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2 Introd11Ction 

With the discovery of quantum mechanics (QM) in the early twenties1, the comerstone 

for most of modem physics was laid. The new theory, however, remained at first 

highly abstract. Instead of characterizing objects by means of a velocity, or rather a 

momentum p, and a position q, it employs a complex function 'l/J(q), to be chosen such 

that 

m 
(1) f l 'l/J<q) 12 

dq = 1 . 
-il) 

These functions can even be superposed, as in c1 'l/J1('1J + c2"1i<q>, leading to the possi­

bility of interference for material objects. Insight into the meaning of these wave 
functions was obtained through Bom's "statistical" interpretation2• It appeared that 

l 'l/X..'1JI 2 represented the probability density of finding the particle at position q. Con­

dition (1) thus reduces to a probability normalization. The function 'l/J(q) is uniquely 

related to its Fourier transform rj>(p), given by 

(2) r/>(JJ) = (211"1i.fi J m 'l/J(q) exp(~) dq . 
-il) 

Here 1i. is Planck's constant divided by 2r, which we shall in the following take to be 

equal to 1. The whole theory can be altematively framed in terms of the momentum 

representation r/>(JJ) rather than 'l/J(q). Indeed, as became clear with the the advent of 

transformation theory3, many more such equivalent representations of QM exist. 

Therefore it is profitable to denote the state in a representation-free way by the 

abstract vector l "1) (Dirac notation). The vector space consisting of these vectors is 

called a Hilbert space4• The inner product of two vectors l "1) and 1 rp) is denoted 

by ("11 rp). The position representation 'f/X.q) and momentum representation r/>(p) of the 

1For a detailed history see: J. Mebra & H. Rechenberg (1982): The Historica/ Develhpment of 
Quantum 1'heory (6 vols" Springer, Berlin); M. Jammer (1989): The Conceptual Development of 
Quantum Mechanics (2nd. ed., Tomash/American Institute of Physics). 

2M. Bom (1926a): Zr. f. Phys. 31, p. 863; (1926b): ibid. 38, p. 803 

3P. Dirac (1927): Proc. R. Soc. A 113, p. 621; P. Jordan (1927): Zr. f. Phys. 40, p. 809; D. Hilbert, 
J. von Neumann & L. Nordheim (1927): Math. Anna/. 98, p. 1. 

4J. von Neumann (1932): Mathematische Grundlagen der Quantenmechanik (Springer, Berlin). This 
work was done mainly in the period 1927-1929 [J. von Neumann (1961): Collected Works, vol. l (ed. 
by A. Taub; Pergamon, NY)] 
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vector 11/1} can be expressed as (ql'ifl} and (pl'ifl), respectively. The "vectors" lq} 

and IP) are eigenvectors of the self-adjoint operators Q and P with eigenvalues q 

andp, respectively: 

(3) Q lq) = qlq) and PIP} = PIP} 

In terms of the wave function 1/J(.q) these operators correspond to 

(4) Q [ 1/J<.q)] = q 1/1<.fJ) and P [ 1/J<.q)] = ~ a-;a(q) • 
1 q 

Por each of the possible representations of the wave-function, a probabilistic interpre­

tation can be set up. Since, e.g., position and momentum representation are connec­

ted through (2), it is clear that the position and momentum probability distributions 

cannot be chosen independently. This is brought out most clearly by the uncertainty 
principle (UP), discovered in 1927 by Heisenberg5• He showed that (for position Q 

and momentum P) 

Here the expectation value ({(0} for some function/is defined as 

m 
(6) (ft.Q)) = f j(q) l1/J<.q>l2dq , 

-m 

and in particular the variance (~2Q} is given by 

(7) 
m f (q-(Q} )2 l 1/J<.q) 12 dq 

-m 

The momentum quantities are analogously defined. The variance, as is well-known 

from probability theory, characterizes the spread of a probability distribution. Thus, 

ineq. (5) says that the position and momentum probability distributions cannot both be 

arbitrarily narrow. It implies, roughly speaking, that one cannot at the same time 

attribute velocity and position to an object. Position and momentum and, more 

generally, pairs of quantities that satisfy relations like (5), are termed incompatible. 

sw. Heisenberg (1927): Zv.J. Phys. 43, p. 172 
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Note that no characteristics of the position measurement device are inherent in 

( 8 2Q}. In particular its accuracy is not involved. In fact the probability distribution 

l 1/J<.q) 12 only results from an ideally accurate position measurement (in a certain sense 

it defines such a measurement). 

The UP bas been called "the most important principle of twentieth century physics". 

Laplacean determinism, the assertion that the future of the whole universe is deter­

mined by the specification of the positions and velocities of its constituents at a 

certaitl time, seemed at an end. The UP engendered a flurry of philosophizing about 

possible new world pictures6• lt was even claimed .that the existence of free will, 

which appeared to contradict the Laplacean world picture, was saved by QM. From a 

physicist's point of view, however, its importance is limited. In quantum mechanical 

calculations it is incorporated automatically. Explicit consideration of the UP is super­

fluous. Similarly, Lorentz contraction need not be explicitly introduced into relati­

vistic calculations, as these incorporate the effect automatically. But, whereas the UP 

is perhaps little used in actual practical calculations, its importance from a pedago­

gical point of view remains substantial. From the point of view of the conceptually 

familiar classical physics, the UP highlights one of the ways in which: QM is funda­

mentally "different". But precisely what it means, philosophically and otherwise, is 

not as simpte as suggested at the · beginning of this paragraph. The QM evolution 

equation (Schrödinger's equation) replacing Newton's laws, on which Laplace's views 

were based, is just as deterministic as the latter. To what extent this implies a deter­

ministic world, depends on the meaning of 11/J) itself. In other words, the philoso­

phical significance of QM can be judged only when the state vectors l 'l/J) are inter­

preted satisfactorily, and not through (5) alone. Tuis interpretation problem, closely 

connected to the notorious "measurement problem" is very complex and contro­

versial, however. Since this work is not directly concemed with it, we shall (apart 

from an occasional remark) not go into it any further. 

6M. Jammer (1974): The Philosophy of Quantum Mechanics (Wiley, NY); p. 7Sff; 
E. McMullin (1954): The Principle of Uncertainty (PhD thesis, University of Louvain, Belgium, 
wipublished). 
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But even on a pragmatic level, to which we shall limit ourselves, the meaning of the 

UP is less clear than it may seem. We saw how Bom's probabilistic interpretation 

gives (5) the meaning of a limit to the width of probability distributions. But 

Heisenberg, judging by the illustrations in bis 1927 paper, and Bohr, who subse­

quently studied the UP in depth, intended the UP to have a much wider significance. 

Thus, it bas been suggested that there are as many as three or four uncertainty 

principles7• Most notably, the UP was interpreted as a limit to the accuracy with which 

incompatible observables can be measured jointly. A consequence of this latter 

version of the UP was assumed to be the fact that a position meter must "disturb" 

incompatible observables, e.g. momentum, to an extent at least reciprocally related to 

its accuracy. However, as Bom's interpretation presupposes the measurement to be 

ideally accurate, so does (5). It does not at all address questions involving accuracy or 

disturbance. 

In the early days of QM the expansion of the domain of applicability of the new 

formalism was most important. It is therefore understandable that conceptual issues 

without direct practical relevance, were not thoroughly investigated (except by Bohr 

and Einstein). Moreover, measurement devices were for many years so inaccurate 

that a detailed consideration of quantum induced bounds to accuracy were academie. 

In recent years, especially the demand for accuracy by gravitational wave detectors 

and the rapid development of the field of quantum opties, have brought the 

(alleged ?) quantum bounds into sight. Indeed a number of investigations into these 

bounds have appeared8• It turned out that the conventional QM formalism, though 

suitable for all calculations, showed deficiencies as regards the description and 

characterization of measurements. An extended formalism was developed9• 

7y. Yamamoto el al. (1990): Progress in Opt. (ed. by B. Wolf, North Holland, Amsterdam) 28, 
p. 87 (see esp. p. 101); McMullin, op. dt. 

8See e.g. Yamamoto et al., op. cit •• 
9E. Davies (1976): Quantum Theory of Open Systems (Academie, NY); 0. Ludwig (1983): 
Foundations of Quantum Mechanics, 2 vols. (Springer, Berlin); A. Holevo (1982): Probabilislic and 
Statist/cal Aspects <d' Quantum Theory (North Holland, Amsterdam). 
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We will start this thesis with a concise overview of the inception of the standard 

formalism in general, and of the UP in particular. We will also study the relevance 

of (5) more closely, and see that it is indeed limited when compared to the intended 

meaning of the UP. Certain implicit assumptions in the setting up of the formalism 

are traced, assumptions that (may have) led to its later inadequacy for the description 

of measurements. The subject of eb. II is Bohr's complementarity. Bohr developed 

this philosophy in the years 1927-1939, and we shall study it with special regard for 

Bohr's views on the UP. 

Bohr, as we noted earlier, gave the UP a significance far beyond (5). This discre­

pancy between the content of the UP and its formalistic status needs clarification. 

Therefore we proceed with a mathematical investigation in ch. III, using the afore­

mentioned extended formalism. We show that, giving 'inaccuracy' a mathematically 

well-defined content, an inaccuracy bound can be derived. Next, in ch. IV the 

inaccuracy notion and the quantum inaccuracy bound are applied in certain experi­

ments, e.g. from quantum opties. In particular certain welH.mown results, such. as 

Heisenberg's ')'-microscope, are treated as consequences of the inaccuracy principle. 

lnequalities of the type (5) can be shown to have highly analogous consequences, hut 

for devices other than meters: for preparators, i.e. object sources. Thus a dualistic 

UP is proposed, consisting of a cluster of relations like (5) on the one hand, and of 

relations like the inaccuracy inequality of ch. III on the other. These two sub-prin­

ciples appear sufficient to justify the UP in its full Bohr/Heisenberg content. The 

results are summarized and evaluated in ch. V. 
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In this thesis equations are numbered in each chapter separately. When an equation in 

another chapter is referred to, the chapter number is stated explicitly. For example, 

(III.20) means equation (20) of chapter m. As in the introduction, short remarks and 

references can be found in the footnotes, indicated by Arabic numerals. Roman nu­

merals indicate longer comments, which can be found at the end of each chapter. The 

appendices contain a more detailed justification of ch. II and ch. m, but are not 

directly involved in the line of argumentation of these chapters. 

The motto was taken from p. 590 of James Joyce by R. Ellman (rev. ed., Oxford Uni­

versity Press, 1982). 

The contents of chapters m and IV are contained in: 

H. Martens (1989): Phys. Lett. A. 137, p. 155 

H. Martens & W. de Muynck (1990a): Found. Phys. 20, p. 257 

H. Martens & W. de Muynck (1990b): Found. Phys. 20, p. 355 

H. Martens & W. de Muynck (1990c): submitted to Found. Phys. 

H. Martens & W. de Muynck (1990d): submitted to Phys. Lett. A 

Further elaborations (on neutron interferometry and Kerr QND measurement, respec­

tively) can be found in: 

W. de Muynck & H. Martens (1990): Phys. Rev. A. 42, p. 5079 

H. Martens & W. de Muynck (1990e): paper presented at the International 

Workshop on Quantum Aspects of Optical Communications, Paris (France), pro­

ceedings to be published by Springer, Berlin. 

This work was supported by the Foundation for Philosophical Research (SWON), 

which is subsidized by the Netherlands Organization for Scientific Research (NWO) 
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Modem quantum mechanics (QM) is usually said to have started with Heisenberg's 

1925 paper "Über die quantentheoretische Umdeutung kinematischer und mecha-
' nischer Beziehungen" 1• As already indicated in this title, early views on the inter-

pretation of the new formalism were strongly tainted by the classical background 

from which it emerged. For this reason it seems worthwhile to explicitly state some 

of the interpretational presuppositions of classical (statistical) mechanics (CM), as 

they are commonly (but often implicitly) taken to be. In CM the "state" of the system 

at time t is given by a point W(t) in phase space 0. An n-particle system is, for 

example, described by 3n position coordinates and 3n momentum coordinates. This 

leads to a phase space 0 = IR6n. In general a given history of the system, or prepara­
tion procedure, will not uniquely determine the system's position in phase space. In 

such a case it is appropriate to use a probability distribution P(dw,t) to describe the 

system: P(!::..w,t) indicates the probability that the system can at timet be found in the 

region !::..w of the phase space. In the following we shall reserve the term state for this 

distribution, and speak of a C-state when we refer to a point in phase space. 

Note that the set of states is convex (fig. 1): whenever P
1
(dw,t) and P

2
(dw,t) are 

states, so is the mixture 

(1) (0 5 À 5 1). 

The mixed state P can be realized in a situation where we do not always use the same 

preparation device: we use the preparator that makes P
1 

with probability À, and the 

preparator that produces P
2 

with probability 1-À. Elements P of a convex set that 

cannot be decomposed into two other elements P
1 

and P
2 

as in (1) are called extreme 
(in this context the extreme elements are also called pure states). It is not difficult to 

verify that the 6--distributions P (dw,t) = D (dW), which are in 1-1 correspondence 
"'o "'o 

to C-states, are the pure states. Moreover, every non-extreme state can be written as 

a mixture of pure states in a unique way: in CM the set of states forms a simplex2• 

Therefore we may conceive the CM system as being at any time in some definite 

C-state, which may not be completely known. The non-extreme states are only 

1w. Heisenberg (1925): "On the quantumtheoretical reinterpretation of kinematic and mechanical 
relations", Zr. f. Phys. 33, p. 879 

2A. Holevo (1982): Probabilistic and Statistical Aspects of Quantum Theory (North Holland, 
Amsterdam), ch. I 
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(a) (b) 

fig. 1 1\vo convex sets. Extreme elements are indicated by open circles. The 
set (b) is a simplex, (a) is not. The line between the points x and y 
indicates the set of convex combinations of x and y. 

introduced to represent such a lack of knowledge and do not have any ontic 
significance. This is called the ignorance interpretation of mixtures. 

Classical quantities can be seen as properties independently possessed by the object 

system: for every quantity .5'there is a function /(W) determining the value of the 

quantity, given the C-state of the object system. The quantities supply information on 

the C-state. In fact, the C-state is no more than the set of values which the quantities 

assume at a given time. Thus the ultimate quantity is the phase point, and vice versa: 
there is no real conceptual difference between 'state' and 'quantities'. Accordingly, 

measurement of a quantity is ideally intended to see which value the quantity has. The 

nature of the classical measurement ideal follows from the ontological assumption 

inherent in classical theories that they are about independently possessed object 

properties. 

Of course this by no means implies that actual measurements achieve the ideal. On 

the contrary, real measurements will always be riddled with imperfections. An ana­

lysis of the measurement procedure will nevertheless show the precise influence of 

disturbances, allowing us to interpret our actually performed measurement in terms 

of the intended one. Thus, while it is not true that in CM all measurements are just 
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"seeing what value a certain quantity bas", it is true that all can be seen as derivatives 

of such measurementsi. Furthermore, the character of the classica! measurement ideal 

prompts the view that the property under investigation is well-defined (though 

perhaps not constant) throughout the measurement process. Consequently a measure­

ment can be used not only to gain information about the object's state just before the 

measurement (the determinative aspect of measurement), hut also to make predictions 

about values of the measured quantity in the object's state after measurement. Ideally, 

the post-measurement value of that quantity is equal to the measurement outcome. 

We shall call the aspect of measurement which deals with the state after 

measurement, the preparative aspect. Accordingly, in CM the preparative and 

determinative aspects of measurement are quite naturally connected conceptually. 

1 THE ADVENT OF QUANTUM MECHANICS 

Within the classica! conceptual framework QM carne into being around 1925. In those 

days atomie theory was phrased in terms of the "old quantum theory". This eventually 

evolved into discussing the atom in terms of some symbolic classica/ model 

("Ersatz"), to which the quantum rules were applied3• In this way Bohr's 

correspondence principle, which started out as the rule that quantum results should 

become classica! results for large quantum numbers, was sharpened into a more quan­

titative tool. When discussing the problem of radiation and atoms, the Ersatz consis­

ted of a set of mechanical oscillators associated with each atom4• These virtual oscil­

lators had the frequencies of the spectral lines of the atom as eigenfrequencies. The 

modeling of emission and absorption processes with the aid of these oscillators 

"solved" the problem of the difference between the mechanica! and the electro­

magnetic frequencies of an atom. An application of the model was the Bohr-Kramers-

3J. Mehra & H. Rechenberg (1982): The Historical development of Quantum Theory, 6 vols. 
(Springer, NY); see vol. II, p. 199 ff. 

4This model was due to Stater (Mehra & Rechenberg, op. cit., vol. I, part 2, ch. V and vol. II, 
p. 125). 



Historica! Prelude 13 

Slater theory of radiation5• In the theory an atom in a stationary state generates, via 

the virtual oscillators, a virtual field consisting of components with those frequencies 

that can be emitted in a transition to lower levels. The pro/Jability that a given atom 

actually decays to a certain lower state, depends on the intensity of the virtual field 

component with the proper frequency at the site of the atom. In this theory there are 

no photons. Since the occurrence of the transition does not causally depend on 

whether any other atom makes a transition, energy and momentum are only conser­

ved in the mean. The Bohr-Kramers-Slater theory was soon disproved by experiment6, 

hut it nevertheless was an important point on the way towards true QM. It in 

particular formed the starting point for Kramers' theory of dispersion, in which 

Heisenberg collaborated. Heisenberg was still not satisfied with the status of the 

correspondence principle, and wanted to further sharpen it. The quantities a(n,m), 

which denoted the virtual amplitude associated with the transition from level n to 

level m in the old theory, became matrices. These matrices, obeying a non­

commutative multiplication rule11, were used by Heisenberg to "reinterpret mecha­

nica! relations quantum mechanically" (viz. the title of his paper). The theory was, 

however, still a radiation theory: the "position matrix" q(n,m) corresponded to line 

intensities in dipole transitions, ratlier than to electron position. "Heisenberg claimed 

that he had rid the theory of unobservables. For Heisenberg, e.g., electron position 

was not observable. Instead he referred primarily to line intensities as observable, as 

opposed to the unobservable mechanical models (such as that of the virtual 

oscillators) of the old QM. Born and Jordan, with Heisenberg7, developed 

Heisenberg's ansatz into the consistent formalism of matrix mechanics. A statistica! 

interpretation was added by Borns. This interpretation was, however, still toa large 

extent in line with Heisenberg's original theory as regards its observability notion: 

Born's interpretation referred to transition probabilities in collision and was intended 

onfy for momentum and energy, not for, e.g., position. 

5N. Bohr, H. Kramers & J. Slater (1924): Phil. Mag. 41, p. 785; see also Mehra & R.echenberg, op. 
cit" vol. I, part 2, § V.l 

6By the Comptoll"'\Simon and Bothe-Geiger experiments (Mehra & Rechenberg, op. cit., vol. I, part 2, 
§ V.l). 

7M. Bom, W. Heisenberg & P. Jordan (1926): b. f Phys. 35, p. 557 

SM. Bom (1926a): b. J Phys. 31, p. 863; (1926b): ibid. 38, p. 803 
For energy this interpretation was already inherent in the Born-Heisenberg-Jordan [Bom, Heisenberg 
& Jordan, op. cit.] paper (Mehra & Rechenberg, op. ciJ., vol. Il, p. 138). 
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Thus we see how QM explicitly originated in classical mechanics, was in fact seen as 

a reformulation of CM. Dirac puts it in bis formulation of the new theory9 as follows: 

"In a recent paper1D Heisenberg puts forward a new theory which suggests that it is not 

the equations of classical mechanics which are in any way at fault, hut that the mathe­

matical operations by which physical results are deduced from them requires modifi­

cation. All the information supplied by the classical theory can thus be made use of in 

the new theory". More or less as a by-productU, new QM used less unobservables than 

before [i.e. in the old QM]: mechanical models were dispensed with. 

2 HILBERTSPACE 

In the early papers observability was used in a different sense than the modern one, 

the latter being characterized by the name observables for self-adjoint operators. Tuis 

latter concept of observabilityiii emerged when the transformation theory12 established 

the equivalence of all representations of the quantum state vector, and made Born's 

statistical interpretation available for other quantities than momentum and energy13• 

The new formulation14 can be roughly summarized in a number of postulates1v: 

(2a) At a fixed time t the state of a physical system is represented by a posi­

tive operator with unit trace p(t) on a complex Hilbert space JI 
(operators are boldfaced). 

9P. Dirac (1925): Proc. R. Soc. A 109, p. 642 

tOHeisenberg, op. cit. 

11Mehra & Rechenberg, op. cit" vol. Il, p. 184 

12P. Dirac (1927): Proc. R. Soc. A 113, p. 621; P. Jordan (1927): Zr. F. Phys. 40, p. 809 

13cf. the letter from Pauli to Heisenberg d.d. October 191h, 1926 (y{. Pauli (1979): 
Wissenschaftlicher Briefwechsel, vol. I (ed. by A. Hermann, K. von Meyenn and V. Weisskopf; 
Springer, Berlin). Il [143]). 

14p. Dirac (1930): The Principles of Quantum Mechanics (lst ed.; Oxford Univ. Press); 
J. von Neumann (1932): Mathematische Grundlagen der Quantenmechanik (Springer, Berlin) 
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(2b) Every measurable quantity (observable) ~is described by a self-adjoint 

operator A on .R. 

(2c) The only possible result of the measurement of an observable ~is an ele­

ment of the set of the eigenvalues of the corresponding operator A (the 

spectrum O"(A) of A). 

(2d) When an observable ~is measured, the probability of obtaining a result 

in the interval AA is given by P(AA) = Tr[p E(AA)] , where {E(AA)} is 

the spectral family associated with the operator A by virtue of the spectral 

lheorem (see (4) below). 

(2e) If the measurement of an observable A, corresponding to an operator A 

with discrete spectrum uV{), gives result a E u(A), the state of the object 

system immediately after the measurement is given byv 

E({a})pE({a})/Tr[p E({a})] . 

(2f) The time evolution of the density operator is unitary: i.e. there is a 

family U(t) of unitary operators such that p(f) = U(t)p(O)ut(f) • 

Like the classical set of states, the set of quantum states is convex, the one­

dimensional projectors 11") ( 'l/JI [we use Dirac notation] being the extreme states (pure 

states). It is, however, nota simplex: a decomposition 

(3) p = l:. w. l,,P.)(,P.I (w. > 0; E. w. = l) 
l l l l 1- 1 1 

of a mixed state into pure states is usually not uniquevi. Therefore the ignorance 

interpretation of mixtures, viable in CM, runs into difficulties in QM15• 

The spectral theorem t& 

(4) A = f a E(da) , 

15.E. Beltrametti & G. Casinelli (1981): The Logic of Quantum Mechanics (Addison-Wesley, Reading, 
Mass.), p. 11; J. Park (1968): Am. J. Phys. 36, p. 211 

16Holevo, op. cit. 



16 Chapter 1 

which is used in (2d), uniquely associates a spectra! family, or projection valued 
measure (PVM), {E(da)}o(A) with a given self-adjoint operator. Because (2c) and the 

expectation value rule 

(5) (A) = fa P(da) = f a Tr[p E(da)] = Tr(p A) 

are consequences of (2d), a PVM is a more fundamental object than a self-adjoint 

operator17• Starting from a PVM rather than a self-adjoint operator ·has additional 

advantages, such as the removal of the restriction to real eigenvalues18• These argu­

ments suggest the use of PVMs instead of self-adjoint operators. Indeed we shall use 

PVMs in the following, whenever appropriate. 

The wording of the postulates (2) is distinctly operationalistic. All classical talk about 

'properties' is absent, and replaced by such terms as 'measurement results'. Never­

theless, the classical roots of the new formalism surface in, e.g., (2e): the (natural) 

characteristics of an ideal measurement in CM are carried over into QM as a postu­

late. A measurement according to (2e) will give on repetition the same result with 

certainty. Such a measurement is called a measurement of the first kindVii. As it is 

impossible in QM, contrary to CM, to think of the outcome of the measurement as a 

property of the object counterfactually19 (i.e. one cannot assume that the object would 

have had the outcome as a property even if the instrument had not been present). the 

fact that the measurement of the first kind can be interpreted as creating a property to 

the object, may be seen as an argument in favor of it. After all, if a measurement 

cannot be thought of as revealing a pre-existing value, it would seem to need at least 

the preparative attribute (2e) in order to be properly called 'measurement'. There­

fore (2e) shifts the emphasis within the concept of 'measurement' from the deter­

minative aspect to the preparative aspect. This new usage of 'measurement' seems, 

17Cf. P. Dirac (1958): The Principks of Quanlum Mechanics (4th ed.; Oxford Univ. Press), p. 37 

18Holevo, op. cit.; J.-M. Levy-Leblond (1976): Ann. of Phys. 101, p. 319 

19The troubles which such an ignorance interpretation of the inevitable scatter in quantum 
measurements runs into, were known soon [M. Jammer (1974): The Philosophy of Quantum 
Mechanics (Wiley, NY), p. 43] 
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however, hardly in accord with practical definition, which certainly is more about 

finding out aspects of the object's state before measurement than about fixing a 

quantity for the future. 

Another objection against the 'measurement' definition (2e) is that practical measure­

ments are not required to be even remotely like (2e) (viz. the general usefulness of 

destructive measurements, especially in the micr~omain, where hardly any others 

are available)2o. Therefore it seems more sensible to regard (2e) as a characterization 

of an ideal measurement, rather than as a definition of the term 'measurement' in full 

generality21• Strict adherence to (2e) in the description of actual measurements would 

then not be required. But the impossibility in QM of attributing the outcome of the 

measurement to the object counterfactually, actually means that the ontological argu­

ments that favored the classical measurement ideal are invalid in QM. There is no 

conceptual basis for (2e) at all. Thus we see that (2e) and, more generally, the obser­

vable concept (2b) in fact originate in the analogy with CM rather than in an operatio­

nal analysis (as is perhaps suggested by the operationalistically sounding nomencla­

ture). Their status is dubious. 

3 THE UNCERTAINrY PRINCIPLE 

The development stage of "pioneer QM" ended with the discovery in 1927 of the 

uncertainty principleviii (UP) by Heisenberg22• He was puzzled by the apparent contra­

diction between on the one hand the impossibility to unite position and momentum 

representations in one picture ([Q,Pj_ = il :/; 0) and on the other the "particle tracks" 

seen in a Wilson chamber23• Heisenberg first argued that QM is based on 

20cf. also Jammer, op. cit" p. 487 

21Beltrametti & Casinelli, op. cit. 

22w. Heisenberg (1927): Zr. f. Phys. 43, p. 172 
Cf. also Dirac, op. cit. (1927), and the letter from Pauli to Heisenberg quoted earlier (Pauli, op. cit., 
letter # [143)) 

23w. Heisenberg (1969): Der Teil und das Ganze (Piper, Munich), p. 111 
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x . . 

t 

(a) (b) 

fig. 2 Classica/ trajectory (a) vs. the kind of trajectory allowed by the 
discontinuities in QM (b). Figure taken/rom Heisenberg, op.cit. (1927). 

discontinuities, so that a trajectory of the classical type is no longer possible (fig. 2). 

In the quantum case24 "[ ••• ist es] offenbar sinnlos, vonder Geschwindigkeit an einem 

bestimmten Orte zu sprechen, weil ja die Geschwindigkeit erst durch zwei Orte defi­

niert werden kann, und weil folglich zu jedem Punkt je zwei verschiedene Geschwin­

digkeiten gehören". Thus, the sequence of points formeel by the drops in a Wilson 

chamber does not jointly define position and momentum. Heisenberg next discusses a 

-y--microscope (fig. 3). In the -y-microscope light with wavelength ,\ is scattered off an 

electron to determine its position. The light is then collected by a lens with aperture e: 

onto a photographic plate25• The microscope's resolution is ó = À/2sin(ie:). On the q 
other hand, when the photon reaches the plate, informing us of the electron's posi-

tion, the direction from which it left the electron is unknown by an amount e:. This 

leads, via the Compton-recoil of the electron, to an uncertainty ("disturbance") 

D ~ 2 sin(i·e:)/À in momentum. Thus we have D ó ~ 1 . 
p p q 

24Heisenberg, op. cit. (1927): "[ ... ] it is clearly meanmatess to speak about one velocity at one 
position because one velocity can only be defined by two positions, and conversely because any one 
point is associated with two velocities" [translation from J. Wheeler & W. Zurek (eds.) (1983): 
Quantum Theory and Measurement (Princeton University Press)]. 
25Heisenberg înitially forgot to take the aperture into consideration, hut was soon set straight by Bohr 
(see e.g. Jammer, op. cit" p. 64) 
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Heisenberg 's 1-ray micro­
scope. Light with wave­
length À is scattered off 
an electron E through a 
lens L onto a photogra­
phic plate P. The lens has 
aperture e. 

Lastly, Heisenberg shows that for states with a Gaussian position representation (viz. 
the ground' state of the harmonie oscillator) the variances in position and momentum 
satisfy (fi2Q) (ti2P) = t; {ti2P) denotes ((P-{P))2}. Later this result was exten­
ded to the now familiar Heisenberg inequality2& 

and Robertson inequality21: 

(1) 

Another common way2S of introducing the UP is through reference to the wave par­

ticle duality, which quantum mechanics allegedly entails. One notes that for classical 
light a wave packet of size ll.q must have a wave vector dispersion 

26H. Kennard (1927): Zr. f. Phys. 44, p. 326; H. Weyl (1928): Gruppentheorie und Quantenmechanik 
(Hirzel, Leipzig) 

27H. Robertson (1929): Phys. Rev. 34, p. 163; K. Kraus & J. Schroeter (1983): Int. J. Theor. 
Phys. 1, p. 431 

28Cf. L. Rosenfeld (1971): ArCh. Hist. Exact Sci. 1, p. 69 (quoted on p. 59 of Wbeeler & Zurek, op. 
cit.); Jammer, op. cit. 
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Since electrons are also supposed to have a wave nature this is then presented as the 

UPix. Tuis type of "derivation" bas even prompted some to doubt whether the UP is 

specifically quantum mechanical 29• Tuis doubt is not justified. Such reasoning is based 

on the similarity in mathematical form of the two inequalities (6) and (8) rather than 

on any relation in physical content: the sire of a classical wave packet (in either direct 

or reciprocal space) is not related to the uncertainty of the packet's position, just as 

the finiteness of a chair's size bas no consequences for the exactness of its position30• 

As regards light, equations of the type t::.q t::.k ~ 1 are not proper analogs of 

( !:::. 2 P} ( !:::. 2Q) ~ i for particlesx. The commutation relations for photons are those of 

the field variables, and for these true uncertainty relations can be derived. Such rela­

tions restrict the precise, classical definability of the light field31, and they are just as 

ununderstandable from a classical point of view as is the Heisenberg relation (6). 

The UP is generally seen as one of the major ingredients of the new theory. Kennard 

called it32 "der eigentliche Kern der neuen Theorie". After its discovery QM was 

essentially finished. From then on most focused their attention on applications of the 

formalism, and it has indeed proved extremely successful in that respect. As a con­

sequence the presentation of the formalism in textbooks bas changed only in minor 

ways since 1928. Tuis holds especially true for the UP, which is still presented quite 

like Heisenberg himself did 33• Popular interpretations, based on Heisenberg's rea­

soning include the statements that a measurement of some observable disturbs other, 

incompatible, observables (: = the disturbance interpretation: D P 6 q ~ 1; viz. the 

')'-lnicroscope); that it limits the accuracy achievable in joint measurements of 

29H. Primas (1983): Chemistry, Quantum Mechanics and Reduaionism (2nd ed., Springer, Berlin), 
p. 151; M. Vol'kenshtein [M. Vol'kenshtein (1988): Sov. Phys. Usp. 31, p. 140] quotes 
Mandel'shtam: "[ ... ] the uncertainty principle can be easily explained to .people who know radio­
telegraphy •. 

