconstruction (up to duality) of the
projective space from a graph Γ isomorphic to Hn(F). Abusing notation to some
extent, we will sometimes speak of relative positions on Γ, but only if we have fixed
a particular isomorphism Γ ∼= Hn(F). Throughout the whole section, let n ≥ 2.
Furthermore, let F be a division ring and Γ ∼= Hn(F).

Definition 1.2.1 Let x, y be vertices of Γ. Write x ≈ y to denote that either x, y
are equal or the double perp {x,y}⊥⊥ is minimal with respect to inclusion (in the
class of double perps {u,v}⊥⊥ for vertices u, v with u 6= v).

For a fixed isomorphism Γ ∼= Hn inducing coordinates on Γ the relation ≈
coincides with the relation ‘being equal or in relative position (1, 0) or (0, 1)’ by
Lemma 1.1.6(ii). What remains is the problem of distinguishing the dual cases
(0, 1) and (1, 0):

Lemma 1.2.2
On the vertex set of Γ, there are unique equivalence relations ≈p and ≈h such that

≈ equals ≈p ∪ ≈h and ≈p ∩ ≈h is the identity relation. Moreover, for a fixed
isomorphism Γ ∼= Hn, we either have

• ≈p is the relation ‘being equal or in relative position (0, 1)’, and ≈h is the
relation ‘being equal or in relative position (1, 0)’, or

• ≈p is the relation ‘being equal or in relative position (1, 0)’, and ≈h is the
relation ‘being equal or in relative position (0, 1)’.

In other words, for a fixed isomorphism Γ ∼= Hn(F) and up to interchanging ≈p

and ≈h, we may assume that ≈p stands for being equal or in relative position (0, 1)
and ≈h stands for being equal or in relative position (1, 0).

Proof. As we have noticed after Definition 1.2.1, two vertices x, y of Γ are in relation
≈ if and only if their images (x,X) and (y, Y ) in Hn(F) are equal or in relative
positions (0, 1) or (1, 0). Let us consider equivalence relations that are subrelations of
≈. Obviously, the identity relation is an equivalence relation. Moreover, the relation
‘equal or in relative position (0, 1)’ and the relation ‘equal or in relative position
(1, 0)’ are equivalence relations. Now let us assume we have vertices x = (x,X),
y = (y, Y ), z = (z, Z) of Γ ∼= Hn(F) such that x, y are in relative position (0, 1)
and x, z are in relative position (1, 0). Then y 6= z and Y 6= Z and y, z cannot be in
relative position (0, 1) or (1, 0). Consequently, if we want to find two sub-equivalence
relations ≈p and ≈h of ≈ whose union equals ≈, then either of ≈p and ≈h has to
be a subrelation of the relation ‘equal or in relative position (0, 1)’ or of the relation
‘equal or in relative position (1, 0)’. The lemma is proved. 2
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Convention 1.2.3 From now on, we will always assume that, as soon as we fix
an isomorphism Γ ∼= Hn(F), the relation ≈p corresponds to ‘equal or in relative
position (0, 1)’.

Definition 1.2.4 Let x be a vertex of Γ. With ≈p and ≈h as in Lemma 1.2.2, we
shall write [x]p to denote the equivalence class of ≈p containing x, and similarly we
shall write [x]h to denote the equivalence class of ≈h containing x. We shall refer
to [x]p as the interior point on x and to [x]h as the interior hyperplane on x.

Lemma 1.2.5
For a fixed isomorphism Γ ∼= Hn(F), an interior point of Γ is the image of an exterior
point of Hn(F) under this isomorphism, and vice versa. The same correspondence
exists between interior hyperplanes of Γ and exterior hyperplanes of Hn(F).

Proof. This is direct from the above. 2

Note that an exterior point and an exterior hyperplane of Hn(F) are disjoint
if and only if the corresponding point and hyperplane of Pn(F) are incident. The
above lemma motivates us to call a pair (p,H) of an interior point and an interior
hyperplane of Γ incident if and only if p∩H = ∅. This makes it possible to define
interior lines.

Definition 1.2.6 Let p and q be distinct interior points of Γ. The interior line l
of Γ spanned by p and q is the union of all interior points disjoint from every interior
hyperplane disjoint from both p and q. In other words, the interior line pq consists
of exactly those interior points which are incident with every interior hyperplane
incident with both p and q. Dually, define the interior hyperline spanned by
distinct interior hyperplanesH and I as the union of all interior hyperplanes disjoint
from every interior point disjoint from both H and I .

Lemma 1.2.7
For a fixed isomorphism Γ ∼= Hn(F), each interior line of Γ is the image of an
exterior line of Hn(F) under this isomorphism, and vice versa. The analogue holds
for interior hyperlines.

Proof. The proof is straightforward. 2

The geometry (P ,L,⊂) on Γ where P is the set of interior points of Γ and L
is the set of interior lines of Γ is called the interior projective space on Γ. By
Lemma 1.2.5 and Lemma 1.2.7, this interior projective space is isomorphic to the
exterior projective space on Hn(F). Proceeding with ≈h as we did for ≈p, the same
holds for the dual of the interior projective space on Γ. We summarize the findings
in the following proposition.
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Proposition 1.2.8
Let n ≥ 2. Up to interchanging ≈p and ≈h every isomorphism Γ ∼= Hn(F) induces an
isomorphism between the interior projective space on Γ and the exterior projective
space on Hn(F). The analogue holds for the dual interior projective space on Γ. 2

Corollary 1.2.9
Let n ≥ 2, and let Γ be isomorphic to Hn(F). Then the interior projective space on

Γ is isomorphic to Pn(F) or Pn(F)dual. 2

Corollary 1.2.10
Let n ≥ 2, and let Γ be isomorphic to Hn(F). If F admits an anti-automorphism,
then the automorphism group of Γ is of the form PΓLn+1(F).2.

Proof. Indeed, every automorphism of Pn(F) induces an automorphism of Γ.
Conversely, every automorphism of Γ that preserves the interior projective space
gives rise to a unique automorphism of Pn(F), by the theorem. Moreover, every
automorphism of Γ either preserves the interior projective space or maps it onto the
dual interior projective space, again by the theorem. Finally, an outer automorphism
is induced on Γ by the map (p,H) 7→ (δ(H), δ(p)) for a duality δ of the projective
space, and the map (p,H) 7→ (δ2(p), δ2(H)) preserves the interior projective space
on Γ. 2

The question whether the automorphism group of Γ actually is of the form
PΓLn+1(F) : 2 is equivalent to the question whether the division ring F admits an
involutive anti-automorphism.

Corollary 1.2.11
Let n ≥ 2, and let Γ be isomorphic to Hn(F). If F does not admit an anti-
automorphism, the automorphism group of Γ is isomorphic to PΓLn+1(F).

Proof. The proof is the same as the proof of the preceding corollary, only that one
cannot map the interior projective space onto the dual interior projective space, as
they are non-isomorphic. 2

Remark 1.2.12 This might be an appropriate moment to address the problem of
duality. Although, by Convention 1.2.3, as soon as we fix an isomorphism Γ ∼=
Hn(F), we also choose the equivalence relation ≈p to correspond to the relation
‘equal or in relative position (0, 1)’ of Hn(F), there is a subtle problem—mainly of
notation—coming with this: Suppose Γ ∼= Hn(F) with F 6∼= Fopp. Then, by the
convention, the interior projective space on Γ will always be isomorphic to Pn(F). If

one wants the interior projective space to be isomorphic to Pn(F)dual, then one will
have to fix an isomorphism Γ ∼= Hn(Fopp), although Hn(F) ∼= Hn(Fopp) by means
of the map (p,H) 7→ (H, p). The reason for this is that we have defined the graph
Hn(F) as the point-hyperplane graph of the space Pn(F), which by Convention 1.2.3
determines the isomorphism class of the interior projective space on Γ.
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The remainder of this section serves as a collection of results to be used later on.
First comes a useful lemma on subspaces of the interior projective space of Γ.

Lemma 1.2.13
Let U be a subspace of the interior projective space on Γ. For any projective basis
of U there exists a clique of vertices in Γ such that the interior points containing
these vertices are the basis elements.

Proof. Fix an isomorphism φ : Γ → Hn. By Proposition 1.2.8, we can as well argue
with exterior points of Hn. Let xi, i in some index set I , be exterior points such that
〈{xi | i ∈ I}〉 = φ(U). We have xi = {(pi, H) ∈ Hn | H a hyperplane of Pn} for all
i ∈ I . In particular, (pi, 〈V, {pj | j ∈ I\ {i}}〉) ∈ xi for all i ∈ I and a complement
V of φ(U) in Pn, and the claim follows. 2

Notation 1.2.14 Let n ≥ 3. For a vertex x of Γ ∼= Hn(F), we write ≈x for the
relation ≈ defined on x⊥ (bear in mind that the latter is isomorphic to Hn−1(F) by
Proposition 1.1.2).

Lemma 1.2.15
Let n ≥ 3. Let x be a vertex of Γ. Then ≈x is the restriction of ≈ to x⊥.

In particular, if p is an interior point of Γ with p ∩ x⊥ 6= ∅, then p ∩ x⊥ is an
interior point or an interior hyperplane of x⊥, and conversely, if q is an interior point
of x⊥, then there exists an interior point or hyperplane q′ of Γ with q′ ∩ x⊥ = q.

Proof. Fix an isomorphism φ : Γ → Hn. As above, we argue in Hn rather than
in Γ. Let φ(x) = (x,X). Now the lemma follows from the fact that, for a,b ∈ x⊥

with φ(a) = (a,A), φ(b) = (b, B), the statements A ∩X = B ∩ X and A = B are
equivalent. 2

Notation 1.2.16 In view of the lemma, we can choose the equivalence relation ≈p
x

on x⊥ in such a way that (≈x)p = (≈p)x. In that case, there is no harm in writing
≈p

x to denote this relation. In particular, there is a one-to-one map from the set of
interior points of x⊥ into the set of interior points of Γ.

Lemma 1.2.17
Let n ≥ 3 and let x be a vertex of Γ. Then the interior projective space on x⊥ is a
hyperplane of the interior projective space on Γ.

Proof. Fix an isomorphism Γ ∼= Hn(F). By Proposition 1.2.8 this isomorphism of
graphs induces an isomorphism between the interior projective space on Γ and the
exterior projective space on Hn(F). The vertex x ∈ Γ is mapped onto a non-incident
point-hyperplane pair of Hn(F), say (x,X). The neighbors of x are mapped onto
point-hyperplane pairs (y, Y ) with y ∈ X , inducing a map of the set of interior
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points of Γ that meet x⊥ non-trivially onto the set of exterior points of Hn(F)
that intersect (x,X)⊥ non-trivially. But the latter set of exterior points form a
hyperplane of the exterior projective space on Hn(F), and the lemma is proved. 2

1.3 Locally point-hyperplane graphs

Throughout the whole section, let n ≥ 3, and let Γ be a connected, locally Hn(F)
graph for some division ring F. Recall that, given graphs Γ and ∆, the graph
Γ is called locally ∆ if, for each vertex x ∈ Γ, the induced subgraph x⊥ on all
neighbors of x in Γ is isomorphic to the graph ∆. Thus, the fact that Γ is locally
Hn(F) means that, for each vertex x of Γ, there is an isomorphism x⊥ → Hn(F)
(as well as an isomorphism x⊥ → Hn(Fopp)). Consequently, by Corollary 1.2.9,
the interior projective space on x⊥ is isomorphic to Pn(F) or its dual. The goal of
this section is, by use of these isomorphisms, to show that Γ is isomorphic to the
point-hyperplane graph of Pn+1(F).

Notice that the definitions of interior points and lines are only local and may
differ on different perps. It is one task of this section to show that there is a
well-defined notion of global points and global lines on the whole graph. To avoid
confusion, we will index each interior point p and each interior line l by the vertex
x whose perp it belongs to, so we write px and lx instead of p and l. These interior
points and lines are called local points and local lines, respectively. We do the
same for the relations ≈, ≈p, ≈h obtaining the local relations ≈x, ≈p

x, ≈h
x.

Lemma 1.3.1
Let x and y be two adjacent vertices of Γ. Then there is a choice of local equivalence

relations ≈p
x and ≈p

y such that the restrictions of ≈p
x and ≈p

y to x⊥ ∩ y⊥ coincide.

Proof. This follows immediately from a repeated application of Lemma 1.2.15 to
x⊥ ∼= Hn(F) and x⊥ ∩ y⊥ and to y⊥ ∼= Hn(F) and x⊥ ∩ y⊥. 2

The preceding lemma allows us to transfer points from x⊥ to y⊥. Indeed, if
there is a local point px in x⊥ that lies in the hyperplane Yx induced by the vertex
y on x⊥, the point px corresponds to a point py of y⊥. That point py is simply the
≈p

y equivalence class that contains the set px ∩ y⊥. The next lemma will show us
that we can transfer interior points at will around a triangle of Γ.

Lemma 1.3.2
Let x, y, and z be three mutually adjacent vertices of Γ. Then there is a choice of
local equivalence relations ≈p

x, ≈p
y, and ≈p

z such that the restrictions of ≈p
x and ≈p

y

to x⊥ ∩ y⊥, the restrictions of ≈p
x and ≈p

z to x⊥ ∩ z⊥, and the restrictions of ≈p
y

and ≈p
z to y⊥ ∩ z⊥ coincide.
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Proof. In view of Lemma 1.3.1, we may assume that ≈p
x and ≈p

y have the same

restriction to x⊥ ∩ y⊥ and that ≈p
x and ≈p

z have the same restriction to x⊥ ∩ z⊥.
Let px be an interior point of x⊥ such that px ∩ y⊥ ∩ z⊥ 6= ∅. By analysis of x⊥,
we can find two vertices, say u and v in px ∩ y⊥ ∩ z⊥. Now the above choices of
local equivalence relations imply that u and v belong to ≈p

y ∩ ≈p
z (indeed, u and v

belong to both ≈p
x ∩ ≈p

y and ≈p
x ∩ ≈p

z). This forces that ≈p
y and ≈p

z have the same

restriction to y⊥ ∩ z⊥ by Lemma 1.2.2. 2

Lemma 1.3.3
Let n ≥ 5 and let w ⊥ x ⊥ y ⊥ z be a path of vertices in Γ. Then w⊥∩x⊥∩y⊥∩z⊥ 6=
∅. In particular, the diameter of Γ is two, and Γ, viewed as a two-dimensional
simplicial complex whose two-simplices are its triangles, is simply connected.

Proof. Choose local equivalence relations ≈p
w, ≈p

x, ≈p
y, and ≈p

z such that ≈p
w and

≈p
x coincide on w⊥ ∩ x⊥, such that ≈p

x and ≈p
y coincide on x⊥ ∩ y⊥, and such

that ≈p
y and ≈p

z coincide on y⊥ ∩ z⊥ as indicated in Lemma 1.3.1. Suppose we

have x = (xy, Xy) and z = (zy, Zy) inside y⊥. Then the graph x⊥ ∩ y⊥ ∩ z⊥

(considered inside y⊥) consists of the non-incident point-hyperplane pairs whose
points are contained in Xy∩Zy and whose hyperplanes contain the line xyzy. Since
n ≥ 5, the space Xy ∩ Zy has at least (projective) dimension three. The line xyzy
can intersect Xy ∩Zy in at most a point, as xy 6∈ Xy and zy 6∈ Zy. Assume it does
and let ay be that intersection point.

By the choice of local equivalence relations and by Lemma 1.2.15, we can consider
this configuration also in x⊥. The vertices w and y correspond to point-hyperplane
pairs (wx,Wx) and (yx, Yx), respectively. The space Xy ∩ Zy in y⊥ corresponds
to a space Ux of x⊥ (of the same dimension as Xy ∩ Zy) contained in Yx. The
point ay arises as the point ax in x⊥ and is contained in Ux. Let lx be the line
in x⊥ spanned by ax and yx. In the worst case, we have lx ∩ Ux ∩Wx 6= ∅. But
even then 〈wx, lx〉 ∩ Ux ∩Wx is strictly contained in Ux ∩Wx. Therefore we can
choose a point px ∈ Ux ∩Wx\ 〈wx, lx〉 and a hyperplane Hx 63 px containing lx and
wx. Now (px, Hx) describes a vertex p in x⊥ which is adjacent to w (as px ∈ Wx

and wx ∈ Hx) and also to y (as px ∈ Ux ⊆ Yx and yx ∈ lx ⊂ Hx) and to z (as
p = (py, Hy) in y⊥ with py ∈ Xy ∩ Zy and xyay ⊆ H , whence also zy ∈ Hy), as
required. If some of the assumptions made in the proof—like xyzy∩Xy∩Zy 6= ∅—do
not hold, then the result is obtained even faster.

The other assertions are direct consequences of the above. Indeed, let a, b be
distinct vertices of Γ. As Γ is connected, there exists a path from a to b. If the path
has length greater than two, we can find a new path of shorter length by the first
part of the lemma. Induction proves that there exists a path of length at most two
from a to b. Similarly, one proves that a cycle can be decomposed into triangles. 2

The preceding lemma shows that in case n ≥ 5 the graph Γ is automatically
simply connected. The cases n = 3, 4 will prove a little bit more difficult, but



12 CHAPTER 1. POINT-HYPERPLANE PAIRS

the series of the following three lemmas will prove simple connectedness of Γ for
n ∈ {3, 4} as well.

Lemma 1.3.4
Let w ⊥ x ⊥ y ⊥ z be a path of vertices in Γ. Then for x = (xy, Xy) and

z = (zy, Zy) inside y⊥, if Xy∩Zy∩xyzy = ∅ or if Xy = Zy, we have {w,x, z}⊥ 6= ∅.

Notice that, for example, we have Xy ∩ Zy ∩ xyzy = ∅, in case xy = zy.

Proof. Choose local equivalence relations ≈p
w, ≈p

x, ≈p
y, and ≈p

z such that ≈p
w and

≈p
x coincide on w⊥ ∩ x⊥, that ≈p

x and ≈p
y coincide on x⊥ ∩ y⊥, and that ≈p

y and

≈p
z coincide on y⊥ ∩ z⊥ as indicated in Lemma 1.3.1. Application of Lemma 1.2.17

to the interior projective space of y⊥ ∼= Hn(F) shows that the interior projective
spaces on x⊥ ∩ y⊥ and on y⊥ ∩ z⊥ correspond to hyperplanes of y⊥ ∼= Hn(F).
We have to investigate x⊥ ∩ y⊥ ∩ z⊥. We have x = (xy, Xy) and z = (zy, Zy)
inside y⊥. Then the graph x⊥ ∩y⊥ ∩z⊥ (considered inside y⊥) consists of the non-
incident point-hyperplane pairs whose points are contained in Xy ∩ Zy and whose
hyperplanes contain the line xyzy.

First, let us assume Xy ∩ Zy ∩ xyzy = ∅. Also assume that xy 6= zy and denote
the intersection xyzy ∩Xy by ay. Consider x⊥, in which the point ay ∈ Xy arises
as ax inside Yx, and denote w by (wx,Wx) and y by (yx, Yx). We can assume wx

to be contained in Yx. (Indeed, inside y⊥, the intersection Xy ∩ Zy contains a line
ly. This line ly arises as a subspace lx of x⊥ that is contained in Yx. Choose a
hyperplane Hx that contains ax, wx, and yx, and choose a point px on lx off Hx.
This gives rise to a vertex y′ that is adjacent to x and y. Local analysis of y⊥

shows that the hyperplane of the vertex y′ contains the point xy and the point ay,
whence also the point zy. Moreover, the point of y′ is contained in ly, whence also
in Zy, and y′ is a neighbor of z.) Inside x⊥ we have now the following setting. The
hyperplane Yx contains the points wx and ax as well as the line lx. Note that lx
has to intersect the hyperplane Wx. If 〈ax, wx〉 does not intersect lx ∩Wx, then
we can choose a point inside lx ∩Wx and a non-incident hyperplane that contains
〈ax, wx, yx〉, yielding a vertex that is adjacent to w, x, y, and—after local analysis
of y⊥—also to z. Therefore assume that 〈ax, wx〉 does intersect lx ∩Wx. Then fix
the point ux := 〈ax, wx〉 ∩ lx ∩Wx and choose a hyperplane Ux of x⊥ that contains
ax and yx but not ux. The pair (ux, Ux) describes another vertex, u say, that is
adjacent to x, y, and z. Locally in u⊥ we have a hyperplaneXu of x, a line ku in Xu

that arises from a line kx contained in the intersection Ux ∩Wx of the hyperplanes
of the vertices u and w inside x⊥, and the hyperplane Zu of z. Choose a point vu
in ku ∩ Zu and a hyperplane Vu on xuzu that does not contain vu. Obviously, this
vertex v = (vu, Vu) is adjacent to x and z. In x⊥, however, we see v as (vx, Vx)
whose hyperplane Vx contains the points ax and ux, therefore also wx. Moreover,
vx is contained in kx, whence also in Wx, and v is the required vertex.

The special cases xy = zy and Xy = Zy run along the same lines and are, in
fact, easier to prove. 2
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Lemma 1.3.5
The diameter of Γ is two.

Proof. Since for n ≥ 5, this is a weaker version of Lemma 1.3.3, we will concentrate
on the cases n ∈ {3, 4}. Choose a path w ⊥ x ⊥ y ⊥ z of vertices in Γ, and fix
local equivalence relations ≈p

w, ≈p
x, ≈p

y, and ≈p
z as in the proof of the preceding

lemma. Inside y⊥, let x correspond to (xy, Xy) and z correspond to (zy, Zy). Up
to a change of x to a vertex x0 ∈ w⊥ ∩ x⊥ ∩ y⊥ with x0 = (x0

y, X
0
y) inside y⊥

we can assume that Xy ∩ Zy ∩ xyzy = ∅. For, suppose that Xy ∩ Zy ∩ xyzy 6= ∅.
Then Xy ∩ Zy ∩ xyzy is a point; Xy ∩ Zy\xyzy is at least (the point set of) an
affine line, for n = 3, and at least (the point set of) a dual affine plane, for n = 4;
it may be even bigger if Xy = Zy. The set of common neighbors of x and z in
y⊥ corresponds to the set of all non-incident point-hyperplane pairs (py, Hy) with
py ∈ Xy ∩ Zy and Hy ⊃ xyzy. This implies that for any point py ∈ Xy ∩ Zy\xyzy
we can find a vertex (py, Hy) in y⊥ adjacent to both x and z. Now consider x⊥.
Let w = (wx,Wx) and y = (yx, Yx). Any vertex x0 = (x0

x, X
0
x) adjacent to w, x,

y consists of a point x0
x ∈ Wx ∩ Yx and a non-incident hyperplane X0

x ⊃ wxyx.
Hence, as above in y⊥, we can choose x0

x freely on an affine line for n = 3 or a dual
affine plane for n = 4. This translates to y⊥ as follows. The line wxyx intersects
Yx in a point, ax say, which gives rise to a point ay ∈ Xy of y⊥. So all those
hyperplanes X0

x arise as hyperplanes X0
y in y⊥ that have to contain the line xyay.

Notice that this line xyay is the largest subspace of y⊥ that is contained in all these
hyperplanes X0

y. If for some fixed choice of x0
y, there exists a hyperplane X0

y such
that X0

y ∩Zy ∩x0
yzy = ∅, we are done. Hence, for a fixed x0

y, suppose all choices for
X0

y contain the point x0
yzy ∩Zy. Then we can choose another x1

y instead of x0
y and

find an X0
y with X0

y ∩Zy ∩ x1
yzy = ∅. For, suppose for a choice x1

y distinct from x0
y

still X0
y ∩ Zy ∩ x1

yzy 6= ∅ for all possible X0
y. Then the points uy := x0

yzy ∩ Zy and
vy := x1

yzy ∩Zy span a line as zy 6∈ Zy. But this line uyvy has to coincide with the
line xyay. In particular, xy is contained in Zy. But this contradicts our assumption
that Xy ∩ Zy ∩ xyzy 6= ∅. Hence we can find an x1

y with X0
y ∩ Zy ∩ x1

yzy = ∅.
We have found a chain of length three from w to z that satisfies the hypotheses

of Lemma 1.3.4, and the claim follows. 2

We would like to credit the following lemma to Andries Brouwer, who observed
that the combination of the proofs of the two preceding lemmas yields simple con-
nectedness.

Lemma 1.3.6
The graph Γ, considered as a two-dimensional simplicial complex whose two-simpli-
ces are its triangles, is simply connected.

Proof. The proof of Lemma 1.3.5 shows that for every path of distinct vertices w,
x, y, z in Γ we have xyzy ∩Xy ∩ Zy = ∅ or there exists a vertex x0 ∈ {w,x,y}⊥

with x0
yzy ∩ X0

y ∩ Zy = ∅. The proof of Lemma 1.3.4, on the other hand, implies

that in the former case there exists a path of vertices inside x⊥ ∩ z⊥ from y to a
vertex v that is adjacent to w, x, and z and in the latter case there exists a path
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of vertices inside x⊥
0 ∩ z⊥ from y to a vertex v that is adjacent to w, x0, and z.

Simple connectedness of Γ follows. 2

Lemma 1.3.7
There is a choice of local equivalence relations ≈p

x for all x ∈ Γ such that, for any

two adjacent vertices x and y, the restrictions of ≈p
x and ≈p

y to x⊥ ∩ y⊥ coincide.

Proof. Since Γ is simply connected (by Lemmas 1.3.3 and 1.3.6), the statement of
this lemma follows immediately from the triangle analysis in Lemma 1.3.2. 2

Notation 1.3.8 Fix a choice of ≈p
x as in Lemma 1.3.7 and set ≈p=

⋃

x∈Γ ≈p
x.

Lemma 1.3.9
Let x and y be vertices of Γ such that x ≈p

u y for some vertex u in {x,y}⊥. Then

x ≈p
v y for every vertex v in {x,y}⊥.

Proof. Let u, x, y be as in the hypothesis and let v ∈ {x,y}⊥ be an additional
vertex. If u ⊥ v, then the claim is certainly true. Indeed, in u⊥ we then have
x = (xu, Xu), y = (yu, Yu), v = (vu, Vu) with xu, yu ∈ Vu and xu = yu as x ≈p

u y.

Thus, it is sufficient to show that the induced subgraph {x,y}⊥ of Γ is connected. In
u⊥ the vertices x and y correspond to point-hyperplane pairs (xu, Xu), respectively
(yu, Yu). Likewise, in x⊥ we have the correspondence u = (ux, Ux) and v = (vx, Vx).
Moreover, the intersection Xu ∩Yu from u⊥ arises as a hyperplane Wx of Ux in x⊥.
Therefore the intersection Wx ∩ Vx contains a point px. If in x⊥ the line uxvx does
not contain px, we can find a hyperplane Hx ⊃ uxvx that does not contain px, and
(px, Hx) is a vertex of x⊥ which is adjacent to both u and v. But inside u⊥ this
vertex also corresponds to some point-hyperplane pair, whose point is contained in
Yu and whose hyperplane contains yu = xu, whence this vertex is also adjacent to
y, and we are done.

So assume we have px ∈ uxvx in x⊥. Then choose any hyperplane Hx that
contains ux but not px. Then the vertex t := (px, Hx) is adjacent to x, u, and y,
but not v. Inside t⊥ we have hyperplanes Xt and Yt coming from x and y. The
intersection Xt ∩ Yt corresponds to a subspace Sx of Hx (the hyperplane of the
vertex t) in x⊥. The intersection Sx∩Vx in x⊥ contains some point qx. If qx lies on
the line pxvx, then qx = pxvx ∩Hx = pxux ∩Hx = ux, and we have ux ∈ Vx. But
this contradicts px ∈ uxvx, as px ∈ Vx ∩ Ux, vx 6∈ Vx and ux ∈ Vx\Ux. Therefore
we have qx 6∈ pxvx and we are in the situation of the preceding paragraph with the
vertex t instead of u. 2

Finally, we prove the fact that there exists a well-defined notion of global points
on Γ, which will then allow us to study a geometry on Γ. Moreover, all statements
and results about the local relations ≈p

x are also true for the local relations ≈h
x, and

we can define a global relation ≈h=
⋃

x∈Γ ≈h
x with the same nice properties on the

local intersections. Of course, also the following result is true for ≈h as well.
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Lemma 1.3.10
≈p is an equivalence relation.

Proof. Reflexivity and symmetry follow from reflexivity and symmetry of each
≈p

x. To prove transitivity, assume that x ≈p y and y ≈p z. Then there exist
vertices u, v with x ≈p

u y and y ≈p
v z. By Lemma 1.3.5, there also exists a vertex

a ∈ {x, z}⊥. We will prove that x ≈p
a z. Two applications of Lemma 1.3.4 (on

the chains a ⊥ x ⊥ u ⊥ y and a ⊥ z ⊥ v ⊥ y) yield vertices b ∈ {a,x,y}⊥

and c ∈ {a, z,y}⊥. Lemma 1.3.9 implies x ≈p
b y and y ≈p

c z. Set b = (ba, Ba),
c = (ca, Ca), x = (xa, Xa), and z = (za, Za) in a⊥. Notice that za ∈ Ca. We
can additionally assume that xa ∈ Ca and ca 6∈ baxa. (Indeed, set a = (ac, Ac),
y = (yc, Yc), z = (zc, Zc) in c⊥. The intersection Ac ∩ Yc contains a line lc.
Moreover, yc = zc, as y ≈p

c z. Locally in a⊥ the line lc arises as a line la ⊂ Ca. Fix
a hyperplane Ha that contains 〈ca, xa, za〉 and fix a point pa on la off 〈ca, xa, za〉 and
〈ba, xa〉; such a choice is always possible as xa 6∈ la and ca 6∈ Ca and la contains at
least three points. This gives a new vertex c′ = (pa, Ha) that is adjacent to a, c, and
y. Local analysis of c⊥ shows that we can find a vertex z′ in ≈p

c relation to z that
is adjacent to c′ and a.) But now, we can find a vertex d = (xa, Da) in a⊥ that is
adjacent to b = (ba, Ba) and c = (ca, Ca) (notice that by the above we can assume
ca 6∈ baxa, whence xa 6∈ baca). We have d ≈p

b x, d ≈p
a x, and d ≈p

b y. By Lemma
1.3.9, this implies d ≈p

c y. Transitivity of ≈p
c implies d ≈p

c z and, again Lemma
1.3.9, yields d ≈p

a z. Finally, transitivity of ≈p
a gives x ≈p

a z, yielding x ≈p z, and
≈p is transitive. 2

Definition 1.3.11 A global point of Γ is defined as an equivalence class of ≈p.
Dually, define a global hyperplane as an equivalence class of ≈h.

We already have a local notion of incidence as defined before Definition 1.2.6.
Similarly a global point p and a global hyperplane H are incident if and only if
p ∩H = ∅. It is easily seen that p ∩H = ∅ if and only if px ∩Hx = ∅ for all x for
which px and Hx exist. One implication is obvious. To prove the other, suppose
the exists a vertex y ∈ p ∩H . Then, any vertex x for which px and Hx exist is at
distance at most two to y, by Lemma 1.3.5, and there exists a vertex z adjacent to
both y and x. The local elements pz and Hz exist, as y is a representative of both.
But then px ∩ z⊥ 6= ∅ as well as Hx ∩ z⊥ 6= ∅, and the question of incidence of px
and Hx can be decided inside x⊥ ∩ z⊥. Therefore px ∩Hx 6= ∅.

Definition 1.3.12 Let p and q be distinct global points and let x be a vertex such
that px and qx exist. Then the global line of Γ spanned by p and q is the set of those
global points a such that ax exists and is contained in the local line pxqx. Define
a global hyperline in analogy to global lines. Moreover, let PΓ = (PΓ,LΓ,⊂) be
the point-line geometry consisting of the point set PΓ of global points of Γ and the
line set LΓ of global lines of Γ.
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Lemma 1.3.13
The notion of a global line is well defined.

Proof. Let l be the global line spanned by the global points p and q. Let x and
y be distinct vertices such that px, qx, py, and qy exist. Choose vertices a ∈ px,
b ∈ qx, c ∈ qy, and d ∈ py. If x ⊥ y, then px ∩ py 6= ∅ and qx ∩ qy 6= ∅, and the
claim follows from Lemma 1.2.17.

Notice that by Lemma 1.2.13 we can assume that c and d are adjacent. There
exists a vertex z1 adjacent to both x and c by Lemma 1.3.5. By Lemma 1.3.4
(applied to the path a, x, z1, c) we can find a vertex z2 adjacent to a, x, and c
(indeed, inside z⊥1 the point cz1 of c has to lie in the hyperplane Xz1 of x, and we
can apply that lemma). Local analysis of c yields a vertex z3 that is adjacent to z2,

c, and d. The induced subgraph {c,d}⊥ of Γ is isomorphic to Hn−1(F), which is
connected by Proposition 1.1.3. Therefore, we can find a path from y to z3 inside
{c,d}⊥. Altogether we have found a path of vertices from x to y such that the
local points pw and qw exist for every vertex w contained in that path. The lemma
follows from the above inspection of the case x ⊥ y. 2

Proposition 1.3.14
PΓ is a linear space with thick lines.

Proof. This is an immediate consequence of Lemma 1.3.13. 2

As customary in linear spaces, for distinct global points p and q we shall denote
by pq the unique global line on p and q.

Proposition 1.3.15
PΓ is a projective space.

Proof. In view of Proposition 1.3.14 we only have to verify Pasch’s Axiom. Let a,
b, c, d be four global points such that ab intersects cd in the global point e. Then
ab = ae and cd = ce. By Lemma 1.3.5 and Lemma 1.2.13, there are vertices a
in a and e in e such that a ⊥ e. Choose a vertex c in c. Now, by Lemma 1.3.5,
there is a vertex y adjacent to e and c. After suitable replacements of e in e and
c in c, we can assume that inside y⊥ we have c = (cy, Cy) and e = (ey, Ey) with
Cy ∩ Ey ∩ cyey = ∅. Lemma 1.3.4 implies the existence of x ∈ {a, c, e}⊥. The
global lines ae and ce meet x⊥ in interior lines. In particular, by Pasch’s Axiom
applied to the interior projective space of x⊥, there is an interior point wx on both
the interior lines (ac)x and (bd)x of x⊥. Consequently, the global lines ac and bd
meet in a global point, whence Pasch’s Axiom holds. 2

Notation 1.3.16 Denote by
〈

x⊥
〉

the set of global points intersecting x⊥. Notice
that this set is a subspace of PΓ.
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Lemma 1.3.17
Let x,y ∈ Γ with x ≈h y. Then

〈

x⊥
〉

=
〈

y⊥
〉

.

Proof. By symmetry of ≈h it is enough to show
〈

x⊥
〉

⊆
〈

y⊥
〉

. To this end, let

p ∈
〈

x⊥
〉

. Then there exists a vertex p ∈ p with p ⊥ x. By Lemma 1.3.5, we can
find a vertex z with x ⊥ z ⊥ y. If x = (xz, Xz), y = (yz, Yz) inside z⊥, we have

Xz = Yz, as x ≈h y. Applying Lemma 1.3.4, we obtain a vertex a ∈ {p,x,y}⊥.
Writing p = (pa, Ha) in a⊥, we see pa ∈ Xa, whence pa ∈ Ya by x ≈h

a y. But now
we can find a vertex p1 = (pa, H

1
a) with ya ∈ H1

a and consequently p ∈
〈

y⊥
〉

. 2

Lemma 1.3.18
〈

x⊥
〉

does not contain the global point that contains x.

Proof. Otherwise x⊥ contains a vertex y that belongs to the same global point.
But then there exists a third vertex z adjacent to both x and y, so x and y are two
adjacent vertices belonging to the same interior point in z⊥, a contradiction to the
local structure of z⊥. 2

Lemma 1.3.19
Let x be a vertex of Γ. Then

〈

x⊥
〉

is a hyperplane of PΓ. Conversely, any hyperplane
Π of PΓ is of this form. Moreover, if the global point y is not contained in Π, then
there is a vertex y ∈ y with

〈

y⊥
〉

= Π.

Proof. Suppose l is a global line of Γ. We have to show that it intersects
〈

x⊥
〉

. Let
a 6= b be two global points on l and choose vertices a ∈ a, b ∈ b. By Lemma 1.2.13
we may assume a ⊥ b. By Lemma 1.3.5, there exists a vertex y with b ⊥ y ⊥ x.
Changing b inside b ∩ a⊥ ∩ y⊥ and x inside y⊥ while leaving

〈

x⊥
〉

invariant, we
can assume By ∩Xy ∩ byxy = ∅ (for b = (by, By), x = (xy, Xy), inside y⊥); notice
that, by Lemma 1.3.17, changing x as indicated basically means changing the point
xy. Consequently, there exists a vertex c ∈ {a,b,x}⊥, by Lemma 1.3.4. Now local
analysis of c⊥ shows that l has to intersect

〈

x⊥
〉

. Lemma 1.3.18 shows that
〈

x⊥
〉

is not the whole space, and
〈

x⊥
〉

is a hyperplane.
Conversely, let y be a global point off the hyperplane Π. Any global line con-

taining y intersects Π in a point x, say. Choose vertices in x and in y. By Lemma
1.3.5 there exists a third vertex adjacent to those two. Then, by Lemma 1.2.13,
there exist adjacent vertices x ∈ x and y ∈ y. The hyperplane

〈

x⊥
〉

intersects Π in

a hyperplane of Π, since the global point x containing x is not contained in
〈

x⊥
〉

by

Lemma 1.3.18. In
〈

x⊥
〉

∩ Π we find a clique of vertices xi, i ∈ I for some index set

I , such that the global points xi of Γ containing them span
〈

x⊥
〉

∩Π as a projective
space; by Lemma 1.2.13. Then x together with the xi spans Π. Moreover, y and xi,
i ∈ I , span

〈

x⊥
〉

, since the xi span
〈

x⊥
〉

∩Π and y is a point of
〈

x⊥
〉

\Π. But again
by Lemma 1.2.13, in x⊥ we can find y ∈ y such that y and xi, i ∈ I , form a clique.
But then the hyperplane

〈

y⊥
〉

contains the points x, xi, i ∈ I , hence
〈

y⊥
〉

= Π,
and the lemma is proved. 2
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Proposition 1.3.20
Let n ≥ 3, let F be a division ring, let Γ be a connected, locally Hn(F) graph, and
let (PΓ,LΓ,⊂) be the projective space consisting of the global points and global
lines of Γ. Then the point-hyperplane graph of (PΓ,LΓ,⊂) is isomorphic to Γ.

Proof. Let ∆ be the point-hyperplane graph of (PΓ,LΓ,⊂). Consider the map
Γ → ∆ : x 7→

(

x,
〈

x⊥
〉)

where x is the global point of Γ containing x. We want
to show that this is an isomorphism of graphs. Surjectivity follows from Lemma
1.3.19, since any point x of (PΓ,LΓ,⊂) is a global point of Γ and any hyperplane not
containing it is of the form

〈

x⊥
〉

for a vertex x ∈ x. Injectivity is obtained as follows.

Suppose the global point x contains two vertices x1, x2 with
〈

x⊥
1

〉

=
〈

x⊥
2

〉

. By

Lemma 1.3.5 there exists a vertex y adjacent to both x1 and x2. Since
〈

x⊥
1

〉

=
〈

x⊥
2

〉

,
both vertices describe the same hyperplane in y⊥. But they also describe the same
point and hence have to be equal, a contradiction. Finally, if x ⊥ y, then obviously
x ∈

〈

y⊥
〉

and y ∈
〈

x⊥
〉

, if x and y are the global points of Γ containing x and y,
respectively. 2

This immediately implies the following result.

Theorem 1.3.21 (joint with Cohen, Cuypers)
Let n ≥ 3, let F be a division ring, and let Γ be a connected, locally Hn(F) graph.
Then Γ is isomorphic to Hn+1(F). 2

The theorem does not hold for n = 2 as there is a connected graph that is locally
H2(2) but not isomorphic to H3(2), see the next section.

1.4 Small dimensions

Any connected, locally H0 graph is isomorphic to a clique of size two. Furthermore,
it is easily seen that any connected, locally H1 graph admits an infinite universal
cover, so we obtain infinitely many connected graphs that are locally H1 but not
isomorphic to H2. The case n = 2 proves to be a bit more complicated. We can
only provide an example of a connected, locally H2(2) graph that is not isomorphic
to H3(2). The proof of its existence is based on a computation with the computer
algebra package GAP [Sch95]. We are indebted to Sergey Shpectorov for pointing
out to us the technique used in the proof of the following theorem.

Theorem 1.4.1 (joint with Cohen, Cuypers)
There exists a connected graph on 128 · 120 vertices that is locally H2(2).

Proof. We determine the stabilizers of a vertex, an edge, and a 3-clique of the
graph H3(2) inside the canonical group (P )SL4(2) and let GAP determine the order
of the universal completion of the amalgam of these groups and their intersections.
This universal completion is the group G with a presentation by the generators w,
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u, b, a and the relations

w2 = u2 = b2 = a2 = 1,

(wu)3 = (ab)3 = 1,

(bw)3 = (bu)4 = 1,

(wub)7 = (wa)2 = (ua)2 = 1.

