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Abstract 
Although Krylov subspace methods have proved to be useful techniques to reduce the size of linear 

interconnect models, they suffer from the drawback of redundancy. The size of the models generated by the 
methods is larger than strictly needed. In this paper we propose a method to reduce this redundancy. The 
modification requires only minor extra computational effort and makes Krylov subspace methods 
significantly more efficient. 

Two examples are given as a demonstration and validation of the proposed method. We show that with 
the new method models can be generated which are approximately 25% smaller in size and 50% faster in 
simulation time. 

Introduction 
In many industrial applications, model order reduction (MOR) techniques are of interest to overcome 

computational complexity. However, in the large variety of MOR methods that are available at the moment, 
only a few meet the requirements to be suitable for this area of application. In RF simulation applications 
there is a growing desire for stable time-domain simulations. The applications that are designed nowadays 
work with frequencies up to 60 GHz and have to be simulated in that range as well. All these requirements 
formulate a challenging task where MOR can play a vital role. 

This article focuses on the application of an algorithm as implemented in a proprietary 2.5D EM 
simulator. This allows simulation on real-life electronic interconnect structures and functional RF layout 
components. Here a boundary element method is implemented to calculate the EM-properties of a layout. 
This is done in a way similar to the well-known PEEC method ([1],[5]). The equivalent circuit is reduced 
using a technique, which is available in the layout-simulator. However, this frequency domain based 
reduction method does not allow for time-domain simulations, because stability is not guaranteed. 

The well-known methods PRIMA [7] and Laguerre-SVD [4] are implemented in this layout simulator as 
an alternative for the existing reduction method. The preservation of stability and passivity is shown in [2], 
where transient simulations using models generated by our initial implementation of the MOR algorithms 
were presented. 

We have however observed that the reduced systems generated by applying Krylov subspace methods in 
a straightforward way are larger than really needed. The models contain redundant information, making the 
equivalent circuit models larger and the simulation times longer. The proposed modifications make the 
methods more efficient and demand only a minor extra computational effort. 

Krylov subspace methods 
An equivalent model for the layout can be formulated as a linear time-independent problem: 
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The size of the model is dictated by the size of the state space vector. If the MNA formulation is applied 
the state space vector consists of voltage and current variables, associated with the circuit nodes and the 
branches that contain an inductor, respectively. 

Laplace transforming these equations to the frequency domain and eliminating the state space vector 
X(s) gives the transfer function: 
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The transfer function gives a description of the behavior of a system in the frequency domain. Given a 

moment expansion or Laguerre expansion [4] of the transfer function: 
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in a Krylov space the coefficients (moments) of this expansion of the transfer function are collected in a 
space, the Krylov space. Normally this space has smaller dimensions than the dimensions of the system 
itself. If then the original system is projected onto this Krylov space, the size of the system is reduced and a 
certain number of coefficients in the expansion are preserved. Therefore, this smaller system gives an 
approximation of the original, large system.  

For multiple input systems the matrix Bi has more than one column. Every port in the system 
corresponds with one column in this matrix. Hence, the Krylov space will be a Block Krylov space, 
consisting of blocks of size, say p, the number of ports. 

There are some attributes of Krylov subspace methods that make them more interesting for this 
application than others. For a start, the methods are relatively cheap. Secondly, they converge to the exact 
system. Finally, they are more generally applicable than many truncation methods, like Balanced 
Truncation [6]. Krylov spaces methods can also be applied to DAE’s, which are systems that have a 
singular matrix C. 

A disadvantage of Krylov subspace methods is that they do not distinguish between important and 
negligible information. This can be seen from the fact that the reduced systems generated by Krylov 
subspace methods contain more information than really needed. For instance, some poles are approximated 
which are not needed in a good approximation. Besides, in many cases like PRIMA, there is no error bound 
known for the methods. Hence, it is not clear when to stop building a Krylov space. This is a second reason 
that an approximation can be generated, which is too large.  

This is different from for instance truncation methods. In these methods, first the system is transformed 
into a form, which elucidates the difference between important states of the system and state that can be 
neglected in an approximation.  

We have to remark here that the pictured problem is inherent to (Block) Krylov space methods. 
Therefore, an optimal choice of the expansion point in for instance PRIMA, cures part of this problem, but 
does not completely solve the problem. 

Redundancy reduction 
In our research we found a way to remedy part of this redundancy. Suppose a system has p ports. Then, 

every iteration of the Krylov space algorithm, adds p columns. However, not every column is adding an 
equal amount of information to the space. At a certain point there can be columns which are almost zero or 
which are already spanned by columns in the already existing Krylov space. This event can easily be 
detected during the construction of the block to be added. Hence, the method requires hardly any extra 
computational effort.  