30E. McMullin (1954): The Principle of Uncertainty (PbD Thesis, Cath. Univ. of Louvain, Belgium), 
unpublished 

31cf. N. Bohr & L. Rosenfeld (1933): Mat.·Fys. Medd. Dan. Vidensk. Selsk. 12, no. 8; N. Bohr & 
L. Rosenfeld (1950): Phys. Rev. 78, p. 794 

32Kennard, op. cit. 

33see e.g. A. Messiah (1955): Quantum Mechanics, vol. I (North Holland, Amsterdam); C. Coben­
Tannoudji, B. Diu & F. Laloe (1977): Quantum Mechanics, vol. I (Wiley, NY); A. Capri (1985): 
Non-relativistic Quantum Mechanics (Benjamin--Onnmings, Menlo Park (CA)); T.-Y. Wu (1986): 
Quantum Mechanics (World Scientific, Singapore). 
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incompatible observables (:=the inaccuracy interpretation: 6P 6q ~ 1); that it 

precludes the existence of a trajectory fora quantum particle (viz. Heisenberg's first 

argument: fig. 2); that is forbids obtaining interference phenomena when the "path" is 

knownH. Heisenberg's reasoning is by no means unproblematic, however. The three 

types of argument ( ')'-lllÎcroscope, Wilson chamber and formal calculation) are not 

explicitly related, and it is not obvious that such a relation exists at all. Where are the 

"errors" 6 or D in the quantum "track" of fig. 2 ? How can the quantity 6 in the q p q 
'}'-microscope (purely a property of the measuring instrument) be related to the width 

(!::i.. 2Q) of the wave function, which is calculated without any reference to the measu­

ring process? How are the quantities (!::i.. 2Q) and (t::i.. 2P) related to the features of the 

quantum "track" ? 

We saw that Heisenberg gave the Gedanken experiments a prominent role in bis deri­

vation of the UP. That has the unfortunate consequence of suggesting that the UP bas 

a physical origin, that it is a consequence of the physical laws insofar as they govem 

the interaction between object system and measuring or preparing device:x:i. The deri­

vation of the Heisenberg relation (6), on the other hand, does not refer to the details 

of the preparation or measurement process at all, let alone to the laws of opties, 

electrodynamics, etc., used in the description of the thought experiments. Ineq. (6) is 

logically inevitable rather than that it needs physical justification35: in the quantum 

language it is incoherent to talk about systems with states such that both P and Q are 

sharp. The UP can be considered to have a physical origin only when a new theory 

bas been found from which QM can be derived. Such a sub-quantum theory would 

then explain this logic, explain incompatibility and explain (6). The (semi-) classical 

rea.soning employed in the description of the imaginary experiments cannot be 

considered as sufficient for such a task. 

Her. the categorisation of interpretations by Jammer, op. cit., and by McMullin, op. cit .• 

35Jammer, op. cit., p. 160 
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For Heisenberg, in accord with the operationalistic maxim36 "Wenn man sich darüber 

klar werden will, was unter dem Worte 'Ort des Gegenstandes', z.B. des Elektrons 

[ ... ], zu verstehen sei, so mufi man bestimmte Experimente angeben, mit deren Hilfe 

man den 'Ort des Elektrons' zu messen gedenkt", the experiments are important 

because they give content to the notion of 'position'. But then how can Heisenberg 

use the word 'momentum' in the discussion of the ')'-microscope experiment when 

momentum is not measured (hence not defined)? Heisenberg's operationalism is 

certainly not fully carried through, and Heisenberg can probably not be characterized 

as an operationalist37• From amore general methodological point of view, however, 

it is unclear whether these Gedanken experiments are intended38 as derivations, 

explanations or illustrations of the UP. A rigorous derivation of the UP from the 

formalism should, I think, take precedence over other types of reasoning. That would 

restrict the use of the thought experiments to illustrations of the failure of classical 

concepts in quantum mechanics/or pedagogical purposes only39• 

Therefore such assertions as the popular interpretations of the UP mentioned above 

(e.g. the disturbance and inaccuracy interpretations) must be formally justified in 

order to be acceptable. The only base of all of these claims in the formalism consists 

of the Heisenberg inequality (6) and the Robertson inequality (7). Heisenberg himself 

denotes the quantities 6 (measurement accuracy), D (disturbance) and (62Q) (wave q q 
function width) by the same symbol (namely q

1
), suggesting a conceptual 

identification of these notions. He was probably inspired by the classica! theory in 

which, as we saw, preparative and determinative aspects of measurement were 

merged. From the point of view of the analogy with CM then, the assumption that a 

measurement's determinative quality (i.e. 6 J conceptually equals its preparative 

quality (i.e. D , or (62Q) after measurement), is indeed tempting. q 

36•When one wants to be clear about wbat is to be understood by the words 'position of the object', 
for example of the electron [ ... ], then one must specify definite experiments with whose help one 
plans to measure the 'position of the electron' • (Heisenberg, op. cit. (1927); translation taken from 
Wheeler & Zurek, op. cil. ). 

37Jammer, op. cit" p. 58 

38K. Popper (1972): The Logic of Scientific Discovery (6th rev. impr.; Hutchinson, London), app. *xi 
39For Bohr the thougbt experiments were more important than this too, as is evident from a letter to 
Darwin in 1930 (N. Bohr (1985): Collected Works, vol. 6 (ed. by J. Kalckar; Nortb Holland, 
Amsterdam), p. 316). See also eb. II. 
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Thus the CM analogy played a major role in the genesis of the opinion that the distur­

bance and inaccuracy interpretation are formally justified in (6) and (7). In fact, 

however, Bom's statistica! interpretation of quantum mechanics associates the 

quantity 1 (al 'l/J} l 2 with the probability (density) of outcomes in the measurement of a 

certain quantity. This implies that (62.A) is the statistical dispersion of the distri­

bution of such measurement outcomes (scatter). Consequently the interpretation 

immediately associated by Bom's statistica! interpretation with both (6) and (7) is that 

of a limit to the scatter in independent measurements: no joint measurement of À and 

B need be performed4o to determine (62.A) and (62B). 

The aforementioned popular views on the UP assume a much wider applicability 

of (6) and (7). The inaccuracy interpretation, in particular, needs a connection 

between (62.A) and A measurement inaccuracy. But the self-adjoint operators A and B 

occur in (7) in complete accordance with von Neumann's axioms: (62.A) might even 

be realized as scatter in measurements of the first kind of A. 'Inaccuracy' can hardly 

be said to be involved in such a measurement. Murdoch41 suggests that a mere reinter­

pretation of (62.A) as the "uncertainty in our knowledge of A" or as the "real indefi­

niteness of the value of A" may help. But these are just rephrasings of the concept of 

'scatter' in the epistemic and ontic interpretation of probability, respectivelyx11• They 

bring us no closer toa more general relevance of (6) and (7). Amore serious attempt 

to establish the scatter-inaccuracy connection, and thus an inaccuracy interpretation 

of (6), was made by von Neumann42• He uses a Cmeasurement of the first kind to 

effect a joint A,B measurement. The A c.q. B scatter in the state-after-measurement 

lc)(cl, limited because of (7), is in bis approach associated with measurement 

1naccuracy. But this reasoning is not satisfactory either. lt uses a notion of 

'measurement' that, in accord with the conceptual background of (2e) (see above), 

focuses exclusively on the preparative side of measuring, so that (7) becomes appli­

cable. As a result this "joint" measurement in general does not even enable us to 

estimate the (pre-measurement) expectation values of A and B. A true inaccuracy 

interpretation would limit determinative measurement accuracy. Since (2e) can at best 

40Popper, op. cit. 

410. Murdoch (1987): Niels Bohr's Philosophy of Physics (Cambridge University Press), p. 121 

42von Neumann, op. cit., § III.4 
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be regarded as a description of a measurement ideal (see above), its use is singularly 

inappropriate where the very nature of the problem demands a consideration of more 

realistic measurements. Even if we drop (2e), however, it can be seen that proposals 

intended to establish such a determinative inaccuracy interpretation cannot be based 

on the scatter in the state-after-measurement because there is no fundamental reason43 

why this scatter should be related to the measurement accuracy at all (ch. IV). In 

particular destructive measurements would not seem to be affected by an inaccuracy 

interpretation derived along these lines. 

An interpretation of (7) as a reciprocal relation between the accuracy of an 

A measurement and the B disturbance uses, in addition to the interpretation of ( D.. 2 A.) 
as an inaccuracy, the association of (D.. 2B) with 'disturbance'. But (D.. 2B) refers to 

the object state before measurement, instead of to the state-after-m~surement in 

which evidence of a B disturbance would be expected to surface. In fact, the state 

transformation accompanying a measurement is not involved in the derivation of the 

Robertson relation (7) at all. Even if one accepts the measurement of the first kind 

postulate (2e), no 'disturbance' interpretation can be justified: after an A measure­

ment the system is in an A eigenstate and its B distribution is in genera! not related at 

all to the B distribution before the measurement. Even if we are prepared to call, in 

the absence of a relation, a mere difference between the two B distributions 'distur­

bance', ( D.. 2B) can hardly be used as a quantitative measure for it. 

4 CONCLUSIONS 

The concept of measurement of the first kind [(2e)] is, even when it is only regarded 

as a template for an ideal measurement, based on the analogy with CM rather than on 

an operational analysis. Similarly the association observable +-+ self-a~oint operator 

[(2b)] is plausible only from the point of view of that analogy. Therèfore both are 

dubious. Indeed we shall show in the following (ch. III and IV) that (2e) and (2b) are 

43K. Kraus (1987): Phys. Rev. D 35, p. 3070 
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unnecessarily restrictive, that adopting them bars some interesting problems from 

being studied adequately. 

As regards the UP, we accept the conclusion of Popper and others44 that (6) and (7) 

can only be interpreted as statistical scatter relations. Therefore Heisenberg's 

'}'-microscope argument (like the Wilson chamber argument, see ch. IV) is not related 

to (6). The general principle which the microscope is to represent is, like the inaccu­

racy interpretation, yet to be derived. In ch. m we will do precisely this for the 

inaccuracy interpretation. In ch. IV we will then see that a disturbance principle 

('}'-microscope) can be derived from these relations. Scatter relations and inaccuracy 
relations are actually independent (ch. III). This suggests that we can speak of a 

scatter principle on the one hand, and an inaccuracy principle on the other, 

constituting a dichotomie UP. This dichotomie UP will be seen to be sufficient to 

derive other alleged consequences of "the" UP, too. 

First, however, we shall go into Bohr's interpretation of the new QM. This is of 

some importance, since he was the key figure in its development and since bis views 

are still widely held to be authoritative. Thus it may seem that his investigations on 

the interpretation of QM could be of help for our problems with the UP. 

Furthermore, new developments with regard to the interpretation (such as those in 

eb. Ill) need to be evaluated in the light of Bohr's point of view, and vice versa. 

NOTF.S 

Clifford Hooker (C. Hooker (1972): in Paradigms and Paradoxes (ed. by R. Colodny; 
Univ. of Pittsburgh Press), p. 67) describes the classical notion of measurement as 
follows (p. 72): "Knowledge of the states of physical systems is gained by the making 
of measurements on the systems. A measurement is a straightforward physical process 
of interaction between a measuring instrument and a measured system, the outcome of 
which is directly related to the feature of the system under investigation in a known 
way. [ ... ] Measurement procedures are such that either they produce no significant 
disturbance of the measured system, or else such disturbances as are produced are 
precisely calculable and can be allowed for. • 

44Popper, op. cit.; Ballentine (1970): Rev. Mod. Phys. 42, p. 358; H. Groenewold (1946): 
Physica 12, p. 405 
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ii The non"'i:ommutative multiplication rule was already used implicitly by Kramers and 
Heisenberg in their last paper on dispersion theory prior to Heisenberg's 1925 paper on 
quantum theory (Mehra & Rechenberg, op. cit., vol. Il, ch. II). The fact that the 
quantities Heisenberg used were actually matrices was not realized by Heisenberg 
himself, hut by Bom. 

iii The term 'observable' as a noun, and in the modem sense, was probably coined by 
Dirac (Dirac, op. cit. (1930), p. 25). Von Neumann, op. cit. (1932), used the word 
'Groe/3e' [quantity]. 

iv These postulates are usually attributed to von Neumann (e.g. Jammer, op. cit. (1974), 
.p. 5). In his book (von Neumann, op. cit. (1932)) the postulates are introduced (in not 
precisely above form) on p. 168, p. 104, p. 105, p. 104 [for pure states], p. 113 and 
p. 186 respectively. 

v Postulate (2e) is here given in the Lueders form (G. Lueders (1951): Ann. der Phys. 8, 
p. 322), which is also suitable for self-adjoint operators with degenerate spectrum. Von 
Neumann, op. cit. (1932), assumed that such a transformation is not possible for 
operators with a continuous spectrum. The proof of this assertion is perhaps more 
involved than von Neumann had supposed, and was given only recently by Ozawa (M. 
Ozawa (1984): J. Math. Phys. 25, p. 79; cf. App. A). 
Curiously enough, von Neumann (op. cit. (1932), p. 110) quotes the Compton-Simon 
experiment as empirical evidence for (2e ). 

vi Von Neumann noted this non-uniqueness (von Neumann, op. cit. (1932), p. 175), hut 
only for p's with degenerate spectrum. The decomposition is, however, also not unique 
for other p's (this is easily seen when one realiz.es that the I ~i} 's in (3) need not be 
orthogonal). Nevertheless, von Neumann (probably prompted by the analogy with CM) 
continued to entertain the ignorance interpretation of mixtures in QM. 

vü Tuis name was introduced by Pauli (W. Pauli (1933): in Handbuch der Physik (2nd ed.; 
ed. by H. Geiger & K. Scheel; Springer, Berlin), vol. 24, § 9). A measurement of the 
second kind involves a "controlled change of the system". 

viii We can only agree with Levy-Leblond [J.-M. Levy-Leblond (1973): Encart Pedago­
gique 1 (suppl. au Bull. Soc. Fra. Phys. 14), p. 15] that what Heisenberg discovered is 
neither a "principle", nor is it about "uncertainty". We will nevertheless adhere to what 
has become common usage (hut see ch. 111). 

ix Bohr is often quoted in support of such argumentation. Indeed he originally took wave­
particle duality as a starting point for his philosophy [ch. II; Jammer, op. cit. (1974)]. 
In later years, however, he explicitly denied the wave nature of particles and the 
particulate nature of light any significance beyond mathematical form (ch. Il). Thus he 
cannot rightly be considered as an advocate of this "derivation". 

x Possibly conceptions along the lines of Schroedingers original interpretation of the wave 
function as a field (Jammer, op. cit. (1974), p. 24ff.) prompt such an attribution of too 
much physical significance to a mere mathematica! analogy. 
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xi 

xii 

See e.g. the editorial comment preceding Bohr's 1928 Nature paper (Nature 121, 
p. 579) or von Neumann, op. cit. (1932), p. 126. This view on the UP probably also 
inspired the many attempts to violate the principle by devising e.g a measurement with­
out "disturbance• (cf. Jammer, op. cit. (1974), p. 59). The futility of such attempts can 
be seen when one realizes that there is no theory supporting calculations that falsify the 
principle (in any of its forms, see eb. III and IV): QM calculations automatically satisfy 
it. Tberefore violation claims can only be based on some (semi-)classical intuition, and 
can be discarded. 

The name 'scatter' for (fl2A) would probably appear most appropriate witbin the fre­
quency interpretation of probability. We sball use it here, bowever, without committing 
ourselves to one specific interpretation of probability. 
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Wovon man nicht sprechen kann, darueber muss man schweigen 

Wittgenstein 1 

In order to compare Bohr's views on measurement theory in general, and on the UP 

in particular, with new developments (ch. IlI) it is necessary to first study his papers 

carefully and find out what his views exactly were. This is all the more necessary 

because these views are often misrepresented (even by his own pupils), probably as a 

result of Bohr's somewhat idiosyncratic style of writing. Bohr's philosophy goes by 

the name of complementarityi. lts first exposition was given by Bohr in his Como­

lecture2, written after having read Heisenberg's 1927 paper on the UP upon his return 

from a skiing tripa. Whereas Heisenberg started from 'discontinuity', Bohr (in 1927) 

took 'wave-particle duality' as basic. In the following years Bohr sophisticated bis 

views further and further4• A consequence of this is that we must be careful with 

Bohr's earlier work (especially the Como lecture), as it may not adequately reflect 

complementarity in the form with which Bohr was eventually satisfied. Such care bas 

not always been exercised in the literature. 

Keeping this in mind, we can now proceed to a concise (and therefore necessarily 

schematic) overview of Bohr's philosophy. The first crucial ingredient of complemen­

tarity is the necessity to understand everything in terms of everyday language, of 

which the language of classical physics is a refined form. In fact5, "the language of 

Newton and Maxwell will remain the language of physicists for all tim~". If a scien­

tific theory is no longer expressible in such terms, this means that a full under­

standing [N visualization] of the processes the theory describes is no longer possible. 

The applicability of the everyday concepts bas become limited. It is a priori 

1L. Wittgenstein: Tractatus Logico-Phllosoph,icus, thesis 7 

2N. Bohr (1927) [Como Lecture]: Atti del Congresso lntema:r.ionale dei Fisici 1927, 
Como-Pavia-Roma (Nicola Zanicbelli, Bologna), p. 565 

3See e.g. M. Jammer (1974): The Philosoph,y of Quantum Mechanics (Wiley, NY). The paper referred 
to is of course W. Heisenberg (1927): ü. f. Phys. 43, p. 172. 

4See p. llOff of B. McKinnon (1985): Niels Bohr, a centenary volume (ed. by A. French & 
P. Kennedy, Harvard University Press), p. 101 

5N. Bohr (1931a) [Maxwell Lecture]: Nature 128, p. 691 
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excluded that these concepts become inopplicable. The second ingredient of comple­

mentarity is the impossibility of the separation of object and observational device 

[sometimes called "subject" by Bohr]. Any attempt to further analyze this whole will 

impair the functioning of the observational device. 

Thus presented, it is clear that complementarity is not specifically associated with 

QM, or indeed with physics. It is rather a general methodological framework. There­

fore Bohr's suggestions for an application of complementarity in e.g. biology and 

psychology6 are not a priori absurd. He did, however, fail to show that there is in 

these disciplines an empirical necessity for such an application, that in these theories 

there is afundamental (as opposed to practica/ii) restriction on the applicability of the 

concepts from everyday language ("ft # 0"). Without such a demonstration there is no 

reason to believe that an application of complementarity in these disciplines is more 

meaningful than application in, e.g., 18th century physics. 

Within physics, complementarity is not restricted to QM. Bohr interprets relativity in 

terms of complementarity: relativity also limits the applicability of classical concepts, 

i.c. simultaneity7• Complementarity's main application, however, always was QM. 

There it leads to: 

(i) Objectifying description in terms of the quantities from CM: the classical 

quantities, in as far as they are well-defined [cf. (ii)], are object­

properties. 

(ii) The measuring instrument must be described completely classically; the 

UP is not relevant for its working. The unanalyzability ("' indivisibility) of 

the object-meter system is symbolized by the UP. This principle shows 

that well-definedness of some classical quantities in the interaction inevi­

tably leads to unanalyzability in others. This unanalyzability may, for 

instance, appear in the guise of an "uncontrollable momentum exchange". 

6Bohr alludes to such applications of complementarity in many essays. See esp. N. Bohr (1933) [Light 
and I.ife]: Nature 131, p. 423 

7N. Bohr (1949) [Einslein essay]: p. 201 of the Schilpp volume [P. Schilpp (ed.) (1949): Albe11 
Einstein, Philosopher-Scienlist (Open Court ,Evanston IL), reprinted on p. 9 of J. Wheeler & 
W. Zurek (eds.) (1983): Quantum Theory and Measurement (Princeton University Press)]. See esp. 
p. 46 (quotations from the Wheeler & Zurelc reprint). 
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The precise nature of the measuring instrument determines how well­

defined the quantities in the interaction and, os a consequence, those 

describing the object [cf (i)] are. 

(ili) Wave particle duality plays no role. Electrons are particles and light con­

sists of waves. 

(iv) The QM formalism, used for quantitative calculation, is unvisualizable 

(N ununderstandable). It is only of symbolic (N instrumentali~tic) value. 

(See appendix B for detailed textual evidence.) 

Points (i) and (ii) are concretizations of the general ingredients mentioned earlier. 

The necessity of understanding in classical terms, even at the object level [(i)], is 

illustrated by Bohr's attitude towards free electron spin. Bohr thought at first that, 

because its magnitude is directly related to 11. and therefore not classical, free electron 

spin is not measurable at all. Only explicit calculations convinced him of the contrary, 

and even then he argued that there are severe restrictions to its measurement 

(app. B). Thus a Stern Gerlach device would, according to Bohr, be of no use in an 

electron spin measurement (but see ch. V). 

The third and fourth point have been added because of the many misunderstandings 

surrounding them. As regards wave-particle duality, anything hut (iü) would have 

made Bohr's point of view inconsistent. Complementarity entails, as we saw, a res­

triction on the applicability of classica! concepts. 'Wave' and 'particle' are already 

mutually exclusive concepts on a classica! level, and complementarity can only make 

them more so. Thus8, "[ ••• ] the difference between matter and light is as fundamental 

in quantum theory as it is in the classica! one". For Bohr the 'wave nature' of elec­

trons (and similarly the particulate nature of light, epitomized by the 'photon' 

concept) can only be used in symbolical quantitative reasoning, analogous to the quan­

titative calculations in the Schrödinger formalism itself [cf. (iv)]. It bas no realistic or 

visualizable significance. Therefore even the term 'wave particle duality' (ch. I), with 

its suggestion of symmetry between the two concepts in QM, is, strictly speaking, at 

variance with Bohr's point of view. 

8eohr, op. cit. (1939) p. 237 
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fig. 1 Single slit thought experiment. The box E represents the electron. The un­
certainty relations are applicable to it, maldng joint application of the con­
cepts p and q impossible. This is indicated by a vertical line within the 
box. The box D represents the diaphragm (width B). lt is a measuring 
device fa], so the uncertainty relations are not applicable to it. IJ we apply 
a p meter to it [b] (box M, inaccuracy 6p),. it becomes an object. The 
shading ~) indicates unanalyzability of object-subject interaction. (An­
other type of shading lllll] is used to denote interaction between objects.) 

A first illustration of (i) and (ii) can be given by means of a discussion of an electron 

passing through a diaphragm (single slit) with width B (fig. 1.a). The diaphragm is 

classical, as it is a measuring device [(ii)]: both pand q are definable. The interaction 

with the object, however, is not completely analyzable. The diaphragm is tightly 

bolted to its support. The amount of momentum going into the support is 

indeterminate (beyond h/B). Momentum is not conserved. Therefore the p picture is 

not applicable to the interaction. As a consequence the object's p is not defined 

either; the uncertainty relations are relevant for the object. In fact the momentum is 

"disturbed": even if the initia! object momentum is defined accurately, the indefinite­

ness of the interaction in p picture causes an indeterminacy of the order h/B in the 

output momentum. We see here an operationalistic element in Bohr's philosophy: the 

object properties are defined through their relation to the measuring apparatus, and 

are well-defined as far as the object-subject interaction is well-defined. 

The situation can be improved upon in a number of ways. We can make the slit 

narrower, thus improving the definition of output position at the cost of momentum 
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The double slit fa]: two slits of width a separated by a dista,,ce A. lf we let 
an electron in a monochromatic state impinge on this device, an inter­
ference pattem results that consists of narrow peaks, modulated by a 
wider curve [b]. 

disturbance. Momentum disturbance may be reduced by widening the slit. We may 

also think of a cleverer scheme: measure the diaphragm's momentum before and after 

the passage of the electron and know how much the electron's momentum bas 

changed. Of course there is a catch. In the new situation (fig. l.b) the diaphragm has 

itself become an object. The diaphragm-momentum meter interaction is not fully 

determinate. The smaller the momentum meter's inaccuracy is, the larger the indeter­

minacy in diaphragm position must become. Knowledge of diaphragm momentum 

(giving knowledge about the electron momentum change) can only be obtained at the 

cost of definition of slit position (directly connected to definition of electron output 

position). We see how indivisibility of the object-meter system contextualizes the 

objectivism of the description [cf. (i)). 

Now consider the double slit (fig. 2). Bohr denotes the two most important comple­

mentary pictures by the labels 'space-time coordination' and 'conservation laws'. In 

extreme cases (Bohr focuses mostly on these), either one is fully applicable at the 

cost of the other. In the double slit, however, we have neither. On the one hand the 

slit is firmly fixed to the ground, invalidating momentum conservation. On the other 

hand, we do not know through which slit the particle went, so that we do not have 

complete space-time coordination either. Therefore the description of this experiment 
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A 

The double slit (fig. 2) discussion can be improved by extending the two­
slit device toa "grating", a system 'of slits ofwidth a, with periodA. 

along the lines of Bohr is somewhat more involved than he himself suggests, espe­

cially since he cannot consistently use wave-particle duality [(iii)]. To give an 

adequate discussion of this situation, we shall first extend the double slit to an infinite 

periodical (period A} array of slits (width a) (see fig. 3). We let an electron, 

represented by some quantum state with position width (b.2Q) ("' quality of input 

position definition; we assume (b.2Q) > A), impinge on this "grating". The double 

slit then corresponds to a situation where the state spans only two slits. The 

interference pattem (in p picture) here consists of a number of peaks (width of the 

order 21r1iJ ( Ä 2Q)) separated by a distance 27r1iJA. This set of peaks is modulated by a 

curve of width of the order 27rÎIJa. We can now discern two notions of position: we 

may want to find out where within a period the particle is without caring in which 

period it is ("little position", Q mod A), or we may be interested only in the period in 

which the particle is ("big position", entier[Q/A] ). The former is conjugated to the 

number of the interference peak the particle ends up in ("big momentum", 

entier[PA/27r1't] ), the Jatter to the particle's momentum within a peak, ignoring which 

peak it is in ("little momentum", P mod Î!.127rA). We see that there are in fact two 

different complementarities in the double slit experiment, the first characterized by 

the modulation width of the interference pattem (big momentum indeterminacy, of 

the order 2'1f1iJa) versus slit width (little position indeterminacy, equal to a), the 

second by interference peak width (little momentum indeterminacy, of the order 

2r1iJ(b. 2Q)) versus initia! position width (big position indeterminacy, equal to 

( Ä 2Q) ). In accordance with this, we may attempt to shift the balance of definition in 

either of them. First, we can either make the slits narrower or apply momentum con­

servation (cf. the diaphragm discussion: we may measure p before and after with 

inaccuracy at most of the order 27r1iJa). Second, we can either narrow down the initia! 
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position width (thls corresponds to Bohr's proposal to close one slit) or apply 

momentum conservation (measure p before and after with inaccuracy at most of the 

order 21rlil(.6.2Q) < 21rlilA < 21rlila). The fact that momentum conservation can here 

be used to improve the definition of both big and little momentum is somewhat con­

fusing. Moreover, the rigid connection between support and slit-system does not 

imply full applicability of the space picture, as Bohr sometimes seems to suggest. 

Nevertheless above reasoning shows that the lack of both momentum conservation 

and space-time coordination presents no real problem for complementarity. 

Similarly, on might conceive of the plan to improve the ')'-microscope (ch. l) by 

measuring its momentum before and after the photon was scattered off the electron9• 

Again the uncertainty relations become applicable to the microscope, blurring the 

definition of its position, thus reducing its accuracy. (Further Gedanken experiments 

are discussed in appendix B.) 

It is important to see that the aforementioned four points only reflect complemen­

tarity in its application to QM. As a general methodological principle, it will retain its 

validity when QM has become obsoletelO. Thus Bohr can claim that11 "such argumen­

tation does of course not imply that, in atomie physics [i.e. microphysics], we have 

nothing more to leam as regards experimental evidence and the mathematical tools 

appropriate for its comprehension. In fact it seems likely that the introduction of still 

further abstractions [twice my italics] into the formalism will be required to account 

for the novel features revealed by the exploration of atomie processes of very high 

energy. The decisive point, however, is to recognire that in this connection there is 

no question of reverting to a mode of description which fulfills to higher degree the 

accustomed demands regarding pictorial representation of the relationship between 

cause and effect". According to Bohr, new theories will still be interpreted in 

classical terms [viz. (i) and (ii)], although the classical concepts will become more and 

more restrictedly applicable. Physical theories can be seen as ever more 

9Bohr, op. cit. (1928) 

10Mc.Kinnon, op. cit., p. 119 

uN. Bohr (1958): Philosophy in the Mill-Century (ed. by R. Klibansky, La Nuovo Italia, Florence) 
p. 308 [reprinted on p. 1 of N. Bohr (1963): Essays 1958-1962 on Atomie Physics and Human Know­
ledge (Wiley, NY)]. See p. 2 (quotations from the 1963 reprint). 
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encompassing generalizations of the classical theories (viz. the correspondence 

principle). This illustrates nicely an interesting methodological side to the Bohr­

Einstein debate. It is commonly held that the advent of a new physical theory has for 

the previously reigning ones the consequence that they should now be deduced from 

the new, deeper, theory (foundationalism12). But the "deduction" is not quite trivial 

because the concepts occurring in the old theories generally acquire a different 

meaning when seen from the new theory. So, for instance, 'mass' in relativity theory 

is something quite different from 'mass' in CM. Feyerabend11 speaks of an 

incommensurability. This incommensurability prevents the development of science 

from being seen as a continuous process from a formal methodological point of view. 

For Bohr, however, there is a continuity in the meaning of the fundamental concepts: 

despite the fact that calculations using the old theory are superseded by calculations 

using the new theory, all interpretation of the new theory must take place in terms of 

the old one, in classical terms even. For Bohr no shift in meaning of the concepts 

involved can possibly take place. Bohr's reaction on a proposal by Eddington to 

change the definitions of certain fundamental concepts, characterizes his attitude. 

Bohr finds Eddington's proposal unacceptable because14 "for [a physicist] all these 

ideas already had a practical significance, simple and well-defined". Bohr, contrary to 

e.g. Einstein and von Neumann, is nota foundationalistiii. 

As we saw earlier (ch. I), from a classical point of view the distinction between 

preparation and measurement is not quite obvious. Indeed Bohr was aware of the 

distinction. He considered both "kinds of measurement" necessary for a complete 

specification of the context, fora complete phenomenon (app. B). Nevertheless, he 

does not use a differentiating nomenclature. The word 'determine' can in Bohr's 

papers mean both 'measure' and 'prepare'. The diaphragm is for Bohr just as much a 

measuring device as the '}'-microscope, although in the former case there is no 

12McKinnon, op. cit., p. 118 

13p, Feyerabend (1981): Realism, Rationalism and Scientific Method, vol. 1 (Cambridge University 
Press); p. 4Sff 

14See p. 204 of N. Bohr (1939) [Warsaw Lecture]: New Theories in Physics (International Institute of 
Intellectual Co-<>peration, Paris) p. ll. Cf. Bohr's statement with "Introducing a new theory involves 
[ ... ] changes in the meaning of even the most 'fundamental' terms of the language employed. • 
(Feyerabend, op. cit. , p. 54). 
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pointer and no outcome. Such language is not inconsistent, but it does tend to obscure 

the problems concerning the interpretation of the Heisenberg relation noted in ch. 1. 

Indeed, a naive reading of Bohr (without keeping the just named qualification in 

mind) may well lead to a non-scatter interpretation of the Heisenberg relation (1.6). 