The stabilizers of a vertex, an edge, and a 3-clique of H3(2), respectively, are of the
form

〈w, u, b〉 ∼= SL3(2),

〈w, u, a〉 ∼= SL2(2) × C2,

〈a, b〉 ∼= Sym3,

with the intersections

〈w, u, b〉 ∩ 〈w, u, a〉 = 〈w, u〉 ∼= SL2(2),

〈w, u, a〉 ∩ 〈a, b〉 = 〈a〉 ∼= C2,

〈a, b〉 ∩ 〈w, u, b〉 = 〈b〉 ∼= C2.

By GAP the order of G is 128 · |SL4(2)|, and there exists a normal subgroup
N ∼= 21+6 of G. Hence H3(2) admits a 128-fold universal cover Γ with the same
local structure. 2

This proposition shows that the bound on n in Theorem 1.3.21 is sharp. Besides
the above universal cover of the canonical graph H3(2) nothing is known about
locally H2(F) graphs. The methods that we have presented for n ≥ 3 do not apply
in this case.

1.5 Infinite dimensions

The only place where we ever need finite dimensions in our studies of the graphs
Hn(F), of graphs that are isomorphic to Hn(F), and graphs that are locally Hn(F)
is when discussing the duality automorphism (p,H) 7→ (H, p) of Hn(F). But we
do not need this automorphism at all in our proof of Theorem 1.3.21. Actually it
is responsible for a couple of problems we encounter during the course of the proof
and have to avoid.

Let n be an infinite cardinal number and let F be a division ring. In analogy
to Definition 1.1.1, let Hn(F) be the graph on the non-incident point-hyperplane
pairs of Pn(F), the projective space of a vector space of dimension n over F, with
the mutual containment of the point of one pair in the hyperplane of another pair
as incidence. Then there does not exist a duality automorphism on Hn(F), and
Sections 1.2 and 1.3 imply the following.
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Proposition 1.5.1
Let n be an infinite cardinal number, let F be a division ring, and let Γ be isomorphic
to Hn(F). Then there exists an isomorphism between the interior projective space
on Γ and the exterior projective space on Hn(F). 2

Corollary 1.5.2
Let n be an infinite cardinal number, let F be a division ring, and let Γ be isomorphic
to Hn(F). The interior projective space on Γ is isomorphic to Pn(F). 2

Corollary 1.5.3
Let n be an infinite cardinal number, let F be a division ring, and let Γ be isomor-
phic to Hn(F). The automorphism group of Γ is isomorphic to PΓLn(F), the full
automorphism group of Pn(F). 2

Theorem 1.5.4 (joint with Cohen, Cuypers)
Let n be an infinite cardinal number, let F be a division ring, and let Γ be a
connected, locally Hn(F) graph. Then Γ is isomorphic to Hn(F). 2

Now let n be an arbitrary cardinal number. If F contains more than two elements,
there is a one-to-one correspondence between the set of point-hyperplane pairs of
a projective space Pn(F) and the collection of subgroups of axial collineations of
PΓLn+1(F) with fixed center and fixed axis. If the axis contains the center, this
group is isomorphic to the additive group of the underlying division ring and it is
called a transvection group or root group. Otherwise, this group is isomorphic
to the multiplicative group of the underlying division ring and is called a reflection
torus (even if the group happens to be non-Abelian). The nontrivial elements of a
reflection torus are called reflections. Of course, even for the field of two elements
there is a one-to-one correspondence between the incident point-hyperplane pairs
of Pn(F) and the root subgroups of PΓLn+1(F). However, there are no reflections
corresponding to the non-incident point-hyperplane pairs.

Proposition 1.5.5
Let F 6= F2. The graph Hn(F) is isomorphic to the graph on the collection of
reflection tori of the group PΓLn+1(F) where two reflection tori are adjacent if and
only if they are distinct and commute.

Proof. The required isomorphism is determined by the map sending a reflection
torus to the point-hyperplane pair consisting of its center and its axis. The fact that
two vertices of Hn(F) are adjacent if and only if the corresponding reflection tori
commute is established as follows. Any axial collineation of Pn(F) with center p and
axis H gets induced by a linear map V → V : x 7→ x+φ(x)c with φ ∈ V ∗, φ(c) 6= −1
and 〈c〉 = p and kerφ = H where V is a left vector space of dimension n+1 over F.
The axial collineation coming from the map x 7→ x+φ(x)c is a non-identity reflection
if and only if φ(c) 6= 0. The elements of distinct reflection tori commute if and only
if the center of one reflection is contained in the axis of the other and vice versa. For,
let V → V : x 7→ x+φ(x)c and V → V : x 7→ x+ψ(x)d be two linear maps of V that
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induce reflections of Pn(F ) with φ(d) = 0 = ψ(c). Then we have the following chain
of equalities: (ψ◦φ)(x) = x+φ(x)c+ψ(x+φ(x)c)d = x+φ(x)c+ψ(x)d+ψ(φ(x)c)d =
x+φ(x)c+ψ(x)d = x+φ(x)c+ψ(x)d+φ(ψ(x)d)c = x+ψ(x)d+φ(x+ψ(x)d)c =
(φ ◦ ψ)(x). Conversely, ψ ◦ φ = φ ◦ ψ implies ψ(φ(x)c)d = φ(ψ(x)d)c for all x ∈ V ,
whence φ(d) = 0 = ψ(c), finishing the proof. 2

In view of Proposition 1.5.5, our results are in accordance with the results of
Arjeh Cohen, Hans Cuypers, and Hans Sterk in [CCS99] on groups generated by
reflection tori. They prove that, with the exception of some counterexamples over
small fields, the only irreducible subgroups of GLn+1(F) generated by reflection tori
are the groups R(V,W ∗) with V ∼= Fn+1, W ∗ ⊆ V ∗ and Ann(W ∗) = 0 generated by
the reflections with c ∈ V and φ ∈W ∗. If W ∗ = V ∗, the reflections generate the full
finitary general linear group FGLn+1(F), i.e., the subgroup of GLn+1(F) consisting
of all elements g ∈ GLn+1(F) with [V, g] = {g(v) − v | v ∈ V } finite dimensional.
The graph on the point-hyperplane pairs (p,H) with p = 〈v〉 for v ∈ V and H =
kerφ for φ ∈ W ∗ is a subgraph of Hn(F). We do recover the whole graph (i.e.,
W ∗ = V ∗), since we locally always have the whole graph.

1.6 Group-theoretic consequences

In this section we study group-theoretic consequences of our local recognition The-
orem 1.3.21 of the point-hyperplane graphs Hn(F). We start with a consequence
of the simple connectedness of those graphs and then give theorems whose proofs
really need the full local recognition result.

Proposition 1.6.1
Let n ≥ 3, and let F be a division ring. Let x, y, z be mutually adjacent vertices of
Hn+1(F), and consider the natural action of G ∼= PSLn+2(F) on Hn+1(F). Define A
as the stabilizer of x in G, B as the stabilizer of {x,y} in G, and C as the stabilizer
of {x,y, z} in G. Define A to be the amalgam of the groups A, B, and C together
with their intersections as subgroups of G. Then G is the universal completion of
A.

Proof. The proposition follows from the flag-transitive action of G on Hn+1(F)
together with Lemma 1.3.6 and Tits’ Lemma B.2.5. 2

Theorem 1.6.2 (joint with Cohen, Cuypers)
Let n ≥ 3, and let F be a division ring. Let Ui, 1 ≤ i ≤ 3, be distinct subgroups of
some group U such that

• U = 〈U1, U2, U3〉;

• Ui ∩ Uj 6⊆ Uk ∩ Ul if {i, j} 6⊇ {k, l};
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• the residue (U3/U1 ∩ U3, U3/U2 ∩ U3) is isomorphic to the coset geometry
(Sym3/ 〈(23)〉 , Sym3/ 〈(12)〉);

• the coset geometry (U/U1, U/U2) is a graph (i.e., [U2 : U1 ∩ U2] = 2);

• the residue (U1/U1 ∩ U2, U1/U1 ∩U3) is a graph that is isomorphic to Hn(F);
and

• the action of U1 on (U1/U1 ∩U2, U1/U1 ∩U3) preserves the interior projective
space (i.e., U1 modulo the kernel of its action on the residue can be embedded
in PΓLn+1(F)).

Denote by U the amalgam of the groups Ui, 1 ≤ i ≤ 3, and their intersections in U .
Then the group U is the universal completion of U . If, moreover, N is the kernel
of the action of U on (U/U1, U/U2, U/U3), then the quotient amalgam U/N :=
⋃

1≤i≤3 Ui/(N ∩ Ui) can be embedded in PΓLn+2(F) and 〈U/N〉 ⊂ PΓLn+2(F) is
isomorphic to U/N .

Proof. The group U acts flag-transitively on the pregeometry (U/U1, U/U2, U/U3).
Indeed, U acts transitively on the cosets of U3 and the residue of U3 is isomorphic
to a triangle on which U3 acts as the group Sym3, and, thus, we have proved flag-
transitivity for flags that include a coset of U3. If gU1, hU2 is a flag, then there exists
an element x ∈ gU1 ∩ hU2, whence 1 ∈ x−1gU1 ∩ x−1hU2, and x−1gU1 = U1 and
x−1hU2 = U2, proving flag-transitivity. Moreover, x−1gU1 = U1, x

−1hU2 = U2, U3

is a flag. Therefore, the flag gU1, hU3 is contained in the chamber gU1, hU2, xU3,
which implies that (U/U1, U/U2, U/U3) is a geometry. The graph (U/U1, U/U2)
is locally the graph (U1/U1 ∩ U2, U1/U1 ∩ U3)—for U3 describes the triangles in
the graph (U/U1, U/U2)—which is isomorphic to Hn(F). As U = 〈U1, U2, U3〉, the
geometry (U/U1, U/U2, U/U3) is connected. By connectedness of the residue of U3

this implies that the graph (U/U1, U/U2) is connected, whence it is isomorphic to
Hn+1(F) by Theorem 1.3.21. But now, as Hn+1(F) is simply connected, U is the
universal completion of the amalgam U by Tits’ lemma B.2.5. Corollaries 1.2.10 and
1.2.11 state that the full automorphism group of Hn(F) is of the form PΓLn+2(F).2
or PΓLn+2(F), the maximal part of which preserving the interior projective space is
PΓLn+2(F). The group U/N acts faithfully on (U/U1, U/U2, U/U3) and preserves
the interior projective space on (U/U1, U/U2), since U1/N ∩ U1 does so on the
residue of U1. Therefore U/N can be embedded in PΓLn+2(F). The last statement
amounts to whether the quotient amalgam U/N spans U/N . But it does, since
the coset geometry (U/U1, U/U2, U/U3) is connected, and N simply is the kernel of
action of U on that coset geometry, which means the geometry (U/U1, U/U2, U/U3)
is isomorphic to the geometry ( U

N
/ U1

N∩U1
, U

N
/ U2

N∩U2
, U

N
/ U3

N∩U3
). Therefore the latter

geometry is connected as well and U/N indeed spans U/N . 2

We refer the reader to [CK79] for a list of subgroups of ΓL(V ), V a finite vec-
tor space, that act 2-transitively on the set of points of the corresponding finite
projective space P(V ) (cf. Theorem I) and for lists of subgroups of ΓL(V ) that
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act transitively on the set of non-incident point-hyperplane pairs (called antiflags;
cf. Theorem II and Theorem III) of the finite projective space P(V ). Notice that
the groups arising in our Theorem 1.6.2 act 2-transitively on the set of points of
the projective space. For, they act transitively on the set of ordered triangles of
Hn+1(F), whence transitively on the set of (ordered) edges. But for every pair of
points p, q of a projective space there exist hyperplanes H and I with p 6∈ H 3 q
and q 6∈ I 3 p, so transitivity on edges implies transitivity on points, and—in case
of a finite projective space—we can apply Theorem I of [CK79]. We conclude that
the finite groups with a faithful action arising from our theorem have to contain the
group PSLn+2(q), as n ≥ 3.

In view of Proposition 1.5.5 we can use Theorem 1.3.21 and Theorem 1.6.2
in order to locally recognize a group G that contains two commuting involutions
which locally describe reflections and whose centralizers are central extensions of
PGLn+1(F).

Theorem 1.6.3 (joint with Cohen, Cuypers)
Let n ≥ 3, and let F be a field of characteristic distinct from 2. Let G be a group
with distinct involutions x, y and subgroups X ∼= Y such that

• CG(x) = X ×K with K ∼= GLn+1(F);

• CG(y) = Y × J with J ∼= GLn+1(F);

• x is an involutive reflection of J ;

• y is an involutive reflection of K; and

• there exists an involution in J ∩K that is a reflection of both J and K.

If G = 〈J,K〉, then PSLn+2(F) ≤ G/Z(G) ≤ PGLn+2(F).

Proof. Choose an involution z ∈ J ∩ K that is an involutive reflection in the
groups J and K. Note that z commutes with x and y. The elements y and z
are conjugate in K by an involution, whence they are conjugate in G. Similarly,
x and z are conjugate in J by an involution. Therefore the conjugation action
of the group G induces an action as the group Sym3 on the set {x, y, z} and as
the group Sym2 on the set {x, y}. Consider the graph Γ on all conjugates of x
in G. A pair a, b of vertices of Γ is adjacent if there exists a vertex c and an
element g ∈ G such that (gxg−1, gyg−1, gzg−1) = (a, b, c). Since G induces the
action of Sym3 on {x, y, z}, this definition of adjacency is completely symmetric,
and we have defined an undirected graph. The elements x, y, z form a 3-clique of
Γ. Define U1 as the stabilizer in G of the vertex x, define U2 as the stabilizer in
G of the edge {x, y}, and define U3 as the stabilizer in G of the triangle {x, y, z}.
The stabilizer of {x, y} permutes x and y and therefore interchanges CG(x) ≥ K
and CG(y) ≥ J . Hence the stabilizer of x together with the stabilizer of {x, y}
generates G, as G = 〈J,K〉 ≤ 〈U1, U2〉. Consequently, the graph Γ is connected.
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Also, Γ is locally Hn(F) by construction. To prove this, it is enough to show
that any triangle in Γ is a conjugate of (x, y, z). Let (a, b, c) be a triangle, which
means there exist vertices d, e, f of Γ such that (a, b, d), (a, c, e), and (b, c, f) are
conjugates of (x, y, z) in G. Let g ∈ G with (gxg−1, gyg−1, gzg−1) = (a, b, d). Notice
that b, d ∈ gKg−1 are commuting involutive reflections of gKg−1. The triangles
(a, b, d) and (a, c, e) are conjugate in CG(a) = gXg−1 × gKg−1. Choose h ∈ CG(a)
such that (hah−1, hbh−1, hdh−1) = (a, c, e). Then h = hXhK with hX ∈ gXg−1,
hK ∈ gKg−1. The element hX centralizes b and d, since b, d ∈ gKg−1. Therefore
c = hbh−1 = hKbh

−1
K ∈ gKg−1 is an involutive reflection of gKg−1. The elements

x and y commute and so do b and c because the triangle (b, c, f) is conjugate to
the triangle (x, y, z). Hence (a, b, d) and (a, b, c) are conjugate in gKg−1. Therefore
(a, b, c) and (x, y, z) are conjugate in G.

By Theorem 1.6.2 the group G is the universal completion of the amalgam on
the groups Ui, 1 ≤ i ≤ 3, and their intersections. Moreover, there exists a kernel
N of the action of G on Γ such that G/N can be embedded in PΓLn+2(F). Let
g ∈ N . Then g acts trivially on Γ, in particular it centralizes x and y, so we have
g ∈ X × K and g ∈ Y × J . Let gX ∈ X and gK ∈ K be such that g = gXgK .
The element gX commutes with K, and therefore also centralizes all neighbors of x.
Consequently, also gK = g−1

X g centralizes all neighbors of x, and hence lies in the
center of K. We have proved that g commutes with K. Similarly, g commutes with
J . This implies that g commutes with G = 〈J,K〉, and, thus, g ∈ Z(G). Certainly,
Z(G) acts trivially on Γ, whence N = Z(G). 2

Corollary 1.6.4
Let n ≥ 3, and let F be a field of characteristic distinct from 2. Let G be a group
with distinct involutions x, y, an element g, and a subgroup X such that

• gxg−1 = y and gyg−1 = x;

• CG(x) = X ×K with K ∼= GLn+1(F);

• y is an involutive reflection of K; and

• g centralizes an involutive reflection of K.

If G = 〈K, g〉, then PSLn+2(F) ≤ G/Z(G) ≤ PGLn+2(F). 2

1.7 Non-singular points in polarities

So far we have exclusively studied graphs related to the graph Hn(F). Suppose
now that the division ring F admits an involutory anti-automorphism so that Pn(F)
admits a nondegenerate polarity π. Then we can study the subgraph of Hn(F) on
the fixed elements under the automorphism induces by this polarity. This subgraph
consists of precisely those non-incident point-hyperplane pairs (p,H) of Pn(F) with
pσ = H , in other words, the vertices (p, pσ) for all non-singular points p. Since
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this subgraph is empty if π is a symplectic polarity, we can restrict ourselves to
orthogonal and unitary polarities. There exists the following theorem by Hans
Cuypers.

Theorem 1.7.1 (Cuypers [Cuyb], Theorem 1.1)
Let Γ be a connected graph on non-singular points of a nondegenerate polarity π of
some Desarguesian projective space with p ⊥ q if and only if p ∈ qπ, satisfying the
following conditions for each of its vertices p:

(i) the tangent space on p⊥ is connected;

(ii) the polar space at infinity of the tangent space on p⊥ has rank at least three;

(iii) tangent lines can be recovered inside p⊥;

(iv) in the Veldkamp embedding of p⊥ (with respect to the map π), any codimen-
sion two subspace meets p⊥.

Then Γ is locally recognizable.

Condition (i) of the theorem sometimes forces us not to consider the whole
subgraph of Hn(F) of fixed elements under a polarity, but graphs on smaller sets
of vertices. For example, if F is a finite field of odd order and π is an orthogonal
polarity, then there exist non-singular points of + type (all vectors of the point have
a square value under the quadratic form) and of − type (all non-zero vectors of
the point have a non-square value under the quadratic form). If one considers the
graph on all non-singular points, then the perp of a point will not admit a connected
tangent space. However, if one restricts oneself to the graph on the non-singular
points of + type, respectively − type, then the tangent space on the perp of a point
will be connected, cf. [Cuyb] and [CP92].

In the following we will restrict ourselves to finite fields. Let q be a prime power.
Denote by NUn(q2) the graph on the non-singular one-dimensional subspaces of an
n-dimensional vector space over Fq2 endowed with a nondegenerate unitary polarity
in which two vertices are adjacent if and only if they are perpendicular. Now let V
be an n-dimensional vector space of Fq for q odd. If n is even, then there exist two
non-isometric orthogonal forms on V . For each isometry type of quadratic forms,
the tangent lines induce a tangent space on the non-singular points of V , which
consists of two isomorphic connected components. Denote the graph on the points
of one of those connected components with being perpendicular as adjacency by
NO±

n (q) , where + indicates that the quadratic form gives rise to a polar space
of rank n

2 , whereas − stands for the quadratic form yielding a polar space of rank
n−2

2 . If n is odd, then there exists only one isometry class of orthogonal forms on
V , but the tangent lines induce a tangent space on the non-singular points of V ,
which consists of two non-isomorphic connected components. Denote by N+On(q)
the graph on the projective points of + type (i.e., the points whose perp is a +
type orthogonal space), and denote by N−On(q) the graph on the projective points
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of − type (i.e., the points whose perp is a − type orthogonal space), with being
perpendicular as adjacency. Notice that NUn(q2) is locally NUn−1(q

2), whereas
N±On(q) is locally NO±

n−1(q) and NO±
n (q) is locally N∓On−1(q), see [Cuyb].

Corollary 1.7.2 (Cuypers [Cuyb], Corollary 1.2)
(i) The graphs NUn(q2) are locally recognizable for n ≥ 7.

(ii) The graphs NO±
n (q) and N±On(q) with q odd are locally recognizable for

n ≥ 8.

The above theorem and its corollary heavily depend on the article [CP92] by
Hans Cuypers and Antonio Pasini. Combining both [CP92] and [Cuyb], it seems
unlikely that one can forfeit Axioms (i) and (iii) of Theorem 1.7.1 without a new
approach to the problem. This leaves Axioms (ii) and (iv). Of the graphs in the
corollary, the only graph satisfying Axioms (i), (ii), and (iii), but not (iv) is the
graph N+O7(q) for odd q. Since there is a connected graph that is locally NO+

6 (3)
but not isomorphic to N+O7(3) (but a threefold cover of N+O7(3) instead; cf.
[BCN89]), there is only hope of improving Corollary 1.7.2 for q ≥ 5. Application
of Tits’ lemma B.2.5, shows that Cuypers paved the way to results on universal
completions of certain amalgams (in the flavor of the corollaries of Theorem 1.7.5)
and local recognition results for certain groups (using the techniques developed in
Section 1.6).

We will prove the simple connectedness of a connected graph Γ that is locally
NO+

6 (q) for odd q ≥ 5, which by the existence of the abovementioned three-fold
cover of N+O7(3) is the best we can hope to achieve. We will not prove a local
recognition theorem for connected, locally NO+

6 (q) graphs, although we conjecture
it is possible in 1.7.6. Notice that by [CP92], we can reconstruct the polar space
O+

6 (q) together with its natural embedding into a six-dimensional vector space over
Fq . If, in the sequel, we talk about polar spaces and singular elements on the perp
p⊥ of a vertex p of Γ, then we mean precisely this reconstructed polar space.

Lemma 1.7.3
Let q ≥ 5 be odd, and let Γ be a connected, locally NO+

6 (q) graph. To any

chain w ⊥ x ⊥ y ⊥ z of vertices in Γ there exists a vertex a ∈ {w,y}⊥ with

{a,w,y, z}⊥ 6= ∅. Moreover, if a 6= x, then we can assume that, considered inside
y⊥, the two-dimensional subspace spanned by a and x is nondegenerate.

Proof. Consider the perp x⊥. The vertex y corresponds to a non-singular projective
point of the polar space on x⊥ and, thus, the perp y⊥ is a nondegenerate subspace of
that polar space. Hence the totally singular subspaces of the five-dimensional space
Y := x⊥ ∩y⊥ have algebraic dimension at most two. Therefore, for W := x⊥∩w⊥,
the four-dimensional space W ∩ Y has rank at least two and we find non-singular
projective points of + type in W ∩Y . Moreover, through each such projective point
p of + type we can find three elliptic lines that span W ∩ Y (as a vector space).
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Notice that p is adjacent to w, x, and y. Interchanging the roles of p and x and
thus considering p⊥, we also find three such elliptic lines through x.

Now translate the setting from x⊥ to y⊥; especially the intersectionW ∩Y trans-
lates. We have the non-singular projective points x and z and their respective perps
X and Z, which themselves are nondegenerate five-dimensional orthogonal spaces.
They intersect in a four-dimensional space. Another four-dimensional subspace of
X is the space W ∩ Y . The intersection A := W ∩ X ∩ Z has dimension at least
three. If the rank of A is two or three, then we find a non-singular projective point
of + type in A and the lemma holds for the choice a := x.

We can assume that A has rank one. (Indeed, zero is impossible, because A
has dimension three inside the nondegenerate five-dimensional space Z.) Therefore,
A has a two-dimensional radical l. Varying the projective point x inside a three-
dimensional space implies a variation of its perp X on a three-dimensional space
(meaning that the intersection of all variations of X is a three-dimensional space).
By the above choice of the elliptic lines on x, there is at least one, k say, whose perp
does not contain A. Consequently, when x moves on the line k, the perp X moves
away from that intersection A.

It is not clear whether these variations of X contain the radical l of A or not.
However, if they do, then the varied spaces W ∩X ∩ Z cannot also have rank one,
as otherwise l has to be the radical of all of them and inside the nondegenerate
five-dimensional space Z we find a four-dimensional space that is perpendicular to
a two-dimensional space, a contradiction. Thus, if l lies in all variations of X , we
have found an intersection W ∩X ∩ Z of rank two and we are done by the above.

Suppose now that l does not lie in all variations of W ∩ X ∩ Z. Then on the
elliptic line k there are q+1

2 ≥ 3 non-isotropic projective points of + type. So, we
have three different choices x1, x2, x3 for x on k and obtain three different spaces
W ∩Xi ∩Z, 1 ≤ i ≤ 3. If one of these has rank at least two, we are done, so assume
all three have rank one. Denote the three two-dimensional radicals by l1, l2, l3. If
all those three radicals lie in a three-dimensional space, then this three-dimensional
space is totally singular, a contradiction to the fact that Z does not contain three-
dimensional totally singular subspaces. But if they do not lie in a three-dimensional
space, then they span a four-dimensional space, i.e., X ∩Z. The intersection of the
three spaces W ∩Xi ∩Z, 1 ≤ i ≤ 3, is two-dimensional and contains a non-singular
projective point p. Indeed, if not, then any of W ∩ Xi ∩ Z is totally singular, a
contradiction. But now this projective point p is in the perp of all three radicals
l1, l2, l3 and lies in their span, also a contradiction. Choose a vertex xi, 1 ≤ i ≤ 3,
with the property that W ∩Xi ∩ Z has rank two and denote it by a.

This vertex a satisfies the first statement of the lemma. If a 6= x, then a and x
span the elliptic line k inside y⊥, and the lemma is proved. 2

Lemma 1.7.4
Let q ≥ 5 be odd, let Γ be a connected, locally NO+

6 (q) graph, and let x, y be
two vertices of Γ at mutual distance two. Moreover, suppose that there exists a
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common neighbor b of x, y such that the projective line inside b⊥ spanned by x, y
is nondegenerate. Then the induced subgraph {x,y}⊥ of Γ is connected.

Proof. It is enough to prove that every other vertex a adjacent to both x and y can
be connected to b via a path in {x,y}⊥. Consider b⊥. The vertex x corresponds
to a non-singular projective point, likewise y. Their respective perps X and Y are
nondegenerate as is their intersection X ∩ Y of dimension four. Indeed, X ∩ Y is
the perp of the nondegenerate two-dimensional space spanned by x and y.

The intersection x⊥∩a⊥ corresponds to another four-dimensional subspace A∩X
of X . But since X ∩ Y is nondegenerate, the intersection A ∩ X ∩ Y cannot have
rank less than two. But then A∩X ∩ Y contains a non-singular projective point of
+ type, and we have found a common neighbor of x, y, a, b. 2

Theorem 1.7.5
Let q ≥ 5 be odd, and let Γ be a connected, locally NO+

6 (q) graph. Then Γ, viewed
as a two-dimensional simplicial complex whose two-simplices are its triangles, is
simply connected and its diameter is two.

Proof. This follows from a combination of Lemma 1.7.3 and Lemma 1.7.4. 2

When proving Theorem 1.7.1, Hans Cuypers also proves a result on the simple
connectedness of the local graphs, using Axiom (iv) instead of combinatorial argu-
ments. We believe that it is possible to adjust the remainder of Cuypers’ proof as
well in order to obtain a local recognition result.

Conjecture 1.7.6
Let q ≥ 5 be odd, and let Γ be a connected, locally NO+

6 (q) graph. Then Γ is
isomorphic to N+O7(q).

Theorem 1.7.5 implies a number of corollaries.

Corollary 1.7.7 (of Theorem 1.7.5)
Let q ≥ 5 be odd. Consider the natural action of PSO7(q) on N+O7(q). Let A
be the amalgam of the (setwise) stabilizers in PSO7(q) of a vertex, an edge, and
a triangle of N+O7(q) and all their intersections. Then PSO7(q) is the universal
completion of A.

Proof. This follows from Theorem 1.7.5 and Tits’ lemma B.2.5. 2

Corollary 1.7.8 (of Theorem 1.7.5)
Let q ≥ 5 be odd. Suppose G is a group that contains an amalgam B of three groups
B1, B2, B3 and all their intersections such that

• G = 〈B〉;

• Bi ∩ Bj 6⊆ Bk ∩ Bl if {i, j} 6⊇ {k, l};
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• the residue (B3/B1 ∩ B3, B3/B2 ∩ B3) is isomorphic to the coset geometry
(Sym3/ 〈(23)〉 , Sym3/ 〈(12)〉);

• the coset geometry (G/B1, G/B2) is a graph (i.e., [B2 : B1 ∩ B2] = 2); and

• (B1/B1 ∩B2, B1/B1 ∩B3) is a graph (i.e., [B1 ∩ B3 : B1 ∩ B2 ∩ B3] = 2) that
is isomorphic to NO+

6 (q).

Then G is the universal completion of B.

Proof. The proof is an analog of the proof of Theorem 1.6.2. 2

If Conjecture 1.7.6 were true, then—in the flavor of Theorem 1.6.2—one could
extend Corollary 1.7.8 by the statement that the amalgam B and the group G
(modulo a kernel, if necessary) are embeddable in PΓO7(q) and 〈B〉 inside PΓO7(q)
equals G. Of course, there exist such corollaries of Theorem 1.7.1 and Corollary
1.7.2. Also notice the versions of Theorem 1.6.3 that arise in the present context.

In [Cuy92] one can see how to reconstruct the polar space from the graphs
NO−

6 (q) and NU5(q
2). With this information we obtain the following theorems.

Theorem 1.7.9
Let q ≥ 5 be odd, and let Γ be a connected, locally NO−

6 (q) graph. Then Γ, viewed
as a two-dimensional simplicial complex whose two-simplices are its triangles, is
simply connected and its diameter is two.

Proof. [Cuy92] allows us to reconstruct the polar spaces from the local graphs.
Lemmas 1.7.3 and 1.7.4 then prove the theorem. 2

Theorem 1.7.10
Let q ≥ 3, and let Γ be a connected, locally NU 5(q

2) graph. Then Γ, viewed as a
two-dimensional simplicial complex whose two-simplices are its triangles, is simply
connected and its diameter is two.

Proof. Again by [Cuy92] we can reconstruct the polar spaces from the local graphs.
Slight variations of Lemmas 1.7.3 and 1.7.4 prove the theorem. 2

The graph NU6(2
2) admits a two-fold and a four-fold cover that are both locally

NU5(2
2) (cf. [BCN89]), whence the bound on q in the preceding theorem is sharp.
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Chapter 2

Line-Hyperline Pairs

The contents of this chapter are very similar to those of the preceding chapter.
Instead of studying graphs on non-incident point-hyperplane pairs, this chapter is
devoted to the investigation of graphs on non-intersecting line-hyperline pairs in
which two line-hyperline pairs are adjacent if and only if the line of one pair is
contained in the hyperline of the other and vice versa. Naturally, the results are
very similar to the ones of the preceding chapter. Nevertheless, we include complete
proofs of the results in high dimensions. Theorems for lower dimensions are simply
stated with some hints how to overcome the difficulties that are encountered.

As is the case for non-incident point-hyperplane pairs, there is a group-theoretic
interpretation of the graphs we are studying. For, there is a one-to-one correspon-
dence of the non-intersecting line-hyperline pairs of the projective space Pn(F) and
the fundamental SL2’s of the group PSLn+1(F) for sufficiently large n, cf. Section
4.1. The adjacency relation of the line-hyperline graph coincides with the commu-
tation relation on the fundamental SL2’s.

In this context it is not surprising that one can deduce a nice geometric char-
acterization of the hyperbolic root group geometry of PSLn+1(F), i.e., the geome-
try on the root subgroups of PSLn+1(F) as points and the fundamental SL2’s of
PSLn+1(F) as lines, from the local recognition theorems of this chapter. For those
characterizations the reader is referred to Chapter 4.

2.1 Line-hyperline graphs of projective spaces

Definition 2.1.1 Let n ∈ N and let F be a division ring. Consider the projec-
tive space Pn(F) of (projective) dimension n over F. The line-hyperline graph
L(Pn(F)) = Ln(F) of Pn(F) is the graph whose vertices are the non-intersecting
line-hyperline pairs of Pn(F) and in which one vertex (a,A) is adjacent to another
vertex (b, B) (in symbols, (a,A) ⊥ (b, B)) if and only if a ⊆ B and b ⊆ A.

For a vertex x ∈ Ln(F), we write x⊥ to denote the set of all vertices of Ln(F)
at distance one from x. Moreover, for a set X of vertices, define the perp of X as
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X⊥:=
⋂

x∈X x⊥, with the understanding that ∅⊥ = Ln(F), and the double perp

of X as X⊥⊥:= (X⊥)⊥. We also write Ln instead of Ln(F) if F is obvious or not
relevant.

The projective space Pn(F) induces a Grassmann space of lines on Ln(F), i.e.,
the shadow space on the rank one spaces (i.e., lines) of the projective geometry
of rank n over F. The points of this Grassmann space are of the form vl =
{(a,A) ∈ Ln(F) | a = l} for a line l. A typical line of the Grassmann space is of
the form vp,π = {(l, L) ∈ Ln(F) | p ∈ l ∈ π} for an incident point-plane pair (p, π).
Dually, the point-line geometry on points of the form vL = {(a,A) ∈ Ln(F) | A = L}
for a hyperline L and lines of the form vK,H = {(l, L) ∈ Ln(F) | K ⊆ L ⊆ H} for
an incident pair (K,H) of an (n− 3)-space K and a hyperplane H is also a Grass-
mann space. The geometrical objects vl and vL defined above are called exte-
rior lines and exterior hyperlines, respectively. If F ∼= Fopp, then there ex-
ists a duality δ mapping Pn(F) to Pn(F)

dual
which induces a graph automorphism

(l, L) 7→ (δ(L), δ(l)) on Ln(F) mapping one Grassmann space onto the other. Note

that even if Pn(F) and Pn(F)
dual

are non-isomorphic, still L(Pn(F)) ∼= L(Pn(F)
dual

)
by the map (l, L) 7→ (L, l).

One can define another point-line geometry on Ln(F). The lines of that geometry
are the exterior lines, and the points are the full line pencils of exterior lines, i.e., a
point is of the form vp = {(l, L) ∈ Ln(F) | p ∈ l} for a point p of Pn(F). Incidence
is symmetrized containment. Note that this point-line geometry is isomorphic to
Pn(F). The points vp are called exterior points, the resulting point-line geometry
the exterior projective space. Dually, define exterior hyperplanes and the
resulting dual exterior projective space.

One goal of this chapter is to obtain a characterization of a graph Γ ∼= Ln(F) as
being connected and locally Ln−2(F). In this light, the following two propositions
are important.

Proposition 2.1.2
Let n ≥ 3. The graph Ln(F) is locally Ln−2(F).

Proof. Let x = (x,X) be a vertex of Ln(F). Then X ∼= Pn−2(F). After we
identify X with Pn−2(F) by means of this isomorphism, we establish an isomorphism
x⊥ ∼= Ln−2(F). Indeed, for any vertex y = (y, Y ) adjacent to x, we have x ⊆ Y ,
y ⊆ X \ (X ∩ Y ), and dim(X ∩ Y ) = n − 4, so (y,X ∩ Y ) belongs to L(X) ∼=
Ln−2(F). Conversely, for any vertex of L(X), i.e., for any non-intersecting pair
(z, Z) consisting of a line z and an (n − 4)-space Z of Pn(F) with z ⊆ X , Z ⊆ X ,
the pair (z, 〈Z, x〉) is a vertex of x⊥. (Indeed, z ∩ 〈Z, x〉 = ∅, since x ∩ X = ∅.)
Clearly, the maps (y, Y ) 7→ (y,X ∩ Y ) and (z, Z) 7→ (z, 〈Z, x〉) are each other’s
inverses. Moreover, these maps preserve adjacency, whence the claim. 2
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Proposition 2.1.3
L1 consists of precisely one point; L2 is the disjoint union of singletons; L3 is the
disjoint union of cliques of size two; the graphs L4, L5, and L6 are connected; the
diameter of Ln, n ≥ 7, equals two.

Proof. The first four statements are obvious. Let (x,X), (y, Y ) be two non-adjacent
vertices of Ln, n ≥ 7. The intersection X ∩ Y has dimension at least three. Since
x ∩X = ∅ and y ∩ Y = ∅, the intersection 〈x, y〉 ∩X ∩ Y has at most (projective)
dimension one, hence we can find a line z ⊆ (X∩Y )\ 〈x, y〉. Moreover the dimension
of 〈x, y〉 is at most three, and there is a hyperline Z ⊇ 〈x, y〉 with z ∩ Z = ∅. 2

Later, when dealing with graphs isomorphic to Ln or locally Ln, many construc-
tions will depend on investigation of double perps of two vertices. Therefore it is
important to observe the following.

Lemma 2.1.4
Let n ≥ 4. Let x = (x,X), y = (y, Y ) be two vertices of Ln with {x,y}⊥ 6= ∅. Then

the double perp {x,y}⊥⊥ equals the set of vertices z = (z, Z) of Ln with z ⊆ 〈x, y〉
and Z ⊇ X ∩ Y .

Proof. The vertices of {x,y}⊥ are precisely the non-intersecting line-hyperline

pairs (a,A) with a ⊆ X ∩ Y and A ⊇ 〈x, y〉. Let
{

(ai, Ai) ∈ {x,y}⊥ | i ∈ I
}

be

the set of all these vertices, indexed by some set I . Now {x,y}⊥⊥ = ({x,y}⊥)⊥

consists of precisely those vertices (z, Z) with z ⊆
⋂

i∈I Ai and Z ⊇ 〈(ai)i∈I 〉. But

since {x,y}⊥ 6= ∅, we have
⋂

i∈I Ai = 〈x, y〉 and 〈(ai)i∈I 〉 = X ∩ Y . 2

The following two lemmas will be used in proofs and constructions of later sec-
tions.

Lemma 2.1.5
Let n ≥ 5, and let x = (x,X) and y = (y, Y ) be adjacent vertices in Ln. If x is
adjacent to a vertex (a,A1) and y is adjacent to a vertex (a,A2), then there exists
a vertex (a,A3) adjacent to both x and y.

Proof. We have a ⊆ X ∩ Y . Since x and y are adjacent, x ⊆ Y and y ⊆ X do not
intersect and 〈x, y〉 is a 3-space. Moreover, 〈x, y〉 ∩ a = ∅. For, a ∩ x = ∅ = a ∩ y,
because x ∩ X = ∅ = y ∩ Y and a ⊆ X ∩ Y . Therefore any intersection 〈x, y〉 ∩ a
is off x and y, but 〈x, a〉 ⊆ Y and y ∩ Y = ∅ imply 〈x, y〉 ∩ a = ∅. Hence a choice
of a hyperline A3 that contains 〈x, y〉 and does not intersect a is possible. We have
found a vertex (a,A3) adjacent to both x and y. 2

Lemma 2.1.6
Let n ≥ 4. Let (l, L) be a vertex of Ln, and let p be a point on l. Furthermore,
let (x,X) be a vertex of Ln adjacent to (l, L). Then there exists a vertex (m,M)
adjacent to (x,X) such that l and m are distinct and intersect in p.
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Proof. X is a hyperline of Pn containing l. Hence also p ∈ X . Since n ≥ 4, the
hyperline X contains a plane and we can find a line m ⊆ X distinct from l that
contains p. There certainly exists a hyperline M of Pn that contains x and does not
intersect m, whence the claim is proved. 2

The rest of this section is dedicated to the development of means to recover the
natural projective spaces on a graph Γ isomorphic to Ln without making use of a
particular isomorphism and coordinates. To this end, we have to understand how
two vertices x = (x,X) and y = (y, Y ) of Ln can lie relative to each other and need
to describe these relative positions by information contained in the graph Γ rather
than by using coordinates. First of all, let us introduce precise terminology.

Definition 2.1.7 Two vertices x = (x,X) and y = (y, Y ) of Ln are in relative
position (i, j), if

i = dim 〈x, y〉 and j = codim(X ∩ Y),

where dim denotes the projective dimension and codim the projective codimension.
Let x, y be distinct vertices of Ln with {x,y}⊥ 6= ∅. The double perp {x,y}⊥⊥

is called nth minimal if there exist vertices ai, bi, ai 6= bi, 1 ≤ i ≤ n, with
{ai,bi}

⊥ 6= ∅ for all i and {a1,b1}
⊥⊥

( · · · ( {an,bn}
⊥⊥

= {x,y}⊥⊥
and there

does not exist a longer chain of strict inclusions.

It is quite clear that vertices x and y of Ln can only be in relative positions
(1, 1), (1, 2), (2, 1), (2, 2), (1, 3), (3, 1), (2, 3), (3, 2), or (3, 3). The following three
lemmas will provide us with information on how to distinguish, up to duality, all
cases from each other without having to use coordinates. However, it will not be
possible to distinguish the case (i, j) from the case (j, i), which was to be expected
from the existence of the isomorphism

L(Pn(F)) ∼= L(Pn(F)
dual

) : (l, L) 7→ (L, l).

Lemma 2.1.8
Let n ≥ 4, and let x, y be vertices of Ln. Then the following hold true.

(i) x and y are in relative position (1, 1) if and only if they are equal.

(ii) x and y are in relative position (1, 2) or (2, 1) if and only if they are distinct,

the perp {x,y}⊥ is non-empty, and the double perp {x,y}⊥⊥
is first minimal.