Two situations can arise: Firstly, a column in the block to be added is almost zero and secondly, a 
column might be completely spanned by columns, which are already in the Krylov space. When a Block 
Arnoldi procedure, as in for instance PRIMA, is applied, the second situation boils down to a column, 
which is almost zero just before the block is orthogonalized in itself by a QR step. 

We therefore came up with an orthogonalisation procedure, comparable to modified Gramm-Schmidt, 
which removes columns that are zero or spanned by others and orthogonalizes the rest of the columns. In 
detail, suppose we have a three-column matrix W of which the second column is zero. The 
orthogonalisation comes up with an orthonormal basis Q of the two remaining columns, such that: 

WQR = , 



where Q has two columns and R is a 2 by 3 upper triangular matrix. In this way we ensure that columns 
that do not really matter, are not added to the Krylov space. The remaining columns are added in such a 
way that the essential Krylov space properties are preserved. Exact details are given in [3]. 

The computational effort of this extra feature is comparable to the normal orthogonalization in a Block 
Arnoldi procedure, a QR decomposition. 

The main advantage of this method is obviously that, with a smaller system, the same level of 
approximation can be achieved. 

Threshold for column removal 
When the norm of a column vector is smaller than a certain specified threshold, it will be removed. With 

the introduction of this threshold an error is introduced. Removing columns, which are not exactly zero, is 
unavoidable, but may lead to errors in the Krylov space. More information on this topic can also be found 
in [3]. 

Demonstration 
The advantages of the method can best be illustrated by some examples. Consider the following layout 

of a printed double LC-filter. The inductors of the layout are printed in metal. The two capacitors are added 
to the netlist to complete the circuit simulator input. 

 
 
 
The layout simulator generates an equivalent model for this layout, which consists of an RLC-circuit 

with 223 circuit nodes and 236 branches with inductors in it. This comes down to a system of equations 
with 459 equations. For this given problem we consider 15 ports. So, in every iteration 15 columns will be 
added. Hence, after 6 iterations a Krylov space of 90 columns is constructed. The reduced system of size 90 
gives an excellent approximation of the original system from frequency 0 to 1.2 GHz. 

Now suppose columns smaller than the threshold of 1e-12 are removed. Then the following is seen: 
In the first iteration all 15 columns are added, but in the third iteration 5 columns fall below the 

threshold and are therefore removed. So 10 columns are added. The 10 columns are taken into the fourth 
iteration and so on. Finally the construction of the Krylov space is completed with the 10 remaining 
columns. 
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The total number of columns in the Krylov space is therefore 70 (15+15+10+10+10+10). In the 
following picture the frequency response of the system is given. The red line is the PRIMA approximation 
of the model of size 90. The blue line is the 70-sized approximation of the proposed algorithm. 
 
 

 
 
In the following table the time to generate the model and the time simulate the circuit in the frequency 

domain is given. It is seen that with a little extra effort in computational time, to compute the reduced 
models, a significant gain in simulation speed is achieved. 
 Size Time to generate Simulation time 
Standard PRIMA 90 0.92 sec 15.14 sec 

New PRIMA with tol 1e-12 70 1.58 sec 6.57 sec 

 
The second example is an RF transformer layout structure. The passive component has feature sizes of 

340 by 340 micrometers. In the following picture the meshed layout is shown. Only the top layer can be 
seen, beneath it are two more narrow strips completing the second loop. The mesh consists of 1865 

elements. The equivalent circuit generated by the layout simulator consists of 1865 circuit nodes and 3337 
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branches with inductors in it. This constitutes a system of 5202 equations.  

 
The standard PRIMA approximated model with a 40-sized system. The red line in the next figure 

depicts the standard reduction result. The application of the proposed method (with threshold equal to 1e-
13) gives the blue line. In the construction process immediately in the second iteration 1 of the four 
columns is removed, which gives a system of size 31, after 10 iterations. 

As can be seen in the following picture the further reduced model still gives a good approximation of the 
behavior of the transformer. 
 



  
 
A table can be drawn similar to the previous example: 
 Size Time to generate Simulation time 
Standard PRIMA 40 231 sec 0.85 sec 

New PRIMA with tol 1e-13 31 239 sec 0.47 sec 

Again a significant reduction in simulation time is seen, while the time to generate the reduced models is 
comparable. 

Conclusions 
This paper presents a new, very effective method to further reduce the size of reduced order equivalent 

models, while maintaining the level of accuracy. 
Using real-life layout structures it is demonstrated that circuit simulation times for the structures can 

significantly be reduced, with a minor extra effort. This opens the possibility to include layout structure 
models in complete RF block simulations. 
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