More generally, Bohr's presentation not only makes :the relations 

"(A2Q) (A2P} ~ tli." and "5P 5q ~ l" look plausible, but also "(A2Q) 5P ~ 1" and 

"(A2P) 5q ~ 1" [viz. ch. III]. For Bohr, however, 'the UP' is not so much the 

mathematica! relation (1.6) [or any other mathematical relation] as it .is a conceptual 

statement about the joint applicability of classical pictures. As such it is an integral 

part of the interpretation of QM, rather than of the formalism of QM. The concrete 

relation (1.6) is a consequence of the formalism that merely reflects one aspect of (not 

constitutes) the Bohrian UP. Bohr can consequently not be embarrassed at all by the 

limitations of the Heisenberg inequality15 (1.6). His view on the UP is closely con­

nected to bis general style of interpreting QM (or other non-classica! theories, see 

above). In contrast to e.g. von Neumann and Einstein, Bohr interprets QM not by 

associating elements of reality with elements of the theory. His interpretation is not 

based on properties of the formal mathematica! scheme, but rather on simple quali­

tative considerations only loosely connected to the formalism16. This interpretational 

style is of course the consequence of bis insistence on understanding in terms of 

classica! concepts which precludes a more than instrumentalistic significance for the 

formalism [cf. (iv)], and (more generally) of bis non-foundationalist methodology. 

Thus Bohr cannot really help us with the interpretational problems surrounding the 

UP that were noted inch. 1. We are obliged to use formal calculations to check which 

of the possible forms of the UP can be justified1v. In the following two chapters we 

shall pursue that line of investigation further, before returning to Bohr with the 

insight then gained (eb. V). 

15cr. H. Casimir (1986): in The Lesson of Quantum Theory (ed. by J. de Boer, E. Dal & 0. Ultbeck, 
North Holland, Amsterdam), p. 13. Casimir points out that Bohr never committed himself to the 
particular mathematical form of (I.6). 

16Feyerabend, op. cit., p. 275. See also W. Heisenberg (1967): in Niels Bohr: his life and works as 
seen by his friends and colleagues (ed. by S. Rozental, North Holland, Amsterdam) p. 94; see esp. 
p. 98. 
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NOfES 

Around 1929 there was a brief period where Bohr considered 'reciprocity' to be a more 
appropriate name. See e.g. N. Bohr (1929c) [Planck paper]: Naturwiss. 17, p. 483 and 
p. 277 of N. Bohr (1985): Collected Workr, vol. 6 (ed. by J. Kalckar; North Holland, 
Amsterdam). 

As regards biology, Bohr later [N. Bohr (1960): Address at the International Congress 
of Phannaceutic Sciences in Copenhagen; N. Bohr (1962) [Light and I..ife Revisited]: 
Address at the inauguration of the Institute for Genetics in Cologne; reprinted on p. 17 
and p. 23 of Bohr, op. cit. (1963) respectively] seems to have taken back bis original 
statements as to the complementarity of the integrity of a living organism versus the 
possibility of analyzing its atomie structure (M. Vol'kenshtein (1988): Sov. Phys. 
Usp. 31, p. 140). In view of the developments in molecular biology, Bohr saw that the 
mutual exclusiveness of these two concepts is merely a matter of our experimental 
ingenuity. 

Because von Neumann is a foundationalist, the "derivation" of CM from QM is sensible 
to him. So is the measurement problem. For Bohr, on the other hand, this problem 
does not exist [Bohr, op. cit. (1939) p. 97; Cf. Jammer, op. cit., p. 472 and Hooker 
[C. Hooker (1972): Paradigms and Paradoxes (ed. by R. Colodny, Pittsburgh Univer­
sity Press) p. 67], p. 159 

One can conjecture that Bohr would have found the inaccuracy relation (eb. 111) self­
evident, and that he therefore was not worried by the fact that it had not been derived. 
Nevertheless it cannot be excluded that Bohr himself, using bis extreme skill in obtain­
ing qualitative results using thought experiments [Feyerabend, op. cit., p. 275], could 
indeed have investigated the inaccuracy interpretation and other possible concrete forms 
of the UP separately, to check whether they hold. It seems safer for us to try a forma! 
calculation first, however. 





CHAPTER 111 

The Uncertainty Principle: 
Formal Aspects 
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In the previous chapters we have given a short description of the genesis of the UP 

and its early interpretation, most notably by Bohr. We also saw that the best known 

representative of the principle in the formalism, i.e. the Heisenberg relation, can only 

be interpreted as limiting statistica! scatter. We study the scatter interpretation of the 

UP more closely [§ l]. We shall see that there are many scatter relations, utilizing 

different notions of 'width' of the probability distribution. Some of these relations are 

stronger than the Heisenberg relation. 

Bohr, however, talked about the 'uncertainty principle' in a much wider sense. Un­

fortunately, he did not rigorously derive any non-scatter inequalities. From his point 

of view such a derivation was probably spurious. Since a formal justification seems 

nevertheless interesting, we shall study one possible non-scatter application of the 

UP: joint measurement of incompatible observables [§ 2]. Indeed we will be able to 

rigorously derive an inaccuracy inequality for such joint measurements, thus proving 

an inaccuracy interpretation of the UP. 

Finally, the relations between the scatter and the inaccuracy interpretation are studied 

[§ 3]: they are found to be quite independent. This justifies the names 'scatter prin­
ciple' and 'inaccuracy principle'. As other interpretations of the UP can be seen to be 

consequences of either of these two principles [ch. IV], we can speak of a dichotomie 

UP. 

1 THE SCATI'ER PRINCIPLE 

The scatter principle is the notion that statistica! dispersions of probability distri­

butions of measurement outcomes of incompatible observables (self-a.djoint operators) 

on similarly prepared systems, cannot both be arbitrarily small. Concrete lower 

bounds for the scatter principle are given by scatter relations. The triost popular of 

these are of course the Heisenberg relation 
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and the Robertson relation 

(2) v, =Ei wd•h) {?il {Ll
2
A) (Ll

2
B) ~ tlt w1{(A"11IBt/li)-(B'l{ldA'l{l1)}1

2 

(w1I ?j) = "1j 

The scatter principle is the best known expression of the UP and, until recently, the 

only one formally justifiable. Por this reason it is perhaps surprising that there are no 

standard Gedanken experiments connected with it (although the diaphragm is related 

[ch. IV]). Still, an informal illustration of ,e.g., ineq. (1) is not difficult to find. Note 

first that the quantum state (density operator) can be thought of as an abstract repre­

sentation of a source of quantum systems. A beam of non-:interacting particles emer­

ging from such a preparator can be used as a suitable "ensemble" for testing probabi­

listic predictions. For such a beam of particles of known energy, the Heisenberg rela­

tion (1) relates minimum diameter to divergence: it is impossible to construct the 

source such that we get a beam that is arbitrarily narrow if its divergence must not to 

exceed a certain limit. The quantities (Ll2Q) and (Ll2P) can be seen as a character­

ization of the quality of the preparator: they are associated with width and divergence 

of a particle beam, respectively. In that sense, they are properties of the particle 

source (preparator). Relation (1) clearly is of interest to builders of cyclotrons and 

the like, rather than to manufacturers of particle detectors. We conclude that scatter 

inequalities limit preparation possibilities. 

1. 1 Non-standard Scatter Relations 

Relations (1) and (2) are not the only scatter relations available. There are many 

others1• That is fortunate because (2) is not suitable for all cases. For example, for 

discrete spectra, such as occur on finite dimensional Hilbert spaces, the Robertson 

1See for a review for instance V. Dodonov & V. Man'ko (1989): lnvariants and the Evolution of 
Nonstationary Quantum Systems (ed. by M. Markov, Nova Science Publisbers, Commack, NY), p. 3 
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inequality (2) is quite useless2, even if the unsatisfactory nature of variances3 is 

ignored (but cf. the remarks conceming single and double slit experiments further 

below). Consider the spin i case, where A = u
1

; B = u3 (Pauli operators). Then 

one would expect a meaningful scatter relation to assert at least that, if the state 

vector is such that u
1 

is sharp, u
3 

is completely undetermined. Instead, (2) gives in 

this case no bound for the scatter in u
3 

at all. More generally, the bound in (2) 

becomes trivial for any state for which the sesquilinear form on the right hand side is 

zero. 

The recently derived Maassen-Uffink relation4 (actually it is one of a whole class of 

scatter relations derived by them) is an entropie scatter relation for the finite dimen­

sional case /Il= en without such drawbacks: 

(3) Hj.P] + HylP] ?: -log(F) . 

Here X and Y are self-adjoint operators associated with the orthonormal bases ( 1 xk) )K 

and (lyk))K on .N, respectively: 

and: 

Hj.P] := -EiceK {xklplxk) log {xklplxk) 

F := m~.k'EK 1{xklyk,)12 . 

An entropie scatter relation also exists for the position-momentum case5: 

(4) HpJ + Hfi.P] ?: log(e1r) 

2E. Beltrametti & G. Casinelli (1981): The Logic of Quantum Mechanics (Addison-Wesley, Reading, 
Mass.). § 3.4 

3J. Uffink (1990): Measures of Uncertainty and the Uncertainty Principle (PhD Thesis, University of 
Utrecht, Netherlands), unpublished; J. Uffink & J. Hilgevoord (1985): Found. Phys. 15, p. 925 

4H. Maassen & J. Uffink (1988): Phys. Rev. Lett. 60, p. 1103 

5w. Beckner (1975): Ann. Math. 102, p. 159; M-n & Uffink, op. cit. 
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with: 

H,i.P] := - f dp (plplp) log (plplp) 

(analogously for Q). 

Scatter relations of a different kind result from the application of the inequality6 

(5) arccos(f<A>] + arccos(J<B>] ~ arccos(J llABll) , 

which holds for any two projectors A and B, to two PVMs. We can, for example, 
apply (5) to the position-momentum case 

(6) 
Po+tDp 

À := J lp)(pl dp 

qo+tDq 

, B := J 1 q) (ql dq 

Po-tDp qo-!Dq 

There we have 7 

(/) !IABll = À(t Dq Dp) 

with 

>.(x) = 2: (Röó>(x,1)J2 (RöJ> isaprolateradialwavefunction). 

Thus relations (5) and (7) give rise to the Slepian-Landau-Pollak (SLP) inequality for 
position and momentum8: 

(8) 

r 0 if a + {j :S 0 

\ 4>. ·l ( [tJ (l+a)( 1+,8) - d (l-a)(t-,8) J2) 

6H. Landau & H. Pollak (1961): Bell Syst. Techn. J. 40, p. 63 

7D. Slepian & H. Pollak (1961): Bel/ Syst. Techn. J. 40, p. 43 

otherwise. 

8Ineq. (8) implies the "support property• [P. Busch & P. Lahti (1985): Phil. Sc. 52, p. 64]; see 
Uffink, op. cit .. 
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The overall width Wis defined as 

The scatter relation (8) can be used for a discussion of the single slit thought experi­

ment. We assume the particle's initial state to be monochromatic, and further assume 

that the slit acts as a perfect filter. The particle's state 1 q,} r< q, 1 after the slit is then 

if -tA ~ iA 

otherwise. 

In this situation wQ,1[14»r<<Pll = A and W,,.Cl<P}f(q,IJ = 0(11'/A), as is easily veri­

fied9. Note that the standard Heisenberg relation is completely irrelevant for this case 

because ( 6. 2 P) does not exist for the state 1 </>) r< t,b I · 

Define also the the fine structure wi.dth of the position probability distribution: 

It can be shown 10 that: 

with: 

C(a,/1) 

9uffink & Hilgevoord, op. cit. 

~ 
4 arccosv f+ii 

10J. Hilgevoord & J. Uffink (1988): in Proceedings of the International Co'lference on Microphysical 
Reality and Quantum Description, Urbino, ltaly (ed. by F. Selleri, A. van der Merwe & G. Tarozzi, 
Reide!, Dordrecht), p. 91; Uffink & Hilgevoord, op. cit .. 
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Just as (8) was needed for the diaphragm, the scatter relation (11) is useful fora dis­

cussion of certain aspects of the double slit Gedanken experiments11 [cf. also § IV. l]. 

Consider again a monochromatic state impinging on the device of fig. Il.l (A > a). 

Then 12, on the one hand 

on the other 

Note that, again, the standard Heisenberg inequality is wholly unsuitable to exhibit 

either of these reciprocities. 

Based on the fine structure width concept, we can easily derive a further scatter 

relation. Define first the interior width of the Fourier transform of the momentum 

probability distribution: 

(lOb) wF [p] : = min{ 1 OI 11 Jm {pi plp)exp(iOp) dpi ~ o.2} • 
P,a -m 

Now, the quantity l/~ can be used as a measure for momentum scatter. The use of 

such a scatter measure may appear somewhat strange at first sight, but this use of 

parameters of the Fourier-transform of the momentum probability distribution is not 

uncommon, e.g. for angle variables13• Thus, the relation 

(12) WQ [p] ~ WPF [p] ' ,a: ,a 

which is particularly easy to derive for pure states, is in fact a scatter relation ! 

11HiJgevoord & Uffink, op. cit. 

12uffink & Hilgevoord, op. cit. 

13 A. Holevo (1982): Probabilistic and Statistîcal Aspects of Quantum Theory (North Holland, 
Amsterdam); J.-M. Levy-Leblond (1976): Ann. qf Phys. 101, p. 319 
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The different scatter relations we have just presented are interrelated. The entropie 

inequality (4) is conceptually stronger than (1), as we have14 

(13) exp[2 Hp(p)] ~ (t:: • .2P} 27re . 

The SLP inequality (8) is also conceptually stronger than (1): application of 

Chebyshev's inequality to (8) leads to (1), though with a non-optima! bound. In a 

similar vein, the relation (11) is stronger than (8) in the sense that (8) can be derived 

from (11) using theory independent mathematics (we have15 w Q,a ~ W Q,.B if 
(1-a)2 + <t+i,8)2 ~ 1; the lower bound is again not optimal). But, reasoning along 

these lines, (12) is even stronger than (11), as in fact the theory-independent relation 

(14) 

derivable along similar lines as (11), can be used to establish (12~(11). 

1.2 Shift-scatter Relations 

Consider the case where (at least) one of the self-adjoint operators involved in a 

scatter relation can be related to the group action generated by the other. In the 

position-momentum case, for example, the unitary operator exp(iOP) induces a posi­

tion shift. Theo we can derive relations, which cannot properly be called 'scatter 

relations', but are nevertheless closely connected to the scatter principle. Define 

(15) wq}l<P}(<PIJ := min{IOI l 1_
11

/m(q+Ol<P)(<Plq) dql ~ a 2} 

(0 ~ Cl ~ 1). 

14see e.g. Maasmin & Uffink, op. cit.; Uffink, op. cit .. 

15Uffink & Hilgevoord, op. cit. 
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It can be shown16 that, analogously to (11) and (14): 

Relation (16) links an overall width W to a quantity w. The meaning of the Jatter is 

not immediately clear. At first, it may be thought to represent some kind of fine 

structure width for the position probability distribution, perhaps analogously to (lOa). 

That it faits to do this is apparent if one considers the following example: 

For the state 1 w)( 'ifll , the position fine structure w bas a characteristic size a
2

, 

independent of a
1
. On the other hand, w q ~ tJ(a

1
) , which is not related to the 

position distribution at all. 

In order to give a proper interpretation to w, we first define a family of position­

shifted versions of one state p: 

(18) {p8}1R ; p8 = SifJ'J p S!i<fJ'J , pa density operator. 

Here S is the position shift operator, defined by q 

(19) 
m 

S (tl) :=. J lq)(q+81 dq = exp(i81' 
q -1J) 

We next look for a quantity that characterizes the distinguishability of these states, 

that characterizes the quality with which measurements on a member of this family 

allow an estimation17 of the shift parameter 8. Suppose we have a PVM c = 
{E(d17)}H = {E(17)d17}H. Define as a number characterizing the quality with which a 

measurement of this PVM discernsts different values of 8: 

16Uffink & Hilgevoord, op. cit. 

17c. Helstrom (1976): Quantum De1eaion and Estimation 'Iheory; Academie, NY; Holevo, op. cit .• 

1Bw. Wootters (1979): Phys. Rev. D 19, p. 473 
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Then we redefine w as a measure of the distinguishability of the shifted states, a q 
translation width: 

(10c) w [p] : = inf ... (tp [e]] . 
q,a "' ,a 

This is consistent with (15), as it can be shown that 

with equality for pure states19• 

This new w is related to the ones of the previous sub-section: 

(22a) 

(22b) 

w [p~>w [p~ · 
Q,a J - q,a J ' 

Por pure states these relations are trivial to derive [using (21)]. Relation (22a), per­

haps despite appearances, is theory independent (like (13) and (14)), because it fol­

lows from the reasoning 

(23) w [p] = inr ... (tp [e]) ~ lp [q] = wQ [p] . q,a "' ,o ,o ,o 

(Here q denotes the position PVM {lq)(qldq}IR .) Thus, we have (22b)~(16~(11) 

and (22b~(l2). Relations of the type (22b) and (16) are, strictly speaking, not scat­

ter relations because w is not a measure of statistical scatter. They may be called 

shift-scatter relations. They also present limits to preparation possibilities. Therefore, 

and because shift-scatter relations are conceptually so strongly related to scatter rela­

tions (see also above chain of derivations), we will also group them under the heading 

'scatter principle'. 

Shift-scatter relations can also be derived for cases where there is no PVM covariant 

with respect to the shifts involved. An example that immediately comes to mind is the 

time-energy case, where the Hamiltonian operator generates time-evolution 

191. Uffink & J. Hilgevoord (1988): Physica B 1S1, p. 309 
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(time-shift) without there being a time-PVM. For that case an analog of the shift­

scatter relation (22b) is straightforwardly derived, as it is quite similar to another, 

more usual, energy-time "uncertainty relation": the Mandel'shtam-Tamm relation2° 

(24) 

where H is the Hamiltonian operator and 

r : = inf 1 ( Li 
2
A(t)};1 , Ais any self-adjoint operator. 

A 1 o(Au>}1ot 

Relation (24) can, of course, also be formulated for the position-momentum case 

using position-shifts instead of time-shifts21• In w we used the distinguishability 

measure 1 between the c probability distributions of two shifted states as a starting 

point. In (24) we have taken the difference of the A expectation values in thesè two 

states as basic. Since (24) holds for all tand A, 

where 

r := inf inf 1 {Li2A(t)} t 1 . 

A 1 o(A<n)1a1 

In case of a pure state p = jip) ( ipj, optima! distinguishability is effected by measu­

ring22 A = 1 <p ){ cp 1. In that case, as is not difficult to show, 

(25) r = r = inf l&rcsin(2(A(t)}-1)1-1 ~ iw /arccos(ci) 
jip) (epi t ot t,a 

(where w is defined analogously to w in (15)). 
t,a q,a 

20L. Mandel'shtam & I. Tamm (1945): Bull. Acad. Sci. USSR, Phys. Ser. 9, p. 249; Holevo, op. cit .• 

21Holevo, op. dt., p. 105; J. Hilgevoord & J. Uffink (1989): in Sixty-two years of Uncertainty: 
Historica/ Philosophical and Physical lnquiries into the Foundations of Quantum Mechanics (ed. by 
A. Miller, Plenum, NY), p. 121 

22Uffink & Hilgevoord, op. cit. 
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2 THE INACCURACY PRINCIPLE 

As we saw, one of the possible forms of the UP is associated with the joint measura­

bility of incompatible observables. This issue has been much debated: because rela­

tion (2) is itself not directly applicable to this situation (as we have seen), the 

inaccuracy interpretation, although frequently suggested23, is dubious. Discussion 

centers around two questions: are incompatible observables jointly measurable at all 

and, if so, is there a relation (typographically) similar to Robertson's relation (2) 

restricting the accuracy of joint measurements? An answer to these questions is of 

some interest because in such measurements (if possible at all) one might hope to find 

typically quantum mechanica! inaccuracies limiting the possibilities of (future) high­

precision measurement devices. We shall first tackle the problem within the 

von Neumann-Dirac formalism. In accord with the conclusion of eb. I, we find that 

formalism to be inadequate, and we give a more general one, due to Davies and 

Ludwig, with which we can work (see app. A). A widely used approach to the joint 

measurement problem in this generalized frame is based on reproduction of expec­

tation values. It is examined in § 2.1, and found unsatisfactory because of its very 

weak 'measurement' notion. We then proceed to present our altemative, and investi­

gate its properties [§ 2.2 to § 2.4]. Joint measurement is also feasible in the latter 

approach, although limited by an inaccuracy inequality [§ 2.5]. Examples are given in 

§ 2.6, after which the results are evaluated [§ 2.7]. 

If we study existing approaches to the joint measurement issue, we see that a major 

problem in the discussion is the divergence of opinions about the meaning of the 

words 'joint', 'measurement' and 'accuracy'. It is clear that the answers to the 

relevant questions depend to a large extent on the content of these words. The propo­

sal by von Neumann for a joint measurement interpretation of the scatter principle, 

which we discussed in ch. I, illustrates this. In this proposal 'measurement' was 

23J. Jauch (1968): Foundarions of Quantum Mechanics (Addison-Wesley, Reading, Mass.), p. 162; M. 
Jammer (1974): The Philosophy of Quantum Mechanics (Wiley, NY), p. 81; D. Bohm (1951): 
Quantum Theory (Prentice-Hall, Englewood Cliffs (NJ)), p. 99; A. Boehm (1979): Quantum 
Mechanics (Springer, Berlin), p. 46; R. Feynman, R. Leighton & M. Sands (1965): Feynman lectures 
on physics, vol. 3 (Addison-Wesley, Reading, Mass.), p. I-11 
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reinterpreted unsatisfactorily. Another is due to Park & Margenau24• They present 

several procedures intended to measure position and momentum jointly. A typical 

example is the 'time of flight' method. Here we have a one-dimensional situation, and 

a particle that is (to begin with) in a state concentrated in a small region llq. We let 

this particle evolve freely for a long time T. Then we measure its position q, and 

attribute to the particle a momentum p = mq!T. Intuitively it is clear that there is no 

"jointness" in this measurement in any physically meaningful sense. It works because 

the preparation procedure (state concentrated in small region + long lasting free evo­

lution) creates a state p where the position distribution (qlplq) is equal to the 

momentum distribution {plplp) (up toa scale transformation, and in arbitrarily good 

approximation)25• Therefore this algorithm is very restrictedly applicable. Moreover, 

due to the fact that the class of p's achievable by the 'time of flight' method is so 

narrow that within this class no variations in "correlation" occur, the "joint" distri­

bution is completely determined by its marginals. The other procedures given by Park 

and Margenau have similar bad properties, so that their conclusions as regards the 

possibility of joint accurate measurement are unfounded26• 

Very strong demands on 'measurement' lead other authors27 to take the other extreme 

point of view, to conclude that joint measurements of incompatible observables are 

entirely impossible. The von Neumann-Dirac formalism, as has been realized for 

some time, was devised to cope only with idealized measurement devices [ch. I]. 

Accordingly, the impossibility conclusion is unavoidable within the von Neumann­

Dirac formalism. But, more generally, this conclusion can only be obtained by ignor­

ing or underestimating the possibility of allowing non-ideality in the measurement (as 

the results in the following sections will show). 

241. Park & H. Margenau (1968): Int. J. Theor. Phys. l, p. 211; J. Park, W. Band & 
W. Yourgrau (1980): Ann. der Phys. 31, p. 189 

25Park, Band & Y ourgrau, op. cit. 

26nie Park & Margenau proposal was already criticized by de Muynck et al [W. de Muynck, 
P. Janssen & A. Santman (1979): Found. Phys. 9, p. 71]. 

27P. Suppes (1961): PhiL of Sc. 28, p. 378; E. McMullin (1954): The Principle of Uncertainty (PhD 
Thesis, Catholic University of Louvain, Belgium), unpublished. 
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If one analyzes a concrete measurement setup quantum mechanically, one generally 

sees that the outcome probabilities are not produced by a PVM at alL The choice for 

self-adjoint operators (or PVMs) as representatives of "perfect" observables that is 

made in the von Neumann-Dirac formalism is also somewhat unsatisfactory, because 

it amounts to limiting oneself by postulare to a class of observables tl)at are, in some 

"self-evident" sense, "optima!" [ch. I]. Therefore this formalism, although it still bas 

some authority among physicists, is losing ground in its approach to measurement in 

favor of more modern developments, which generalize it. Within suc~ a wider frame, 

it is possible to take a better approach, in which a class of "optima!" measurements is 

selected from the class of all measurements by using operational arguments. Then we 

can be sure that the limitation to "optima!" observables is possible without loss of 

generality. 

The most elementary measurements are yes-no measurements, conventionally repre­

sented by projectors28• We first generalize the representation of the determinative 
aspect of these yes-no measurements to effects29• An effect is a self-adjoint operator M 

satisfying 

(27) 05M51. 

The probability of obtaining the result 'yes' is then given by (At) = Tr(p M) . An 

effect corresponds to a generalized yes-no measurement: we no longer require 

A(J. = M . In this chapter we shall not go into the preparative aspects of measurement 

(i.e. into the question of what happens to the object system after the measurement) 

since these are not crucial to the definition of measurement as such [ch. I]. Hence 

issues concerning, e.g., 'measurement of the first kind' will not be treated here [hut 

see ch. IV]. 

Busch and Lahti30 base a joint measurement theory on the effect notion. They argue 

that the thesis that quantum mechanics admits arbitrarily accurate joint measurements 

of incompatible observables can be substantiated if only 'measurement' is given a 

28Jauch, op. cit. 

29K. Kraus (1983): State8, Effects and Operations (Lecture Notes in Physics 190, Springer, Berlin) 

30p, Busch & P. Lahti (1984): Phys. Rev. D 29, p. 1634 
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suitable content. The proposal depends on an interpretation of the natura! partial 

ordering on the set of eff ects. If M $ N, they claim this means that a procedure 

realizing the effect M "gives information" about N. A joint measurement of two 

effects M and N should therefore realize an effect 0 # 0, 0 $ M, 0 $ N. That this 

interpretation leads to difficulties31 is clear from the following exarnp1e: 

Let M = t 1 ; N = t 1 + -f O ; 0 an arbitrary effect. Then obviously 

M $ N, so that a realization of M "gives information" about N. But the 

probability of a positive result of an M realization does not depend on the 

state of the object system, so that such a procedure gives no information 

at all, let alone information about N. 

These difficulties surface in a description of joint measurement along the lines of 

Busch & Lahti. Consider the following case: 

We have two effects M = aE + (l-a)E and N = bF + (1-b)F 

(0 $ a $ b $ -f). Here {E,E} and {F,F} are two non-degenerate PVMs (i.e. 

PVMs consisting of one-dimensional projectors) on r:N = C2• In their ter­

minology Mand Nare fuuy versions of {E,E} and {F,F}, respectively 

[cf. § 2.2]. Then it can be seen that the greatest lower bound of Mand N 

is equal to 

0 = al + 2<b-a)(l-b-a)Ë 
(1-2a) 

Obviously 0 # 0 for arbitrary small a,b > 0, for arbitrarily small fuzzi­

ness. But 0 tells us no more about the N probabilities than did M (or 

{E,E} itself). Thus a measurement based on 0 can be bad, even though 

the fuzziness in Mand Nis very small. 

Hence calling an M-realization an N-measurement if only M $ N seems to imply an 

unreasonably weak definition of 'measurement'. 

31cf. E. Davies & J. Lewis (1969): Comm. Math. Phys. 17, p. 239 
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More general measurements involve scales consisting of more than two elements. 

Such a measurement is in the general framework32 represented by an effect-valued 
measure (EVM; also known as a positive operator-valued measure) rather than by a 

PVM. Thus, an EVM m is (for a discrete outcome set K) a family of bounded linear 

operators {Mk}K satisfying the relations (cf. (1.4)): 

(28a) vkEK ~ ~ o 

(28b) E.ceK Mk = 1 

If the object system is in a state represented by the density operator p, an m­
measurement will yield outcome k with probability Tr(p Mk). Of course probabilities 

are positive [(29a)] and normalized [(28b)]. 

The use of this extra sophistication is necessitated by the fact that a restriction to yes­

no observables is not possible without loss of generality, because the structure of the 

set of effects ("' binary EVMs) is much simpler than that of the EVMs [§ 2.2]. Text­

book observables [ch. I], referred to as simpte observables in the following, fit into 

the EVM-framework as special cases: any PVM is an EVM. 

Define further: 

DEF1NITION 1 

(30) 

.-
There exists an EVM o = {Okt}K"L such that 

Jo< 1) = m 

l o< 2> = n 

32Helstrom, op. cit.; Holevo, op. cit.; E. Davies (1976): Quantum Theory of Open Systems 
(Academie, NY); E. Davies & J. Lewis, op. cit.; G. Ludwig (1983): Foundations of Quantum 
Mechanics, vol I (Springer, Berlin) 
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where the marginal EVMs are defined by: 

(31) 
{ 

0111 = {L o } 
lEL ki K 

oC 2) = {~EK Okl}L . 

The EVM o in def. 1 is said to represent ajoint (ideal) measurement of mand n. 

Two observables are termed compatible whenever their EVMs are coexistent33. As is 

well-known, in quantum mechanics not all observables are compatible. Our definition 

of compatibility coincides with the usual one for simple observables, as the following 

theorem shows: 

'IllEOREM 1 If two EVMs mand n (as in def. 1) satisfy VkEK,lEL [Mk,N~- = 0 
they are coexistent. If they are PVMs the converse is also true. 

The second part of th. 1 is well knownH. The first part is proved by the explicit 

construction of the EVM o = {Okl}KxL; Okt:= Mk Nl · 
We end this section with an important theorem in the theory of EVMs, due to 

Naimark (for the proof of which see e.g. the book by Holevo35): 

'IllEOREM2 

(33) 

For every EVM {MJK on dl there is a Hilbert space dl', a den­

sity operator p' on K and a PVM {.e.:}K on dl• K such that: 

33Holevo, op. cit., § II.6 

a4Holevo, op. cit" prop. Il.6.1; W. de Muynck & J. van den Eijnde (1984): Found. Phys. 14, p. 111 

35ffolevo, op. cit., § II.5; Helstrom, op. cit., § III.3. See also App. A. 
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2.1 Bxpectation-value Based Approaches 

In the followiitg we shall study the possibilities of joint measurement of incompatible 

simple observables. Therefore the condition (30) of correct marginals, which forbids 

such joint measurements, has to be dropped. Nevertheless, some connection between 

the marginals of the joint EVM and the PVMs to be measured jointly must exist, in 

order to warrant the interpretation of the measurement result as "inaccurate" results 

of simple observables. Perhaps the first such criterion to come to mind is unbiased­
ness. Consider the joint "inaccurate" measurement of the EVMs corresponding to the 

self-adjoint operators R and T. Then we weaken (30) into demanding that the margi­

nals only yield the correct expectation value (instead of the correct probability distri­

bution): 

1 
E.ceK r:lEL k okl = R 

(32) 

E.ceK r:lEL l okl = T 

The expectation-value criterion (32) has been wiáely used. In, e.g., de Muynck et al. 36 

it was required that the joint measurement procedure should satisfy (32) using the 

original outcome sets (i.e. spectra). Analogous requirements were urged by Busch37 

and by Schroeck38• In this section we shall discuss the results obtained within such.an 

expectation-value based approach in more detail. 