(iii) x and y are in relative position (1, 3), (3, 1), (2, 2), (2, 3), (3, 2), or (3, 3) if and

only if they are distinct and either the perp {x,y}⊥ is empty or the double

perp {x,y}⊥⊥ is not first minimal.

Proof. The first statement is obvious. Let the relative position of x and y be
(1, 2) or (2, 1). Then {x,y}⊥ 6= ∅. Indeed, suppose x = (x,X) and y = (y, Y )
are in relative position (1, 2). We have x = y, since x and y span a line. The
intersection X ∩ Y contains an (n− 3)-space (a space of projective codimension 2),
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which is at least a line since n ≥ 4. So there exists a common neighbor of x and
y. The relative position (2, 1) is handled in the same way. Now let a, b be distinct

vertices contained in {x,y}⊥⊥. By Lemma 2.1.4, a and b are in relative position

(1, 2) or (2, 1) and, thus, {a,b}⊥ 6= ∅. Again by Lemma 2.1.4, the double perps

{x,y}⊥⊥
and {a,b}⊥⊥

coincide. If x and y are in any other relative position and

{x,y}⊥ is empty, then we are done. So let us assume {x,y}⊥ 6= ∅. Then the double

perp {x,y}⊥⊥
is given by Lemma 2.1.4 and it follows immediately that it contains

vertices a and b in relative position (1, 2) or (2, 1). But, again by Lemma 2.1.4, this

gives rise to a strictly smaller double perp. Hence {x,y}⊥⊥
is not minimal. Since

we have listed all possible relative positions two vertices can be in, Statements (ii)
and (iii) follow. 2

Lemma 2.1.9
Let n ≥ 5, and let x and y be vertices of Ln in relative position (1, 3) or (3, 1).

Then {x,y}⊥ 6= ∅.

Proof. We will prove the claim for the relative position (1, 3), and the proof for
(3, 1) follows by duality. Let x = (x,X) and y = (y, Y ). We have x = y, since x
and y span a line. The intersection X ∩ Y contains an (n − 4)-space (a space of
projective codimension 3), which is at least a line since n ≥ 5. So there exists a
common neighbor of x and y. 2

Lemma 2.1.10
Let n ≥ 5, and let x and y be vertices of Ln. The property ‘x and y are in relative
position (1, 3) or (3, 1)’ is characterized by

• the perp {x,y}⊥ is non-empty,

• the double perp {x,y}⊥⊥
is second minimal, and

• there do not exist vertices a,b, c,d ∈ {x,y}⊥⊥ with a 6= b and c 6= d such

that {a,b}⊥⊥ ∩ {c,d}⊥⊥ = ∅.

Proof. Let x and y be in relative position (3, 1). By Lemma 2.1.9, the perp {x,y}⊥

is non-empty. The double perp {x,y}⊥⊥
is described by Lemma 2.1.4. From that

description it is obvious that {x,y}⊥⊥ is second minimal. Now let a, b, c, and d
be vertices as stated in the present lemma. By Lemma 2.1.4, the vertices a and
b, respectively c and d, can only be in relative positions (2, 1) or (3, 1). But then

Lemma 2.1.8 and Lemma 2.1.9 show that both {a,b}⊥ 6= ∅ and {c,d}⊥ 6= ∅. There

is a common vertex in {a,b}⊥⊥
and {c,d}⊥⊥

if one pair is in relative position
(3, 1). So suppose both are in relative position (2, 1). Let a = (a,A), b = (b, B),
c = (c, C), d = (d,D). We have A = B = C = D, since x and y are at relative
position (3, 1), cf. Lemma 2.1.4. Moreover, both a, b and c, d span a plane inside a
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3-space, by Lemma 2.1.4. But these two planes have to have a line in common, and
we have found a common vertex of {a,b}⊥⊥ and {c,d}⊥⊥. By duality, two vertices
in relative position (1, 3) have the same properties. Conversely, let x and y be in any

relative position. Suppose {x,y}⊥ 6= ∅. Then another application of Lemma 2.1.4

shows, that {x,y}⊥⊥ only can be second minimal if x and y are in relative position
(1, 3), (3, 1), or (2, 2). But if they are in relative position (2, 2), then we can find
vertices a = (a,A), b = (b, B) in relative position (1, 2) and c = (c, C), d = (d,D) in

relative position (1, 2) contained in {x,y}⊥⊥
and such that {a,b}⊥⊥∩{c,d}⊥⊥

= ∅.

(Note that {a,b}⊥ 6= ∅ and {c,d}⊥ 6= ∅ by Lemma 2.1.8.) Indeed, we have a = b
and c = d. But since we can choose both a = b and c = d freely in a plane, they
only have to intersect in a point, and we have {a,b}⊥⊥ ∩ {c,d}⊥⊥

= ∅. 2

The preceding lemmas essentially provide us with means to distinguish the dif-
ferent cases of relative position, which will allow for a coordinate-free definition of
lines. On the other hand the following two lemmas will help to recover the full line
pencils, i.e., points.

Lemma 2.1.11
Let n ≥ 5. Let k, l, and m be distinct exterior lines of Ln(F). They intersect in a
common exterior point (i.e., they are contained in a line pencil), if there exist vertices

a ∈ k, b ∈ l, c ∈ m that are pairwise in relative position (2, 1) such that {a,b, c}⊥⊥

contains vertices x, y in relative position (3, 1) with {x,y}⊥⊥
= {a,b, c}⊥⊥

.

Proof. Suppose a = (k,K), b = (l, L), c = (m,M) with K = L = M . The
lines k, l, m mutually intersect each other, since (k,K), (l, L), and (m,M) are in
mutual position (2, 1). But, by Lemma 2.1.4, the lines k, l, and m together span

a projective 3-space, because {a,b, c}⊥⊥
contains vertices x, y in relative position

(3, 1) with {x,y}⊥⊥
= {a,b, c}⊥⊥

. The claim now follows because three mutually
intersecting lines that span a 3-space necessarily intersect in one point. 2

The purpose of the following lemma is to ensure, for every point p of the pro-
jective space Pn, the existence of vertices and exterior lines as in the hypothesis of
Lemma 2.1.11. Notice that, for any such point p of Pn, one can find two vertices
a, b of Ln as in Lemma 2.1.12, such that the corresponding lines intersect in that
given point.

Lemma 2.1.12
Let n ≥ 5, and let a and b be vertices in relative position (2, 1). Then there exists

a third vertex c in relative position (2, 1) to both a and b such that {a,b, c}⊥⊥

contains vertices x, y in relative position (3, 1) with {x,y}⊥⊥
= {a,b, c}⊥⊥

.

Proof. Suppose a = (a,A), b = (b, B) with A = B. The lines a and b intersect in a
point, p say. Let q be a point outside the plane 〈a, b〉 such that the line pq does not
intersect the hyperline A. The vertex c = (pq, A) has the required properties. 2
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2.2 The interior projective space

This section will concentrate on graphs Γ that are isomorphic to Ln(F). One can
define a projective space on Γ by fixing an isomorphism Γ ∼= Ln(F) that induces
the exterior projective space of Ln(F) on Γ. However, when studying graphs that
are locally Ln(F) one might not always want to have to choose an isomorphism,
whence it is useful to recover this projective spaces on Γ ∼= Ln(F) from the graph Γ
without making use of the coordinization of Ln(F). Up to duality this is what will
be achieved in this section. The construction of the projective spaces on Γ heavily
relies on the concept of relative position in Ln(F) and its characterizations in terms
of double perps from the preceding section. Abusing notation, we will sometimes
speak of relative positions on Γ, but only if we have fixed a particular isomorphism
Γ ∼= Ln(F).

Definition 2.2.1 Let n ≥ 5. Define a reflexive relation ≈ on the vertex set of a
graph Γ ∼= Ln. For distinct vertices x, y with {x,y}⊥ 6= ∅ we have x ≈ y if

• the double perp {x,y}⊥⊥ is first or second minimal, and

• there do not exist vertices a,b, c,d ∈ {x,y}⊥⊥
with a 6= b and c 6= d such

that {a,b}⊥⊥ ∩ {c,d}⊥⊥
= ∅.

Moreover, if n ≥ 7, then for a vertex x of Γ, write ≈x for the relation ≈ defined on
x⊥ ∼= Ln−2.

For a fixed isomorphism Γ ∼= Ln(F) that coordinatizes Γ, Lemma 2.1.8(i), (ii)
and Lemma 2.1.10 imply that the relation ≈ on Γ coincides with the relation ‘being
equal or in relative positions (1, 2), (1, 3), (2, 1), or (3, 1)’.

Lemma 2.2.2
Let n ≥ 7. Let x be a vertex of Γ ∼= Ln(F). Then ≈x is the restriction of ≈ to x⊥.

Proof. Fix an isomorphism φ : Γ ∼= Ln(F) and let (x,X) ∈ Ln(F) be the image of
x ∈ Γ. Moreover, let a,b ∈ x⊥ with a ≈x b, and denote their images under φ by
(a,A), respectively (b, B). In Ln(F) we have a, b ⊆ X and x ⊆ A,B. The statements
a ∩X = b ∩X and a = b (respectively A ∩X = B ∩X and A = B), are equivalent
(the former obviously and the latter by A = 〈A ∩X, x〉 and B = 〈B ∩X, x〉). But
this implies the equivalence of a ≈x b and a ≈ b for neighbors a, b of x. 2

Lemma 2.2.3
Let n ≥ 5. On the vertex set of Γ ∼= Ln(F), there are unique equivalence relations

≈l and ≈h such that ≈ = ≈l ∪ ≈h and ≈l ∩ ≈h is the identity relation. Moreover,
for a fixed isomorphism Γ ∼= Ln(F), we either have

• ≈l is the relation ‘equal, in relative position (1, 2), or in relative position (1, 3)’
and ≈h is the relation ‘equal, in relative position (2, 1), or in relative position
(3, 1)’, or
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• ≈l is the relation ‘equal, in relative position (2, 1), or in relative position (3, 1)’
and ≈h is the relation ‘equal, in relative position (1, 2), or in relative position
(1, 3)’.

In other words, for a fixed isomorphism Γ ∼= Ln(F) and up to interchange of
≈l and ≈h, we can assume that ≈l corresponds to the relation ‘equal, in relative
position (1, 2), or in relative position (1, 3)’.

Proof. As we have noticed after Definition 2.2.1, two vertices x, y of Γ are in
relation ≈ if and only if their images (x,X) and (y, Y ) under an isomorphism to
Ln(F) are equal or in relative positions (1, 2), (1, 3), (2, 1), or (3, 1). Let us consider
equivalence relations that are subrelations of ≈. Obviously, the identity relation
is an equivalence relation. Moreover, the relation ‘equal, in relative position (1, 2),
or in relative position (1, 3)’ and the relation ‘equal, in relative position (2, 1), or
in relative position (3, 1)’ are equivalence relations. Now let us assume we have
vertices x = (x,X), y = (y, Y ), z = (z, Z) of Γ ∼= Ln(F) such that x, y are in
relative position (1, ·) and x, z are in relative position (·, 1). Then y 6= z and Y 6= Z
and y, z cannot be in relative position (1, ·) or (·, 1). Consequently, if we want to
find two sub-equivalence relations ≈l and ≈h of ≈ whose union equals ≈, then either
of ≈l and ≈h has to be a subrelation of the relation ‘equal, in relative position (1, 2),
or in relative position (1, 3)’ or of the relation ‘equal, in relative position (2, 1), or
in relative position (3, 1)’. The lemma follows. 2

Convention 2.2.4 From now on, we will always assume that, as soon as we fix an
isomorphism Γ ∼= Ln(F), there is the correspondence of ≈l to the relation ‘equal, in
relative position (1, 2), or in relative position (1, 3)’.

Definition 2.2.5 Let n ≥ 5, and let x be a vertex of Γ ∼= Ln. With ≈l and ≈h

on Γ as in Lemma 2.2.3, we shall write [x]l to denote the equivalence class of ≈l

containing x and similarly [x]h to denote the equivalence class of ≈h containing x.
We refer to [x]l as the interior line on x and to [x]h as the interior hyperline
on x of Γ.

Lemma 2.2.6
Let n ≥ 5. For a fixed isomorphism Γ ∼= Ln(F), an interior line of Γ is the image of
an exterior line by means of this isomorphism, and vice versa. In particular, there is
a one-to-one correspondence between interior lines of Γ and exterior lines of Ln(F).
A similar statement is true for interior hyperlines of Γ.

Proof. This is direct from the above. 2

Now that we know how to construct lines on a graph Γ ∼= Ln(F) without making
use of coordinates, it is time to focus our attention on recovering points. In view
of the definition of exterior points on Ln(F) it might be useful to study pencils of
interior lines. However, before we can do this, there are some definitions to be made.
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Definition 2.2.7 Let n ≥ 5 and choose ≈l and ≈h as in Lemma 2.2.3. For distinct
vertices x, y of Γ with x ≈h y, denote by x ≈h

1 y that {x,y}⊥⊥ is minimal and by

x ≈h
2 y that {x,y}⊥⊥ is second minimal.

For a fixed isomorphism Γ ∼= Ln(F) the vertices x, y satisfy x ≈h
1 y if and only

if they are in relative position (2, 1) and x ≈h
2 y if and only if they are in relative

position (3, 1), cf. Lemma 2.1.8 and Lemma 2.2.3.

Definition 2.2.8 Let n ≥ 5. A set S of mutually intersecting interior lines of
Γ ∼= Ln is called full if

(i) |S| ≥ 2,

(ii) for any two distinct interior lines k, l ∈ S there exist vertices a ∈ k, b ∈ l with
a ≈h

1 b,

(iii) for any two vertices a, b with [a]l, [b]l ∈ S and a ≈h
1 b, there exists a third

vertex c satisfying a ≈h
1 c and b ≈h

1 c such that {a,b, c}⊥⊥
contains vertices

x, y with x ≈h
2 y and {a,b, c}⊥⊥

= {x,y}⊥⊥
, and

(iv) any interior line [c]l containing a vertex c as in (iii) is also contained in S.

A full set of interior lines essentially is all we need to define points.

Lemma 2.2.9
Let n ≥ 5. For a fixed isomorphism Γ ∼= Ln, a full set of interior lines of Γ is the
image of a full line pencil of exterior lines of Ln under this isomorphism and vice
versa.

Proof. Let φ : Γ ∼= Ln be the fixed isomorphism. By Lemma 2.1.11, the image
φ(S) of a full set of interior lines in Γ is contained in a pencil of exterior lines of Ln,
through the point p, say. Let l be an exterior line of Ln incident with p. The full
set S contains at least two distinct lines a and b; notice that φ(a), φ(b) are incident
with p. If φ(a), φ(b), and l span a 3-space, then φ−1(l) is contained in the full set
by definition. So suppose l lies in the plane 〈φ(a), φ(b)〉. Then the full set has to
contain a third line c such that φ(a), φ(b), φ(c) span a 3-space, by Lemma 2.1.12
and the definition of a full set. But then also l, φ(b) and φ(c) span a 3-space, and
φ−1(l) is contained in the full set. 2

Definition 2.2.10 Let n ≥ 5. Let S be a full set of interior lines of Γ ∼= Ln. The
interior point p(S) of Γ is the union

⋃

l∈S l over all interior lines in the full set S.
The geometry of interior points and interior lines with symmetrized containment as
incidence is called the interior projective space on Γ. Dually, define interior
hyperplanes and the dual interior projective space.
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The isomorphism—for a fixed isomorphism Γ ∼= Ln(F)—between the interior
projective space on Γ and the exterior projective space on Ln(F) (and their duals),
by Lemmas 2.2.6 and 2.2.9, on one hand, and the isomorphism between the exterior
projective space on Ln(F) and Pn(F) (and their duals) on the other hand, imply the
following theorem and corollaries:

Proposition 2.2.11
Let n ≥ 5. Up to interchanging ≈l and ≈h every isomorphism Γ ∼= Ln(F) induces an
isomorphism between the interior projective space on Γ and the exterior projective
space on Ln(F). The same statement holds true for their duals. 2

Corollary 2.2.12
Let n ≥ 5, and let Γ be isomorphic to Ln(F). Then the interior projective space on

Γ is isomorphic to Pn(F) or Pn(F)
dual

. 2

Corollary 2.2.13
Let n ≥ 5, and let Γ be isomorphic to Ln(F). If F admits an anti-automorphism,
then the automorphism group of Γ is of the form PΓLn+1(F).2. 2

Corollary 2.2.14
Let n ≥ 5, and let Γ be isomorphic to Ln(F). If F does not admit an anti-
automorphism, the automorphism group of Γ is isomorphic to PΓLn+1(F). 2

Having achieved the goal of this section, let us state some facts that will be
applied in proofs of later sections. We will start with a straightforward lemma: For
a vertex x ∈ Γ ∼= Ln(F), the induced subgraph x⊥ of Γ gives rise to a subspace of
the interior projective space on Γ:

Lemma 2.2.15
Let n ≥ 7, and let Γ be isomorphic to Ln(F). Let x be a vertex of Γ. If l is an interior

line of Γ with l ∩ x⊥ 6= ∅, then l ∩ x⊥ is an interior line or an interior hyperline of
x⊥. Conversely, if m is an interior line of x⊥, then there exists an interior line or
hyperline m′ of Γ with m′ ∩ x⊥ = m.

Proof. Fix an isomorphism Γ ∼= Ln(F), and identify Γ with Ln(F) by means of this
isomorphism. If l is an interior line of Γ such that a = (a,A) ∈ l ∩ x⊥, then either
the (≈l)x class of a or the (≈h)x class of a coincides with l ∩ x⊥, by Lemma 2.2.2
and Lemma 2.2.3. Likewise, an interior line of x⊥ is an (≈x)l equivalence class of
x⊥ and hence, again by Lemma 2.2.2 and Lemma 2.2.3, is the intersection with x⊥

of a single ≈l or ≈h equivalence class of Γ. 2

In view of the lemma, for any vertex x ∈ Γ ∼= Ln(F), n ≥ 7, one can choose the
equivalence relation ≈l

x on x⊥ ∼= Ln−2(F) in such a way that (≈x)l = (≈l)x. In
that case, there is no harm in writing ≈l

x to denote this relation. In particular, one
can identify interior lines of x⊥ with interior lines of Γ. The same holds true for
interior hyperlines, interior points, and interior hyperplanes.
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Lemma 2.2.16
Let n ≥ 5, and let Γ be isomorphic to Ln(F). Any two interior points of Γ intersect.

Proof. Fix an isomorphism Γ ∼= Ln(F). The images of interior points p, q of Γ
are of the form vp = {(l, L) ∈ Ln(F) | p ∈ l} and vq = {(l, L) ∈ Ln(F) | q ∈ l}. The
statement is obviously true for p = q, so assume p 6= q. Then any vertex (pq, L)
with L ∩ pq = ∅ lies in the intersection. 2

The following two facts give insight in the behavior of certain subspaces of the
interior projective space of Γ ∼= Ln.

Lemma 2.2.17
Let n ≥ 7, let Γ be isomorphic to Ln(F), and let x be a vertex of Γ. Then the

interior projective space on x⊥ is a hyperline of the interior projective space on Γ.

Proof. By Proposition 2.2.11 and a choice of an isomorphism φ : Γ ∼= Ln, the
image under φ of any interior point of Γ is of the form vp = {(l, L) ∈ Ln | p ∈ l},
and any interior line has an image of the form vl = {(a,A) ∈ Ln | a = l}. Suppose
φ(x) = (x,X). For l ⊆ X we can identify vl =

{

(a,A) ∈ φ(x)⊥ | a = l
}

with

vl = {(a,A) ∈ Ln | a = l}. If for p ∈ X we also identify vp =
{

(l, L) ∈ φ(x)⊥ | p ∈ l
}

with vp = {(l, L) ∈ Ln | p ∈ l}, then we have essentially identified x⊥ with X and
the claim follows from the fact that X is a hyperline of Pn. 2

Lemma 2.2.18
Let n ≥ 5, let Γ be isomorphic to Ln(F), and let U be a subspace of the interior
projective space on Γ of odd projective dimension m. Then there exists a clique of
m+1

2 vertices in Γ such that the interior lines containing these vertices span U .

Proof. A projective basis B of U consists of m + 1 interior points, say B =
{x0, . . . , xm}. By Corollary 2.2.12, the interior projective space on Γ is isomorphic
to Pn(F). Now, we can identify the interior points of Γ with points of Pn(F)—and

Γ with Ln(F)—and the m+1
2 pairs

(

xixi+ m+1
2
,
〈

B\
{

xi, xi+ m+1
2

}〉)

, 0 ≤ i ≤ m−1
2 ,

are vertices of Γ as needed. 2

2.3 Geometries on interior root points

Besides the exterior projective space, the dual exterior projective space, and the
Grassmann spaces on lines and hyperlines, the graph Ln(F) admits two further natu-
ral geometries induced by coordinization, one isomorphic to the root group geometry
of PSLn+1(F) and the other isomorphic to the hyperbolic root group geometry of the
same group. For fixed coordinates, the set vp,H = {(l, L) ∈ Ln(F) | p ∈ l, L ⊆ H},
for a point p and a hyperplane H 3 p of Pn(F), is called an exterior root point of
Ln(F). Likewise, an exterior root line is defined as the union vl,H =

⋃

p∈l vp,H ,
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for a line l and a hyperplane H ⊇ l, or as the union vp,L =
⋃

H⊇L vp,H , for a hyper-
line L and a point p ∈ L. The geometry of the exterior root points and the exterior
root lines of Ln(F), with symmetrized inclusion as incidence, is called the exterior
root group geometry on Ln(F) and is isomorphic to the root group geometry of
PSLn+1(F). Notice that the exterior root group geometry does not change when
we consider the graph Ln(F) as the graph Ln(Fopp), instead. Similarly, consider the
geometry on the exterior root points of Ln(F) as points and the vertices of Ln(F)
as lines with symmetrized inclusion as incidence. That geometry is isomorphic to
the hyperbolic root group geometry of PSLn+1(F) and is called the exterior hy-
perbolic root group geometry on Ln(F). This geometry, too, is independent of
whether we consider the graph as Ln(F) or Ln(Fopp).

In this section, we will give constructions of the exterior (hyperbolic) root group
geometries on Ln(F) in terms of exterior points, exterior lines, exterior hyperplanes,
and exterior hyperlines. Then Lemmas 2.2.6 and 2.2.9 will give us means to describe
these geometries coordinate-freely on any graph Γ ∼= Ln(F).

Lemma 2.3.1
Let n ≥ 5, and let vp,H and vq,I be distinct exterior root points of Ln(F). Then we
have |vp,H ∩ vq,I | ≤ 1.

Proof. Suppose |vp,H∩vq,I | 6= ∅, i.e., in Pn(F) there exists a line l and a hyperline L
with l ⊇ 〈p, q〉, L ⊆ H ∩ I and l∩L = ∅. Assume there exists another line-hyperline
pair (m,M) satisfying these conditions. If it is distinct from (l, L), then l 6= m or
L 6= M . Up to duality, we may assume L 6= M . Then immediately H = I , whence
p 6= q. But then l = m = pq is contained in H = I (recall that vp,H and vq,I being
root points means p ∈ H and q ∈ I), which have hyperplanes L and M . Hence
l ∩ L 6= ∅, a contradiction. 2

Lemma 2.3.2
Let n ≥ 5, and let vp,H and vq,I be distinct exterior root points of Ln(F). The
points p and q, respectively the hyperplanes H and I are distinct and the line pq
does not intersect the hyperline H ∩ I if and only if |vp,H ∩ vq,I | = 1.

Proof. By the preceding lemma, we always have |vp,H ∩ vq,I | ≤ 1. If p 6= q, H 6= I
and pq ∩H ∩ I = ∅, then (pq,H ∩ I) is a vertex of Ln(F) contained in vp,H ∩ vq,I .
Conversely, suppose there exists such a vertex. In the proof of the preceding lemma,
we have seen that this implies p 6= q and H 6= I . But then the only candidate for
being contained in vp,H ∩ vq,I is (pq,H ∩ I), whence pq ∩H ∩ I = ∅. 2

For the next lemma, we would like to point out that an exterior hyperplane
of Ln(F) is not a hyperplane of the exterior projective space on Ln(F). However,
there is an obvious one-to-one correspondence between exterior hyperplanes and
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hyperplanes of the exterior projective space, by the map

vH = {(l, L) ∈ Ln(F) | L ⊆ H} 7→
⋃

p∈H

vp =
⋃

p∈H

{(l, L) ∈ Ln(F) | p ∈ l} .

Therefore there is no harm done if we speak of incidence between exterior points
and exterior hyperplanes and rather mean incidence between exterior points and
the images of exterior hyperplanes under this map.

Lemma 2.3.3
Let n ≥ 5. An exterior point vp and an exterior hyperplane vH of Ln(F) are non-
incident if and only if any exterior line vl incident with vp contains a vertex contained
in an exterior hyperline vL incident with vH and vice versa.

Proof. Suppose vp and vH are non-incident and let vl be an exterior line incident
with vp. The set vl consists of all vertices of Ln(F) having l as the first coordinate.
The second coordinate ranges over all hyperlines L that do not intersect l. By the
isomorphism between the exterior projective space on Ln(F) and Pn(F) that maps
vp onto p, vl onto l, vH onto H , also p is incident with l and non-incident with H .
Hence l intersects H in a single point. But then there exists a hyperline M not
intersecting l that is contained in H . The vertex (l,M) is contained in the exterior
hyperline vM , which is incident with vH . Similarly, any exterior hyperline incident
with vH contains a vertex contained in an exterior line incident with vp. Conversely,
suppose vp and vH are incident. Choose an exterior line vl through vp such that l
is contained in H . Now, a hyperline that does not intersect l cannot be contained
in H . 2

In view of the preceding lemma, in a graph Γ ∼= Ln(F), an interior point p and
an interior hyperplane H are called non-incident if and only if any interior line l
incident with p contains a vertex of Γ contained in an interior hyperline L incident
with H and vice versa. Conversely, an interior point and an interior hyperplane are
incident if they are not non-incident.

Definition 2.3.4 Let n ≥ 5, and let Γ ∼= Ln(F). An interior root point of Γ
is the intersection of an interior point with an incident interior hyperplane. Notice
that this definition is independent of the choice of the relations ≈l and ≈h in Lemma
2.2.3. Recall that an exterior root line is defined as the union vl,H =

⋃

p∈l vp,H , for
a line l and a hyperplane H ⊇ l, or as the union vp,L =

⋃

H⊇L vp,H , for a hyperline
L and a point p ∈ L. To show that a line l is contained in a hyperplane H , one just
has to find distinct points on l contained in H . By Lemma 2.3.3, we know when an
exterior point is incident with an exterior hyperplane, and we can define an exterior
root line from the knowledge of exterior points, line, hyperlines, hyperplanes, and
incidence. Consequently, an interior root line is of the form

⋃

interior point p∈l

p ∩H



44 CHAPTER 2. LINE-HYPERLINE PAIRS

for an interior line l contained in the interior hyperplane H , or

⋃

interior hyperplane H⊇L

p ∩H

for an interior hyperline L containing the interior point p.

We are now ready to state the main result of this section.

Proposition 2.3.5
Let n ≥ 5, and let Γ be isomorphic to Ln(F). The following hold true.

(i) The geometry of exterior root points and exterior root lines on Ln(F) with
symmetrized containment as incidence is isomorphic to the root group geom-
etry of PSLn+1(F).

(ii) The geometry of exterior root points and vertices of Ln(F) with symmetrized
containment as incidence is isomorphic to the hyperbolic root group geometry
of PSLn+1(F).

(iii) The geometry of interior root points and interior root lines on Γ with sym-
metrized containment as incidence is isomorphic to the root group geometry
of PSLn+1(F).

(iv) The geometry of interior root points and vertices of Γ with symmetrized con-
tainment as incidence is isomorphic to the hyperbolic root group geometry of
PSLn+1(F).

More precisely, there is a one-to-one correspondence between the vertices of Γ and
the lines of the hyperbolic root group geometry of PSLn+1(F). The interior root
points of Γ correspond one-to-one to the full line pencils of the (hyperbolic) root
group geometry.

Proof. By Lemmas 2.2.6 and 2.2.9 plus the Definition 2.3.4 of interior root points
and interior root lines, Statement (i) is equivalent to Statement (iii) and Statement
(ii) is equivalent to Statement (iv). However, the first two statements are satisfied by
definition. The additional claim about the vertices of Γ follows from the isomorphism
Γ ∼= Ln(F) and the fact that hyperbolic lines of the hyperbolic root group geometry
of PSLn+1(F) correspond to non-intersecting line-hyperline pairs of the projective
space Pn(F). The claim about the line pencils follows from the fact that interior
points correspond to full line pencils of interior lines (cf. Lemma 2.2.9), similarly
interior hyperplanes correspond to full pencils of interior hyperlines. Intersecting
an interior point with an incident interior hyperplane, we obtain a full line pencil of
the hyperbolic root group geometry. 2

The geometries on the interior objects in Proposition 2.3.5 are called the interior
(hyperbolic) root group geometry on Γ, respectively. We conclude this section
with a lemma that is needed later.
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Lemma 2.3.6
Let n ≥ 5, and let vp,H be an exterior root point of Ln(F). Any vertex adjacent to
a vertex of vp,H is adjacent to another vertex of vp,H .

Proof. Let x be a vertex contained in vp,H , and let z be adjacent to x. The vertex
z corresponds to a non-intersecting line-hyperline pair (z, Z), likewise x corresponds
to (x,X). Adjacency implies z ⊆ X and x ⊆ Z. Thus we have p ∈ Z and z ⊆ H .
Now we easily find a pair (y, Y ) 6= (x,X) consisting of a line y ⊆ Z containing p and
a non-intersecting hyperline Y ⊆ H containing z, and obtain a vertex y = (y, Y ) as
claimed. 2

2.4 Locally line-hyperline graphs

We can now shift our attention to graphs that are locally Ln(F). It is enough
to investigate connected graphs with that local property. Throughout the whole
section let n ≥ 11, let F be a division ring, and let Γ be a connected, locally Ln(F)
graph. Since we are considering graphs Γ that are locally Ln(F), the notions of
interior points and lines are defined on perps x⊥ of vertices x in Γ rather than on
the whole graph Γ. To emphasize this, any interior object will be indexed by the
vertex in whose perp it is defined and called local, e.g., an interior point p of x⊥

will be denoted by px and called a local point of x⊥; likewise, define the local
relations ≈l

x and ≈h
x.

Lemma 2.4.1
Let x and y be any two adjacent vertices of Γ. Then there is a choice of local

equivalence relations ≈l
x and ≈l

y such that the intersections of ≈l
x and ≈l

y to x⊥∩y⊥

coincide.

Proof. This follows immediately from application of Lemma 2.2.15 (and the dis-
cussion after that lemma) first to x⊥ ∼= Ln(F) and x⊥ ∩ y⊥ ∼= Ln−2(F) and then to
y⊥ ∼= Ln(F) and x⊥ ∩ y⊥ ∼= Ln−2(F). 2

Having Lemma 2.2.17 in mind, the preceding lemma allows us to view x⊥∩y⊥ as
a subspace of the interior projective spaces on both x⊥ and y⊥. We will immediately
apply this knowledge in the proof of the following lemma.

Lemma 2.4.2
Let w ⊥ x ⊥ y ⊥ z be a path of vertices in Γ. Then w⊥ ∩ x⊥ ∩ y⊥ ∩ z⊥ 6= ∅. In
particular, the diameter of Γ is two and Γ, viewed as a two-dimensional simplicial
complex whose two-simplices are its triangles, is simply connected.

Proof. Choose local equivalence relations ≈l
w, ≈l

x, ≈l
y, and ≈l

z such that ≈l
w

and ≈l
x coincide on w⊥ ∩ x⊥, that ≈l

x and ≈l
y coincide on x⊥ ∩ y⊥, and that

≈l
y and ≈l

z coincide on y⊥ ∩ z⊥. This is possible by Lemma 2.4.1. Application
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of Lemma 2.2.17 to the interior projective space of y⊥ ∼= Ln(F) shows that the
interior projective spaces of x⊥ ∩ y⊥ and of y⊥ ∩ z⊥ correspond to hyperlines of
y⊥ ∼= Ln(F). We have to investigate x⊥ ∩ y⊥ ∩ z⊥. Suppose we have x = (xy, Xy)
and z = (zy, Zy) inside y⊥. Then the graph x⊥ ∩ y⊥ ∩ z⊥ (considered inside y⊥)
consists of the non-intersecting line-hyperline pairs whose lines are contained in
Xy ∩ Zy and whose hyperlines contain the space 〈xy, zy〉. Since n ≥ 11, the space
Xy ∩ Zy has (projective) dimension at least 7. The intersection of 〈xy, zy〉 with
Xy ∩ Zy is at most a line, as xy ∩ Xy = ∅ = zy ∩ Zy. Suppose this intersection
actually is a line and denote that line by ly. By the choice of local equivalence
relations we can consider this configuration also in x⊥. There the vertices w and
y correspond to line-hyperline pairs (wx,Wx) and (yx, Yx), respectively. The space
Xy∩Zy of y⊥ corresponds to a space Ux in x⊥ (of the same dimension as Xy∩Zy),
which lies inside Yx. Of the subspace 〈xy, zy〉 of y⊥, in x⊥ we can only see the
intersection with Xy, which is a line lx induced by the line ly. The intersection of
Ux and Wx is a space of dimension at least 5. The space 〈lx, yx, wx〉 has at most
dimension 5, and the intersection Ux ∩Wx ∩ 〈lx, yx, wx〉 has at most dimension 3,
because wx ∩Wx = ∅. Hence we can find a line ax ⊆ Ux ∩Wx\ 〈lx, yx, wx〉 and a
non-intersecting hyperline Ax containing 〈lx, yx, wx〉. The pair (ax, Ax) corresponds
to a vertex of x⊥ adjacent to w (as wx ⊆ Ax and ax ⊆ Wx) as well as adjacent
to y (as yx ⊆ Ax and ax ⊆ Ux ⊆ Yy) and to z (as translated to y⊥ the line ay
lies in Xy ∩ Zy and the hyperline Ay contains ly and xy, whence also zy). Our
assumptions made during the proof resemble the most difficult case; all other cases
run along the same lines.

The remaining statements of the lemma are obvious consequences. 2

The next lemma is a generalization of Lemma 2.4.1 to a choice of local equivalence
relations for all vertices of Γ.

Lemma 2.4.3
There is a choice of local equivalence relations ≈l

x for x running over the vertices of

Γ such that, for any two adjacent vertices x and y, the restrictions of ≈l
x and ≈l

y

to x⊥ ∩ y⊥ coincide.

Once a choice of local equivalence relations ≈l
x is given, the same statement

holds for the dual choice of local equivalence relations ≈h
x. In particular, everything

that will be shown for the relations ≈l
x immediately also holds for the relation ≈h

x.

Proof. Suppose that x, y, z is a triangle. In view of Lemma 2.4.1, we may
assume that ≈l

x and ≈l
y have the same restriction to x⊥ ∩ y⊥ and that ≈l

x and ≈l
z

have the same restriction to x⊥ ∩ z⊥. Let lx be an interior line of x⊥ such that
lx ∩ y⊥ ∩ z⊥ 6= ∅. By analysis of x⊥, we can find two vertices, say u and v, in
lx ∩ y⊥ ∩ z⊥. Now the above choices of local equivalence relations imply that u
and v belong to ≈l

y ∩ ≈l
z. This forces that ≈l

y and ≈l
z have the same restriction to

y⊥∩z⊥ by Lemma 2.2.2 and Lemma 2.2.3. Since Γ is simply connected (cf. Lemma
2.4.2), the lemma follows immediately from the triangle analysis. 2
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Notation 2.4.4 Fix a choice of ≈l
x as in Lemma 2.4.3, and set ≈l=

⋃

x∈Γ ≈l
x.

Lemma 2.4.5
Let x be a vertex of Γ. Then the restriction of ≈l to x⊥ equals ≈l

x. In particular,

suppose that x and y are vertices of Γ such that x ≈l
u y for some vertex u in

{x,y}⊥. Then x ≈l
v y for every vertex v in {x,y}⊥.

Proof. Obviously, ≈l
|x⊥×x⊥ ⊇≈l

x. Assume there exist y, z ∈ x⊥ with y ≈l z but

y 6≈l
x z. Since ≈l=

⋃

x∈Γ ≈l
x, there exists a vertex a adjacent to y and z with

y ≈l
a z. By Lemma 2.4.2, there exists a vertex b adjacent to a ⊥ y ⊥ x ⊥ z. But

both y ≈l
b z and y 6≈l

b z yield a contradiction to Lemma 2.4.3. 2

Lemma 2.4.6
≈l is an equivalence relation.

Proof. Reflexivity and symmetry follow from reflexivity and symmetry of each ≈l
x.

To prove transitivity, suppose that x ≈l
u y and y ≈l

v z. By Lemma 2.4.2 there is a
vertex w in {x,u,y,v}⊥. By the same lemma, there is a vertex a in {x,w,v, z}⊥.
A third application of the lemma yields a vertex b in {a,w,y,v}⊥. By analysis of
w⊥, we find a vertex c in {a,b,w}⊥ in ≈l

w relation with both x and y by Lemma
2.1.5. This gives x ≈l

a c by Lemma 2.4.5. Similarly, using an analysis of v⊥, we
find a final vertex d ∈ {a,b,v}⊥ in ≈l

v relation with both y and z. This gives
d ≈l

a z, again by Lemma 2.4.5. In b⊥, we have c ≈l
b y as well as d ≈l

b y (Lemma
2.4.5), whence by transitivity of ≈l

b, also c ≈l
b d. This establishes c ≈l

a d. We have
found a chain x, c,d, z of ≈l

a related vertices in a⊥. By transitivity of ≈l
a, this gives

x ≈l
a z, whence x ≈l z, proving transitivity of ≈l. 2

Definition 2.4.7 A global line of Γ is an equivalence class of ≈l=
⋃

x∈Γ ≈l
x.

Dually, define a global hyperline as an equivalence class of ≈h=
⋃

x∈Γ ≈h
x. The

set of global lines of Γ is denoted by LΓ. Notice that, by Lemma 2.4.5, for a global
line l and a vertex x we either have l ∩ x⊥ = ∅ or l ∩ x⊥ = lx, a local line of x⊥.

The next task is to define global points. This will prove to be a bit more compli-
cated than the definition of global lines. Let us first study how ‘intersecting’ global
lines behave.

Lemma 2.4.8
Let l and m be global lines of Γ and let x be a vertex of Γ with l∩x⊥ 6= ∅ 6= m∩x⊥

and such that the local lines lx and mx intersect in an interior point of x⊥. Then,
for any vertex y of Γ with l ∩ y⊥ 6= ∅ 6= m ∩ y⊥, the local lines ly and my intersect
in an interior point of y⊥.

Proof. First we will show that it is enough to prove the claim for adjacent x and
y. Indeed, let x and y be distinct vertices of Γ such that there exist vertices l1 ⊥ x,
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l2 ⊥ y contained in the global line l and vertices m1 ⊥ x, m2 ⊥ y contained in the
global line m. By Lemma 2.4.2, we can find a vertex a adjacent to both m1 and l2.
By Lemma 2.4.2 again, there is a vertex b adjacent to x, m1, a, and l2. Finally,
again by Lemma 2.4.2 there is a vertex c adjacent to b, l2, y, and m2. Hence
now suppose x ⊥ y. Since none of l ∩ x⊥, m ∩ x⊥, l ∩ y⊥, and m ∩ y⊥ is empty,
neither are l ∩ x⊥ ∩ y⊥ and m ∩ x⊥ ∩ y⊥, which are equal to lx ∩ ly, respectively
mx ∩ my, by Lemma 2.4.5 and Lemma 2.4.3. But now the local lines lx and mx

and the local lines ly and my intersect if and only if the restrictions of l and m to
x⊥ ∩y⊥ intersect, which we can determine in x⊥ ∩y⊥ ∼= Ln−2(F) by Lemma 2.1.11
and Lemma 2.1.12. 2

Let a and b be distinct vertices of Γ. Suppose we have vertices l and m adjacent
to a and vertices n and o adjacent to b. By Lemma 2.4.2, there exists a vertex c
adjacent to m and n. Two further applications of Lemma 2.4.2 give rise to a vertex
d adjacent to a, m, c, and n and to a vertex e adjacent to m, d, n, and b. Suppose
l and m are contained in two intersecting local lines la and ma, likewise n and o in
two intersecting local lines nb and ob. Suppose the local lines in d⊥ containing m
and n intersect in a point. Then we can see whether the local point la ∧ma (the
intersection of la and ma) and the local point md ∧ nd both actually lie in a⊥ ∩ d⊥

and are equal or not. By the above lemma, this then automatically holds for the
respective lines in d⊥ and e⊥. Now we can see whether the points nb ∧ ob and
me ∧ ne both lie in b⊥ ∩ e⊥ and describe the same local point. Two local points
la ∧ma and nb ∧ ob are kin, if they are equal or one can find a chain of vertices as
described above where the respective local points mutually are equal.

Lemma 2.4.9
The notion of kinship is well defined, i.e., it is independent of the chosen path in Γ.

Proof. It is obvious that for mutually adjacent vertices x, y, z kinship is indepen-
dent of the path chosen in the triangle x, y, z.

