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The substances that constitute the material world present themselves 

in many forms. These forms can be classified into the gases, the so

lids and the liquids. 

This classification is closely connected with intuitive experience 

and moreover it appears to make scientific sense. 

It is one of the major objectives of physical chemistry to explain 

the observable properties of the materials surrounding us in terms 

of the molecular picture created by physicists and chemists. For 

gases, crystalline solids and liquids the explanation appears to go 

along quite different paths. In the case of gases and crystalline 

solids the starting point is an extremely simplified model. 

In the simplified gas (the ideal gas), the particles perförm their 

thermal motion within some volume, interaction between them is sup

posed to be absent. There is complete disorder both in the location 

and in the motion of the particles. There is only interaction between 

the particles and the walls of the vessel, resulting in elastic col

lisions. The ideal gas can be treated theoretically quite satisfactori

ly with a randomized geometry. The properties of many (gaseous) 

physical systems approach closely the properties calculated with this 

theory. Deviations of the properties of physical systems from the 

theoretical values can be treated as perturbations due to inter-

action between the particles, for instance by taking into account the 

volume of the particlès. 

In the case of crystalline solids the reference state is the 'ideal 

crystal', an arrangement of a great number of elementary cells with 

molecules (atoms, ions) arranged in a simple lattice. In this case too, 

many physical systems correspond closely to the simplified model, 

notably systems with high density and low,temperature, Deviations from 

that picture are treated in terms of crystal 'imperfections', lattice 

vibrations, vaoancies and interstitial particles. 

In the case of liquids the situation is different. 

An anthropomorphic description on a molecular scale of a liquid in 



the sense of an 'ideal liquid' does not exist. Ina negative way it 

can be stated that both the complete disorder of the perfect gas and 

the long range order of the crystalline state are absent although 

there exists certainly some short range order. 

The theoretical treatment should therefore account for the short range 

order but also contain a random aspect. 

For the theoretical treatment of liquids on this basis several approach

es exist : the cell model theory, the cluster theory and the computer 

simulation approach. 

The cell model theory in its simplest form describes in fact a crystal

line state. The volume is divided into cells, which are arranged in 

a simple lattice. Each cell contains one molecule. The starting point 

for the calculation of the free energy and the other thermodynamic 

properties is the concept of the 'free volume', that is the fraction 

of the cell volume in which the molecule apparently can move unhampered 

by its neighbours. 

Especially this concept has been exposed to severe criticism in the 

previous years. For instance Hildebrand et al. [1.1] state 

"Theories based upon this concept of free volume cannot be made 

consistent with all thermodynamic properties of a liquid, although 

some workers continue to try. It is not a physical parameter and 

cannot be a thermodynamic one". 

Hildebrands statement may seem slightly exaggerated, since it is like

ly that at normal density there will be some space to move for the 

particles of some configuration. In the course of our computer simu

lations, however, we could prove (appendix 5) that the free volume as 

defined according to the cell model cannot be related to the partition 

function in the way the theory suggests. The deviation is so important 

that it is impossible to consider the free volumetheory as an approxi

mate one that could be adapted to physical reality by certain 

adjustments such as an alternative definition of the free volume. 

In accordance with the opinion of Hildebrand and other workers, we 

conclude that the free volume theory of liquids should be abandoned 

altogether. 

Stillinger, (1.14] page 45 - 70, reviews more sophisticated lattice 

theories, having not the disadvantage of the free volume theory. 

For waterlike potentials, however, Stillinger expects the methods to 

be not very ef ficient. 
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The 'cluster' approach starts from the ideal gas theory. Here clusters 

of two, three, four, etc. particles are taken into account. 

The effect is considered to be a perturbation of the simpler situation. 

This leads to a polynomial, the virial expansion of Kamerlingh Onnes 

[1.2) 

(1.1) 

The B's are functions of temperature only. In simple cases the lower 

B's can be calculated from the intermolecular potentials, a 2 in a 

two particle system, a
3 

in a three particle system and so on. 

This theory is conceptionally sound, but applies only to relatively low 

densities. At higher densities the concept of isolated clusters fails. 

In more sophisti.cated variants of the cluster theory duplets, triplets, 

quadruplets and so on are treated without the assumption of isolation 

from other molecules. As a rule these variants are brought into the 

form of integral equations. These integral equations can be solved 

numerically when an intermolecular potential is given. The result is 

a distribution function. 

Important members of this group are the Yvon-Born-Green theory [1.3], 

the Percus-Yevick theory [1.4] and the hypernetted chain theory [1.5]. 

The distribution functions obtained can be used to evaluate macro

scopie properties of the liquid with the Kirkwood-Buff theory [1.6]. 

The Kirkwood-Buff equations are exact. The distribution functions are 

approximated, but can be verified with X-ray and neutron diffraction. 

These sophis.ticated cluster theories play an important role in the 

physical chemistry of liquids. Rather complicated systems can be 

dealt with. A drawback of these theories is that for waterlike mole

cules it is not possible to solve exactly the three dimensional inte

gral equations obtained. The results that have been reported rest on 

simplifying statistical mechanical approximations and thus inevitably 

convey incertainty. (Ben-Naim [1.15] and Stillinger (1.14] p. 71). 

In that case the computer simulation method is certainly more promising. 

The computer simul<d:ion method is the third of the approaches mentioned 

above. Here a greater number of molecules, e.g. one hundred is taken 

into consideration and their mutual interactions are accounted for • 

Periodic boundary conditions are introduced in order to eliminate sur-
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face effects. An advantage of the method is that to some extent an 

anthropomorphic character is present. A disadvantage is that long 

calculation times are needed. 

The method has reached a certain maturity already. Barker et al. [1.7] 

calculated the properties of argon from the best intermolecular 

potential they could obtain • The result was that excellent agreement 

with experiment was obtained for the thermodynamic properties of solid, 

liquid and gaseous argon, for the lattice spacing of crystalline argon, 

the cohesive energy at O K, thermal expansion, phonon dispersion in 

crystals, viscosity and other transport properties of the gas. 

At first agreement with experiment was poor in the case of the internal 

energy and of the elastic constant of crystalline argon. However, here 

the experimental values were shown to be wrong after all. 

Good results have also been obtained in molten salts with simple ions 

such as molten KCl (Michielsen [1.16]). 

At present for these liquids with relatively simple interaction between 

the particles it is a matter of consideration whether a property needed 

for the solving of some problem will be measured or calculated. 

For more complicated substances like water the job has not been 

finished as yet [1.8). It proves to be very difficult to find a reliable 

algorithm that accounts for all details in the interaction between the 

molecules. Nevertheless there is no reason why these difficulties will 

not be overcome some day and water and any other liquid will be cal

culable just like argon or KCl. 

However, there is a quantitative restriction. The results of the calcu

lations on one liquid do not apply to any other. Since there is a 

tremendous quantity of different liquids that is of interest and since 

each calculation demands much computer time it is not likely that all 

problems of the physical chemistry of liquids will be solved with 

computer silnulations in the near future. 

Therefore, it will be wise to combine the accurate calculation of some 

key problems with appropriate calculations of a more or less approximate 

character. 

To this purpose Barker and Henderson [1.9) have developed a perturbation 

theory. In this approach some simple model potential is used as a 

reference and refinements of the potential are considered as a 

perturbation. Thermodynamic properties are evaluated as a function of a 

perturbation parameter. 

4 



From a technical point of view the above mentioned approach is one of 

computer simulation of the behaviour of a system of particles. 

In current practice there are two methods. 

One is the method of molecular dynamics [1.13]. 

In this case a number of molecules is located in three dimensional 

space and an initial velocity is given to each of them. Subsequently 

the motion of the molecules due to inertia and interaction forces is 

calculated with the algorithms of classical mechanics. The result is 

a system of which energy is constant. When proper conditions are in

serted, volume or pressure are kept constant too, so that the system 

can be characterised to be of the NVE respectively NPE type. In 

molecular dynamica the detailed positions of the molecules as a 

function of time are obtained, which enables the calculation of 

energy and pressure as. well as many dynamic properties. 

A method for the evaluation of the partition function (and the free 

energy and the entropy) on the basis of molecular dynamics has not 

been developed. 

The second is the Monte carlo calculation technique of Metropolis, 

Rosenbluth, Rosenbluth, Teller and Teller [1.10] 

In this case.a random set of configurations is generated, configura

tions that pertain to a preset temperature. A great number of trials 

for small random steps is made, which steps are accepted or not, 

depending on the energy change the step would involve. In that way 

a set of configurations for a NVT- (or NPT-) system is obtained. In 

appendix 2 we describe briefly this method of Metropolis et al. 

Averaging over the configurations obtained, leads to the equilibrium 

properties of the system. Free energy can also be evaluated, albeit 

not after a simple averaging procedure. 

Monte Carlo yields no dynamic properties of the system since the 

time scale is absent. 

In the present werk we restrict ourselves to Monte Carlo simulations 

with simple potentials, the hard sphere potential in chapter 2 and a 

tetrahedral potential with a hard core in chapter 3. 

For the evaluation of the free energy we used the method of 'multi

stage sampling' of Valleau et al. [1.11). This method will be 

discussed in chapter 2~ In that chapter we will compare the free 

energy of a hard-spheres system from the multistage sampling method, 

5 



applied to a system with overlapping spheres, with the 'exact' value 

from the formula of Carnahan and Starling [1.12]. The agreement is 

excellent. This, together with the fact that the method is conceptual

ly sound makes that we consider it to be reliable. 

In chapter 3 we will calculate the equilibrium properties of a system 

with molecules having a hard core and a short-range interaction with 

tetrahedral symmetry. These molecules will be called 'tetrahedral 

molecules' in the next chapters. 

Next we will calculate the consequence for the system when the mole

cular properties are changed in the sense that the short-range inter

action is made polar. The resulting interaction can be considered to 

approach the interaction between water molecules to some extent. 

Thus we can speak of •waterlike' molecules. 

Finally in chapter 4 we will compare the properties of a system with 

'waterlike'molecules with the properties of physical water. 
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2. CALCULATION OF EQUILIBRIUM PROPERTIES 

2.1. The Monte Carlo Method 

In mathematics different calculation sGhemes are indicated by the 

name 'Monte carlo'. In the simulation of liquid systems one 

special schema is generally adopted and indicated as 'the' Monte 

Carlo method. This scheme was developed by Metropolis et al. 

[l.10] and will be discussed in appendix 2. The simulations deal 

with a number of particles located in space. If the location 

(and eventually the orientation) of each of the N particles is 

fixed within a volume V we will speak of a configuration of N 

particles in the volume V. The assembly of all different con

figurations that are possible is called the configuration space 

(which is dependent of the magnitude of N and V). 

With the calculation scheme of Metropolis et al. the probability 

of any configuration to be found during the simulation is 

proportional to the relevant Boltzmann factor. This is very 

convenient for the statistica! treatment of the data obtained. 

In this section we will deal with some more or less technica! 

details, that is to say the periodic boundary conditions, the 

choice of N (the number of molecules), the intermolecular poten

tial energy and the initial configuration. These details must 

be established before the computer simulation can start. 

~~!!~~!S_~~~~~~-S~~~!~!~~~ 

Computer simulations demand a great deal of machine time. There

fore it is necessary to apply the calculations to a very 

restricted number of molecules. This restriction can lead to 

difficulties since unavoidably an important fraction of the 

molecules would be located at the surface of any tiny set of 

molecules (in a cluster of 100 molecules about half this number 

is situated at the surface). Moreover during the simulation 

'evaporation' would occur. 

For these reasons periodic boundary conditions are introduced. The 

molecules are placed in a cubic box and this arrangement is re

peated by translation (indefinitely) in all directions. In that 

way the system is surrounded by an infinite number of identical 
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boxes of which 26 are in contact with the original one. Conse

quently all N molecules in the box are surrounded by other mole

cules in all directions. 

During the simulation a molecule can eventually leave the box. 

The periodic boundary conditions ensure, that at the same t1me 

an identical molecule enters the box at the opposite side. In 

this way the number of molecules in the box is kept constant. 

The number of molecules -----------------------
The number of molecules N in the box has to be chosen with some 

care. If it is chosen too high the calculation time, being about 
2 proportional to N / would become prohibitively long. When on the 

other hand N is too low, the results would become poorly compa

rable with macroscopie quantities. 

In section 2.3 we will see that for a hard-spheres fluid the 

value of the free energy is reasonably good in accordance with 

what it should be, even for the value of N as low as 44. 

Another thing that has to be envisaged in the choice of the number 

of molecules in the system is the possibility of crystallisation 

due to the periodicity imposed by the boundary conditions. 

Especially when the number of molecules is an exact multiple of a 

third power, subdivision of the box can occur and the probability 

of a regular conf iguration will be enhanced. 

In the calculations of chapter 3 we have chosen the number N = 91, 

being far enough from 81 (27 cells of 3), 88 and 96 (8 cells of 11 

or 12). 

Moreover 91 is the product of the numbers 7 and 13, the symbols of 

good and bad luck, both indispensable in Monte Carlo. 

The potential energy function of the system which is to be 

simulated depends on the relativa positions of the molecules. 

If the system consists of two molecules, the potential energy 

depends only on the positions of those two : 

u (2.1) 



u is the energy of the system and E2 is the contribution of one 

pair of molecules. qi denotes the position of molecule i in 

geometrie space. 

For rigid rotors for instance q would consist of six coordinates, 

three for the orientation and three for the location. 

In a system with three molecules the potential energy can not 

always be calculated from the pair potential of the three pairs, 

but an extra term appears, the three-body contribution 

u (2.2) 

For an N-body system we could write 

u (2.3) 

Often this series can be replaced with only restricted loss of 

precision by a slightly modified two-body interaction, the 

effective pair-potential. 

Only when close accordance between simulation and physical data 

is desired a three-body interaction must be added. This has been 

performed by Barker et al. [1.7] for the calculations regarding 

noble gases. They report that in this case the three-body contri

butions appeared to be relatively small. 

Almost all other computer simulations reported in literature have 

been performed with ~ffectiv~ pair potentials. The present work 

too deals merely with two-body interactions, since the aim of the 

work is restricted to the investigation of the properties of 

systems with certain simple potentials. 

When N molecules are situated randomly in a certain volume, the 

potential energy will often be extremely high, que to the overlap 

of molecules. This will be especially the case when the density 

is not very low. Therefore an initial set of steps is necessary in 

order to obtain a configuration with lower energy. This is a very 

fast process as can be seen in fig. 2.1 where the results of a 

Monte Carlo simulation that we have performed with Lennard Jones 

particles have been plotted. 
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Even as many as 271 particles prove to be properly arranged in 

about 50 cycles, that is 50 x 271 steps. 

The Lennard Jones potential is 

(2.4) 

where rkl is the internuclear distance of two particles k and 

1, a is the diameter of the particles and E is the (absolute) 

value of energy in the minimum of the potential curve. 

The example of fig. 2.1 is a case of a pair potential that is 

finite for all values of rk1 • In the case of hard spheres where 

the potential energy is infinite if rkl is below some limiting 

value o, initialisation demands for an ad hoc potential. 

We have used for this purpose a potential that has been deprived 

of all unnecessary complications: 

0 if 

As soon as energy had fallen to zero the initial procedure was 

discontinued. 

Many authors report to have avoided this initialisation problem 

by starting with molecules, situated on a regular lattice. In 

that case there is some risk that the system will remain in a 

region of configuration space close to a crystalline configuration 

(which is not necessarily the original one). Since initialisation 

after random distribution appears to be extremely simple, it is 

not necessary to run that risk. 

All calculations have been performed on the Burroughs 7700 computer 

of this University. 

This machine is a relatively fast one. The central processor time 

needed for one Monte Carlo step with 91 tetrahedral particles, 

including random displacement of one particle, calculation of 

the energy, decision whether the displacement is accepted and 

storage of the relevant data for statistics proved to be 0.006 

seconds. 
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2.2. Evaluation of the Esuilibrium Properties 

When a run of Monte Carlo cycles is executed, the average value of 

a number of properties is calculated. Important properties are the 

potential energy, the distance distribution function, the pressure 

and the free energy. 

The total potential energy is calculated for each configuration 

and the mean value is obtained as an average over all configurations. 

Likewise the distance distribution function is the average of the 

frequency with which the different distances occur in the con

figurations. 

The pressure can be calculated from the virial function 

Vir {2. 5) 

which is easily evaluated since in all configurations ali rkl and 

\i are known. (The intermolecular force F = - v • E2 for pair

wise interaction). 

The interaction of the molecules with the wall of the vessel is 

not included in the virial because of the periodic boundary con

di tions. In this case the pressure is related to the virial with 

the equation : 

PV 
NkT 

1 - 1.Vir 
3 NkT 

(See Hirschfelder, Curtiss and Bird [2.4] page 135). 

(2.6) 

For molecules with a hard core v • E2 does not exist everywhere. 

In that case the pressure can be evaluated from the distribution 

function. 

The algorithm that is available for rigid spheres {see Hansen and 

Me Donald [2.1) chapter 3.2) will be extended in appendix 4 to 

the tetrahedral molecules we will introduce in chapter 3. 

The evaluation of the free energy is more complicated. Hansen 

and Verlet [2.2) calculated for a system with Lennard Jones 

particles the value of the pressure as a function of volume at 

constant temperature and evaluated from these data a value for 
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the excess free energy with the equation 

1 p 

N~T = J c-L - 1>dP 
pkT p 

p=O 

p = N/V and A' is the excess free energy, that is the difference 

between the free energy of the system and of the ideal gas with 

the same temperature and the same p. 

Valleau and card have developed a method that requires slightly 

less computer time, the method of multistage sampling [1.11]. 

The starting point is again an ideal gas and the effect of non

zero pair interaction is introduced as a perturbation. 

In the present work we have adopted the latter method. 

The method can be described as follows : 

Starting point is the partition function of a NVT system in clas

sical mechanics. Since it is possible to discriminate between 

potential and kinetic energy in classical systems the partition 

function is given bij (A1.3) which can be written slightly simpli

fied as : 

Q !i!i' 
N 

Qi is the partition function of the ideal gas, 

!i!i~ is the excess configuration integral. 

For spherical particles is : 

f exp(-U/kT) dx1 ••••••• dxN 

xi represents the coordinates of the location of particle i. 

For non-spherical particles is : 

l!i' = 
N 

1 . J exp(-U/kT) dq1 .••••• dqN 

{2.7a) 

{2.7b) 

qi represents the coordinates of location and orientation of the 

particle i. 

When the potential energy is not the same for all configurations 

we can define a fraction of the configuration space C{U} pertain

ing to some energy u. 
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There are two different cases. 

In the first place, if U is a continuous function of the coordi

nates, C{U) can be defined (for spherical particles) with the 

formula : 

C(U) au - ! . J ~(U, dU) dxl ••••••• dxN 
v 

(2.8) 

s(U, dU) = 1 for those configurations where the potential energy 

is between U and U+dU. s(U, dU) = 0 in all other cases. 

Secondly for hard spheres and for the other potentials we will 

deal with in the present work, the potential energy is a dis

continuous function of the coordinates and the system can adopt 

only a restricted number of energy levels. 

Each energy level can be labeled with an integer number j. 

The properties of the system that are related to the energy level 

can be denoted with an indexed symbol. For instance the fraction 

of the configuration space with the potential energy U. can be 
J 

denoted with the symbol cj. 

For spherical particles is : 

cj _ ~ • J s<u, jJax1 ••••••• axN 

For non-spherical particles is 

J s(U, j)dql ••••••• dqN 

(2.9a) 

(2.9b) 

In both cases is s(U, j) 

s (U, j) = 0 if not. 

1 if the potential energy equals Uj and 

Sununation over all possible levels gives 

l cj = 1 (2.10) 

The excess configuration integral becomes now 

gN• = LC . • exp(-U./kT) 
J J 

(2.11) 

If a Boltzmann distribution exists the probability of the system 

to be at level j is proportional to c .• exp(-U./kT). 
J J 
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We will indicate this probability with the symbol Pj. 

The sum of all probabilities is unity : 

So we can state 

(2.12) 

(2.13) 

The multistage sampling method implies a perturbation analysis 

along the following line: 

Perturbation parameter is À 

À = -e/kT (2.14) 

t being some reference value for the energy, for instance the 

energy parameter appearing in the relevant formula for the pair 

potential. 