Naimark's theorem leads us to consider a model for "inaccurate" measurement con­

sisting of two quantum systems, an object and an ancillary system. They correspond 

to the Hilbert spaces Jlï' and dl, respectively. Ancilla observables are primed; 

composite system observables are denoted by double primes. Consider the situation 

where we want to measure an object observable represented by Rel' . We let ancilla 

38de Muynck, Janssen & Santman (1979); W. de Muynck & J. Koelman (1983): Phys. Lett. A 98, 
p. l; P. Kruszynski & W. de Muynck (1987): J. Math. Phys. 28, p. 1761 

37p, Busch (1985): Int. J. Theor. Phys. 24, p. 63 

38F. Schroeck (1982): Found. Phys. 12, p. 825 
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and object interact for a time r. The joint state of object and ancilla (on die R) just 
prior to the beginning of the measurement is given by: 

(34) 1 = fJ'iJP' • 

Here p' is the initia! state of the ancilla. After the interaction is completed an ancilla 
observable A~ ("read-out observable") is measured39 , which in the Heisenberg picture 
can be written as: 

(35) A~(r) := Rel' + Gi 

The operator G~ represents the deviations of the measurement results from the "true" 
values. It represents noise. At first sight, it seems natural to assume. the operator G~ 
to be an observable of the ancilla: 

(36) Gi = l•G~ . 

As said above, the A~-measurement is intended as an "inaccurate" measurement of R. 

Therefore we require, as in (32), unbiasedness: 

(37) V, Tr[pf/Jp' Air)] = Tr[p R] 

V, Tr[P8p'~G~ = 0 . 

This can, using (36), be rewritten as a condition for p' , viz. 

(38) Tr(p' G~ = 0 . 

The outcome probability distribution of the measurement is given by 

(39) PAi. (T)(dr') = Tr[P8p' EAi. (T)(ar'}] , 

{EA.'. (rldr')} denoting the PVM of A~(r). We can rewrite (39) by partial tracing 
over the ancillary variables, viz. 

(39') 

39 Altematively, the model may involve a measuring device interacting with both ancilla and object. 
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with: 

(40) 

The EVM {MA.'. (r)(dr')} forms a representation, alternative to A~(r), of this noisy 

measurement [cf. th. 2]. 

From (37) it follows directly40 that the "inaccuracy" of the measurement leads to 

excess scatter in measurement results, as is evidenced by an increased variance: 

Tuis accounts for an excess spreading obtained already by Arthurs and Kelly41 in a 

model joint measurement of position and momentum. 

Moreover, (35) and (36) imply that the final A~ outcome distribution can be derived 

from the R outcome distribution by convolution with the G~ -distribution: 

w 

(42) VP PA.'. (r)(lir') = f Pidr) g (lir' ,r) 
-11) 

with: 

(43) g(dr' ,r) = g(r' - r)dr' = p oi. (r' - r) dr' 

(P's denote probabilities, p's probability densities.) Using (40), we may equivalently 

write 

(42') 

lll 

f Eidr) g (lir1 ,r) 
-11) 

40de Muynck & Koelman, op. cit.; Kruszynski & de Muynck, op. cit .• 

41E. Arthurs & J. Kelly (1965): Bell Syst. Teclm. J. 44, p. 725; C. She & H. Heffner (1966): Phys. 
Rev. 152, p. 1103 
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The function g in (42) and (42') characterizes the "smearing" in the final A~­

distribution with respect to R . The function g is the G~ probability distribution, and 

therefore a property of the measuring device (i.e. the ancilla) alone. The function g 
depends only on p' , not on the initial objeèt state p • Thus condition (36) defines 

object-independent noise. 

The approach (35)-{37) can be used as a starting point for a joint measurement of two 

observables42 represented by the non-commuting Hermitian operators R and T. The 

aim is then to find two noise operators G~ and G~on Jr' such that A~(T) = R + Gi 

and At r) = T + G~ commute. Next, a non-trivial lower bound to the amounts of 

excess noise, as defined by (41), is to be derived. But this approach faces one major 

handicap43• Since 

(44) [Ä~(T) , Áf T)]_ = 0 

~ 
[R ,TJ_el' + l•[G~, G~- = 0 , 

relation (44) can only be valid if [R, 1J_ = iel , c a constant. This is only the case 

for position-momentum like pairs. For such pairs44, as follows immediately from 

equations (44), (41) and the Heisenberg inequality (1) for the noise operators, the 

excess variances are bounded by 

42c. Helstrom (1974): Found. Phys. 4, p. 453; S. Personick (1971): Bell Syst. Techn. J. 50, p. 213; 
also E. Davies (1970): J. Funct. AnaL 6, p. 318 and Helstrom, op. cil. (1976); Davies, op. cit. 
(1976); Holevo, op. cit .. 

43cf. H. Yuen (1982): Phys. Lett. A 91, p. 101 

"'Helstrom, op. cit. (1976); S. Personick, op. cil.; Holevo, op. cil. {1982); A. Holevo {1986): 'lheor. 
(J Matk. Phys. 65, p. 1250 
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If we want to generalize (45), we must first find a less restrictive characterization of 

'noisy' measurements. The set of conditions additivity (35), object-independence (36) 

and unbiasedness (37), which formed that characteriz.ation, bas to be weakened. We 

saw above that there exist two ways of viewing the noise in the formalism treated 

thus far. Considering object-independence (36) as primary, the smearing (42) descri­

bed the noise. On the other hand, from the point of view of unbiasedness (37), the 

excess noise (41) formed such a description. Thus, depending on one's attitude to­

wards 'measurement', different possibilities of generalizing (45). If a measurement is 

characterized by its expectation value, indeed often an important result, (36) should 

be dropped as a general requirement. Arthurs & Goodman45, working along these 

lines, generalized (45) to 

Yuen46 also intends to generalize inequality (45) using an expectation-value based 

approach. He starts from a particular joint measurement POVM for position and 

momentum, viz. 

(47) MP'&r;t(dp*,dq•) = la)(ald;a ; a = t./i(q• +ip") . 

Here 1 a) are the harmonie oscillator coherent states. They are the eigenstates of the 

(non-Hermitian) annihilation operator a = t./i(Q +iP) . As indicated by (47), these 

states satisfy a closure relation. But they are not orthogonal. The set of states { 1 a)} 
is overcomplete: every vector can be expanded in 101.) 's in many ways. The non­

negative definite and normalized distribution (alpla)/r is called the Husimi or 

Q-distribution47• The EVM (47) that generates the Husimi distribution results from the 

joint PVM of p• = P + P = A~(r) and Q• = Q-Q' = AiJ(r) on Jle,N' by 

taking p' = IO)(OI (the harmonie oscillator ground state). 

45E. Arthurs & M. Goodman (1988): Phys. Rev. Lelt. fiO, p. 2447 
46Yuen, op. cit. 

47K. Husimi (1940): Proc. Phys. Math. Soc. Japan 22, p. 264; M. Hillery, R. O'Connell, M. Scully 
& E. Wigner (1984): Phys. Rep. 106, p. 123 
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Yuen then proposes to generalize this by looking for a POVM generated by the eigen­

states of the operator B == R +iT . But note that the joint PVM of Q • and P • on 

Jr• K has two arguments, reflecting the fact that in a joint measurement every 

measurement outcome consists of two numbers. Consequently, if the POVM on .Nis 

to be derived from a set of states, this set must be bivariate. It is unclear to what 

extent the operator B can have a bivariate set of eigenstates if R and T are not posi­

tion and momentum operators. This makes it doubtful whether the generalization 

Yuen achieves in this way is indeed substantial. 

But even in the Arthurs & Goodman version, the expectation-value based approach 

has a number of serious drawbacks. Noise processes will in general violate eq. (37). 

If they do, it may appear that this can be remedied by simply subtracting the bias 

from the measurement result. But by dropping (36), the noise operators are allowed 

to act on the full product Hilbert space. Therefore the bias is generally nota constant: 

it may differ for different initial object states p . Then bias subtraction is impossible. 

Thus, from a physical point of view, unbiasedness constitutes a substantial ideali­

zation. 

Moreover, also the excess variance ( A 2a;) and, more generally, the connection 

between R and A~( r) probability distributions, will now in general depend on p. 

Consider as an example a two-dimensional particle, with position operators Q
1 

and 

C1:z • In order to measure Q
1 

, we couple it with an ancilla such that 

A~1(r) = Q1el' + C1:z•Y' , 

for some ancilla operator Y 1
• The ancilla state p' is such that Tr(p' Y ') == 0. Then 

the measurement is indeed unbiased with respect to Q
1 

• But it is clear that the differ­

ence between measurement outcome and true value, the noise, will also depend on p 

through C1:z' s presence in Q~ ( r): G~1 = C1:z ~ '. As the example shows, the excess 

variance ( A 2G") is an inaccuracy characterization that, contrary to common practice, 

cannot be seen as a property of the measurement device. In the excess variance 

bound (46), the fact that the noise now in general depends on p, results in a bound 

that depends on p , too (unless of course [R , Tl_"' 1; cf. (45)). 
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Consider as an example illustrating these approaches the spint case of u
1 

and u
2

• 

Yuen's method is not applicable here: u
1 
+ iu

2 
has only one eigenstate, instead of 

the four we need. The unbiasedness condition (32) can therefore certainly not be met. 

Arthurs & Goodman's approach is applicable, and leads to the inequality 

(48) (<a2A~1<.,.))-{82u1)) (<a2A~t))-(82u2)) ~ tl{o-3}1 2 

As a consequence of the possible dependence of the noise on the initial object state p, 

the bound in above inequality also depends on p: for certain object states it can even 

be zero. Therefore the above inequality cannot be interpreted as a (non-trivial) limit 

to the accuracy with which u
1 

and u
2 

are jointly measurable. 

Thus the notion of inaccuracy as purely a property of the measuring instrument has to 

be abandoned on behalf of general applicability within an expectation-value based 

approach. lts reliance on the labeling of the measurement scale farms a second draw­

back. The outcome set of the POVM ("'spectrum of the self-adjoint operator on the 

product Hilbert space), which contains this labeling, is merely a matter of con­

venience48, however. Nothing physical in the measurement device is changed if we 

alter its scale. Therefore an acceptable 'inaccuracy' notion should be insensitive to 

the labeling of the observable measured. A third disadvantage of this approach is that 

the expectation value is not always the only parameter of a probability distribution we 

are interested in. In dropping (36) we, however, in general cut ourselves off from 

obtaining more information about the R-distribution. Por this reason we now want to 

consider a different way of generalizing the notion of inaccurate measurement. First 

note that relation (42) is invertible (for suitable G~-distribution). We may write this 

according toi 

(Il 

(49) VP P i8r) = f PA:i. (rldr') f (8r,r') . 
-(l) 

The "function" f (dr,r') in (49) is {unlike g (dr,r') in (42)) not necessarily non­

negative definite. Since the results of an inaccurate measurement are in themselves 

not interesting, but are used to make deductions about what a measurement of the 

48Ludwig, op. cit., p. 97 
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desired observable would have given, this invertibility is a very appealing property. If 

the full invertibility (49) is indeed feasible, not only the expectation value, but all 

moments of the R-distribution can be derived from the A~( r)-measurement. This 

holds true independent of (37). Therefore we can interpret A~( r) results in terms of R 
using (42), without referring to the unbiasedness condition (37) at all. If (42) is not 

invertible, it is not possible to derive from the A~( r) results the expectation 

values (j(R)) for all functionsf. Nevertheless (42) guarantees that it is possible for 

some functions [see further § 2.3]. 

Since (36) implies (42). there are better arguments for holding on to (36) then there 

are for upholding (37). In other words, an approach based on (36) rather than on (37) 

and (35) looks most promising from the point of view of characterizing measurement 

by probability distributions rather than by expectation values. 'Inaccuracy' would be 

seen as a definite relation between the distribution of the realized observable and that 

of the desired observable. This relation should be, like the function gin (42), purely a 

property of the measuring device, and the 'inaccuracy' concept should not involve the 

labeling of the observables. 

2.2 Non-ideality: Defmitions & Properties 

A study of 'inaccuracy' is not only relevant to the joint measurement problem. As 

noted above, within the general framework of EVMs certain observables may be de­

fined as "optima!" through operational arguments. An 'inaccuracy' notion could 

provide such an argument. It would allow to distinguish between "optima!" obser­

vables and "bad" observables that mix information about the object system with 

non-information coming from the measurement device. One may think of49 "ran­

domization" or noise (as in the previous section) affecting our meter. If this noise 

49Holevo, op. cit. (1982) p. 19 
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totally dominates our device's operation, it measures an uninformative observable. 

Such an observable is represented by an EVM {Mk}K of the form: 

{fk a scalar). The outcome probability distribution of such an uninformative obser­

vable does not depend on the state of the object system at all. 'Inaccuracy' may 

provide a structure in the class of observables that gives us a subclass maximally free 

from this non-information, observables whose outcomes are maximally associated 

with the object system alone. We could indeed call such observables 'optimal'. If it 

were known what observables are optimal, we could restrict ourselves to this class, 

since the properties of all measurements are characterized by those of only the 

optimal ones via the structure. 

One proposal for optimal observables is based on the structure on the class of EVMs 

that bas been most systematically investigated so far: convexity. If two EVMs {Mk}K 

and {Nk}K with the same outcome set K are given, the set of operators {Ok}K defined 

by: 

is also an EVM for all À E (0,1). {Ok}K corresponds physically to a situation where 

we let chance decide wether we use an {Mk}K or an {Nk}K device (with probabilities 

À and (1-À), respectively). The set of EVMs is convex, like the set of states [ch. I]. 

EVMs {Ok}K that cannot be decomposed into other EVMs as in (51), are called 

extreme. The observables they correspond to will be called pure. This class contains 

all simpte observables. But, unless the outcome set K consists of only two elements 

(yes-no observables), there exist non-simple pure observables50. It bas been suggested51 

that pure observables constitute the subclass of optimal observables ref~rred to above. 

Relation (51), however, does not imply that the EVMs on its right-hand side are 

related: they may for instance be position and momentum. In such a case it would be 

50Holevo, op. cit. (1982) p. 30; Ludwig, op. cit., p. 138 

51E.g. by Ludwig, op. cit., p. 135. 
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hardly appropriate to call either {Mk}K or {Nk}K "better" than {Ok}K' since the 

latter's outcomes give information provided by those of neither of the former. There­

fore an EVM that is non-extreme is not necessarily non-optima!. Convexity seems to 

be less suitable for the task that is to be performed here than an "inaccuracy" notion 

would be: if one cannot speak of "better", one certainly cannot speak of "optima!". 

Another disadvantage of the convexity structure is its inability to relate EVMs in a 

label-independent way. As a consequence there appears to be no natural way to con­

nect two EVMs with different outcome sets via convexity. 

In this section we shall study an inaccuracy notionii, which can be seen as an elabo­

ration of (42). We shall work on a finite dimensional complex Hilbert space $, and 

ignore superselection rules. In this way we can get an idea of the properties of the 

structure such a concept generates without having to deal with too many mathematica! 

technicalities. Moreover, many infinite dimensional situations can be seen as limiting 

cases of finite dimensional ones. We define for two EVMs m = {Mk}K and 

n = {Nl}L the following relation: 

DEFINITION 2 n-m \l~ 0 

~ = ElEL \!ft 
The matrix {\l} is a stochastic matrix52• It is a property of an m-device (not of the 

object, since it has no relation to the density operator), characterizing its relation to 

the observable corresponding ton, in as far as determinative aspects are concerned. 

A more restrictive version of the relation - is defined (for two EVMs m and n as 

above) by: 

DEFINITION 3 n.Lm .-

52J. Ortega (1987): Matrix Theory (Plenum, NY); App. A 
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The matrix summations in both def. 2 and def. 3, as well as later series, are required 

to be elementwise absolutely convergent. Tuis is necessary because the order of sum­

mation should not be relevant for the result. If the summation concerns only positive 

elements (such as in def. 2, but not in def. 3) absolute convergence follows from con­

vergence. In def. 2 the EVM m is to represent a "smeared" (non-ideal) version of n. 

If it is the case that n .!.. m, the "smearing" can be undone in a certain sense. We 

will go into these physical aspects of the structure more closely in § 2.3. 

Define the equivalence relation: 

DEFIN1TION4 m-n := m-n A n-m . 

If we define +i+ analogously, it is trivia! to show that: 

'IllEOREM 3 i m-n <=? n+-+m . 

Thus both - and .!.. define a partial order relation between the equivalence classes 

defined by+-+. Ina partial order structure it is natural to define: 

DEFINmONS mis maxima/ .- VEVM n (n- m ==> n- m) 

mis minimal . - VEVM n ( m - n ==> n +-+ m) DEFINmON6 

Using .!.. we can define i-maximality and i-minimality in a similar way. 

We further introduce the following notations: 

(52) 

(53) 

(54) 

A,.. B := 3cEIR\{O} A = cB ; 

L(m) : = { x l 3 K x = I:kEK '\u1c} {53}; 
('\)EIR 

K(m) . - { X l 3 X = î' a.. M } 
( '\)EIRK; '\~O ""'kEK IC Ic 

Hef. Davies, op. cit. (1970) and F. Schroeck (1989): Int. J. Theor. Phys. 28, p. 247 
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fig. 1 

p 

Cone generated by jour vectors. Three generate extremal rays (dashed). 
When the cone is intersected with a plane P (not going through the origin), 
the base B (dotted) results. 

It can be verified that both L and the cone K are closed. 

Obviously, if n - m then K(m) Ç K(n) . If n L m we have in 

addition to this: L(n) = L(m) . 

(55) B(m) : = {X E K(m) 1 Tr(X) = 1} . 

(56) 

(57) 

The functional f (X) = Tr(X) is a strictly monotonie linear functional 

on the cone K (: = f (X) > 0 for all non-zero X in K). Hence Bis a 

base54 for the cone K (: = there is an a > 0 such that aX e B for all 

non-zero X in K) [cf. fig. l]. 

K (m) := L(m) n !fi+ • 
max 

The set !fi is the set of all bounded operators on tN, !fi+ consists 

of all bounded positive operators on tN. 

B (m) := {Xe K (m)j Tr(X) = l} 
max max 

B is the base of K 
max max 

54<1. Jameson (1970): Oráered Linear Spaces (Lecture Notes in Mathematics 141, Springer, Berlin) 
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The extreme elements of a convex set C are denoted by lJEC; the elements of the 

extremal rays55 of a cone K are denoted by lJK: 

(58) öK := {X E KI v 'ff.K X-YE K ~ y N X} . 

Also useful are: 

DEFINITION 7 The EVM m is pairwise linearly independent 

.-

In a pairwise linearly independent EVM no two non-zero elements lie on 

the same ray. The support of a pairwise linearly independent EVM is not 

unnecessarily large. 

DEFINITION 8 The EVM m = {Mk}kEK is self-extremal := VkEK 1\ E 8K(m). 

In a self-extremal EVM no element can be written as a non-trivia! convex 

sum of other elements. 

Our main results regarding structural properties are (the EVMs n and m as above; 

proofs can be found in the appendix): 

THBOREM4 Any two equivalent EVMs {Mk}K and {Nl}L satisfy: 

vkeK Lic, IM "'M Mk, = E,, IN ... M N,, 
k' k l' k 

This theorem characterizes the content of the equivalence classes. Maxima! EVMs are 

characterized by: 

THBOREMS 

55Jameson, op. cit. 
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THBORBM6 

TllEORBM7 

The set 8~+, the extrema! rays of ~+, consists precisely of operators 

that are up to a scalar factor one-dimensional projectors. Note that th. 5 

implies that there is more than one equivalence class of maximal EVMs. 

It also implies that our definition reduces to the usual one ( = non­

degeneracy) for PVMs. 

mis i-maximal ~ VkEK ~ E ÖKmax(m) 

Thus all i-maximal EVMs are self-extremal (def. 8). 

mis minimal ~ vkEK Mk N 1 ~ m +--+ i 

Hence uninformative observables are represented precisely by minimal 

EVMs. The trivia! EVM {1} is denoted by i. 

Straightforward is (def. 3): 

THBORBMS m is maxima! ~ m is i-maximal 

m is minimal ~ m is i-minimal 

l.ess obvious are perhaps: 

TllEORBM 9 

THBORBM 10 

If dim( .16) = 2, an EVM is i-maximal iff it is either minimal or 

maxima!. This is not true if dim( .R} > 2; 

m is i-minimal ~ m is minimal ; 

m is i-minimal ~ m is i-maximal 

The structure is closed in the sense that: 

THBORBM 11 For every EVM m there is a maximal EVM n - m ; 

For every EVM m there is an i-maximal EVM nl. m ; 

For every EVM m there is a minimal EVM n - m ; 

Tuis last assertion is not true for i-minimality and.!... 
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The connection between the structure induced by - and the convexity structnre is 

indicated by the following theorerns: 

DIBoRBM 12 

DIBoRBM 13 

If the EVM m is extreme, then it is i-rnaximal and pairwise linearly 

independent and B(m) is a simplex. The converse is true only if 

dim( J"6) = 2. 

If an EVM m is maxirnal or minimal and it is pairwise linearly inde­

pendent and B(m) is a simplex, then it is extreme. The converse is 

true only if dim( J"6) = 2. 

Since PVMs are always extreme56, PVMs are i-maximal and pairwise linearly inde­

pendent. A rnaximal PVM is the PVM associated with a complete orthonormal basis. 

We can therefore conclude that a maximal EVM on en must have at least n elements. 

In special cases EVMs can be related to PVMs via the - strncture 57: 

'lllEORBM 14 For every binary EVM m = {M, Ïf} there is a PVM e such 

that e-tm; 

Suppose m = {~}kEK is an EVM. Then: 

Vk,lEK [~,M~- = O {:::} 3PVM e t-t m 

This theorern is easily proven (the first assertion follows from the fact that 

[M, MJ_ = [M, 1-M]_ = 0). 

Our notion - can also be used to give an alternative definition of coexistence: we 

have 

'lllEORBM 15 EVMs m and n are coexistent {:::} 3EVM 
0 

o _. m A o _. n . 

Proof of the theorem follows straightforwardly from def. 1 and def. 2. 

56Holevo, op. cit. (1982) p. 30; Ludwig, op. cit., p. 138 

57 A. Holevo (1972): Trans. Mosrow Math. Soc. 26, p. 133; Helstrom, op. cit. (1976) p. 87 
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The importance of this theorem is that it shows that the typical feature of quantum 

measurements, viz. incompatibility, can be defined completely in terms of the rela­

tion - . The fact that there are incompatible observables in quantum mechanics can 

thus be seen immediately from the fact that there is no unique equivalence class of 

maximal observables (th. 5). For the classical case the situation is quite different. A 

classica! analog58 [ch. I] of C0 is a finite phase space {} := {w
1
, ••• ,w

0
}. The states 

are given by probability distributions (p Ja ; V wen p w ~ 0 ; Ewen p w = 1 . An obser­
vable is represented in such a classica! model by a set {fk(w)}K of functions (apositive 
function valued measure, PFVM) that satisfies: 

(59) VkEK,wEO /k(w) ~ O ; V wen ~EK/k(w) = l ' 

The probability of outcome k is given by Ewen p wfk(w) . 

The most characteristic diff erence with the quantum case is that here the equivalence 

class of maxima! PFVMs is unique, reflecting to the compatibility of classica! obser­

vables (th. 15). All maximal PFVMs are equivalent to the PFVM {gk(w)}K; 

gk(w) := ókw; K = 0. This is in agreement with the reasoning of ch. 1: it reflects 

the fact that in classical models any measurement can be related to a determination of 

a property of the object system. The ultimate property ("' maximal PFVM) is the sys­

tem's C-state w. 

The structure induced by l. for the classica! case is simpler in similar ways. This is a 

consequence of the fact that the set of PFVMs on {} is isomorphic with respect to l. 
and - (and convexity) to the set of EVMs m +- n; n = {Nk , ... ,Nk } a fixed EVM 

1 n 
with Vk llNkll = 1 (e.g. a PVM; cf. the second part of th. 10). 

We can therefore conclude that some of the intricacies the structure bas in quantum 

theory are indeed unclassical, much as this is the case for the convexity structure59 

[ch. I]. Moreover, the above suggests that the properties of the - structure on the 

class of observables for a given statistica! theory can be used to characterize the 

58Holevo, op. cit. (1982) 

S9Holevo, op. cit. (1982) 
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theory in abstracto, much as such an abstract characterization is the aim of quantum 

logic. Further investigation of the properties of such - structures would therefore be 

interesting. 

2.3 Noo-ideality: Pbysical Interpretation 

As said above, - is intended as a concretization of "inaccuracy". We shall in the 

following reserve the term 'non-ideal' to refer to - : 

if n - m we say that m is associated with a non-ideal n-measurement; 

if n ~ m we say that m is associated with an invertibly non-ideal 

n-measurement 

(n and m two EVMs). A meter realizing m is called a "non-ideal n-meter". In order to 

clarify the physical meaning of-. on order to justify this nomenclature, we first 

consider a possible description on a product Hilbert space [cf. th. 2 and § 2.1]: 

'IHEoREM 16 

(60) 

Suppose a = {Ma} u(A) is given as the PVM of A = LaEu(A) aMa 

on Jf. Here u(A) denotes the spectrum of A. Let {Ez} u(Z) on 

Jf• J'I' be the PVM of Z = Lze u(Z) zEz . If Z can be written as a 

function z(A.,T) of A and a self-adjoint operator Ton J'I', then the 

EVM o = { Oz} u(Z) defined by: 

Oz : = Tr Jl'(p' E) 

bas the property a - o for every density operator p' on J'I'. 

Proof of this theorem is straightforward, using the spectra! theorem on JI'. 

Since for certain cases (e.g. finite outcome sets) the converse of th. 16 can also be 

proved, the definition of "noisy" measurement as - (def. 2) boils down to generali­

zing the additive object independent noise of (35)-(36) not to additive object-
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dependent noise, as Arthurs & Goodman do, but to object independent non-additive 
noise. lt is tantamount to generalizing (35) to 

(61) A~(r) = h(bl',G;> 

for an arbitrary function h, and keeping (36). 

More precisely, - can for certain cases be shown to imply that there is a Hilbert 

space Cl(' with state p' and noise operator Gi such that (61) generates the non-ideal 

BVM. But this is a purely mathematical construction, and neither p' nor a; need to 

match the actual physics of the meter. Conversely, the mathematical description of 

the device actually realized need not follow eq. (61). Since it is also usually not very 

convenient to use a noise operator explicitly, we shall work with the matrix { \L} or, 

more generally, with an analog of this for the continuous case (e.g. the function 

g (D.r' ,r) in (40)). From that point of view, non-ideality relates two measurement pro­

cedures (observables): it is a relative inaccuracy notion rather than an absolute one. It 

depends in no way on the state of the object (c.q. the preparation). The matrix {>'kl} 

in def. 2 is a property of the m-meter. In above representation of a non-ideal 

measurement, however, the amount of "smearing" is related to the amount of noise in 

the ancillary system, to the scatter associated with the auxiliary Hilbert space. But 

this scatter is not scatter in the object system. Moreover, such a connection of smear­

ing with scatter is only available within this particular type of model for the measure­

ment process. Therefore our earlier conclusion [ch. I] that "reinterpretation of (the 

symbols in) a scatter relation" cannot widen the relevance of scatter relations to in­

corporate inaccuracy limits, is not jeopardized. 

The matrix {Àkl} in def. 2 characterizes the inaccuracy of the m-meter, when seen as 

an n-meter, in a mathematically precise way. This characterization allows us to de­

duce from the m results certain information about what the n results would have been 

like. This information will, however, in general be not as good as when one would 

have been able to realize n directly. Tuis shows, for example, when the measurement 

is used for state separation: the EVM n separates the states p at least as well m as m 

(th. 17). The separation is equally good in the case of equivalence (th. 18). 



76 Chapter lil 

1lmOREM 17 n - m ~ V L 1 Tr (CP1-p.2)N,] 1 ~ L 1 Tr (<P1-p2)Mk] 1 · 
Pl•/12 LEL kEI 

(Proofs in the appendix; pl' p
2 

density operators.) 

As noted above, non-ideality can be inverted in the sense that a non-ideal measure­

ment can be used to estimate one or several parameters Oinear functionals) of the 

probability distribution of the observable one wanted to measure. For a given labeling 

one might think of the mean value (in general the only parameter that can be esti­

mated via the approach of § 2.1), or a higher moment, or the probability that the 

outcome lies in some interval. In genera! this job can be summarized as follows: 

Estimate the expectation value of a given operator F E L(n) , using a 

measurement of m, n - m. 

A measure for the number of repetitions of the experiment needed to estimate this 

parameter with a given reliability is the variance: the larger the variance, the larger 

the number of repetitions needed&o (we shall assume the variance to be finite). We 

shall show that, if the estimate is possible at all using an m-measurement, the number 

of repetitions is necessarily at least as large as the number one would have needed, 

had one been able to realize n (th. 19). This theorem may be considered an analog 

within the non-ideality framework of the earlier result of de Muynck et al. [see 

§ 2.1]. In the case of the relation 4 we speak of "invertibility" because it is possible 

to estimate (/!) for any F E L(n) (th. 20). This means that it is possible to calculate 

the entire n-distribution, if the m-distribution is given. Then any question that can be 

answered using an n-measurement, can also be answered using an m-measurement, 

although in the latter case it may take more repetitions of the experiment. In the case 

of equivalence, no reason exists to prefer either measurement over the other (th. 21). 

60E.g. Helstrom, op. cit. (1976) § 1.4. 
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'DmoREM 19 Suppose that n - m and that F E L(n) is given. Then one of the 

following alternatives is true: 

THEOREM20 

'Dm<>REM21 

i) Fi L(m) ; 

ii) For every sequence (gi)K such that ~EK gkMk = F there is 

a sequence if)L such that f,lEL/ !ft = F and 

Suppose that nl. m and that F E L(n) is given. Then F E L(m). For 

every sequence (gi)K such that ~EK gkMk = F there is a sequen­

ce (f)L such that EteLf !ft = F and 

~EK g; Mk ~ f,lEL.,; Nl ' 

Suppose that n - m and that F E L(n) is given. Then F E L(m). 

For every sequence if)L such that F =El.EL/ /11. one of the fol­

lowing alternatives is true: 

i) There is a sequence ifl)L such that EteLft'Nt = F and 

r,lEL !/ Nl {:} ElElft 
2 

Nl ; 

ii) There is a sequence (gi)K such that. f,kEK gkMk = F and 

~EK g; Mk = ElEift 
2 

Nl . 

(Proofs can be found in the appendix.) 

On a more conceptual level we may say that, if n - m, an m-measurement result is 

to be interpreted as a fuzzy n-measurement result. The matrix { \t} bas in this con­

nection been called a confidence function by Prugoveèki61, meaning that a particular 

61E. Prugovecki (1977): J. Phys. A 10, p. 543 
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m result corresponds to a n-result with a confidence proportional to Àkl • Such an 

interpretation is close to a likelihood interpretation of the non-ideality matrix. It 

might be tempting to substantiate this by claiming that the probability that the real (in 

the naive sense of the word) result (of the n-measurement, that could unfortunately 

not be performed) was l, given that our non-ideal measurement (i.e. of m) gave k, is 

proportional to Àkl • The other way round, '\t could represent the probability that the 

non-ideal measurement gives result k where an ideal measurement would have given 

L But of course all such statements cannot be taken literally Qet alone that an inter­

pretation of the structure can be based on them), since there is generally no event 

corresponding toa "real value", so that any talk of "probability" is in this connection 

at best a figure of speech. 

The requirement of labeling insensitivity urged in § 2.1, is conveniently represented 

in this structure by the fact that two EVMs differing only in labeling are members of 

the same equivalence class (th. 4). An equivalence class consists of EVMs represen­

ting devices that measure physically identical quantities equally well. Another con­

sequence of label-independence is that, as is readily seen, defs. 2 and 3 apply to cases 

where m and n have very different outcome sets. It is for example perfectly possible 

to have n- m, where m bas outcome set {red, yellow, blue} and n bas outcome 

set 111 (or vice versa). Hence, in contrast to convexity, the non-ideality relation struc­

tures the class of EVMs as a whole, irrespective of outcome set. 