Let w, x, y, z be a path of vertices such that there exists a local point pw that
induces a local point px which in turn induces a local point py that induces a local
point pz. Using the notation of Lemma 2.4.2, we have a subspace 〈lx, wx, yx〉 of x⊥.
If that space 〈lx, wx, yx〉 does not contain the point px, by Lemma 2.4.2 we can find

a vertex a ∈ {w,x,y, z}⊥ whose line ax in x⊥ contains the point px. Locally in a⊥

we find a common neighbor v of w and z. It is easily seen that the kinship of the
two interior points pw and pz is independent of our choice of the path w, x, y, z or
the path w, v, z. For, it is possible to find a triangulization of the circuit w, x, y,
z, v, w inside a⊥ ∼= Ln(F). So assume that px ∈ 〈lx, wx, yx〉. Then we find a vertex

a ∈ {w,x,y, z}⊥ that locally admits the point pa that is kin to pw and pz. Since
kinship is independent of paths in triangles, the kinship of pw and pz is independent
of the chosen path w, x, y, z or w, a, z.

Now let the local points px and py be kin. As yet we have proved that we can
assume that there is a path x, z1, y establishing the kinship of px and py. Take any
other path from x to y. By our findings above we can assume this path is of length
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two, x, z2, y say. But now we can study the graph {x, z1,y, z2}
⊥

and we find, as
above, that the kinship of px and py is independent of the choice of x, z1, y or x,
z2, y. 2

Definition 2.4.10 Let x be a vertex of Γ and let px be a local point of x⊥. The
set

⋃

l∈LΓ, l∩px 6=∅

l

is called an almost local point of x⊥ and is denoted by px. Note that a local
point is the union of some local lines. An almost local point is nothing more than
the union of the corresponding global lines. Two almost local points are kin if the
corresponding local points are kin. Define a relation ≈p on the set of almost local
points of Γ by px ≈p qy if and only if they are kin.

Lemma 2.4.11
The relation ≈p is an equivalence relation on the almost local points of Γ.

Proof. This is obvious. 2

Definition 2.4.12 The equivalence classes of the relation ≈p are called global
points. The set of global points of Γ is denoted by PΓ. Dually, define global
hyperplanes. Moreover, let PΓ = (PΓ,LΓ) be the point-line geometry consisting
of the point set PΓ of global points of Γ and the line set LΓ of global lines of Γ with
symmetrized containment as incidence.

Like global lines, also global points have nice local behavior:

Lemma 2.4.13
Let x and y be distinct vertices of Γ, and let p be a global point. Then p ∩ x⊥ is

either empty or a local point of x⊥.

Proof. Assume m ∈ p ∩ x⊥. Then there is a vertex z such that m ∈ qz for an
almost local point qz of z⊥ with [qz]≈p = p. Hence there exist vertices l and m1

adjacent to z belonging to different global lines l and m contained in the almost
local point qz. By Lemma 2.4.2 there exists a vertex a adjacent to l and m and,
again by Lemma 2.4.2, there exists a vertex b adjacent to l, a, m, and x. Lemma
2.4.8 implies that the local lines lb and mb intersect in an interior point, and local
analysis of b⊥ together with Lemma 2.1.6 implies the existence of a vertex l1 ∈ l
adjacent to x. 2

Proposition 2.4.14
PΓ is a projective space.
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Proof. First we have to show that PΓ is a linear space. This means that any two
global points are incident with a global line and that any two global lines intersecting
in two distinct global points are equal. Let p and q be distinct global points, and let
p ∈ p and q ∈ q. By Lemma 2.4.2, there exists a vertex a adjacent to both p and q,
and Lemma 2.4.13 shows that p∩ a⊥ and q ∩ a⊥ are local points of a⊥. By Lemma
2.2.16 there exists a vertex l ∈ p ∩ q ∩ a⊥. The global line l containing l is incident
with both p and q. Now suppose we have two global lines l and m intersecting in
distinct global points p and q. Arguments similar to the arguments before yield a
vertex x with local points px, qx and local lines lx, mx. The local lines have to be
distinct, since the global lines l and m are distinct and contain both local points, a
contradiction to the fact that the interior projective space on x⊥ is a linear space.

The validity of Pasch’s axiom remains to be shown. To this end, let l and m be
two intersecting global lines. There exist vertices l ∈ l and m ∈ m and, by Lemma
2.4.2, a vertex x adjacent to both. Now, since Pasch’s axiom holds in the interior
projective space on x⊥ it also holds for all configurations involving the lines l and
m. Since the lines l and m have been chosen arbitrarily, Pasch’s axiom holds in the
geometry PΓ. 2

Notation 2.4.15 For a vertex x of Γ, denote by
〈

x⊥
〉

the set of global points that
intersect x⊥.

Lemma 2.4.16
〈

x⊥
〉

does not intersect the global line containing x.

Proof. Otherwise there exist a global point p with x ∈ p and a vertex y ∈ p with
y ⊥ x. But then there exists a third vertex z adjacent to both x and y, and local
analysis of z⊥ yields a point pz that lies on either of the local lines described by two
adjacent vertices, a contradiction. 2

Lemma 2.4.17
Let x be a vertex of Γ. Then

〈

x⊥
〉

is a hyperline of PΓ. Conversely, any hyperline Λ
of PΓ is of this form. Moreover, if the global line y does not intersect Λ, then there
is a vertex y ∈ y with

〈

y⊥
〉

= Λ.

Proof. Let l be a global line of Γ incident with a global point p contained in
〈

x⊥
〉

. The intersection of that global point with x⊥ is a local point of x⊥ since it
cannot be empty, by Lemma 2.4.13. For any other global point q incident with l,
the line l is the unique global line connecting both points (by Proposition 2.4.14).
The intersection q∩x⊥ is also a local point of x⊥, distinct from p∩x⊥. Hence there
exists a local line of x⊥ connecting both. But this local line has to be equal to l∩x⊥,
thus all global points incident with l are contained in

〈

x⊥
〉

, and
〈

x⊥
〉

is a subspace
of PΓ. Now let U be a three-dimensional space. There exist two non-intersecting
global lines l, m that span U . Take vertices l ∈ l, m ∈ m. By Lemma 2.4.2, there
exists a vertex a adjacent to both l and m. By Lemma 2.2.18 applied to a⊥, we
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can assume that l and m are adjacent. Again by Lemma 2.4.2 there exists a vertex
b adjacent to x and l. A third application of Lemma 2.4.2 yields the existence of
a vertex c adjacent to x, b, l, m. In c⊥ the local lines containing l and m span a
3-space U ′. For any global point p ∈ U we have p ∩ c⊥ ∈ U ′. By Lemma 2.2.17,
x⊥ ∩ c⊥ is a hyperline of c⊥ ∼= Ln(F), which has to intersect U ′ in at least a line.
But this proves that any three-dimensional subspace of PΓ intersects

〈

x⊥
〉

in at

least a line, whence
〈

x⊥
〉

is a hyperline of PΓ (it cannot be a hyperplane by Lemma
2.4.16).

Conversely, let y be a global line that does not intersect the hyperline Λ. Any
three-dimensional space containing y intersects Λ in a global line, x, say. Choose
a vertex in both lines. By Lemma 2.4.2 there exists a third vertex adjacent to
both. Then by Lemma 2.2.18, there exist adjacent vertices x ∈ x and y1 ∈ y. The
hyperline

〈

x⊥
〉

intersects Λ in a hyperline of Λ, since the global line x containing

x does not intersect
〈

x⊥
〉

by Lemma 2.4.16. Let V be a subspace of
〈

x⊥
〉

∩ Λ of
maximal odd dimension. We find a clique of vertices xi, i ∈ I (for some index set
I), such that the global points xi of Γ containing them span V as a projective space,
by Lemma 2.2.18. Then x together with the xi spans Λ or a hyperplane of Λ, of
odd dimension. Moreover, y and xi, i ∈ I , span

〈

x⊥
〉

or a hyperplane W , of odd

dimension, since the xi span V and y is a line of
〈

x⊥
〉

\V . But again by Lemma

2.2.18, in
〈

x⊥
〉

(respectively W ) we can find y ∈ y such that y and xi, i ∈ I , form a

clique. But then the hyperline
〈

y⊥
〉

contains the lines x, xi, i ∈ I , whence
〈

y⊥
〉

∩Λ
equals Λ or a hyperplane of Λ. In the former case the lemma is proved. In the latter
the claim follows immediately by suitable variation of the subspace V . 2

Proposition 2.4.18
Let n ≥ 11, let F be a division ring, let Γ be a connected, locally Ln(F) graph, and
let (PΓ,LΓ,⊃) be the projective space consisting of the global points and global
lines of Γ. Then the line-hyperline graph of (PΓ,LΓ,⊃) is isomorphic to Γ.

Proof. Let ∆ be the line-hyperline graph of PΓ. Consider the map Γ → ∆ : x 7→
(

x,
〈

x⊥
〉)

where x is the global line of Γ containing x. We want to show that this
is an isomorphism of graphs. Surjectivity follows from Lemma 2.4.17, since any line
x of PΓ is a global line of Γ and any hyperline not intersecting it is of the form
〈

x⊥
〉

for a vertex x ∈ x. Injectivity is obtained as follows. Suppose the global line

x contains two vertices x1, x2 with
〈

x⊥
1

〉

=
〈

x⊥
2

〉

. By Lemma 2.4.2 there exists a

vertex y adjacent to both x1 and x2. Since
〈

x⊥
1

〉

=
〈

x⊥
2

〉

, both vertices describe
the same hyperline in y⊥. But they also describe the same line and hence have to
be equal, a contradiction. Finally, if x ⊥ y, then obviously x ∈

〈

y⊥
〉

and y ∈
〈

x⊥
〉

,
if x and y are the global lines of Γ containing x and y, respectively. 2

Theorem 2.4.19
Let n ≥ 11, let F be a division ring, and let Γ be a connected, locally Ln(F) graph.
Then Γ is isomorphic to Ln+2(F).
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Proof. The theorem follows immediately from Proposition 2.4.14, Lemma 2.4.17,
and Proposition 2.4.18. 2

The graph on the fundamental SL2’s of the group E6(F) provides an example
of a graph that is connected and locally L5(F) but not isomorphic to L7(F).

2.5 More results without proofs

We didn’t achieve the best result possible in the preceding section. A bit more work,
similar to the extra work we had in the cases n = 3, 4 for the point-hyperplane graphs
in Chapter 1, yields the following result.

Theorem 2.5.1
Let n ≥ 7, let F be a division ring, and let Γ be a connected, locally Ln(F) graph.
Then Γ is isomorphic to Ln+2(F).

Sketch of proof. First prove the line-hyperline equivalents of Lemmas 1.3.4, 1.3.5,
and 1.3.6, which imply simple connectedness of Γ. The proof of the existence of
global lines is then exactly the same as the proof of the existence of global points
in Section 1.3. However, in the case of line-hyperline graphs we cannot easily con-
struct global points. Instead we define a global plane as we defined a global line in
Definition 1.3.12. Then one proves that the notion of a global plane is well defined.
In the notation of Lemma 1.3.13 we have the problem that we cannot assume c
and d to be connected. Nevertheless one can find the vertex z1 adjacent to both
x and c, and there is a z2 adjacent to a, x, and c. Then, as in Lemma 1.3.4 and
after replacement of a inside its local line of z⊥2 if necessary, one can find a path of
vertices inside a⊥∩c⊥ from z2 to a vertex v that is also adjacent to y, proving that
global planes are well defined. Similarly, one defines global 3-spaces and proves that
they are well defined. Now we can define global points as pencils of global lines.
Two global lines intersect if and only if they span a global plane. Three global
lines intersect in a single point if they mutually intersect and together span a global
3-space. It remains to prove, essentially by proving the validity of Pasch’s Axiom,
that the geometry on global points and global lines is a projective space and that
the graph we are considering is the line-hyperline graph of that geometry. �

We also have a result for infinite dimensions. Notice that, although we used
finite dimensions in the proof of Lemma 2.4.17, we can modify that lemma to a
statement about infinite dimensional vector spaces. Then we can just plug in that
modified lemma into the proof of Proposition 2.4.18 without making use of finite
dimensions. Altogether we obtain the following.

Theorem 2.5.2
Let n be a infinite cardinal number, let F be a division ring, and let Γ be a connected,
locally Ln(F) graph. Then Γ is isomorphic to Ln(F). 2
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Moreover, there exist group-theoretic consequences of Theorem 2.5.1 similar to
the consequences of Theorem 1.3.21, as given in Section 1.6. For example, the
following is true.

Theorem 2.5.3
Let n ≥ 8 and let F be a field of characteristic distinct from 2. Let G be a group
with subgroups A and B isomorphic to SL2(F), and denote the central involution
of A by x and the central involution of B by y. Furthermore, assume the following
holds:

• CG(x) = A′ ×K with K ∼= GLn(F), A ≤ A′;

• CG(y) = B′ × J with J ∼= GLn(F), B ≤ B′;

• A is a fundamental SL2 of J ;

• B is a fundamental SL2 of K; and

• there exists an involution in J ∩K that is the central involution of a funda-
mental SL2 of both J and K.

If G = 〈J,K〉, then PSLn+2(F) ≤ G/Z(G) ≤ PGLn+2(F). �

Let us now generalize our findings for point-hyperplane graphs and line-hyperline
graphs to arbitrary decompositions of vector spaces. To this end let F be a division
ring and let n ≥ 0. For any k ≤ n, the graph SCn,k consists of the pairs of a
dimension k space and a non-intersecting codimension k space of Pn(F) where a
vertex (a,A) is adjacent to another vertex (b, B) (in symbols (a,A) ⊥ (b, B)) if and
only if a ⊂ B and b ⊂ A. (The S stands for space, the C for complement.) Notice
that SCn,0 = Hn (cf. Chapter 1) and SCn,1 = Ln. Using the methods of Section 1.3
and Section 2.4 one can prove the following analogs of Theorem 1.3.21 and Theorem
2.5.1.

Theorem 2.5.4
Let k ≥ 0, let n ≥ 4(k + 1) − 1, let F be a division ring, and let Γ be a connected,
locally SCn,k(F) graph. Then Γ is isomorphic to SCn+k+1,k(F). �

This result is related to a result of Hall’s in [Hal87] on Kneser graphs. Kneser
graphs are in some sense thin versions of our graphs SCn,k. Indeed, consider the
(n+ 1)-simplex which from a geometric point of view is a thin projective space. In
this setting a dimension k space coincides with a subset of the (n+1)-simplex of size
k + 1, whereas a codimension k space coincides with a subset of size n− k. Notice
that by a choice of a dimension k space the non-intersecting codimension k space
is uniquely determined. Therefore the set of vertices can be described as the set of
dimension k spaces. Now we can define adjacency of two vertices as being disjoint,
and we obtain the Kneser graphs. Denote the Kneser graph on the (k+1)-subsets of
a set of cardinality n+ 1 by SCn,k(1). Then Jon Hall’s Theorem 1 of [Hal87] states
that a connected, locally SCn,k(1) graph is isomorphic to SCn+k+1,k(1) provided n
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be sufficiently large. For example, a connected, locally SCn,1(1) graph is isomorphic
to SCn+2,1(1), if n ≥ 6. Hall’s bound in the case of k = 1 is sharp. Indeed, the
Kneser graph SC5,1(1) is isomorphic to the collinearity graph of the generalized
quadrangle on 15 points and 15 lines. By a result of Buekenhout and Hubaut
(Theorem 2 of [BH77]), there are the following three isomorphism types of graphs
that are locally SC5,1(1). First, let A5(2) be the five-dimensional affine space over
the field of two elements and consider P4(2) as its projective space at infinity. Let
Q be the nondegenerate orthogonal quadric of rank 2 in P4(2) (this quadric is
isomorphic to the generalized quadrangle on 15 points and 15 lines). Define a
graph Γ whose vertices are the points of the affine space A5(2) in which distinct
vertices p, q are adjacent if and only if the line pq intersects the projective space
at infinity in a point of Q. To construct the two other examples let P5(2) be the
five-dimensional projective space over the field of two elements, and let Q be a
nondegenerate orthogonal quadric of P5(2). Define a graph Γ whose vertices are the
non-singular points of P5(2) in which distinct vertices p, q are adjacent if and only
if the line pq is a tangent line to the quadric Q. The two possible isometry types
of Q give rise to two isomorphism types for Γ. The graph Γ is isomorphic to the
Kneser graph SC7,1(1) in case Q is of + type.

For k greater than one Jon Hall has the following result. If k ≥ 2, n ≥ 3(k+ 1),
and Γ is a connected, locally SCn,k(1) graph, then Γ is isomorphic to SCn+k+1,k(1),
by Theorem 2 of [Hal87]. There is some difference between Hall’s bound for the thin
case and our bound for the thick case, as given in Theorem 2.5.4, and it might still
be possible to improve the bound given in our theorem.

Let us finish this chapter with a group-theoretic consequence of Jon Hall’s work
on locally Kneser graphs. Actually, this implication has been a motivation for Hall
to pursue the local recognition of Kneser graphs. Notice the similarities to the ‘thick’
case stated in Theorem 2.5.3.

Theorem 2.5.5 (e.g., Gorenstein et al. [GLS94], Theorem 27.1)
Let m ≥ 7, and let G be a group with distinct involutions x, y such that

• CG(x) = 〈x〉 ×K with K ∼= Symm;

• CG(y) = 〈y〉 × J with J ∼= Symm;

• x is a transposition in J ;

• y is a transposition in K; and

• there exists an involution in J ∩K that is a transposition in both J and K.

If G = 〈J,K〉, then G ∼= Symm+2. 2



Chapter 3

Curtis-Phan-Tits Theorems

This chapter starts with a discussion of the famous Curtis-Tits theorem and Phan’s
theorems. Both are very important recognition tools in the classification of finite
simple groups. Recent developments have shown that there is a uniform geometric
approach to both theorems by looking at certain sub-chamber systems of the oppo-
sites chamber system of spherical twin buildings as defined by Tits in [Tit90]; see
also [Müh] or Definition 3.1.3. The Curtis-Tits theorem is a direct consequence of
Mühlherr’s result [Müh] on the 2-simple connectedness of this opposites chamber
system after invoking Tits’ lemma B.2.5. However, Mühlherr’s approach in [Müh]
fails to work in some small cases, which are covered by the Curtis-Tits theorem.
Section 3.1 offers a discussion of the different versions of the Curtis-Tits theorem,
including Mühlherr’s. In [BS] Curt Bennett and Sergey Shpectorov, on the other
hand, obtained a new proof of Phan’s theorem from [Pha77a], see also Theorem
3.2.1. They use the geometry on the nondegenerate subspaces with respect to a
nondegenerate unitary form on a vector space. The 2-simple connectedness of this
geometry yields the fact that Phan’s amalgam has the group SUn+1(q

2) as its uni-
versal completion. Bennett and Shpectorov also study related amalgams and obtain
uniqueness of the amalgam. The chamber system of this geometry arises as a sub-
chamber system of the above-mentioned opposites chamber system in a natural way
as explained in Section 3.3.

The main purpose of this chapter is to present a detailed proof of a Phan-type
theorem. That theorem is joint work with Corneliu Hoffman and Sergey Shpectorov
and originates from [GHS]. This illustrates that the methods described in Section
3.3 give rise to several theorems, some of which have already been proved by Phan
in [Pha77a], [Pha77b]; others are new. The geometry related to this Phan-type
theorem can be described as the set of all subspaces of some vector space V over Fq2

that are totally isotropic with respect to some nondegenerate symplectic form and
nondegenerate with respect to some related unitary form. Connectivity properties
will imply that the group Sp2n(q) is the universal completion of some amalgam of
groups isomorphic to SU2(q

2) that pairwise generate groups isomorphic to either
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SU3(q
2), Sp4(q), or the direct product of two copies of SU2(q

2), see Theorem 3.8.4.
The pursuit of this theorem was done at the request of Richard Lyons and Ronald
Solomon, who were interested in a theorem in this flavor on the symplectic groups
for the revision of the classification of finite simple groups. Refer to Section 3.8 for
a precise statement of the group-theoretic results.

3.1 Curtis-Tits by Mühlherr

In Section C.3 we have given Steinberg’s theorem on defining relations for the uni-
versal Chevalley group constructed from an indecomposable root system Σ of rank
at least two and a field F. The Curtis-Tits theorem states that several of the Stein-
berg relations are redundant. We present the Curtis-Tits theorem in several guises.
Let us start with the version of Curtis [Cur65], which illustrates which Steinberg
relations are superfluous.

Curtis-Tits Theorem 3.1.1 (Curtis [Cur65], Corollary 1.8)
Let Σ be an indecomposable root system of rank at least two, and let Π be a
fundamental system of Σ. Furthermore, let F be an arbitrary field. Define G to be
the abstract group with generators {xr(t) | r ∈ Σ, t ∈ F} and defining relations

xr(t)xr(u) = xr(t+ u), r ∈ Σ, t, u ∈ F, (3.1.1)

and for independent roots r, s,

[xr(t), xs(u)] =
∏

xhr+ks(Chkrst
huk), (3.1.2)

with h, k > 0, hr + ks ∈ Σ (if there are no such numbers, then [xr(t), xs(u)] = 1),
and structure constants Chkrs ∈ {±1,±2,±3}.

Let A =
⋃

Aij , where Aij is the set of all roots which are linear combinations
of the fundamental roots ri, rj ∈ Π. Let G∗ be the abstract group with generators
{xr(t) | r ∈ Σ, t ∈ F} and defining relations (3.1.1), for r ∈ A, and (3.1.2) for inde-
pendent roots r, s belonging to some Aij . Then the natural epimorphism G∗ → G
is an isomorphism.

By Theorem C.3.2 and the above theorem, the group G∗ is isomorphic to the
universal Chevalley group constructed from Σ and F, if F is an algebraic extension of
a finite field. Otherwise one can obtain the universal Chevalley group by adding the
set (iii) of Steinberg relations from Section C.3 to the above theorem. Rephrasing
Curtis’ version of the Curtis-Tits theorem in amalgam language yields the following:

Curtis-Tits Theorem 3.1.2 (Gorenstein et al. [GLS98], Theorem 2.9.3)
Let Σ be an indecomposable root system of rank at least two with a fundamental
system Π, and let F be a field. Let G be the universal Chevalley group constructed
from Σ and F. For each r ∈ Σ denote by xr the root subgroups {xr(t) | t ∈ F}, and
for each J ⊂ Π let GJ be the subgroup of G generated by all root subgroups xr,
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±r ∈ J . Let D be the set of all subsets of Π with at most two elements. Then G is
the universal completion of the amalgam

⋃

J∈D GJ .

The set (iii) of the Steinberg relations from Section C.3 only involves xr and
x−r for each root r and, thus, the elements lie in the fundamental SL2’s generated
by xr and x−r. Tits’ version of the Curtis-Tits theorem as can be found in [Tit62],
Theorem 2.12, is very similar to Theorem 3.1.2.

Bernhard Mühlherr’s approach to that problem of defining amalgams is a com-
pletely different one based on chamber systems. For the definition of and results
related to twin buildings refer to Section A.3.

Definition 3.1.3 Let B be a spherical Tits building, and let B = (B+, B−, d
∗)

be the twin building as given in Proposition A.3.2. Let C(B+) = (C+, (∼i)i∈I) and
C(B−) = (C−, (∼i)i∈I) be the respective chamber systems associated to B+ and B−.
Then the chamber system Opp(B) = (C, (∼i)i∈I ) consists of the set of chambers C =
{(c+, c−) ∈ C+ × C− | c+ opp c−} where, for i ∈ I and c = (c+, c−), d = (d+, d−) ∈
C, the chamber c is defined to be i-adjacent to the chamber d if c+ ∼i d+ and
c− ∼i d−. The chamber system Opp(B) is called the opposites chamber system
of the twin building B.

Mühlherr has proved the following result.

Theorem 3.1.4 (Mühlherr [Müh], Main Theorem)
Let B = (B+, B−, δ

∗) be a thick spherical twin building of rank at least two such
that B+ (whence also B−) does not contain a rank 2 residue which is isomorphic to
the building associated to B2(2). Then Opp(B) is 2-simply connected.

Actually, Mühlherr does not require B to be spherical. Instead, he demands that
neither B+ nor B− have tree residues (i.e., a residue isomorphic to a generalized
∞-gon) or residues isomorphic to buildings of type B2(2), G2(2), G2(3), or 2F4(2),
and concludes 2-simple connectedness of Opp(B). In case B is non-spherical, this
implies a result on defining amalgams of certain Kac-Moody groups. In case of a
spherical B, however, we obtain the Curtis-Tits theorem:

Curtis-Tits Theorem 3.1.5 (Mühlherr [Müh], Application 1)
Let B be a thick spherical twin building of rank at least two such that B+ (whence
also B−) does not contain a rank 2 residue which is isomorphic to the building
associated to B2(2). Let G be a group of automorphisms of B that acts transitively
on the set of pairs of opposite chambers, and let (c+, c−) be a pair of opposite
chambers of B. Moreover, let D denote the set of all subsets of the type set I that
have cardinality at most two, and for each J ∈ D let GJ denote the subgroup of G
which stabilizes the J-cell (c+, c−)J of (c+, c−). Then the group G is the universal
completion of the amalgam

⋃

J∈D GJ .
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Proof. The claim follows from the theorem and Tits’ lemma B.2.5. 2

The exceptions in Theorem 3.1.4 arise from the proof rather than being actual
exceptions. For, in a spherical twin building that admits a residue of type B2(2), the
set of chambers opposite to a fixed chamber need not be connected and Mühlherr’s
methods of proof fail to work. The same holds for residues of type B2(2), G2(2),
G2(3), 2F4(2) in the non-spherical case. See Section 3.2 of the PhD thesis of Rieuw-
ert Blok [Blo99] for a discussion of connectedness of chamber systems far from a
residue. Especially notice Theorem 3.12, which can also be found as Proposition 7 in
Peter Abramenko’s lecture notes [Abr96]. Furthermore, in [AV99] Peter Abramenko
and Hendrik Van Maldeghem treat the problem of non-connectedness of the set of
chambers opposite to a chamber of a Moufang polygon and obtain exactly the list
B2(2), G2(2), G2(3), 2F4(2) as above.

3.2 Phan by Bennett and Shpectorov

Phan’s theorems have the same flavor as the Curits-Tits theorem. The main objec-
tive is to find nice defining amalgams for certain groups of Lie type. In addition,
Phan’s theorems state the uniqueness of those amalgams. He studies groups G that
admit what is now called a Phan system of type ∆ over Fq2 , i.e., ∆ is one of the
diagrams An, Dn, E6, E7, E8, and for each vertex i of ∆ there is a pair of subgroups
Li, Hi of G such that the following conditions hold.

(i) G is generated by the subgroups Li,

(ii) Li
∼= SU2(q

2), Hi ≤ Li, |Hi| = q + 1,

(iii) [Li, Lj ] = 1 whenever (i, j) is not an edge of ∆,

(iv) 〈Li, Lj〉 ∼= SU3(q
2), 〈Li, Hj〉 ∼= GU2(q

2) ∼= 〈Hi, Lj〉 whenever (i, j) is an edge
of ∆,

(v) 〈Hi, Hj〉 = Hi ×Hj whenever i 6= j.

Then Phan’s first theorem as given in [Pha77a] reads as follows:

Theorem 3.2.1 (Phan [Pha77a], Theorem 2.3)
Let n ≥ 2, and let G be a group that admits a Phan system of type An over Fq2 . If
q ≥ 5, then G is a homomorphic image of SUn+1(q

2) (the universal Chevalley group
of type 2An(q2)).

Like the Curtis-Tits theorem, Phan’s theorem has been used as a recognition
tool in the classification of finite simple groups. Theorem 3.2.1 has been investigated
from a geometric point of view by Kaustuv Mukul Das and Michael Aschbacher,
and later by Curt Bennett and Sergey Shpectorov. Let us review here the work of
Bennett and Shpectorov, see [BS]. They study an incidence system N = N (n, q2)
defined as follows.
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Definition 3.2.2 Let n ≥ 2, and let V be an (n + 1)-dimensional vector space
over Fq2 endowed with a nondegenerate unitary form. Then the pregeometry N is
the set of all nondegenerate subspaces of V with respect to the unitary form with
symmetrized containment as incidence.

It is easily seen that N actually is a geometry. Moreover, Bennett and Shpectorov
obtain the following.

Theorem 3.2.3 (Bennett, Shpectorov)
Let n ≥ 2. The geometry N is connected unless (n, q) = (2, 2). If n ≥ 3, the
geometry N is simply connected unless (n, q) = (3, 2) or (3, 3).

Corollary 3.2.4 (Bennett, Shpectorov)
For n ≥ 3, the geometry N is 3-simply connected. For n ≥ 2, the geometry N is
2-simply connected if q ≥ 4.

With the 2-simple connectedness of N in case of q ≥ 4 and yet another appli-
cation of Tits’ lemma B.2.5, Bennett and Shpectorov prove that the amalgam of
subgroups of SUn+1(q

2) as given in Phan’s theorem has SUn+1(q
2) as its universal

completion. It remains to prove the uniqueness of this amalgam, which can also be
found in [BS], and Phan’s theorem follows. There even is a slight improvement of
the bound on q. In case q = 2, 3, Bennett and Shpectorov obtain a similar result
under the additional assumption that three copies of SU2(q

2) amalgamate nicely.
Phan’s other theorems read as follows. It is conjectured in [GHS] that they can also
be proved, case by case, in Bennett-Shpectorov style.

Theorem 3.2.5 (Phan [Pha77b], Theorem 1.9)
Let n ≥ 4, let q ≥ 5 be odd, and let G be a group that admits a Phan system of

type Dn over Fq2 . If n is even then G is a homomorphic image of Spin+
2n(q) (the

universal Chevalley group of type Dn(q)), and if n is odd then G is a homomorphic
image of Spin−

2n(q) (the universal Chevalley group of type 2Dn(q2)).

Theorem 3.2.6 (Phan [Pha77b], Theorem 2.6)
Let q ≥ 5 be odd, and let G be a group that admits a Phan system of type E6

over Fq2 . Then G is a homomorphic image of the universal Chevalley group of type
2E6(q

2).

Theorem 3.2.7 (Phan [Pha77b], Theorem 2.7)
Let q ≥ 5 be odd, and let G be a group that admits a Phan system of type E7

over Fq2 . Then G is a homomorphic image of the universal Chevalley group of type
E7(q).

Theorem 3.2.8 (Phan [Pha77b], Theorem 2.8)
Let q ≥ 5 be odd, and let G be a group that admits a Phan system of type E8

over Fq2 . Then G is a homomorphic image of the universal Chevalley group of type
E8(q).
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The phenomenon that in Theorems 3.2.1 and 3.2.6 we obtain twisted groups
instead of the non-twisted universal Chevalley groups belonging to the diagram
can be explained by the existence of non-trivial diagram automorphisms. To be
more precise, let ∆ be a spherical Coxeter diagram, let W (∆) be the corresponding
Weyl group, and let w0 be the longest word in W (∆). Then, if G is a group that
admits a Phan system of type ∆ over Fq2 , the group is a homomorphic image of
the universal group of type ∆ over Fq if conjugation by w0 acts as the identity on
∆, and a homomorphic image of the universal group of (twisted) type 2∆ over Fq2

if conjugation by w0 acts as an (involutive) non-identity automorphism on ∆. This
observation is underscored by Phan’s Theorem 3.2.5. See also the next section.

3.3 The opposites chamber system approach

Let F be a field, let K be a quadratic extension of F. Furthermore, let B be a
spherical Tits building over K, let B = (B+, B−) be the corresponding twin building,
and let σ either be the identity or be an involutive bijection B → B such that

• σ(Bε) = B−ε ,

• δε(c, d) = δ−ε(c
σ , dσ) ,

• δ∗(x, y) = δ∗(xσ , yσ) ,

for ε = ± and c, d ∈ Bε, x ∈ Bε, y ∈ B−ε. The map σ is called a flip. Define
C(B, σ) =

{

(c+, c−) ∈ Opp(B) | {c+, c−} =
{

cσ+, c
σ
−

}}

. We also write Cσ instead of
C(B, σ), if B is obvious.

Notice that C(B, id) = Opp(B), the opposites chamber system of Definition
3.1.3, which has been used by Mühlherr to re-prove the Curtis-Tits theorem. For
B the projective geometry Pn(q2) and σ the composition of the contragredient au-
tomorphism (the diagram automorphism) and the involutive field automorphism,
the chamber system C(B, σ) equals the one Bennett and Shpectorov have studied to
obtain a new proof of Phan’s theorem, cf. Section 3.2. Similarly, it is expected that
it is possible to re-prove Phan’s theorems of [Pha77b] by looking at buildings of type
Dn and En and suitable maps σ, as conjectured in [GHS]. In case of Phan’s theorem
for E6 over Fq2 , for example, the flip would be the composition of a correlation of
the building geometry of type E6 over Fq2 that interchanges points and symplecta
(and, thus, acts as the non-trivial involutive diagram automorphism on the diagram
E6) and the involutive field automorphism.

We want to point out that strictly speaking our examples are maps on spherical
buildings and not maps on spherical twin buildings. If we want to view a flip σ of the
twin building B as a map on the building B, then from δε(c, d) = δ−ε(c

σ , dσ) from
the definition of a flip and δ+ = δ, δ− = w0δw0 from Proposition A.3.2, we obtain
the property δ(c, d) = w0δ(c

σ , dσ)w0. Conversely, every involutive correlation σ of
B with δ(c, d) = w0δ(c

σ , dσ)w0 for every opposite pair c, d of chambers of B can
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be considered as a flip on the twin building B. In particular, the action of σ on the
diagram D of the building B equals the conjugation action of w0 on D.

From the fact that σ is involutive (in the sense that σ = id or σ2 = id) it follows

that δ(cσ
−1

, d) = δ(cσ , d) = w0δ(c, d
σ)w0, whence from c opp dσ we find cσ opp d.

By Proposition A.3.4, we obtain the following.

Proposition 3.3.1
Let B = ((C+, δ+), (C−, δ−), δ∗) be the twin building obtained from the spherical
building B = (C, δ) as in Proposition A.3.2, and let w0 be the longest word in the
Weyl group of B. A non-identity bijection B → B is a flip if and only if σ(C+) = C−
and δ(cσ , d) = w0δ(c, d

σ)w0 for all c, d ∈ C.

Proof. The only condition that remains to be checked is that under the assumption
δ(cσ , d) = w0δ(c, d

σ)w0 we have δ∗(c, d) = δ∗(cσ , dσ). But by Proposition A.3.2,
this is equivalent to w0δ(c, d) = δ(cσ , dσ)w0 which in turn is equivalent to δ(c, d) =
w0δ(c

σ , dσ)w0. 2

In all the examples mentioned above, the chamber system C(B, σ) actually gives
rise to a geometry. It is currently unknown whether it is true that any non-empty
chamber system C(B, σ) is geometrizable, though we conjecture that to be the case.
If C(B, σ) happens to be geometrizable, denote the resulting geometry by G(B, σ),
or Gσ , if B is obvious. Another interesting problem would be to find all possible
chamber systems C(B, σ). Also, while there is a uniform idea which chamber systems
and geometries one has to study in order to obtain and state Curtis-Phan-Tits
theorems, there is still need for a uniform proof.

3.4 Flips and forms

In the remainder of this chapter, which is taken from the preprint [GHS] by Corneliu
Hoffman, Sergey Shpectorov, and the author, we present a Phan-type theorem by
studying a subgeometry of the symplectic polar geometry over a finite field of square
order. We only investigate connectivity properties and do not discuss uniqueness of
the amalgam.

Let V be a 2n-dimensional nondegenerate symplectic space over Fq2 and let (·, ·)
be the corresponding alternating bilinear form. Let the bar denote the involutive
automorphism of Fq2 . In this section we study semilinear transformations σ of V
satisfying

(T1) (λv)σ = λ̄vσ ;

(T2) (uσ, vσ) = (u, v); and

(T3) σ2 = −id.
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Notice that σ induces a flip on the symplectic geometry. We will refer to σ as a
symplectic flip. An example of a symplectic flip can be constructed as follows.
Choose a basis B = {e1, . . . , en, f1, . . . , fn} in V such that, for 1 ≤ i, j ≤ n, we have
that (ei, ej) = (fi, fj) = 0 and (ei, fj) = δij . This corresponds to the Gram matrix

A =

(

0 idn×n

−idn×n 0

)

.

Here idn×n is the identity matrix of size n×n, whereas 0 stands for the all-zero matrix
of the same size. A basis like B is called a hyperbolic basis. Let φ be the linear
transformation of V whose matrix (acting from the left on column vectors) with
respect to the basis B coincides with A and let ψ be the semilinear transformation
of V that applies the bar automorphism to the B-coordinates of every vector. If
σ0 = φ ◦ ψ, then for a vector

u =
n

∑

i=1

xiei +
n

∑

i=1

yifi

we compute that

uσ0 = −
n

∑

i=1

ȳiei +
n

∑

i=1

x̄ifi.

One easily verifies that (T1) and (T3) are satisfied for σ0. To check (T2), consider

v =

n
∑

i=1

x′iei +

n
∑

i=1

y′ifi.

Then

(uσ0 , vσ0 ) =

n
∑

i=1

(−ȳi)x̄
′
i − x̄i(−ȳ

′
i) = (u, v),

yielding (T2). Thus, σ0 is a symplectic flip. Notice that σ = σ0 can be characterized
as the unique semilinear transformation such that (T1) holds and

eσ
i = fi, fσ

i = −ei, for 1 ≤ i ≤ n.

Whenever these latter conditions are satisfied for a symplectic flip σ and a hyperbolic
basis B = {e1, . . . , fn}, we will say that B is a canonical basis for σ. Let G ∼=
Sp2n(q2) be the group of all linear transformations of V preserving the form (·, ·).
One of the principal results of this section is the following.

Proposition 3.4.1
Every symplectic flip admits a canonical basis.

In other words, every symplectic flip σ is conjugate to σ0 by an element of G. We
start by discussing the general properties of symplectic flips. Let σ be a symplectic
flip. Define

((x, y)) = (x, yσ).
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Lemma 3.4.2
The form ((·, ·)) is a nondegenerate Hermitian form satisfying ((uσ, vσ)) = ((u, v))
for u, v ∈ V .

Proof. Clearly, ((·, ·)) is a sesquilinear form. Also, ((v, u)) = (v, uσ) = −(uσ, v) =

−(uσ2 , vσ) = −(−u, vσ) = (u, vσ) = ((u, v)). Thus, ((·, ·)) is Hermitian. If u is in the

radical of ((·, ·)) then for any v ∈ V , 0 = ((u, vσ3

)) = (u, vσ4

) = (u, v). Therefore,
u = 0, as (·, ·) is nondegenerate. Finally, ((uσ , vσ)) = (uσ,−v) = (v, uσ) = ((v, u)) =
((u, v)). 2

In what follows we will work with both (·, ·) and ((·, ·)). This calls for two
different perpendicularity symbols. We will use ⊥ for the form (·, ·), while ⊥⊥ will
be used for ((·, ·)).

Proof of Proposition 3.4.1. Let σ be a symplectic flip. Pick a vector u ∈ V such that
((u, u)) = 1. Such a vector exists since ((·, ·)) is nondegenerate by Lemma 3.4.2. Set
en = u and fn = uσ . Since (·, ·) is an alternating form we have (en, en) = (fn, fn) =

0. Furthermore, (en, fn) = ((en, f
σ−1

n )) = ((en, en)) = 1. In particular, the subspace
U = 〈en, fn〉 is nondegenerate with respect to (·, ·). Consider now V ′ = U⊥. Notice
that U is invariant under σ. Together with (T2), this implies that V ′ is also invariant
under σ. It is easy to see that the restriction of σ to V ′ is a symplectic flip of V ′. By
induction, there exists a hyperbolic basis e1, . . . , en−1, f1, . . . , fn−1 in V ′, such that
eσ

i = fi for 1 ≤ i ≤ n − 1. (Since σ2 = −id, this automatically implies fσ
i = −ei.)

Clearly, {e1, . . . , en, f1, . . . , fn} is a canonical basis for σ. 2

Next, we discuss the behavior of σ, (·, ·), and ((·, ·)) with respect to subspaces of
V .

Lemma 3.4.3
For a subspace U of V , we have U⊥⊥ = (Uσ)⊥ = (U⊥)σ . Similarly, U⊥ = (Uσ)⊥⊥ =

(U⊥⊥)σ .

Proof. The first equality in the first claim immediately follows from the definition
of ((·, ·)). If u ∈ (U⊥)σ (say, u = (u′)σ for u′ ∈ U⊥) and v ∈ U then ((u, v)) =
((u′)σ , vσ) = (u′, v) = 0. The second claim follows by an application of σ to the
equalities in the first claim. 2

Lemma 3.4.4
The form (·, ·) has the same rank on U and on Uσ; likewise, it has the same rank

on U⊥ and on U⊥⊥ = (U⊥)σ . The same statements hold for ((·, ·)).