Furthermore we introduce the factor 

~. = U./t 
J J 

(2.15) 

With Monte Carlo simulation the apparent probability PAj of a 

certain number of energy levels is obtained. This value is an 

estimate for the real probability (see appendix 2) : 

PAj % Pj (2.16) 

and PAj ~ Pj = cj exp(À • ~j) / g~ (2.17) 

Which fellows from {2.13), (2.14), (2.15) and (2.16). 

If À= O then can be concluded from (2.10), (2.12) and (2.13) 

that g~ = 1.0 and Cj Pj for any j and by consequence that 

Cj % PAj. 

So all values Cj could be estimated from a sufficiently long 

Monte Carlo run with À = O. 

Unfortunately the length of a run is limited. 

When N is about 100, the computing time is about 0.006 sec per 
7 step. So runs of 10 steps would require about 17 hours. If this 
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is taken as an upper limit, values of Cj below 10-
7 

are not 

accessible
1
although these values certainly are of great interest. 

Therefore a further Monte Carlo run is executed with À slightly 

above the previous value. Again a set of valuesPA, is obtained and 
J 

if À is chosen correctly, then a part of the set overlaps with the 

previous one. 

s~ can now be evaluated with (2.17) since S~ is nota function of 

j and in the overlapping domain c. is known from the previous run. 
J 

g~ being evaluated for the present value of À, the range of Cj can 

be extended outside the overlapping domain, À is increased again 

and so on until sufficient values of C, are obtained. 
J 

Then all thermodynamic properties, free energy etc. can be calcu-

lated, including pressure (if a range of volumes is evaluated in 
<JA 

order to calculate av>· 
Pressure however has also been obtained from each Monte Carlo 

run with the formula (2.6) or the formulae from appendix 4. 

The results should aqree. 

2.3. Application to Systems with OVerlaç>ping Spheres 

and with Hard Spheres 

The excess free energy A' (the difference in free energy with the 

ideal gas) of a hard-spheres fluid has been studied extensively 

elsewhere. See [1.12] and the references therein • 

. A relevant result of these studies is the equation of Carnahan and 

Starling : 

A' 
NkT 

where y 

2 
4y - 3y 
(1-y)2 

~ 
6 

Na
3 

v 

(2.18) 

The Carnahan and Starling equation is a very close approximation 

of the accurate virial expansion evaluated by Ree and Hoover 

(2. 5 ]. 

When we calculate the same free energy with multistage sampling 

the result can be used to evaluate the precision of the method. 
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In order to be able to apply the method in a fluid with over

lapping spherical particles we define a pair potential by 

0 } (2.19) 
= e 0 

rkl being the distance between the centres of the two spheres. 

The energy parameter e has a positive value. 

If the parameter À = - e/kT equals zero, the excess configuration 

integral is unity (ideal gas) and if À = - ® the system is identi

cal with a system with hard spheres. 

The quantity ~.of (2.15) equals j for this potential, j being 
J 

the number of overlapping pairs in the system. 

j (2.20) 

We have performed a set of Monte Carlo simulations according to 

the algorithm of Metropolis et al. {see appendix 2 and [l.10] ) 

for various numbers of molecules N, and various values of the para

meter À. 

The volume V has been chosen in such a way that the number density 

D = N o3/v was 0.6 in all cases. 

The calculations are very simple when À = 0 and N is small. 

As an example in fig. 2.2 a histogram is given of the results for 

82816 random configurations with N = 4 and À = O. 

In most cases there appear to be 3 or 4 overlapping pairs. 

A small number of configurations -54- appears to be without overlap. 

This number is important because these are thè only configurations 

that are allowed in the corresponding hard-spheres case. 

The fraction 54/82816 = 0.00065 is therefore an estimate for 

the fraction of configuration space C
0

, that is accessible for 

the hard-spheres fluid. 

Since the number of 54 is rather small from the point of view of 

statistica, this estimate is rather inaccurate. A better estimate 

could be obtained by repeating the calculation a number of times. 

In this case this would be possible because the calculation of 

82816 configurations took only one minute on the local computer. 
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Fig. 2.2 The number of configurations 

with each of the seven possibilities 

for the number of overlapping pairs of 

spheres, as obtained in a Monte Carlo 

run. N = 4, À = 0, the total number of 

configurations is 82816. (See also 

table 2.1) 

More satisfactory, however, is the application of the multistage 

sampling method as described in section 2.2. 

In table 2.1 the results of a second one-minute Monte Carlo run 

with À = -3 are given together with the original run. 

From the first run the value of lnc2 = -2.017 can be considered 

to be a good approximation from the point of view of statistics. 

Therefore the value of the logarithm of the excess configuration 

integral g~ can be calculated as the difference between the values 

of column 3 and column 5. In this case lng~ = -2.017-4.234 = -6.260. 

By consequence lnc
0 

= -7.412 and c
0 

= 0.000604. 

18 



Table 2. 1 The results of two Monte Carlo runs with 

4 molecules, with À = 0 and -3 respective-

ly. 

<P j (=j) Number of lnPA. Number of lnPA.-À.j 
configurations J configurations J 

~ lnC. with À = 0 J with /.. -3 ~ lnC.-lnl!' 
J N 

0 54 - 7.3 25390 - 1.152 

1 1547 - 3.98 39873 + 2.299 

2 11017 - 2.017 13860 + 4.243 

3 25162 - 1.191 1188 + 4.79 

4 23981 - 1.239 41 + 4.4 

5 14764 - 1. 724 0 

6 6291 - 2,578 0 

For a larger value of N, in this case N = 44, the procedure has 

been displayed graphically in fig. 2.3 and 2.4. In fig. 2.3 the 

quantity lnPA.-À.j is plotted as a function of j. 
J 

N:44 

.,.., 
~ 10 
.-l 

0 25 50 75 

overlapping pairs 

Fig. 2.3 The qua:ntity lnPAj - ,j.À-;::;:. lnCJ - lnllt!J for two 

Monte Carlo runs. The two cm1:'Ves a:l:'e pa:l:'allel. Shifting the 

upper cmrve vertiaally dOûJl1;,)ards aan make the two cmrves 

aoinaiáe. The magnitude of the shift is an estimation for 

the exaess aonfiguPation integral fltN for À = -1. 
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For À O the dots can be considered to be approximations of lnCj. 

For À 'f 0 is : 

(2.21) 

So the ordinate of the À = - 1 curve can be considered to be an 

estimate of the quantity lnCj - lnSN. 

The term lnSN has to be evaluated in such a way that the upper set of 

dots, shifted downwards in fig. 2.3 over a distance lnSN , will give 

a best fit with the other set. 

The evaluation of lnSN can be perf ormed algebraically as follows 

20 

Suppose we have two sets of values, resulting from Monte 
Carlo simulation with À = Àl and À À2• The value of 
lnSN(À1) is known either for À1 = 0 or as the result of a 
previous cycle. lnSN(À 2 ) is to be evaluated. 
Now we define a function y of the real variable j in a way 
that for integer values of j applies : 

y(j) = lnCj (2.22} 

From the apparent probabilities obtained in the two Monte 
Carlo simulations we can evaluate a number of approximations 
for the derivative of y independent of theunknown SN(À2). 

(2.23) 

with a standard least squares method [2.3] dy/dj is approxi
mated by a polynomial (we used to adopt a polynomial of degree 4) 
that fits best to the data of both simulations. 

Thepolynomialx1 + x .j + x
3
.j2 + x4 .j3 + x5 .j4 is integrated 

analytically. The integration constant x0 can be evaluated 
with the equations (2.11), (2.14), (2.15), (2.20) and (2.22). 

'(' 1 5 x0 = lnSN(À 1) - lnL exp(x1.j + .••.• + 5 x
5
.j + j.À

1
) 

(2.24) 

(summation over integer values of j). 

In the same way we now find the unknown lnSN(À
2

) : 

1 ) '(' •. 1 .5 nBN(À 2 = x0 + lnL expcx1.j + ••••• + 5 x
5
.J 



After the operation with the two runs of fig. 2.3 (with À= 0 and 

À = -1) we have not reached the desired value of c
0

• The lower 

limit of the domain covered is j = 17. In order to extend the domain 

until j = 0 it proved to be necessary to repeat the procedure with 

À = -2, -3, -4 and -6. 

The final result, lnc
0 

is about -89, can be read from fig. 2.4. 

0 

-10 î 
..... " .......... " ............. " 

.. ········· .... 

~ 

·n 
-20 ~ 

s:: 
.-1 

-30 

-40 

-50 

-60 

-70 

-BO 

N:44 
-90 

0 10 20 30 40 50 60 70 80 
j~ 

Fig. 2. 4 The result of the fittfog procedure. The quo:ntity C. 
J 

that is the fraction of au possib"le oonfigurations that gives 

rise to j overlapping pairs molecul,0 s, Ü; plotted - on a 

logarithmic scale - as a function of j. 

The curve is oomposed the results o.f six Monte Carlo r'Uns, 

with À = 0.0, -1.0, -2.0, -J.O, -4.0 and -6.0 respectively. 
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Since in a hard-spheres fluid (À = -~)the potential energy is + 00 

if there is any overlap between spheres and zero if not, of the 

summation of (2.11) will be only one term left: lni~ = lnc0 • 

By consequence the excess free energy is: 

A' = -kT.lnc
0 (2.26) 

In the above mentioned case the value of A'/NkT becomes 89/44 = 2.02. 

This value can be compared with the value one can calculate with 

the formula (2.18) of carnahan and Starling. That is A'/NkT = 2.042 

for the present density. The agreement is very good. 

Table 2.2 The result of the calculation of configuration 

space in a fluid of hard spheres with density 

N 

1 

2 

3 

4 

5 

8 

20 

27 

44 

64 

91 

172 

co 

22 

0.6. The calculation is performed with the 

Monte Carlo method as discussed in chapter 2. 

(For N=2 the result is obtained analytically 

and for N=l is trivial). The last column is 

calculated with formula (A 3.9) and (A 3.13). 

Total number 
of Monte Carlo 
steps 

-
-

0.18x106 

0.16x106 

0.15x106 

0.12x106 

1.63x106 

1. 37x106 

2.95x106 

1.61x106 

1. 77x106 

1.67xl06 

-

0.0 

-2.5893 

-5.616 

-7.412 

-9.402 

-14.587 

-39.807 

-53.772 

-88.992 

-131.203 

-185.356 

-351.919 

-

0.0 

1.295 

1.872 

1.853 

1.880 

1.823 

1.990 

1.992 

2.023 

2.050 

2.037 

2.046 

-

A' 

NkT 

calculated 

1.149 

1.495 

1.651 

1. 739 

1.798 

1.888 

1.981 

1.997 

2.014 

2.023 

2.029 

2.035 

2.04208 



In table 2.2 the values of A'/NkT, results of a set of multistage 

sampling experiments, are given for N 3, 4, 5, 8 up to 172. 

(the value for N = 2 is evaluated analytically and for N = 1 it is 

trivial}. 

From the table it is apparent that for low values of N the confi

guration volume as calculated with multistage sampling is slightly 

larger than would be calculated directly from the Carnahan and 

Starling equation. This can be ascribed mainly to the •communal 

effect' of appendix 3. When the correction of appendix 3 is applied 

to the Carnahan and Starling formula (last column of table 2.2) the 

agreement with the multistage sampling results is very close, even 

for small N. 

For larger values of N (64 and up) the correction is not very 

important. It seems even that the value from multistage sampling 

is closer to the uncorrected value than to the corrected one. 

Possibly other systematic errors exist that cancel the communal 

effect. Therefore since we deal in chapter 3 only with systems 

with 91 molecules, we decided on using only the uncorrected Car

nahan and Starling equation henceforth. 

Finally we have to make two remarks, one about the machine time 

required for the multistage sampling calculations and one about 

the accuracy. 

The machine time required for a single Monte Carlo run depends 

strongly on the absolute value of the parameter À. 

When À = O every proposed step is allowed and consequently the 

configuration space is sampled rather efficiently. 

Otherwise the probability of accepting an unfavorable move is pro

portional to 1/exp(IÀIJ. If for instance À= -6 that is about 

1/400. Therefore the system will stick a long time to a favorable 

position. The machine time, which is proportional to the number 

of attempted moves, is therefore greatly determined by the simu

lation with the highest absolute value of À. Once this simulation 

is finished with M1 attempted moves, one can start a next simula

tion with lower absolute value of À and a lower number of moves 

M2• If the above effect of sticking in favorable situations would 
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be the principal factor that limits the accuracy, a rational choice 

of M2 would be : 

In fact we have chosen a series of À climbing up with the unity 

(,\ ~ -6, -5, -4, -3, -2, -1 and 0) with Mi+l % !:!Mi and a minimum 

of 105 steps. 
imax 

In this way is E Mi % 
i=2 

M
1 

and the multistage sampling method 

demands for an extra machine time of the same magnitude as the 

longest run. 

Concerning the accuracy of the method we will make the following 

comments. 

The data of table 2.2 for N > 20 suggest that the accuracy 

of the calculation of the free energy from Monte Carlo calculations 

would be better than one percent. 

It is not easy to verify this precision in a straightforward way 

from the statistica! errors that one would expect in the Monte 

Carlo simulations. Intuitively, however, we felt the need for some 

verification. Therefore we have repeated one of the sets of Monte 

Carlo runs three times with different initia! configurations in 

order to estimate repeatability. 

Table 2.3 Excess free energy for hard spheres: 

A' /NkT = -lnC
0

/N as calculated from 4 

different Monte Carlo simulations. 

The number of particles, N is 91. 

Number of lnC lnC 
single steps 0 0 - --N 

1. 77 x 106 -185.356 2.0369 

1. 77 x 106 -186.539 2.0499 

1. 77 x 106 -184. 729 2.0300 

1.77 x 106 -185.522 2.0387 

Me an -185.54 2.039 
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The results are given in table 2.3. The standard deviation in lnc0 
calculated from the deviation of the four values obtained,appears 

to beo= 0.75. That is 0.4 % of the mean value of -185.54. 

The repeatability is certainly good, notwithstanding the strong 

correlation existing in Monte Carlo calculation between the proper

ties of subsequent configurations - especially when À is high- and 

notwithstanding the fact that no less than eight curves had to be 

fitted, the end of the last curve giving the desired value. 

We can conclude from table 2.3 that the mean value for ~lnc0/N is: 

2.039 .::!:_ O.Ö04 for N 91. 

This value is to be compared with 2.042 from the Carnahan and Star

ling approximation. 

From a statistical point of view it can now be stated that the 

above hypothesis " the value from multistage sampling is 

closer to the uncorrected value than to the corrected one" is 

in accordance with the results of table 2.3. {The chance of this 

statement being false is about 2.5 % against 97.5 % of it being 

true). 

Because of these results and because the method is conceptually 

sound we consider the method of multistage sampling to be a reliable 

one for the evaluation of the partition function. 

2.4. Extension to Other Potentials 

Once the configuration space has been divided into Îractions c for 
j 

a specific potential and all c. have been evaluated this re-
J 

sult can be extended to some new potential 

In principle the procedure for achievement of this extension is 

as follows. 

A Monte Carlo run is performed with the potential E
2

• One of the 

most abundant energy levels that appears is indicated with the 

integer j. For each of the configurations obtained the energy is 

calculated with the new potential (without consequence for the 

acceptance of proposed steps). In the assembly of alternative 

energies obtained we suppose that discrete energy levels appear. 

If not,the energies obtained are joined together in a number of 
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quasi levels. Say that we have found that a fraction aji of the 

configurations with energy level j has obtained the energy of 

level i on the basis of potential E2· Then we can state that 

a ..• c. is the fraction of the configuration space where the ener-
Jl. J 

gy level is j on the basis of E
2 

and the energy level is i on the 

basis of the potential s2. 
When a second Monte Carlo run is performed with the potential E2 
with such a temperature that a representative sample of the 

configurations with the energy level i is obtained, a fraction 

a .. of these configurations will be found to lead to the energy 
l.J 

of level j on the basis of the alternative potential E2 • 

Since the overlapping fraction of the configuration space is 

the same in both cases we can conclude that 

C! 
J. 

(2.27) 

Where er is the corresponding fraction of the configuration space 

when it is divided on the basis of the potential E2· 
From equation (2.27) the value of er can be calculated. 

If it proves to be difficult to find an overlapping region, one 

can perform a Monte Carlo simulation with an intermediate potential 

(l-À) E2 + ÀE2 . Subsequently the other fractions of the configu

ration space (as far as covered by the relevant Monte Carlo runs) 

can be calculated and if necessary the range can be extended with 

mul tistage sampling .. 

After evaluation of ei the configuration integral can be calcu

lated on the basis of equation (2.11). 

When E2 is the hard-spheres potential there is only one energy 

level. When moreover the potential ' comprises a hard core that 

is greater than or equal to the hard sphere of E
2 

then is a .. = I 
l.J 

since all configurations obtained with E2 must lead to zero energy 

with E2 • In that case the above mentioned second Monte Carlo run 

can be omitted. 

The evaluation of the f ractions of the conf iguration space for the 

new potential of chapter 3 will be performed in accordance with the 

above procedure. 

26 



3. NON-SPHERICALLY SYMMETRIC MOLECULES 

3.1. General Considerations 

Computer simulation of liquids with non-spherical molecules has 

been reported in the literature by several authors. Inmany cases 

the object has been to simulate liquid water. 

Examples of computer simulations with more complicated molecules 

are presented in the work of Curro and of Ryckaert et al. [3.5]. 

They obtained promising results with the simulation of n-alkanes. 

The reason why many ethers have concentrated on water is obvious, 

water is an important liquid, not only in physical chemistry. 

Complete succes as in the case of noble gases is not attained as 

yet because of the very complicated character of this liquid. 

Rahman and Stillinger have performed a number of calculations 

using semi-empirical potentials [3.1]. The first calculations were 

made with a potential designed by Ben-Naim and Stillinger [3.14], 

later with an improved version, the ST2 potential. Both potentials 

are pair interactions between rigid molecules. Six adjustable para

meters are involved. 

As mentioned above the results are not exactly in accordance with 

the physical data, but the agreement is certainly satisfactory, 

both for equilibrium properties (distribution function) as for 

dynamic properties (diffusion etc.). 

The ST2 potential is an effective pair-potential in the sense that 

the mean effect of multi-particle interaction is included. 

consequently such properties that are related to the properties of 

isolated pairs of molecules, are rather poorly represented. This is 

the case for the second virial coefficient of the gas phase [3.13]. 

On the ether hand a many-particle effect such as the polarisation of 

the molecules is represented only as a mean value. Fluctuations of 

the polarisation and change of the polarisation with temperature 

are absent. 

At the moment the ST2 potential must be considered to be the best 

pair potential that is available for the simulation of water. 

Nevertheless there is one detail in this potential that should be 

improved, that is the so called switching function. 
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In order to avoid a catastrophe when two point charges would 

coincide, the coulomb interaction is gradually 'switched off' when 

the distance between the centres of two molecules decreases. 

consequently at short distance two neighbours interact as spheri

cal molecules, which is non physical and causes an artifact in the 

distribution function [3.15]. Perhaps this may be of minor impor

tance, but an elegant alternative exists [3.16]. 

Other important potentials are obtained with the quantum-mechanical 

approach. Popkie et al. and later Matsuoka et al. designed pair 

potentials for water with 9 or more parameters [3.2], which para

meters were adjusted in a way that a best fit was obtained with the 

data of quantum-mechanical calculations of water dimers. Owicki and 

Scheraga and Lie et al. have made simulations with one of the 

Matsuoka potentials [3.3]. The radial distribution agrees well with 

the experimental data. This is an important criterion since the 

equilibrium thermodynamic properties are closely related to the 

distribution function [1.6]. 

Less satisfacory is the fact that the second virial coefficient of 

the gas is rather poorly in agreement with the physical data [3.17]. 

Contrary to expectation it seems that the potential that is the 

result of quantum-mechanical calculation of dimers gives better 

results for systems of many molecules than for clusters of two 

molecules. 

Stillinger and David [3.4] have recently developed a potential 

which also represents the polarisation of the molecules. This as

pect of the multi-particle interaction between water molecules is 

believed to be very important. Verification may be expected soon. 

Thus further refinement of the intermolecular potential will 

result gradually in better agreement between calculated and expe

rimental properties of liquid water. 