These considerations show that i-maximal (or even maximal) pairwise linearly inde­

pendent EVMs are likely candidates to represent the "optimal" observables referred 

to in the § 2.2. The observables of most textbooks ("' PVMs} are optimal in this 

sense, just like pure observables (which were the observables that appeared optimal 

from the convexity point of view}. There are many others, however62. Moreover, call­

ing observables corresponding to i-maximal EVMs optimal bas some operational 

justification: they cannot be improved upon in the sense of tb.'s 17 through 21. Such 

justification is not available for the other two classes mentioned. 

62An interesting example occurs on p. 74 of Helstrom, op. cit. (1976). 
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2.4 Non-ideality Measures 

If n - m, it is for certain purposes (e.g for an inaccuracy relation !) it is convenient 

to express how non-ideal the non-ideal n-meter is, as a real number. As we saw in the 

previous section, \t represents, roughly speaking, the likelihood that the m result 

would have been i, given that the n result was k. A non-ideality measure should 

obviously quantify the width of the i-distribution .Àld for given k. More precisely, we 

need a mapping from the set of non-ideality matrices to IR+, consistent with - (see 

th. 22 and th. 23). 

Matrices like { \t} should be well known to readers familiar with information theory. 

There they are used to represent discrete memoryless channels. If we restrict oursel­

ves to the case of finite outcome sets, information theory also supplies us with a 

measure for the non-ideality represented by a matrix {\il: Shannon's channel capa­

city&a. Despite the fact that the meaning of {\,} is very different in information 

theory, the channel capacity (and related quantities) can be used here, too. Of course 

there are many other measures than the ones we derive here1v. Just as the choice of 

scatter measure is not crucial for the expression of the scatter principle [§ 1.2], the 

choice for one particular non-ideality measure is not of fundamental importance. 

Suppose two EVMs n = {Nl}L and m = {Mk}K are given such that n - m with non­

ideality matrix {\l}; L = {i1, ... ,in}. For a given probability distribution (pL)L, 

define the conditional entropy: 

with: 

63c. Shannon (1948): Bell Syst. Techn. J. Tl, p. 379; R. McEliece (1977): The Theory of lefonnation 
and Coding (Addison-Wesley, London), ch. 1. Cf. Shannon's ordering of communication channels [C. 
Shannon (1958): leform. Control 1, p. 390], which is similar to-. 
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Define further the mutual information: 

and the channel capacity: 

The following properties of the capacity are easily verified64: 

(65) 0 5 c( { \,}) 5 log(n) ; 

(66) c( {\,J} = 0 {::::} \t = Àk (k E K; l EL); 

(67) c( { \,}) = log(n) iff there is for every k E K at most one l E L such that 

\, > 0. 

The conditional entropy J can be seen to satisfy similar properties. The interpretation 

of C in this context is straightforward: the larger q{.\,}] is, the smaller the amount 

of non-ideality in {\,}is. For J the reverse holds. 

Up to this point we have, by associating C and J, as defined above, with a given - , 

implicitly assumed that the matrix { \,} is unique. Tuis condition is in general ful­

filled only if B(n) is a simplex and n is both self-extremal and pairwise linearly 

independent. PVMs satisfy this condition, but not all EVMs do. Hence C and J are 

not guaranteed to be compatible with - . Tuis is especially clear if we take m mini­

mal. In that case we would expect from a reasonable non-ideality measure that it 

assumes its largest value for all n. If {Àkl} is not unique, -C and J do not necessarily 

have this property. Therefore we define a capacity tailored to fit a given relation 

n - m. Define the set A of all matrices { Àkl} connecting the EVMs n and m: 

64McEliece, op. cit. 
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In view of n -+ m, the set A can be seen as a property of the m-meter characterizing 

its functioning as a non-ideal n-meter. Define also: 

(69) Jn-+m[(JJ,t>] .- sup{\L}EAn-+m {1({.Xkl};(p;)} 

(70) ;n-+m[(JJ,t>] := inf{,\kl}EAn-+m {1({\L};(p;)} 

(71) ën-+m := sup(p; { in--+m[(JJ,t>l} . 

The probability distribution (p; in (69) is a parameter in the mapping J represents. It 

should in particular not be thought of as associated with some physical object state. 

For different choices of (p; different non-ideality measures result. This arbitrariness 

can be useful when one, for instance, wants to emphasize that accuracy in some part 

of the n outcome set is more important than in the rest. 

To check whether these measures are indeed a consistent quantification of non­

ideality, we introduce the following notions: 

DEFINITION9 Suppose n -+ m -+ o . Then: 

a non-ideality measure Q is right order preserving 

a non-ideality measure Q is left order preserving 
.-

If Q is right order preserving, it satisfies Qn-+o = Qn-+m for all n -+ m - o . 

Thus a right order preserving Qn-+o is insensitive to the labeling of o. Left order 

preservation has an analogous consequence. The measure based on channel capacity is 

completely insensitive to labeling: 

Tl:IBOREM 22 The measure -ë is both left and right order preserving. 
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(Proof in appendix.) Now look at a continuous example: the non-ideal measurement 

of position q (we denote the position PVM {lq}(ql dq}IR by q) via some EVM m. 

Non-ideality measures 6 q-m for this case are usually attributed the same dimension 

as position: they are expressed in some unit. But that means that, from a mathemati­

cal point of view, io6q-m = 610q-m # 6q-m even though 1oq +-+ q. Consequent­

ly, in view of possible generalizations of the theory to continuous outcome sets, it is 

not necessarily wise to insist on left order preservation. Right order preservation, on 

the other hand, is connected with the labeling of the non-ideal measurement device it­

self. This labeling can, as argued above, be altered arbitrarily without changing the 

physics of the device. Right order preservation is essential. Thus J is more suitable 

for a generalization to the continuous case, because: 

1lmoREM23 The measure j is only right order preserving. 

Since it is also easier to calculate, we shall use J rather than C in the following. 

In the previous sub-section we saw that a non-ideal measurement can be used to esti­

mate linear functionals of the probability distribution of the desired observable. This, 

however, resulted in a lower reliability. Suppose n - m and F = 

E/t Nl = E.:gk Mk . Then 

DHFINmON 10 [ïnf<WIF = Ea:n:Mii: (r..:g; <E1 >.kipÎ] + 

- infcr;IF = E/tNt [ E/t2 Pt]]i 

is an entirely different non-ideality measure, based on this estimation possibility. The 

larger e is, the worse the measurement. The fixed distribution (p; is to be chosen as 

reali:zable via Tr(p N). Therefore the choice of {\t} from A is arbitrary. The distri­

bution (p Î plays the same role in e as it did in J. The measure e is both left and right 

order preserving, as can be easily seen from the results in § 2.3. The problem we 

noted above conceming the generalization to continuous outcome sets does not occur 

here because eis, unlike J, not based directly on the non-ideality matrix; The measure 

t bas the dimension off (or g). A change in n's parameterization (such as q-+ ioq) 

will be precisely compensated for by a change in f necessitated by the condition that 

the expectation value of the linear functional it represents remain equal to F. 
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2.5 Joint Non-ideal Measurement 

Given the above, the natural definition of joint (non-ideal) measurement is: 

DEFIN1110N 11 The EVM o = {Omm,}MxM' is associated with ajoint non-ideal 
measurement of the EVMs m and n 

n - o< 2> A m - o< ti 

with: 

(31) 

1 
o< t> 

o<2> .-

Ajoint invertibly non-ideal measurement is defined analogouslyv, using l.. . 

A particularly interesting joint measurement problem arises when a and b are PVMs 

of the self-adjoint operators A. and B respectively. For this case, th. 16 suggests that 

we find two operators C and :t;> on an auxiliary Hilbert space 3' and two functions f 

and g such that/(A.,C) and g(B,D) commute. In§ 2.1 we already met such a solution 

to the joint measurement problem. We can solve this problem generically in a simple 

way by using projectors E and Ë = 1-E on 3' to define two operators on ,He K: 

(72) F := A.eE ; G := BeË • 

The operators F and G commute, and therefore have a joint PVM. For an arbitrary 

p' on 3' this gives an EVM on 3 in the following way: 

Obviously u(F) = u(A.) U {O}. lf 0 is not already an eigenvalue of A. (i.e. 

0 ~ O'(A.)), introduce M
0 

= 0 into the PVM. Thus we have a PVM a = 
{Ma} u(F) on c1I. Analogously we get a PVM b = {Nb} u(G) on c1I. 
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Theo the joint PVM {P ab}u(l')xu(GJ on dl•K is given by: 

(73) P ab == fJaOóbO(N 0•E + Mo'f'ËJ + (1-óaJlibO Ma•Ë + 

+ (l-6~6a0Nb•E = 

Taking the partial trace over /Il' gives the EVM65 o = {O ab} u(l')xu(GJ , 

(74) 0 ab = Tr /ll'(p' P aJ = >. 6b0Ma + (1-À) 6 aONb , 

with >. = Tr(p' E) • 

Indeed o can be seen to satisfy def. 11 for a and b. Relation (74) can evidently be 

extended to satisfy def. 11 for two arbitrary incompatible EVMs. To clarify its inter­

pretation, we introduce the following notions: 

DEFINITION 12 A joint measurement of two EVMs as in def. 11 is trivial66 

\m,m')EMxM' Omm, E L[{Mk}K U {Nl}L] 

A joint measurement of two EVMs as in def. 11 is an 

either/or measurement 

.-
3 ~ omm, = Mimm, + (1->.).Nmm, 

1 

EVMs {~mm' }MxM'-m 

{Nmm,}MxM'-n 

À E (0,1) 

One of the most important reasons to do a joint measurement of two observables is 

the possibility of determining some kind of correlation between the values these two 

65Abu-7&lid [O. Abu-l&lid (1987): Phys. Lelt. A 125, p. 167] proposed an EVM essentially the sa.me 
as eq. 80, as does Schroock [F. Schroeck (1982): Found. Phys. 12, p. 479] for C2• Neither notes its 
physical interpretation as an cither/or measurement, however. 

66As a joint measurement of À and/(A) is always trivial, our triviality notion is a generalization of 
that of Park & Margenau, op. cit .. 
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observables "assume". In a trivial joint measurement, the joint probability distribution 

is fixed if the m and n distributions are given. Hence the correlation in the joint 

probability distribution depends on the particular procedure used, but it does not 

depend on the state of the object system at all. Trivial joint measurements do not 

provide information about p beyond the information obtainable with separate measu­

rements of the observables involved67• An eithertor measurement is always trivial 

because the joint EVM is a convex sum of two EVMs equivalent to the BVMs to be 

measured jointly. An either/or measurement can be realized using a procedure where 

sometimes (probability À) m is measured, and sometimes (probability 1->.) n. The 

outcomes are then suitably relabeled to disguise them as joint results. The EVM 

of (74) represents an either/or measurement. There the relabeling consists of attribu­

ting the value 0 to the observable that is not measured. 

Thus we shall have to search a little harder to find a meaningful new application of 

th. 16 [see § 2.6] and, more generally, a true joint non-ideal measurement of two in­

compatible observables. As the following results show, such a measurement can be 

found. We take J( = en. Two PVMs e = {Em}M and f = {F1}L are given. Since 

they are completely arbitrary, apart from the finite dimensionality of the Hilbert 

space, our results are (nevertheless) quite general. We will assume that there is a 

third PVM {Gi}I satisfying 

(75) V. (rl [G.,E ] = 0 A V1 [G.,Fl = 0) • 
1 m i m- t t'-

This PVM is introduced to resolve cases where the PVMs e and f have eigenspaces in 

common. It may be minimal (i.e. {Gi}I = {l}), so that this assumption does not result 

in loss of generality. Thenvi: 

THEoREM24 The PVMs e and f (defined above) are jointly non-ideally 

measurable. The joint measurement can be both non-trivial and 

invertible. 

671n this sense also the proposals of Park & Margenau, op. cit., are trivial. 
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(16) 

(77) 

(18) 

(79) 
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Suppose an EVM m = {Mjj, }JxJ' represents a joint non-ideal 

measurement (as in def. 11) of the PVMs e and f (defined above). 

Then the quality of this joint measurement is limited by: 

1e-m< 1> + 1t-m< 2> ~ I:iEI Tr(Gi) ei 

with: 

ei := -2 log[I + tm~)IE1lPïllt1 ; 

Je-m := Ï[At-+m; (rm)] = J[{'\ml; (ru)] = 

= -L L À. r log(.\. r /''f' À.k r \] 
jEJ mEI Jm m Jm m ""'k J k' 

r = !Tr(E ) . m n m 

For maximal PVMs this bound can be improved to 

(17') e. : = - log[max lllE FlG.111 ; 
t m, m 1 

(Proofs in the appendix.) Because, as we noted above, 0 ~ J for non-ideal measure­

ments of e and f, inequality (16) gives a non-trivial bound iff the PVMs are inoom­

patible (for an optimal choice of {Gi}
1
). The bound of (16) is in particular non-trivial 

if the PVMs have (some, not all) eigenvectors in common. As an example we can 

consider a three-dimensional situation, with maximal PVMs e and f with inner product 

matrix 

[ ~ l~-t~] . 0 l+/Ï l+/Ï 

In this case we can take {GJ1 = {G1,G2} = {E1,E2 
+E

3
}. We get the bound log(2) for 

(16)+(77') [log(24-t6{2) for (16)+(77)], well above 0. 
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2.6 Examp1es 

In order to illustrate the application of non-ideality and the resulting approach to the 

joint measurement problem further. we shall study a number of examples. The first 

of these involves maximal PVMs on an n-dimensional Hilbert space. Define the PVM 

l- = {~}K' 

(lxk})K is an orthonormal base for JI = en; K = {O" .. ,n-1}; 

and: 

[[k]] := k mod n 

X := EiceK~ . 

Apart from unbiasedness [§ 2.1], covariance is an important characteristic for measu­

rements: 

DEFINITION 13 The EVM n = {Nl}l with the labeling iftL is unbiased (with 

respect to X) 

.-

The EVM o == {Ok}K is covariant (with respect to S) 

.-
vkEK s:pks! = 0 clk+ 111 

(S and K as above; L arbitrary). 
x 
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The following theorem connects these notions to -= 
THBOREM26 For J. as above and o = {Ok.}K an EVM (Kas above): 

vt.eK s.:P1c.8! = 0u1c+1n 

Eict1co1c. = x 
ifi)K 

J ~ .~ .. 

Chapter 111 

Neither covariance nor unbiasedness (for some labeling) is by itself sufficient for -

or i+. 

We now introduce a second orthonormal base Clyk))K on en, such that: 

(82) ('\:IYk,) = n-Î exp(i2:kk:') , 

with shift operator S , self-adjoint operator Y and PVM t), analogous to S , X and J. y x 
respectively. These two PVMs are in fact finite-dimensional analogs of position and 

momentum68 ·v11• They satisfy 

c d d se c·211' _ _, 
V c,d e l SY Sx = sx Y exp iïi""") ' 

analogous to the Weyl commutation relations. For these PVMs the bound (77') gives 

(83) J1_m< 1i + Jl)-+m< 2i ~ log(n) . 

The demand of covariance, discussed above, leads69 to the following criterion (more 

stringent than def. 11) for ajoint measurement of the PVMs J and t): 

DBFINITION 14 An EVM m = {.Afkt}K><K is associated with a covariant joint non­

ideal measurement of the PVMs J and t) 

.-

Vk,lEK SxM1c.!! = M[[k+l]]l A SyMt.!t = Mk[[l+l]] 

(S , S and Kas defined above, J and IJ defined as above including (82)). 
x y 

681. Schwinger (1960): Proc. Nat. Acad. Sci. 46, p. 570 

89Helstrom, op. cît. (1976); Holevo, op. cît. (1982) p. 122 
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We can see that this nomenclature is consistent, that the covariance of def. 14 indeed 

implies association with a joint non-ideal measurement, if we realize that the cova­

riance as in def. 14 leads to invariance of the marginals: 

1llEOREM Zl Por i and SY as above and o = {Ol}L an EVM: 

i-+ O {::::} VlEL SyOf! = Ol (invariance) . 

Indeed an explicit construction of a covariant joint measurement EVM through th. 16 

establishes the usability of def. 14. The analogy of this example with position­

momentum is further illustrated by this application of th. 16 [cf. the way the position­

momentum was treated in § 2.1]: 

1llEOREM 28 Take éN' = en, and define operators X' and Y' on éN' just as X 

and Y were defined on éN (incl. (82)). Then the operators 

x· := [[X•l' + l•X']] and y• := [[Y•l' - l•Y']] on tH•éN' 

commute. 

Now, using a density operator p
0 

on éN' , we get our covariant joint measurement 

EVM from the joint PVM of X • and Y • by taking the partial trace, as in th. 16. The 

C2 case of this example is formed by the pair of spint PVMs 5
3 

and 5
1 

, corres­

ponding to the self-adjoint (Pauli) operators u
3 

and u
1 

,respectively. Our 

requirements lead to an unconditionally non-trivia! lower bound to the non-ideality 

achievable, as substitution of n = 2 into (83) shows. Th. 28 here amounts to construc­

tion of the self-adjoint operators u
1
•u3 and u

1
•u3 , which can easily be seen to 

commute (ui and u3 are spin operators defined on an auxiliary Hilbert space ,H', 

analogously to u
1 

and u
3
). It remains doubtful, however, whether th. 16 can solve 

joint measurement problems that are not (analogs ot) position-momentum. 

Since for the EVM m of def. 14 M
00 

> 0 , and Mkl = (Sk sl )M
00

(Sk sl) t, the con-
- x y x y 

dition ~El Mkl = 1 implies that Tr(Moo> = n-1 • This means there is a density 
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operator p
0 

on Jlsuch that7o 

(84) 

The EVM mof def. 14 is maximal iff the density operator p
0 

is pure. It is not diffi­

cult to verify that the non-ideality matrices for i-+ m< 1> and tJ-+ m< 2> respectively, 

are given by 

(85) 

1 

>. (1) 
kl 

>. ( 2) 
kl 

These non-ideality matrices are symmetric11: every row is a permutation of every 

other row and every column is a permutation of every other column. Then we can 
easily evaluate the amount of non-ideality (using the measure based on channel capa­

city or that based on conditional entropy) in the matrices (85). We see that it is rela­

ted to the scatter in p
0

: 

(86) 
(

1i-+ m< 1> 

JtJ-+m<2J 

where 

= H.J.POJ = log(n) - Ci-+ m< t> 

Hyf.POJ := -EkEK (yklP0 lyk) log((yklP0 1yt}) (analogouslyforHx>· 

Note that the l width of >.~}> for given k does nor depend on k because both matrices 

are covariant. Thus no weighting distribution is necessary. Indeed J is independent of 

the (p 1-distribution of (62) or (69). In this n dimensional case 0 ~ J ~ log(n). Minimal 

J is achieved iff the associated probability distribution is dispersion free. That is not 

achievable for both distributions at the same time, since the observables are incompa­

tible. This is most conveniently represented by the Maassen-Uffink scatter rela­

tion (3), which reads for this case: 

(87) H.J.Pl + Hyf.P] ~ log(n) 

70Holevo, op. cit. (1982) § IlI.6 

71McEliece, op. dt" § 1.2.1 
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Combination of (86) and (87) givesviii a special case of (83), viz. 

(88) J1 --+ m< 1> + Jt)--+ m< 2> ~ log(n) , 

which is valid only for covariant observables. 

The covariant EVM of def. 14 has one more interesting property. It can separate the 

states72·ix (informational completeness). The PVMs 1 and IJ do not have this property, 

not even together73. Trivial joint measurement EVMs therefore cannot achieve infor­

mational completeness either. The following theorem gives the demands p
0 

is to satis­

fy, in order to get informational completeness: 

THEoREM29 There is a 1-1 relation between p and the probability distribution 

(pk; (pkl : = Tr(p M~ , the EVM {Mkl}KxK as in def. 14) iff the 
density operator p

0 
: = nM

00 
satisfies: 

The covariant joint 1,IJ measurement we just studied is, however, only of limited 

relevance because def. 14 depends for its consistency on the special properties of the 

operators X and Y in a highly non-trivial way. Moreover, covariance explicitly 

confines the labeling of the non-ideal observable: not only does it require L = K 

(M = K), hut covariance also fixes the order of the elements in L (M) through the 

restrictions it places on the non-ideality matrices (i.e. À~~> = Xil~-lJ]). When applied 

to the analogous position case, covariance would exclude, for instance, the EVM 

f
n+t 

{M }ll , M : = lx) (x 1 dx , as a non-ideal position measurement, whereas it is 
n n n 

perfectly acceptable as such from a pragmatic point of view74 • Hence the demand 

72E. Prugovecki (1984): Stochastic Quantum Mechanics and Quantum Space:-Trme (Reide), 
Dordrecht); P. Busch (1987): Found. Phys. 17, p. 905; Busch, op. cit. (1985) 

73v. Bargmann, as quoted by Reichenbach (H. Reichenbach (1944): Philosophical Foundations of 
Quantum Mechanics (Univ. of California press, Berkeley), p. 92); A. Vogt (1978): Mathematical 
Foundations of Quantum Theory (ed. by A. Marlow, Academie, NY), p. 368 

74Cf. the inaccurate measurement of self-adjoint operators with continuous spectrum in von Neumann, 
op. cit. (1932). 
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of covariance conflicts with the criterion, urged in § 2.1, that the labeling, however 

convenient, should not play ajundamental rolex. 

A further example is the joint measurement of number and position. The number 

operator Hand the position operator Q, corresponding to PVMs t = {In) (nl }11 and 

q = {lq)(ql dq}IR , respecively, are defined in terms of boson annihilation and 

creation operators: 

(89) N = at a , Q = t./i.(at + a) ([a,atl_ = 1). 

For this case an inaccuracy relation is not available. Nevertheless, we can show a 

joint measurement to be feasible. Consider the following operators on t!I• t!I': 

'\ : = fiJ ae 1' + Jï=rJ l ea' ; 

a := .jï=rJael'-fillea' 
c 

(90) 

Q = i./i(at + a ) c c c 

The operator a' (a'f) is a boson annihiliation (creation) operator, defined on t!I'. 

Therefore the operators'\ and at, (as well as ac and a~) also have all the properties 

of boson annihilation and creation operators. Accordingly, the operators Nb and Qc 

have the properties of a number operator and a position operator, respectively. More­

over, since ["t,,aJ_ = 0 and ["t,,a!L = 0, they commute. Now we perform ajoint 

measurement of the observables corresponding to the operators Nb and Qc on 

"'* t!I'. 
We take p' = IO)(OI , where IO} is the harmonie oscillator ground state. Then it is 

not difficult to show that: 
Il) 

(9la) P <Je (dx) = J P 
0

(dy) g (dx,y) 

-m 
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ID 

(9lb) P Ni> (n) = L µnmPJm) 
m=O 

with: 

g (dq,r) = ~ exp[-~q - ./Hl r)2] ; <T = ./fiJ 
<T./fi 

µ = 
nm 

if m < n 

otherwise 

93 

We have a joint non-ideal t-q measurement. The non-ideality in (9lb) can be seen as 

noise in the t-measurement. That it can be seen as independent of the object is the 

reason for the possibility of representing it by a fixed matrix {µ } . That µ is not nm nm 
only a function of (n-m) implies that it is non-additive. As 1J --1 0 the t-measurement 

becomes totally dominated by noise, whereas the q-measurement approaches ideality. 

If 1J --1 1 the opposite happens. Both (9la) and (9lb) are invertible, so that the 

measurement is a joint invertibly non-ideal measurement. In the case of (9la) this 

inversion takes place through deconvolution. In fact (9la) has already been treated in 

§ 2.1, as 

(92) X := ./H/X -..fitX 
c o a 

Relation (91 b) has the inverse 

if k < n 
ID 

(93) PJn)= LÀnk.PNi(k); Ànk.= 
k=O b 

otherwise 

A possible way of realizing the EVM of (91) will be discussed in the next section. 

For the important q,p case (we denote the momentum PVM {IP) (pi dp}IR by p) an in­

equality as general as (76) has not been derived as yet, due to the complications 

brought about by the infinite dimensionality of the Hilbert space involved. However, 

as noted in§ 2.1, important partial results have been achieved. The most far reaching 
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.of these arises out of an application of the Arthurs & Goodman relation (46) in our 

formalism. 

As an extension of def. 2 to m- n fora possibly continuous EVM m = {M{dx)}x 

over the field :?1 on the outcome set X, we use [cf. {43)] 

(94) N(/l.y) = J M(dx) g(ll.y,x) , 

where {N(dy)}y is an EVM over the field :?y on the outcome set Y, and 

g(dy ,x) is a measure that satisfies 

V Aye :?y Vx g(ll.y,x) ~ 0 

V x g(Y ,x) = 1 • 

Now, suppose that n bas, in addition to q - n , the property that there exists a 

function f satisfying 

{95) 0 = J J r(dq) g(dy,q) [f (y) - q] 

for all absolutely continuous (w.r.t. Lebesque measure) probability distributions r(dq) 

(unbiasedness, cf. def. 13). Then (def. 10) a suitable non-ideality measure is 

(96) E~~n = [f J r(dq) g(dy,q) [f2
(y) - q2J] t , 

fora fixed probability distribution r(dq). Note that for the special case that we have a 

covariant n, E does not depend on r. Now, if an EVM m = {M(dy,dz)}Y><Z repre­

sents a joint non-ideal measurement of p and q following def. 11 and (94), such that 

the unbiasedness condition (95) is fulfilled by both marginals m< 11 and m< 21, it can 

be seen 75 to satisfy 

(97) 

75Artburs & Goodman, op. cit.; § 2.1 
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for distributions r(dq) and s(dp), occurring in f~m< 1> and f~m< 2> , respectively, 

that are associated with the q- and p-distributions of some fixed density operator p t' 

The weighting distributions r and s are parameters in the mappings f, and need not 

correspond to distributions in any physical system [§ 2.4]; both t's are purely 

properties of the m device. 

The inaccuracy relation (76) is valid for all PVMs on Hilbert spaces of arbitrary 

finite dimension. Finite dimensional spaces do not differ essentially from infinite 

dimensional ones as regards uncertainty relations (cf. the first example of this 

section). Moreover, as noted earlier, infinite dimensional results can be approximated 

arbitrarily closely by finite dimensional calculation. Therefore we shall in the 

following, pending a rigorous derivation assume than an inaccuracy inequalityxi 

exists also for measurements that do not satisfy (95), its precise form depending on 

the definition of the inaccuracy measure ó. 

2. 7 Evaluation 

We have derived for the first time an inaccuracy inequality (tb. 25) that is applicable 

to a quite genera! class of pairs of incompatible observables, and that does not in­

volve unnecessary restrictive assumptions like covariance and unbiasedness. This in­

equality shows that quantum mechanics indeed entails an inaccuracy principle. lt 

shows of what nature the bounds are that quantum mechanics sets to our ability to 

measure. We shall end with a further evaluation of our approach to inaccuracy and to 

joint measurement, in the light of the other approaches mentioned and in the light of 

practical realizability. 
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Despite differences in emphasis, our approach is not a priori incompatible with 

Arthurs & Goodman's [§ 2.1] since it is often possible to derive the expectation 

value (R) from the A~(r)-results if only def. 2 is required. On the other hand, it is 

also quite possible that (an analog of) def. 2 is satisfied if only unbiasedness is 

required. But the expectation value ('Jt) no longer takes absolute precedence among 

all {/ (R)) in our approach, and usually many such parameters (linear functionals of 

the probability distribution) can be recovered, instead of only one [§ 2.3]. Hence 

dropping unbiasedness does not really imply any concessions in this area; on the 

contrary the definition of noisy measurement along our lines is a more,restrictive one 

than that used in approaches based exclusively on the expectation value, such as 

Arthurs & Goodman's. This difference in outlook on the content of 'measurement' 

may be expressed by saying that we aim at an R-measurement, whereas Arthurs & 

Goodman [and others, see § 2.1] aim at an (R)-measurement. As a result of this, our 

approach is in principle of more restricted applicability. 

Within quantum estimation theory76 (QET) the joint measurement of position and 

momentum has been treated, analogously to the derivation of (88) [viz. (45)]. But this 

derivation presupposed certain important properties of the observables to be 

measured, and is therefore not generally applicable [§ 2.6). Indeed the QET literature 

offers no applications of their approach to joint measurement, other than position­

momentum. Nevertheless, the formal joint measurement procedure described by (45) 

is experimantally relevant: both (balanced) heterodyning 77 and parametric amplifi­

cation of "position" and "momentum" 78 [§ 4.1.3] give rise to excess noise 

describable by (42). Since Arthurs and Goodman generalize the above formalism, 

these are also realizations of their approach (heterodyning and amplification are in 

fact the examples given by Arthurs and Goodman). But since our approach genera­

lizes the above formalism, too, these experiments cannot be used to differentiate 

between the two views. 

76Helstrom, op. cit. (1976); Holevo, op. cit. (1982) 

77H. Yuen & J. Sbapiro (1978): IEEE J. Inf. Th. n'-24, p. 657; (1979): ibid. n'-25, p. 179; (1980): 
ibid. rr-26, p. 78 

78Y. YamamotQ & H. Haus (1986): Rev. Mod. Phys. 58, p. 1001 
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Non-ideality appears in a number of other more or less realistic situations. An 

example is photo-detection fora single-mode optical field79• Introducing the number 

states 1 n) , eigenstates of the operator N, it is well known that a detector with 

quantum efficiency 1J = 1 realizes the PVM ! = {E }IN; E = ln)(nl . In a more 
n n 

realistic situation, however, we have 1J < 1. In that case we measure the EVM80 

m = {Mk}IN - ! ' 
00 

(99) ~ = ~En (~} 'T/k (1-TJ)n-k = ~ >.knEn 

with: 

= [ 0 if n < k 
>.kn 

(~) rf (1-TJ)n-k otherwise 

In fact (99) is the same as (9lb): the ! marginal of the format scheme for joint 

measurement of q and! is equivalent to inefficient photo-detection. Since (9lb) had 

the inverse (93), we also have ! i+ m. In this example the "inaccuracy" is apparent: 

1J < 1. Nevertheless we can recover the exact probability distribution: non-ideality 

does not imply that any information is irretrievably lost. We can in particular recover 

the correct number expectation value: the operator A~ = ~ITJ on J'ï'• K satisfies 

the unbiasedness criterion 81 (37). The noise operator G~ = A~ - N on R• J'ï'' can 

be seen as an additive object dependent representation of the N-measurement noise, 

alternative to a non-ideality matrix. Tuis further illustrates the relation between our 

approach and Arthurs & Goodman's. 

Inspired by the equivalence of one marginal to inefficient detection, a realization of 

the joint !,q-measurement procedure is easily envisaged: let Rrepresent one mode of 

the EM field, incident on a beam-splitter with transmittivity 'TJ. The outgoing beams 

are labeled b (transmitted) and c (reflected). We measure in the b beam photon 

number: Nb, and in the c beam "position": Qc (e.g. through homodyning82). 

79R. Loudon (1983): Quantum Theory of Light (2nd ed" Clarendon, Oxford) 

BOLoudon, op. cit., p. 240 

81Note, however, that the spectrum of Aj differs from that of N, barring any naive identification of 
Aj outcomes and N outcomes. 

82yuen & Shapiro, op. cit. (1978, 1979, 1980) 
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The spin i example was intractable using Yuen's approach, . whereas Arthurs & 

Goodman's led toa bound which could be trivial [§ 2.1]. That is somewhat counter­

intuitive: as two spin i variables are maximally incompatible83, one would expect the 

limit on joint measurability to be especially stringent for this case. Accordingly, our 

approach results in an unconditionally non-trivial inaccuracy bound, to the highest 

achievable bound on c2 [§ 2.6]. 