Proof. The first claim follows from (T2) for (·, ·), and from Lemma 3.4.2 for ((·, ·)).
The second claim follows from the first one and Lemma 3.4.3. 2

If U is σ-invariant then we can say more. It follows from Lemma 3.4.3 that
U⊥ = U⊥⊥. In other words, for a σ-invariant subspace U , the orthogonal complement
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(and hence also the radical) of U is the same with respect to (·, ·) and ((·, ·)). It also
follows from Lemma 3.4.3 that both the orthogonal complement and the radical of
U are σ-invariant.

It was noticed in the proof of Proposition 3.4.1 that the properties (T1)–(T3)
are inherited by the restrictions of σ to all σ-invariant subspaces U ⊂ V . If U is
nondegenerate—it does not matter with respect to which form—then the restriction
of σ to U is a symplectic flip of U . We should now discuss what happens when U
has a nontrivial radical. First of all, by the above comment, the radical of U is
σ-invariant.

Lemma 3.4.5
If U is σ-invariant then the radical of U has a σ-invariant complement in U .

Proof. The proof is analogous to that of Proposition 3.4.1. If U is totally singular
then there is nothing to prove. Otherwise, choose u ∈ U such that ((u, u)) = 1. Then
W = 〈u, uσ〉 is a σ-invariant nondegenerate subspace. Hence U = (U ∩W⊥) ⊕W
and the radical of U coincides with the radical of U0 = U ∩ W⊥. Clearly, U0 is
σ-invariant, and so induction applies. 2

Notice that the σ-invariant complement in the above lemma is automatically
nondegenerate. Next, let us study the “eigenspaces” of σ on V . For λ ∈ Fq2 , define
Vλ = {u ∈ V |uσ = λu}. Note that Vλ is not a true eigenspace, because σ is not
linear.

Lemma 3.4.6
The following hold.

(i) For 0 6= µ ∈ Fq2 , we have µVλ = Vλ′ , where λ′ = µ̄
µ
λ; in particular, Vλ is an

Fq-subspace of V .

(ii) Vλ 6= 0 if and only if λλ̄ = −1; furthermore, if Vλ 6= 0 then Vλ contains a basis
of V .

Proof. Suppose u ∈ Vλ. Then (µu)σ = µ̄uσ = µ̄λu = µ̄
µ
λ(µu). This proves (i).

Also, −u = uσ2

= λ̄λu. Thus, if u 6= 0 then λλ̄ = −1. This proves the ‘only if’
part of (ii). To prove the ‘if’ part, choose a canonical basis {e1, . . . , fn} for σ. Fix a
λ ∈ Fq2 such that λλ̄ = −1, which is possible by surjectivity of the norm function.
Define ui = ei−λ̄fi and vi = λ̄ei+fi for 1 ≤ i ≤ n. A simple check shows that ui and
vi are in Vλ. This shows that Vλ 6= 0. Furthermore, ui and vi are not proportional
unless λ̄ = λ, that is, λ ∈ Fq. Thus, if λ 6∈ Fq then {u1, . . . , un, v1, . . . , vn} is a basis
of V . If λ ∈ Fq then consider λ′ = µ̄

µ
λ, where µ is chosen so that µ̄

µ
6∈ Fq. By (i),

Vλ′ = µVλ. Also, since λ′ 6∈ Fq , we have that Vλ′ contains a basis of V , and hence
so does Vλ. 2

Consider an Fq-linear map φ : v 7→ v− λ̄vσ , where λ ∈ Fq2 and λλ̄ = −1. It can
be checked that φ maps V onto Vλ, and its kernel is Vλ̄. The above vectors ui and
vi are obtained by applying φ to the vectors in the canonical basis {e1, . . . , fn}.
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Notation 3.4.7 Fix a λ ∈ Fq2 such that λλ̄ = −1. Also, fix a µ ∈ Fq2 with µ̄ = −µ.

Lemma 3.4.8
The restriction of µλ(·, ·) to Vλ is a nondegenerate alternating Fq-bilinear form.

Proof. Clearly, the form µλ(·, ·) is Fq-bilinear and alternating. Since Vλ contains
a basis of V by Lemma 3.4.6 (ii), the form is nondegenerate. It remains to see
that it takes values in Fq . However, if u, v ∈ Vλ, then µλ(u, v) = µ̄λ̄(uσ , vσ) =
−µλ̄λ2(u, v) = µλ(u, v). 2

Observe that conjugation by σ is an automorphism of G. Let Gσ be the central-
izer of σ in G. The above setup gives us a means to identify Gσ. Let H ∼= Sp2n(q)
be the group of all linear transformations of Vλ preserving the (restriction of the)
form µλ(·, ·). Since Vλ contains a basis of V , we can use Fq2 -linearity to extend the
action of the elements of H to the entire V . This allows us to identify H with a
subgroup of G. Clearly, since h ∈ H preserves µλ(·, ·), it must also preserve (·, ·).

Proposition 3.4.9
Gσ = H .

Proof. Choose a basis {w1, . . . , w2n} in Vλ. Then this set is also a basis of V . Let

h ∈ H . If u =
∑2n

i=1 xiwi ∈ V then uσh = (
∑2n

i=1 x̄iλwi)
h = λ

∑2n
i=1 x̄iw

h
i . On the

other hand, uhσ = (
∑2n

i=1 xiw
h
i )σ =

∑2n
i=1 x̄iλw

h
i . Therefore, H ≤ Gσ . Now take

g ∈ Gσ . If u ∈ Vλ then (ug)σ = (uσ)g = (λu)g = λug. This proves that g leaves Vλ

invariant. It remains to see that g preserves µλ(·, ·). However, this is clear, because
g is Fq2 -linear and it preserves (·, ·). 2

3.5 The flipflop geometry G

We will be using the notation from the previous section. In particular, V is a non-
degenerate symplectic Fq2 -space of dimension 2n with a form (·, ·), σ is a symplectic
flip and ((·, ·)) is the corresponding Hermitian form. Also, G ∼= Sp2n(q2) is the
group of linear transformations preserving (·, ·) and Gσ = CG(σ). Throughout this
section, we assume n ≥ 2. Let B be the building geometry associated with G. Its
elements are all the (·, ·)-totally singular subspaces of V . Two elements U and U ′ of
B are opposite whenever V = U ′ ⊕ U⊥, i.e., U , U ′ have the same dimension and
U ′ ∩ U⊥ = 0. Two chambers (maximal flags) F and F ′ are opposite whenever for
each subspace U ∈ F there is a U ′ ∈ F ′ such that U and U ′ are opposite. Using this
observation, it can be shown that the opposites chamber system Opp(B) related to
B is geometrizable and the elements of the corresponding geometry G(B, id) are all
pairs (U,U ′) that are opposite totally singular subspaces of V . Turning to C(B, σ),
let F be a maximal flag of B such that F and F σ are opposite. Then, for ev-
ery U ∈ F , the space Uσ must be the element of F σ that is opposite U . Indeed,
this follows from the fact that opposite elements have the same dimension. Thus,
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(F, F σ) ∈ C(B, σ) if and only if Uσ is opposite U for every element U ∈ F (that is,
(U,Uσ) ∈ G(B, id)).

Our first goal is to show that Cσ is geometrizable, that is, its chambers arise as
maximal flags of a suitable geometry. The natural candidate for this geometry is
the following subset of Gid:

{(U,U ′) ∈ Gid | U ′ = Uσ}.

(For convenience, we will refer to this set as Gσ , anticipating that this is a geometry.)
It suffices to show that Gσ is a full rank (that is, rank n) subgeometry of Gid. In
order to avoid cumbersome notation, let us project every pair (U,U ′) ∈ Gσ to its first
coordinate U . Since U ′ = Uσ , this establishes a bijection (in fact, an isomorphism
of pregeometries) between Gσ and the following subset of B:

G = {U ∈ B | Uσ is opposite U}.

The definition of G can be nicely restated in terms of the forms (·, ·) and ((·, ·)).

Proposition 3.5.1
The elements of G are precisely the subspaces U ⊂ V which are totally isotropic
with respect to (·, ·) and nondegenerate with respect to ((·, ·)).

Proof. By Lemma 3.4.3, U⊥⊥ = (Uσ)⊥. Hence U and Uσ are opposite if and only
if U ∩ U⊥⊥ = 0. 2

We use {1, . . . , n} as the type set of B. In particular, the type function assigns
to an element of G its linear (rather than its projective) dimension. We will use
the customary geometric terminology. In particular, points, lines, and planes
are elements of type 1, 2, and 3, respectively. We stress again that we will mostly
work with G, using the fact that G and Gσ are isomorphic. We also notice that the
isomorphism between G and Gσ commutes with the action of H = Gσ .

Proposition 3.5.2
The pregeometry G is a geometry. Moreover, H acts flag-transitively on G.

Proof. Let V1 ≤ V2 ≤ · · · ≤ Vk be a maximal flag. Let B = {e1, . . . , et} be an
orthonormal basis of Vk with respect to ((·, ·)). (This exists since Vk is nondegenerate
with respect to ((·, ·)).) Then B ∪ Bσ forms a canonical basis of Vk ⊕ V σ

k . If Vk is
not a maximal totally isotropic subspace of V with respect to (·, ·), there exists a
nontrivial u ∈ (Vk ⊕ V σ

k )⊥ = (Vk ⊕ V σ
k )⊥⊥ such that ((u, u)) = 1. Then 〈Vk, u〉 is

totally isotropic for (·, ·) and nondegenerate with respect to ((·, ·)), contradicting
maximality of the flag. Hence we can assume Vk is a maximal totally isotropic
subspace with respect to (·, ·). Induction shows that Vi−1 is a codimension one
subspace in Vi for 2 ≤ i ≤ k, proving that the maximal flag is a chamber.

Let V1 ≤ V2 ≤ · · · ≤ Vn and V ′
1 ≤ V ′

2 ≤ · · · ≤ V ′
n be two chambers. Choose

bases B = {e1, . . . , en}, B′ = {e′1, . . . , e
′
n} for Vn, respectively V ′

n such that they
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are orthonormal with respect to ((·, ·)) and Vi = 〈e1, . . . , ei〉, V ′
i = 〈e′1, . . . , e

′
i〉.

Define g ∈ G such that eg
i = e′i and (eσ

i )g = (e′i)
σ . Such a g obviously exists, since

G ∼= Sp2n(q2) acts flag-transitively on the symplectic polar geometry (V, (·, ·)). It is
also clear that g maps one chamber onto the other. Moreover notice that σ◦g = g◦σ
on the basis B ∪ Bσ. Therefore g ∈ Gσ . 2

The following lemma will prove to be very useful throughout this whole chapter.

Lemma 3.5.3
Let p be a point of G, and let Π ⊃ p be a three-dimensional subspace of V of rank
at least two with respect to ((·, ·)) such that p is in the radical of Π with respect to
(·, ·). Then any two-dimensional subspace of Π that does not contain p is incident
with at least q2 − q − 1 (respectively, q2 − 2q − 1) points of G collinear to p if its
rank is one (respectively, two) with respect to ((·, ·)).

Proof. Since p is in the radical of Π with respect to (·, ·), all lines passing through
p will be totally isotropic with respect to (·, ·) so we only need to consider ((·, ·)).
Notice that if l is a two-dimensional subspace of V that is not totally isotropic with
repect to ((·, ·)) then l contains at least q2−q points of G. (If the rank of l is one then
its radical is the only nontrivial isotropic subspace of l and if the rank of l is two
then l contains q+1 distinct nontrivial isotropic subspaces.) Consider l1 = p⊥⊥ ∩Π.
Then by the above, there are at least q2 − q lines of G through p that intersect
l1 in a point of G. If l is any other not totally isotropic (with respect to ((·, ·)))
two-dimensional subspace of Π that does not contain p, at most 1, respectively q+1
of these q2 − q lines will intersect l in isotropic subspaces. 2

Actually, we also showed the following:

Lemma 3.5.4
Let p be a point of G, and let Π ⊃ p be a three-dimensional subspace of V of rank
at least two with respect to ((·, ·)). Then any two-dimensional subspace of Π that
does not contain p is incident with at least q2 − q − 1 (respectively, q2 − 2q − 1)
points of G that generate a ((·, ·))-nondegenerate two space with p if its ((·, ·))-rank
is one (respectively, two). 2

We need to prove that the geometry G is connected. This is equivalent to proving
the connectivity of the point shadow space of G which in turn is equivalent with the
connectivity of the collinearity graph of G.

Lemma 3.5.5
Suppose n ≥ 3. Then, if (n, q) 6= (3, 2), the collinearity graph of the geometry G has
diameter two. If (n, q) = (3, 2), then the collinearity graph of G has diameter three.
In particular, G is connected in all cases.

Proof. If (n, q) = (3, 2) then the claim can be checked computationally (say, in
GAP [Sch95]). So suppose (n, q) 6= (3, 2). Let p1, p2 be two points in the geometry.
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Consider Wi := p⊥i ∩p⊥⊥i , i ∈ {1, 2}. Then dimWi = 2n−2 so dimW1∩W2 ≥ 2n−4.
If 2n− 4 > n− 1 then the space W1 ∩W2 cannot be totally isotropic for ((·, ·)) (it
lies inside the (2n − 1)-dimensional nondegenerate space p⊥⊥1 ). Therefore if n > 3
we can find a point q of the geometry lying in W1 ∩W2. In this case q connects
p1 and p2. If n = 3, the space U = p⊥1 ∩ p⊥2 ∩ p⊥⊥2 is at least three-dimensional
inside the four-dimensional space p⊥2 ∩ p⊥⊥2 , which is nondegenerate with respect to
both forms. Actually, U has rank at least two with respect to ((·, ·)), because if
it had a two-dimensional radical, this radical would be a maximal totally isotropic
subspace of p⊥2 ∩ p⊥⊥2 and had to be equal to its own polar in p⊥2 ∩ p⊥⊥2 with respect
to ((·, ·)). Hence we can find a ((·, ·))-nondegenerate two-dimensional subspace l of
U , all points of which actually are collinear to p2. Applying Lemma 3.5.3 to the
plane 〈p1, l〉, we find a common neighbor of p1 and p2. 2

Lemma 3.5.6
If n = 2 and q 6= 2, then G is connected.

Proof. Fix a point p of G. Then p is collinear to (q2 − q)(q2 − q − 1) points of
G (there are q2 − q lines through p, each of which contains q2 − q − 1 points of G
besides p). Now let us estimate the number of points at distance two to p. Each
point q at distance one to p is incident with q2 − q − 1 lines that do not contain
p. Each of these lines contains q2 − q − 1 points other than q. Moreover, if r is
a point at distance two from p, then there are at most q2 common neighbors of p
and r (indeed, 〈p, r〉⊥ is a two-dimensional space which is not totally isotropic with
respect to ((·, ·)), whence it contains either q2 or q2 − q points of G). Hence there

are at least (q2−q)(q2−q−1)3

q2 points at distance two from p. On the other hand, G

contains q8−1
q2−1 − (q2 +1)(q3 +1) points (the number of points of the projective space

minus the number of points of the unitary generalized quadrangle).

By Proposition 3.5.2 and Proposition 3.4.9, the group Gσ
∼= Sp4(q) acts flag-

transitively on G. In particular, it permutes the connected components of G. More
precisely, the number of connected components is equal to the index of the stabi-
lizer in Gσ of one component. By [Coo78], Table 5.2.A, the index of a maximal
subgroup of Sp4(q) is at least 27, if q > 2. Hence, to show connectivity, it is

enough to prove that 1 + (q2 − q)(q2 − q − 1) + (q2−q)(q2−q−1)3

q2 is greater than

1
27

(

q8−1
q2−1 − (q2 + 1)(q3 + 1)

)

, which is true for all q ≥ 3. 2

We summarize Lemmas 3.5.5 and 3.5.6 as the following result.

Proposition 3.5.7
Let n ≥ 2. Then G is connected, provided that (n, q) 6= (2, 2). 2

Combined with the results of [BS], also Theorem 3.2.3 in the present thesis, this
yields residual connectedness:
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Corollary 3.5.8
If q 6= 2, then G is residually connected. 2

Finally, let us discuss the diagram of the geometry Gσ . Notice that it is a linear
(string) diagram. Furthermore, it follows from Proposition 3.5.1 that the residue of
an element of maximal type n− 1 is the geometry of all nondegenerate subspaces of
a nondegenerate n-dimensional unitary space. The residue of a point is a geometry
similar to G but with rank n− 1. This leads to the diagram

q2−q
◦

U

q2−q
◦

U

q2−q
◦ · · ·

q2−q
◦

U

q2−q
◦

S

q2−q
◦.

The exact meaning of the edges ◦ U ◦ and ◦ S ◦ is as follows. The first one

represents the geometry of all one and two-dimensional nondegenerate subspaces of
a three-dimensional unitary space. It appears in [BS]; see also Section 3.2. The
second edge represents our flipflop geometry in the case of rank two. We note that
both geometries are disconnected for q = 2 and connected for q ≥ 3. See [BS] (or

again Theorem 3.2.3) for ◦ U ◦ and Lemma 3.5.6 for ◦ S ◦.

3.6 Simple connectedness. Part I

In this and the next section we will prove that, apart from a few exceptional cases,
the geometry G is simply connected. Here we collect some general statements and
then complete the case n ≥ 4. The next section handles the case n = 3, which is
somewhat more complicated. In order to prove simple connectedness, we pick the
base element b of all cycles to be a point of G.

Lemma 3.6.1
Unless (n, q) = (3, 2), every cycle based at the point b is homotopically equivalent
to a cycle passing only through points and lines.

Proof. We will induct on the number of elements of the path that are not points
or lines. If this number is zero there is nothing to prove. Take an arbitrary cycle
γ := x0x1 . . . xk−1xk with x0 = b = xk. Let xi be the first element that is not a
point or a line. Clearly i 6∈ {0, k}. There are two cases to consider:

If the type of xi+1 is bigger than the type of xi then xi−1 and xi+1 are incident
and γ is homotopically equivalent to the cycle bx1 . . . xi−1xi+1 . . . b. Suppose the
type of xi+1 is smaller than the type of xi. Let y be an element of type n which is
incident to xi, then y is incident to both xi−1 and xi+1 (the type of xi−1 is clearly
smaller than the type of xi). Therefore γ is homotopically equivalent to the path
bx1 . . . xi−1yxi+1 . . . b. Now pick two points w, z such that w is incident to xi−1

and z is incident to xi+1; in case xi−1 or xi+1 is a point, choose w, respectively z
to be xi−1, respectively xi+1. Using Lemma 3.5.5 and Lemma 3.5.6 we can connect
w and z with a path ww1 . . . wtz of only points and lines incident to y. Then γ
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is homotopically equivalent to bx1 . . . xi−1w1 . . . wtzxi+2 . . . b which contains fewer
elements that are not points and lines. 2

We can therefore restrict our attention to the point-line incidence graph of G
and, thus, to the collinearity graph of G.

The first step is the analysis of triangles (i.e., 3-cycles in the collinearity graph).
We will call (p, q, r) a good triangle if the points p, q, and r are noncollinear
but pairwise collinear in G and incident to a common plane of the geometry. All
triangles that are not good (and are not a line) are called bad. A good triangle is
homotopically trivial, since it is in the residue of the plane in which it is contained.
We are to prove that all bad triangles are homotopically trivial, i.e., they can be
decomposed into good triangles or are contained in elements of G of higher rank.

Lemma 3.6.2
Let (p, q, r) be a bad triangle. Then the plane 〈p, q, r〉 contains a one-dimensional
radical with respect to ((·, ·)).

Proof. It is clear that the plane Π = 〈p, q, r〉 is totally isotropic with respect to
(·, ·). Since p, q, r is a bad triangle, Π is degenerate with respect to ((·, ·)). Also,
the rank of Π with respect to ((·, ·)) is at least two (it contains the nondegenerate
projective line 〈p, q〉), so the radical is obviously one-dimensional. 2

Lemma 3.6.3
Let (p, q, r) be a bad triangle, and let x be the radical of the plane 〈p, q, r〉. If xσ = x,
then the triangle can be decomposed into triangles in which two of the vertices are
perpendicular with respect to ((·, ·)).

Proof. If two of p, q, r are already perpendicular with respect to ((·, ·)), then there
is nothing to show. So assume this is not the case. Consider the unique projective
point r1 of the line 〈p, q〉 with r⊥⊥r1. It is sufficient to prove that r1 is a point of
G, because then (p, r1, r) and (q, r1, r) are triangles as required. Suppose r1 is not
a point of G. Then 〈r, r1〉 = r⊥⊥1 ∩ 〈p, q, r〉 and so it contains x. Therefore 〈r, r1〉 is a
totally isotropic space with respect to ((·, ·)) that contains r, contradicting the fact
that r is a point of G. 2

Lemma 3.6.4
Let (p, q, r) be a bad triangle with p⊥⊥q and let x be the radical of the plane 〈p, q, r〉.
If xσ = x, then we can find a canonical basis e1, . . . , en, f1, . . . , fn of V for σ such
that (p, q, r) equals (〈e1〉 , 〈e2〉 , 〈ye1 + ze2 + (ce3 + f3)〉) with cc̄ = −1 and yz 6= 0
and yȳ + zz̄ 6= 0.

Proof. Choose a canonical basis e1, . . . , en, f1, . . . , fn of V such that p = 〈e1〉,
q = 〈e2〉. Then x ∈ U := 〈e1, e2〉⊥ ∩ 〈e1, e2〉⊥⊥ = 〈e1, e2, f1, f2〉⊥⊥, which is a
nondegenerate space with respect to both forms. Pick a, a′ such that e3 + af3, e3 +
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a′f3, . . . , en + afn, en + a′fn are isotropic with respect to ((·, ·)), σ-invariant and
form a basis of U . (This is equivalent to a choice a 6= a′ with aā = −1 = a′ā′.) The
radical x cannot be orthogonal to all of these vectors, so there exists one vector u in
this basis such that ((u, x)) 6= 0. The space 〈u, x〉 is nondegenerate and σ-invariant
so it will contain a vector e such that ((e, e)) = 1 and therefore 〈u, x〉 = 〈e, eσ〉.
Choosing a new canonical basis of U that starts with e we can assume that the bad
triangle is contained in the space 〈e1, e2, e3, f3〉 and x = 〈ce3 + f3〉. 2

For the rest of this section assume n ≥ 4.

Lemma 3.6.5
Let (p, q, r) be a bad triangle. Then the triangle is homotopically trivial.

Proof. Let x be the radical of the plane 〈p, q, r〉 with respect to ((·, ·)), which exists
by Lemma 3.6.2. Suppose x = xσ . By Lemma 3.6.3 and Lemma 3.6.4 we can assume
that our triangle has the form p = 〈e1〉, q = 〈e2〉, r = 〈xe1 + ye2 + (ce3 + f3)〉 where
cc̄ = −1 and xx̄+ yȳ 6= 0. Now one can add the point 〈e4〉 and form a tetrahedron
in which all triangles but the initial one are good. Now, if x 6= xσ , then consider
the line l = pq of G. Let V ′ = l⊥⊥ ∩ (lσ)⊥⊥. Clearly, V ′ is a nondegenerate (with
respect to both forms), σ-invariant space of dimension 2n − 4. Moreover, x ∈ V ′.
Nondegeneracy of V ′ and x 6= xσ imply the existence of a vector v ∈ V ′ with
(x, v) = 0 and ((x, v)) = 1. Hence 〈x, v〉 is a line of G, and 〈p, q, x, v〉 is totally
isotropic with respect to (·, ·) and nondegenerate with respect to ((·, ·)), whence it
is an element of G that contains the triangle (p, q, r), finishing the proof. 2

The next task is to prove that all quadrangles are homotopically trivial. We
denote a quadrangle (a, b, c, d) by its vertices where consecutive points lie on a line
of G.

Lemma 3.6.6
If U is a σ-invariant, nondegenerate subspace of V of dimension 2k ≥ 4 and p is a
point of G, then p is collinear with a point of U or we have 2k = 4 and q = 2.

Proof. Consider the decomposition V = U⊕U⊥⊥. Let p1 ∈ U be the projection of p
onto U (with respect to this decomposition). If we find a point q of G in p⊥1 ∩p⊥⊥1 ∩U ,
then we are done. Indeed, q ⊥ p1, q⊥⊥p1 implies q ⊥ p, q⊥⊥p by our choice of the
projection. In particular this holds, if k > 2; then 2k − 2 > k and p⊥1 ∩ p⊥⊥1 ∩ U
cannot be totally isotropic. (Notice, that we are also done, if p1 itself is non-singular
with respect to ((·, ·)).) Thus, consider the case k = 2. The space U ∩ p⊥1 is three-
dimensional and has rank at least two with respect to ((·, ·)). Choose a projective
line l of ((·, ·))-rank two in U ∩ p⊥1 . Notice that p ⊥ l, whence by Lemma 3.5.3, the
projective line l contains q2 − 2q − 1 points of G collinear to p, giving at least one,
if q > 2. 2

A pair p, q of points of G will a be called solid if the space p⊥ ∩ p⊥⊥ ∩ q⊥ ∩ q⊥⊥ is
nondegenerate with respect to both forms; notice that nondegeneracy of one form
implies nondegeneracy of the other.
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Lemma 3.6.7
Let a, b be two distinct points of G with b 6∈ 〈a, aσ〉. The pair a, b is solid if and only

if the projection of b onto 〈a, aσ〉⊥ (via the decomposition V = 〈a, aσ〉 ⊕ 〈a, aσ〉⊥)
is non-singular.

Proof. Let b′ = pr〈a,aσ〉⊥(b) be the projection of b onto 〈a, aσ〉⊥. Notice that b′ 6= 0.

We have 〈a, aσ , b〉 = 〈a, aσ , b′〉 which is of rank three with respect to ((·, ·)) if and
only if b′ is non-singular with respect to ((·, ·)). But if the rank of this space is three,
then the rank of 〈a, aσ , b, bσ〉 has to be four, since its radical with respect to ((·, ·))
equals the radical with respect to (·, ·) and it contains a subspace of rank three with
respect to ((·, ·)). (Notice that an alternating form always has even rank.) This
settles the ‘if’-part of the lemma. Now, suppose b′ is singular with respect to ((·, ·)).
Then 〈a, aσ, b, bσ〉 = 〈a, aσ , b′, (b′)σ〉 and b′ is obviously contained in the radical of
the latter space. 2

Lemma 3.6.8
If n ≥ 5 or n = 4 and q 6= 2, any quadrangle (p, q, r, s) with a solid pair p, r is null
homotopic.

Proof. Assume p, r is a solid pair and let U = p⊥∩p⊥⊥∩r⊥∩r⊥⊥. U is a σ-invariant,
nondegenerate (2n− 4)-space and all points of G in U are collinear to both p and r.
By Lemma 3.6.6, q and s are collinear to points in U unless n = 4 and q = 2. Also,
because of Lemma 3.5.5 and Lemma 3.5.6, the intersection of U with the geometry
G is connected unless n = 4, q = 2. This finishes the proof. 2

Lemma 3.6.9
If n ≥ 5 or n = 4 and q 6= 2, 3, then any quadrangle is homotopically trivial.

To prove this lemma we will need some results from linear algebra:

Lemma 3.6.10
Let n ≥ 2, q ≥ 3, and let W be an Fq2 -vector space of dimension n. Suppose f1

and f2 are two nontrivial Hermitian forms on W . Then there exists a vector of W
which is non-singular with respect to both f1 and f2.

Proof. First suppose that f is a Hermitian form on W and l is a two-dimensional
subspace in W that is not totally singular with respect to f . Then, if l is nondegen-
erate with respect to f , out of the total number of q2 +1 one-dimensional subspaces
of l exactly q + 1 are singular. Similarly, if f has rank one on l, then l contains ex-
actly one singular one-dimensional subspace. Now, any f1-singular one-dimensional
subspace of W is contained in a two space l which is not totally isotropic with re-
spect to f1, since f1 is nontrivial. If l is not totally isotropic with respect to f2,
then it contains at least q2 + 1 − q − 1 − q − 1 ≥ 2 one-dimensional subspaces that
are non-singular with respect to both f1 and f2. On the other hand, if any such
l is totally isotropic with respect to f2, then any one-dimensional subspace that



3.6. SIMPLE CONNECTEDNESS. PART I 73

is singular with respect to f1, is also singular with respect to f2. But since f2 is
nontrivial on W , there exists a vector that is non-singular with respect to f2, and
hence with respect to f1, too. 2

Lemma 3.6.11
Let n ≥ 3, q ≥ 3, and let W be an Fq2 -vector space of dimension n. Suppose f1, f2,
f3 are three nontrivial Hermitian forms on W , and, furthermore, assume that f1 is
nondegenerate. Then there exists a vector of W which is non-singular with respect
to all three forms.

Proof. As f1 is nondegenerate and n ≥ 3, any one-dimensional subspace that
is singular with respect to f1 is contained in a two-dimensional subspace l of f1-
rank one. Notice that l contains exactly q2 one-dimensional subspaces that are
non-singular with respect to f1. If l is totally isotropic with respect to neither f2

nor f3, then there are at least q2 − q − 1 − q − 1 ≥ 1 one-dimensional subspaces
that are non-singular with respect to all three forms. Therefore, suppose that any
such subspace l is totally singular with respect to f2 or f3. However, this means
that the set of f1-singular one-dimensional subspaces is contained in the union of
singular one-dimensional subspaces with respect to f2, respectively f3. But by
Lemma 3.6.10, there is a vector w ∈W that is non-singular with respect to both f2

and f3. Consequently, w is also non-singular with respect to f1. 2

Lemma 3.6.12
Let n ≥ 3, q ≥ 4, and let W be an Fq2 -vector space of dimension n. Suppose f1,
f2, f3, f4 are four nontrivial Hermitian forms on W , and, furthermore, assume that
f1 is nondegenerate. Then there exists a vector of W which is non-singular with
respect to all four forms.

Proof. The proof of this lemma is similar to the proofs of the preceding two
lemmas. The bound on q arises from the condition q2 − 3(q + 1) ≥ 1. 2

Proof of Lemma 3.6.9. Let (a, b, c, d) be a quadrangle. If it contains a solid pair
a, c or b, d, then we are done by Lemma 3.6.8. It is enough to show that any
other quadrangle can be decomposed into triangles and quadrangles of that former
case. We can assume a and c to be contained in 〈b, bσ〉⊥ by decomposing the
quadrangle (a, b, c, d) into two quadrangles (a, b, c, b′) and (a, d, c, b′) where b′ is a

point of G in 〈a, c, aσ, cσ〉⊥, a space which is not totally isotropic with respect to

((·, ·)). If n ≥ 5 consider the space U := 〈a, b, aσ, bσ〉⊥ of dimension 2n− 4, which
is nondegenerate (with respect to both forms). We want to find a point x of G in U
that forms a solid pair with both c and d. Besides ((·, ·)) consider two more forms
f2 : U × U → Fq2 : f2(u, v) = ((u′, v′)) and f3 : U × U → Fq2 : f3(u, v) = ((u′′, v′′))

where u′, v′ are the projections onto U ∩ 〈c, cσ〉⊥ and u′′, v′′ are the projections

onto U ∩ 〈d, dσ〉⊥, via the decomposition as given in Lemma 3.6.7. The forms f2
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and f3 are nontrivial, as U ∩ 〈c, cσ〉⊥ and U ∩ 〈d, dσ〉⊥ both contain points of G.

For, by our assumption a, c ∈ 〈b, bσ〉⊥, and we can restrict our considerations to the

subspace 〈b, bσ〉⊥ of G. The dimension of 〈a, c, aσ , cσ〉⊥ ∩ 〈b, bσ〉⊥ is at least four, so

〈a, c, aσ, cσ〉⊥∩〈b, bσ〉⊥ cannot be totally isotropic with respect to ((·, ·)). Therefore

we have found a point of G in 〈a, c, aσ, cσ〉⊥ ∩ 〈b, bσ〉⊥, so f2 is nontrivial. Similarly,
f3 is nontrivial. By Lemma 3.6.11, with f1 = ((·, ·))|U×U , there exists a point x of U

such that its projections onto both 〈c, cσ〉⊥ and 〈d, dσ〉⊥ are non-singular. Hence, by
Lemma 3.6.7, the point x forms a solid pair with both c and d, as we wanted. Now,
let W := 〈c, d, cσ, dσ〉⊥, which is also of dimension 2n − 4 and nondegenerate. By
Lemma 3.6.6, W contains a point y of G collinear to x. We have accomplished the
following: the quadrangle (a, b, c, d) has been decomposed into the triangles (a, b, x),
(c, d, y) and the quadrangles (c, b, x, y), (a, d, y, x), both of which contain a solid pair
c, x, respectively d, x.

In case n = 4 let U := 〈a, aσ〉⊥. Besides ((·, ·)) consider three more forms
f2 : U × U → Fq2 : f2(u, v) = ((u′, v′)), f3 : U × U → Fq2 : f3(u, v) = ((u′′, v′′)),
and f4 : U × U → Fq2 : f4(u, v) = ((u′′′, v′′′)) where u′, v′ are the projections

onto U ∩ 〈b, bσ〉⊥, u′′, v′′ are the projections onto U ∩ 〈c, cσ〉⊥, and u′′′, v′′′ are the

projections onto U ∩ 〈d, dσ〉⊥, via the decomposition as given in Lemma 3.6.7. The
forms f2, f3, and f4 are easily seen to be nontrivial. The remainder of the proof is
as in the preceding paragraph with the only difference that we invoke Lemma 3.6.12
instead of Lemma 3.6.11 to find a suitable point x that is collinear with a and forms
solid pairs with b, c, and d. Applications of Lemma 3.6.6 yield points y1 collinear
to x, b, c and y2 collinear to x, c, d. We have decomposed the quadrangle (a, b, c, d)
into the triangles (b, c, y1) and (c, d, y2) and the quadrangles (a, b, y1, x), (a, d, y2, x),
and (c, y1, x, y2) with solid pairs. 2

Finally, the decomposition of pentagons is now easy:

Lemma 3.6.13
If n ≥ 5 or n = 4 and q 6= 2, 3, then any pentagon is homotopically trivial.

Proof. Let (a, b, c, d, e) be a pentagon. Consider U := 〈a, b, aσ, bσ〉⊥ of dimension
2n − 4, which is nondegenerate (with respect to both forms). By Lemma 3.6.6,
the point d is collinear to a point f of G inside U , decomposing the pentagon into
triangles and quadrangles. 2

We can summarize the results of this section as follows.

Proposition 3.6.14
If n ≥ 4, then the geometry G is simply connected, unless (n, q) ∈ {(4, 2), (4, 3)}. 2

It is unknown to us whether the cases (n, q) ∈ {(4, 2), (4, 3)} are true exceptions.
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3.7 Simple connectedness. Part II

In this section we assume n = 3. We will prove that the geometry G is simply
connected for q ≥ 8.

Lemma 3.7.1
Let (p, q, r) be the bad triangle (〈e1〉 , 〈e2〉 , 〈ye1 + ze2 + (ce3 + f3)〉) with cc̄ = −1
and yz 6= 0 and yȳ+zz̄ 6= 0. Furthermore, assume that yȳ 6= 1, zz̄ 6= 1, yȳ+zz̄ 6= 1,
yȳ+ zz̄ 6= 2, (yȳ− 1)(yȳ+ zz̄− 1) 6= 1, (zz̄− 1)(yȳ+ zz̄− 1) 6= 1. Then (p, q, r) can
be decomposed into good triangles.

Proof. Consider the plane 〈f1, f2, f3〉 and fix the points a = 〈f3〉, b = 〈−yf3 + cf1〉,
c = 〈−zf3 + cf2〉. These are uniquely determined by the conditions that a ⊥ 〈p, q〉,
b ⊥ 〈q, r〉 and c ⊥ 〈p, r〉. Notice that all of a, b, c are points of G if and only if
yȳ 6= 1 and zz̄ 6= 1 which is satisfied by assumption. The projective lines ap, aq,
bq, and cp are lines of G because the two points on them are perpendicular with
respect to ((·, ·)). Also ab and ac are in fact the projective lines 〈f1, f3〉, respectively
〈f2, f3〉, so they are lines of G. Next we have to investigate the conditions under
which the projective lines bc, br, and cr are lines in G. We need to see that ((·, ·))
is nondegenerate on each of these two-dimensional spaces, so we will investigate the
Gram matrices and find their determinants. In the case of bc we get

det

(

yȳ − 1 zz̄
ȳz zz̄ − 1

)

= −yȳ − zz̄ + 1.

The space br yields

det

(

yȳ − 1 −y
−ȳ yȳ + zz̄

)

= (yȳ − 1)(yȳ + zz̄ − 1) − 1.

In the case of cr we get

det

(

zz̄ − 1 −z
−z̄ yȳ + zz̄

)

= (zz̄ − 1)(yȳ + zz̄ − 1) − 1.

Now we compute conditions such that (a, b, c), (a, b, q), (a, c, p), (a, p, q), (b, c, r),
(b, q, r), and (c, p, r) are good triangles. Notice that the triangles (a, b, c), (a, b, q),
(a, p, q), and (a, c, p) are automatically good. Moreover, the case of (b, q, r) gives

det





yȳ − 1 0 −y
0 1 z̄
−ȳ z yȳ + zz̄



 = yȳ(yȳ − 1).

In the case of (b, c, r) we get

det





yȳ − 1 yz̄ −y
ȳz zz̄ − 1 −z
−ȳ −z̄ yȳ + zz̄



 = (yȳ + zz̄)(2 − yȳ − zz̄).
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Finally, for (c, p, r) we have

det





zz̄ − 1 0 −z
0 1 ȳ
−z̄ y yȳ + zz̄



 = zz̄(zz̄ − 1).

We have obtained the conditions listed in the hypothesis of the lemma. 2

Lemma 3.7.2
Let q = pe, and let c, d ∈ Fq2 such that cc̄ = −1, d 6= 0. Then the system of
equations yȳ + zz̄ = 1 and ȳ − z̄c = d has exactly q solutions.

Proof. The pair (y, z) is a solution of the first equation if and only if the matrix

Ay,z :=

(

y −z̄
z ȳ

)

has determinant one, thus the solutions of the first equation

are parametrized by the elements of the group SU2(q
2). Observe that

(c, 1)Ay,z = (yc+ z, ȳ − z̄c) =
(

c(ȳ − z̄c), ȳ − z̄c
)

.

Therefore two pairs (y, z), (y′, z′) are solutions for the system of equations if and only
if the matrix Ay,zA

−1
y′,z′ stabilizes the vector (c, 1), which is of norm 0 with respect

to the unitary form. The stabilizer such a vector (c, 1) is the p-Sylow subgroup of
the unitary group. (For, a matrix that stabilizes (c, 1) has 1 as an eigenvalue. As its
determinant is 1 as well, the other eigenvalue also has to be 1. But any such matrix
has either order 1 or order p, as can be seen from its Jordan normal form.) So, if
the above system has a solution, then it has exactly q solutions, for a fixed d. Since
the order of SU2(q

2) is q(q2 − 1), the above system has q solutions for each d 6= 0.
(Indeed, there are q2 − 1 possible d’s.) 2

Lemma 3.7.3
Let (p, q, r) be a bad triangle, and let x be the radical of the plane 〈p, q, r〉 with
respect to ((·, ·)). Then xσ = x.

Proof. Suppose xσ 6= x. Then the (·, ·)-totally isotropic planes 〈p, q, r〉 and
〈pσ, qσ , rσ〉 do not intersect. Indeed, if they did, then the the radical of 〈p, q, r〉
were contained in the intersection. Hence, by symmetry, 〈p, q, r〉 ∩ 〈pσ, qσ , rσ〉 had
to contain the two space 〈x, xσ〉, which on one hand were contained in the radical of
〈p, q, r〉 and on the other hand is totally isotropic with respect to ((·, ·)), contradict-
ing the fact that the rank with respect to ((·, ·)) of 〈p, q, r〉 equals two. Consequently,
V = 〈p, q, r, pσ, qσ , rσ〉, which has a radical with respect to (·, ·) containing x, con-
tradicting nondegeneracy of (·, ·). 2

Lemma 3.7.4
Let q ≥ 8, and let (p, q, r) be a bad triangle. Then the triangle can be decomposed
into good triangles.
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Proof. Let x be the radical of the plane 〈p, q, r〉. By the preceding lemma
we have x = xσ . Now, by Lemmas 3.6.3 and 3.6.4, we can assume (p, q, r) =
(〈e1〉 , 〈e2〉 , 〈ye1 + ze2 + (ce3 + f3)〉) satisfying cc̄ = −1 and yz 6= 0 and yȳ+zz̄ 6= 0.
It is enough to show that this triangle is conjugate to a triangle satisfying the
hypothesis of Lemma 3.7.1. Let g ∈ Gσ fixing e1, e2, f1, f2 pointwise. Then
Lemma 3.7.2 shows that, for any nontrivial d ∈ Fq2 , the element g can be cho-

sen such that (ce3 + f3)
g = d(c d̄

d
e3 + f3), and we have conjugated (p, q, r) to

(pg , qg , rg) = (〈e1〉 , 〈e2〉 ,
〈

y
d
e1 + z

d
e2 + (c d̄

d
e3 + f3)

〉

). It remains to be seen that

we can pick d such that y′ = y
d
, z′ = z

d
satisfy the conditions of 3.7.1. Then, by

that lemma, we can decompose (pg , qg , rg) (and hence its conjugate (p, q, r)) into
good triangles. Notice that yz 6= 0 if and only if y

d
z
d
6= 0, and cc̄ = −1 if and only if

c d̄
d

(

c d̄
d

)

= −1. The same holds for the condition yȳ + zz̄ 6= 0.