However, in order to be able to discuss (and to understand) the re

lation between molecular properties and the macroscopie properties 

of liquids, it can be useful also to investigate the properties of 

systems with 'simple' model molecules. In that way it is possible 

to evaluate to what extent simple models are relevant for the 

understanding of the properties of liquida. 
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In the present work we will deal with such a simple model of a 

waterlike molecule, based on an idea of Ben-Naim [3.6]. The mole

cule consists of a hard sphere with additionally a short range 

pair interaction between neighbouring molecules. This interaction 

is of tetrahedral symmetry. Therefore we will speak of 'tetrahedral 

molecules'. Long range pair interaction between molecules is ab

sent. Ina later development (section 3.3.) we will evaluate the 

consequence of the introduction of a polar character into the mole

cules, still without long range interaction. The polar molecules 

can be considered to have some characteristics of the watermole

cule. 

Tetrahedral symmetry has been realised by assigning four vectors 

to the hard sphere, vectors pointing into the proper direction 

(fig. 3.1). When the molecules are close to each ether, a bond 

exists only when both molecules have one of their vectors close 

to the line connecting the centres of the molecules (fig. 3.2.). 

Fig. J.1. 'Molecule' aon- Fig. J.2. Two moleauZes with veators 

sisting of a hard sphere making angles ~k and ~l with the line 

with additionally four vea- aonneating the aentres. A bond exists 

tors whiah are pointing to when the internualear distanae and 

the aorners of a tetrahedron. *k and wl are below preset values. 

Thus the pctential energy of interaction is: 

E2 +"' if rkl < a 

l E2 = €: if a < rkl < f.a 
(3.1) 

and lwk 1 < *max lw1I < *max 

E2 0 in all other cases 
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The factor f will be taken as 1.10 and the angle ~ as 21°. 
max 

(The value of $max has been chosen as large as possible without in-

troducing the possibility of two molecules to be bonded to the 

same vector of a third one) 

The energy e: is negative. 

3.2. Simulations with Tetrahedral Molecules 

3. 2. 1. Outline -------

With the above mentioned pair potential Monte Carlo simulations 

have been performed for systems with 91 molecules in a cubic box 

with periodic boundary conditions. For the volume of the box four 

different values have been chosen in such a way that the density 

D (=Na
3/v) was 0.6667,0.6000, 0.5455 and 0.5000 respectively. 

In that way the corresponding volumes increase proportionally to 

9 : 10 : 11 ' 12. 

~ 0.6667 0.6000 0.5454 0.5000 

0 0.75 - o.o 0.60 - o.o 0.60 - o.o 0.60 - 0.0 

2 0.73 - 0.27 1.09 - 0.2J 0.73 - 1.18 0.55 - 0.27 

3 0.91 - 0.23 1.41 - 0.34 0.91 - 0.43 1.09 - 0.46 

4 1.82 - 0.70 3.64 - 1.01 1. 82 - 1.09 2.00 - 1.06 

5 3.64 - 1. 52 5.46 - 1.60 3.64 - 1. 76 3.64 - 1. 52 

6 9.67 - 3.22 10.01 - 2.73 9.37 - 2.73 9.02 - 2. 73 

Table 3. 1. The number of single steps in the 24 Monte 

Carlo simulations at different densities 

and at different values of the parameter 

À (= - e:/kT). 

The numbers are presented in units of 10
6 

steps. In each case two numbers are given. 

The first one is the total number of 

steps. The second one is the number of 

initial steps that has not been counted 

for statistical purposes. 
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These rather low density values have been chosen in order to ob

tain information in the domain that is relevant because the densi

ty of physical water is close to these values. 

For the parameter À -s/kT six values have been chosen: 

~ = O, 2, 3, 4, 5 and 6. Higher values of À are not practical 

since the approach towards equilibrium conditions becomes very 

slow in those cases. 

In table 3.1 the number of steps performed in each of the 24 

cases is reported. 
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Fig. 3.3. The nwnber of honds as found in the aourse of five 

Monte Carlo simulations. N = 91 moleaules. Density = 0.600. 

À is mentioned inside eaah frame. 

Eaah dot in the figures gives the mean nwnber of honds in 

91000 suaaessive steps. The vertiaal braken linea give the 

nwnber of belOûJ whiah the results have been omitted for 

aalaulation of the mean energy, pressure, eta. 
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In all calculations of mean values and in other statistica! opera

tions a number of initia! steps has been discarded (except for the 

case À O). The choice of the number of initia! steps to be omit-

ted is a rather arbitrary one. 

In fig. 3.3 the number of bonds has been given as a function of the 

progress of the simulation with the indication of the limit of 

discrimination. We believe in all cases the choice has been made 

on the safe side. Only in the cases that À = 6 the situation settles 

extremely slowly and the limit of discrimination should certainly 

not be chosen at a smaller number of steps than indicated. 

3.2.2. ~~~~2~ 

We are dealing with a simple pair potential which has been defined 

in such a way (eq. 3.1) that the potential energy of the system is 

exclusively composed of the contributions of those pairs of molecules 

which have been specified as 'bonded' molecules. For all other pairs 

the energy is zero. Accordingly the potential energy of the system 

is simply proportional to the number of bonds. 

If some numerical value is given to E, each value of the parameter 

À in table 3.1, except À= O, corresponds with a well defined tempe

rature. 

The value À = 0 can only occur when E 

spheres fluid in that case. 

Ö. The system is a hard~ 

Table 3.2 gives the mean number of bonds we found in the 24 compu

ter simulations. In the case À = 0 the bonds are registered in con

formity with the other cases, namely if both the distance and the 

orientation of two neighbours are within the specified limits. 

For À = 0 the f inding of a bond has no influence on the acceptance 

or rejection of a proposed step and by consequence has no influence 

on the structure of the liquids: there is only a purely 'administra

tive' existence of bonds. 

Table 3.2 shows that the number of bonds increases with increasing 

density. That is understandable, since when the density increases 

the number of neighbours and the chance for making a bond increase 

accordingly. 
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However, for À 

a maximum at D 

5 and 6 the situation is different. There appears 

0.6. 

Apparently this is a structural effect. The tetrahedral molecule ex

hibits a preference for a tetrahedral surrounding. If at some densi

ty many configurations would exist in which the majority of the 

molecules has tetrahedral coordination, compression would tend to 

increase the mean coordination number and thus would tend to de

crease the possibility of arrangements with four honds per molecule. 

It must be mentioned that this effect is not specific for particles 

with a preference for tetrahedral coordination. 

In the case of preference for hexahedral or octahedral coordination 

compression above a certain density would also diminish the possi

bility of the realisation of honds. However, probably the effect 

will be weaker because of the smaller difference between the densi

ty that is most favorable for bonding and the density of a closely 

packed system (w~th twelve-coordination). 

~ 0.6667 0.6000 0.5454 0.5000 

0 4.94 4.16 3.30 2.89 

2 27.82 24.29 20.69 18.03 

3 55.9 49.1 44.4 41.4 

4 89.2 83.8 77.7 70.2 

5 121.0 121.1 115.8 108.1 

6 150.1 155.2 145.5 139.8 

Table 3.2 Mean number of honds, present in the 24 

Monte Carlo simulations at different densities 

and different values of the parameter À. The 

maximum possible number of bonds equals 

2N (=182). 
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During each simulation a great number of distances between pairs of 

molecules is calculated. It is easy to use these data for quantita

ti ve analysis and keep administration of the distances lying between 

r and r + ór, for all values of r between 0 and half of the edge 

of the cubic volume of the system. 

When a suff iciently large number of cases has been administrated, 

the mean number of particles, found at a distance between r and 

r + ór from any reference particle is calculated. This mean number 

is identified with the product G(r) • ór. 

The magnitude of G(r) depends on three functions, firstly the mag

nitude of the volume between r and r + ör, which is 4nr
2
6r, 

secondly the magnitude of the mean density of the system, N/V and 

thirdly the apparent local deviation from that density. Only the 

third function contains new information about the system that .is 

studied. Therefore we will eliminate the others in order to get 

the new function : 

g(r) 2 G(r)/ (41Tr .N/V) (3. 2) 

This new function is called the radial distribution function. 

In fig. 3.4 sixteen radial distribution functions have been plotted. 

In all cases no distances r < o can exist. Accordingly the curve 

begins with R r/o = 1.0. 

For À = 0 the curves give the situation in a hard-spheres flUid 

with neighbours situated mainly between R = 1.0 and R = 1.2s*~ 
*) 
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It may seem puzzling why spheres that do not attract each other 

exhibit a g(r) above unity for low values of r. Apparently this 

is a geometrie effect. Each hard sphere has an excluded volume 

of n.o3/6 where the centre of a second sphere cannot be located. 

When there are two spheres, the excluded volume for a third one 

is two times that value if the two spheres are more than 2cr 

apart, but less if they are closer to each other (due to the 

overlap of the two excluded volumes). 

So when the distance between two spheres decreases, the remain

ing volume for a third increases. Consequently the probability 

of a short distance between two spheres increases on the intro

duction of a third one. When more spheres are introduced the 

effect is still reinforced. 
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Fig. 3.4. Radial distribution funation g, plotted as a funation of R = r/a. The aurves result from six

teen Monte CaPlo runs, with four different values of the density D = Na3 /V and fou:r values of the para-

meter À - g/kT. The value of the density is indiaated at the top of eaah of the four frames. Exaept 

for À = 0 (whiah value pertains to the drawn line without disaontinuity at R = 1.1, the distribution 

funation of the hard spheres fluid) the value of À is given next to eaah aurve at the disaontinuity 

ui at R 1.1. 



Furthermore there is a maximum between 2.0 and 2.25 and a minimum 

at about 1.7. Maximum and minimum both tend to move toa lower 

value of R with increasing density. Moreover the height of the 

maximum and the depth of the minimum increase with density. 

When À increases, a sharply limited maximum arises between R = 1.0 

and 1.1. For À= 6 there is a minimum just beyond 1.1 and at about 

2.1 and a maximum at about 1.7. For À 2 and 4 the curves are inter-

mediate between the curves of À = 0 and À 6. 

The difference between À = 6 and the hard spheres is striking. The 

order of the maxima and minima have completely interchanged. A 

curious consequence of this interchange is that for À = 4 the curve 

is almost straight above 1.1. 

The existence of points of intersection at R 1.5, 2.0 and 2.3 

suggests that there are two different types of second neighbours. 

Apparently the second neighbours in a hard-spheres system are situ

ated at a longer distance than the second neighbours in a strongly 

interlocked structure. These short-distance second neighbours are 

attached with a bond to the same molecule. This can easily be veri

fied since we know all details of all configurations. 

Consequently in all cases can be evaluated what the distance is 

between two molecules, both bound to a third one. In this way a 

special distribution function can be calculated with only th~t type 

of distances. In fig. 3.5 that special distribution function,is 

compared with g(r). For À= 6 the peak at R 1.7 proves to be eau-

sed by bonded second neighbours. As can be expected the effect is 

alrnost absent in the case À = 4. 

The tetrahedral symmetry of the molecule demands that the most 

probable distance for second neighbours is ~ times the mean 

length of a bond. 

Accordingly the most probable distance becomes 1.715 (the mean 

length is 1.05 cr). Detailed analysis of the curve in fig. 3.5 

proves that the peak occurs at slightly smaller R. This is an 

artifact of the tfansformation of G(r) into g(r) in accordance 

with eq. (3.2). Division by r 2 results in a shift of the maximum. 

When G(r) itself is analysed the maximum is situated correctly at 

the calculated position. This applies for all four densities. 

Considering fig. 3.4 it is evident that all g(r) show a disconti

nuity at r = f • o except when À = O. 
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Fig. J.6. Contribution 

of bond.ad second neigh

bours to the radial distri

bution function g(r). 

CircZes : aZZ neighbours. 

Dots : second neighbours. 

Density 0.600. À is gi

ven in the upper right. 

It will be clear that this discontinuity arises from the fact that 

the possibility of making a bond exists for molecule-pairs with a 

distance between a and f • a and for pairs with larger intermole-

cular distance not. 

The probability of the occurrence of pairs at a distance r is pro

portional to the product of the Boltzmann factor exp(- E
2

/kT) 

(which shows a discontinuity at r = f • a) and the magnitude of the 

corresponding fraction of the configuration space (which is a con

tinuous function of r). Accordingly the function y(r) should not 

show a discontinuity any more. y(r) defined as: 

y(r) _ g
1 

(r)/exp(- g/kT) + g
2

(r) 

y(r) g(r) 

(if a < r <f.0 

(if r > f.a) (3. 3) 

In these equations g 1 {r) is the distribution function pertaining 

to all those pairs which have formed a bond and g
2

(r) is the con

tribution to the distribution function of all. other pairs (for which 

the interaction energy is zero) • 

In fig. 3.6, the function y(r) has been plotted for a couple of 

simulation experiments. The discontinuity at R = 1.1 appears to 

have been removed, as expected. 
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y(r) 
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1.0+--------~·~--f 

0+----~---~~ 

t2 R-1.4 

-·---- -------~ 

1 À =5.0 
y (r) 

1.0+---------~ . ". -... " .. . . . " ... " 

o+-----~--······-~~ 
1.2 . R 1.4 

À ~4.0 

1.2 R-1.4 

1.2 R-1.4 

Fig. 3.6. The funotion y(r) as defined with equ.ation (3.3) as 

a funotion of R :::: r/o. 
There is no signifiaant indiaation of the existenae of a dis

aontinuity at R:::: 1.1. 

The èknsity is 0.600 and À is printed inside eaah frame. 

Since y(r) is in some respect more transparant than g(r) we will 

use y(r) in the discussion of the next few pages. 

With the data we have generated it is possible to obtain all sta

tistical data on the relative position of pairs we could need. 

The relative orientation of two molecules, however, depends on five 

independent parameters. At the same time the distance is relevant. 

Consequently the relative position of two molecules is a six dimen

sional function. In the literature no satisfactory method to dis

play this f unction has been proposed 

We will restrict ourselves to a simplification which can easily be 

generated by our computer program. In our program we deal with a 

potential in which two angles, ~k and ~l play a rele (formula 3.1). 

For each pair with a low internuclear distance, we have to check 

whether ~k and $1 are below ~max in order to know whether a bond 

exists or not. 
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For orientational statistics we have extended the procedure to all 

pairs, irrespective the internuclear distance. 

In that way we get three types of pairs : 

a. pairs for which both wk and wl are below the limiting value 

b. pairs for which either wk or wl is below the limiting value 

c. pairs for which wk and wl are both outside the limit. 

For each of the three types a radial distribution can be made ex

actly as described above. 

We have done so, we have performed the operations of the formulae 

(3.2) and (3.3) and obtained three new functions, q
1 

(r), q
2

(r) and 

(r), the designation 1, 2 and 3 being in accordance with the 

three types of pairs in the above list. 

The sum of the three functions equals y(r) 

0.5 

. ". 
" 

.. """"."" ....... """ 

.• 

y(r) 

.... "" . . 
" q (r) 

• •• 3 ·. . ... " .. " ....... " " ... " .. 

.. ······" q (r) 
• ." 2 

.. · 
.... """ 

... ···············.~~~~'. .................. . 
o+""~....,.~~ ....... ··~·~··-·-.---~-..,.~~...,-~--.~~-,-~--.,.----' 

1 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 

(3.4) 

Fig. J. 7. The distribution funetion y(r) sp7..it up into 

three functions with different orientational oharaoteristios 

q1 both relevant angles are within the limits 

q2 only one angle within the limits 

q3 none of the angles within the limits. 

The density is 0.600 and Ä is 6.0. 
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In fig. 3. 7 the func'tions are plotted for a special case, namely 

D = 0.600 and À 

to y(r). 

6.0. It can be seen that the q-curves are similar 

This is an obvious result since when there are many molecules at a 

certain distance, the probability of finding molecules of a certain 

orientation will be rather high. It is, however, the deviation from 

the mean pattern that would give new information about structure. 

Therefore it is better to transform the q's into a new function by 

division by the value that would exist if the orientation would be 

random. 

That is easily achieved, since in case of random orientation the 

function would simply be the product of y(r) and a probability fac-

tor. 

If 8 is the probability of a random vector to have an angle below 

lj!max with one of the four vectors of our tetrahedral molecule, then 

the probability of two vectors to be correct is s2
, of one vector 

to be correct is 28(1-8) and of no vector correct is (1-8) 2 • 

Accordingly three new functions have been defined as fellows: 

2 q
1 

(r)/{y{r).8) 

q 2 (r)/(y(r) .28(1-8)) 

q
3 

(r) / (y(r). {1-B) 2) 

(3. 5) 

(3.6) 

(3. 7) 

The value of 8 is a function of ipmax' which is easily evaluated 

analytically to be: 

2(1-cos(lj!max)) (3. 8) 

In fig. 3.8, 3.9 and 3.10 the functions w
1

, w
2 

and w
3 

are plotted 

for eight computer simulations. 

The case À 0 is not mentioned since w
1

, w
2 

and w
3 

equal unity for 

all r, apart from inevitable statistical fluctuations. 

For À = 2 a slight deviation from unity appears which deviation in

creases when À increases. 

All curves of w1 and w2 (fig. 3.8 and fig. 3.9} exhibit a minimum 

at R = 1.4. In the case of larger À there is a maximum in w
1 

at 

R = 1.9 and a maximum in w
2 

at R = 1.8. 
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Fig. J.8. First orientationat distribution funatión w
1

. This is the refo

tive number of pairs that satisfy the o1'ientationai condition o.f the po

tentia'l (fo1'11rUZa J.1). The numbe:t' as found in the Monte Ca:t'lo simuta.tions 

has been divided by tlie nwnbe:t' that one woutd e:cpeat in the aase of ran

dom o:t'ientation. Mo:t'eoVe:t' the p:t'ocedwie of eq. (J. J) is app'lied. Circ'les 

give the same funation if seaond neiglibour>s a:t'e omitted. 
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Fig. J.9. Seaond orientationa,l distributionfunation w2. This 

is the relative number of pairs of ~hiah only one moleaule 

satisfies the orientational aondition of the potential (formu

ia J.1). 

Like in fig. 3.8. the number is relative to the number one 

~uld expeat in aase of random orientation. Circles give the 

same funation if seaond neighbours are omitted. 
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Fig, 3.10. Third orientational distributionfunction w
3

• This 

is the relative nwriber of pairs of which none of the molecules 

satisfies the orientational condition of the potential (formu

la 3.1). 

nwriber one would in case of random orientation. Cir>cles 

give the same funation if second neighbours are omitted. 
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w
3 

has the opposite character, a maximum at R = 1.4 and a minimum 

at R = 1.8. This opposite behaviour originates from eq. 3.4, which 

demands that Eqi/y must equal unity. 

The maximum in w
1 

and w
2 

at R :i; 1.8 originates from second neigh

bour's. If the pairs that have a bond with the same third mol.ecule 

are left out, the peak disappears entirely. In fig. 3.11 this 

situation is illustrated. It is clear that when the angle ABC is 

large, it is rather trivia! that the chance is large for one or two 

of the vectors of A and C to be sufficiently in line with AC. 

Accordingly, if the angle ABC is large the probability of A and C 

to be assigned to the functions w1 or w2 is also relatively large. 

The maximum therefore exceeds slightly the value R = 1.71, the most 

probable distance of second neighbours. When considering second 

neighbours only we find 

angles below ~max) at R 

angle below ~max) at R 

a maximum for the first group (w1, two 

1. 90 and for tll.e second group (w
2

, one 

1. 78. 

The minimum in w
1 

and w
2 

at R = 1.4 (or in the curves without second 

neighbours at R = 1.7) can·easily be understood. The bonded neigh

bours, although they are made invisible in the figures by the 

operation of formula 3.3, are present in reality and they black an 

important part of the space near the vector concerned. Therefore 

eventually molecules at a distance below R = 2.1 will be forced 

more or less to the space remote from the four tetrahedral vectors. 

By consequence w3 will be large in that region and w
1 

and w
2 

will 

be small. 

Above R = 2. 1 there exists no such direct relationship between pairs 

as mentioned above. For À up to 5.0 the curves appear to deviate 

not significantly from unity in that region. 

Orientational correlations for R > 2.1 appear to be very weak. 

For À = 6.0, however, there appears to be marked deviation from 

unity at high values of R. Apparently the orientational correla

tion between remote pairs becomes strong with increasing number of 

bonds. (it should be kept in mind that long range farces between 

pairs are not present.) In this respect there is a marked diffe

rence between À = 5.0 and À = 6.0. 

The curves suggest that there is much detail at R > 2.6. This re

gion, however, can be explored only in larger systems. 
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c 

Fig. 3.11. Seaond neighboura with 

orientationaZ aondition fulfilled. 

The moZeaulea A and C are aeaond 

neighboura in the sense that both ha

ve a bond with B. The bonding vectora 

of A and C are orientated in a way 

that their angle with the line aon

neating the centres is Leas than 

ij> , which ia not the aaae for all max 
seaond neighbours. A pair of molecu-

les like A and C will be included in 

the first orientational funation w1. 