Joint spin measurement along our lines is feasible84 [§ 4.5.2]. Several experiments 

have been proposed by Busch for the analogous case of photon polarization85• A reali­

zation of a simplified version of one of these by Mittelstaedt et al. 86 to obtain mixed 

wave-particle behavior, shows that Busch's proposals are indeed doable. 

Summarizing, we see that our approach leads to a notion of inaccuracy that can be 

seen as an apparatus property. Despite the fact that it is more stringent than the 

expectation value based approach, its practical applicability for joint measurements 

does not seem more limited at all. Moreover, it leads in some cases to interesting 

bounds where the expectation value based approach, due to its weaker notion of 

inaccurate measurement, leads to trivial bounds.In ch. N we shall investigate some 

applications of non-ideality further. 

3 INDEPENDENCE 

From a certain point of view, QM can be seen as a theory of two types of devices: 

preparators and detectors (fig. 2). Thus it is natural to expect that the UP bas 

consequences for both types of devices, that there are two forms of the UP. Indeed 

that is what we have found: scatter relations limit preparation and inaccuracy 

83Kraus, op. cit. (1987) 

84Schroeck, op. cit. (1982) 

85Busch, op. cit. (1987) 

86p, Mittelstaedt, A. Prieur & R. Schieder (1987): Found. Phys. 17, p. 891 
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~ 
A 

fig. 2 

~ ) 

B 

(a) (b) 

Symbolic representation of the two types of devices /or which the uncer­
tainty principle has consequences: preparators (a) and meters (b). A pre­
parator is symbolized by a (set of) knob(s) having a well-defined position 
adjusted by the experimenter. A meter is symbolized by a (set of) pointer(s) 
indicating measurement results. 

relations limit measurement. Nevertheless, there may seem to be some connection 

between the inaccuracy and scatter relations. That is, however, not so. A strong 

argument for this independence thesis is that it is not difficult to construct a theory 

with a scatter principle, but without an inaccuracy principle (or vice versa), e.g. 

through suitable ad hoc restrictions on classical statistical mechanics. Of course such 

a theory would lack a certain harmony in that it allows measurement to be more pre­

cise than preparation (or contains preparations beyond measurement sensitivity). 

From that point of view the fact that (3) and (76)+(77') both derive from the same 

mathematica/ inequality (see appendix), is satisfactory. 

At first sight, however, this common mathematica! origin of an inaccuracy and a scat­

ter relation appears problematic. lndeed, when we restrict ourselves to covariant joint 

measurement, it appears that inaccuracy follows from scatter in the measurement 

device, and that therefore the inaccuracy principle follows from the scatter principle. 

But the latter reasoning in fact is only valid for joint measurement models working 

via th. 16. Such models have only been shown to exist for covariant joint measure­

ments, and these only exist for (analogs of) position-momentum [see § 2.1 and§ 2.6]. 

Similarly the common mathematical origin of the two relations is not fatal for the 

independence thesis. Relation (C.25), uninterpreted, is of a purely mathematical 

nature. We can derive both a scatter relation ((3)+interpretation) and an inaccuracy 

relation ((76) +interpretation) from it, because on fini te dimensional spaces there is 

no difference between trace class and bounded operators. But, as soon as we have 
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interpreted C in (C.25) as representing a state, i.e. as soon as we have associated it 

with a preparator, there is no way back. Then we can never get to (16), since to do 

that we would have to get from a preparator property to a detector property. 

The non-ideality inequality (76) does not require anything special for the state of the 

object system after the measurement: it may even be destroyed. Conversely the scat­

ter relation (3) does not restrict the state of the object system before the preparation: 

it may be created out of nothing and the preparation need not be associated with any 

kind of measurement. 

Another argument for (76)'s independence of preparation is the fact that the numbers 

on the left hand side of (76) are the result of a comparison of the determinative 

aspects of two measurement devices; they characterize the difference between two 

measuring instruments. This means that (76) refers exclusively to measurement. Pre­

paration, or the state of the object system, does not have anything to do with (76). On 

the other hand, observables are present in scatter relations. Although, as we saw, this 

does not jeopardize their interpretation as preparational limits, observables do form 

undesirable elements of scatter relations. It can be shown, for instance, that one can 

have a statistical theory without limitations on preparation, where certain "scatter" 

relations still hold: 

Imagine a model consisting of the usual classical statistical mechanics 

model for 1 particle. As we saw in § 2.3, all measurements of the 

classical model are non-ideal versions of the observable il = 
{ó..,(Llw')}IR2 ,corresponding to measuring the phase point itself. We can 

now map every PFVM m into a PFVM m' such that il' - m' bas the 

same non-ideality matrix as() - m. Here il' is a non-maximal observable, 

a joint non-ideal measurement of p and q, such that the scatter in its 

marginals satisfies a Heisenberg-type relation. Note that the modified 

model is without incompatible observables. Then, although we have im­

posed no limitation on preparational possibilities whatsoever, a scatter 

relation holds: there is no state that is dispersionless with respect to the 

available measurements. 
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(Such a model may correspond physically to an interpretation of the scatter principle 

in terms of the impossibility of perfect measurements in the microdomain, to claim­

ing that particles actually have both pand q values, hut we can't accurately measure 

them.) If we were to construct a similar modified classical model by restricting pre­

paration, we would find that we can in such a way never get a relation like (76) to 

hold. Whereas scatter relations rely for their definition explicitly on measurement, 

making above construction possiblexi1, the inaccuracy relation does not involve pre­

paration. Consequently the scatter relations are less pure than the inaccuracy relation. 

Tentatively, we could reformulate the scatter principle as follows: 

(100) It is impossible to prepare a system such that two incompatible degrees of 

freedom are jointly controllable with arbitrary quality. 

Thus stated, it does not require from the outset the presence of observables in the 

relations representing it. The usual scatter relations, such as the Heisenberg rela­

tion (1), are not quite satisfactory representations of the scatter principle in the new 

formulation. It might be expected that a scatter relation where the quality-numbers 

arise directly out of a comparison between two preparators does not have the draw­

back of (implicitly) referring to measurement. For (1) this would mean that the two 

numbers should characterize how much a given preparator differs from an ideal 

Q preparator ("' narrow beam) and an ideal P preparator ("' mono-chromatic beam), 

respectively, without assuming an optimal measurement of these observables to be 

practicable. 

As a first step in this direction a refinement of the notion of preparator is necessary. 

The representation of such a device by a density operator is too unstructured to make 

a scatter relation of the above type possible. One can think of the analogous case of 

measurements: there we have effects as unstructured objects and EVMs as the struc­

tures built from them [§ 2.2]. Meters are represented by EVMs, and the restriction to 

yes-no measurements cannot be performed without loss of generality. What we are 

looking for is therefore something that is related top in a way that is similar to the 
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way in which the EVM {Mk}K is related toa single effect~. One proposal for such 

a structured notion of preparator is due to Ludwig87. He introduces objects of the type 

to represent 'preparator'. We might call this a trace class operator valued measure: 
the parameter k can be integrated over. There does, however, not seem to exist any 

reason to want this. In an EVM the index represents an outcome, something the 

experimenter does not have any control over. Hence this index is associated with a 

probability distribution and it must be possible to integrate over it. For a preparator 

the most natural interpretation for an index is that it represents a "knob", a parameter 

under the experimenter's control (cf. fig. 2). In this sense the "degree of freedom" 

of (100) should be interpreted. There is then no reason to associate a probability 

distribution with this index. This reasoning leads to the conclusion that for our pur­

poses a representation of preparator by density operator valued function (DOVF), 

which is a mapping of k E K into the set of positive trace class operators with trace 

one, is appropriate. Examples of such preparators are the parameterized sets of states 

that have been used in QET, such as (18), which corresponds to a family of q shifted 

versions of the state p. Such a family can, as we have seen, be used quite naturally in 

the interpretation of 'translation width' [§ 1.2]. 

It would then be necessary to devise a non-ideality notion for preparators that would 

allow a partial ordering of these objects and a definition of (in)compatible prepara­

tors. Through this notion a conceptually more pure kind of scatter relation in terms of 

amounts of this 'non-ideality' should be derivable. 

NOTFS 

The "function" /(dr,r') in (49) is (unlike g (dr,r') in (42)) not necessarily non-negative 
definîte. The inversion (49) symbolizes deconvolulion. See e.g. D. Champemey (1973): 
Fourier Transforms and their Physical AppUcation (Academie, NY). The inverse 
mapping is not continuous in any very natural sense [Davies, op. cit. (1970)]. 

87Ludwig, op. cit., p. 160 
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Relations amounting to (special cases of) -+ have been used before incidentally. See, 
e.g" G. Allcock (1969): Ann. of Phys. 53, p. 311; E. Prugovecki, op. cit. (1984); 
Scbroeck, op. cit. (1989); and further references in § 2.1. Allcock notes the possibility 
of invertibility (def. 3) explicitly, as does Davies, op. cit. (1970). 

We have here used the $1-norm to quantify the distinguishability of two probability 
distributions. Similar results may hold for other distinguishability measures. For 
instance, for the "statistica! distance• [used in (lOa)], advocated by Uffink and 
Hilgevoord [Uffink & Hilgevoord, op. cit. (1988); Wootters, op. cit.], theorems like 
the above can be derived from Minkowski's inequality. 

The diverse aspects of imprecision in physics have been investigated by Ludwig 
[G. Ludwig (1981): Structure and approximmion in physical theories (ed. by 
A. Hartkaemper & H.-J. Schmidt, Plenum, NY), p. 7]. To characterize the imprecision 
of a measurement be introduces the concept of imprecision set. An imprecision set 
consists of the pairs (l,l') of n outcomes that cannot be told apart by the measurement 
procedure used, i.e. the m-procedure (m and n as in the beginning of this section, 
n-+ m). 

The non-ideality measure we have just introduced is very different from this concept. In 
order to show that our non-ideality is indeed compatible with Ludwig's we introduce 
the discernibility matrix {All•}: 

Au, inf{A }EA {I:kEK t 1 Àkl. Àkl' 1} 
kl n-+m 

(A is defined in (68).) It is derived from the distinguishability of the "probability• 
distributions the columns of the non-ideality matrix represent. [Instead of the $ L 
norm, we might also have taken Wootters' distinguishability measure: Wootters, op. 
cit.; Uffink & Hilgevoord, op. cit. (1988)]. The discernibility matrix has the properties: 

1 ~ Au, ~ 0 ; Au, = A,, l ; All = 0 • 

Note that it includes the labeling of n, hut not tbat of m (cf th. 23). The quantity All • 
shows how good the non-ideal measurement can discem the n outcomes l and l' . 
Ideally, All· = 1 • 6u • . 

The discernibility matrix may be seen as a quantification of the concept of imprecision 
set. lmprecision sets may be derived from the discernibility matrix as the set of pairs 
(l,l') sucb that Au· ~ t. The threshold t should be a small positive number. Alter­
natively, 1 ·All• can be seen as the membersbip function of the pair (l,l'), defming 
afazzy imprecision set. 

As we noted earlier, the matrix WkÛ in l. (def. 3) can be used to calculate the 
outcome probability distribution of the ideal, if the distribution of our non-ideal 
measurement is known. If we have a joint invertibly non-ideal measurement of two 
incompatible observables, tbis also applies to the marginals of the outcome distribution 
of a measurement of such an EVM. It is interesting, however, to apply the inverse non­
ideality matrices to the joint distribution itself, instead of to the marginals. Suppose we 
have an EVM O associated with a joint invertibly non-ideal measurement of two non­
coexistent EVMs m and n (O, m and n defined as above), such that: 

! MN.kl : EmEM µlm Em'EM' 
0

mm
1 

l I:m'EM
1 vkm, EmEM 0 mm' 
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Then define the operator valued measure {W 4:}LxK : 

wik: := EmEM Em'EM' Ptm vkm' 0 mm' 
The distribution this operator valued measure generales, is a Wigner distribution for the 
two incompatible observables, i.e. a distribution that is not necessarily positive, but bas 
correct marginals. (In fact {Wn} is a Wigner distribution if both inverse non-ideality 
matrices obey 

El P& = 1 • 

but it is not difficult to show that this is always achievable.) We are here confronted 
with a generalization of the relation that exists between the Husimi distribution and the 
original Wigner distribution [Hillery et al., op. cit. ]. This original Wigner distribution 
is also associated with operator ordering. For the Wigner distributions we get here this 
holds only in special cases (it can e.g. hold for that of def. 14, for certain choices of Po 
[see (89)D. 

vi A result similar to (76) has been obtained for [2, under the assumption of covariant 
marginals (implying M L = K), by Busch [Busch, op. cit. (1987)), extending a result 
by Prugovecki [Prugovecki, op. cil. (1977)). 

vii Many of the results of this section have analogs fur position-momentum. [Holevo, op. 
cit. (1982)). Thus the treatment of this example is also of interest outside this finite 
dimensional context. 1n particular can operators be expanded into sf and Sf in 
different orders, just as on the infinite dimensional space operators can be expanded 
into exp(iuP) and exp(ivQ). Moreover,. these orederings can be shown to correspond to 
analogs of the Wigner distribution, the Husimi distribution, etc .. 

vüi Such an inaccuracy relation for covariant joint measurements for position-momentum is 
implicit in Personick, op. cit., and bas also been derived by Ali & Prugovecki [S. Ali & 
E. Prugovecki (1977): J. Math. Phys. 18, p. 219) and by others [see also S. Ali (1985): 
Riv. Nuovo Cim. 8, p. 1 and references in§ 2.U. 

ix The possibility of informational completeness has prompted e.g. Busch [Busch, op. cil. 
(1985)] to argue that a matrix {Akml should not be interpreted as representing some 
kind of inaccuracy. But we do not interpret the EVM itself as non-ideal. lt is the 
marginals that are non-ideal. The joint measurement EVM can be informationally 
complete, and it can also be maximal. The EVM as a whole contains "correlations• that 
give information which cannot be obtained through the marginals alone. For this reason 
the properties of the marginals should be clearly distinguished from those of the EVM 
itself. Moreover, an argument like Busch's would hardly affect the operationalization of 
§ 2.3, which ensures the practical meaningfulness of the name 'non-ideality' for -. 

x Of course the fact that covariance is not to be considered a fundamental factor for the 
choice of a scale for a measuring instrument, in no way diminishes the importance of 
group lheory in quantum mecbanics. The work of e.g. Ludwig (Ludwig, op. ciJ. (1983)) 
shows that insistence on the unimportance of scales of measurement devices does not 
mean lhat group theory should not have a prominent position in quantum mecbanics. 1n 
fact, group theory shows why hardly anybody bas perceived as unsatisfactory the fact 
that textbooks use (almost) exclusively the von Neumann-Oirac formalism. Practical 
quantum problems (for the treatment of which these textbooks train the student). such 
as scattering, can be. treated quite well using self-adjoint operators; EVMs are not at all 
needed. The reason for this is that in such problems "physical quantities" are involved. 
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xi 

xii 

All these "quantities" (position, momentum, spin, ... ) have a group theoretical 
background [like the correspondence principle; see H. Primas (1983): Chemistry, 
Quantum Mechanics and Reductionism (2nd ed., Springer, Berlin)], and the generators 
of the quantum representations of the transformations associated with these "quantities" 
are self-adjoint operators. But in the treatment of problems like scattering, measurement 
is not involved, and therefore our conclusion regarding the relevance of covariance to 
the scale of a measuring instrument is not at all related to the usefulness of (self-adjoint 
operators or) group theory to other problems. 

'Ibis relation would be a generali:zation of the covariant one of § 2.1 in the same sense 
in which the application of (76) to the pair of (82) generalizes (88). 
Note further that, e.g., the time;>f-flight proposal of Park & Margenau, op. cit., is 
formally a special case of our approach. We can generalize def. 2 to 

V pf.T Tr(pM~ = Ll .\kl Tr(p Nt 

for some subset T of the class of all density operators. If we take T to be the full class 
of all density matrices, our def. 2 results. The smaller we take T, the weaker this rela­
tion becomes. Accordingly a bound in an inaccuracy relation based on this definition 
will also get weaker as T gets smaller. If we take T so narrow that it contains only 
density operators that have equal position and momentum distributions, Park & 
Margenau's proposal results, including a trivia! bound in (98). 

The translation width w [§ 1.2] has a similar drawback. The above restriction of CM 
would imply a restriction of the set of t's in (lOc). Thus this restriction may lead to an 
increase in translation width without really affecting preparation possibilities, just as 
this was the case for scatter. Accordingly, because of the definition of scatter Wand 
translation width w, shift-scatter relations fare no better than scatter relations in this 
respect, although they are an improvement. 
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Consequences 
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In the previous chapter we saw that there are two forms of the UP, in correspondence 

with the fact that there are two types of devices in QM. The inaccuracy principle 

limits measurement, the scatter principle limits preparation. As these principles are 

independent, the separation is necessary fora clear understanding of the UP[§ III.3]. 

But we have as yet not discussed any of the familiar examples and illustrations. The 

')'-microscope [eb. I], for example, is a meter (and thus not an illustration of the scat­

ter principle), butjoint measurement is not involved (and it therefore appears not to 

exemplify the inaccuracy principle). One might be tempted to conclude that there are 

even more forms of the UP1• In the following we shall investigate a number of issues 

concerning fundamental limits allegedly implied by QM, to see to what extent they 

are consequences of the UP. We will see that the aforementioned ')'-microscope argu­

ment is in fact connected to the inaccuracy principle. Diaphragm, "standard quantum 

limit", Wigner-Araki-Yanase principle and interference versus path are also dis­

cussed. Thus the two principles presented in ch. III, are not only necessary but also 

sufficient for a full representation of the UP. 

1 DISTURBANCE INI'ERPRETATIONS 

Now that we have established the two UPs, we shall study several of their applica­

tions in the rest of the paper. The first of these concerns one of the most widespread 

views on the UP, the disturbance interpretation: a position measurement is said to 

"disturb" the object's momentum in an amount (at least) inversely proportional to its 

inaccuracy. The formulations to this effect which we find in the work of Heisenberg 

and others are not substantiated formally: the Heisenberg relation 

does not involve inaccuracy or disturbance, and it has no hearing on this problem 

[ch. 1, III]). Therefore the disturbance interpretation remains to be justified. We 

Ier. E. McMullin (1954): The Principle of Uncertainty (PhD Thesis, Catholic University of Louvain, 
Belgium), unpublished 
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might, for instance, consider whether the amount of ucscatter after a 

0'
3
-measurement is bounded from below, or even increases2 ('1

1 
denotes spin in the 

1-<lirection; analogously for '1
3
). But a '1

3
-meter, e.g. a Stem-Gerlach type device 

[§ 5.2], that normally leaves the object approximately in a u
3 

might as well be 

followed by a magnetic field which tums spin 90 degrees. Then ucscatter would be 

proportional to u
3
-inaccuracy, rather than inversely proportional. Measurement 

transformations therefore do not all satisfy a disturbance interpretation in this sense. 

It seems to be based on the idea that measurements must be intended to approach first 

kind measurements. But that is by no means always profitable [§ 3]. Accordingly the 

disturbance interpretation bas been claimed to be altogether invalid by, e.g., Kraus3• 

We shall see, however, that the impossibility of certain ways of circumventing the 

inaccuracy principle and the scatter principle, respectively, allows us to rigorously 
derive disturbance interpretations for both incamations of the UP. In both cases it is 

important to be precise about the meaning given to 'disturbance', just as it was impor­

tant to be precise about 'inaccuracy' in the derivation of the inaccuracy principle 

[§ III.2]. 

1.1 Disturbance & the Inaccuracy Principle 

Joint measurements may be realized in several ways. One way consists of performing 

two consecutive measurements. Por example, a joint p,q-measurement may well con­

sist of a non-destructive position meter followed by a meter designed to measure p. 

Heisenberg's '}'-microscope [ch. I, fig. I.3] is a non-destructive q-meter. In that 

experiment we may thus perform another measurement on the outgoing electron in 

order to find out the momentum the electron had immediately prior to its reaching the 

microscope. But such a measurement of the electron's initia! momentum is hampered 

by the fact that we do not precisely know how much momentum was transferred in 

the collision with the photon. The quality of the measurement of initial electron 

momentum measurement is therefore limited by the recoil momentum indeterminacy. 

2Anatogous to a disturbance theory by M. Srinivas (1985}: Pramana 24, p. 673 

3K. Kraus (1987): Phys. Rev. D 35, p. 3070 
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Note that, as we want to perform a joint p,q-measurement on the particle's original 

input state, the second meter should be designed to measure the particle's momentum 

as it was just before it reached the q-meter, rather than to directly measure momen­

tum itself. After all, the position meter may well distort the particle's state such that 

the momentum information ends up in quite another degree of freedom. [Analo­

gously, in the above mentioned spin example we would need to measure u
3 

to get 

information on u
1 

before the measurement.] If such a measurement of p-just-before­
the-q-measurement ("undisturbed p") would be possible with unlimited accuracy, the 

joint p,q-measurement thus realized could violate the inaccuracy principle. A QM 

measurement cannot do that, however. Therefore a non-ideal q-meter n with inaccu­

racy óq-n must destroy p-information in an amount at least inversely proportional to 

6q-n. Heisenberg's ')'-tllicroscope, as it was just discussed, illustrates thisi. A more 

realistic example will be treated in § 5.1 

We shall now justify this disturbance interpretation for the finite dimensional case we 

dealt with in eb. III. First we must extend the notion of state transformation accompa­

nying a measurement. This transformation is traditionally assumed to be a measure­

ment of the first kind [ch. l]. The simplest kind of device involving the influence of 

measurement on the object is undoubtedly a filter, a device that selects quantum 

systems. It is represented in the extended formalism by an operation4• An operation E 

is a linear mapping of the set of trace class operators into the set of trace class opera­

tors satisfyingii 

(2a) v sr.q ~ 0 ·, 
P 1 p ~ 0 A Tr(p) = 1 Il'. 

(2b) VP 1 P ~ o A Tr(p) = 1 Tr(E[p]) ~ 1 

The norm Tr(E[p]) corresponds to the probability of the system passing the filter, 

defining an effect M 

(3) V Tr(p M) = Tr(E[p]) {::} M = Et[l] . 
p 

4E. Davies (1976): Quantum Theory of Open Systems (Academie, London); G. Ludwig (1983): 
Foundations of Quantum Mechanics, vol. 1 (Springer, Berlin); K. Krans (1983): States, effects und 
operations (Lecture Notes in Physics 190; Springer, Berlin) 
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If it has passed the filter, the system is in a state E[p]/Tr(S[p]) . 

Note that there are many operations corresponding to a given effect. Two examples 

are 

S[p] = ~ pMt , S[p] = Tr(p MJ Pr (pf fixed), 

both corresponding to the effect M. For a measuring device with discrete outcome 

set, each possible outcome corresponds to a filter: we can always select or ignore a 

system depending on whether it generated a particular outcome in the measuring 

device. Thus an instrument is represented by an operation valued measure (OVM). An 

OVM is, for a discrete outcome set M, a family m = {v m}M of operations, 

satisfying 

(4) VP 1 P ~ 0 A Tr(p) ""' l Tr(vM[p]) =, 1 <=* 11~[1] 1 

with: ·- " 
VM .- k 11 • 

mEI m 
(5) 

When a measurement is performed on an object initially in state p, the object's state 

after measurement is, conditional on the measurement outcome m, given by 11 [p]. m 
The norm Tr(v [p]) of this state is the probability of outcome m. m 

Accordingly the EVM n = {Nm}M representing the determinative aspect of the 

instrument associated with m, is uniquely defined by: 

(6) V Tr(p N ) = Tr(11 [p]) <=* N = vt [l] . 
p m m m m 

We shall denote the EVM that corresponds to a given OVM by the corresponding 

lower case character. Just as an EVM is a generalization of a PVM, an OVM is a 

generalization of a measurement of the first kind. 

Af ter the object system bas left the IJl-meter, we may perform other measurements 

on it. Suppose we apply an apparatus realizing the EVM o = {Ol}L to the object 

after 91. Then the probability of finding o-outcome l, given that we have found m in 

the IJt-measurement, is Tr({v [p]/Tr(v [p])} 0 '· Obviously the joint m,l-distribution m m l' 
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is given by Tr(v m[p] 0) = Tr(p v![O ~). In other words, this experiment consisting 

of two consecutive measurements may also be seen as a realization of the bivariate 

EVM {v![Ol]}. 

If we do not differentiate systems leaving m according to the outcome they engen­

dered, we may represent the outgoing state by vM[p]. This implies in particular that 

the o--marginal of the just mentioned joint measurement is given by vr!'t[o]. Since "M 

is a non-selective operation (i.e. it satisfies vk[l] = 1). vr!'t[o] is an EVM. If o was 

performed to find out something about some PVM f as it was before the m device, we 

should require f- vr!'t[o] rather than simply f- o: in the latter case the marginal 

vr!'t[o] could not be expected to be at all related to f. This means physically that the 

o meter should be designed so as to allow for the action of m on the object state as 

much as possible. The extent to which such a compensation is possible, is given by 

the amount of non-ideality in the relation f - vM[o] for an optimal choice of o. This 

is how disturbance will be concretized. 

Clearly the above discussion only depends on vr!'t[o] being an EVM, and thus on vr!'t 
being a non-selective operation. Accordingly, we formulate the disturbance notion for 

an arbitrary non-selective operation E. We define the amount of f disturbance in a 

device that realizes an operation S, as 

An application of (7) shows the amount of f disturbance in an operation corresponding 

toa unitary evolution to be 0. Indeed this is precisely what one would desire: normal 

Schrödinger evolution does not "disturb" anything. A meter, on the other hand, repre­

sented by m, disturbs f by an amountiii /f . This somewhat involved notion allows us 
.11)1 

to circumvent the aforementioned objections of Kraus5 to a disturbance interpretation: 

unlike Srinivas6 we have made no assumption about the nature of the measurement 

transformation. We have in particular not assumed that the OVM approximates a 

measurement of the first kind. This is necessary because no general 

5Kraus, Qp. cit. (1987) 

6srinivas, op. dt. 
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assertions about quantum measurement processes can be based on a consideration of 

first kind measurements, as these can at best be seen as descriptions of idealized 

measurement transformations [ch. I]. A limit for the f disturbance in a non-ideal e­

measurement (e, f arbitrary PVM's on en) can then be derived from (III.76): 

(8) Jf + J"_n > E. c. Tr(G.) . "Il " - 11 l 

Inequality (8) relates two properties of a non-ideal e-meter: both !~and Je-nare 

functionals of the OVM IJt alone. The IJt-device does not measure f, nor does it in any 

way require an f-meter to be present. Ineq. (8) refers to the implication "Jf we place 

after IJt a device that measures f-before-JJt, then this device cannot be arbitrarily 

accurate", without assuming the validity of its premise. 

An interesting question is whether it is possible to process the object such as to undo 

the state change brought about by the measurement, i.e. whether there is an operation 

x such that X[vM[p]] = p for all p. It is not possible (if nis non-minimal). as follows 

directly from the inaccuracy principle: if it were possible to completely correct the 

disturbance due to some measurement, it would be possible to measure accurately the 

undisturbed "value" of some incompatible observable. Tuis violates the inaccuracy 

principle. Hence, in any theory encompassing an inaccuracy principle, some infor­

mation must be destroyed in the measurement of non-classica! quantities, and conver­

sely non-disturbing measurements are only possible for classical quantities. 

1.2 Disturbance & the Scatter Principle 

Imagine a situation where you want to hit a faraway target using quantum particles. 

By suitably designing the source that emits the particles, and by careful operation of 

its controls, this aim can be approximated arbitrarily well. Now we put a diaphragm 

halfway between the source and the target. The result is that diffraction effects 

prevent the perfect directability of the beam. No matter how sophisticated our source 

is, or how skillfully we operate it, some particles will always miss the target. Thus 
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the diaphragm may be sa.id to "disturb" momentum: no matter what source we place 

before the diaphragm, we can never fully control the object's momentum after it. 

More quantitatively, the controllability of post-diaphragm momentum is reciprocally 

related to the slit's width. this type of disturbance must be present in the diaphragm 

in order to avoid the possibility of using it to violate the scatter principle. 

This reasoning is quite analogous to that in the previous section (cf. fig. l). The dia­

phragm is a preparational device that changes the particle state, an analog of a non­

destructive meter. Then, just as a q-meter limits the possibilities of ascertaining the 

value of p just before the q-measurement when this measurement has taken place, a 

diaphragm limits the possibilities of controlling1 P just after the diaphragm with a 

preparator placed before it. 

The SLP relation [§ m.1.1] can be used to substantiate the disturbance interpretation 

of the scatter principle mathematically. Define position projector Bas in (IIl.6). The 

diaphragm is symbolized by an operation 9[.] (§ 1.1). We assume that the diaphragm 

absorbs all particles outside an interval of width Dq (it is perfect as a B-filter): 

(9) VP 1 P ~ O A Tr(p) = 1 9[p] ~ B 

J.l 
VP 1 P ~ 0 Va W Q)9[p]/Tr(9[p])) ~ Dq 

A diaphragm is nota non-selective operation, and correspondingly et(t] # 1 . There­

fore the normalization in (9) is needed. Now, the overall width W of (III.9) inspires 

the following disturbance measure: 

(10) w!',f:J := inf, I ,~ 0 (wP..J9[p]/Tr(9[p]))) 

Then we can check by substituting the state 9[p] in the SLP relation (111.8), and using 

the right hand part of (9), that 

(11) WIP Dq > 4 À-l,R2\ 
8,{:J . - VJJ 

7Note tbat we use P to denote momentum in a preparative context, whereas p is used whenever 
momentum measurement is involved (cf. § m.3). 
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Tuis relation can be seen as a preparative analog of inequality (8). It can be straight­

forwardly extended to non-perfect diaphragmsiv. We must stress that (11) has no 

hearing on measurement. Both w:,p and Dq are properties of the diaphragm, which 

is not a meter at all. Moreover, they are not object properties. 

Above discussion applied a preparative disturbance concept in the context of a dia­

phragm experiment. A similar application is possible in a multiple slit situation. 

Consider the periodical array of slits of fig. II.2. As we saw [§ m.1.1], the 

Hilgevoord-Uffink relation (III.11) is suitable fora description of this experiment. If 

we, like above, represent the device's action by an operation 9, we can again 

use (10). Instead of (9), however, we characterize the multiple slit by 

(12) VP I P ~ 0 Va w Q,a(9[p]/Tr(9[p])) S a . 

Then we can straightforwardly derive from (ill.11) the inequality 

(13) w:,11 a ~ C(O,P) cf ~ ; ). 

Again, both w:,
11 

and a are properties of the slit device, and not of the object. 

1.3 Disturbance in Amplifiers 

'Disturbance' is sometimes connected with the UP also in another context. It has been 

claimed that the UP implies that an amplifier of photon number must disturb phase8• 

Consider a joint phase-number meter that is optimally accurate: 

llnll 4J = ; . Then we can construct a new device by placing the amplifier 

in front of the meter. This new meter is more accurate as regards photon 

number than the original one: the inaccuracy decreases according to 

lln ~ lln/G (the gain G > 1). If we assume that the amplifier leaves 

phase unaffected, the meter's phase inaccuracy remains unchanged 

8H. Heffner (1962): Proc. lRE 50, p. 1604 [reprinted in J. Wheeler & W. Zurek (eds.) (1983): 
Quantum Theory and Measurement (Princeton University Press)] 
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(ll</J--+ ll</J). Since the new inaccuracies violate the uncertainty principle, 

it is concluded that there has to be some kind of noise in a quantum 

amplifier for fundamental reasons, increasing llefi. 