If there are five different values of dd̄ in Fq , then we are able to modify yȳ and
zz̄ (to yȳ

dd̄
respectively zz̄

dd̄
) such that the conditions yȳ 6= 1, zz̄ 6= 1, yȳ + zz̄ 6= 1,

yȳ+ zz̄ 6= 2 are satisfied for the modified parameters. Furthermore, if there are four
more values of dd̄, we can additionally modify yȳ and zz̄ for (yȳ−1)(yȳ+zz̄−1) 6= 1,
(zz̄−1)(yȳ+zz̄−1) 6= 1 to hold. This is the case for q ≥ 11, which leaves q ∈ {8, 9}.
A straightforward check by hand or in GAP [Sch95] will show that any pair yȳ, zz̄
can be scaled by dd̄ to satisfy all conditions. 2

Now we will shift our attention to quadrangles. By the preceding results, it is
enough to decompose quadrangles into triangles, regardless whether they are good
or bad.

Lemma 3.7.5
Let q ≥ 5. Then any quadrangle such that no three points lie on a common line,
can be decomposed into quadrangles that do not lie in a totally isotropic subspace
of V with respect to (·, ·) and, furthermore, contain two opposite vertices that span
a nondegenerate two space with respect to ((·, ·)).

Proof. Let (a, b, c, d) be a quadrangle such that 〈a, b, c, d〉 is totally isotropic with
respect to (·, ·). This implies (a, c) = 0, whence c 6= aσ , because (a, aσ) = ((a, a)) 6=
0. Choose a non-singular vector v ∈ a⊥⊥ ∩ b⊥ ∩ d⊥ that does not lie in a⊥ ∪ c⊥. The
vector v exists because, firstly, a⊥⊥ ∩ b⊥ ∩ d⊥ is not totally isotropic with respect
to ((·, ·)) (since it is a three space contained in the nondegenerate five space a⊥⊥)
and, secondly, because a⊥⊥ ∩ b⊥ ∩ d⊥ 6⊂ a⊥ and a⊥⊥ ∩ b⊥ ∩ d⊥ 6⊂ c⊥. (First recall
from Lemma 3.4.3 that (aσ)⊥ = a⊥⊥. Then, indeed, (aσ)⊥ ∩ b⊥ ∩ d⊥ ⊂ c⊥ implies
〈aσ, b, d〉 = ((aσ)⊥ ∩ b⊥ ∩ d⊥)⊥ ⊃ (c⊥)⊥ = c, and c can be written as a linear
combination of aσ, b, and d. By (a, c) = 0 and (a, aσ) = ((a, a)) 6= 0, the point
c has to lie on the projective line bd, making it a line of Γ. However this cannot
be the case by hypothesis. The same arguments work for a instead of c.) Now the
projective line l = 〈a, v〉 has rank two with respect to ((·, ·)) and it contains neither
b nor d. Using Lemma 3.5.4, l contains q2−2q−1 points of G that are collinear with
b, respectively d, and at least q2 − 2q− 1 points of G that generate a nondegenerate
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two space with c. Since q ≥ 5 and since l contains q2 − q points of G, the space l
has to contain a point p of G that generates a nondegenerate two space with c and
that is collinear to both b and d. Moreover, (p, a) 6= 0 6= (p, c) and ((p, a)) = 0, so
we are done. 2

Lemma 3.7.6
Let q ≥ 7. Then any quadrangle can be decomposed into triangles.

Proof. Denote the quadrangle by (a, b, c, d), as in the proof of the preceding lemma.
By that lemma, we can assume that (a, c) 6= 0 and that 〈a, c〉 is nondegenerate with
respect to ((·, ·)). Set W := a⊥ ∩ c⊥ and U1 := W ∩ b⊥ and U2 := W ∩ d⊥.

If l = U1 ∩ U2 is of rank two with respect to ((·, ·)), then we can apply Lemma
3.5.3 to the planes 〈a, l〉, 〈b, l〉, 〈c, l〉, and 〈d, l〉 to obtain q2 − 5q − 4 points of G on
l collinear to all of a, b, c, d. Notice that this is a positive number for q ≥ 7.

Suppose now that l = U1 ∩ U2 is of rank one. Then the plane 〈b, l〉 has rank
at least one. However, it cannot have rank one, since it lies inside the ((·, ·))-
nondegenerate four-dimensional space a⊥ ∩ b⊥ = (aσ)⊥⊥ ∩ (bσ)⊥⊥. Indeed, a two-
dimensional radical would be maximal totally isotropic inside a⊥ ∩ b⊥ and could
not have a polar of dimension three. Similar arguments hold for the points a, c, d
instead of b. Applying Lemma 3.5.3 as in the above paragraph gives a point of G
collinear to all of a, b, c, d.

Suppose now l is totally isotropic with respect to ((·, ·)). Then l has to contain
the radicals r1 and r2 (with respect to ((·, ·))) of the planes U1 and U2. These radicals
cannot coincide as otherwise we would obtain a radical for the ((·, ·))-nondegenerate
space a⊥ ∩ c⊥. Notice that r⊥2 ∩ U1 = br2. Choose a line of G through b inside U1.
(This exists since the rank with respect to ((·, ·)) of U1 is two.) This line contains
a point p collinear to both a and c, by Lemma 3.5.3. Now p⊥ ∩W intersects U2 in
a line that does not contain r2. Hence its rank with respect to ((·, ·)) is two. The
arguments given in the second paragraph of this proof settle the claim. 2

As in the n ≥ 4 case, pentagons are easy to handle.

Lemma 3.7.7
Let q ≥ 5. Then any pentagon is null homotopic.

Proof. Let (a, b, c, d, e) be a pentagon. Consider the space U := 〈a, b, d〉⊥ of
dimension three. Its rank with respect to ((·, ·)) has to be at least two, as the rank
of 〈a, b〉 is two. Choosing a ((·, ·))-nondegenerate projective line l in U and applying
Lemma 3.5.3 in turn on the planes 〈a, l〉, 〈b, l〉, 〈d, l〉, we will find q2 − 2q − 1− q −
1 − q − 1 = q2 − 4q − 3 > 0 points on l collinear to all of a, b, d, decomposing the
pentagon. 2

We summarize the results of this section as follows.

Proposition 3.7.8
If n = 3 and q ≥ 8, then G is simply connected. 2
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It is easy to see that G is not simply connected if (n, q) = (3, 2). We do not know
whether this is the case for 7 ≥ q ≥ 3. Altogether, we have proved the following:

Theorem 3.7.9 (joint with Hoffman, Shpectorov)
Let n ≥ 2. The following hold.

(i) Gσ is a rank n geometry admitting a flag-transitive group of automorphisms
Gσ

∼= Sp2n(q).

(ii) Gσ is connected unless (n, q) = (2, 2); it is residually connected if q > 2.

(iii) Gσ is simply connected if n ≥ 5, or n = 4 and q ≥ 4, or n = 3 and q ≥ 8.

Proof. Part (i) follows from Propositions 3.4.9 and 3.5.2. Part (ii) follows from
Proposition 3.5.7 and Corollary 3.5.8. Finally, part (iii) is proved in Propositions
3.6.14 and 3.7.8. 2

Corollary 3.7.10
Let n ≥ 3. Fix a maximal flag F of Gσ , and let A be the amalgam on the stabilizers
in Gσ of all non-empty subflags of F . If (n, q) is distinct from (3, 2), (3, 3), (3, 4),
(3, 5), (3, 7), (4, 2), and (4, 3), then Gσ is the universal completion of A.

Proof. The claim follows from the theorem and Tits’ lemma B.2.5. 2

3.8 Consequences of simple connectedness

Theorem 3.7.9 has some group-theoretic implications along the lines of Phan’s the-
orems.

Theorem 3.8.1 (joint with Hoffman, Shpectorov)
Let n ≥ 3. Let F be a maximal flag of Gσ . For 2 ≤ s ≤ n − 1, let A(s) be the
amalgam of all rank s parabolics, i.e., the stabilizers in Gσ of all subflags of F of
corank s. Then the following hold.

(i) If q ≥ 8 and n ≥ 3, then Gσ is the universal completion of A(2).

(ii) If 7 ≥ q ≥ 4 and n ≥ 4, then Gσ is the universal completion of A(3).

(iii) If q = 2, 3 and n ≥ 5, then Gσ is the universal completion of A(4).

Recall our notation from Definition B.2.4. By Gi we denote the stabilizer in
Gσ of the element of F of type i, and GJ , J a subset of the type set I , stands for
⋂

i∈J Gi. This includes G∅ = Gσ .

Proof. Let s ≥ 2 if q ≥ 8, s ≥ 3 if 7 ≥ q ≥ 4, and s ≥ 4 if q = 2, 3. Suppose that
n ≥ s+ 1. We will proceed by induction and show that the universal completion of
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A(s) coincides with the universal completion of A(s+1). Denote by H(s) the universal
completion of A(s). Let J ⊂ I and |I \ J | = s + 1. Let FJ ⊂ F be of type J , so
that GJ is the stabilizer of FJ in H . Observe that the residue of G with respect to
FJ (denoted by GJ ) is connected. Indeed, if q > 2 then G is residually connected by
Corollary 3.5.8. In particular, GJ is connected. If q = 2 then either the diagram of
GJ is disconnected, or the diagram is connected. In the first case, GJ is connected.
In the second case, GJ is either our flipflop geometry of rank s+ 1, or the geometry
as in [BS]. The connectedness follows from Proposition 3.5.7 and [BS] (see Theorem
3.2.3). Observe also that GJ is simply connected. Indeed, either the diagram of GJ

is disconnected, or it is connected. In the first case, the simple connectedness follows
from Lemma A.7.7. The connectivity assumption in that lemma holds because one
of G1 and G2 has sufficient rank (rank at least two, if q ≥ 3, and rank at least
three, if q = 2) to be connected. If the diagram of GJ is connected then GJ is
simply connected by Theorem 3.7.9 (iii) or [BS] (see Theorem 3.2.3), depending on
its diagram.

The universal completion H(s+1) of A(s+1) is also a completion of A(s). Indeed,
if n = s+1, then H(n) = H = Gσ , which certainly is a completion of A(n−1). In case
n > s+ 1, the amalgam A(s+1) is the union of all GJ with J of corank s+1 and we
have a map π : A(s+1) → H(s+1) such that π|GJ

: GJ → H(s+1) is a homomorphism.
Consequently, also π|GJ∩GJ′

: GJ ∩GJ′ → H(s+1) is a homomorphism. It remains to
show that the set of all images π(GJ ∩GJ′) with |I\(J ∪ J ′)| = s actually generate
H(s+1). But since GJ is connected, the group π(GJ ) ≤ H(s+1) is generated by all
those images for a fixed J (because the GJ ∩ GJ′ are maximal parabolics in GJ ).
Thus, H(s+1) is a completion of A(s), as it is generated by the π(GJ ). Therefore
there is a canonical homomorphism φ from H(s) onto H(s+1) whose restriction to
A(s) is the identity. Let ψ be the inverse of the restriction of φ to A(s). Let J ⊂ I

be such that |I \ J | = s + 1 and let ĜJ be defined as
〈

ψ(GJ ∩ A(s))
〉

. By simple

connectedness of GJ and Tits’ lemma B.2.5, φ induces an isomorphism of ĜJ onto
GJ . Therefore, ψ extends to an isomorphism of A(s+1) ⊂ H(s+1) onto

Âs+1 =
⋃

J⊂I,|I\J|=s+1

ĜJ ⊂ H(s).

Hence the universal completion of A(s) coincides with the universal completion of
A(s+1). The fact H(n) = Gσ finishes the proof. 2

Corollary 3.8.2
Let n ≥ 3. The geometry Gσ is 4-simply connected. It is 2-simply connected if q ≥ 8
and 3-simply connected if q ≥ 4. 2

Notation 3.8.3 The maximal parabolics Gi with respect to F are semisimple sub-
groups of Gσ

∼= Sp2n(q) of the form GUi(q
2)×Sp2n−2i(q), i = 1, . . . , n. Each Gi sta-

bilizes a 2i-dimensional nondegenerate subspace Ui of the natural symplectic module
U of Gσ . It induces GUi(q

2) on Ui and Sp2n−2i(q) on U⊥
i . The intersection of all Gi
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(also known as the Borel subgroup arising from the action of Gσ on Gσ) is a maximal
torus T of Gσ of order (q + 1)n. Let G0

i be the subgroup SUi(q
2) × Sp2n−2i(q) of

Gi. For an arbitrary parabolic GJ =
⋂

i∈J Gi define G0
J =

⋂

i∈J G0
i . Here J is a

subset of the type set I = {1, . . . , n} of Gσ . It can be shown that GJ = G0
JT .

In case of a minimal parabolic GI\{i}, we have that Li := G0
I\{i}

∼= SL2(q).

In fact, if 1 ≤ i ≤ n − 1 then Li arises as SU2(q
2) ∼= SL2(q), while Ln arises as

Sp2(q) ∼= SL2(q). Notice that Ti = Li ∩ T is a torus in Li of size q + 1. Notice also
that the subgroups Ti generate T . If q 6= 2 then 〈Li, Lj〉 = G0

I\{i,j}. In particular,
the subgroups Li have the following properties:

(i) Li
∼= SU2(q

2), if i = 1, . . . , n− 1;

(ii) Ln
∼= Sp2(q);

(iii) 〈Li, Lj〉 ∼=







Li × Lj , if |i− j| > 1;
SU3(q

2), if |i− j| = 1 and {i, j} 6= {n− 1, n};
Sp4(q), if {i, j} = {n− 1, n}.

These properties are similar to Phan’s original description of his Phan systems as
given in 3.2 with the difference that Phan only considers simply laced diagrams.

Define A0
(s) to be the amalgam formed by the subgroups G0

J for all parabolics

GJ of rank s. The following Theorem 3.8.4 is a “stripped-of-T” (Phan-type) version
of Theorem 3.8.1. Let {e1, . . . , fn} be a canonical basis for σ. For the purposes
of proving that theorem, we will assume that the flag F consists of the subspaces
〈e1〉, 〈e1, e2〉, . . . , 〈e1, . . . , en〉. With respect to this basis, T consists of all diagonal
matrices diag(a1, . . . , an, a

−1
1 , . . . , a−1

n ), where each ai is of order dividing q + 1.
Furthermore, Ti, 1 ≤ i < n, consists of matrices from T , for which ai = a−1

i+1 =

a−1
n+i = an+i+1, with all other aj equal to one. If i = n then an = a−1

2n and aj = 1
for all other j. Manifestly, T is the direct product of all Ti’s.

Theorem 3.8.4 (joint with Hoffman, Shpectorov)
Retain the notation of 3.8.3. Then the following hold.

(i) If q ≥ 8 and n ≥ 3, then Gσ is the universal completion of A0
(2).

(ii) If 7 ≥ q ≥ 4 and n ≥ 4, then Gσ is the universal completion of A0
(3).

(iii) If q = 2, 3 and n ≥ 5, then Gσ is the universal completion of A0
(4).

Proof. Let s = 2 if q ≥ 8, s = 3 if 7 ≥ q ≥ 4, and s = 4 if q = 2, 3, and
suppose that n ≥ s + 1. Let Ĥ be the universal completion of the amalgam A0

(s).

Let φ be the canonical homomorphism of Ĥ onto H , that exists due to the fact
that H is a completion of A0

(s). Denote by Â0
(s) the copy of A0

(s) in Ĥ , so that

φ induces an isomorphism of Â0
(s) onto A0

(s). As in the proof of Theorem 3.8.1,

let ψ : A0
(s) → Â0

(s) be the inverse of φ|Â0
(s)

. Additionally, define T̂i = ψ(Ti)
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and T̂ =
〈

T̂1, . . . , T̂n

〉

. Observe that Ti, Tj ≤ G0
I\{i,j} = 〈Li, Lj〉 ⊂ A0

(s). Since

ψ restricted to the latter group is an isomorphism to ψ(G0
I\{i,j}), the groups T̂i

and T̂j commute elementwise. Because T is the direct product of Ti’s, the map φ

establishes an isomorphism between T̂ and T . Let J be a subset of I with |I \J | = s.
Observe that GJ = G0

JT . Accordingly, we would like to define ĜJ as Ĝ0
J T̂ , where

Ĝ0
J = ψ(G0

J ). For this definition to make sense, we need to show that T̂ normalizes

Ĝ0
J . Assume first that q > 2. Since G0

i is normal in Gi and since T ≤ Gi, we
have that T normalizes all Gi and therefore T normalizes every Li = ∩j∈I\{i}G

0
J .

Observe that Tj ≤ Lj and Li, Lj ≤ G0
I\{i,j} = 〈Li, Lj〉. Since ψ is an isomorphism

from A0
(s) to Â0

(s), the group T̂j normalizes L̂i for all i and j. It is clear that G0
J is

generated by Li, i ∈ I \J . The same must be true for Ĝ0
J and L̂i’s. Therefore every

T̂j will normalize every Ĝ0
J which means that also T̂ normalizes Ĝ0

J . If q = 2 the
same result can be achieved by using G0

I\{i,j}’s in place of Li’s; recall that in this

case we assume s = 4. Since T̂ normalizes G0
J and since T̂ ∩ Ĝ0

J =
〈

T̂j | j ∈ I \ J
〉

is isomorphic (via φ) to T ∩G0
J , the map φ establishes an isomorphism between ĜJ

and GJ , and, thus, φ extends to an isomorphism

Â(s) =
⋃

J⊂I,|I\J|=s

ĜJ −→ A(s) .

Therefore, the universal completions of A(s) and A0
(s) are isomorphic, and the claim

follows from Theorem 3.8.1. 2

Notation 3.8.5 Note that Gi, i 6= n, is not a maximal semisimple subgroup of Gσ .
Namely, Gi is contained in the full stabilizer Hi of the decomposition U = Ui ⊕U⊥

i .
The subgroup Hi is isomorphic to Sp2i(q) × Sp2n−2i(q). It is a maximal parabolic
with respect to the action of Gσ on the rank n − 1 pregeometry ∆ of all proper
nondegenerate subspaces of U .

Proposition 3.8.6
∆ is a connected geometry, and the natural action of Gσ

∼= Sp2n(q) on it is flag-
transitive.

Proof. Let U1 ≤ · · · ≤ Ut be a maximal flag. If the dimension of Ut is not 2n− 2,
then the dimension of U⊥

t is at least four and we can find a proper nondegenerate
two-dimensional subspace U of U⊥

t . But now Ut ⊕U is still a proper nondegenerate
subspace of V and U1 ≤ · · · ≤ Ut ≤ Ut ⊕ U is a flag of ∆, a contradiction. Hence
Ut has dimension 2n − 2. Similarly one can show that Ui−1 has codimension 2
in Ui for 2 ≤ i ≤ n − 1. Therefore, ∆ is a geometry. Given any maximal flag
U1 ≤ · · · ≤ Un−1, we can choose a hyperbolic basis {e1, . . . , en, f1, . . . , fn} of V
such that Ui = 〈e1, . . . , ei, f1, . . . , fi〉, 1 ≤ i ≤ n − 1. Flag-transitivity of the group



3.8. CONSEQUENCES OF SIMPLE CONNECTEDNESS 83

Sp2n(q) now follows from transitivity of Sp2n(q) on the set of hyperbolic bases of
V .

It remains to show connectedness of ∆. Let U and U ′ be two nondegenerate
two-dimensional subspaces of V . If U and U ′ are orthogonal then 〈U,U ′〉 is non-
degenerate and so U and U ′ are adjacent in the collinearity graph of ∆. If U and
U ′ meet in a one-dimensional space then 〈U,U ′〉 is of dimension three and rank
two. Therefore it is contained in a nondegenerate 4 space. Thus again U and U ′

are adjacent. Finally if U and U ′ are disjoint and not perpendicular, we can find
vectors u ∈ U and u′ ∈ U ′ such that 〈u, u′〉 is nondegenerate. Clearly the latter
subspace is adjacent to both U and U ′ so they are at distance two. We have shown
that the collinearity graph of ∆ has diameter two. In particular, it is connected. 2

Note that {Ui | 1 ≤ i ≤ n − 1} is a maximal flag of ∆, and Hi’s are the
corresponding maximal parabolics.

Corollary 3.8.7
∆ is residually connected. 2

The following results will be derived from Theorem 3.8.1 and the results from
[BS].

Proposition 3.8.8
Let n ≥ 4. Then ∆ is simply connected provided that (n, q) 6∈ {(4, 2), (4, 3)}.

Proof. Suppose that n ≥ 4 and n ≥ 5 if q = 2 or 3. Let B =
⋃

1≤i≤n−1 Hi.
According to Tits’ lemma B.2.5, the conclusion of the theorem is equivalent to
U(B) ∼= Gσ . Let A =

⋃

1≤i≤n Gi be, as before, the amalgam of maximal parabolics
related to the action of H = Gσ on the flipflop geometry G. Let A′ =

⋃

1≤i≤n−1 Gi.
Then A′ is contained in B, since Gi ≤ Hi for 1 ≤ i ≤ n − 1. The claim of the
theorem will follow from Theorem 3.7.9 (iii) and Tits’ lemma B.2.5, once we show
that U(B) ∼= U(A′) and U(A′) ∼= U(A). We will start with the second isomorphism.
Let Ĥ = U(A′). Let also ψ be the canonical embedding of A′ into Ĥ and define
Ĝi = ψ(Gi), 1 ≤ i ≤ n− 1, and Â′ = ψ(A′). Notice that Gn ∩A′ is the amalgam of
maximal parabolics in Gn acting on the residue G{n} of G. By [BS] (see Theorem

3.2.3), G{n} is simply connected. Therefore, ψ(Gn ∩A′) generates in Ĥ a subgroup

Ĝn isomorphic to Gn. Clearly, Â′∪Ĝn is isomorphic to Â and hence U(A′) ∼= U(A).
Turning to the isomorphism U(B) ∼= U(A′), we let Ĥ = U(B) and let ψ to be the
embedding of B into Ĥ . We claim that ψ(A′) generates Ĥ . Indeed, since ∆ is
residually connected (cf. the preceding corollary), any two ψ(Hi) generate Ĥ . Take
i = n − 1 or n − 2. Then Hi = L × R, where L ∼= Sp2i(, q) and R ∼= Sp2n−2i(q).
Observe that R ≤ GJ for 1 ≤ j ≤ i and that

⋃

1≤j≤i (L ∩ GJ ) is the amalgam of
maximal parabolics for L acting on its corresponding flipflop geometry (of rank i).
Since that geometry is connected, ψ(Hi) ≤ 〈ψ(A′)〉. Thus, ψ(A′) indeed generates
Ĥ . Consequently, Ĥ must be a quotient of U(A′) ∼= U(A) ∼= H . Since also, H is
isomorphic to a quotient of Ĥ , we finally obtain U(B) ∼= H ∼= U(A′). 2
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Corollary 3.8.9
∆ is 2-simply connected for q ≥ 4, n ≥ 3 and 3-simply connected if q equals 2 or 3
and n ≥ 4. 2

Theorem 3.8.10 (joint with Hoffman, Shpectorov)
Let n ≥ 4, and use the notation in 3.8.5. If q ≥ 4 then the amalgam of any three
subgroups Hi has Gσ as its universal completion. If n ≥ 5 and q equals 2 or 3, then
the same holds for the amalgam of any four subgroups Hi.

Proof. Let s = 2 if q ≥ 4 and s = 3 if q = 2 or 3. Let B(s) be the subamalgam
of B (see the proof of Proposition 3.8.8) consisting of all rank s parabolics. As in
the proof of Theorem 3.8.1, we can show that U(B(s)) ∼= H = Gσ . (Like before,
this also implies 2-simple connectedness, respectively 3-simple connectedness of ∆,
as claimed after Proposition 3.8.8 in the introduction.) Since the union of any three
(four, if q = 2 or 3) Hi contains B(s) and since Hi ∩ B(s) generates Hi for all i, we
are done. 2

Notice that if n ≥ 5 and q = 2 or 3 then Gσ can still be recovered from some
triples of subgroups Hi. Namely, among others, every amalgam H1 ∪ Hi ∪ Hn−1,
1 < i < n − 1, has Gσ as its universal completion. Indeed, let HJ =

⋂

i∈J Hi.
By Theorem 3.8.10, the amalgam of rank three parabolics (i.e., the amalgam of all
subgroups HJ with |I \J | = 3) has Gσ as its universal completion. The only rank 3
parabolic that cannot be found inside the amalgam H1 ∪Hi ∪Hn−1 is HI\{1,i,n−1}.
Since n ≥ 5, i 6= 2 or i 6= n − 2. In the first case HI\{1,i,n−1} is isomorphic to
HI\{1} × HI\{i,n−1}. In the second case it is isomorphic to HI\{1,i} × HI\{n−1}.
Let us assume we are in the first case. By connectivity (see Proposition 3.8.6), the
rank two parabolic HI\{i,n−1} is generated by the two minimal parabolics HI\{i}

and HI\{n−1}. It remains to notice that both HI\{1} and HI\{i} are contained in
Hn−1, while both HI\{1} and HI\{n−1} are contained in Hi. So HI\{1,i,n−1} does
not contain any new relations.



Chapter 4

Hyperbolic Root Geometries

In this chapter we describe an approach to the area of long root group geometries
of Chevalley groups by use of fundamental SL2’s. The usual geometries on long
root subgroups that have been studied consist of the long root subgroups as points
and the spans of two strongly commuting root subgroups as lines. Lacking strongly
commuting pairs in the symplectic and unitary groups, in these groups one usually
takes the spans of two polar long root subgroups as lines. The latter geometries are
precisely the symplectic and unitary polar spaces. The long root group geometries
have been studied by a number of people for quite some time. Some references are
[Coo76], [Coo79], [Coh82], [Coo83], [Coh83], [CC83], [CC89], [Shu89], [KS]. A good
survey is Cohen’s Chapter 12 of [Bue95].

Our approach is slightly different. The lines we are using are the fundamental
SL2’s of the Chevalley groups. This idea is not new, as Jon Hall and Hans Cuypers
already studied those geometries in [Hal88], [Cuy94], and [Cuya] for the symplectic
and unitary groups. However, they based their investigations on whether or not the
geometries under consideration contain certain planar geometrical configurations.
We instead will exploit the commutation relation of the long root groups and the
fundamental SL2’s. To this end we introduce a concept of geometries, the perp
spaces, consisting of a partial linear space together with a relation ⊥ subject to
certain conditions. This relation ⊥ will serve as the commutation relation. See
Section 4.2 for more details. Our characterizations then will be based on the shape
of the centralizer of the fundamental SL2’s. The author learned recently that this
approach has actually been suggested by Bill Kantor to Arjeh Cohen in the 1980’s.

In case of the symplectic and unitary groups we do not attempt to improve the
results of Hall and Cuypers. They are optimal already with beautiful proofs. We
rather try to look at their geometries in another way. Contrary to the work of
Hall and Cuypers our approach via centralizers of fundamental SL2’s of unitary
or symplectic groups has another class of examples to take care of. Indeed, in a
Chevalley group of type F4 the centralizer of a fundamental SL2 is a group of type
C3, cf. Proposition C.5.1, and so a group of type F4 gives rise to a geometry on
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long root subgroups whose fundamental SL2’s admit centralizers that give rise to
geometries on long root subgroups of a group of type C3. Besides groups of type
Cn we focus on groups of type An. Here, fundamental SL2’s correspond to non-
intersecting line-hyperline pairs of the corresponding projective spaces, and we can
use the results of Chapter 2 to our benefit.

4.1 Geometries on long root subgroups

Linear groups

A typical root subgroup of the group PSLn+1(F) can be described as the following
one-parameter subgroup. Consider the projective space Pn(F) and choose an inci-
dent point-hyperplane pair (p,H). The set of all axial collineations of Pn(F) with
center p and axis H form a group Tp,H that is isomorphic to (F,+), a root subgroup.
Therefore, we can parametrize the set of all root subgroups of PSLn+1(F) by the
incident point-hyperplane pairs. Notice that two root subgroups commute if and
only if the center of one is contained in the axis of the other and vice versa.

Two root subgroups Tp,H and Tq,I form a strongly commuting, polar, special,
and hyperbolic pair if

• p = q or H = I ,

• p ∈ I , q ∈ H and p 6= q, H 6= I ,

• p ∈ I , q 6∈ H or p 6∈ I , q ∈ H , or

• p 6∈ I , q 6∈ H , respectively.

A line (arising from strongly commuting pairs) (p, L) or, dually, (l, H) is a set of
root subgroups that all have the same point p of Pn(F) with hyperplanes running
through all hyperplanes containing some fixed hyperline L 3 p or, dually, a set of
root subgroups that all have the same hyperplane H of Pn(F) with points running
through all points on some fixed line l ⊂ H . A hyperbolic line (arising from
hyperbolic pairs) (l, L) is a set of root subgroups whose points are contained in
the projective line l of Pn(F) and whose hyperplanes contain the hyperline L with
l ∩ L = ∅. Note that the notion of a hyperbolic line already exists in this context,
cf. Section C.4. The only difference between the two notions is that a hyperbolic
line as defined here is the set of all root subgroups contained in a hyperbolic line as
defined in Section C.4. This boils down to the same ambiguity in synthetic geometry
whether a line is something abstract or just the set of all points incident with it.

Generally, also for other Chevalley groups, let us call the geometry on long root
groups and lines the long root group geometry and the geometry on long root
groups and hyperbolic lines the hyperbolic long root group geometry.

There is a one-to-one correspondence between the hyperbolic lines of PSLn+1(F)
on one hand and the vertices of the graph Ln(F) of Chapter 2 on the other hand.
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Therefore, the claim of Proposition C.5.1 on groups of type An follows immediately
from Proposition 2.1.2. Let us investigate the adjacency relation of Ln(F) in our
new terms:

Proposition 4.1.1
Let F be a field, and let n ≥ 3. Suppose that l, m are distinct fundamental SL2’s of
the group PSLn+1(F), and let (x,X), (y, Y ) be the corresponding non-intersecting
line-hyperline pairs of Pn(F). Then [l,m] = 1 if and only if x ⊆ Y and y ⊆ X .

Proof. The hyperbolic lines l and m can be considered as fundamental SL2’s.
Those groups commute if and only if any root subgroup a ≤ l (with center p ∈ x
and axis H ⊇ X) commutes with every root subgroup b ≤ m (center q ∈ y, axis
I ⊇ Y ). The root subgroups a and b commute if and only if p ∈ I and q ∈ H .
Variation of a ≤ l and b ≤ m yields p ∈ Y for all p ∈ x and q ∈ X for all q ∈ y.
Consequently, x ⊆ Y and y ⊆ X is indeed equivalent to [l,m] = 1. 2

Symplectic and unitary groups

In case of the groups PSp2n(q) and PSUn(q2) acting on nondegenerate polar spaces
of rank at least two, the long root subgroups correspond to the so-called isotropic
transvection subgroups, see, e.g., Example 1.4 of Chapter 2 of [Tim01]. Therefore
there is a one-to-one correspondence between the long root subgroups on one hand
and the singular points of the corresponding polar geometry on the other hand. Note
that the relations strongly commuting and special are trival. So, in Timmesfeld’s
terminology this set of long root subgroups is a set of abstract transvection groups,
see Section C.4, and nontrivial lines do not exist. However, the hyperbolic lines of
the long root geometry correspond to hyperbolic lines of the polar space and the
polar relation gives rise to the lines of the polar space. Studying geometries on the
long root subgroups of these groups therefore is the same as studying symplectic
and unitary polar spaces. The polar of a hyperbolic line gives rise to a polar space
of rank one smaller, which proves the corresponding claim of Proposition C.5.1; see
also Lemma 4.4.5.

Orthogonal groups

The root subgroups of the orthogonal groups correspond to Siegel transvections and
can be described as follows (see, e.g., Example 1.5 in Chapter 2 of [Tim01]). Let
(V, q) be a nondegenerate orthogonal space of Witt index at least three. The long
root subgroups of PSO(V ) correspond precisely to the singular lines of the polar
space. Indeed, the root subgroups are the groups

χ(l) =
{

τ : P(V ) → P(V ) ∈ PSO(V ) | [τ, V ] ⊂ l,
[

τ, l⊥
]

= 0
}

for totally singular projective lines l of V . Here [τ, v] stands for τ(v) − v; also, χ(l)
acts trivially on l. Two root subgroups commute if and only if the corresponding
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singular projective lines l, m satisfy l ⊂ m⊥ or l ∩ m 6= ∅. They form a strongly
commuting pair when the respective lines intersect and span a singular plane. This
defines the lines of the long root group geometry as the planar line pencils of singular
lines of the polar space, and we obtain a so-called polar Grassmann space, i.e., the
line shadow space of a polar geometry. Two root subgroups form a hyperbolic pair
if the corresponding singular lines span (as a subspace of the polar space) a grid
of the polar space. The hyperbolic line spanned by a hyperbolic pair of long root
subgroups consists of the class of singular lines of that grid, which contains the two
spanning singular lines.

The statement of Proposition C.5.1 can be obtained as follows. Let l, m be
two totally singular lines that span a grid. Notice that the two classes of singular
lines in a grid commute with each other, since any two lines from different classes
intersect. So, if we fix one class of singular lines of the grid, the other class of that
grid corresponds to the A1 in statements (ii) and (iv) of the proposition. On the
other hand, the hyperbolic lines in the space l⊥ ∩ m⊥ correspond to the Bn−2 or
Dn−2 in that proposition.

Exceptional groups

To describe long root group geometries of type F4, E6, E7, and E8, simply take the
corresponding building geometry. There is a unique node in the extended (Dynkin)
diagram which is adjacent to the node corresponding to the root of highest weight.
The long root group geometry then is isomorphic to the shadow space on that par-
ticular node of the diagram of the building. Actually, the long root group geometry
of any other type except the linear groups can be obtained in that way as well.

Consider the exceptional group E6(F). Let Γ be the graph on the fundamental
SL2’s (hyperbolic lines) of E6(F) with commuting being adjacency. Then Γ is locally
L5(F), by Proposition C.5.1. This is precisely the example mentioned after Theorem
2.4.19.

4.2 Perp spaces

Definition 4.2.1 A perp space is a partial linear space (P ,L) endowed with a
symmetric relation ⊥⊆ P×P such that for every point x, whenever p 6= q are points
on a line l, the fact x ⊥ p and x ⊥ q implies x ⊥ y for all y ∈ l.

Notice that we neither demand nor forbid reflexivity of ⊥. There are examples
of perp spaces with x ⊥ x for some points x, but not for all, see, e.g., Example
4.2.3 (ii). As usual, denote by x⊥ the set of all points y ∈ P with x ⊥ y. For a set
X ⊆ P of points, we have X⊥ =

⋂

x∈X x⊥ with the understanding that ∅⊥ = P .
If X,Y ⊆ P are sets of points, then X ⊥ Y means x ⊥ y for all x ∈ X , y ∈ Y .
This allows the definitions of the point perp graph (P ,⊥) and the line perp
graph (L,⊥) (if there are points or lines x with x ⊥ x, then the edge {x} will be
disregarded). Especially the concept of the line perp graph will prove to be very
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useful, as it is the main tool for the characterizations of the hyperbolic root group
geometries given in Theorem 4.3.6 and its corollaries.

Lemma 4.2.2
Let (P ,L,⊥) be a perp space.

(i) For any set X ⊆ P , the set X⊥ is a subspace of (P ,L).

(ii) Let k, l, m be lines. If k∩ l 6= ∅ 6= k∩m and k∩ l 6= k∩m, then k⊥ ⊇ {l,m}⊥.

Proof.

(i) Let l ∈ L contain points p 6= q. If x is a point, then x ⊥ p and x ⊥ q
implies x ⊥ l, whence x⊥ is a subspace of (P ,L). If X is a set of points,
then X⊥ =

⋂

x∈X x⊥ is an intersection of subspaces of (P ,L), whence X⊥ is
a subspace itself.

(ii) Set p := k ∩ l and q := k ∩ m. Then, for any point x satisfying x ⊥ l and
x ⊥ m, we have x ⊥ p and x ⊥ q, whence x ⊥ k. 2

The preceding proposition tells us that one could also define a perp space as
follows. Let (P ,L) be a partial linear space and let (Sp)p∈P be a collection of
subspaces of (P ,L) such that p ∈ Sq if and only if q ∈ Sp. The relation ⊥ is
obtained by setting p ⊥ q if p ∈ Sq . A list of examples of perp spaces (P ,L,⊥)
follows. This list is highly non-exhaustive, and its purpose is to indicate that the
concept of perp spaces is fairly general.

Examples 4.2.3 (i) Let (P ,L) be a Γ-space. Set p ⊥ q if p and q are collinear.

(ii) Let (P ,L) be a ∆-space. Set p ⊥ q if p and q are not collinear.

(iii) Let (P ,L) be a projective space admitting a polarity π. Set p ⊥ q if p ∈ π(q).

(iv) Let (P ,L) be the (hyperbolic) long root group geometry of a Chevalley group.
Set p ⊥ q if p, q form a strongly commuting or a polar pair, i.e., set p ⊥ q if
they commute.

(v) Let (P ,L) be the (hyperbolic) long root group geometry of a Chevalley group.
Set p ⊥ q if p, q form a strongly commuting pair.

Inspired by Proposition C.5.2, we make the following definitions.

Definition 4.2.4 Let (P ,L,⊥) be a perp space such that for any line l ∈ L each
point of l⊥ is contained in a line of l⊥. A pair (p, q) of distinct points is called

• strongly commuting if and only if p ⊥ q and there does not exist a line on
p in relation ⊥ to q;

• polar if and only if p ⊥ q and there exists a line on p in relation ⊥ to q;
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• special if and only if p 6⊥ q and there does not exist a line containing p and q;

• hyperbolic if and only if p 6⊥ q and there exists a line containing p and q.

The condition that l⊥ be a rank two geometry is needed to ensure symmetry of
the notions of strongly commuting and polar in (P ,L):

Proposition 4.2.5
Let (P ,L,⊥) be a perp space such that, for any line l ∈ L, the subspace l⊥ is a
geometry of rank two. Then (p, q) is a strongly commuting, polar, special, or hyper-
bolic pair if and only if (q, p) is a strongly commuting, polar, special, respectively
hyperbolic pair.

Proof. Obviously, the relations ‘special’ and ‘hyperbolic’ are symmetric. Let (p, q)
be a polar pair. Then there exists a line l 3 p with l ⊥ q. But by assumption l⊥ is
a rank two geometry, whence there exists a line m ∈ l⊥ on q. Clearly, m ⊥ p and
(q, p) are a polar pair. But now the relation ‘strongly commuting’ also has to be
symmetric. 2

Notice that, even if for any line l the space l⊥ is a rank two geometry, the space
p⊥ does not have to be a rank two geometry for any point p. Indeed, suppose there
exists a point q in strongly commuting relation to p (most of the hyperbolic root
group geometries admit such points). Then there exists no line on q that is in ⊥
relation to p, and q is isolated in p⊥.

4.3 Hyperbolic lines in type An geometries

In this section we will continue to discuss geometries on graphs Γ that are locally
Ln(F). However, now we will study geometries on Γ that coincide with the interior
hyperbolic root group geometry on the perps x⊥ (here the symbol ⊥ is again used to
denote adjacency in a graph) for vertices x of Γ rather than the interior projective
space as in Section 2.4. Throughout the whole section let Γ be a connected, locally
Ln(F) graph for a division ring F and an n ≥ 5. Moreover, we will freely use the
terminology introduced in Chapter 2, especially Section 2.3.

Definition 4.3.1 Let Γ = (V ,⊥) be a connected, locally Ln(F) graph. Γ is ge-
ometrizable if there exists a family S of subsets of V such that

• for any S ∈ S and any vertex x ∈ V the intersection S ∩ x⊥ is either empty
or an interior root point of x⊥, and

• for any interior root point px of x⊥, x ∈ V , there exists a unique set S ∈ S
that contains px.

The point-line geometry (S,V) with symmetrized containment as incidence is called
a geometrization of Γ. An element of S is called a global root point.
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Notice that the notion of geometrizability is very similar to the ‘geometrizabil-
ity’ (the existence of global points and global lines) in Section 2.4. But, in fact,
geometrizability in this section is possibly weaker. Indeed, if a graph admits global
points and global hyperplanes in the sense of Section 2.4 (such that the local restric-
tions are interior points and interior hyperplanes, respectively), then by intersecting
the vertex sets of an incident global point-hyperplane pair, one obtains global root
points in the sense of Definition 4.3.1. The converse need not be true. The graph on
the hyperbolic lines of the exceptional group E6(F) with commuting as adjacency
may be a candidate for a graph that is geometrizable in the sense of Definition 4.3.1,
but not in the sense of Section 2.4. Notice that in order to construct global points
in the sense of Section 2.4 an argument using the simple connectnedness of the uni-
versal cover of that graph will not suffice, because triangle analysis as in Lemma
2.4.3 fails.