In the above discussion of the minimum at R = 1.4 (or 1.7) we 

mentioned the division of space around a molecule into a part 

close to the vectors of the tetrahedral molecule and a part cor

responding to the remaining space. Now imagine the existence of 

four identical cones which have an angle at their top which equals 

211tmax· 
The four cones are tetrahedrally arranged with their tops at the 

centre of the reference molecule. Molecules whose centre is inside 

one of the cones, exhibit at least one angle ~ < ijtmax· Using this 

representation we can derive from our curves an alternative way of 

arranging the facts: we define a set of two functions, (r) and 

(r), which represent radial distribution functions of the mole

cules with their centre inside and outside the cones respectively. 

The relation between t and q is: 

(r) 

t 2 (r) 

q
1 

(r) + (r) 

q
3 

(r) + ciq
2 

(r) } (3.9) 

In fig. 3.12 is plotted the function o
1 

(r) ~ t
1 

(r)/y(r) 

At the same time the figure shows (r) t 2 (r)/y(r), which equals 

1.0 - o
1
(r). 
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Fig. 3.12. Discrimination of the molecules, sur'l'Ounding a referenae molecule, into two groups. One 
fraction, a1 (black points, left scaZe) is the fr>action lying close to one of the four bond.ing directions 
of the reference moZecuZe, irrespective of the other bond.ing aonditions. .. 
The other fr>action, a2 (blaak points, right scaZe) is the fraation outside the bonding region. The cir
aZes iUustrate the S"/,tuation if second. neighbours are ignored. The Zower aurve is e1 minus second 
neighbours (Zeft saaZe), the upper aurve is e2 minus second. neighbours (right scaZe). The horizontaZ 
Zine gives e in the case of random orientation. HorizontaZ axis : R = r/a, verticaZ axis : fraction of 
the total number of moZeaules at the pertinent distance, after eZimination of the discontinuity with (3.3). 



Coordination Numbers -·-------------------
Finally we can make a few remarks on the well known concept of 

the coordination number, which is closely related to the distribu-

tion function, 

We will discuss two alternatives. Firstly we consider the "all in" 

coordination number, including both bonded and non-bonded neigh

bours at a distance between o and f • a from a reference molecule. 

In table 3.3.1 the mean value of these coordination numbers is 

given for the 24 Monte Carlo simulations we are dealing with. 

Additionally has been mentioned the fraction {in per cent) of 

the coordinating neighbours having a bond with the reference mole

cule. 

As can be expected the coordination number increases with density 

and with the parameter À, The percentage of bonded neighbours is 

low for À = 0 and is independent of the density in that case. For 

larger values of À the percentage generally decreases with increa

sing density. For À = 6 the latter decrease is very slow when go

ing from D = 0.5 up to D = 0.6, but from there to D = 0.667 the 

percentage falls rather significantly. 

I~ 0.667 0.600 0.545 0.500 

0 2. 310 4.75 1.875 4.75 1.575 4.75 1. 357 4.75 

2 2.51 24.3 2.09 25.6 1. 79 25.4 1.55 25.6 

3 2.80 43.8 2.38 45.3 2.09 46.8 1.88 48.3 

4 3.15 62.1 2.80 65.8 2.54 67.2 2.24 68.8 

5 3.48 76.4 3.21 82.9 3.01 84.5 2.73 86.9 

6 3.81 86.7 3.65 93.5 3.39 94.2 3.24 94.8 

Table 3. 3. 1 The me an coordination number of the mole-

cules in the 24 Monte Carlo simulations, 

as mentioned in table 3. 1. In each case 

there are two numbers 1 left: the coordina-

tion number and right: the percentage of 

coordinating neighbours that is bonded. 

47 



!"rom this point of vü:w we can state that the maximum in the number 

of nonds t.ha t has been observed in table 3. 2 for J<, = 6 and D = 0. 6 

ls caused by the fact that on increasing the density, the fraction 

o2 the ncighbours that are bonded falls rapidly. On the other hand 

or: dvcn,asing the density the coordination number decreases with 

.o ;ai nor increase of the fraction of bonded neighbours. In other 

words for D 0.6 the geometrical conditions for making bonds are 

favorable. On compression some neighbours are forced into the non

bonding regions around the molecules. On expansion the distance 

between the molecules becomes too long for bonding. 

Secondly there is an alternative approach. When we restrict oursel

ves to the bonded neighbours there are five types of molecules name

ly those with 0-, 1-, 2-, 3- and 4- bonded neighbours. 

In the course of the simulations we counted the frequency of each of 

these groups, which frequencies (in percents of the total) are pre

sented in table 3.3.2. 

The data are closely related to the total number of bonds of table 

3.2. In the present table we can see that the evolution from a low 

to a high number of bonds takes place progressively with À. 

Close examination of the data shows that for small À the distribu

tion resembles closely the binomial distribution as if we were 

dealing with completely independent events. 

l"or larger value of À the distribution deviates slightly from 

t-he bihomial in the sense that the fraction of non, singly and 

fourfold bonded molecules in the model is slightly larger than 

would be expected from the binomial formula. 

l\3 an illustration we repeated the data of À 6 from table 

3. 3.2 in table 3.3.3 together with the fractions that would 

l>'sult fr.om a binomial distribution with the same total number 

ot bonds. 

48 



Number of bonded neighbours : 

D À 0 1 2 3 4 .. 

0 93.8 6.0 0.1 o.o 0 

2 65.9 29.0 4.7 0.4 0.0 

0.500 3 36.0 41.5 18.2 3.9 0.3 

4 14.3 35.5 34.1 13.9 2.2 

5 2.7 15.1 34.5 34.7 13.1 

6 0.5 4.6 18.6 38.7 37.5 

0 92.9 6.9 0.2 o.o o.o 
2 61. 7 31. 7 6.1 0.5 o.o 

0.545 3 32.7 42.0 20.4 4.6 0.4 

4 11. 7 32.1 34.1 17.8 4.2 

5 2.2 13.0 31.0 35.8 17.9 

6 0.4 3.3 15.4 38.1 42.9 

0 91.2 8.5 0.3 o.o 0 

2 56.4 34,6 8.1 0.8 0.0 

0.600 3 28.5 41.9 23.4 5.7 0.6 

4 9.1 28.5 36.4 21.2 4.8 

5 1. 7 11.1 27.8 38.1 21.3 

6 0.2 1. 7 9,8 33.5 54.8 

0 89.6 10.0 0.4 0.0 0 

2 50.6 37.9 10.2 1.3 0.1 

0.667 3 23.8 39.4 27.2 8.4 1.2 

4 7.0 26.0 35.8 24.7 6.5 

5 1. 4 10.2 29.2 39.4 19.8 

6 0.3 2.6 12.5 36.5 48.2 

Table 3. 3. 2 The fractions of molecul.es (in per cent) 

with 0, 1 , 2, 3 and 4 bonded neighbours 

respectively. 
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Number of bonded neighbours : 

D À 0 1 2 3 4 

0.500 6 0.5 4.6 18.6 38.7 37. 5 
0.29 3.83 19.03 42.03 34.81 

0.545 6 0.4 3.3 15.4 38.1 42.9 
0.16 2.58 15.42 40.99 40.85 

0.600 6 0.2 1. 7 9.8 33.5 54.8 
0.05 1.09 9.46 36.52 52.88 

0.667 6 0.3 2.6 12.5 36.5 48.2 
0.09 1. 78 12.54 39.33 46.26 

Table 3.3.3 The fractions of molecules {in per cents) 

with 0, 1 , 2 / 3 and 4 bonded neighbours 

respectively. 

Above: the data from the Monte Carlo 

simulations as in table 3.3.2 

Below: the binomial distribution. 

3.2.4 Pressure 

The pressure can be evaluated from Monte Carlo calculations in two 

ways. 

In the first place when the free energy is calculated,which will be 

the case in the next section, the pressure can be evaluated as the 

derivative of the free energy with respect to the volume at 

constant temperature. 

Secondly the,pressure can be evaluated from the virial. In this 

section we will report the results of the second possibility. 

In appendix 4 we developed formula (A 4.6) and {A 4.7) for the 

calculation of PV/NkT, from the distribution-function 

data. These data are obtained in the Monte Carlo simulations and 

are discussed in section 3.2.3. 

We have applied (A 4.6) to the results of the 24 Monte Carlo simu

lations, previously mentioned (see table 3.1), and have obtained 

PV/NkT in 24 cases. 

The results are plotted in figure 3.13. 
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Fig. 3.13. PV/Nk.T as a funation of À (= - e:/kT). The airaies 

indiaate the values aalaulated with (A 4.6) from the data of 

the 24 Monte Carlo simulations of table 3.1. The crosses in

diaate the value aalaulated with the foI'171Ula of Carnahan and 

Starling for hard spheres (3.10). The density is indiaated 

inside eaah frame. 

For À = 0 the system is identical to the hard-spheres fluid of the 

same density. The Carnahan and Starling formula for PV/NkT is : 

PV 

NkT 

y = D • n/6. 

(3. 10) 

The values resulting from (3.10) are indicated in figure 3.13 with 

a cross. The accordance with the data from (A 4,6) is good. 

The pressure can be evaluated from PV/NkT. For that purpose it is 

necessary to introduce reduced variables defined bY : 

P* 

V* 

T* 

(See [ 1. 9]} 

Po3/le:I 

V/ (No 3
) 

kT/lr::I l (3.11) 

The evaluation of these reduced quantities from D(=No3/v), À(=-e:/kT) 

and PV/NkT can be performed with the aid of the equations : 

P* 
PV D (3.13) 
NkT N 

V* 1/D (3 .14) 

T* 111"1 (3.15) 

In table 3.4 the resulting values of P* are given. 
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D o.667 0.600 0.545 0.500 

À 
V* 1.500 1.667 1.833 2.000 

T* 

2 0.500 1. 51 1.13 0.91 0.75 

3 0.333 0.87 0.65 0.51 0.43 

4 0.250 0.55 0.39 0.28 0.23 

5 0.200 0.33 0.23 0.16 0.09 

6 0.167 0.30 0.15 0.05 0.03 

Table 3.4 The reduced pre.ssure P* as a function of 

volume and the temperature. 

3.2.5. Free Energy 

The free energy can be calculated when the partition function is 

known (A = - kTlnQ), and the partition function can be calculated 

when the details of the configuration space are known. 

the 

The starting point for investigating the configuration space in a 

system with tetrahedral molecules with a hard core is the hard

spheres fluid. Each configuration that can exist for the tetrahedral 

molecules, also exists in the hard spheres case as far as the loca

tion of the centres of the molecules is concerned. Likewise the 

reverse holds : each configuration of a hard spheres fluid can 

exist for tetrahedral molecules with a hard core as well. 

Once the density is given, the magnitude of the configuration space 

of a hard spheres system is fixed and can be calculated with the 

Carnahan and Starling algorithm (eq. (2.18) of section 2.3). 

When the possibility of bonding is introduced, the configuration 

space is divided into parts corresponding to a different number of 

bonds and by consequence different energies. Since for tetrahedral 

molecules the number of honds in a N-molecules system must lie 

between O and 2N, the configuration space is divided into 2N + 1 

parts. We denote the relative magnitude of each part with cj, j 

being the number of honds present. Just as we have done in section 

2.2. 
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The analogon of equation (2.9b) is now 

J I:; (j)dqi (3.17) 

'il~S is the excess configuration integral of the corresponding hard 

spheres ystem. (See appendix 1 equation (A 1.9)). 

I:; (j) = 1 if the number of bonds equals j andl:; (j) 0 if not. 

In analogy to section 2.2,the equations (2.10) up to (2.16) apply 

wi th the exception tha t in ( 2. 11) and ( 2. 13} 'il~ must be read in 

stead of 'il~. ('il~ as defined in (A 1.9)). 

Moreover equation (2.20) applies : ~. = j, since all bonds have the 
. J 

same contribution to the energy. The analogon of (2.17) becomes 

PAj ~ Pj = cj exp(À • j)/'il~ (À} (3 .18) 

From a set of Monte carlo simulations we can evaluate 'il~ for all 

values of À with the method of pairwise combination as described 

in chapter 2 section 3. In that way a function y (j) is defined and 

dy/dj is estimated from the apparent probabilities in the simula

tions. 

Finally ln'il~ is evaluated as an integration constant (equations 

(2.22) up to (2.25)). 

We made these calculations for the 24 simulations mentioned in 

section 3.2.1 (table 3.1). The resulting values of S" (À) are 
N 

given in table 3.5.1. 

Table 3. 5. 1 The value of the logarithm of the excess 

configuration integral, ln ('il~{À) l as cal-

culated with the aid of (2.25) from the 

pairwise com.bination Of Monte Carlo si-

mulations with the same density and dif-

ferent values of À. 

Àl À2 ~ 0.6667 0.6000 0.5455 ' o. 5000 

0 2 2 + 27.22 + 23.60 + 19.20 + 16.74 

2 3 3 + 67.96 + 59.16 + 50.55 + 45.30 

3 4 4 + 140.93 + 124.69 + 110.24 + 100.49 

4 5 5 + 246.25 + 227.61 + 208.30 + 190.67 

5 6 6 + 382.80 + 366.39 + 340.22 + 316.34 
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Likewise, with the help of the integrated equation for y 

ln{C .) 
J 

y (j) 
.5 
J 

Cj can be evaluated for the range of j-values, that is relevant 

for the pair of Monte carlo simulations under consideration. 

The result is given in tablè 3.5.2. 

(3.19) 

It is interesting to canpare the present result with what should 

be expected from the simple lattice theory [3.18]. As will be des

cribed in appendix 5, Gosling and Singer [A.6] have developed a 

method for the calculation of the free energy on the basis of the 

simple lattice theory1 starting with the acceptance ratio of the 

moves in a Monte Carlo simulation. 

In this line of thought one starts with a configuration of N parti

cles in a volume v. The volume is divided into N Voronoi polyhedrons 

(with one particle in each polyhedron). When one partic,le is moved 

leaving all others at their places, the motion is hindered by the 

surrounding particles. There appears to be only a small 'free 

volume' vf. 

vf is a fraction of the volume of the Voronoi polyhedron (which is 

about V/N). 

In a Monte Carlo simulation a great number of moves within a preset 

volume vm is proposed (vm is a fraction of V}. ~ fraction ~tof the 

proposed moves is allowed. 

The free volume is in accordance with Gosling and Singer 

~t . v 
m 

Identifying this free volume with vf in the lattice theory of liquids 

(see Barker [3.18) page 30) then the excess partition function with 

respect to the ideal gas is 
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Table 3.5.2 The 109arithm of the fraction of the con-

fi9uration space where the number of bands 

is j 1 (lnCj), as a function of j for the 

four densities investi9ated. 

~ 0.667 0.600 0.545 0.500 

0 -5.18 -4.29 -3.34 -2.99 

5 -1. 70 -1.79 -2.12 -2.34 

10 -4.12 -5.11 -6.68 -7.60 

15 -9.37 -11. 20 -13.97 -15.68 

20 -16.59 -19.23 -23.14 -25.73 

25 -25. 34 -28.81 -33. 76 -36.91 

30 -35. 38 -39.68 -45.46 -49.36 

35 -46.50 -51. 72 -58.33 -62.86 

40 -58.48 -64.77 -72.21 -77.30 

45 -71. 42 -78.73 -87.02 -92.62 

50 -85.19 -93.51 -102.70 -108.75 

55 -99.73 -109.09 -119.10 -125.85 

60 -114.93 -125.48 -136.38 -143.80 

65 -130.87 -142.62 -154.40 -162.58 

70 -147.54 -160.47 -173.13 -182.14 

75 -164,95 -179.02 -192.54 -202.48 

80 -183. 11 -198.23 -212.58 -223.24 

85 -202.02 -218.09 -232.97 -244.73 

90 -221. 70 -238.65 -254.02 -266.88 

95 -242.13 -259. 77 -275.71 -289.68 

100 -263.37 -281. 53 -298.06 -3L~.14 

105 -285.41 -303.94 -321. 10 -337.26 

110 -308.25 -326. 99 -344.85 -362.06 

115 -331.90 -350. 71 -369.36 -387.28 

120 -356.37 -375.11 -394.54 -413.54 

125 -381. 51 -400.23 -420.18 -440.16 

130 -407.35 -426.08 -446. 78 -467.88 

135 -434.04 -452.62 -474.27 -496. 52 

140 -461.60 -479.88 -502.73 -526.15 

145 -490.11 -507.86 -532.24 -556.86 

150 -519.66 -536.61 -562.91 -588.74 

155 -550.34 -566.17 -594.86 -
160 -582.29 -596.65 - -
165 - -628.21 - -

1 
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Since we deal also with rotational steps we must perform the same 

procedure for the angular motion. When the maximum rotation for 

each of the three axis is a, the result is 

Q' 
r 

(qi . 2 (1-cosa) . 2a)N 
.. r . 

qir is the acceptance ratio for rotational steps. 

The excess partition function becomes : 

Q' Q~ . Q~ 

As an example we will consider one simulation of chapter 3, and it 

is the simulation with D = 0.6, À = 6. In that case we have fixed 

v 
m 

3 (0.lo) and a = 0.35. The resulting acceptance ratios were : 
No3 

0.27. Furthermore N = 9f and V = 
D 

With these data we calculate lnQ' = -1832. 

From the tables 2.3 and 3.5.2 we know that this quantity should be 

lnQ' = -566 + (-2.042 x 91) = - 752. 

The discrepancy is to be attributed to the fact that the free volume 

theory is ba.sed on the assumption that starting from one basic con

figuration (almost) all relevant configurations can be realised by 

shifting the particles inside the free volume. 

Apparently that is not true and we conclude that if one would pre

fer this simple lattice theory, one should conceive of a tremendous 

number of 'basic configurations'. 

That tremendous number can be evaluated with the multistage sampling 

method and in the above-mentioned case it appears to be : 

469 5N exp(-752 + 1832) = 10 (that is about 10 ). 
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There are two approaches for estimating the accuracy of the 

results of the previous section: the evaluation of the repeatability 

and the check with pressure as mentioned in section 2.2. 

Beginning with the latter, we can compare 10 of the 24 values of 

the pressure, evaluated in section 3.2.4 with the pressure that 

can be calculated from free energy with the formula : 

(3. 20) 

The free energy Ais evaluated from the results of table 3.5.1 with 

the aid of the formulae (A 1.3b) and (A 1.9). 

The two alternative ways of calculating the pressure of the system 

are essentially independent since the determination with the aid 

of (3.20) involves a combination of many Monte Carlo simulations, 

whereas the calculation of the pressure with the virial according 

to appendix 4 involves the data from one single simulation. 

The greater part of the information, that is used for the calcula

tion of the pressure from free energy, is absent when the pressure 

is calculated with the virial. 

From (3. 20) , (A 1. 3b) , (A 1. 9) and the Carnahan and Starling formula 

(3.10) we can derive that 

PV 
NkT 

Y... 
N [dlnl3~ l + 1 + ':l + y2 

av ,T (l-yJ3 

(where y = D. n/6). 

3 
- y 

(3.21) 

We can approximate the derivative of s~ from the results of table 

3.5.1 by stating : 

v • 
__ N_: 

[
alr$"Î 

av jT (3.22) 
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In (3.22) 6lnS~, which is a function of density, is approximated 

For a given value of À by fitting to a polynomial of the· third degree: 

(3. 23) 

and 

(3.24) 

with v
1 

-2/6, v
2 

= -3/6, v
3 

= 6/6 and v
4 

=-1/6, whereas o
1

, o
2

, 

o3 and o4 are the four densities, mentioned in table 3.5.1 and z; (o
1

J 

etc. are the values of s~ of the same table with the relevant value 

of À and D. 

The quantities 61nS~(D 1 J and 6lns;(o4J are not approximated in 

this way since the differential,of a curve can only be evaluated 

with some accuracy when there are data available on both sides of 

the reference point. 

In fig. 3.14 we have plotted the ten resulting values of PV/NkT in 

comparison with those from section 3.2.4. 

For À = 0, lns; is always zero, without deviation. Therefore and 

because of the cumulative character of the problem we assume the 

inaccuracy to be proportional to À. 