Of course Heffner based his argument on a relation of type (1). But llefi and lln in 

this argument are both intended as inaccuracies, not as scatters. In the amplification 

process the photon number scatter increases [(fl2N)--+ G2{ll2N)], in contrast to the 

measurement inaccuracy. Therefore the conventional uncertainty principle, repre­

sented by inequalities like (1), is not endangered at all, and there is no reason for any 

amplifier noise on the basis of above reasoning. The inaccuracy principle would seem 

to be more appropriate, and we shall see here whether we can indeed use it. We shall 

discuss the position-momentum case. Again, it is important to be be precise about 

what is meant by 'amplifier'. Consider an operation x, defined by 

(14) x:pi --+ pf = T pi Tl' ' 

with: 
T := al J dx IGx){xl 

Here G > 1 is the amplification factor. As xf[lx)(xl dx] = lá}{~I d~, the 

operation x satisfies 

Moreover, it indeed works as a magnifying glass, increasing the accuracy of a 

following position meter: 

(15') E}:-st[m] = ~E}:-m for all m such that }'. - m . 

But, as x is a unitary transformation, it involves no disturbance in the sense of either 

§ 1.1 or§ 1.2. A x device "attenuates" momentum noiselessly9• 

Thus, if we characterize 'amplifier' by (15) or (15'), the claim that a position ampli­

fier must disturb momentum, can only be justified if 'disturbance' is given a much 

weaker content than in § 1.1 and § 1.2. We may, however, also restrict the definition 

9c. Caves (1981): Phys. Rev. D 23, p. 1693 
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of 'amplifier', so as to render this notion inapplicable to (14). Consider, for instance, 

supplementing the characterization by an 'unbiasedness' requirement, viz. 

This is sufficient to disqualify (39). Such requirements do, however, not seem to be 

inherent in the concept of 'amplifier'. Moreover, it is unclear how (even if (14) is 

excluded) a violation of the inaccuracy principle is to be brought about. Thus 

Heffner-type reasoning appears unsuitable to establish quantum amplifier constraints. · 

We may also look at the case where both position and momentum are amplified. 

Model calculations10 indicate that there is in such amplifiers noise of the type we called 

'disturbance' in § l. l. 

1.4 Discussion 

In fig. 1 the two disturbance interpretations are symbolized. The fact that the first 

preparator c.q. the second meter need not actually be present for the disturbance 

notions [cf. (7) and (10)] to make sense, may be expressed by speaking of "counter­

factual" scatter c.q. inaccuracy. One may wonder whether measurement does not also 

lead to a preparative disturbance of type (10). This is not necessitated by any 

fundamental law, however11• We can devise an OVM that realizes a good position 

measurement and leaves the object in a state with sharp momentum [See the spin 

example in the opening of § l]. More generally, it can be seen that there is no 

difference as regards possibilities of preparing Q or P after a q-measurement. Simi­

larly there is no difference in the possibilities as regards measurement of undisturbed 

[in the sense of § 1. l] q and p after a diaphragm-like device. Hence there is no reci­

procal relation between q-measurement accuracy and P-scatter after measurement 

10H. Haus & J. Mullen (1962): Plrys. Rev. 128, p. 2407; Y. Yamamoto & H. Haus (1986): Rev. 
Mod. Plrys. 58, p. 1001 

11Kraus, op. cit. (1987) 
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fig. 1 

(a) (b) 

Symbolic representation of the two types of disturbance interpretations of 
the uncertainty principle: 
a) preparative disturbance limits the possibilities of controlling post­

preparator quantities through pre-preparator manipulations on the 
object; 

b) determinative disturbance limits the possibilities of fature realization 
of pre-measurement observables. 

The dashed devices indicate the "counterfactual" character of these inter­
pretations. 

(JLoontrollability), and there is no reciprocal relation between diaphragm width and 

possible p-measurement inaccuracy. There are no scatter-inaccuracy uncertainty 

relations. 

The fact that there is no law from which scatter-inaccuracy complementarity as a pro­

perty for all devices can be derived, does not imply that there are no devices for 

which it holds. If an OVM satisfies, e.g" 

(17) v~[f] -f , 

then (f = {Fk}iJ 

v~[F.J = ~'EK Àkk, Fk' ' 

so that 

The Y-distribution (Y = ~EK k Fk) after measurement is a smeared version of the 
Y-distribution before measurement. Therefore, if a non-ideal e-metef satisfies (17), 
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we can speak of a preparative Y-disturbance that satisfies an inequality like (8). 

Indeed it is quite plausible that the action of the '}'-microscope is such that it satis­

fies (17), that there is a preparative disturbance reciprocally related to its resolution. 

But the requirement (17) is not necessitated by any QM law, so that the '}'-microscope 

is in this respect not representative of QM measurement devices in general [see 

further § 5]. 

2 WIGNBR-ARAKI-YANASE ~TRICT10NS ON MEASUREMENT 

In the previous section we demonstrated that the possibility of performing a joint 

measurement by doing two consecutive measurements, leads to a limitation on the 

working of non-destructive meters. Analogously, we show in this section how the 

inaccuracy principle affects a scheme where conservation laws are utilized to effect a 

joint measurement. In this way we can reinterpret the limitations on the accuracy of 

measurements in the presence of conservation laws, like those derived by Wigner12, 

Araki and Yanase13 (W AY) and by others14, as a consequence of the UP rather than as 

a restriction of quantum measurements in addition to the UP. Our derivation is not 

based on a particular model or on an analysis of the details of the measuring process. 

The general scheme in this section is that of an object 0 interacting with a device À 

such that some operator C of the total system commutes with the Hamiltonian. In the 

following we shall use the law of conservation of momentum. The results can, how­

ever, be readily generalized to cases where some other (possibly non-additive) quan­

tity L • = f (L,L') is conserved. 

12E. Wigner (1952): u.f. Phys. 133, p. 101 

13H. Araki & M. Yanase (1960): Phys. Rev. 120, p. 622; M. Yanase (1961): Phys. Rev. 123, p. 666 

14E.g. P. Busch (1985): J. Phys. A 18, p. 3351; M. Omwa (1990): "Does a Conservation Law Limit 
Position Measurement ?", Harvard University preprint HUTP-90/B002; A. Shimony & H. Stein 
(1979): Am. Math. Mon. 86, p.292 
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2.1 WAY Interpretation of the Inaccuracy Principle 

Consider the case where the apparatus A is a position meter with EVM a. and accuracy 

óq-a . Suppose the momentum distribution in the initial state of the apparatus to be 

known. We may then measure, after the a-measurement is completed, the momentum 

of the total system. Because momentum is conserved, and we know the initial 

momentum distribution of the apparatus, we can use the results of this last 

measurement to gain information about the momèntum of the object before the 

a.-measurement. If the distribution of the initial À-momentum is sharp, we can find 

out the object's pre-measurement momentum with the same sharpness. More gene­

rally, we are dealing with a non-ideal 0-momentum measurement procedure. The 

accuracy of this indirect momentum measurement is characterized by (a2P).: the 
1 

initia! apparatus momentum dispersion15• Because the inaccuracy relation (Ill.98) 

cannot be violated in this way, a relation like 

holds, its precise form depending on the definition of óq-a . In other words, a small 

óq-a requires that {a2P)i be big, so that momentum conservation is of little use in 

the determination of initial object momentum. 

We can easily devise a model illustrating (19). Imagine that Á is constituted of two 

sub-systems: an ancilla B and a meter C that measures q - qb ideally (8- and 

C-observables are denoted by corresponding indices). The operator Q - Qb , 

corresponding to this observable, commutes with total momentum P + Pb + Pc so 

that there are no restrictions to the precision with which q - qb can be measured. A 

suitable (O+B)+-C interaction Hamiltonian can easily be given16: we may take it to be a 

function of Q-~ and some C-operator commuting with Pc [cf. § 5]. The initial 

15cf. S. Personick (1971): Bell Syst. Techn. J. 50, p. 213 and § lli.2.6 

16ozawa, op. cit.; D. Bobm {1951): Quantum Theory {Prentice Hall, Englewood Cliffs N1), ch. 22 
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apparatus state p' is known. A q - qb measurement can be regarded as a non-ideal 

measurement of 0-position q with non-ideality determined by the initial scatter in 

Q., [ch. lil]. Thus. using (96), 

(iQ> )2 = (t:..2n ). > tl(.ó.2(.P. + P '1). 
q-tll ....., l - b c' l 

and relation (19) is satisfied. lf C effects an non-ideal q - qb measurement, its non­

ideality as a q-meter can only increase. 

2.2 WA Y Interpretation of the Scatter Principle 

In order to make explicit that there is a scatter analog of the reasoning leading 

to (19), despite the fundamental differences between scatter and inaccuracy principle, 

we add the following application of the scatter principle. Of course the result can also 

be derived straightforwardly from the Robertson relation (III.2) using momentum 

conservation [(P + P\ = (P + .P')~. 

Consider a source Á emitting objects 0, with position dispersion ( .ó. 2Q) f . Again total 

momentum is conserved, this time in the preparation process. Assume that the initial 

0+.A momentum distribution is known. We may then measure, after the preparation is 

completed, the .+-momentum accurately. We can then select objects with a certain 

momentum by using the .+-momentum result as a criterion, since knowing 

.+-momentum combined with knowledge of the initial 0+ Á momentum can be used to 

predict 0-momentum. If the pre-preparation 0+.A momentum distribution was sharp, 

the final 0-momentum distribution thus obtained will also be sharp. More generally, 

it will have a dispersion equal to (.ó.2(P + .P')} .. The scatter principle must hold in 
l 

the 0-state, conditional on the measured .+-momentum value. Becau.se the measure-

ment on Á did not directly influence the object, it cannot have changed the average 

variance ( .ó. 2Q) f • This leads to 
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3 TRAJECTORY & SQL 

Yet another intuitively plausible consequence of the uncertainty principle is the ban 

quantum mechanics imposes on 'trajectory'. Indeed the apparent inability of quantum 

mechanics to cope with Wilson chamber tracks motivated Heisenberg to write bis 

1927 paper17. More recently, this issue bas been reopened as a consequence of the 

ever-increasing demand for accuracy in gravitational wave detection experiments18. 

In principle position monitoring involves continuous measurement19• But since that is 

mathematically not easy to mode120, we (like most others) will restrict ourselves to 

two successive position measurements. Consider a mass m moving freely between two 

position measurements that are separated by a time interval -r (fig. 2). The interaction 

of the mass with the first meter is assumed to be finished by t=O, whereas the second 

one does not interact with the mass until after t= r. The model can also occur in the 

form of one device making repeated measurements on the same system. Then: 

(21) Q -+ Q(T) : = UJ..+r Q UQ-fr = Q + in p . 

Here UQ-fr generates the system's evolution in time. For this case we have the scatter 

relation21 

2 2 [: ... ]
2 

• (22) {A Q<-r>) (A Q} ~ """ 

17w. Heisenberg (1927): Zf. f. Phys. 43, p. 172 [See also W. Heisenberg (1969): Der Teil und das 
Ganze (Piper, Munich).] 

18R. Bondurant (1986): Phys. Rev. A 34, p. 3927; V. Bragi.nskii (1988): Sov. Phys. Usp. 31, p. 836 

19See e.g. G. Prosperi (1984): in Quantum probahility and applications to the quantum theory of 
irreversihle processes (ed. by L. Accardi, A. Frigerio & V. Gorini; Lecture Notes in Mathe­
matics 1055, Springer, Berlin), p. 301; V. Belavkin (1989): Phys. Lett. A l40, p. 355, 359; 
M. Ozawa (1989): Squeeud (J non-classical light (ed. by P. Tombesi & R. Pike; NATO ASI B 190; 
Plenum, NY), p. 263 

20But cf. W. Edelstein, J. Hough, J. Pugh & W. Martin (1978): J. Phys. E 11, p. 710 

21J.-M. Levy-Leblond (1972): Am. J, Phys. 40, p. 899 
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1 2 

1 {cl\ [do:,.]}A •2 {cP2[df3,.]}B 

t = 0 t=• 

Symbolic representation of measurement setup. Two consecutive non-ideal 
q-measurements are pelformed. The OVM's of the devices are indicated. 

As in the Heffner reasoning [§ 1.3], the l::l. 's in (22) are often not distinguished from 

measurement inaccuracies, so that (22) degenerates into 

The further (natural) assumption that the two meters are identical implies 6q(r) = 6q. 
Thus 

Tuis absolute lower limit to position tracking inaccuracy, here somewhat caricaturally 

presented, is called the "Standard Quantum Limit" (SQL) for position monitoring. In 

above form, its derivation is untenable. There is no rigorous connection between scat­

ter and inaccuracy. Ineq. (22) cannot be used for statements about measurement accu­

racy [ch. I, ID]. There bas been a debate about whether22 or not23 more subtle argu­

ments can prove an SQL. 

22c. Caves (1985): Phys. Rev. Lett. 54, p. 2465; Bondurant, op. cit.; Braginskii, op. cit.; Caves, op. 
cit. (1981) 

23H. Yuen (1983): Phys. Rev. Lett. 51, p. 719; (1984): ibid. 52, p. 1730; S. Tsyplyaev (1989): Sov. 
Phys. J. 31, p. 699; Ozawa, op. cit. (1989) 
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As mentioned above, the SQL discussion was instigated by the need for efficient 

weak force detection schemes. If we want to detect the presence of such a force, we 

may look at the deviations of measurement outcomes from their undisturbed values. 

This works best when the scatter in the outcome distributions is small. We therefore 

want the scatter in the second meter's outcomes to be small, in order to be able to 

detect the presence of a disturbing force during the time r. Caves24 assumes that the 

inaccuracy of the first measurement fq-+m
1 

[see (14)] is at least as large as the 

X scatter in the outgoing state: 

On the basis of (24) and the assumption of covariance of the meters [ch. 1m, Caves 

derives a lower bound on the scatter in the results of the second meter (ll. 2/J'): 

(112/J') = (.6.2Q('T))f + (fq-+m/ = 

= (.6.2Q('T)) f + (fq-+m/ ~ (.6.2Q('T)} f + (.6.2Q) f ~ ~ 

Thus he has derived an upper bound for weak force detection efficiency. Unfortu­

nately, as noted by Oz:awa25, Caves' assumption (24) need not alwys hold; there is no 

genera! relation between measurement accuracy and scatter after measurement [§ 1]. 

lndeed measurements have been proposed [e.g. by Yuen and by Tsyplyaev26] in which 

Caves' assumption (24) is violated. 

That there is no fundamental limit on weak force detection efficiency, is indicated by 

the following reasoning. Consider an extremely schematic model (fig. 3), where we 

have a preparator that leaves the object in state pf at t=O. The object is allowed to 

evolve until t= r according to a Hamiltonian, which in the absence of the force is 

given by H . Now, a natura! way to detect a force is through deviations in the 

24eaves, op. cit. (1985) 

2Sozawa, op. cit. (1989) 

26Yuen, op. cit. (1983,1984); Tsyplyaev, op. cit.; Ozawa, op. cit. (1989) 
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fig. 3 

tr -> 
A 

m 

t=O 

Symbolic representation of measurement setup for weak force detection. A 
meter measures m +- c ( c is the PVM of C) and a preparator prepares the 
particles in state Pr such as to have a small (L\2C(r})r. 

expectation value of some operator, say C (with PVM c). Suppose the disturbed 

Hamiltonian is given by H' = H + 1J V . The term 1J V represents the force. Then, in 

lowest order: 

Eq. (25) indicates that, if Cis chosen such that the second term does not vanish, the 

detection efficiency is determined by the measurement accuracy óc(r)-+m(r) and the 

pre-measurement scatter ( L\ 2C( r}) î Both 5 C( r)-+m( r) and ( L\ 2C( r)) f can be made 

arbitrarily small. Note that for this type argument it is not really relevant whether the 

first device is a meter, or whether the second is non-destructive. We have only taken 

into account the preparator-side of the first and the detector-side of the second. 

Corresponding to this, in this argument only the state Pr and the EVM m were invol­

ved. If we want to use a scheme in which repeated measurements on the same object 

are made (analogous to fig. 2), the meter should be constructed so that the C scatter 

at the time T' of the next measurement on the object is small. Hence, it should 

generate a post-measurement state with sharp C(r') ,rather than one that gives an 

identical value in an immediately repeated measurement [i.e. a state with sharp C(r)]. 

Since the latter condition is characteristic of a measurement of the first kind, and in 

general incompatible with the condition that C(r') is sharp, we have here a case 
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where we do not want to approach a measurement of the first kind. A measurement 

of the first kind is not the optimal apparatus for weak force detection. 

In Yuen-Tsyplyaev type schemes the first meter, an inaccurate position meter, does 

not leave the object in a state such that ( /::,. 2Q) f is small, but is clevedy chosen so as 

to leave the object in a state such that ( /::,. 2Q(r>) f is small, analogously to the above 

reasoning. Then the results of the second meter may show little dispersion, enabling 

efficient weak force detection. The OVM of the proposals by Yuen and by Tsyplyaev 

represents a non-destructive device, fundamentally differing from a first kind measu­

rement. 

But can such schemes really be considered to monitor position ? The smallness of the 

variance in the results of the second measurement that arises in these schemes is to a 

large extent a creation of the first measurement. What we are looking at is more a 

track that we made ourselves than it is the "undisturbed" track: we are controlling the 

object's position rather than meosuring it. In other words, true 'position monitoring' 

seems to require an interpretation of the sequential measurements of fig. 2 as one 

joint measurement27 of the observables q and q(r) on the input state p . . Until now we 
1 

assumed implicitly that the first meter measures q on p. non-ideally, and that the 
1 

second one measures non-ideally q on P(.1') [~ q(T) on p~. 

We shall now formalize this reasoning, using the technique of § 1.1. The first meter 

has OVM VJt1 = {tP1[da,.]}A on the field~ on outcome set A. The second meter 

bas OVM VJt2 = { tPiCd/1,.1}8 on the field 5s on outcome set B. The state evolves 

according to 

upon which the second measurernent is performed. As argued above, 'monitoring' 

corresponds to requiring q(r) -+ m
201 

on the undisturbed state p
1 

, rather than 

27This can, e.g., be done through extension of the Hilbert space: A. Holevo (1986): Theor. tJ Math. 
Phys. 65, p. 1250 (cf. also ch. III]. 
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q - m2 on the disturbed state p~'T') (i.e. q(r) - Uo!.r m2 Uo-+r on p~. We use the 

notation 

This new requirement means physically that the second meter should be designed such 

as to compensate for the modification of the object's state due to the first meter 

[§ 1.1]. Since the observables involved are incompatible, this compensation can never 

be complete. This assertion constitutes the disturbance interpretation of an inaccuracy 

inequality these two observables. Such an inequality follows from (III.98), analo­

gously to (8), because the q,q(r) case is mathematically identical to the position­

momentum case [with the substitution îi,-1 li.r/m , see (21)]. We have 

(27) 

We end with a special case. lf 

any m2 such that m
2 

- q satisfies q(r)- m201 . Therefore, if we have one position 

meter that makes repeated measurements on the same object (i.e. ;
1 

= ;
2
) and satis­

fies (28), we can regard its outcome both as a (non-:ideal) position measurement and 

as a (non-:ideal) measurement of the position as it would have been were the previous 

measurement not performed. More precisely, its POVM satisfies both m
1 

- q and 

m101 -q(r), with m101 := fl[IR,Uo!.r m1 Uo-+r1· Moreover, under condition (28) 

the determinative q('T) disturbance results in preparative "smearing", in extra scatter 

in the results of the next measurement [cf. (17)]. If we arrange it so that the two non­

idealities are equal [t5q _ mi = t5q('T) _ m
101

], we get from (29): 

(27') 

Yuen-Tsyplyaev type schemes do not satisfy (28), and therefore may violate (27'). 
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The possibilities of position monitoring are indeed limited. An SQL does exist, if we 

interpret 'position monitoring' as referring to the undisturbed trajectory. Then we 

must take the disturbance due to the first measurement properly into account, and we 

can derive (27). Ineq. (27) indicates how successive measurements lead to a "loss of 

memory" in the object system: as more and more q measurements ali'e performed on 

it, it becomes harder and harder to find out the properties of the original input state28• 

Similar results can be expected to hold for the measurement of any quantity that is 

not conserved. This result does not contradict the non-existence of a quantum bound 

to weak force detection efficiency. That problem is quite different from position 

monitoring. Our "SQL" was derived for the latter, and it does not affect the former. 

Position monitoring is not the optimal way to detect the presence of a weak force. 

4 1NTERFERENCE VERSUS PATH 

One of Bohr's most famous illustrations of complementarity is the double slit [ch. Il]. 

One way of looking at this experiment, via the Hilgevoord Uffink relations29, was 

already given in § 1.2. The claim that the UP makes it impossible in this experiment 

to find out (with certainty) through which slit the particle has passed without (com­

pletely) wiping out the interference pattern, can also be investigated in another way, 

via the inaccuracy principle. 

Assume that the vectors 17/J) and l 'l/J2) symbolize two different paths of the particle. 

For sake of simplicity we shall take these states orthonormal. We are here dealing 

with a superposition of the form al 'lf;
1
) + ,8expG17) l 'l/J

2
). In the double slit the 

parameter 'f1 is the consequence of a difference in path length, and it varies as the 

detection point varies along the screen. Other interference experiments, most notably 

28cr. Belavkin, op. cit. 
29Cf. J. Uffink & J. Hilgevoord (1988): Physica B 151, p. 309 



Consequences 129 

neutron interferometry, can also be dealt with in this way30 • We have two extreme 

situations: 

a) We want to know precisely which path the particle took. Then we should 

measure the PVM e = {E
1
,E

2
}; E.:= 11/1.)(1/1.I . 

J J J 

b) We want to get a perfect look at the interference pattem. In that case we 

will want to measure the PVM f={F"F_}; F±:= le±He±I; 

1 e±> : = t./2<l 1/J1> :1: l "12» . 

The PVM's e and f are incompatible. Hence the inaccuracy principle is applicable, in 

its original form as well as in the disturbance form. The two demands a) and b) can 

be jointly met only at the expense of some non-ideality. 

The relations between this treatment of the double slit, and that given in § 1.2 may 

not at first be obvious. In the latter case, however, we were concerned with uncer­

tainty of prediction (i.e. scatter). We wanted on the one hand to characterize the 

statistica! distribution of outcomes over the different interference peaks, and on the 

other hand characterize the uncertainty about through which slit the particle went 

based on knowledge of the initial state ("' position scatter). Accordingly, in § 1.2, we 

could only study the effect of improvement of preparative knowledge of one variable 

on the quality of preparation of the other. Here, however, we intend to use a 

measurement to really find out which path it took, without considering the initial 

state. Therefore we can here consider the case of a true joint measurement of path & 

interference. Whereas in§ 1.2 we looked at the double slit from the preparative point 

of view, we consider it here in a determinative light. 

30Uffink & Hilgevoord, op. cit. (1988); W. de Muynck & H. Martens (1990): Phys. Rev. A 42, 
p. 5079 
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5 MEASUREMENT PROCFSSES 

In ch. III we already did some work on the connection between non-ideality and the 

measuring process. We shall continue here, in preparation of some concrete schemes 

we will treat shortly. Our treatment will now include consideration of the state after 

measurement. In ch. III we compared our approach to estimation theoretic methods, 

and chose the Heisenberg picture. Here we shall take traditional textbook measure­

ment theory as a starting point, and accordingly we will use the Schrödinger picture. 

We start with a measuring device J., initially in state 1 Ç) e 3'. The object 
a 

observable 3 to be measured (non-ideally) is the PVM of Z with eigenstates 

lzt) 
0 

e 3. Traditionally31, we assume the interaction to effect a transition 

(29) lzt) •I Ç} -i lzt) •I {,) . o a o , a 

Such a transition occurs, e.g., with an interaction Hamiltonian that is a function of Z 

and some apparatus operator, either if Z is conserved or in the impulsive interaction 

approximation 32• Then. we assume the pointer states 1 et> a to be orthogonal (perhaps as 

a consequence of "macroscopie distinguishability"). Reading of the corresponding 

PVM on Jr' leads toa measurement of the first kind, with OVM <ê = {em}M, 

Thus ais precisely measured. In case of degeneracy, a generalization of (30) holds33• 

Of course, as emphasized before, such a measurement description is hardly realistic. 

The system directly interacting with the object is never "macroscopie", so that ortho­

gonality of the 1Çt)
8
's is questionable, as is the possibility of reading out a PVM on 

the ancilla. Dropping both requirements, we get an OVM m = {11m}M on 3, 

31J. von Neumann (1932): Mathematische Grundlagen der Quan1enmechanik (Springer, Berlin) 

32See e.g. Bohm, op. cit. (1951) ch. 22 

33G. Lueiiers (1951): Ann. der Phys. 8, p. 322 
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where o' = {O~}M is the read-<>ut EVM on R'. The EVM n = {Nm}M on R, 
corresponding to (31), is then given by 

with 

Therefore reading of an arbitrary pointer observable o leads to a non-ideal 

rrneasurement with matrix {>.ml}. The amount of non-ideality is related to the 

distinguishability of the states 1 e; a by means of o. The choices leading to (30) 

represent simply one optimal choice. Transformation (31) leaves Z-eigenstates intact 

[11~[3] = 3]. We may generalize (29) to 

so that (31) changes into 

Eqs. (32) still follow if we only require . either ( e,, 1 0 1 e,> = 0 if l # t or a m a 
0 ( ,,, 1Çl)0 = 0 if l# l'. The first case is realized when the pointer states 1 et> a are 

orthogonal, and o is the corresponding PVM. Then the state after measurement 

contains only Z information about the initial state: every EVM {Mk}K measured after 

~ can be seen as a non-ideal measurement of Z before % 

(33) Tr(Mk vm[p]) = El o<CtlMkl c,> 0 (z,lplzJ 0 .<e,1om1 e,>. 
t 

All information about other observables than 3 bas been obliterated. Subsequent 

measurements will provide us with no additional information about the undisturbed 

object. This case is not very interesting. 
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In the second case, even though 3 is not left untouched, J is undisturbed. The 

;r-information has only been transferred into another variable. We can measure 

;r-before-'Jt with arbitrary accuracy. This scheme is, however, still not the most gene­

ral. In (29') we assumed that, starting from a z...eigenstate, the final O+Á state is 

unentangled. This will not always be true, as in case of degeneracy 

may occur. General statements about characterizations of the measurements in terms 

of non-ideality become impossible. In special cases, however, the measurement can 

even then be non-ideal, e.g. due to symmetries in the interaction Hamiltonian [see 

§ 5.2]. 

In view of (8), however, we are also interested in the disturbance of observables 

other than the one we measure. Therefore we shall again consider the pair of 

observables J and t) we discussed in § m.2.6. These correspond to self-adjoint 

operators X and Y on en with complete sets of eigenvectors <lxk) 
0
)K and <IYk) )K 

(K = {O, ... , n--1}) that satisfy 

(34) (xtly...) = n -f exp(i~) . o ... o n 

For a non-ideal J meter m ['Jt as above, substituting X for Z], (8) reads 

(35) !~ + J
1
_m ~ log(n) . 

For sake of definiteness we shall require that t)-before-'Jt can be measured through t): 

(36) 
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Eq. (36) is automatically satisfied when the OVM mis covariant, i.e. if 

v s 11 est P s 1 st = 11.ff + 1nlP1 . pxmx rx m 

with: 

This is equivalent to 

(37) l ({[k+ 111> 0 ( '[[k' + 1]] 1 a ( e[[k' + 1]) 1 e[[k+ in> a = 

133 

= S)(k)o((k,1s! .<ek,lek>a 

Note that in case of (36), analogous to (18), the Y distribution after m measurement is 

a smeared version of the Y distribution before measurement, leading to preparative 

Y disturbance ("excess Y scatter") equal to the determinative t) disturbance. Deter­

minative t) disturbance is here the accuracy a measurement of n after completionn of 

the interaction achieves with respect to t)-before-m. Using (37), the non-ideality 

matrix for (36) can be seen to be 

(38) µik: = 0 {YLI 11r!t[lyk) 0 (Ykll IYL)o = 

= EmEKn-t .<eolem)aexp(~)o((olYk)o(ykl(m)o (l,kEK). 

If l (k) 0 = lxk) 0 r~ 11r!t[1:1 = ~; viz. (29)], this reduces further to 

(38') µ .... = E EK n-texp(21f [t-k]m) ({
0
1 { ) (l,k E K). .... m n a ma 

From (38') we see that the t) disturbance is related to the Fourier transform of a 

column of the inner product matrix ({ol e ) . Thus [cf. § m.1.2] disturbance is a ma 
reciprocally related to the distinguishability of these apparatus states. 

Because of the analogy with the position-momentum case, the above treatment also 

characterizes the 1-1nicroscope34• Given that the electron is in state lq) , the 
0 

34J. Hilgevoord & J. Uffink (1990): in Sixty-1wo years of Uncertainty: Historical, Philosophical and 
Physical Inquiries into tlu! Foundations of Quantum Mechanlcs (ed. by A. Miller; Plenum, NY), 
p. 121 
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scattered photon arrives in a wavepacket 1 e ) at the photographic plate. The q a 
device' s resolution is then determined by the distinguishability of 1 e ) and 1 e , ) in q a q a 
relation to the distance 1 q - q' 1 • Covariance of the microscope's OVM follows from 

momentum conservation, if the light incident on the electron is monochromatic (and 

therefore homogeneous in direct space). Thus conditions analogous to the above 

(i.e. (36) and v~u] = ~) actually hold in the '}'-microscope case, and we may assume 

that determinative momentum disturbance is here also reciprocally related to the 

distinguishability of the pointer states 1 { ) • Moreover, there is also be a preparative q a 
P smearing in the microscope, reciprocally related to its resolution: But, as noted 

above, in this latter respect the microscope is not representative of measurements in 

general. 

5. 1 Optical Kerr Effect 

As a more concrete illustration of the above, we shall treat the non-destructive photon 

number determination using the optical Kerr effect. This effect is contained in the 

third order non-linear susceptibility xc 3>. This contributes a term35 

to the energy of the electro-magnetic field. If we restrict ourselves to two modes, S 

and P, with frequencies w
5 

and wp , we can rewrite (39) to 

(40) H< 3> = H5 + HP + H
1 

, 

with 

(4la) 

(4lb) 

H5 = Dwi [XC 3> (w5;w5,-w5,w5) a~a5a~a5 + s pennutations] ; 

HP = Dw.ff [XC 3> (wp;wp,-wp,wp) a/.°i>a/.°i> + 5 pennutations] ; 

35N. !moto, H. Haus & Y. Yamamoto (1985): Phys. Rev . .A 32, p. 2287; Y. Yamamoto et al. (1990): 
Progr. in Opt. (ed. by E. Wolf; North Holland, Amsterdam) 28, p. 87 
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L 

M· 

fig. 4 Kerr QND measurement of photon number. A signa/ beam S is mixed with 
a probe beam P into a non-linear medium. The outgoing probe beam is fed 
into a homodyne detector. N is a delay, B's are beamsplitters, M's are 
mirrors, D's are detectors, and L indicates the homodyne local oscillator 
beam.] 

3 
D = 16 Vt:2 

[V is the quantization volume, and t: is the dielectric constant; "P and a5 <af, and a~) 

are the respective boson annihilation (creation) operators.] Normal ordering of the 

permutations gives extra terms 1 , af>"P and a~as we shall ignore: they merely shift 

the frequency of the modes. Thus we can simplify (40) into 

(42) 
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with 

<xp , NP and x1 are defined analogously). 