Lemma 4.3.2
Let Γ be geometrizable and let x and y be two vertices of Γ. If p, q are two vertices

adjacent to both x and y that belong to a common interior root point of x⊥, then
they also belong to a common interior root point of y⊥.

Proof. Let (S,V) be a geometry on Γ. Then there is an S ∈ S containing p and
q. But since p,q ∈ S ∩ y⊥, they also belong to an interior root point of y⊥. 2

Lemma 4.3.3
Let n ≥ 5 and let Γ be a connected, locally Ln(F) graph. Suppose Γ is geometrizable.
Then there is at most one geometrization on Γ with the property that any two
vertices contained in the same global point are at distance two in Γ.

Proof. Suppose such a geometry on Γ exists. Fix a vertex x and consider the
interior hyperbolic root group geometry on x⊥ ∼= Ln(F). Let p be an interior root
point of x⊥, let S be the unique set of S that contains p, and let a be a vertex of
p. Now let y be an arbitrary vertex of Γ. The proposition is proved, if it can be
determined whether y does or does not belong to the set S ∈ S that contains p.
We may assume that there exists a vertex z adjacent to y and a, since otherwise
y cannot be contained in S by the hypothesis of this lemma. By Proposition 2.1.3
there exists a chain of vertices in a⊥ ∼= Ln(F) connecting x and z. Denote the vertex
closest to x by w. By local analysis of x⊥ using Lemma 2.3.6 we find another vertex
c in x⊥∩w⊥ that belongs to the interior root point p besides a. By Lemma 4.3.2 the
vertices a and c are contained in a common interior root point q of w⊥. Obviously
the interior root point q of w⊥ has also to be contained in S. Using induction on
the length of the chain from x to z, we see that it can be determined whether y is
contained in the set S or not. 2

Examples 4.3.4 (i) Let Γ ∼= Ln(F) for n ≥ 7. Then the interior hyperbolic root
group geometry on Γ is the unique global geometry satisfying the property of
Lemma 4.3.3. Indeed, the diameter of Γ is two by Proposition 2.1.3.
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(ii) The hyperbolic root group geometry of E6(F) fails to induce a geometry as
given in Lemma 4.3.3 on the graph; it does induce a geometry but there
exist intersecting hyperbolic lines that are not at distance two in the graph.
For example, let F 6= F2 be a finite field. Then the isomorphism classes of
subgroups of E6(F) spanned by two intersecting hyperbolic lines are given
in Table V of [Coo79]. Consider the last line of Table V. The isomorphism
class of the subgroup is SU3(F), which by [McL67] cannot be a subgroup of
SL6(F) generated by root subgroups. But it would have to be, if there existed
a hyperbolic line that commutes with the two hyperbolic lines that span the
SU3(F). We are indebted to Bruce Cooperstein for this argument.

Finally, we are ready to state and prove our characterization theorems.

Proposition 4.3.5
Let n ≥ 5, let F be a division ring, and let (P ,L,⊥) be a perp space. If

(i) for any line k ∈ L the space k⊥ is isomorphic to the hyperbolic root group ge-
ometry of PSLn+1(F) with l ⊥ m if and only if the corresponding fundamental
SL2’s of PSLn+1(F) commute for lines l, m inside k⊥, and

(ii) any two intersecting lines of (P ,L) are at distance two in (L,⊥),

then (L,⊥) is geometrizable, a geometrization of (L,⊥) satisfying the conditions of
Lemma 4.3.3 exists, and (P ,L) is isomorphic to that geometrization.

Proof. Note that (L,⊥) is locally Ln(F). Consider the family of all full line pencils
of (P ,L). This family gives rise to a geometry on (L,⊥) in the sense of Definition
4.3.1. Indeed, any intersection of a full line pencil with k⊥ for an arbitrary line
k is either empty or a full line pencil of the subspace k⊥. But by Proposition
2.3.5 a full line pencil of k⊥ corresponds to an interior root point. Conversely,
any interior root point of a perp of a line corresponds to a full line pencil of this
perp, which is contained in a unique full line pencil of the whole geometry. Hence
(L,⊥) is geometrizable. Moreover, since any two intersecting lines are required to
be at distance two in (L,⊥), the global geometry on (L,⊥) we just have constructed
satisfies the hypothesis of Lemma 4.3.3. The last claim follows from the fact that
(P ,L) is isomorphic to the geometry on the full line pencils as points and the line
set L. 2

Theorem 4.3.6
Let n ≥ 5, let F be a division ring, and let (P ,L,⊥) be a perp space satisfying
Hypothesis (i) of Proposition 4.3.5. If the graph (L,⊥) is isomorphic to Ln+2(F),
then (P ,L) is isomorphic to the hyperbolic root group geometry of PSLn+3(F).

Proof. This follows from Example 4.3.4(i), Proposition 2.1.3, and Proposition
4.3.5. 2



4.4. HYPERBOLIC LINES IN TYPE Cn GEOMETRIES 93

Corollary 4.3.7
Let n ≥ 7, let F be a division ring, and let (P ,L,⊥) be a perp space satisfying
Hypothesis (i) of Proposition 4.3.5. If the graph (L,⊥) is connected, then (P ,L) is
isomorphic to the hyperbolic root group geometry of PSLn+3(F).

Proof. This follows from Theorem 2.5.1 and Theorem 4.3.6. �

The requirement that (L,⊥) be connected in Corollary 4.3.7 is not a very re-
strictive one. Instead, one could require (P ,L) to be connected. Then the union of
two copies of the hyperbolic root group geometry where a unique point of one copy
is identified with a unique point of the other copy would also be an example. Gen-
erally, one can take cocliques (of the same size) C and C ′ of points in the respective
copies and identify the points of C and C ′ by an arbitrary bijection. Of course,
one can also do this for the union of an arbitrary number of copies of hyperbolic
root group geometries. However, these are the only examples that would have to be
added to the conclusion of Corollary 4.3.7 if one replaces connectedness of (L,⊥) by
connectedness of (P ,L). Dropping connectedness of (P ,L), too, only adds another
set of obvious examples.

Corollary 4.3.8
Let n be an infinite cardinal number, let F be a division ring, let V be a vector
space over F of dimension n, and let (P ,L,⊥) be a perp space in which for any line
k ∈ L the space k⊥ is isomorphic to the hyperbolic root group geometry of PSL(V )
with l ⊥ m if and only if [l,m] = 1 for lines l, m inside k⊥. If the graph (L,⊥)
is connected, then (P ,L) is isomorphic to the hyperbolic root group geometry of
PSL(V ).

Proof. This follows from Theorem 2.5.2 and Theorem 4.3.6. 2

The group PSL(V ) for an infinite-dimensional vector space V is defined to be
the span of all transvections of P(V ), i.e., all axial collineations whose centers are
contained in the axes.

4.4 Hyperbolic lines in type Cn geometries

There already exist beautiful characterizations of the geometry on long root sub-
groups and hyperbolic lines of symplectic groups by Jon Hall and Hans Cuypers.
They take advantage of the fact that, as indicated in Section 4.1, there only exist the
relations ‘polar’ and ‘hyperbolic’ between distinct long root subgroups. Hence, if one
knows one relation, one knows the other, and there is no need of using Proposition
C.5.2. Let us review the existing results.

Theorem 4.4.1 (Hall [Hal88], Main Theorem)
Let (P ,L) be a finite, connected partial linear space in which each pair of intersecting
lines lies in a subspace isomorphic to a dual affine plane. Assume that (P ,L) contains
at least two such planes. Then either
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(i) for some prime power q and some integer n at least 3, the space (P ,L) is
isomorphic to the partial linear space of hyperbolic lines of a symplectic polar
space embedded in the projective space Pn(q); or

(ii) all lines of L contain exactly three points.

Since any line is contained in a dual affine plane, we can conclude that each line
contains at least three points. The partial linear spaces satisfying (ii) of Theorem
4.4.1 are called cotriangular spaces. Theorem 1 of [Hal89] provides a complete
classification of the spaces occuring in (ii), which reads as follows.

Theorem 4.4.2 (Hall [Hal89], Theorem 1, Theorem 4)
Let (P ,L) be a connected partial linear space all of whose lines contain exactly three
points and in which every pair of intersecting lines lies in a subspace isomorphic to
a dual affine plane (of order two). Then (P ,L) is isomorphic to one of the following
partial linear spaces:

(i) the geometry on the non-radical points and the hyperbolic lines of some sym-
plectic space over F2;

(ii) the subgeometry of a space as in (i) on its non-singular points with respect
to some quadratic form q such that the symplectic form f is obtained as
f(x, y) = q(x) + q(y) + q(x, y); or

(iii) the geometry defined as follows. Let Ω be a set of cardinality at least two
and let Ω′ be a set disjoint from Ω. The points of the geometry are the finite
subsets of Ω ∪ Ω′ that intersect Ω in a set of cardinality two. The lines of
the geometry are those triples x1, x2, x3 of points with empty symmetric

difference, i.e.,
(

⋃

1≤i≤3 xi

)

\
⋃

1≤i,j≤3 (xi ∩ xj) = ∅.

If additionally {y}∪{p ∈ P | p ∈ l, x ∈ l ∈ L} = {x}∪{p ∈ P | p ∈ l, y ∈ l ∈ L} im-
plies x = y for points x, y, then (P ,L) is isomorphic to a geometry of Case (i) or
(ii) with respect to a nondegenerate form or of Case (iii) with Ω′ = ∅.

Hans Cuypers has proved a version of Theorem 4.4.1 that includes infinite point
orders.

Theorem 4.4.3 (Cuypers [Cuy94], Theorem 1.1)
Let (P ,L) be a connected partial linear space in which any pair of intersecting lines
is contained in a subspace isomorphic to a dual affine plane. Assume that (P ,L)
contains at least two such planes and a line with more than three points. Then
(P ,L) is isomorphic to the geometry on the non-radical points and the hyperbolic
lines of a symplectic polar space embedded in some projective space of dimension
at least 3.

In the remainder of this section, we will indicate how one can prove a similar
statement by concentrating on hyperbolic lines and their perps. We should point
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out, however, that our assumptions on the dimension have to be stronger than in
the results of Hall and Cuypers, as the centralizer of a fundamental SL2 in F4(F) is
isomorphic to Sp6(F), cf. Proposition C.5.1 or 7.18 of the third chapter of [Tim01].
Our approach has to take care of this example, while the hyperbolic long root group
geometry of F4(F) does not occur as a counterexample to the theorems of Cuypers
and Hall. In the course of our proof we invoke the results by Hall and Cuypers and,
thus, our result depends on theirs.

The hyperbolic line graph

Definition 4.4.4 Let n ≥ 1 and let F be a field. Let W2n(F) denote the polar
space of a nondegenerate symplectic polarity of P2n−1(F). The hyperbolic line
graph S(W2n(F)) = S2n(F) is the graph on the hyperbolic lines of W2n(F) where
hyperbolic line l and m are adjacent (in symbols l ⊥ m) if and only if all singular
points of l are collinear (in W2n(F)) to all singular points of m.

Equivalently, one can define the graph S2n(F) as the graph on the fundamental
SL2’s of the group PSp2n(F) where two vertices are adjacent if and only if they
commute.

Lemma 4.4.5
Let n ≥ 2. The graph S2n(F) is locally S2n−2(F).

Proof. This is immediate from the fact that the set of singular points of W2n(F) that
are collinear to a given hyperbolic line l spans a subspace isomorphic to W2n−2(F),
whose hyperbolic lines are precisely those hyperbolic lines of W2n(F) that are in
relation ⊥ to the hyperbolic line l. 2

Lemma 4.4.6
Let n ≥ 3, and let l, m be distinct hyperbolic lines of W2n(F) with {l,m}⊥ 6= ∅.

Then any hyperbolic line contained in {l,m}⊥⊥
is also contained in 〈l,m〉

P
and vice

versa.

Proof. Let p ∈ 〈l,m〉
P

be a singular point of W2n(F). Then a vector that spans p
can be expressed as a linear combination of vectors spanning singular points on l and
m. But then points collinear to these are also collinear to p. Hence a hyperbolic line
contained in 〈l,m〉

P
is also contained in {l,m}⊥⊥. Conversely, let q be a singular

point not contained in 〈l,m〉
P
. Note that in a symplectic space any hyperplane is

singular, i.e., there exists a singular point having that hyperplane as polar. The
space 〈l,m〉

P
has at most (projective) dimension three. Since n ≥ 3, hyperplanes

have at least dimension 4. Now consider the hyperplanes Πi, i ∈ I for some index
set, of P2n−1(F) containing 〈l,m〉

P
. Denote the corresponding points by pi. If all

of the pi were contained in 〈l,m〉
P
, then {l,m}⊥ = ∅ (for, a hyperbolic line of

{l,m}⊥ ∩ 〈l,m〉
P

would have to be contained in the radical of 〈l,m〉
P
, which does

not contain hyperbolic lines), whence there exists a pi outside 〈l,m〉
P
. Fix such a
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pi and choose a hyperline Λi ⊂ Πi with 〈l,m〉
P
⊂ Λi and pi, q 6∈ Λi. Let Πj be any

other hyperplane of P2n−1(F) containing Λi. Since pi 6∈ Πj we have pj 6∈ Πi and
pi, pj are noncollinear. Moreover, at least one of pi and pj is not collinear with q
(because q 6∈ Πi ∩ Πj = Λi) and we have found a hyperbolic line pipj contained in

{l,m}⊥ that ensures that no hyperbolic line containing q is contained in {l,m}⊥⊥
.

This finishes the proof, because q has been chosen arbitrarily outside 〈l,m〉
P
. 2

Notation 4.4.7 Let X be a subspace of W2n(F). Denote the set of all hyperbolic
lines of W2n(F) contained in X by S(X).

Lemma 4.4.8
Let n ≥ 3. Let k, l, m be three hyperbolic lines of W2n(F) with {k, l,m}⊥ 6= ∅ that

intersect in a common point. Then S(〈k, l,m〉) = {k, l,m}⊥⊥
.

Proof. There exist hyperbolic lines a and b with 〈a, b〉
P

= 〈k, l,m〉
P
. Then by the

preceding lemma we have S(〈a, b〉
P
) = {a, b}⊥⊥

. Finally, {a, b}⊥⊥
= {k, l,m}⊥⊥

by
〈a, b〉

P
= 〈k, l,m〉

P
and linear algebra. 2

Similar to Sections 1.2 and 2.2 we want to reconstruct the underlying polar space
from the graph S2n(F). The main task we have to accomplish is to reconstruct the
points. The polar space then is easily obtained from the points and the hyperbolic
lines, by Proposition A.6.2.

Lemma 4.4.9
Let n ≥ 3. Distinct hyperbolic lines l and m of W2n(F) intersect if and only if the

perp {l,m}⊥ in S2n(F) is non-empty and the double perp {l,m}⊥⊥
in S2n(F) does

not contain adjacent vertices (with respect to ⊥).

Proof. Let l and m be two intersecting hyperbolic lines. First we will show
that {l,m}⊥ 6= ∅. The space 〈l,m〉

P
has (projective) dimension two. Hence its

polar 〈l,m〉π
P

has dimension two or bigger, since n ≥ 3. If n ≥ 4, then 〈l,m〉π
P

is not totally isotropic, so we find two noncollinear points in 〈l,m〉π
P
, whence we

find also a hyperbolic line adjacent to both l and m. Now suppose n = 3. If
〈l,m〉π

P
does not contain a hyperbolic line, then it is totally singular and, because of

the dimensions, equal to 〈l,m〉
P
. But 〈l,m〉

P
is not totally singular, as it contains

hyperbolic lines, a contradiction. The space 〈l,m〉
P

is a projective plane, and the

hyperbolic lines contained in which are precisely those of {l,m}⊥⊥, by Lemma
4.4.6. If this plane contains two adjacent hyperbolic lines aF + bF and cF + dF then
(a, b) = (a, aα1 + cα2 +dα3) = (a, a)α1 +(a, c)α2 +(a, d)α3 = 0 (where (·, ·) denotes
the bilinear form), a contradiction to the fact that aF + bF is a hyperbolic line.
Conversely, suppose l and m are non-intersecting hyperbolic lines. Then 〈l,m〉

P
is

a projective 3-space and 〈l,m〉
P
∩ W2n(F) is a nondegenerate symplectic space (the

direct sum of two disjoint hyperbolic lines) or has a projective line as its radical
(and hence the space is the direct sum of a hyperbolic line and a non-intersecting



4.4. HYPERBOLIC LINES IN TYPE Cn GEOMETRIES 97

singular line). In both cases 〈l,m〉
P

contains adjacent hyperbolic lines. We may

assume {l,m}⊥ 6= ∅, and the claim follows from Lemma 4.4.6. 2

We now want to recover the points of the polar space as pencils of hyperbolic
lines similar to Section 2.2. More precisely, we will copy the method of Lemma
2.1.11: three mutually intersecting hyperbolic lines k, l, m do intersect in one point
if there exists a fourth hyperbolic line j that intersects with the first three and
spans a projective 3-space with two of them. In terms of double perps this means
that k, l and m are intersecting in one point if there exists a hyperbolic line j with
{k, l}⊥⊥

= S(〈k, l〉
P
) ( S(〈j, k, l〉

P
) = {j, k, l}⊥⊥

. The former equality is due to
Lemma 4.4.6, the latter is due to Lemma 4.4.8. The only problem is to ensure that
{k, l}⊥ 6= ∅ 6= {j, k, l}⊥. The first inequality has been shown in Lemma 4.4.9, the
second will be handled by the following lemma. More precisely, we show that we
can choose j in such a way that {j, k, l}⊥ 6= ∅ holds.

Lemma 4.4.10
Let n ≥ 3. For distinct intersecting hyperbolic lines l andm of W2n(F) there exists a
hyperbolic line j that intersects l and m such that 〈j, l,m〉

P
has projective dimension

3 and {j, l,m}⊥ in S2n(F) is non-empty.

Proof. Consider the plane 〈l,m〉
P
. It contains a point x as radical, which lies on

neither l nor m. The space lπ in W2n(F) is isomorphic to W2n−2(F) and contains
a point y that is not collinear with x, because W2n(F) is nondegenerate. Therefore
〈l, xy〉

P
is a nondegenerate symplectic 3-space, a symplectic generalized quadrangle,

and {l, xy}⊥ 6= ∅ as n ≥ 3. Thus we are done, if we can find a point p of 〈l, xy〉
P

with 〈l,m, p〉
P

= 〈l, xy〉
P

that is not collinear with q := l∩m. But this point p exists
since 〈l,m〉

P
⊂ 〈l, xy〉

P
and 〈l, xy〉

P
is nondegenerate, so we can choose j to be the

hyperbolic line pq. 2

Definition 4.4.11 Let n ≥ 3. Following Lemma 4.4.9, distinct vertices l, m of a
graph Γ isomorphic to S2n(F) are said to intersect if {l,m}⊥ 6= ∅ and the double

perp {l,m}⊥⊥ in Γ does not contain adjacent vertices. In view of the paragraph
before Lemma 4.4.10 three mutually intersecting vertices k, l, m of Γ ∼= S2n(F) are
said to intersect in one point if there exists a vertex j of Γ that intersects k, l,
and m and that has the property that {j, k, l}⊥ 6= ∅ and {k, l}⊥⊥ = S(〈k, l〉

P
) (

S(〈j, k, l〉
P
) = {j, k, l}⊥⊥

.

An interior point of a graph Γ isomorphic to S2n(F) is a maximal set of mu-
tually intersecting vertices of Γ any three elements of which intersect in one point.
Denote the set of all interior points of Γ by P . Furthermore, an interior hyper-
bolic line of Γ ∼= S2n(F) is a vertex of Γ. The set of interior hyperbolic lines of Γ
is denoted by H.

By definition we have the following.
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Proposition 4.4.12
Let n ≥ 3, and let Γ be isomorphic to S2n(F). The geometry (P ,H,⊃) on the
interior points and interior hyperbolic lines of Γ is isomorphic to the geometry on
points and hyperbolic lines of the symplectic space W2n(F). 2

Definition 4.4.13 Let ∼⊂ P × P be a relation that denotes the fact that two
interior points p, q do not lie on a common interior hyperbolic line, and denote by
p∼ the set of all interior points in ∼ relation to p. Then for any two points p ∼ q,
the interior singular line pq is defined as the set ({p, q}∼)

∼
. Denote the set of

all interior singular lines by L.

Corollary 4.4.14 (of Proposition 4.4.12)
Let n ≥ 3, and let Γ be isomorphic to S2n(F). The geometry (P ,L,⊂) on the
interior points and the interior singular lines of Γ is isomorphic to the symplectic
polar space W2n(F).

Proof. This follows from Proposition 4.4.12 and Proposition A.6.2. 2

The space (P ,L,⊂) of Corollary 4.4.14 is the interior polar space (P ,L)
on Γ ∼= S2n(F) and space (P ,H,⊃) is the interior hyperbolic space (P ,H) on
Γ ∼= S2n(F). We will mainly work with the interior hyperbolic space.

Local recognition

We now understand the graph S2n(F) well enough to prove a local recognition result.
Let n ≥ 6, let F be a field, and let Γ be a connected graph that is locally S2n(F).
It will turn out that Γ is isomorphic to S2n+2(F). To obtain this result we will
use methods similar to those in Section 2.4. From the interior hyperbolic spaces
on the perps we will construct a global geometry on Γ, which will be shown to be
isomorphic to the hyperbolic long root group geometry of a symplectic group (using
the characterizations offered in the beginning of this section), whose hyperbolic line
graph is isomorphic to Γ.

Lemma 4.4.15
Let w ⊥ x ⊥ y ⊥ z be a chain of vertices in Γ. Then w⊥ ∩ x⊥ ∩ y⊥ ∩ z⊥ 6= ∅. In
particular, the diameter of Γ is two, and Γ, viewed as a two-dimensional simplicial
complex whose two-simplices are its triangles, is simply connected.

Proof. The perp y⊥ is isomorphic to S2n(F), which can be endowed with the interior
polar space isomorphic to W2n(F) living in a projective space P2n−1(F). By Lemma
4.4.5, the intersections x⊥∩y⊥ and y⊥∩z⊥ are isomorphic to S2n−2(F) and can be
endowed with interior polar spaces isomorphic to W2n−2(F) that are subspaces of
the interior polar space on y⊥. These subspaces live in hyperlines of the projective
space P2n−1(F). Therefore the intersection x⊥∩y⊥∩z⊥ is a subspace of the interior
polar space on y⊥ living in a subspace of P2n−1(F) of projective codimension at most
three. The polar space on x⊥ ∩ y⊥ ∩ z⊥ can also be considered as a subspace of
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the interior polar space on x⊥. The intersection w⊥ ∩ x⊥ admits an interior polar
space isomorphic to W2n−2(F), as above. Now w⊥ ∩x⊥ ∩y⊥ ∩z⊥ can be consdered
as the intersection of the interior polar space on w⊥ ∩ x⊥ with the polar space on
x⊥∩y⊥∩z⊥. The dimensions of the projective spaces are at least 2n−3 and 2n−5,
whence the dimension of the intersection is at least 2n−7 ≥ n−1, since n ≥ 6. But
the largest totally isotropic subspace of the interior projective space on w⊥∩x⊥ has
(projective) dimension n− 2 and we can find a hyperbolic line in w∩x⊥ ∩y⊥ ∩ z⊥,
proving the first claim. The other claims are immediate consequences. 2

We do not have to worry about how to define global hyperbolic lines as we did
in Section 2.4 for locally line-hyperline graphs. Here, our global hyperbolic lines
are simply the vertices of the graph Γ. A bit more complicated is the definition of
global points. However this can be done in exactly the same way as in Section 2.4
by intersections of hyperbolic lines. We omit the details.

Notation 4.4.16 Denote the set of global hyperbolic lines of Γ by HΓ and the set
of global points of Γ by PΓ.

Proposition 4.4.17
(PΓ,HΓ) is a connected partial linear space.

Proof. Let p and q be two global points. Fix a vertex in each point, p and q,
say. By Lemma 4.4.15, there exists a vertex x adjacent with both p and q. Hence
there exist local counterparts px and qx, where the index x indicates that we are
considering interior points on x⊥. Connectedness of (PΓ,HΓ) now follows from
connectedness of the interior hyperbolic space on x⊥. Moreover, two global points
p, q cannot intersect in more than one vertex, whence (PΓ,HΓ) is a partial linear
space. For, if two global points would intersect in two vertices x, y, then there exists
a vertex z adjacent to both x, y by Lemma 4.4.15. But then p∩ z⊥ and q ∩ z⊥ are
two local points that intersect in two vertices, a contradiction. 2

Proposition 4.4.18
The space (PΓ,HΓ) is isomorphic to the geometry of hyperbolic lines of a symplectic
polar space (PΓ,LΓ) embedded in some projective space of dimension at least 3.

Proof. Let l and m be two intersecting hyperbolic lines of (PΓ,HΓ). By Lemma
4.4.15, there exists a vertex k of Γ adjacent to both l and m. Local analysis of
k⊥ (or rather the interior hyperbolic space on it) shows that the intersecting lines l
and m are contained in a dual affine plane. Certainly, (PΓ,HΓ) contains two such
planes. If F 6= F2, the space (PΓ,HΓ) contains a line with more than three points
and the claim follows from Theorem 4.4.3 with Proposition 4.4.17. If F = F2, we
can invoke Theorem 4.4.2. It remains to show that the geometry (PΓ,HΓ) does not
belong to Cases (ii) or (iii). Case (ii) is easily excluded, as locally all symplectic
points occur, not only a subset of the symplectic points. Case (iii) is a bit more
difficult. However, by the second statement of Theorem 4.4.2, we obtain Ω′ = ∅.
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Indeed, for any pair x, y of points of (PΓ,HΓ), we find hyperbolic lines l incident
with x and m incident with y. By Lemma 4.4.15 there exists a hyperbolic line k
that is adjacent to both l and m in Γ. Therefore, we can consider x, y in some
local space isomorphic to W2n(F). But if x 6= y, then we find a point that lies on
a common hyperbolic line with x, but not with y. Hence, in (PΓ,HΓ), the equality
{y}∪{p ∈ P | p 3 l, x 3 l ∈ L} = {x}∪{p ∈ P | p 3 l, y 3 l ∈ L} implies x = y, and
Ω′ = ∅. It follows from the size of n that (PΓ,HΓ) cannot belong to Case (iii) either.
The proposition is proved. 2

Proposition 4.4.19
The hyperbolic line graph of (PΓ,LΓ) (as defined in Proposition 4.4.18) is isomorphic
to Γ.

Proof. By definition the elements of HΓ are precisely the vertices of Γ. The pre-
ceding proposition tells us that the elements of HΓ are also precisely the hyperbolic
lines of the symplectic space (PΓ,LΓ), and we have a natural bijection between the
hyperbolic lines of (PΓ,LΓ) and the vertices of Γ, which preserves adjacency. 2

Proposition 4.4.20
The space (PΓ,LΓ) is isomorphic to the symplectic polar space W2n+2(F).

Proof. By Proposition 4.4.19, the hyperbolic line graph of (PΓ,LΓ) is isomorphic to
Γ. Since Γ is locally S2n(F), this means for any hyperbolic line l that the subspace
of (PΓ,LΓ) consisting of all points collinear with all points of l is isomorphic to
W2n(F). But the only symplectic polar space with that property is W2n+2(F). The
claim follows. 2

We have proved the following.

Theorem 4.4.21
Let n ≥ 6, let F be a field, and let Γ be a connected graph that is locally S2n(F).
Then Γ is isomorphic to S2n+2(F). 2

Notice that the dimensions of the vector spaces belonging to Theorem 4.4.21 and
Theorem 2.4.19 coincide. Actually, also the following holds, which is an analogue of
Theorem 2.5.1.

Theorem 4.4.22
Let n ≥ 4, let F be a field, and let Γ be a connected graph that is locally S2n(F).
Then Γ is isomorphic to S2n+2(F).

Sketch of proof. Global hyperbolic lines are simply the vertices of Γ. As sketched
for Theorem 2.5.1 we can define global ‘hyperbolic’ planes and global ‘hyperbolic’ 3-
spaces. Global points are defined as follows. Two global hyperbolic lines intersect if
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and only if they span a global hyperbolic plane. Three global hyperbolic lines inter-
sect in a single point if they mutually intersect and together span a global hyperbolic
3-space. From the structure of the global hyperbolic planes it is immediately clear
that the geometry on global points and global hyperbolic lines satisfies the hypoth-
esis of Theorem 4.4.1. It remains to prove that the graph we are considering is the
hyperbolic line graph of the corresponding symplectic space. �

The bound on n in Theorem 4.4.22 is the lowest possible, as a fundamental SL2

of the group F4(F) centralizes a group isomorphic to Sp6(F) (see Proposition C.5.1
or 7.18 in Chapter 3 of [Tim01]), thus yielding a counterexample for n = 3. Finally,
a discussion of geometrizability as in Section 4.3 yields a result on perp spaces.

Theorem 4.4.23
Let n ≥ 4, let F be a field, and let (P ,L,⊥) be a perp space in which for any line

k ∈ L the space k⊥ is isomorphic to the hyperbolic long root group geometry of
PSp2n(F) with l ⊥ m if and only if [l,m] = 1 for lines l, m inside k⊥. If the graph
(L,⊥) is connected, then (P ,L,⊥) is isomorphic to the hyperbolic long root group
geometry of PSp2n+2(F). �

Corollary 4.4.24
Let n ≥ 4, let (P ,L) be a partial linear space, and let ⊥ denote non-collinearity in
that space. Assume there exists a nondegenerate symplectic space of rank n such
that for all k ∈ L the set k⊥ of all points and lines of (P ,L) not collinear to k is a
subspace of (P ,L) that is isomorphic to the hyperbolic geometry of that symplectic
polar space. If the graph (L,⊥) is connected, then the space (P ,L) is isomorphic
to the geometry on the points and hyperbolic lines of a nondegenerate symplectic
polar space of rank n+ 1. �

Finally, we have a group-theoretic consequence of our findings.

Theorem 4.4.25
Let n ≥ 4, and let F be a field of characteristic distinct from 2. Let G be a group
with subgroups A and B isomorphic to SL2(F), and denote the central involution
of A by x and the central involution of B by y. Furthermore, assume the following
holds:

• CG(x) = A×K with K ∼= Sp2n(F);

• CG(y) = B × J with J ∼= Sp2n(F);

• A is a fundamental SL2 of J ;

• B is a fundamental SL2 of K;

• there exists an involution in J ∩K that is the central involution of a funda-
mental SL2 of both J and K.

If G = 〈J,K〉, then G/Z(G) ∼= PSp2n+2(F). �
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Corollary 4.4.26
Let n ≥ 4, and let F be a field of characteristic distinct from 2. Let G be a group
with a subgroup A isomorphic to SL2(F), let x be the central involution of A, and
let g be an element in G such that

• gxg−1 6= x and g2xg−2 = x;

• CG(x) = A×K with K ∼= Sp2n(F);

• gAg−1 is a fundamental SL2 of K; and

• g centralizes an involution of K that is the central involution of a fundamental
SL2 of both K and gKg−1.

If G = 〈K, g〉, then G/Z(G) ∼= PSp2n+2(F). �

4.5 Hyperbolic lines in type 2An geometries

It is possible to obtain results on unitary spaces similar to the ones on symplectic
spaces in the previous section. Let us just briefly mention our findings. The starting
point is again a theorem of Hans Cuypers’. He has characterized the geometry on
the hyperbolic lines of a finite unitary polar geometry in the flavor of Theorem 4.4.3:

Theorem 4.5.1 (Cuypers [Cuya], Theorem 1.3)
Let (P ,L) be a non-linear, planar (i.e., every pair of intersecting lines is contained
in a unique plane) and connected partial linear space of finite order q ≥ 3. Suppose
the following hold in (P ,L):

(i) all planes are finite and either linear or isomorphic to a dual affine plane;

(ii) in a linear plane no four lines intersect in six points;

(iii) if x⊥ ⊆ y⊥, then x = y; and

(iv) if π is a linear plane and x a point, then x⊥ ∩ π 6= ∅.

Then q is a prime power and (P ,L) is isomorphic to the geometry of hyperbolic lines
in a nondegenerate symplectic or unitary polar space over the field Fq, respectively
Fq2 .

In the preceding theorem the symbol ⊥ stands for non-collinearity in the partial
linear space (P ,L). Therefore, Cuypers’ symbol ⊥ of non-collinearity conincides
with our symbol ⊥ for commuting, as distinct root subgroups of the unitary group
either commute or form a hyperbolic pair.

The main difference to the case of hyperbolic lines in symplectic polar spaces is,
that one has to be a bit more careful when recovering the points. In a symplectic
space all points are singular, whereas in a unitary space we have to develop a method
to distinguish the singular and non-singular points. One can handle that problem
with the following lemma.
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Lemma 4.5.2
Let P be a nondegenerate unitary polar space of rank ≥ 3, and let l and m be two
hyperbolic lines of P . If l and m intersect (possibly in a non-singular point), then
there is at most one point of 〈l,m〉

P
that does not lie on a hyperbolic line contained

in 〈l,m〉
P
. Moreover, if such a point exists, then it is singular.

Proof. The projective plane spanned by two intersecting hyperbolic lines either
contains a unital or a degenerate plane of P . In case of a unital, each projective
point of the plane lies on a hyperbolic line contained in the plane. In case of a
degenerate plane, any projective point of the projective plane but the radical of the
polar plane lies on a hyperbolic line contained in the plane. The lemma is now
proved. 2

Notice that this lemma precisely resembles Condition (i) of Theorem 4.5.1. The
linear spaces mentioned in the theorem come from the unitals, whereas the dual
affine planes come from the degenerate planes with a point as radical. By counting
the number of projective points that are contained in a hyperbolic line of that plane
we can decide whether the plane contains a unital or a single point as a radical. If
there is a radical, then all other points of that plane are non-singular. In this way
we can identify all non-singular points. The remaining ones are singular.

Then the following holds:

Theorem 4.5.3
Let n ≥ 8, let F be a finite field distinct from F2, let K be a quadratic extension of
F, and let Γ be a connected graph that is locally the graph on the hyperbolic lines of
a nondegenerate unitary polar space Un(K) with the commutation relation as adja-
cency. Then Γ is isomorphic to the graph on the hyperbolic lines of a nondegenerate
unitary polar space Un+2(K) with commuting as adjacency. �

As in the case of symplectic groups, there exists a counterexample for n = 6
coming from a group of type F4, leaving the case n = 7 as an open problem.
Indeed, let K be a quadratic extension of some field F. Then the centralizer of a
fundamental SL2 in 2E6(K) is isomorphic to SU6(K), see Proposition C.5.1 or 7.18
in Chapter 3 of [Tim01].

The consequence for perp spaces reads as follows.

Theorem 4.5.4
Let n ≥ 8, let F be a finite field distinct from F2, let K be a quadratic extension

of F, and let (P ,L,⊥) be a perp space in which for any line k ∈ L the space k⊥

is isomorphic to the hyperbolic long root group geometry of PSUn(K) with l ⊥ m
if and only if [l,m] = 1 for lines l, m inside k⊥. If the graph (L,⊥) is connected,
then the space (P ,L,⊥) is isomorphic to the hyperbolic long root group geometry
of PSUn+2(K). �

Finally, there is a group-theoretic implication as well.
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Theorem 4.5.5
Let n ≥ 8, let F be a finite field of characteristic distinct from 2, and let K be a
quadratic extension of F. Let G be a group with subgroups A and B isomorphic to
SL2(F), and denote the central involution of A by x and the central involution of
B by y. Furthermore, assume the following holds:

• CG(x) = A′ ×K with K ∼= GUn(K), A ≤ A′;

• CG(y) = B′ × J with J ∼= GUn(K), B ≤ B′;

• A is a fundamental SL2 of J ;

• B is a fundamental SL2 of K; and

• there exists an involution in J ∩K that is the central involution of a funda-
mental SL2 of both J and K.

If G = 〈J,K〉, then PSUn+2(K) ≤ G/Z(G) ≤ PGUn+2(K). �

Corollary 4.5.6
Let n ≥ 8, let F be a finite field of characteristic distinct from 2, and let K be
a quadratic extension of F. Let G be a group with a subgroup A isomorphic to
SL2(F), let x be the central involution of A, and let g be an element in G such that

• gxg−1 6= x and g2xg−2 = x;

• CG(x) = A′ ×K with K ∼= GUn(K), A ≤ A′;

• gAg−1 is a fundamental SL2 of K; and

• g centralizes an involution of K that is the central involution of a fundamental
SL2 of both K and gKg−1.

If G = 〈K, g〉, then PSUn+2(K) ≤ G/Z(G) ≤ PGUn+2(K). �

4.6 Hyperbolic lines in type F4 geometries

In this section we study hyperbolic long root geometries of type F4. To be precise,
we provide a direct consequence of a theorem by Arjeh Cohen. A metasymplectic
space, as defined in 10.13 of [Tit74], is the point-shadow space of a building geom-
etry of type F4 (with the four types point, line, plane, and symplecton) such
that the point shadows of two distinct symplecta intersect in either the empty set, a
point, a line, or a plane. The metasymplectic space is called thick if the symplecta
are thick (as polar spaces) and every plane is contained in at least three symplecta.
Then there exists the following characterization.

Theorem 4.6.1 (Cohen [Coh82], Theorem 2.3)
Let (P ,L) be a connected partial linear space. Then P and L can be identified with
the point set and line set of a connected metasymplectic space or a polar space if
and only if (P ,L) satisfies the following axioms:
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(F1) For each p ∈ P and each l ∈ L either none, precisely one or all points of l are
collinear to p (i.e., (P ,L) is a Γ-space).

(F2) For each pair p, q ∈ P with p collinear to q, the collinearity graph on the
common neighbors of p and q is not a clique.

(F3) For each pair p, q ∈ P with p not collinear to q, such that there are at least
two distinct points collinear to both p and q, the set of all points collinear to
both p and q together with the induced lines is a polar space of rank at least
two.

(F4) There are no minimal 5-circuits, i.e., given points p1, p2, p3, p4, p5 with pi

collinear pi+1, indices taken modulo five, there is at least one i for which xi is
collinear with a point on the line through xi+2 and xi+3.

(F5) If p, q, r ∈ P with q collinear to r are such that there are at least two distinct
points collinear to both p and q, then there exists a point collinear to both p
and r.

Using this theorem, we can characterize the hyperbolic long root group geometry
of Chevalley groups of type F4 as perp spaces satisfying a number of further axioms.
We would like to express our gratitude to Gábor Ivanyos for a fruitful discussion on
metasymplectic and parapolar spaces.

Proposition 4.6.2
Let (P ,L,⊥) be a perp space such that for any hyperbolic line l ∈ L the space l⊥

is a rank two geometry and

(i) for any strongly commuting pair p, q and distinct x, y ∈ {p, q}⊥⊥
, we have

{x, y}⊥⊥
= {p, q}⊥⊥

;

(ii) to any special pair p, q, there exists a unique point x that strongly commutes
with both p and q; moreover, a ⊥ p, q implies a ⊥ x for any point a;

(iii) to any polar pair x, y, there exists a strongly commuting pair a, b such that
the pairs xa, xb, ya, yb strongly commute, and vice versa;

(iv) if x, y form a polar pair and a, b form a strongly commuting pair such that
xa, xb, ya, yb strongly commute, then x, y are strongly commuting to all of
{a, b}⊥⊥

;

(v) the following configuration does not exist: xi ∈ P , 1 ≤ i ≤ 5, with xi, xi+1

strongly commuting and xi, xi+2 special, indices taken modulo 5.

(vi) the following configuration does not exist: a, b, p ∈ P with a, b strongly com-

muting and p polar to all points of {a, b}⊥⊥;

(vii) the graph (P ,⊥) is connected.
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Then (P ,L,⊥) is the hyperbolic root group geometry of a metasymplectic space.

Proof. Let X :=
{

{p, q}⊥⊥ | p and q are strongly commuting
}

be the set of singular

lines. We will prove this proposition by showing that the geometry (P ,X ) satisfies
the axioms of Theorem 4.6.1.

(P ,X ) is connected by Axiom (vii) and Axiom (iii). It satisfies (F1) by the

following: Suppose p, q are strongly commuting and assume that a 6∈ {p, q}⊥⊥
is

strongly commuting with distinct x, y ∈ {p, q}⊥⊥
. By a ⊥ x, y and Axiom (i) we

have a ⊥ {p, q}⊥⊥. Suppose a is polar to z ∈ {p, q}⊥⊥. Then z has to be strongly
commuting with a by Axiom (iv), a contradiction. Hence if a is strongly commuting

with two points of {p, q}⊥⊥
, then it is strongly commuting with all points on that

singular line and, thus, (P ,X ) is a Γ-space.
The validity of Axiom (F2) immediately follows from Axiom (iii).
For Axiom (F3), let x, y be two points that are not strongly commuting such

that the set S of points strongly commuting with both x and y contains at least two
points. By Axiom (ii), the points x and y cannot form a special pair. They cannot
form a hyperbolic pair either, by the definition of strongly commuting. Hence (x, y)
is a polar pair. We have to prove that S is a polar space of rank at least two. By
Axiom (iii) there exists a strongly commuting pair a, b in S, whence S contains
lines. Now let l be any line of S and p be any point of S off l. The point p cannot
be special with any point on l since both x and y are strongly commuting with all
points in S, contradicting Axiom (ii). They cannot form a hyperbolic line either,
by the definition of strongly commuting. Hence p ⊥ l. But now Axiom (vi) implies
the existence of a point on l that strongly commutes with p, proving the validity of
Axiom (F3), since (P ,X ) is a Γ-space.