If we calculate now the root mean square of the ten values of 6p/À, 

the result is o /À = 0.029 (6p is the differenqe between pV/NkT 
p 

from the free energy and from the virial and o is the standard devi
P 

ation of ,:T ) • 

This root mean square deviation can be used to estimate the inaccuracy 

oz of lns; of table 3.5.1 as follows : 

6P depends on the inaccuracy of both the virial and lns;. we consider the 

worst case, namely that the difference is entirely to be ascribed to 

inaccuracy of lns;. 

Furthermore we assume the inaccuracy in lnS;, oz to be proportional 

to À and independent of the density. 
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Fig. 3.14. Comparison of PV/NkT as aalculated from the virial 

(airales) and from the free en~rgy (arosslets). The density is 

indiaated inside eaah frame. 

Now we can calculate o with (3.21), (3.22) and (3.23) 
z 

0. 
p 

(3.25) 

The result is : o z 
0.22 À. 

Alternatively we estimate the same inaccuracy from the repeatability. 

For that purpose we divided the data from each of the 24 Monte Carlo 

simulations into two groups. 

One group consists of half the original number of Monte Carlo steps 

and by consequence the standard deviation in the resulting values of 

lnB~ is increased by a factor 12. 
For the standard deviation of the difference between the correspon

ding lnB~ of the two groups again a factor 12 must be introduced. 

From the root-mean square of the 20 resulting differences we could 

calculate the second approximation of oz 

x 0,56 À 0.28 À (3.26) 

We can conclude that the inaccuracy of lnB~ is relatively small. For 

instance if À = 6 the magnitude of the inaccuracy in lnB~ is about 

0.5 % and if À = 2 about 2.5 %. 
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The repeatability procedure mentioned above yields not only data on 

the accuracy of ln!3~, but in principle it can yield data on the accu

racy of all other quantities involved. 

For the quantity lnCj the root mean square deviation appears to be 

of the same magnitude as for lns; : 

0 0. 28 À 
c 

This can be understood since a relation like (2.11) suggests that 

there may be a strong relation between the inaccuracy of cj and s~ 

(or 13~). 

For the mean number of bonds as mentioned in table 3.2 the repeatabili

ty calculation has given the startdard deviation ; 

0.22 À (3.27) 

3.2.5.3. Fitting of the Data with an Analytical Expression. 
------------------------~----------------------------------

Before dealing with the thermodynamic consequence of the results of 

table 3.5.2 we have fitted the data with analyticàl functions of 

the number of bonds j and the density D. That is necessary in order 

to make interpolations for calculation at other temperatures and 

densities than those of the Monte Carlo simulations and to make 

the evaluation of derivatives possible. The results of table 3.5.2 

are composed of a set of 20 different functions of the type (2.22): 

y(j) lnCj 

In all instances where one is obliged to jump over from one curve to 

another there is a small kink, enough to make differentiation diffi

cult. 

The results of table 3.5.2 are these values that correspond as close

ly as possible to the evidence of the computer experiment, and fit

ting will strain somewhat this result. Therefore we should find an 

algorithm that represents this 'experimental evidence' as accurate

ly as possible. 

Representation of the curves with four polynomials that fit from 

j = 0 up to 182 (= 2N) or 167 {the highest number of j found) for 

the 4 densities, is not attractive. In order to get a reasonably 
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good fit it proved to be nec.essary to increase the degree of the 

polynomial to twelve. Apart from the fact that this is not very 

elegant, it is almost impossible to unify the four curves to a 

smooth function of density at constant j. So we must find an algo

rithm that fits better than a polyuomial. 

A major improvement is obtained when the data are compared with 

the binomial formula that applies for independent events. 

Division of all Cj by the binomial factor : 

(2N): 
(3.28) j! (2N-j) ! 

yields a new function that is only slightly curved (see fig. 3.15). We 

def ine the new function y of the real variable j in such a way that 

for integer values of j 

y(j) (3.29) 

Fig. J.15. The dots vep:r>esent lnC. as 
J 

aafoulated in seation J. 2. 5.1. The ai~-

ales rep:r>esent the values of lnCj-lnl2:J• 
If Cj would satisfy ereactly the binorrrlal 

dist:r>ibution~ the ai:r>ales would aoinaide 
with the full line. 
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Since the more direct information from Monte Carlo simulations yields 

the derivative of this curve we have assembled in fig. 3.16 the appa-

rent values of these derivatives 

dj (i±.!_) ln PAJ'+1 - ln PAJ. + ln - À 2N-j 
(3. 30) 

PA. represents the apparent probability as obtained from a Monte 
J 

Carlo simulation. 

-1 -1 

0.667 0.600 

-2 

-3 

-5'--~~~~~~~~~~~~~~---' -s~~~~~~~~~~~~~~~~ 

Or--~~~~~~~~"'-~~~~~--; 

50 J-100 150 
or-~~~~s~o~~Jc.~··c~~~~-c:;::-~-, 

-1 

-2 

-3 

-1 

0.545 0.500 
-2 

-3 

Fig. 3.16. The deT'ivative of the func:tion y, estimated from the 

Monte Carlo sirrruZations after equation (3.30) (dots). The hori

zontal Zine gives the c:orresponding derivative of the binomiaZ 

distPibution. The denaity is pPinted inside eac:h frame. 

As can be seen from fig. 3.16 the function is only slightly curved 

and by consequence the equation should be rather simple. We used 

the formula 

y (D, j) (3.31) 

Where the coefficients x
1 

are functions of density. The parameter ~j 

is the dif ference between the present number of bonds j and the mean 

number of 'bonds' in a hard-spheres system jm 

t,j (3.32) 
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The first and second coefficient of (3.31), x0 and,x1 can be evalua

ted rather accurately from the requirement that for À = 0 the system 

is identical with the corresponding hard spheres system in the follo

winq way. 

From the distribution function of a hard spheres fluid the mean num

ber of neiqhbours with the distance within the limits of bonding 

(eq. 3.1) can be obtained. In our case we made six separate Monte 

Carlo simulations with 91 hard spheres and the densities 0.462, ~.500, 

0.545, 0.600, 0.667 and 0.750 respectively. We counted the mean num

ber v of neighbours with a distance from the reference particle lying 

between o and f , cr. The resulting data were fitted into the polyno

mial : 

(3.33) 

The coefficients, a
0 

and a
1 

are evaluated analytically, whereas a
2

, 

a 3 and a4 are fitted with least squares [2.3] to the Monte Carlo 

data. 

In table 3.6 the results are given. 

Table 3. 6. The numerical values of the coef ficients of 

eq (3. 33) for the calculation Of· the me an 

numbers of neighbours with distance between 

0 and 1. lo in a hard-spheres flu1a. 

ao o.o 
4îî 

(1.1 3-1) al + 1.3865 = 3 
a2 + 3.080 

a3 3.571 

a4 + 5.441 

We can take the view that the orientation is completely random since 

we are dealing with hard spheres. Accordingly the chance for one 

of two neighbours to meet the orientational condition can be evalu

ated analytically 

(3.34) 
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By consequence the chance of two neighbours to be both oriented 

correctly is s2• 

In the system there are ~N.v neighbours and the mean number of bonds 

is: 

j ~N. \1, 
m 

(3.35) 

If this is identified with the number of bonds pertaining to the bi

nomial distribution: 

(3.36) 

then a should fulfill the equality jm 2Na and by consequence: 

(3.37) 

If 

(3.38) 

and 

ln(a/(1-a)) (3. 39) 

the requirement is fulfilled that for À = 0 and by consequence hj 

is small, equation (3.31) is in accordance with (3.36), the binomial 

distribution. 

The binomial distribution applies for independent stochastic events. 

If À = 0 the orientation of the molecules is random and the number 

of bonds is so small that the probability of a bond between neigh

bours is almost independent of the existence of others. 

The algorithm of (3.33) up to (3.39) leads toa set of values for the 

quantities of v, jm, a, x
0 

and x1, which are gathered in table 3.7. 

When the data of the Monte Carlo simulations with tetrahedral mole-

cules would be in accordance with the binomial distribution all dots 

in fig. 3.16 would coincide with the horizontal line shown(apart from 

inevitable statistical fluctuations). 
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Table 3.7 The value of the paral!Jeter \), jm' Cl and the 

coefficients xo and x
1 as a function of the 

density, calculated with the equations (3.33) 

up to (3.39) 

D \) jm Cl xo xl 

0.500 1. 357 2.934 0.01612 - 15.021 - 4.1114 

0.545 1.575 3.405 0.01871 - 16.920 - 3.9599 

0.600 1.875 4.053 0.02227 - 19.428 - 3.7820 

0.667 2. 310 4.994 0.02744 - 22.884 - 3.5678 

Apparently this is not the case. The presence of bonds appears to 

decrease the possibility to form new bonds. This effect is accounted 

for with the last two terms of (3.31). 

The coefficient x
2 

determines the inclination of the curves through 

the dots of fig. 3.16 at low and intermediate ój. 

x2 is a function of density and can be represented by 

(3.40) 

It appears to be possible to eliminate the coefficient b' by the 

proper choice of the power p of parameter ój in the last term of 

(3. 31). 

In fig. 3.17 it is shoW!l that b' changes rapidly with p. When 

p = 4.50 the value of b' is zero, whereas at the same time the 

corresponding residue of the least squares procedure is at its 

minimum. 

This proves that the curvature of the curves through the dots of, fig. 

3.16 is correctly accounted for when p = 4.5. The result is that the 

variable quantity b' is eliminated by a proper choice of another one, 

p, with a resultant improvement of the fit. 

The corresponding values of b 1 and b
2 

are mentioned in table 3.8. 

The above-mentioned exponent p being fixed, x
3 

determines the curva

ture of the curves in fig. 3.16 for large ój. The curves are bending 

differently for the four densities. For D = 0.667 and D = 0.500 the 

curves bend downwards and for D = 0.600 the curve bends upwards. 
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Fig. Z.l?. The aoeffiaient b' 

(upper curve} and the least 

squares residue (lOwer aurve) 

resulting from a set of least 

squares aalculations with varia

bte exponent p of eq. (3. 31}. 

Best fit is obtained when 

p=4. 50 and b '=O 

Apparently the possibility of increasing the number of bonds in a 

highly bonded system is greater for D = 0.600 than for the other den

sities. This effect is caused by the previously discussed ef,fect, a

rising when the density is favourable for the establishment of struc

tures with more or less tetrahedral coordination of the molecules. 

(For instance a diamond structure would lead to D = 0.56, just like 

the tridimyte or ice I structure. The ice polymorphs would lead to 

higher values of D. Ice II : D 0.70 and ice III: D = 0.68). 

By consequence the experiments show that the formula for the evalua

tion of x
3 

must be designed in such a way that x
3 

is negative ~or high 

and low density and positive for intermediate density. 

We obtained the best results with the formula: 

(3.41) 

which represents an oblique hyperbola (fig. 3.18). 

Of all curves we considered this one yielded the lowest value of the 

least squares residue : 
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Equation (3.41} has five adjustable coefficients whereas there are 

only four different values of D. One can fix b7 and adjust the coef

ficients b
1 

up to b
6 

with a least squares program [3.7] in such a 

way that y from (3.31) is fitted best to the values of lnCj found 

in section 3.2.5.1. 

The value of b
7 

can be chosen between 0.0 and 0.08 without the sligh

test effect on the result. Therefore b
7 

has to be chosen on the basis 

of other evidence. The pressure appears to be very sensitive for the 

value of b7• When b 7 = 0.0, there is a discontinuity at D = b6 and 

by consequence there is a jump in the pressure at that point. And 

by consequence a steep fall of pressure when b
7 

is low. When b
7 

is 

high the value of the pressure at high density and low temperature, 

especially for D = 0.667 and À = 6.0, becomes very high. Since we 

know from the virial (section 3.2.4) what value the pressure should 

have approximately we can conclude that b
7 

should not be too high. 

Finally we decided on the value of b
7 

0.02, which is an acceptable 

compromise. The resulting values of b1 up to b
7 

are given in table 

3.B. 
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Table 3. 8. The value of the coef f icients of eq. ( 3. 40) 

and ( 3. 41) as obtained from least squares 

fitting. 

bl - 9.8844 x 10-4 

b2 2.4250 x 10-3 

b' 0.0 

b3 + 5.7040 x 10-9 

b4 6.8174 x 10-9 

b5 - 30.4404 x 10-9 

b6 + 0.5896 

b7 + 0.02 

p + 4.50 

FinalLy we will give a summary of the formulae for the evaluation 

of the free energy as .we have developed in this section : 
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Q 

Q = i 

lnil' HS 

y 

D 
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cj 

y 

lij 

!i!i" 
N 

the partition function of the ideal gas. 

2 = N 3y - 4y 

(1 - y) 2 

D • 11/6 

No 3/v 

2N ,. 
l c 

j=O j 
exp(-j e:/kT) 

[2~] exp(y) 

x0 + x1 lij + x2llj2 + 6.4.5 
x3 J 

j - l:!Nvf32 



see table 3.6 

x
0 

2N (alna + (1-a)ln(l-a)) 

x
1 

ln(d/(1-a)) 

bl + b2D 

b
3 

+ b4D + b
5
/co-b

6
}2 

b1, •••••••• , b7 see table 3.8 

~~~~~~!~-~~Y!!!-~!-~~!-'!!!!~2~~~=-~~~2~~~!!~-~!-~-~X~~~l! 

!!!:!'.!_!!~!~!~!~!-~~!~=~!~~~ 

With the algorithm of the previous section the fraction of configu

ration space C. can be calculated for any value of the number of 
J . 

bonds j and those values of the density lying within the interval 

covered by the original Monte Carlo simulations. Accordingly the 

equilibrium thermodynamic properties can be derived. 

For instance the partition function is calculated with the 

combination of (A1.3b), (A1.7b) and (Al.9} 

(3.42} 

In this way the partition function is the product of three factors: 

Firstly s;, the contribution of bonding, which can be evaluated from 

cj 

E" 
N 

l cj • exp(-j.e/kT) (3.43) 

Secondly zH
5

.,the factor originating from the fact that all confi

gurations with overlapping molecules are excluded. This factor is 

given by the Carnahan and Starling equation : 

lnE' = 
HS N • (3l-4~ J 

(1-y} 

{y = D.11/6) 
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Finally Q. is the partition function of the ideal gas. 
l. 

Likewise for the other thermodynamic properties we can speak of 

a bonding contribution, a hard-spheres contribution and an ideal

gas contribution. For the energy for instance is the bonding con

tribution i;.j, the hard-spheres contribution is zero and the ideal

gas contribution is 3NkT. 

Just as in section 3.2.4 we will express the thermodynamic varia

bles in reduced form, i.e. in dimensionless units. 

The reduction formulae are 

l 
3 P* P.cr/lel 

3 
(3.11) V* V/ (N • cr ) 

T* k • T/!e:I 
and U* U/(N 1 i; 1 ) 

} A* A/(N 1€1) (3.44) 

S* S/(N k) 

The effect of the reduction of the variables is that some results 

become independent of the value of e, crand N. In other cases, how

ever, there remains a slight effect of the value of these parame

ters on the resulting thermodynamic properties. 

Particularly the calculation of the ideal-gas contribution to some 

variables {the partition function, the free energy en the entropy) , 

involves the non-reduced volume and temperature. For that reason 

it is necessary to attach some value to the bonding energy e: and 

to the diameter a of the molecules. 

In accordance with X-ray evidence for physical water [3.19] we 
-10 have adopted cr = 2.7 x 10 m. The energy of the hydrogen bond 

in physical water is estimated dif ferently by different authors 

[3.20). We adopted e 1800 • k (k is the Boltzmann constant) which 

corresponds with 15 kJ/mol. With this choice of e we achieved a 

reasonable accordance between the model and physical water as far 

as the temperature of the inversion of the thermal expansion is 

concerned. (see chapter 4). 

The effect of the fixation of the value of cr and e is that the re

duced variables can be related with the non-reduced ones. For bet

ter understanding of the figures of this and the next sections we 

have tabulated in table 3.9.1, 3.9.2 and 3.9.3 some examples of 

this relationship. 
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Table 3.9.1 The reduced temperature compared with the 

experimental scales. The value of T* cor-

respond with the values in the figures 

3. 19 up to 3.30 and 4.2 up to 4.5. 

T* Kelvin centigrades 

0.133 240 -33 

0.150 270 - 3 

0.152 273 0 

0.163 293 20 

0.167 300 27 

0.196 353 80 

0.200 360 87 

0.250 450 177 

0.252 453 180 

0.330 593 320 

0.333 600 327 

0.500 900 627 

Table 3.9.2 The relation between some values of the 

reduced volume and the mol ar volume. 

V* 3 -1 cm mol 

1.4 16.60 

1.6 18.97 

1.8 21.34 

2.0 23. 71 

Table 3.9.3 The relation between some values of the 

reduced pressure and the pressure in atm. 

P* atm. 

o.o 0 

0.1 1263 

0.2 2525 

0.3 3788 

0.4 5050 

0.5 6313 
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Fig. 3.19. The internaZ energy 

of a system with tetrahedraZ mo

ZecuZes, pZotted as a function 

of the volume. The temperature is 

indicated next to the curves. AZZ 

quantities are in reduced vorm. 
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Fig. 3.20. The free energy as a 

funation of the volume. The tem

perature is indiaated next to 

the curves. AU quantities are 

in reduaed form. 

With the approximation of section 3.2.5.3 we have evaluated the 

energy, the free energy, the entropy and the equation of state of 

the present system with tetrahedral molecules. 

The results have been plotted in the figures 3.19, 3.20, 3.21 and 

3.22. 

Although the figures are self evident we will discuss just a few 

details. The energy exhibits a minimum at the lowest temperature 

(T* 0.167). This is due to the minimum in the potential energy 

which is discussed in section 3.2.2. 
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curves. All quantities are in re- the reg·ion of the or>iginal Monte 

duaed form. c.:arlo sirrrulatfons. T* is indü~a-

ted next to ihe eur>ves. 

Another noteworthy detail is the fact that the entropy has a hori

zontal section from about V* = 1.50 up to 1.63 at T* = 0.167. 

close examination of the numeric material shows that there is even 

a weak maximum at V* = 1. 57 and a minimum at V* = 1.62. 'I'hat means 
r ~sj' that l't- changes from positive to negative and back. 
'.V T 

Since (3.45) 

there is inversion of expansive properties in that region. 
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It can also be observed in the P V T diagram, fig. 3.22, that the 

isotherms of T* = 0.167 and of T*: 0.150 intersect. When at a 

constant pressure P* = 0.30 the temperature is decreased from 

T* = 0.20 to T* 0.167 the volume decreases as usual. However, when 

the temperature is decreased still further until T* = 0.15 the 

volume appears to increase. This implies an inversion of the 

thermal expansion. 

The equation of state, however, is very sensitive to the details 

of the approximation procedure in section 3.2.5.3. Still we are 

convinced that the inversion of the thermal expansion observed is 

not an artifact. During our investigations we have applied várious 

alternative approximations for the coefficient x 3 (see section 

3.2.5.3). Although the equation of state was distinctly different 

in all cases the inversion of the thermal expansion was always pre

sent at the same value of P* and V* (see fig. 3.23). 
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3.3 • Polar Molecules 

The tetrahedral molecule model, .as described in the previous 

chapter can be transformèd into a polar model. 

To that purpose a sign is associated with each of the four vec

tors of the molecule. Two positive and two negative,see fig.3.24. 

The conditions for the formation of a bond.are not changed, but 

the sign of the bonding energy depends on.the sign of the two 

vectors involved. 

The pair potential between two polar molecules k and 1 respective

ly now becomes : 

E2 + 00 1f rkl < 0 

E2 -sign(k)sign(l) . E 1f 0 .:$. rkl< f . 0 

and llj!kl < ijJ 
(3. 46) max 

and llj!l 1 < <J.tmax 

E
2 

0 in all other cases 

Sign (k} and sign (l} are equal to +1 or -1, depending on the 

sign associated with the vector involved. 

It should be noted that this potential accounts only for short 

range interactions. Long range interaction as exists for physical 

molecules [3.8] does not occur since for rk1 > 1.lo there is no 

interaction whatsoever between our molecules. 

The above-mentioned transformation has two consequences. 

Firstly the symmetry of the molecule decreases and by consequence 

the multiplicity factor n in the formula for the partition function 

(Appendix 1 formula (A 1.3b) decreases likewise. As mentioned in 

appendix 1 the value of n in the symmetrical model is 12, whereas 

in the polar model n = 2. 

Fig. 3.24 Tl,;o 'poiar' moieauies. 
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By consequence in an N-particle system the number of physically 
N 

distinguishable configurations is increased by a factor 6 on 

transformation from non polar to polar. 

Secondly the (potential) energy is changed on transformation 

When in a system with symmetrie molecules the number of bonds is j, 

then the energy is j • E • After transformation there is for each 

bond the possibility of an energy contribution of +E or -E. 

The total energy of the system is between j . E and -j • E. 

When for instance a system consists of two non-polar molecules 

with one bond, a single configuration results in 36 new configu

rations after transformation into polar molecules. 

Exactly 50 percent of the new configurations has an energy +E, 

the other 50 percent has an energy of -E. If in a system with more 

bonds we suppose the chances f or the bonding energies of all bonds 

to be positive or negative are equal, the distribution of the 

possibilities is given by a binomial distribution. In an N-particle 

system with j bonds the transformation increases the configuration 

space with a factor 6N. Of these possible configurations a fraction 

fr [~) . (3.47) 

has q 'antibonds' with energy -E and j-q bonds with energy E. 

The energy of the system is in that case (j - 2q)E. Accordingly 

we will use i j - 2q as the integer that indicates the energy 

level. 

With the help of eq. (3.47) we can calculate now the distribution 

of the configuration space with respect to the energy of the system. 

We will start with the 2N+l compartments of the configuration spa

ce in the non-polar case, as evaluated in the previous sections. 

For all possible values oE q, C. as obtained with the approxima-
J 

tion of section 3.2.5.3, is multiplied by the relevant fraction 

(3.47). The resulting values are properly combined for summation 

as shown in fig. 3.25. 
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Fig. 3. 25. Suwey of the tr>ansfoPmation pr>ooedUPe. The fmotions 

of the oonfi(JU!'ation spaoe Cj ar>e divided into smaller> fr>actions, 

1JJhich are plaoed in Pot.is. The polar> equivaZenoe CPi is obtained 

by summation of the ooZwrrns. 

The result is 

CP 
i 

where j = i + 2q and q is integer. 

(3.48) 

With this equation we performed the transformation from non polar 

into polar. 

In fig. 3.26 the effect of the transformation on the partition of 

the configuration space can be seen. 

In table 3.10 some values of CPi are given. This. table is to be 

compared with table 3.5.2. However, it should be kept in mind that 

the data of 3.5.2 have been obtained directly from the Monte Carlo 

simulations, whereas the data of 3.10 are calculated from the 

values of Cj as obtained with the approximation of section 3.2.5.3. 
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Fig. 3.26. The effect of the tra:nsformation of a system(with 

N=9Î)from non-polar to polar molecules. The broken curve gives 

the logarithm of the fraation of the aonfiguration spaae in the 

non-po lar aase (lnC /, the fu z.i curve gives the aorresponding 

lnCP i for the po lar case. The aentval pavt of the figure, magni
fied ten times, is plotted in the lowev airale. 

It is easy to verify that for the larger values of j (above about 

twenty) in the summation of (3.48) the one term with q = 0 out

weighs all others, so that i = j and : 

(3.49) 

From (3.18) can be concluded that for non-polar molecules 

For the maximum probabilities is Pj ~ Pj+l and by consequence 

À 
(3. 50) 

Likewise for polar molecules : 

lnCP. 1 - lnCP. ~ - À 1 

l.+ l. 
(3. 51) 

If now i j, the combination of (3.49), (3.50) and (3.51) results 

in 

À 1 À + ln2 (3.52) 
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Table 3.10 lnCPi, the logarithm of the fraction of 

configuration space at energy level i. For 

negative i is CPi = CP -i" 

~ 0.6667 0.600 0.545 0.500 

0 - 1. 70 - 1.59 - 1.49 - 1.41 

10 - 10.56 - 11.93 - 13.15 - 14.26 

20 - 29.99 - 33.42 - 36.37 - 38.95 

30 - 55.47 - 60.98 - 65.67 - 69.73 

40 - 85.42 - 92.99 - 99.40 - 104.93 

50 - 119.09 - 128.67 - 136.78 - 143.77 

60 - 156.04 - 167.55 - 177. 35 - 185.81 

70 - 196.03 - 209.36 - 220.84 - 230.79 

80 - 238.92 - 253.92 - 267.08 - 278.54 

90 - 284.66 - 301.12 - 315.95 - 329.00 

100 - 333.23 - 350.89 - 367.42 - 382. 14 

110 - 384. 71 - 403.23 - 421.49 - 438.01 

120 - 439.23 - 458.18 - 478.22 - 496.70 

130 - 496.99 - 515.84 - 537.73 - 558.39 

140 - 558.30 - 576.42 - 600;24 - 623.34 

150 - 623.64 - 640.26 - 666.12 - 691.99 

160 - 693.81 - 708.00 - 736.05 - 765.08 

170 - 770.31 - 781.01 - 811.42 - 844.08 

180 - 857.81 - 863.77 - 896,74 - 933.90 

182 - 878.70 - 883.54 - 917.05 - 954.81 

In order to verify this we calculated the mean number of bonds for 

the polar case with À'= À+ ln2 and compared the results obtained 

with the results of a calculation for non-polar molecules and À. 

The comparison is given in table 3.12. The accordance appears to 

be very good. 

Evidently the most probable configurations, occuring in a system 

with non-polar molecules and parameter À correspond with the most 

probable configurations in a system with polar molecules and para

meter À•= À+ ln2. 
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with poZar moZeauZes. The tempera- ZeauZes). The temperature is indi-

ture is indiaated next to eaah aated next to eaah aurve . AZZ 

curve. AU quantities are in redu- quantities are in reduaed form. 

aed form. 
Consequently some results reported in chapter 3.2 for non-polar 

molecules apply also for polar molecules when À is increased with 

ln2. This is the case for the mean number of bonds, as mentioned 

above, the distribution functions and the configuration integral 

Z~ ,but not for the thermodynamic; functions, u*, A*, s* and P*, 

since the ideal gas contribution is different for À and À'. 

Therefore we have evaluated the variables U*, A*., S* and P* using 

the values of CPi mentioned before. The resulting functions have 

been plotted in the figures 3. 27 up to 3. 30. These figures should 

be compared with 3.19 up to 3.22. 
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Fig. 3,30. P*-V*diagram of a 
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Table 3.12 The mean number of bonds in a 91 particles 

system with polar molecules. In brackets 

the difference with the corresponding non-

pol ar case with À À1 -ln2. 

>Z 0.667 0.600 0.545 0.500 

2.693 28.2(-0.1618) 23.9(-0.1334) 20.8(-0.1132). 18.4(-0.0982) 

3.693 55.0(-0.0486) 48.9(-0.0417) 43.8(-0.0364) 39.7(-0.0323) 

4.693 89.2 (-0.0120) 84.0(-0.0109) 77. 7 ( -0. 0099) . 72 .1(-0.0091) 

5.693 122.4(-0.0024) 122.3(-0.0024) 115.7(-0.0022) 108. 8(-0. 0021) 

6.693 148.4(-0.0004) 152.9(-0.0004) 147.6(-0.0004) 140.4(-0.0004) 
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The present analytical transformation of the partition of the con

figuration space of a system with non-polar molecules into the same 

partition for polar molecules is a very efficient procedure. It 

demands about 0.5 minute of computer time. That is about 1/16000 of 

the time a complete set of Monte Carlo simulations necessary for 

the evaluation of CPi with multistage sampling would demand. 

At this point the reader may have still one reservation: the 

transformation operation, notably eq. (3.47) is based upon the 

supposition that the chances for the bonding energies of the bonds 

in a system to be positive or negative are independent of each 

other. It is clear that especially in systems with many honds this 

cannot be strictly the case. 

Fortunately there is evidence that the effect of interdependency 

between the bonds is very small. 

Pauling [3.9] ,stated in 1935 that ice should exhibit a residual 

entropy at 0 K. He estimated this entropy to be given by the 

equation 

s Nkln(6/4} (3.53) 

At the same time Giauque et al. [3.10] confirmed this experimental

ly. The Pauling formula would lead to a residual entropy of 0.806 

cal/K.mol, Giauque and Stout found by accurate measurements of the 

specific heat of ice a value of 0.82 .i 0.015 cal/K.mol. 

This supports the suppositions underlying Paulings' formula, 

which suppositions are exactly the same as those we used as a 

starting point for the above discussed transformation. 

(Since in a crystalline substance at 0 K only one energy level 

exists it can easily be verified that Paulings formula (3.53) re

sults from the combination of (3.48} (with i = 2N) and the factor 

6N originating from the symmetry of the water molecule). 

Later evidence is even more convincing. Onsager and Dupuis [3.11] 

stated in 1960 that the above argument of Pauling is not full proof. 

They put forward the 'interlacing effect' that increases the number 

of possible configurations, which might be compensated by some or

dering of the bonds within the ice crystal at 0 K. So there could 
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be an unknown degree of order without discrepancy between (3.53) and 

the experimental data. Thus Onsager and Dupuis emphasized the im

portance of the correct evaluation of the interlacing èffect. 

The interlacing effect originates from the existence of rings of 

bonded molecules. The magnitude of the fraction with q = 0 as cal

culated with (3.47) would increase with a factor (1 + 1/3n) as a 

result of the presence of one n-membered ring in the system. 

In an ice I crystal with N molecules a number of 2N six-membered 

rings is present. These rings are strongly connected, which makes 

the problem to be an intricate mathematical puzzle. 

J.F. Nagle [3.12] succeeded in evaluating the effect in 1966. His 

conclusion is that the interlacing effect is small indeed, the 

residual entropy is raised by only one percent. 

Consequently the above-mentioned transformation procedure can safe

ly be used. The more so as in liquids the number of bonds is smal

ler than in ice which results in a less interlaced structure. 

If necessary the partition of the configuration space can also be 

transformed with the method of section 2.4 into the corresponding 

partition for an other pair potential. It should be noted, however, 

that this method will demand a considerable amount of computer time 

albeit less than a complete new set of simulations would require. 
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4. DISCUSSION 

4.1. Comparison with Hard Spheres and with a Square-Well Fluid 

In the previous chapter we have dealt with a system of molecules 

with tetrahedral interaction and we have evaluated a part of the 

configuration space of such a system with the method of multistage 

sampling. The configuration space appears to be evaluated with 

reasonable accuracy, sufficient for the evaluation of the free 

energy, the entropy, etc. Besides the pressure, the energy and 

radial distribution functions are obtained which makes the picture 

of the equilibrium thermodynamic properties complete in the region 

of temperatures and densities investigated. 

We can compare the resulting equation of state of the present sys

tem with a hard spheres system on the one hand and a system with 

spherical square-well molecules on the other. 

The spherical square-well molecules are defined by the pair poten

tial : 

E2 + 00 if r < (J 

} E2 c if a < r < f 0 ( 4 .1} 

E 0 if r > f (J 
2 

In accordance with eq. (3.1) is f 1.1 and c is negative. 

From a set of special Monte Carlo simulations of hard-spheres sys

tems with high density (D = 0.75, 1.00 and 1.087) we evaluated the 

coefficients, necessary for the estimation of PV/NkT with the help 

of the second order perturbation theory of Barker and Henderson 

[4.l]. In fig. 4.1 the resulting values are plotted for À 2.0. 

The value of PV/NkT appears to be appreciably lower than in the 

case of hard spheres. 

As can be seen in fig. 4.1 the restriction of the attraction be

tween pairs of molecules to small regions (tetrahedrally arranged 

according to (3.1)) decreases strongly the effect of the attraction 

between molecules. As could be expected. 

Increasing À for the tetrahedral model from 2 to 4 causes a decrea

se of PV/NkT. Above À = 4 the situation becomes more complicated. 
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That is· caused by the geometrie effect that tetrahedrally surroun:

ded molecules are more probable at certain densities {D is about 

0.6) than at other densities. (The effect is discussed in chapter 

3. It appears to affect the number of bonds, the partition.of the 

configuration space and the thermal expansion at constant pressure). 

The conclusion that can be drawn from fig. 4.1 is that the volume 

of a liquid with a considerable tetrahedral interaction between 

the molecules tends to be 50 - 80 % larger than the volume of the 

corresponding liquid with spherical molecules. 
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Fig. 4.1 The parameter P*V*/T* 

as a fu:nation of the volume. The 
upper aurve gives the data of the 

hard spheres [luid ae oo.foulated 

with the formula of Carnahan and 

Starling (3.16), The lowest aurve 

pertains to a eyetem with moleaules 

with epheriaally eymmetria interr

aation (square well moleaulee). The 

other aurves are for the non-polar 

model. The relevant vaiues of the 

parameter À~l/T* is indiaated next 

to eaah aurve. 

4.2. Comparison with Physical Water 

After comparison of the non-polar tetrahedral model with the hard

spheres model and with the spherical square-well model we can com

pare the properties of the model with the properties of a physical 

liquid, Different liquids deserve consideration because of the 

tetrahedral properties of the molecules or atoms : water, molten 

germanium, silicon, silica etc. 
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For comparison with the model we have chosen water in accordance 

with the starting point of this work. This choice implies that the 

model system that is considered for the comparison with the physi

cal liquid must be the polar system of section 3.3. 

In the next section we will pay attention to some molecular models 

for physical water that have been proposed in the literature on 

the basis of spectroscopie evidence. 

In the present section we will consider the equilibrium thermodyna

mic properties and the 9quation of state; For the polar model these 

properties are plotted in the figures 3.27 up to 3.30 of the pre

vious chapter. 

For physical water the properties are taken from Dorsey [4.2], from 

a steam table (4.3] and from Eisenberg and Kauzmann [4.4] page 67 

and 100. The reduction of the variables has been performed with 

the same value of a and <:: as in section 3. 2. 5. 4, namely a = 

2.7 x 10-lO m and <:: -1800k. See also the tables 3.9.1, 

3.9.2 and 3.9.3. 

In figure 4.2 up to 4.5 U*, A*, S* and P* have been plotted as a 

function of V* and T*, both for physical water and for the model 

system. 

In some respects there is accordance between water and the model, 

in other respects there appears to be an important difference. That 

is exactly what should be expected,since the model molecule has 

some analogy with the physical water molecule but differs from it 

considerably in ether respects. 

For instance for the entropy the accordance is satisfactory. The 

entropy of water seems to be mainly determined by the entropy cal

culated for a hard-spheres system, corrected for the effect of pre

ference for tetrahedral surrounding and for the polar character of 

the molecules without long range effect. The latter correction, 

for the polar character, results mainly in a shift in temperature 

(See eq. (3.52)). Another detail that is present both in the model 

and in the physical liquid is the anomaly in the equation of state 

at lower temperatures. This anomaly is found when a preference for 

tetrahedral surrounding is introduced in a hard~spheres system. The 

effect is conserved after transformation to polar molecules. 

In physical water the coef f icient of thermal expansion changes sign 
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at T = 277 K {T* = 0.154} whereas the inherent minimum in the iso

thermal compressibility (See Eisenberg and Kau:;miann (4.4] p. 184) is 

is at T* = 0.177, reduced pressure being about zero. In the model 

the inversion occurs at higher pressure. With P* 0.3 thermal ex-

pansion changes sign at T* = 0.150 and the minimum in isothermal 

compressibility is at T* = 0.185 (see fig. 4.6 and 4.7). As is dis

cussed in chapter 3 the anomaly is caused by the fact that at a re

duced volume of about 1.66 the configurations with preponderantly 

tetrahedral surrounding of the molecules are more probable than at 

a smaller volume, whereas at a larger volume the intermolecular 

distances become too long for bonding. 

Since this is a geometrie effect and in the physical liquid geometry 