To prove Axiom (F4), suppose x1, x2, x3, x4, x5 ∈ P where xi, xi+1, indices taken
modulo 5, are strongly commuting and form a minimal circuit of length 5. Then
x1 cannot be polar to both x3 and x4, since otherwise we find a point on the line
x3x4 strongly commuting with x1 by Axiom (vi), contradicting the minimality of
the circuit. Hence without loss of generality x1 and x4 form a special pair (strongly
commuting is impossible since it would contradict the minimality of the circuit and
hyperbolic is impossible by the definition of strongly commuting in view of the point
x5) and the point x5 is the unique point strongly commuting with both x1 and x4.
Now x2 cannot be polar to x4, as otherwise x2 ⊥ x4 and x2 ⊥ x1 yield x2 ⊥ x5,
whence x2, x5 being strongly commuting or polar, both cases contradicting the
minimality of the circuit (strongly commuting immediately, polar by the above).
Continuing arguments like the above, we end up with the configuration that xi,
xi+1 are strongly commuting and xi, xi+2 are special, indices taken modulo 5, a
configuration that does not exist by Axiom (v). Hence a minimal circuit of length
5 does not exist.

Now let us consider Axiom (F5). Obviously, p and q can neither be hyperbolic
nor special. If they are strongly commuting, the axiom is obviously satisfied. So
suppose p and q are polar. Then any point r collinear to q forms either a strongly
commuting, a polar, or a special pair with p. So (P ,X ) satisfies (F5).
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Theorem 4.6.1 implies that (P ,X ) is a connected metasymplectic space or a
polar space. However it can not be a polar space. Indeed, let x, y be a hyperbolic
pair. Then there does not exist any point strongly commuting with both x and y, by
the definition of strongly commuting. Hence there exists a line through x no point
on which is strongly commuting with y, violating the Buekenhout-Shult Axiom. It
is immediate that (P ,L,⊥) is the geometry on the points and hyperbolic lines of
(P ,X ) with x ⊥ y if and only if x and y commute. The theorem is now proved. 2

It remains to show that the hyperbolic long root groups geometries of metasym-
plectic spaces satisfy the hypothesis of Proposition 4.6.2. Certainly, those geometries
are connected. Moreover, the centralizers of hyperbolic lines are listed in 7.18 in
Chapter 3 of [Tim01], all of which give rise to rank two geometries on long root sub-
groups and hyperbolic lines. A typical line of the metasymplectic space on distinct
strongly commuting long root subgroups A, B is defined as the group 〈A,B〉. Axiom
(i) states that any two distinct root subgroups contained in a line span the same
group and that the double centralizer of 〈A,B〉 in G (the group belonging to the F4

building) equals 〈A,B〉, which is true by [Coo79]. Axiom (ii) follows from Theorem
C.4.1; everything that commutes with two root subgroups A, B, also commutes with
their span and the center of the latter. One implication of Axiom (iii) means that
for a polar pair x, y, the space of all common neighbors of x and y contains a line.
This follows from the fact that metasymplectic spaces have polar rank 3, whence
the space of all common neighbors of x and y is a generalized quadrangle. The other
implication holds, e.g., by Axiom (F2) of Theorem 4.6.1. Axiom (iv) follows from
the fact that a metasymplectic space is a Γ-space, which is Axiom (F1) of Theorem
4.6.1. Axiom (v) and Axiom (vi) hold by the proof of Theorem 12.11 of [Tim91].
Axiom (vii) follows from the connectedness of a metasymplectic space and the fact
that ⊥ corresponds to commuting.

It would be interesting to obtain a characterization of hyperbolic long root ge-
ometries of type F4 by means of centralizers of fundamental SL2’s.
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Appendix A

Synthetic Geometry

In this appendix we collect the relevant definitions of notions and concepts that are
used throughout the main body of this thesis. We refer to the literature for more
information and a systematic approach.

A.1 Chamber systems and geometries

Definition A.1.1 A chamber system over I is a pair C = (C, {∼i| i ∈ I}) con-
sisting of a set C, whose members are called chambers, and a collection of equiva-
lence relations ∼i on C indexed by i ∈ I . Two chambers c, d are called i-adjacent
if c ∼i d. The rank of C is |I |. The pair (C,∼I) is called the graph of C. A
path in this graph is called a gallery. A path of (C,∼J ) is called a J-gallery. A
gallery is called closed, if its starting chamber and end chamber are equal. It is
called simple, if it does not contain repetitions, i.e., no two consecutive chambers
are equal.

The chamber system C is called connected if its graph is connected. For J ⊂ I ,
a connected component of (C, (∼i)i∈J ) is called a J-cell of C. For i ∈ I , the (I\ {i})-
cells are called i-panels. For a chamber c ∈ C let cJ denote the J-cell that contains
c. The chamber system C is called residually connected if, for every subset J of
I and every family of j-panels Zj , one for each j ∈ J , with the property that any
two have a non-empty intersection, it follows that

⋂

j∈J Zj is an (I\J)-cell.

Definition A.1.2 A pregeometry over I is a triple G = (X, ∗, typ) where X is
a set (its elements are called the elements of G), ∗ is a symmetric and reflexive
relation defined on X which is called the incidence relation of G, and typ is a
map from X to I (the set I is called the type set of G) such that typ(x) = typ(y)
and x∗y implies x = y. The pregeometry G is called connected if the graph (X, ∗)
is connected.

If A ⊆ X , then A is of the type typ(A), of rank |typ(A)|, and of corank
|I\typ(A)|. The cardinality |I | of I is called the rank of G. A flag of G is a set
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of mutually incident elements of G. Flags of type I are called chambers. If F is
a flag of G, then the residue of F in G is the triple GF = (XF , ∗F , typF ) where
XF = F ∗\F , i.e., the set of elements of X that are incident with but distinct from
all elements of F , and ∗F , typF are the restrictions of ∗ and typ to XF ×XF and
XF , respectively. The pregeometry G is called residually connected if (XF , ∗F )
is a connected graph for each flag F of G such that |I\typ(F )| ≥ 2 and non-empty
for each flag F such that |I\typ(F )| = 1.

A geometry over I is a pregeometry G over I in which every maximal flag is
a chamber. A geometry G is thick if every flag of type distinct from I is contained
in at least three distinct chambers of G.

Proposition A.1.3 (e.g., Buekenhout, Cohen [BC], Lemma 1.6.4)
A residually connected pregeometry is a geometry.

Definition A.1.4 If C is a chamber system over I , the pregeometry of C, notation
G(C), is the pregeometry over I determined as follows. Its elements of type i are
the i-panels. Two panels x, y are incident if and only if x∩ y 6= ∅ in C, i.e., x and y
have a chamber in common.

Definition A.1.5 If G is a geometry over I , then the chamber system of G,
notation C(G), is the chamber system over I determined as follows. Its elements are
the chambers of G where two chambers x, y are i-adjacent if and only if x = y or x
and y differ in precisely the element of type i.

Proposition A.1.6 (e.g., Buekenhout, Cohen [BC], Proposition 3.6.5)
Let I be a finite index set.

(i) If G is a residually connected geometry over I , then C(G) is a residually con-
nected chamber system over I .

(ii) If C is a residually connected chamber system over I , then G(C) is a residually
connected geometry over I .

A.2 Tits buildings

The standard reference for Tits buildings is of course Tits’ work [Tit74]. See also
[Bue95], [BC], [Ron89], [Bro89].

Definition A.2.1 A chamber system of Coxeter type is called a Tits building
if every simple closed gallery with minimal type is trivial, i.e., consists of a single
chamber. A Tits building is spherical if its Coxeter diagram is spherical.

Proposition A.2.2 (e.g., Buekenhout, Cohen [BC], Corollary 13.4.5)
Tits buildings are residually connected.
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With view to Propositions A.1.6 and A.2.2, we can consider a spherical Tits
building also as a geometry, the so-called building geometry.

Definition A.2.3 (alternative definition) Let D be a Coxeter diagram. A Tits
building of type D is a pair B = (C, δ) where C is a set and δ : C×C →W (D) is
a distance function satisfying the following axioms for x, y ∈ C, w = δ(x, y), and
the set S of generators of W (D).

(i) w = 1 if and only if x = y;

(ii) if z ∈ C is such that δ(y, z) = s ∈ S, then δ(x, z) equals w or ws, and if,
furthermore, l(ws) = l(w) + 1, then δ(x, z) = ws;

(iii) if s ∈ S, there exists a z ∈ C such that δ(y, z) = s and δ(x, z) = ws.

In case of a spherical Tits building, for x, y ∈ C denote by x opp y the fact that
δ(x, y) = w0, the longest word of the Weyl group W (D).

Theorem A.2.4 (Tits [Tit74], Theorem 4.1.2)
Let B be a thick spherical Tits building of rank at least two with irreducible diagram.
Then B is 2-simply connected.

Corollary A.2.5
Let B be a thick spherical Tits building of rank at least three with irreducible
diagram. Then B is simply connected. 2

A Tits building of rank two, a generalized polygon, cf. Section A.6, is not simply
connected.

Corollary A.2.6 (Tits [Tit74], Theorem 13.32)
Let B be a thick spherical Tits building of rank at least two with irreducible diagram,
and let G be the corresponding Chevalley group. Let A be the amalgam of all
stabilizers in G of flags of B of corank at most two. Then G is the universal
completion of A.

Proof. This follows from Theorem A.2.4 and Tits’ lemma B.2.5. 2

Notice the similarity of Corollary A.2.6 and the different versions of the Curtis-
Tits theorem.

A.3 Twin buildings

Peter Abramenko’s lecture notes [Abr96] may serve as an introduction to the subject.

Definition A.3.1 Let D be a Coxeter diagram and let B+ = (C+, δ+), B− =
(C−, δ−) be two Tits buildings of type D. A codistance (or a twinning) between
B+ and B− is a map δ∗ : (C+ ×C−) ∪ (C− ×C+) →W (D) satisfying the following
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axioms, where ε ∈ {+,−}, x ∈ Cε, y ∈ C−ε, w = δ∗(x, y), and S is the set of
generators of W (D).

(i) δ∗(y, x) = w−1;

(ii) if z ∈ C−ε is such that δ−ε(y, z) = s ∈ S and l(ws) = l(w)− 1, then δ∗(x, z) =
ws;

(iii) if s ∈ S, there exists a z ∈ C−ε such that δ−ε(y, z) = s and δ∗(x, z) = ws.

The triple (B+,B−, δ
∗) is a twin building. For x ∈ C±, y ∈ C∓ denote by x opp y

the fact that δ∗(x, y) = 1.

Proposition A.3.2 (Tits [Tit92], Proposition 1)
Let B = (C, δ) be a spherical Tits building of type D, and let w0 be the longest
word of its Weyl group W = W (D). Let Cε, with ε = + or −, be two copies of C
and let the functions δε : Cε ×Cε →W , δ∗ : (C+ ×C−) ∪ (C− × C+) →W be defined
by δ+ = δ, δ− = w0δw0, while δ∗ = w0δ on C+ × C− and δ∗ = δw0 on C− × C+.
Then ((C+, δ+), (C−, δ−), δ∗) is a twinning and all twinnings of (spherical) type D
are obtained in that way up to isomorphism.

Proposition A.3.3 (Abramenko, Van Maldeghem [AV00], Corollary 1.5)
Let B = (B+, B−, δ

∗) be a thick twin building without any non-spherical rank 2
residues. Then the distance and codistance functions are completely determined
by the opposition relation. Hence a thick 2-spherical twin building (in particular
any spherical building) is completely determined by its set of chambers and the
opposition relation.

Proposition A.3.4 (Abramenko, Van Maldeghem [AV00], Corollary 5.5)
Let B be a thick spherical building. A permutation σ of the set of chambers of B
satisfies the implication c opp σ(d) ⇒ σ(c) opp d, for all chambers c and d of B, if
and only if σ extends to an involutive automorphism of B.

A.4 Diagrams

See [Pas94] or [BC]. A lot of intuition can be gained by studying—besides dia-
gram geometry—Lie algebras and Lie groups or Coxeter groups and reflections in
Euclidian space.

Definition A.4.1 Let I be a set of types. A diagram D over I consists of a
map D defined on

(

I
2

)

= {{i, j} ⊆ I | i 6= j} assigning to every pair {i, j} of distinct
elements of I some class D(i, j) = D(j, i) of rank two geometries over {i, j}. A
diagram D is a Coxeter diagram if the map D takes values only in the class of
generalized polygons. A diagram D over I is reducible if there exists a partition
I1 ∪ I2 = I such that D(i, j) is the class of generalized 2-gons for all i ∈ I1, j ∈ I2.
A geometry G over I belongs to the diagram D over I if for every pair of distinct
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types i, j ∈ I and every flag F sucht that the residue GF is of type {i, j} one has
GF ∈ D(i, j). In this case one also says that G is of type D. A chamber system
C over I belongs to the diagram D over I if, for each subset J of I of size two,
every J-cell of C is the chamber system of a residually connected geometry over J
belonging to D(J). A geometry or a chamber system belonging to some diagram D
are of Coxeter type if D is a Coxeter diagram.

Definition A.4.2 Let D be a Coxeter diagram over I . For distinct i, j ∈ I
denote by d(i, j) the gonality of the class of generalized polygons D(i, j). The
Coxeter group or Weyl group W = W (D) of D is the group presented as
〈

xi | i ∈ I, (xi)
2 = 1, (xixj)

d(i,j) = 1
〉

with the understanding that there is no rela-
tion between xi and xj if d(i, j) = ∞. A Coxeter diagram D is spherical if the
group W (D) is finite.

A.5 Constructions of new geometries

The direct sum of two geometries G1 and G2 is defined as follows. The type set (re-
spectively, element set) of G1⊕G2 is the disjoint union of the type sets (respectively,
element sets) of G1 and G2. The incidence relation on G1 ⊕G2 is the combination of
the incidence relations on G1 and G2 and the condition that every element of G1 is
incident with every element of G2.

The Veldkamp space V(S) of a point-line space S is the space in which a point
is a geometric hyperplane of S and a line is the collection H1H2 of all geometric
hyperplanes H of S such that H1 ∩ H2 = H1 ∩ H = H2 ∩ H or H = Hi, i = 1, 2,
where H1, H2 are distinct points of V(S). If S is a space with a fixed injection φ
from the set of points of S into the set of geometric hyperplanes of S (e.g., the map
assigning to each point of a nondegenerate polar space the space perpendicular to
p), then the space on those geometric hyperplanes of S which are an image under
φ and the induced lines of V(S) is called the Veldkamp embedding of S with
respect to φ.

A.6 Point-line spaces

Good introductions into the area of projective and polar spaces are the books
[Cam91] and [Tay92]. The book on generalized polygons is of course [Van98]. Gen-
eralized quadrangles, which are both polar spaces and generalized polygons, are
treated in [PT84].

Definition A.6.1 A point-line space is a geometry of rank two. A partial lin-
ear space is a point-line space in which two points are incident with at most one
common line, the connecting line of those two points. Any two points that admit
a connecting line are collinear. A linear space is a partial linear space in which
any pair of points admit a connecting line.
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A projective space is a linear space in which Pasch’s axiom holds: Suppose a,
b, c, d are distinct points. Then the lines ab and cd intersect if and only if the lines
ac and bd intersect.

A polar space is a partial linear space in which the Buekenhout-Shult axiom
holds: Suppose p is a point and l a non-incident line. Then either one or all points
on l are collinear to p.

Let n ≥ 2. A generalized n-gon is a point-line space that does not contain an
ordinary k-gon for k < n and that has the property that any two of its elements are
contained in an ordinary n-gon. A generalized n-gon is also called a generalized
polygon.

Proposition A.6.2 (e.g. Buekenhout, Cohen [BC], Corollary 9.5.6)
Let x, y be distinct collinear points of a nondegenerate polar space. Denote collinear-

ity in the polar space by ⊥. Then l = ({x, y}⊥)⊥ is the unique line on x and y.

A geometric hyperplane of a point-line space S is a proper subspace of S that
meets every line of S.

A.7 Coverings and simple connectedness

Definition A.7.1 Let G be a geometry. A path of length k in the geometry is a
sequence of elements x0, . . . , xk such that xi and xi+1 are incident, 0 ≤ i ≤ k − 1.
We do not allow repetitions; hence xi 6= xi+1. A cycle based at an element x is
a path in which x0 = xk = x. Two paths are homotopically equivalent if one
can be obtained from the other via the following operations (called elementary
homotopies): inserting or deleting a return (i.e., a cycle of length 2) or a triangle
(i.e., a cycle of length 3). The equivalence classes of cycles based at an element x
form a group under the operation induced by concatenation of cycles. This group
is called the fundamental group of G and denoted by π1(G, x). A connected
geometry is called simply connected if its fundamental group is trivial. A cycle
that is homotopically equivalent to the cycle of length 0 is called null homotopic,
or homotopically trivial.

Definition A.7.2 Suppose G1 and G2 are two geometries over the same type set
and suppose φ : G1 → G2 is a morphism of geometries, i.e., φ preserves the type
and sends incident elements to incident elements. The morphism φ is called a
covering if and only if φ is surjective and for every non-empty flag F1 in G1 the
mapping φ induces an isomorphism between the residue of F1 in G1 and the residue
of F2 = φ(F1) in G2.

Proposition A.7.3
Let G be a simply connected geometry. Then every covering of G is an isomorphism.

Proof. Suppose γ := x0x1 . . . xk = x0 is a null homotopic k-cycle based at x0 in G.
If π : G′ → G is a covering of G, then, for any element a ∈ π−1(x0), there exists a
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unique k-cycle in G′ based at a that has γ as its image. (This is clear for triangles.
On the other hand, any null homotopic cycle can be filled up with triangles.) Now,
if G is simply connected, but admits a non-injective covering π : G ′ → G, then there
exist distinct elements a and b of G ′ with π(a) = π(b). Choose a path from a to b
in G′. Then its image under π is a cycle in G, which has to lift to both a cycle in G ′

and the path from a to b in G ′ we have chosen before, a contradiction. 2

Definition A.7.4 A morphism φ : G1 → G2 of geometries is a k-covering, if φ
is surjective and for any flag F1 of corank at most k of G1, the induced mapping
from the residue of F1 in G1 onto the residue of φ(F1) in G2 is an isomorphism.
A connected geometry is k-simply connected if it admits no proper k-coverings.
Note that every k-covering is a (k − 1)-covering, so (k − 1)-simple connectedness of
a geometry implies k-simple connectedness. Moreover, if the rank of G is n, then
(n− 1)-simple connectedness of G coincides with simple connectedness of G.

Let Γ be a connected graph such that every vertex is contained in an edge and
any edge is contained in a 3-clique. Then we can consider Γ as a two-dimensional
simplicial complex whose two-simplices are its triangles. Consequently we can define
a fundamental group as we did for geometries above.

Definition A.7.5 Let Γ be a connected graph such that every vertex is contained
in an edge and any edge is contained in a 3-clique, and let x be a vertex of Γ, the
base vertex. Construct a graph Γ̂, the universal cover of Γ, as follows. The
vertices of Γ̂ are the paths in Γ starting at x where two vertices γ1, γ2 are equal if
and only if they have the same end vertex in Γ and the cycle γ1γ

−1
2 is null homotopic.

Two vertices γ1, γ2 are adjacent if and only if the end vertices are adjacent in Γ and
γ−1
1 γ2 is homotopic to a path of length 1.

Proposition A.7.6
Let Γ be a connected graph such that every vertex is contained in an edge and any

edge is contained in a 3-clique. Then the universal completion Γ̂ is independent
of the choice of the base vertex. Moreover, Γ̂ is simply connected and admits a
covering onto Γ. In particular, if Γ is locally homogeneous, then so is Γ̂.

Proof. The proof is straightforward. 2

Lemma A.7.7
Let G be a geometry. Assume that G = G1 ⊕ G2 can be decomposed as the direct
sum of geometries G1 and G2 with G1 connected of rank at least two. Then G is
simply connected.

Proof. Certainly, G is connected. Choose a base point x ∈ G1. We first prove
that any cycle originating at x is homotopic to a cycle fully contained in G1. Let
xx1 . . . xn−1x be a cycle. Proceed by induction on the number of elements on the
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cycle which are not in G1. Suppose xs is the first element in the cycle which is not
in G1. Let y ∈ G1 such that y 6= xs+1 and y is incident with xs+1. Notice that
y is incident with xs. Since the residue of xs contains G1, we can connect xs−1

with y via a path xs−1y1 . . . yk−1y fully contained in G1. Furthermore, this path is
homotopic to the path xs−1xsy. Thus, our original path is homotopic to the path
xx1 . . . xs−1y1 . . . yk−1yxs+1 . . . xn−1x. This path has fewer elements outside G1, and
our claim is proved. Choosing an element z ∈ G2 we see that this z is incident to
all elements in G1, so any cycle in G1 is null homotopic. 2



Appendix B

Flag-transitive Geometries

This appendix provides definitions and basic informations about amalgams of groups
and coverings of geometries, both concepts joined by Tits’ lemma B.2.5. The defi-
nitions as well as a lot of technique can be found in Sasha Ivanov’s book [Iva99].

B.1 Coset geometries

Definition B.1.1 Let G be a geometry. The geometry is called flag-transitive if
there exists a group G of automorphisms of G such that, whenever F , F ′ are flags
of G with typ(F ) = typ(F ′), then there exists a g ∈ G with g(F ) = F ′.

Proposition B.1.2 (e.g., Ivanov [Iva99], Proposition 1.2.1)
Let G be a geometry of rank n over the set I = {1, 2, · · · , n} of types, and let G be
a flag-transitive group of automorphisms of G. Let F = x1, x2, . . . , xn be a maximal
flag in G, and let Gxi

be the stabilizer of xi in G. Let G(G) be the incidence system
whose elements of type i are the left cosets of Gi in G and in which two elements
are incident if and only if the intersection of the corresponding cosets is non-empty.
Then G(G) is a geometry and the map y 7→ gGi, for typ(y) = typ(xi) and g(xi) = y,
establishes an isomorphism of G onto G(G).

The preceding result actually can be found in any serious book treating group-
related geometries, e.g., [BC], [Iva99]. The original idea is contained in [Kle72].

Definition B.1.3 The incidence system G(G) of Proposition B.1.2 is called the
coset geometry of G in G. We suppress the flag F .

B.2 Amalgams

Definition B.2.1 An amalgam A of groups is a set with a partial operation of
multiplication and a collection of subsets {Gi}i∈I , for some index set I , such that
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the following hold:

(i) A =
⋃

i∈I Gi;

(ii) the product ab is defined if and only if a, b ∈ Gi for some i ∈ I ;

(iii) the restriction of the multiplication to each Gi turns Gi into a group; and

(iv) Gi ∩Gj is a subgroup in both Gi and Gj for all i, j ∈ I .

It follows that the groups Gi share the same identity element, which is then the
only identity element in A, and that a−1 ∈ A is well-defined for every a ∈ A. We
will call the groups Gi the members of the amalgam A. Notice that our definition
is a special case of the general definition of an amalgam as found, say, in [Ser77].

Definition B.2.2 A group G is called a completion of an amalgam A if there
exists a map π : A → G such that

(i) for all i ∈ I the restriction of π to Gi is a homomorphism of Gi to G; and

(ii) π(A) generates G.

Among all completions of A there is one largest which can be defined as the group
having the following presentation:

U(A) = 〈th | h ∈ A, txty = tz, whenever xy = z in A〉.

U(A) is called the universal completion.

Proposition B.2.3 (e.g., Ivanov [Iva99])
Let A be an amalgam. Then U(A) is a completion of A. Furthermore, every
completion of A is isomorphic to a quotient of U(A).

Definition B.2.4 Suppose a group G ≤ Aut G acts flag-transitively on a geometry
G of rank n. A rank k parabolic is the stabilizer in G of a flag of corank k from
G. Parabolics of rank n− 1 are called maximal parabolics. They are exactly the
stabilizers in G of single elements of G.

Let F be a maximal flag in G, and let Gx denote the stabilizer in G of x ∈ G. The
amalgam A = A(F ) =

⋃

x∈F Gx is called the amalgam of maximal parabolics
in G. For a fixed flag F we also use the notation Gi for the maximal parabolic Gx,
where x ∈ F is of type i. For a subset J ⊂ I = {0, 1, . . . , n − 1}, define GJ to be
⋂

j∈J Gj , including G∅ = G. Similarly to A, we define the amalgam A(s) as the
union of all rank s parabolics. With this notation we have A = A(n−1). Moreover,
according to our definition, A(n) = G.

Tits’ Lemma B.2.5 (Tits [Tit86], Corollaire 1)
Suppose a group G acts flag-transitively on a geometry G, and let A be the amalgam
of parabolics associated with some maximal flag F of G. Then G is the universal
completion of the amalgam A if and only if G is simply connected.



Appendix C

Groups of Lie Type

This appendix offers some definitions and facts about algebraic groups, groups of
Lie type, and Chevalley groups. This appendix is to be seen as a motivation for our
geometric investigations and as a stackpile of results we are referring to in the text.
The interested reader is refered to [Ste68] or [Car72] about Chevalley groups and
groups of Lie type and to [Tim01] about abstract root groups.

C.1 Algebraic groups

Definition C.1.1 The Zariski topology on GLn(F) over an algebraically closed
field F is the topology defined by the condition that the closed sets be the solution
sets of systems of polynomial equations in the matrix entries and the inverse of the
determinant polynomial. An F-algebraic group is a closed subgroup G of GLn(F)
for some n. The Zariski topology on G is inherited from that of GLn(F).

The radical of G is the largest normal subgroup of G which is closed, connected,
and solvable. G is semisimple if the radical of G is trivial.

C.2 Finite groups of Lie type

Definition C.2.1 Let G be an algebraic group. Then a Steinberg endomor-
phism of G is a surjective algebraic endomorphism σ of G whose fixed point sub-
group CG(σ) is finite.

A σ-setup (over the algebraic closure Fp of the finite field Fp) is a pair (G, σ)
such that G is a semisimple F p-algebraic group and σ is a Steinberg endomorphism
of G. If G is a finite group, then a σ-setup for G is a σ-setup (G, σ) over Fp for
some prime p such that G is isomorphic to the subgroup of CG(σ) generated by all
its p-elements.

Lie(p) is the set of finite groups possessing a σ-setup (G, σ) over Fp such that G
is simple. Define Lie to be the union of the Lie(p) over all primes p (where for p = 2
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and p = 3 some changes have to be made as given in Definition 2.2.8 of [GLS98]; e.g.,
one has to remove A1(2) and A1(3) and replace G2(2) by its commutator group).
A group contained in Lie is called a finite group of Lie type.

Chev(p) is the set of all quasisimple groups G (i.e., [G,G] = 1 and G/Z(G) is
simple) such that G/Z(G) is a finite simple group of Lie type in characteristic p.
The set Chev is the union of the Chev(p) over all primes p. A group contained in
Chev is called a finite Chevalley group.

C.3 Chevalley groups and Steinberg relations

Definition C.3.1 (Steinberg [Ste68], Theorem 8) Let Σ be an indecompos-
able root system of rank at least two, and let F be a field. We consider the group G
generated by the collection of elements {xr(t) | r ∈ Σ, t ∈ F} subject to the following
relations:

(i) xr(t) is additive in t.

(ii) If r and s are roots and r + s 6= 0, then

[xr(t), xs(u)] =
∏

xhr+ks(Chkrst
huk)

with h, k > 0, hr+ ks ∈ Σ (if there are no such numbers, then [xr(t), xs(u)] =
1), and structure constants Chkrs ∈ {±1,±2,±3}.

(iii) hr(t) is multiplicative in t, where hr(t) equals wr(t)wr(−1) and wr(t) equals
xr(t)x−r(−t−1)xr(t) for t ∈ F∗.

For a certain choice of the structure constants Chkrs (see, e.g., Theorem 1.12.1 of
[GLS98]) the groupG is called the universal Chevalley group constructed from
Σ and F. For r ∈ Σ the group xr = {xr(t) | t ∈ F} = (F,+), and any conjugate of
xr in G, is called a root (sub)group.

Theorem C.3.2 (Steinberg [Ste68], Theorem 9)
Let Σ be an indecomposable root system of rank at least two, and let F be an
algebraic extension of a finite field. Then the relations (i) and (ii) of Definition
C.3.1 suffice to define the corresponding universal Chevalley group, i.e., they imply
the relations (iii).

Section 3.1 provides some more results on defining relations of universal Cheval-
ley groups. See Aschbacher’s work [Asc77] for a characterization of finite Chevalley
groups over fields of odd order.
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C.4 Root subgroups and abstract root subgroups

Theorem C.4.1 (Theorem 12.1 of [AS76])
Let G be a finite Chevalley group of rank at least two, other than 2F4(q). Let X and
Y be centers of distinct long root subgroups, of order q. Then one of the following
holds:

(i) 〈X,Y 〉 is elementary Abelian and is the union of q + 1 long root subgroups
which pairwise intersect trivially.

(ii) 〈X,Y 〉 is elementary Abelian and the elements of X ∪ Y are the only root
elements contained in 〈X,Y 〉.

(iii) 〈X,Y 〉 is isomorphic to a Sylow subgroup of order q3 in SL3(q), the center
Z = Z(〈X,Y 〉) is a conjugate long root subgroup, and each of XZ, Y Z are a
union of q + 1 long root subgroups as in (i).

(iv) 〈X,Y 〉 ∼= SL2(q) (or PSL2(q) in PSO+
4 (q)).

Definition C.4.2 A set Σ of Abelian non-identity subgroups of the group G is
called a set of abstract root subgroups of G, if it satisfies the following.

(i) G = 〈Σ〉 and Σg ⊆ Σ for each g ∈ G.

(ii) For each pair A,B ∈ Σ one of the following holds:

(a) [A,B] = 1.

(b) X = 〈A,B〉 is a rank one group with unipotent (in the sense of Definition
1.1 of Chapter I of [Tim01]) subgroups A and B.

(c) Z(〈A,B〉) ≥ [A,B] = [a,B] = [A, b] ∈ Σ for each a ∈ A∗ and b ∈ B∗.

If, for some field F, in (ii)(b) we always haveX ∼= (P )SL2(F), then Σ is called a set of
F-root subgroups of G. If case (ii)(c) never occurs, the set Σ is a set of abstract
transvection groups. If both hold, then the set Σ is a set of F-transvection
subgroups.

If, moreover, in any of the above notions Σ is a conjugacy class of subgroups in
G, then Σ is called a class of abstract root subgroups of G, respectively a class
of F-root subgroups, etc.

In case of Σ a set of F-root subgroups, the group X ∼= (P )SL2(F) in (ii)(b), and
any conjugate of X in G, is called a fundamental SL2. For example the group
〈X,Y 〉 ∼= SL2(q) of Theorem C.4.1(iv) is a fundamental SL2. An alternative name
for a fundamental SL2 is hyperbolic line.

Franz Georg Timmesfeld proved that the classes of F-root subgroups essentially
are the classes of root subgroups of Chevalley groups (of sufficient rank), see the
Main Theorem of [Tim91]. Confer to Theorem 4 and Theorem 5 of [Tim99] on results
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on abstract transvection groups and abstract root subgroups. See also Timmesfeld’s
book [Tim01].

Following Timmesfeld, for A ∈ Σ define

ΣA := CΣ(A)\ {A} ,

ΛA := {B ∈ ΣA | AB can be partitioned into elements of Σ} ,

ΨA := {B ∈ Σ | [A,B] ∈ Σ} ,

ΩA := {B ∈ Σ | 〈A,B〉 is a rank one group} .

The set Σ is the disjoint union of {A}, ΣA, ΨA, and ΩA. The pair A,B ∈ Σ
is called strongly commuting if B ∈ ΛA, polar if B ∈ ΣA\ΛA, special if B ∈
ΨA, and hyperbolic if B ∈ ΩA. Notice, first, that the relations defined here are
symmetric and, second, that, in case of F-root subgroups, the group 〈A,B〉 for a
hyperbolic pair A, B is a fundamental SL2 of G. The latter observation justifies
the alternative notion of a hyperbolic line instead of a fundamental SL2.

C.5 Centralizers of fundamental SL2’s

Proposition C.5.1
Let G be a Chevalley group of one of the following types, let θ be a hyperbolic line
of G, and let n ≥ 2. Then the following hold for the centralizers CG(θ):

(i) CG(θ) is of type An−2 for G of type An,

(ii) CG(θ) is of type A1 ⊕Bn−2 for G of type Bn,

(iii) CG(θ) is of type Cn−1 for G of type Cn,

(iv) CG(θ) is of type A1 ⊕Dn−2 for G of type Dn, if n ≥ 4,

(v) CG(θ) is of type A5 for G of type E6,

(vi) CG(θ) is of type D6 for G of type E7,

(vii) CG(θ) is of type E7 for G of type E8,

(viii) CG(θ) is of type C3 for G of type F4.

Proof. This is well known. For the statements about the exceptional groups, we
refer to [Coo79]. Proofs of the other statements are contained in this thesis, cf.
Section 4.1. 2

Notice that we can heuristically read off the type of the centralizer from the
extended diagram of G. Indeed, the ‘local’ type is just the extended diagram of
G where the vertex corresponding to the root of maximal height and all adjacent
vertices have been deleted.
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Proposition C.5.2
Let D be a spherical Coxeter diagram of rank at least three, and let G be a Chevalley
group of type D. Moreover, let A, B be distinct long root subgroups of G. Then
(A,B) is

• a strongly commuting pair if and only if [A,B] = 1 and there does not exist a
hyperbolic line l on A with [l, B] = 1,

• a polar pair if and only if [A,B] = 1 and there does exist a hyperbolic line l
on A with [l, B] = 1,

• a special pair if and only if [A,B] 6= 1 and there does not exist a hyperbolic
line l through A and B, and

• a hyperbolic pair if and only if there does exist a hyperbolic line l through A
and B.

Proof. This is easily shown for the classical groups using the description of their
long root group geometries given in Section 4.1. For the finite exceptional groups in
odd characteristic we cite [Coo79] to see that the permutation rank of a exceptional
group of rank at least three on the set of its root subgroups is five. The proposi-
tion follows from the fact that there exist strongly commuting, polar, special, and
hyperbolic pairs, and Corollary 2.3 of Chapter II of [Tim01], that states that a long
root subgroup cannot commute with a whole hyperbolic line if it strongly commutes
with a long root subgroup on that hyperbolic line. 2
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Appendix D

Some Open Problems

Chapter 1

• Recognize all connected graphs that are locally NO+
6 (q), NO−

6 (q), NU5(q)
(see the definition on page 25).
(Conjecture: The local structure uniquely determines the isomorphism type
of the graph.)

• Establish the finiteness of the diameter of a connected, locally H2(2) graph
(see Definition 1.1.1).

Chapter 2

• Recognize all connected graphs that are locally L6(F) (see Definition 2.1.1).
(Conjecture: The local structure uniquely determines the isomorphism type
of the graph.)

• Try to build global points (see Definition 2.4.12) and global lines (see Defini-
tion 2.4.7) on the graph on the fundamental SL2’s of the group E6(F) with
commuting as adjacency, and determine the isomorphism type of that geom-
etry.

Chapter 3

• Prove a Phan-type theorem for the group F4(F) (see Section 3.2).

• Classify all flips of (spherical) twin buildings (see Section 3.3).

Chapter 4

• Provide a systematic investigation of perp spaces (see Definition 4.2.1).
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• Characterize the hyperbolic long root group geometry of orthogonal groups
using centralizers of fundamental SL2’s (cf. Corollary 4.3.7, Corollary 4.4.23).
(Conjecture: The local structure uniquely determines the isomorphism type
of the geometry given that the local dimension is sufficiently large.)

• Do the same for the exceptional groups of type E6, E7, E8, and F4.

• Let Σ be a reduced, crystallographic root system and consider the graph Γ(Σ)
on the unordered pairs ±α, α ∈ Σ, as vertices with the orthogonality relation
as adjacency relation. Classify all graphs that are connected and locally Γ(Σ)
for some reduced, crystallographic root system Σ.
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Dutch Summary

In het grootste deel van dit proefschrift wordt aandacht besteed aan het onder-
zoek van samenhangs- en lokale eigenschappen van meetkundes en grafen afkomstig
van meetkundes. Deze lokale eigenschappen worden vervolgens gebruikt om de
meetkundes en grafen te karakteriseren. Omdat er altijd een natuurlijke actie van
een groep te vinden is op deze meetkundes, zijn er groepentheoretische gevolgen
van de meetkundige resultaten. Het is belangrijk om op te merken, dat wij altijd
alleen op het laatste moment overstappen op de taal van groepentheorie en zo veel
mogelijk de stellingen bewijzen met meetkundige middelen. De centrale methoden
van dit proefschrift zijn dus allemaal meetkundig en combinatorisch.

In het eerste hoofdstuk houden we ons bezig met de studie van grafen op paren
van niet-incidente punt-hypervlakken van een projectieve ruimte, waarbij twee paren
buren zijn in de graaf dan en slechts dan als het punt van het ene paar in het hyper-
vlak van het andere paar bevat is en andersom. De punt-hypervlak graaf afkomstig
van de projektieve ruimte Pn(F) wordt genoteerd als Hn(F). Het centrale resultaat
van hoofdstuk 1 is als volgt. Zij n ≥ 3, zij F een divisiealgebra en zij Γ een samen-
hangende graaf die lokaal Hn(F) is, dan is Γ isomorf met Hn+1(F). Daarnaast
bestuderen we nog een voorbeeld van een graaf die wel lokaal H2(F2) is, maar niet
isomorf met H3(F2) is. De correspondentie tussen niet-incidente punt-hypervlak
paren van een projectieve ruimte en reflectietori van zijn automorfismengroep heeft
groepentheoretische gevolgen. Het hoofdstuk eindigt met een korte studie van deel-
grafen van de punt-hyperlijn grafen die gëınduceerd worden door een polariteit op
de projectieve ruimte.

Hoofdstuk 2 is bijna hetzelfde als hoofdstuk 1. Hier bestuderen we grafen op
elkaar niet snijdende paren van lijnen en hyperlijnen van een projectieve ruimte.
In principe zijn alle resultaten dezelfde behalve dat de lokale dimensies verdubbeld
moeten worden. Toch zijn er een paar verschillen. Bijvoorbeeld is er een natuurlijk
voorbeeld voor een graaf die lokaal een lijn-hyperlijn graaf is, maar niet zelf een lijn-
hyperlijn graaf is. De elkaar niet snijdende lijn-hyperlijn paren van een projectieve
ruimte corresponderen namelijk met de fundamentele SL2’s van zijn automorfis-
mengroep en de buurrelatie in de graaf correspondeert met de commutatierelatie
op de SL2’s. Het is ook bekend dat, voor een lichaam F, de centralisator van een
fundamentele SL2 binnen de groep E6(F) isomorf is met SL6(F). Op deze manier
krijgen we een voorbeeld van een graaf die lokaal een lijn-hyperlijn graaf is, maar
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dat zelf niet is. De beschrijving van de lijn-hyperlijn graaf door middel van fun-
damentele SL2’s heeft groepentheoretische gevolgen en levert ook een soort lokale
karakterisering op van de meetkunde op de wortelgroepen en fundamentele SL2’s
van een lineare groep van voldoende dimensie. Maar dit tweede gevolg wordt pas in
hoofdstuk 4 echt uitgewerkt.

Hoofdstuk 3 beschrijft onderzoek dat de auteur samen met zijn tweede promo-
tor Sergey Shpectorov en met Corneliu Hoffman heeft gedaan. Bestudeert wordt
een zekere deelmeetkunde van de symplectische polaire meetkunde. In plaats van
een lokale karakterisering wordt hier alleen maar de enkelvoudige samenhang van
deze meetkunde bewezen. Het groepentheoretische gevolg is dus geen echte lokale
herkenning van de groep maar alleen maar een resultaat over definiërende relaties
binnen de groep. Verder houdt dit hoofdstuk zich bezig met de Curtis-Tits stelling
en Phans stellingen en met de samenhang tussen deze stellingen en de net beschreven
stelling.

Hoofdstuk 4 gaat, zoals al gezegd, over meetkundes op de (lange) wortelgroepen
van zekere Chevalleygroepen als punten en de fundamentele SL2’s als lijnen. Deze
meetkundes, afkomstig van de lineaire, de unitaire en de symplectische groepen,
worden lokaal gekarakteriseerd. Ook wordt er een stel axioma’s gegeven waarvoor
een meetkunde isomorf is met een hyperbolische lange-wortelgroepmeetkunde van
een Chevalleygroep van (getwist) type F4. De karakteriseringen van de wortel-
groepmeetkundes van symplectische en unitaire groepen leveren ook lokale herken-
ningsstellingen van de groepen zelf op.
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