must be essentially the same as in the model, we believe that the 

configurations we have obtained in the computer simulations will 

have some resemblance with the physical liquid. For instance at the 

situation of anomaly in the equation of state (T* 0.15 and P* 

0.3} we observed that in the model about 85 % of the maximum 

possible number of bonds is realised. It is likely that physical 

water at the temperature of zero thermal expansion will also be 

in a configuration with a rather high fraction of the hydrogen 

bands intact. 

There is a clear discrepancy between model and physical water as 

far as the energy, the pressure and the heat capacity are concern

ed. The energy as well as the pressure and the heat capacity of the 

model system are too high. That is probably due to the fact that 

spherically symmetrie forces (dispersion forces) between the physi

cal molecules exist which are absent in the model. 

At least for the energy and the pressure can be verified that 
the introduction of this type of interaction will have an ef
fect of the right magnitude. When a spherically symmetrie 
attraction is introduced as a perturbation of our model we can 
suppose that the first order effect will be a change in the 
energy and the pressure without changing the distribution func
tion. 
For evaluation of the effect we suppose the pair potential (3.46) 
to be changed by adding a perturbation potential 

Ep = C • [~] G if r > f . o 

E 
p 

c . (-f1)6 if r $ f • o } (4. 2) 
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In (4.2) is f = 1.1 and the perturbation parameter Cis nega
tive. 
The excess energy and pressure become now : 

U* excess 

P* 
excess 

("' 

~ N 1 411r2 p • g(r) • E dr 
p 

O' 

~N r 411r
2 

• p • g(r) . r • [:PJdr 

f. 0 

We have calculated these variables for D = 0.6 and À' 

{4. 3) 

(4.4) 

À+ ln2 6.69 in accordance with (3.52). The value of C in 
(4.2) is chosen in accordance with the Slater-Kirkwood formula 
(see Eisenberg and Kauzmann [4.4] pag. 44). We have 
taken the value of g(r) for D = 0.6 and À = 6.0 of section 3.2.3. 
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The resulting values were U* excess 
1.138 

P* 
excess 

0.563 

This result is i;atisfactory since the magnitude is of the right 
order. 
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Numerous investigations of the spectroscopy of water have been con

ducted. A review has been given by Eisenberg and Kauzmann [4.4] pa-

ge 228. 

The interpretation of the spectroscopie data of water appeared to 

result in different conclusions with regard to such properties as 

association, the number of bonded and of free OH-groups etc. 

Unlike the situation in our computermodel the bonds between water 

molecules are not all of the same strength and consequently the 

impact of bonding on the spectroscopie properties is rather compli

cated. Every statement about numbers of bonds,. etc., is a simplifi

cation of the real situation. 

Four papers are particularly of interest for the comparison of the 

model with physical water. 

Haggis et al. [4.5) have estimated the degree of bonding from 

dielectric measurements at a wavelength of 1 - 10 cm. They found 

a fraction of 91 % of the maximum possible bonds in water of 273 K. 

Buijs and Choppin [4.6) have studied the infrared absorption of 

water in the 1.1 to 1.3 µ region. From the results they estimated 

the degree of bonding to be 52 % at 279 K. 

At the corresponding temperature and a reduced pressure of 0.3 in 

our model about 85 % of all bonds are realised. This is between the 

estimates of Haggis et al. and of Buijs and Choppin. 

Walrafen [4.7] has studied the raman intensities at, 152 to 175 cm-l 

He concluded that 62 % of the watermolecules is fourfold bonded at 

273 K and about 30 % at 316 K. We can compare these values with 55 % 

and 21 % in the model (table 3.3.2). 

Finally, Stevenson [4.8) has studied the ultraviolet abso~ption of 

water in the region of 0.175 to 0.195 µ. From this absorption he 

calculated that 0.12 % of the watermolecules is non-bonded at 296 K 

and 0.9 % at 365 K. This is to be compared with about 0.7 % and 6 % 

for the model (interpolated in table 3.3.2). 

Compared with the results of Walrafen and of Stevenson the degree 

of bonding is rather low. Possibly the bonding energy (c = 1800 k) 

should have been chosen about 10 % higher. 

91 



As a conclusion we can state that in many respects there is a 

qualitative accordance between the properties of physical water 

and the model. In some respects the accordance is even rather good. 

In this way we have obtained an idea how far the properties of wa

ter are determined by the preference of the molecules for tetra

hedral coordination. 

4.3 Structure and Order 

Many authors have discussed the molecular situation in liquid water 

in terms of 'structure' or 'order' and we can ask ourselves whether 

we can contribute something to that discussion after the simulation 

experiments of chapter 3. 

The theories are of two types. 

Firstly the 'continuum' theories. An important representative is 

the theory of Pople and Lennard Jones [4.9]. The authors start with 

fourfold bonding of each water molecule with the possibility of 

bending the direction of the bands away from tetrahedral arrangement. 

They could calculate with this theory a radial distribution function 

matching rather well with the experimental data (of Morgan and Warren 

[4.10]).0ther authors that have advocated this continuum model are 

mentioned in reference [4.19]. 

Secondly ethers have specified some structure that might predominant

ly exist in liquid water. Sometimes in a one phase model with some 

random aspect and sometimes in a two phase model. 

As early as in 1892 Roentgen [4.11] has proposed a two phase model, 

namely 'icebergs' floating in a 'normal' liquid of higher density. 

We must keep in mind that the structure of ice was not known at that 

time so Roentgens' theory did not have the pretentions of the recent 

ones. Later Hall [4.12] has proposed a mixture of ice with a liquid 

of closely packed water molecules. Davis and Litowitz [4.13] brought 

forward a model with ice and a second phase of graphitic structure. 

Probably the best known theory that started with two phases is the 

'flickering cluster' theory of Frank and Wen [4.14]. On the basis 

of cooperative effects in hydrogen bonding they advocated the exis

tence of short living clusters of ice like structure in a liquid of 
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non-bonded molecules. Némethy and Scheraga [4.15] have further de

veloped this theory, specifying the magnitude of the clusters and 

the number of water molecules that might be fourfold, threefold, 

twofold, singly and non-bonded. This theory is certainly the best 

developed of the two phase theories. 

Samoilov [4.16] has proposed a single phase model of ice with part 

of the cavities filled with interstitial water molecules. This mo

del has been further developed by Narten, Danford,and Levy [4.17] 
on the basis of their X-ray analysis of liquid water. 

There is experimental evidence against the two phase model and 

against the models with an appreciable amount of ice I. 

Mysels [4.18) proved that the light scattering, that must be expec

ted in the case of two phases of different density, is absent, at 

least at room temperature.(In supercritical conditions, however,(the 

region of critical opalescence) clusters of the type Frank and Wen 

proposed will certainly exist1 

Secondly, water behaves as a normal liquid when it is undercooled 

below the freezing point. That proves that water contains no signi

ficant amount of crystallites of ice I, at least not more than other 

liquids contain crystallites of the corresponding type. 

Apart from this experimental evidence we feel that it is not very 

likely that freely moving molecules would restrict themselves to 

one or two 'structures' as is the case in crystalline sUbstances. 

The situation in a liquid is basically diffèrent from the situation 

in a crystal. In the crystalline state a vibrating particle returns 

to its original lattice site even after a prolonged time. In a 

liquid a particle performs a brownian motion without reference to 

any specified site. After a long time it will be possible to decide 

whether the motion of a particle has a vibrational or a brownian 

character. After a short time, however, it will be impossible to 

make that distinction. 

Analogous to the dynamic difference is the configurational difference 

between liquid and crystal. In a crystal long-range order exists 

which is absent in a liquid. On theshortrange the coordination of a 

particle may be hardly different in the two states. 

Consequently we agree with the theory of Pople and Lennard Jones 

(4.9]. Our model of chapter 3 is well in accordance with this theory. 

93 



Accordingly we consider the liquid phase as dynamic. In the course 

of time there is one configuration after another in an endless 

succession of a tremendous number of different configurations. 

What we mean with 'A tremendous number of different configurations' 

has been specified in section 3.2.5.1 with the theory of Gosling 

and Singer [A .6] on the basis of the acceptance ratios during 

Monte Carlo simulations. The number of possible basic configura

tions in a system with tetrahedral molecules at T* = 0.167 and 

V* = 1.67 is estimated to be about 105N. 

(These different or 'basic' configurations can be identified with 

what Eisenberg and Kauzmann [4.4] define as 'vibrationally-averaged 

structures'0 

Consequently the description of the 'structure' of a liquid is per

force restricted to the presentation of mean quantities or functions 

such as distribution functions and correlation functions. 

Only at short distance it may make sense to specify details about 

order or specific interactions (honds). 

4.4 Future Developments 

It is possible to evaluate the thermodynamic properties of a model 

liquid with the Monte Carlo method of Metropolis et al., combined 

with the multistage sampling method of Valleau et al. 

In the present work we discussed the effect of two details on the 

thermodynamic properties of a liquid i.e. the preference for tetra

hedral coordination and polar properties. 

In further developments the effect of any detail of the intermolecu

lar potential on the thermodynamic properties of a liquid can be 

taken into consideration. In principle this can be continued until 

finally every detail of the thermodynamic properties of some physi

cal liquid is understood. 

The method is not restricted to the application to pure liquids. Also 

mixtures can be taken into consideration. With the same objective. 

The restriction of the method will be that the more complex the pro

blem is, the more computer time will be demanded. 
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APPENDIX 1 

THE PARI'ITION FUNCTION IN CLASSICAL MECHANICS ---------------------------------------------
The classica! partition function of a N v T system is 

1 J Q---
- N!h3N 

(A 1.1) 

(See Hill [À.1] page 118). 

H(p,q) is the energy. It is a starting point of classica! mechanics 

that it is separable into two terms, the kinetic and the potential 

energy : 

H(p,q) (A 1. 2) 

Pi is the momentum of a particle i and 

defines the position of the particle i in the geometrie space. 

Consequently the integral of (A 1.1) is separable which results 

for spherical particles in : 

Q (A 1. 3a) 

And for non-spherical particles 

(A 1. 3b) 

See Hill [A.1] p.165. 

A 
(A 1.4) 

is the result of the integration of the translational part of the 

kinetic energy. 

(A 1. 5) 

is the result of the integration over the rotation coordinate 
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around the principal axis A of the molecule • R8 and Re are similar 

quantities for the axis B and C. 

(A 1.6) 

is called the configuration integral. 

n is a multiplicity factor. When a symmetrie molecule is rotated, 

there are several orientations that are indistinguishable from 

others. So on integration of the classical integral over all 

orientations SN is overestimated with regard to physical systems 

with a factor which depends on symmetry. For a regular tetrahedron 

is n = 12, for a molecule with the symmetry of H
2
o (point group 

c2v) is îJ = 2. (See Hill (A.1] p. 166). 

For those systems where the potential energy is zero for all 

configurations (ideal gases and equivalent systems), SN can be 

evaluated analytically : 

For spherical particles : (A 1. 7a) 

For non-spherical particles (A 1. 7b) 

For those systems where the potential energy is not for all confi

gurations equal to zero we can define an excess configuration 

integral : 

(A 1. 8) 

for spherical particles. 

In chapter 3 we will use still an other excess configuration inte~ 

gral for non-spherical molecules with a hard core : 

(A 1. 9) 

HHS is the excess configuration integral of a hard-spheres system, 

it is equal to the quantity C
0 

of a system with overlapping spheres 

as treated in section 2.3. 

The method of multistage sampling as we have used in the chapters 

2 and 3 is in fact a method for evaluating s • or s" N N • 
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APPENDIX 2 

THE SAMPLING METHOD OF METROPOLIS ET AL. ----------------------------------------

In 1953 Metropolis et al. [A.3] described an efficient algorithm 

for the calculation of ensemble averages with (at the time new} 

fast computers. The method has been generally adopted and next to 

the method of Molecular Iynamics this method has been used for 

the computer simulation of many liquids. 

If we start with N particles in a volume V (having previously de

fined the pair interaction between two particles) it is easy to 

calculate the potential energy u from the positions of the particles 

by summation of the pair contributions. 

This can be done for a great number of randomly chosen conf igurations 

('Monte Carlo' method). For statistics each configuration should be 

given the weight exp(-U/kT}. 

So the equilibrium value of some quantity of interest would be: 

< F > L F.exp(-U/kT) 

Z: exp(-U/kT) 

(A 2.1) 

This method is not practical for close packed systems such as li

quids because in randomly chosen configurations overlapping molecu

les are very probable and by consequence U becomes generally high 

and exp(-U/kT) becomes very small. 

Only a few configurations will contribute perceptible to the result. 

For the other configurations the calculation is done in vain. 

Therefore Metropolis et al. designed a modified Monte Carlo scheme. 

This scheme, which is generally accepted, is called 'The' Monte 

Carlo method in the jargon of computer simulation of liquida. 

Instead of choosing configurations randomly, then weighing them 

with exp(-U/kT), they choose configurations with a probability 

proportional to exp(-U/kT) and weigh them evenly. 

So the equilibrium value of the quantity F become.s after M steps: 

< F > Z: F 
(A 2. 2} 

M 
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The procedure starts with some configuration f preferably a not too 

improbable one). Then a small change is made, for instance one 

of the N particles is moved over a small (random) distance. The 

change of energy ~ U, caused by the move is calculated. If the 

move would bring the system to a state of lower energy, the move 

is allowed and the particle is put in its new position. If, however, 

b U > O the move is allowed with probability exp(- b U/kt); i.e. 

a random number between 0 and 1 is chosen and if it is below 

exp(- b U/kT) the particle is moved to its new position. Otherwise 

it is returned to its old position. 

Then the procedure is repeated with another particle and so on. 

It is clear that any configuration can be reached and that the 

configurations with low value of the energy become more probable. 

That the probability of a configuration to occur in such a chain 

is proportional to exp(- U/kT) can be proven as follows. 

For simplicity we suppose that there are only a finite number of 

configurations and that vr is the number of times the system is in 

configuration r after a very long chain of configurations. Let 

Prs be the probability that configuration r changes into configu

ration s in one proposed move. 

Now Prs = Psr because any random move is as probable as its reverse. 

If we assume that Ur > Us the number of times the configuration 

r changes into s is ~r Prs and the number of times the opposite 

take place is 

\) 
s 

If the number of changes in one direction would be unequal to the 

number in the opposite direction, v (or v s) would r 
tively faster with the length of the chain than v s 
would go on until equilibrium is reached with : 

v 
r 

v s 

exp(- U/kT) 

increase rela-

(or vr). This 

(A 2. 3) 

For two configurations that are more than one step apart it can easi

ly be derived that the corresponding version of (A 2.3) is valid. 
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In other words: The probability of any configuration to be found 

in a chain constructed with the Metropolis algorithm, is proportio

nal to exp(- U/kT). 

It is convenient to choose the single moves of such a magnitude 

that the probability of a rejection is of the same order as the 

probability of acceptance. 

If the particle is non spherical the move of a particle must imply 

a rotation and a translation, which can of course also be separated 

intu two moves : 

one move that is restricted to a rotation and the next time 

a move that is only a translation. 
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APPENDIX 3 

Monte Carlo simulations must be executed with systems with rather 

a low number of particles; the order of magnitude is mostly 100. 

This leads to underestimation of the partition function since if 

a number of systems with N molecules in a volume V would be com

bined to a greater one, multiplication of the partition functions 

would ignore all configurations with a different number of mole

cules in each of the composing volumina. 

If for instance two systems of N molecules each in a volume V are 

combined to a system of 2N molecules in a volume 2V at the same 

temperature T, one could start from the supposition that each state 

of one system can be combined with each state of the other. 

That would lead to: 

{A 3. 1) 

However, the molecules are free to move from one part of the volume 

2V to the ether, so states with N-1 molecules in one part and N+l 

in the other should be envisaged as well. 

And so on. 

By consequence 

-N 

l ~-K • ~+K {A 3. 2) 
K"'1il 

(The effect originates from the fact that the whole volume is 

available to all molecules. We will describe it therefore as 

"colll!llunal effect".) 

For convenience we introduce a correction factor: 

-N 

l 
K=N 

~-K • ~+K 
(A 3. 3) 
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This combined with (A 1.3) from appendix 1 gives 

N! 
1N+i<ïT (A 3.4) 

It is convenient to introduce now two new factors 

-N (N!) 2 

- k~N (N-K) ! . (N+K) ! 
(A 3.5) 

e ip/ '!' (A 3.6) 

'!' can be evaluated with the Stirling formula 

M! 

which is a good approximation for high values of M (M > 10). 

-N (2N) ! 22N I Thus, si nee l (N-K)! (N+K) ! 
K=N 

we obtain 

'!' (N! )2 . 22N j (2N) ! (A 3. 7) 

After doubling the system the logarithm of the partition function 

becomes : 

A second doubling gives : 

which leads to : 
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lnQN ln /1T:N 
-- + N N 

(~ + ~) + 

(A 3.8) 

(~ln8 1 + ~lne 2 ) ln/2 

N + 



Repeating the doubling until macroscopie dimensions gives 

lnQM 

M 

ln/1T.N 

N 

(~lne 1 + ~1ne2 + ..... ) 

N 

Where M is a macroscopie number, far exceeding N. 

ln12 

N 
{A 3.9) 

If e would be a constant (which will appear to be a good approxi

mation for hard spheres), (A 3.9) would become 

ln{e .h1T.N) 
(A 3.10) 

QM is the partition function of a macroscopie system for which the 

equation of Carnahan and Starling [A.2] can be used : 

(A 3.11) 

QiM is the partition function of an ideal gas with M particles in 

a volume v • M/N at the temperature T. 

Furthermore it can easily be derived that for an ideal gas e 

equals unity. So we get with (A 3.10) : 

lnh1T.N lnQiM ----M 

lnQiN 
-N-.- = (A 3.12) 

Now from (A 3.10), {A 3.11) and (A 3.12) we obtain 

4y - 3y2 
- N • Cl _ y) 2 - lne (A 3.13) 

In words : 

The excess partition function of an N-particle system is to be 

corrected with a factor 9 with regard to the equation of Carnahan 

and Starling. 8 is defined by (A 3.6), (A 3.5) and (A 3.3). 

When we approximate s in formula (A 3.4) with the equation of 

carnahan and Starling, e can be evaluated numerically for different 

values of N, The result is that e is approximately constant for 

N > 8. (This result is used already for equation (A 3.10)). 

In table A 3.1 is mentioned the value of 8 fora few values of N. 
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Table A 3. 1: The correction factor e for a hard-

spheres system as a function of N. 
3 0,60. Density = N.a /V = 

N e 

1 0.5000 

2 0.3767 

4 0.3037 

8 0.2913 

16 0.2930 

32 0.2941 

64 0.2947 

128 0.2950 

256 0.2952 

512 0.2952 
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APPENDIX 4 

CALCULATION OF PRESSURE FROM DISTRIBUTION FUNCTION --------------------------------------------------

In a system of N molecules in a: volume V the pressure is thè 

result of the interaction of the molecules with the walls of the 

vessel. 

When the molecules exhibit no intermolecular forces, we have a 

perfect gas and the pressure is given by the formula: 

(A 4, 1) 

When intermolecular forces do exist, deviation from this value oc

curs. Repulsive forces attribute positively to the pressure,. attrac

tive forces negatively. 

We will start with the equation of state, formula (2.6) 

EL - 1 
NkT 

(with Vir 

If only pairwise interaction exists, as is the case in our models, 

the equation of state can be rewritten as : 

2TIN PV 
NkT J

oo 

3kTV g(r) 
3 

r dE2 dr 
dr 

(A 4. 2) 

0 

(See Hill [A.1] p. 305.) 

The symbols have the same meaning as in chapter 2 and 3, E
2 

being 

the pair potential and g(r) the radial distribution function. The 

radial distribution function comprises the information about the 

occurrence of pairs at each value of r. Since only pairwise inter

action exists, that is sufficient. For hard spheres the formula is 

not applicable in this form since dE2 does not exist everywhere. 
dr 

In this case the potential is replaced by a continuous function, 

e.g. E2 = - e{%}n and the limit for n = 00 is ta:ken (See Hansen and 

McDonald [A.4] , page 52). 
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In accordance with chapter 3, E has a negative value 

Another complication is that E2aepends on the orientation of the 

molecules we deal with in chapter 3. (formula 3.3} 

In that case we have to distinguish between those pairs of mole

cules that are oriented favourably for making bonds and those 

pairs that are not. 

For the last group we can replace E
2 

by -E(%}n as for the hard 

spheres, for the other group we should replace E
2 

by a more compli

cated form : 

E' 
2 

and again take the limit for n = oo, 

(A 4.3) 

We divide the distribution function into two parts along the lines 

of section 3.2.3. : 

g(r) (A 4.4) 

q 1 refers to thefavourably oriented pairs, q
2 

and q
3 

to the others. 

Combination of (A 4.2) with {A 4.4) gives 

PV 
NkT 32'.!i I 3V 

0 

21lN I 
3V 

0 

E' 
2 

• exp(- kT) 
d(E2/kT) 
--""d-r-- dr 

d{E2/kT) 
--d-r-dr 

(A 4.5) 

We will consider the two integrale of (A 4.5) seperately. 

If E2 = - E(.:!_)n is inserged the second integral and n is very 
r z (Ez/kT) 

large, the product exp(-k'.r")· dr is very small in most cases. 

Only when r equals about a, the product differs appreciable from zero. 

So 
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3 + q3 (r)} • r 
d(E/kT) 

dr 
dr becomes: 



+ 
(J 

E2 d(E/kT) 
{q2(cr) + q3(cr)} • 

3 

J 
dr cr exp{- kT) dr 

{q2(cr) + q3(o)} • ,'"] E2 
exp(- kT) d(E/kT) 

a- and cr+ are the value of r just below and just above r = a respec

tively. (See fig. A.1) 

When (A 4.3) is inserted in the first integral of equation (A 4.5) and 

n is very high, the product exp(E2/kT . d(E2/kT)/dr is very small 

except when r equals about cr or f.cr. 

-E(o/r)n 
If we now introduce A : kT and B 

the first integral of {A 4. 5) becomes 

"' 
J ql (r) 

3 d(A+B) • r exp(-A-B) . dr 
0 

00 

f ql {r) 
3 • exp{-A) • r exp(-B) 

0 

"" 

J ql {r) 
3 

• exp(-B) • r exp(-A) 
0 

which becomes for a high value of n: 
0 

dr 

dA dr + 
dr 

dB dr 
dr 

0 

cr3 E 
q 1 (cr) • • exp(- k.T ) I exp(-A)dA + q 1 (fa) • (fcr) 3 

r exp(-B)dB : 
E. 

kT 
E 3 3 E exp(- kT ) + q1 (fa) • f a • {-l+exp(- kTl} 

Moreover, in Monte Carlo simulations the right hand side of the last 

equation should be multiplied by a factor N/(N-1) in order to 

correct for the fact that the centre of mass is not fixed (see 

Hansen and McDonald [A.4) p.52). 

The equation of state becomes: 
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PV 
Nk.T 

= N~1 • D • 23rr ( ql (o) exp(- e:/kT) + q2(o) + q3(o) -

q
1 

(fa) • { exp(- t:/kT) -1 } • f 3) 
(A 4.6) 

(D = No3/v = density) 

It is possible to brinq this equation in a simplified form .with 

help of the following relations: 

+ g(cr ) 

g(o-) 

g(fo+) 

9 (fa-, 

= q
1 

(o} exp(- ~Tl + q 2 {o) + q 3 (o) 

= 0 

= q 1 (fo) + q2 (fo) + q 3 (fo) 
E: = q 1 (fa) exp(- kTl + q2 (fo) + q3 {fo) 

In which g(fo+) means: the value of the(discontinuous) function 

g just above the discontinuity of r = fo and g(fcr-) the value 

of the function g just below the same discontinuity. (See fig. A.1) 

We can now rewrite (A 4.6) 

PV 
NkT 

1 N~l • D. 
2

3rr [ { g(o+) - 9(0-)} + f 3{ g(fo+) - (g(fo->}) 

(A 4. 7) 

In this way the pressure can be calculated directly from the 

discontinuities in g(r) at r = a and r = fo. 

Fig. A.1 The r-adial 

distribution func:tion 

g(r) with indieation 

of the symbols as used 1 
in formula A 4. 7. 

g 

0 _.... ____ ,.._ __ -.--______ __, 

O r- a fa 
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APPENDIX 5 

FREE VOLUME 

In 1972 Gosling and Singer announced a method for the estimation 

of the free energy from the acceptance ratio of steps in a Monte 

Carlo simulation [A.6]. 

As has been described in appendix 2, in the Metropolis Monte 

Carlo method small moves are proposed in order to sample a range of 

configurations. 

If the move would lead to a · decrease of energy the move is accep

ted. If it would lead to an increase of energy the move is some

times accepted, sometimes not. The probability of acceptance is 

determined in a way that the sampling after a great number of moves 

will fulfill the Boltzman partition between configurations of 

different energy (see appendix 2). 

Generally, the acceptance ratio (that is the number of accepted 

moves divided by the total number proposed) is considered to be 

a trivia! by-product of the procedure. Gosling and Singer,.however, 

used the acceptance ratio to calculate a "free volume" for the par

ticles since acceptance of a move can be considered to prove that 

the proposed place of the particle is free. 

Identification of this free volume with the vf of the well known 

cell theory of liquids [A.5] leads to the possibility to determine 

the free energy and all thermodynamic properties of the system. 

They applied the method to a Lennard Jones (12-6) potential with 

parameters corresponding to the argon atom. The method proved to 

yield excellent accordance with the experimental free energy of the 

physical argon liquid. 

In 1973 Valleau and Whittington [A.7] proved the method to beun

sound. The agreement between calculation and experiment is due to 

the fact that two important errors appear to cancel each ether. 

The first error is due to the fact that in the cell theory of 

liquids Gosling and Singer have used the lowest possible energy of 

the system as a reference level. 

~'he Metropolis sampling, however, has a reference level the energy 

that is actually calculated in the present configuration. 
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This error will lead to an overestimation of the partition function. 

The second error has a quite different character. 

Gosling and Singer assumed that the following relation should 

exist: 

(A 5. 1) 

That means that the probability of acceptation after simultaneous-

ly moving all N particles to any position in the volume V (which 

value for hard spheres would lead to the correct partition func-

tion) equals the N-th power of the probability of acceptation after 

moving a single particle. The right hand side of (A 5.1) would lead to 

to a good approximation if one basic configuration would exist from 

which all other relevant conf igurations can be realised by the dis

placement of the particles inside their own free volume. 

That the hypothesis (A 5.1) is false can best be illustrated with 

the case of a hard-spheres fluid. In that case energy is the same 

in all relevant cortfigurations and by consequence the above-mentioned 

first error will not confuse the argument. 

The chance of any conf iguration of N hard spheres in a volume V to 

be accepted is simply the chance of finding a configuration without 

any overlap of spheres. The chance for the first of the N spheres 

placed in the vol urne is 1. 0, adding the second will gi ve a chance 

slightly below 1.0. This chance becomes less and less until for the 

last sphere the chance of finding a place in a volume filled with 

N-1 spheres is rather small (if the density is not too low). The 

total chance is the product of the N factors mentioned. The chance 

of moving a sphere to some place between the N-1 others approxima

tes the last (the lowest) of the N factors. The N-th power of that 

chance is considerably lower than the product, just mentioned. This 

leads to underestimation of configuration volume, so that the two 

effects could cancel. 

It is interesting to verify the argument with a Monte Carlo calcu

lation. To that end we made a Monte Carlo experiment with 91 hard 

spheres at the density Na
3/v = 0.60. The number of (attempted) moves 

was 910000 of which 5465 appearèd to be accepted; There was no res

triction to the magnitude of the move in the sense that the new 
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location of the particle to be moved was chosen randomly within the 

entire volume v. By consequence the acceptance ratio gives an esti

mation of the highest possible value of the free volume vf: 

5465 
910000 

= 0.00600 and ln(vf/V) -5.12 

That would lead to lnQ'/N -5.12. 

Q' is the excess partition function of the system compared with the 

ideal gas. 

(The standard deviation of this result can be approximated from the 

repeatability. It proved to be:!:. 0.02). 

The result mentioned is to be compared with the value lnQ/N = -2.042, 

calculated with the formula of carnahan and Starling (chapter 2 

section 3). 

The discrepancy between the two approaches amounts to 

exp(N (-2.042 + 5.12)) = 10122 fora system with 91 particles. 

This proves the statement of Valleau and Whittington, that this er

ror would lead to a serieus underestimation of the partition func

tion, to be correct. 

The discrepancy is so important that we must conclude .that the cell 

theory of liquids in its simplest form should be abandoned. It is 

possible to modify the cell theory in such a way that the discre

pancy is small. It would not be practical to build such a modified 

theory with more than one basic configurations, because in that 

case the number of basic conf igurations would become as large as 

10122 • However, one should leave the concept of one particle per 

cell and take into consideration cells with more than one particle. 

Computer simulation with periodic boundary conditions presents such 

an alternative method. In chapter 2, table 2.2, we can see which 

number of particles would suffice. 

In this way the computer simulation can be considered to be a modi

fication of the cell model, however, without a closed analytica! 

solution. 
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The present thesis is an account of the results of computer simula

tion of the properties of liquids. The calculations have been based 

on simplified models. The results obtained provide an estimate of 

the equilibrium thermodynamic properties of the model-liquids cho

sen, with~ut implication of suppositions concerning the structure 

of the liquid. 

The energy, the pressure and the distribution functions have been 

obtained directly from the 'Monte Carlo' method of Metropolis et 

al •• The Free Energy is evaluated indirectly with the aid of the 

multistage sampling method of Valleau et al. 

Firstly the method has been applied to a 'hard spheres' fluid. It 

appears that the free energy of the hard-spheres fluid can be eva

luated very accurately. A standard deviation of only 0.2 % can be 

obtained with only a limited number of moves (about 7.106). 

Secondly a system with rigid spherical non-polar molecules has been 

studied in which each molecule can have a bond with up to four 

neighbours. The bonds thus formed are directed tetrahedrally in 

space. In this model long range interactions are absent. A system 

containing 91 of such molecules in a cubic box with periodic bounda

ry conditions has been investigated. 

The equation of state, the energy, the free energy, the entropy and 

the distribution functions (including a number of orientational 

functions) have been calculated. 

In this case too the free energy is evaluated rather accurately. The 

standard deviation of the excess free energy can be estimated to be 

about 0.5 %. 

Furthermore an analytical method has been developed for the transfor

mation of the above-mentioned properties of the system with non-polar 

molecules into the properties of the corresponding system with polar 

molecules (still without long range interaction). 

The properties of the latter system can be compared with the physical 
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properties of water. The water molecule is polar and has preferential 

directions for making hydrogen bonds that deviate only slightly 

from the tetrahedral directions. 

In water long range interaction between the molecules is present as 

well as a spherically symmetrie attraction. Moreover the molecules 

are not rigid. 

Evidently the model and the physical liquid are not identical, but 

in some aspects the model and the real liquid are comparable. 

The entropy calculated for the model closely corresponds with the 

entropy of liquid water. 

Furthermore the anomaly in the thermal expansion at constant pressure 

and the anomaly in the temperature coefficient of isothermal compres

sibili ty (well-known properties of real water) can be observed in the 

results of the model calculations at a corresponding volume but at a 

signif icantly different pressure. 

So it is justified to attribute the anomalous expansion properties 

of water to the preference of the molecules for tetrahedral coordina

tion. 

There appears to be a considerable difference between the model and 

the physical liquid as concerns the energy, the free energy, the 

specific heat and the region of the pressure where expansion is ano

malous. However, it can be shown that the, introduction of spherically 

symmetrie interaction of the correct order of magnitude between the 

molecules would substantially reduce the differences observed. 

During the computer simulation calculations many details of the model 

system are accessible to close examination. The opportunity has been 

used for checking the classica! lattice theory of liquids, based on 

the conception of a 'vibrationally-averaged structure' of the liquid 

involving a certain 'free volume' for the molecule to move in. The 

calculation of the magnitude of the free volume of the molecule in 

the models discussed leads to the conclusion that the lattice theory 
ld 1 d t d. 5N wou ea o a iscrepancy of 10 for a N-particle system. 
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Consequently it makes no sense to consider 'a' structure of a liquid. 

Instead one should conceive of a tremendous number of equivalent struc

tures. It is senseless to speculate about geometrie arrangements that 

involve more than a few molecules (which is genera! practice in the 

literature). This conclusion is in accordance with the results of 

many physical experiments viz. x-ray diffraction. The latter experi

ments yield information about the short range order, but they leave 

questions regarding long range arrangements unanswered. 
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SAMENVATTING 

In dit proefschrift worden de resultaten beschreven van de computer

simulatie van vloeistoffen. De berekeningen zijn beperkt tot ver

eenvoudigde modellen. De verkregen resultaten zijn de evenwichts 

thermodynamische eigenschappen van de gekozen modelvloeistof. Er 

wordt daarbij van tevoren geen veronderstelling over de structuur 

van de vloeistof gemaakt. 

De energie, de druk en de distributiefunctie worden direct verkregen 

met de 'Monte Carlo' methode van Metropolis e.a •• De vrije energie 

wordt indirect uitgerekend met de methode van stapsgewijze bemonste

ring {'multistage sampling') van Valleau e.a. 

Om te beginnen is de methode toegepast op een 'harde bollen' vloei

stof. De vrije energie blijkt zeer nauwkeurig verkregen te worden. 

De standaarddeviatie is slechts 0.2 % met een beperkt aantal stappen 
6 (ongeveer 7.10 ). 

Vervolgens is de methode toegepast op starre bolvormige moleculen, 

waarbij elk molecuul een binding kan aangaan met een of meer buren 

(maximaal 4 bindingen per molecuul). De aldus gevormde bindingen zijn 

gericht in de 4 hoofdrichtingen van een tetraeder. Lange afstand 

interactie is in dit model niet aanwezig. 

Van een systeem met deze modelmoleculen zijn de toestandsvergelijking, 

de energie, de vrije energie, de entropie en de distributiefuncties 

berekend (inclusief een aantal orientatie distributiefuncties). 

Ook in dit geval is de vrije energie tamelijk nauwkeurig verkregen. 

De standaarddeviatie (voor de excess-vrije energie) bedraagt ~ngeveer 

0.5 %. 

Verder is een analytische methode ontwikkeld om de berekende eigen

schappen te transformeren in de eigenschappen van een overeenkomstig 

systeem maar dan met polaire moleculen. (polair, maar zonder lange 

afstand interactie). 

De eigenschappen van het laatste systeem kunnen vergeleken worden 
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met de physische eigenschappen van water. Het watermolecuul is even

eens polair en heeft voorkeursrichtingen voor het aangaan van water

stofbindingen, die maar weinig afwijken van de tetraederrichtingen. 

Evenwel is er in water wel lange af stand interactie en er is een 

van der Waals attractie tussen de moleculen. Bovendien zijn de. 

watermoleculen niet star. 

Het is daarom duidelijk dat de eigenschappen van physisch water en 

van het model niet gelijk zijn, maar in sommige opzichten is er 

overeenstemming. De entropie blijkt van de goede grootte te zijn en 

verder is er, net als in water, ook in het model een anomalie in de 

thermische uitzetting bij constante druk en in de isotherme compres

sibiliteit. Deze verschijnselen treden echter op bij een heel andere 

druk. 

Dus het is gerechtvaardigd om het verschijnsel van de anomalie in 

de thermische uitzetting van water toe te schrijven aan de voorkeur 

van de moleculen voor tetraedrische coordinatie. 

Bij de energie, de vrije energie, de soortelijke warmte en ook in 

het drukgebied waar anomalie in de uitzetting optreedt, is er een 

aanzienlijk verschil tussen ons model en echt water. Wanneer men 

echter een sferische attractie invoert van de grootte zoals bij wa

ter voorkomt, dan blijkt dat verschil grotendeels te verdwijnen. 

In de loop van een computer simulatie kunnen veel details van het 

modelsysteem nader in beschouwing genomen worden. Deze gelegenheid 

is gebruikt om de klassieke roostertheorie te testen. Deze theorie 

gaat uit van een bepaalde structuur ('vibrationally-averaged struc

ture') van de vloeistof met een zeker 'vrij volume' voor elk mole~ 

cuul. De gemiddelde grootte van het vrije volume is bij de computer 

simulatie uit te rekenen en er blijkt een grote discrepantie tussen 

de zo berekende vrije energie en de werkelijke vrije energie te zijn. 

Het betreft een factor van niet minder dan 105N als er N moleculen 

in het systeem aanwezig zijn. 

Het is dus niet mogelijk om te spreken van 'de' structuur van een 

vloeistof. Men moet veel meer denken aan een enorm aantal gelijkwaar

di9e structuren. 
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Het is zinloos om te speculeren over geometrische rangschikkingen 

die meer dan vier of zes moleculen omvatten (zoals in de literatuur 

pleegt te worden gedaan). 

Deze conclusie sluit aan bij wat verkregen wordt uit physische me

tingen. De roentgendiffractie bijvoorbeeld verschaft informatie over 

korte afstand ordening, maar zegt niets over eventuele rangschikkingen 

van grotere afmetingen. 
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LEVENSBERICHT 

Willem Bol werd in 1924 op Charlois (Rotterdam) geboren en was van 

het begin af aan een dromer. 

Het gevolg was een duidelijke spanning, die in zijn latere leven een 

belangrijke rol is gaan spelen. Immers, wie opgroeit in Rotterdam 

ontmoet weinig waardering voor bespiegelingen, maar leert dat het 

in de eerste plaats op daden aan komt. De wens om de twee manieren 

om het leven te leven, bespiegelend en bedrijvend, met elkaar in 

overeenstemming te kunnen brengen is altijd gebleven. 

Zo was het een aangename ontdekking, te vernemen, dat men scheikundig 

ingenieur kan worden. Want scheikunde houdt de belofte in zich van het 

dieper inzicht, terwijl het ingenieur zijn constructieve creativiteit 

veronderstelt. De studie voor scheikundig ingenieur werd in 1950 vol

tooid. De keuze van een werkkring was niet moeilijk. Philips in 

Eindhoven was een industrie die belangrijk bijdroeg aan het herstel 

van de welvaart, dat juist moeizaam op gang was gekomen en anderzijds 

een industrie die een grote faam had op het gebied van fundamenteel 

onderzoek. 

Na zestien jaar bij Philips, zes jaar op het Natuurkundig Laboratorium 

en tien jaar als produktontwikkelaar bij de fabrikage van kondensato

ren, werd duidelijk dat een verdere carrière in de industrie steeds 

verder van de theoretische verdieping zou moeten leiden. 

Daarom werd in 1966 de stap naar de Technische Hogeschool Eindhoven 

gedaan. Daar deed het vloeistofonderzoek een krachtig beroep op zijn 

creativiteit in het theoretische vlak, terwijl het onderwijs en met 

name het begeleiden van praktijkstages van studenten zijn industriële 

interesses tot hun recht deed komen. 

Het in dit proefschrift behandelde onderwerp leefde al zeer lang 

in zijn gedachten. Op ongeveer achtjarige leeftijd was de jeugdige 

Willem Bol tot de konklusie gekomen dat water geen kontinuum kon zijn, 

maar uit deeltjes zou moeten bestaan. 
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De meester op school had verteld van het bestaan van microscopen, 

instrUlllenten waarmee men in een druppel water allerlei wezentjes kon 

zien. Wezentjes, die te klein waren om met het blote oog waar te 

nemen. 

Terwijl je met het blote oog toch al zulke kleine dingen kunt zien. 

Daarvan uitgaande is de volgende stap naar een submicroscopische 

wereld licht gezet. 

Staande aan de oever van de Nieuwe Maas, op het Charloisse Hoofd, is 

het idee geboren van de vloeistof die in laatste instantie uit deel

tjes zou bestaan. Deeltjes, die te klein zijn om met het microscoop 

te kunnen zien. 

Met die theorie kon een belangrijke moeilijkheid worden opgelost: 

het water stroomt namelijk moeiteloos om een hindernis, een ducdalf 

of een steigerpaal heen. Daarbij splitst het zich en even later her

enigt het zich weer zonder ook maar een spoor van een scheurtje of 

anderszins verandering van eigenschappen te vertonen, 

Zoals de lezer gemakkelijk kan verifiëren kan men zich niet indenken, 

hoe een echt kontinuum dat zou kunnen doen. Met een deeltjesvloeistof 

daarentegen is dat alles juist vanzelfsprekend. 

De deeltjes waren rond, grauwgroen van kleur, glibberig en gleden be

weeglijk langs elkaar heen. 

Het is curieus dat in diezelfde tijd aan de andere kant van de Noord

zee Bernal en Fowler hun baanbrekende gedachten over hetzelfde onder

werp aan het formuleren waren*). 

Zij het met meer kennis van zaken. 

Het moet wel zo zijn dat hun gedachten over het water meegevoerd zijn 

door de wind en dat flarden ervan het Charloisse Hoofd bereikt hebben. 

*} J.D. Bernal & R.H. Fowler, J.Chem.Phys • .!_, 515 (1933). 
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STELLINGEN 

1. Bij röntgendiffractie van vloeistoffen moet ten zeerste 

worden aangeraden om, waar mogelijk, de gebruikelijke 

schaling op basis van de verstrooiing bij grote hoeken 

aan te vullen met een schaling op basis van de nulhoek

verstrooiing. 

2. De methode van Sarkisov, Dashevsky en Malenkov voor het 

berekenen van de vrije energie uit Monte Carlo simulaties 

is ondeugdelijk. 

G.N. Sarkisov, V.G. Dashevsky & G.G. Malenkov, Mol.Phys. 

'!:]_, 1249 (1974). 

3. In het licht van de resultaten die de laatste tien jaar 

bereikt zijn met de computersimulatie van water is de 

controverse tussen Walrafen en anderen (zoals Schiffer) 

over het "two-state model" versus het "continuum model" 

als opgelost te beschouwen zonder dat het ongelijk van 

een van beide partijen kan worden vastgesteld. 

G,E. Walrafen, J.Chem.Phys. ~' 567 (1969). 

J. Schiffer, J.Chem.Phys. 50, 566 (1969). 

4. Gezien de toekomstige ontwikkelingsmogelijkheden van 

hout als energiebron is het nodig dat in statistieken 

en andere publicaties die van belang zijn voor het 

energiebeleid, het brandhout opgenomen wordt als gelijk

waardig met olie, aardgas en steenkool. 

Vergelijk bijvoorbeeld "OECD Energy Balances 1973-75", 

Organisation for Economie Co-operation and Development, 

Paris 1977, 

met: 

Yearbook of Forest Products 1977, FAO. Rome 1979, pag 87, 
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5. Voor het vergemakkelijken van het transport van biomassa, 

bestemd voor energieproductie, moet overwogen worden het 

materiaal te brengen in de vorm van houtskoolbriketten, 

gestapeld op pellets. 

J.T. Wassink, "Houtskool", Kon. Inst. v.d. Tropen, 

November 1974. 

6. De stelling van Hartog: 

dat sociale lasten nu eenmaal kosten 

zijn die teweeggebracht worden door het inzet

ten van de produktiefactor arbeid. Elke andere 

heffingswijze dan koppeling aan het loon ver

sluiert de juiste kostenverhoudingen, trekt 

dus de calculatie scheef en benadeelt daardoor 

de welvaart. Sociale lasten behoren krachtens 

deze gedachtengang op het loon te drukken en 

nergens anders op." 

is in het algemeen voor discussie vatbaar. 

Maar voor zover het de premie voor weduwen- en wezen

voorz ieningen betreft, is deze stelling een onaanvaard

bare overdrijving van het risico van productieve arbeid 

en voor zover het de premie voor werkloosheidsvoorziening 

betreft, is hij apert onjuist. 

F. Hartog, NRC, Handelsblad, 31 Jan 1979. 

7. De mogelijkheid om algemene kosten (sociale lasten of 

belasting) te verschuiven van de productiefactor arbeid 

naar de productiefactor kapitaal (productieve investe

ringen) kan een bruikbaar beleidsinstrument zijn om de 

werkgelegenheid te beheersen. Men verlaagt op die wijze 

de kosten die voor arbeid in rekening gebracht moeten 

worden zonder direct macro-economisch effect. 



8. De vraag van Pen "Is macro-economie een wetenschap?" zou 

met meer recht positief kunnen worden beantwoord als met 

behulp van computersimulatie de relatie tussen micro

economie en macro-economie zou worden bestudeerd zoals 

in dit proefschrift de relatie tussen moleculaire en 

macroscopische eigenschappen van water werden bestudeerd. 

J. Pen en L.J. v. Geroerden, "Macro-Economie", Aula 612 

Het Spectrum, Utrecht 1977 

9. De instelling van het "jubeljaar", zoals in de bi 

beschreven (Leviticus 25:23-34.), houdt een relativering 

van de privé eigendom in die nadere bestudering verdient. 

10. Het verdient aanbeveling de benaming - en daarmee de doel

stelling - van gemeentelijke plantsoenendiensten te ver

anderen in bijvoorbeeld "Dienst voor het Beheer van de 

Stedelijke Flora en Fauna". 

ll. Spelen in de loterij impliceert kapitalistische aspira

ties. Wie derhalve er een gewoonte van maakt in de lote

rij te spelen kan niet staand houden dat hij wars is van 

het kapitalisme. 

12. Omdat het effect van het aan huis bezorgen van goederen 

even gunstig is als het effect van openbaar vervoer van 

personen, dient deze vorm van dienstverlening in gelij

ken mate als het openbaar vervoer bevorderd te worden. 

13. De Nederlandse vertaling van het engelse "quartz" is 

kwarts en niet quartz, zoals de handelaars in. horloges 

suggereren. 

Eindhoven, 18 september 1979 W. Bol 