In (39) we can see how the Kerr effect can be seen as an intensity-dependent refrac­

tive index. Accordingly, the optical path length of the probe beam depends on the 

intensity of the signal beam. The Kerr effect brings about a correlation between the 

number of photons in the S mode and the phase of the P mode. A determination of 

the probe beam phase would then allow the number of photons in the signal beam to 

be calculated. As these photons need not be absorbed, the measurement is non­

destructive. A device in which the Kerr effect is thus utilized is sketched in fig. 4. A 

laser beam is split in two, after which one sub-beam (P) is coupled into a non-linear 

medium. The signal beam (S), upon which the measurement is to be carried out, is 

also fed into the medium. Afterwards the P-beam is mixed with the other laser sub­

beam (L), to perform a homodyne detection. Homodyne detection36 may be consi­

dered a measurement of "position" Q = t./2(a +at) on the P-mode. We neglect 

losses in the devicev, so that we have a true 'Quantum Non-Demolition' (QND) 

measurement. 

We shall at first neglect the first two terms ('self-phase modulation') in the inter­

action (42) (i.e. Xs = Xp == 0). The initial P-state is the coherent state37 1 flip· If we 

take an initial S-state ln)
8

, it is not difficult to verify that after a time r = itc of 

interaction, the S+P state becomes 

(43) ln) 8•lfJ>p -i ln) 8•1/1nexp(-irwp>)p exp(-irw8n) 

with 

36H. Yuen & J. Shapiro (1978): IEEE Trans. Inf. Th. IT-24, p. 657; (1979): ibid. IT-25, p. 179; 
(1980): ibid. IT-26, p. 78. 

37See e.g. R. L<>udon (1983): The QuanlUm Theory of Light (2nd ed" Oxford University Press) 
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Thus the Kerr-device is of type (29). The states 1 fJ ) play the role of the pointer 
n 

states. Hence performance of any measurement on P would give information about 

Ns. The homodyne detection we perform can be calculated to lead to the EVM 

(44) P(dq) = Ln ln) 5(nl >. (dq) ; >. (dq) = 1 (fJ lq) 12 
dq . n n n 

The homodyne detector is only sensitive to the relative phase of P and L beams. 

Therefore the phase irwp , which is present in both beams, is not involved in (44). 

Since, for convenience, we would like 

we require that 

(45) /3 = il/31 

Then, as is easily seen, 

(46) (q)n := f \(dq) q = ./î 1/31 sin(r4x1n) 

If r4x
1
n < 1 , the meter works approximately linearv1, and (q)n ~ 4./2 l/31 rx

1
n. 

Condition (45) makes the measurement (in first order) unbiased, hut it also causes the 

linear regime (the area of maxima! sensitivity) to be applicable for low photon 

numbers. The condition can be fulfilled by varying the relative optica! distance of P 

and L beams, by adjusting the delay V. 

In the linear regime 

(47) >. (dr) ~ (21f"q 2f-t exp( -~2) dr 
n N 2qN 

with 

r = q/[4./Ï 1 /31 TX1] 

1 
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Husimi distribution of a 
coherent state, squeezed 
by a Kerr QND measure­
ment. The squeezing redu­
ces N scatter at the cost of 
<P width. Pnput state 1 a), 
a = 3./2; Kerr device with 
rx1 = 0.002 and f3 = iooi,· 
squeezing conditional on 
measurement outcome 
q0 = 12,' Husimi distribu­
tion ( 11 Pi'Y} is plotted, 
with 7 = +Jl(q + ip).J 

The (unnormalized) S-output state, conditional on the measurement outcome q, can 

be calculated to be 

(48) 1"1)5(1/11 - K[dq,l'efl) 5(tPl1 
with 

.- A 11P} 5(1/llA t dq q q 

A := E (qlf3) In). 5(nl . q n n 

The transformation K defined by (48) is seen to satisfy the requirements of an OVM 

[§ 1.1]. If we look at the N-distribution of the state after measurement conditional on 

the outcome q
0

, we see that it is related to the distribution before measurement by a 

factor 1 (ql fJ. ) 12 • Thus, if the original distribution is wider than the Gaussian of this 
n 

factor (e.g. if the input state is coherent), the Kerr-device has the effect of narrowing 

it. This is called squeezing (fig. 5). 

We are, in view of the foregoing sections, more interested in the distutbing influence 

on the optical phase of the S-mode. As a description of phase, we will choose an 

EVM introduced by Lévy-Leblond38,vii: 

(49) . - E (211f-+ exp(i</Jn) 1 n) • 
n 

HJ.-M. Levy-Leblond (1976): Ann. of Phys. 101, p. 319 
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Note that the "states" 1 efl) satisfy a closure relation 
1r 

(50) f defJ 14'H4'1 = 1 , 
-'lr 

but are not orthogonal: 

(51) (4'14'') = }1r+t6([?-efJ']mod21f)+hcot(~) 

They are eigenstates of the shift operator e: 

139 

1f 

(52) elefJ) = exp(iefJ)lefJ) ; e = I:n ln)(n+ll = f d<Pexp(iefJ) lefJ}(efJI 
-'lr 

Substituting 1 <P) (<PI into the conjugate of (48), and averaging over q gives 

(53) x:t[IR,lefJ)8(efJldefJ] = deflf dqA: 14') 5(4'1Aq = 
'1r 

= f defJ' Jl{defJ,<P'> l<P'>s<<l>'I 
-11" 

with 

(54) Jl{d<P,efJ') = ~ I:.ce7l exp(ik[efJ - ef/ + rw8]) (,8lexp(4irx1kN)IP) . 

In the linear regime, states have phase distributions involving only low-frequency 

components. Therefore only terms with low k are important in (54), so that 
1 

(55) /l{defJ,<//) ~ ~ 03[-21.81 2rxl + trws+ !P;jf.-; exp(-sl.81 2xf r)] . 

Here 0
3 

denotes the third of Jacobi's theta functions 39 [fig. 6]. Thus both (54) and (55) 

are covariant: they only depend on <P - <P'. Therefore the amount of non-ideality can 
be characterized by the width of a single probability distribution [ch. III]. Note 
further that (an analog of) (18) is satisfied. There is both determinative and prepa­
rative disturbance, proportional to the width of the distribution (54) or (55). A 

39see e.g. E. Whittaker & G. Watson (1927): A Coune qf Modern Analys/$ (4th ed.; C.ambridge 
University Press) 
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Polar P,lot of the junption 
µ(_def>,q/)/def> vs. </>-</>'. The linear 
regime is assumed, anti we have 
taken l .81 2x~ r 2 = t . The 
phase bias 2l,8l 2rx1 + trWs is 
ignored. 

convenient width measure for phase probability distributions (i.e. for probability dis­
tributions on a circle)is provided by40 

11" 

(56) v" : = -1 + 1 J µ(_d</J,0) exp(i</>}1"
2 

-1[ 

Substituting (54) in (56) gives 

if rx1<1 .Phase disturbance and N-inaccuracy, as derived from (57) and (47) respec­
tively, are plotted in fig. 7, along with the fundamental bound for this case: 

(58) 

Because of the covariance of both (55) and (47), this bound can be straightforwardly 
derived from the phase-number scatter relation4t [cf. § III.2.6]. The idealized Kerr­

device we treated here is seen to be slightly sub-optimal. If rx1 < 1 

2 
log(l + v"> (JN = t . 

40 A. Holevo (1982): Probabilistic and Statistical Aspects of Quantum Theory (North Holland, 
Amsterdam), p. 180 

41tevy-Leblond, op. cit. (1976) 
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fig. 7 Determinative N-quality versus phase disturbance plotted for the Kerr­
device both without (dotted) and with self-phase modulation (dashed: 
TXp = 0.000025). rx1 is varled around o.0025. The combinations forbidden 
by the inaccuracy principle are in the shaded area IP = iooi]. 

If we include self-phase modulation effects, eq. (43) becomes 

(43') ln) 5el,8)p -+ ln) 5e1 (n)P exp(-irw5n) 

with: 
l C ) = E I m) f!D exJ?H l P 12 -:-iY?nmr> 

n m /iiïf 
Y'nm = rx5n

2 + rxpm2 + 4TXfm • 

We adjust (via V) the relative optical distances of L and P such that arg(/J) = 
7r/2 + l PI 2sin(2rxp> + irxp : we replace (45) by 

(45') 'il = il'/31 

with 

'il = P exp<IPI 2[exp(-i2rxp>-11 -irxp> 

~ ,6exp<~IPl 2rxp-4IPl 2r2xi> . 
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Husimi distribution of 
self-phase modulated 
state. Note that, contrary 
to fig. 5, the N-scatter is 
not reduced. [Input state 
1 a), 
a = 3J.z exp(-2i7Xp 1al 2); 
rxp = 0.05,· the distri­
bution ( 11 PI 'Y) has been 
plotted, with 1 = 
tJl(q + ip).J 

Then some tedious calculation shows that 

(46') 

(59) 

(q) n = .fï, IPI sin(r4x1n) ~ 4./î, IPI rx1 n 

<l> := J À (dq) q2 ~ n n 

~ (q); + (4./î, IP! rx/ [<si.BI rxif2 + sinh(il~!~;;2xb + 

-16TXp(41.81 2r2x#-1) exp[-41.81 2r2x:fJ (n -;2n3) + 

+ (exp[-4l,Bl 2r2xl.J - 1) n2] . 
We have assumed rxp 5 ó'(llj,81) < 1 and srxf < 1 . Further restriction to 

TXplPI < 1 simplifies these expressions to 

(59') (q2)n ~ (q}; + (4./î, IPlrx/ [cs1Plrxif2 + il~i~f2xi + 

+ t6rXp(n-~3)-4l,81 2r2xi n2] 

We see that self-phase modulation decreases the accuracy of the meter (fig. 7). The 

cause of this is the effect it has on the pointer states. These states 1 ( } are no langer 
n 

coherent. The self-phase modulation increases their phase-width (fig. 8). Since it is 
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precisely phase (corresponding to angle of rotation in the p,q-plane) that distinguishes 

the I ( ) from each other, self-phase modulation makes it harder to tell them apart. 
n 

Also interesting is the effect of the self-phase modulation on the signal's phase. As is 

straightforwardly verified, (an analog of) (18) is no longer satisfied: a measurement 

of the phase of the outgoing signal mode cannot be considered a (non-ideal) measure­

ment of the initial phase. Define generalized phase "states": 

(60) 1 <P;v) : = E (211")--t exp[iqm + tivn(n+ l)] 1 n) . 
n 

The state 1 <fo;v) is an eigenvector of the operator e exp(-ivN) with eigenvalue exp(itj!). 

Then the outcome probability distribution associated with measuring the EVM 

corresponding to (60) after the Kerr-device, is 

(53') Tr(K[IR,p] l<P;v)
5

{<P;vl dtj!) = Tr(Kf[1R,l<f!;v)
5

(<P;vl dtj!]p) 

11" 

Kf[IR,l<fo;v) 5{<P;vl d<f!] = _) dip' µ(d<P,f) l<P';v') 5(,P';v'I 

with 

(54 1
) µ(d<P,<//) = ff Eice7l exp(ik[,P - ;• + rw5 - rx5D· 

• (Plexp(i4rx1k:N)IP) 
V' = V + 2TXs • 

Therefore a measurement of the EVM {I ,P;-2rx5) 5{<p;-ux
5

1d4'} allows a non-ideal 

determination of the initia! phase, with quality equal to that in the Xs = 0 case. Thus, 

contrary to the photon number accuracy, the phase disturbance is not affected by the 

self-phase modulation. This, however, is not immediately clear due to the self-phase 

modulation's distorting effect (53'), hut it can be understood relatively easily: because 

the disturbance depends only on the interaction Hamiltonian and on the initial P state, 

and not on the read-out observable, the disturbance must be compatible with the 

accuracy achievable with an optimal choice of that read-out observable. Since the 

self-phase modulation corresponds to a unitary transformation, it can in principle be 

undone by a clever choice of read out observable. Thus the optimal photon number 

accuracy is not affected by the self-phase modulation either. 
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Cha.pter IV 

Schematic cross-section of the Stern-Gerlach setup. The inhomogeneous 
magnetic field is indicated by the dashed lines. The electrons move in the 
l-direction, perpendicular to the plane of the drawing 

Note further that the determinative phase disturbance is equal to the preparative 

phase disturbance: in order to control outgoing signal phase (i.e. achieve a small 

phase scatter), the initial state should be aimed to approach l ,P;2rx.8) s ( ,P;2rx.51 • 

5.2 Stem-Gerlach 

A Stem-Gerlach device may be used to show the effects of spin42. Ina Stem-Gerlach 

device (fig. 9) a beam of spin t particles passes in the 1-direction through an inhomo­

geneous magnetic field. The field is (in lowest order) given by a vector potential 

42Bohm, op. cit.; F. Schroeck (1982): Found. Phys. 12, p. 479; cf. appendix B 
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-+ ... 
Note that (V·B) = 0 [cf. app. B]. The particle's Hamiltonian is then given by 

(62) H = -/m<.cP1 - q(-a~ + b~Q3)J2 + Pi, + Pf) + 

+ µ (b~u2 + [a - b~]u3) 
with 

e µ. = 
2me 

Here u
3 

is the (Pauli) operator representing spin in the 3-direction, with eigenva­

lues :1::1, and PVM sr For neutral atoms, such as in the original experiment, q = o. 

Por electrons, on the other hand, q = -e and m = m . We choose such units that e 
2m = µ. = b = e = ti. = 1 . In the case of neutrals this sealing leads to e 

in the electron case to 

The initial state of the particle is assumed to be a product of the spin part p and the 

spatial part 1 e} ( e I • We shall in this section assume the spatial part 1 e} to be initially 

Gaussian, centered at q
2 

= q
3 

= 0, and characterized by the variances { b. 2~} and 

{82Q3). The spin dependent force, represented by the last term of (63) or (64), will 

bring about a spin dependent development of the wave packet in P-space. Thus P
2 

and P3 are our read-out variables. A realiz.ation might involve a screen placed very 

far away. 

We shall first look at the standard case (63). Because of the absence of a Lorentz­

force, it is simpler. If we denote the operator that reflects the spatial part of the state 

in the 1,3-plane by 1
2 

, we see that 
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Cha.pter IV 

Quality of the Stem­
Gerlach with a # o. The 
quantity U of (68) hos 
been plotted vs. the mea­
surement time r. The solid 
line irulicates neutrals, the 
dashed line electrons. 
[Neutrals: initially 
(62Q2) = (62Q3) = 1; 
a = 20,· Pi = 0.03. 
Electrons: initially 
( 6 2Q2) = 1164,· 
(62Q3) = 1; a = 20; 
P1 = 0.03.] 

Note that 0"
3 

inverts (or, equivalently, shifts cyclically ; viz. (III.81) on C2) spin in 

both 1- and 2-directions. Because the spatial part 1 e> of the wave-packet is initially 

symmetrical under reflections in both the 1,2- and the 1,3-plane, 

<66> 0'3 M<6P3) 0'3 = M<6 P3) 

with 

Tr(pM(dp3)) := dp
3 
J ctp2 Tr(exp(-irl:l)p81e)(elexp(irl:l) 

IR 
IP2;P3)(p2;P3I) 

Here r is the time the measurement takes. According to (66), the EVM generated by 

measuring the final p3-distribution of the particles, is invariant with respect to 

urinversions. Thus it represents a non-ideal 53-measurement, and we can write 

(using an obvious notation): 

The Schrödinger equation was numerically approximatedvm. The results, indicating 

the quality of the measurement, are indicated in fig. 10. As a characterization of 

quality we choose the indistinguishability of the two ,\ 's in (67). viz. 

(68) U[,\] := f .J ;\+(dp3) ;\_(dp3) . 
IR 
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Quality of the Stern­
Gerlach with a = o. The 
quality of the u3 margi­
nal, indicated by the 
quantity U has been plot­
ted vs. the measurement 
time r. Neutral panicles 
are involved. [Initially 
(à2Q2) = (.ó.2Qa) = 9,· 
a = o; P1 = o.o3.] 

The last term of (63) represents spin precession around an axis maldng an angle 

4> = arctan(q
2
t(a-q

3
)) with the :Hl.X.is. Usually care is taken that the point 

(q2,q3) = (o,a) lies far outside the beam area (i.e. a > (à2~) and a > (Ll2<lz)), so 

that 1 > 4>. Thus a
3 

is approximately conserved. Moreover, the spatial and spin parts 

of the total state after measurement are entangled, and cannot be reduced to a simple 

product, such as (29), or even (29'). These expressions therefore turn out to be not 

representative of measurement in general. The Stem-Gerlach example shows that 

even in the absence of such simplifying assumptions, measurement may be fitted into 

the non-ideality framework. 

More interesting from the point of view of the joint measurement problem is the 

a = o case (quadrupole field). Then we may rotate our coordinate axes 450, 

q2 -+ t..fi(q2 - q3) 

q3 -+ t..fi<q2 + q3) ' 

giving 
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Typical output of a 
quadrupole Stem-<Jerlach. 
Neutra/ particles are in­
volved. Conditions are as 
infig. 11, but r = 2.5. 

Tuis Hamiltonian bas two symmetries, viz. 

Consequently, 

(70) 

u3 M(t::.p2;t::.p3) u, = M(t::.p2;-t::.p3) 

u2 M(t::.p2;t::.p3) u2 = M(-t::.p2;t::.p3) 

with 

Tr(pM(dp
2
;dp

3
)) := dp

2 
dp

3 
Tr(exp(-irH)pel e}(elexp(irH) 

IP2;P,> {p2'JJ3 I) 

Thus the p
2
-marginal of M(dp

2
;dp

3
) is invariant under u

2
-inversion, and conversely 

the p 3-marginal of M(dp
2
;dp

3
) is invariant under u

3
-inversion. Our EVM represents a 

non-ideal joint measurement of .s2 and s3 : 

(71) 

f M(dp2,t::.P3> = µ+(t::.P3> 1-+}(-+I + µ_(t::.P3> l+-}(+-1 
IR 

f M(t::.p2,dp3) = À+(t::.p2) lî}(fl + À_(t::.pz) ll}(ll · 
IR 
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fig. 13 Typical output of a dipole 
10 Stern-Gerlach, for elec-

trons. Conditions are as 
J injig. 10, but r = 2. 

5 
Note that, unllke for neu-
trals, the centers of the 
two wave-packets are not 

0 

symmetrically placed 
around Pa = 0. 

-5 : 

-10 

-10 -5 0 5 10 

p2 

If we divide the p
2
,p

3
-plane into its föur quadrants, the resulting quadrivariate 

POVM is, in view of (70), a covariant [§ ll.2.6] joint rneasurernent. The qualities of 

the two rnarginals (71) are indicated in fig. 11. A sample output distribution is seen in 

fig. 12. 

For electrons the situation is sirnilar to that just discussed, if we take a = o. 

Then (64) becomes 

(64') H = [P - tn2 + tn2 12 + p2 + p2 + n u + n u 
1 ""'2 """3 2 3 """32 "'23 

We still have the two reflection syrnrnetries (69). Thus this situation also represents a 

joint non-ideal measurement of spin t in the two corresponding directions for elec­

trons, just as was the case for neutral particles. We shall now proceed to consider the 

a # o case. Then, due to the Lorentz-force, we no Jonger even have the sym­

metry (65). It is disturbed by the presence of P1. We do not have an exact non-ideal 

measurernent. But, if the electrons move slow enough in the 1-direction, so that the 

Pcterm can be neglected, the u.
2
-inversion invariance condition is still approximately 

fulfilled. This is also the case if u.
3 

is sufficiently well conserved [cf. (31)]. 

Accordingly, even this experiment can approximately be considered as a non-ideal 
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u
3
--measurement (fig. 10). Moreover, as fig. 13 indicates, the beam is cleanly sepa­

rated in spin-up and spin-down electrons: the upper wave packet contains practically 

only spin-up electrons, the lower spin-down electrons. 

ii 

NOTFS 

Heisenberg himself probably interpreted the disturbance in the 7-microscope in a more 
naive way, as scatter after measurement [see a letter to Dirac d.d. April 27th, 1927; 
reprinted in: N. Bohr (1985): Collected Workr, vol. 6 (ed. by J. Kalckar; North 
Holland, Amsterdam)]. An interpretation of this imaginary experiment rather more 
along our lines is given by Reichenbach [H. Reichenbach (1980): Selected Writings 
1909-1953, vol. 2 (ed. by M. Reichenbach & R. Cohen; Reidel, Dordrecht), 
p. 215-216]. 

Actually one sbould demand complete positivity instead of (2a) = positivity [Kraus, op. 
cil. (1983); see app. A]. Note that the relation - satisfies the very natural requirement 

m-+ n ==::} Et[mJ- Ef[n] 

for any operation E. This is an extra argument for -+ not mentioned in ch. III. 

iii This disturbance concept gives rise to interesting generalizations of measurement of the 
first kind and destructive measurement (using the equivalence definition of ch. IIl r.rt as 
in (4)]: 

An OVM 9t is of the first kind 

:== 

11 t [n] +-+ n 
M 

An OVM 9t is destructive 

VEVM 0 Il~ [O] +-+ i 

Here i denotes the trivial EVM {l}. 

iv Relations of the type (11) can also be obtained for a non-perfect filter, i.e. if 9 
satisfies: 

VP 1 P ~ 0 W a)9[p]/Tr{9[p]}) ~ Dq 

only for all a ~ ao , for some constant ao < 1. 
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v 

vi 

vii 

Efficiencies may be as good as .97 (cf. N. Imoto, S. Watkins & Y. Sasaki (1987): Opt. 
Comm. 61, p. 159). Por the parameters 'fXJ and TXp values of the order 10-14 are 
possible (ibid.). We have here chosen larger non-linearities, in order to exhibit the 
quantum effects more clearly. A more realistic treatment can be found in; H. Martens 
& W. de Muynck (1990): "The uncertainty principle in a QND measurement of photon 
number", paper to be presented at the International Workshop on Quantum Aspects of 
Optical Communications, Paris (France), proceedings to be published by Springer, 
Berlin. 
Note that inefficiencies in the detectors (D in fig. 4) lead to further non-ideality: the 
"position" measurement becomes a non-ideal "position" measurement (see H. Martens 
(1987): "Gelijktijdige Meting van Incompatibele Observabelen" [Eindhoven University 
of Technology, Dept. of Theoretical Physics, Internal Report 1987-18]). 

More accurately, the device realizes a non-ideal measurement of the PVM corres­
ponding to sin(4TXIN)· Por low s-intensities, this is approximately equivalent to a non­
ideal measurement of N. 

A better known description of phase is due to Carruthers & Nieto (P. Carruthers & 
M. Nieto (1968): Rev. Mod. Phys. 40, p. 411), who use self-adjoint eosine and sine 
operators C and S. They are related to e [defined in (52)] by e = C + iS . Although 
these operators, being Hermitian, are perhaps more familiar objects than EVMs, they 
have rather undesirable properties. They are, e.g., incompatible, and satisfy no 
straightforward commutation relation with N, unlike e: 

exp(ia.N) i = i exp(ia.N) exp(-iab) (a E IR, b E IN) 

[cf. the pair (111.82)]. Thus we have chosen Levy-Leblond's solution. 

viii The calculations were done using a straightforward integration procedure of second 
order in position, and first order in time (implicit). The data are: 
fig. 10, neutrals (solid): Mesh width (q2xq3) 20 by 50, mesh 

resolution 64 by 64 points; b. T = 0.002 
fig. 10, electrons (dashed): Mesh width (q2xq3) 5 by 50, mesh 

resolution 32 by 128 points; ll.r = 0.0003 
fig. 11, neutrals: Mesh width (q2xq3) 35 by 35, mesh 

resolution 64 by 64 points; ll.r = 0.0025 
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As sketched in the introduction and in ch. I, the status of the Uncertainty Principle 

(UP) is somewhat ambiguous. On the one hand there are a number of mathematically 

well-defined relations. These limit statistical dispersion. On the other hand, 'the 

Uncertainty Principle' refers toa cluster of concepts of much wider significance. It is 

perhaps natura! to turn first to Niels Bohr's writings when stuck with problems 

regarding the meaning of the UP. Por Bohr the QM formalism is only of instrumen­

talistic significance. lts elements, wave functions, density matrices, etc., are only 

computational tools without further physical significance. They do not correspond to 

physical object properties. Bohr thinks we can only comprehend in terms of CM. 

Thus, whereas quantitative calculation of a physical situation involves QM, qualitative 
understanding proceeds along the lines of CM. Understanding can therefore not be 

completely definite; it must leave room for probabilistics. To put it somewhat extre­

mely, calculation and interpretation are always in accord without there being a direct 

connection, like perfectly synchronized watches. This is in contrast to more conven­

tional approaches to interpretation, where the elements of the formalism are inter­

preted. The interpretation of concrete situations is then guided directly by their 

formal description. 

Bohr's insistence on the impossibility of extending the CM conceptual framework is 

essential to complementarity, and at the same time its major weakness. Attempts to 

show discrepancies between complementarity and QM, or inconsistencies in comple­

mentarity itself seem futile1• But surely the thesis that CM concepts are somehow the 

only concepts in which we can visualize, is highly dubious. The classical concepts 

themselves have evolved over a long time (Aristotelians knew no 'momentum', and 

even a century before Bohr such "natura!" concepts as 'electrical field' were not 

natura! at all), so that there appears to be no reason for assuming that our conceptual 

apparatus cannot be refined any further2. 

Indeed Bohr's attitude can have a number of unfortunate consequences. As we saw 

(ch. II, app. B) Bohr considered the spin of free electrons to be unmeasurable. 

1For instance Popper [K. Popper (1982): Quantum Theory and the Schism in Physics (ed. by 
W. Bartley; Rowman & Littlefield, Totowa, NJ)] proposes an experiment to decide between "the 
Copenhagen interpretation • and QM. 

2See e.g. P. Feyerabend (1958): Proc. Arist. Soc. (suppl. Vol.) 32, p. 83. 
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Originally he carne to thls conclusion because he thought that spin was a fundamen­

tally quantum mechanical quantity without a classical analog, it being in magnitude 

proportional to Ji.. Subsequent discussions brought him to a more subtle point of view, 

widely reproduced in the literature3• But even that viewpoint is incorrect: spin 

measurement is for electrons, due to charge effects, undoubtedly more difficult than 

for neutral atoms, hut by no means excluded for fundamental reasons {ch. IV). Bohr's 

dislike of real QM calculations perhaps caused him not to actually perform the ana­

lysis of the spin-measurement quantitatively. Such an analysis would have put the 

matter beyond philosophical dispute. 

Bohr undoubtedly gave the UP a much wider content than that of the Heisenberg-type 

relations. But, as could be expected, he never substantiated this wider relevance, 

apart from philosophical arguments and discussions of a few highly idealized situa­

tions. Moreover, Bohr's discussions are phrased in such vague and general terms that 

they do not specify exactly which types of non-Heisenberg uncertainty relation 

actually hold, or can be expected to hold. Bohr's discussions do not offer any starting 

points for a rigorous derivation of new forms of the UP. More generally, the extreme 

difficulty of applying complementarity in non-toy situations4 severely restricts the 

value of complementarity from a physical point of view, as opposed to the philo­

sophical point of view. 

Thus Bohr's philosophy offers little inducement for a further investigation into the 

gap between formal and intuitive meaning of the UP. Moreover, as measurements 

have, until recently, been very far away from the (supposed) quantum limits5, they 

could usually be treated (semi-)classically, ignoring the finer points of quantum 

measurement theory. A closer investigation of the nature of quantum bounds was not 

imperative. 

3E.g. in N. Mott & H. Massey (1965): The Theory ef Atomie Collisions (Clarendon Oxford). See also 
app. B. 

4cr. even Pauli's and Bohr's difficulties in defending Bohr's Stem-Oerlach argument against ever 
more complicated devices (0. Darrigol (1985): Hist. Studies Phys. Sc. IS, no. 1, p. 39] and bis 
papers with Rosenfeld on field theory [N. Bohr & L. Rosenfeld (1933): Mat.-Fys. Met.Id. Dan. 
Vidensk. Selsk. 12, no. 8; (1950): Phys. Rev. 78, p. 794]. 

&cf. Jammer (1974): The Philosophy of Quantum Mechanics (Wiley, NY), p. 82 



156 ChapterS 

But in recent years measurement quality bas improved to such an extent that quantum 

measurement theory bas become relevant. A case in point is the discussion 

surrounding the so-called "Standard Quantum Limit" for position tracking (SQL; see 

eb. IV). Here the ever-increasing demand for position measurement accuracy for 

gravitational wave detectors, instigated a closer investigation of the properties of such 

accurate meters. The intuitively plausible interpretation of the UP as a limit to the 

accuracy in joint measurement of incompatible observables, together with seemingly 

natural requirements on the back-action of the instrument on the object, led to the 

conclusion that there exists an absolute lower limit to the accuracy with which the 

position of a quantum object can be monitored: the SQL. But intuitive reasoning, 

because of its inherent vagueness, is of limited value. The confusion in the ensuing 

discussion on the SQL clearly evidences this. Accordingly, closer formal 

investigations seem appropriate to clear up such matters. 

Bohr's philosophy gives, as we saw, little hold in formal investigations. It is, 

however, not the general attitude towards QM. Textbook QM, despite (frequent) use 

of Bohr's name, actually bas little conceptual overlap with QM according to Bohr. 

People like von Neumann and Dirac, rather than Bohr, should be regarded as ori­

ginators of the attitude towards QM these books have. On the one hand, the emphasis 

is strongly towards instrumentalism: the larger part of the textbooks is devoted to the 

development of algorithms for specific calculations, without bothering too much 

about what they mean. On the other hand, interpretation (where it is involved) tends 

towards the other extreme, i.e. quantum realism. Things like wave functions and/or 

density matrices are discussed as if they were object properties. The interpretational 

side is, however, hardly coherent: in other places "quantities" (momentum, angular 

momentum, position, etc.) are uncritically used in a classica! way. As regards the UP, 

many textbooks present the narrow mathematics alongside the wide physics, without 

noticing the discrepancy. The narrowness of the mathematics is the result of the 

formalism's possibilities. Because of interpretational prejudices, this was set up 

(axiomatized) so as to contain only a very restricted class of measurements (ch. I). 

This formalism blocked the way towards investigations of the UP going beyond the 

Heisenberg-type relations. 
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Nevertheless the von Neumann-Dirac approach, when rid of unnecessary interpreta­

tional ballast (i.e. when sufficiently generalized, see ch. m & IV), offers a suitable 

context for a discussion of the full significance of the UP. There are two ways of 

connecting macro-devices with QM objects. We may first attempt to produce, or pre­

pare, quantum systems with "properties" approaching some prescribed characteris­

tics. We may try to control certain aspects of the object. Secondly, we may attempt 

to find out something about certain object "properties". We may try to determine 
certain aspects of a quantum object. The first connection may, somewhat over­

simplifyingly, be said to refer to the future, the second to the past. The two 

connections are represented in the generalized framework by two different entities 

(density matrices and effect-valued measures, respectively; see ch. Ill). Of course 

most devices will combine both types of connection to some extent, e.g. when a 

meter does not only measure some "property", hut also, depending on the 

measurement outcome, influences the object state accordingly (corresponding to a 

representation by an operation-valued measure in the formalism; see ch. IV). 

In the generalized von Neumann-Oirac scheme the inaccuracy interpretation of the 

UP, more properly called the inaccuracy principle, can be mathematically derived 

(ch. Ill). Such a derivation determines fixes the 'inaccuracy' notion it involves. 

Together with the better-known scatter relations, two incarnations of the UP are then 

justified. These two incarnations are of general validity. Hence they are certainly 

applicable to special sub-classes of measurement devices. For instance, a quantum 

source combined with subsequent devices further manipulating the quantum object 

may be considered as a (bigger) quantum source. Similarly, a non-destructive 

measurement combined with subsequent further determinations of object "proper­

ties", may be considered a larger quantum meter. To such larger devices the UP is 

applicable. Thus a lower bound to the amount of disturbance caused by a 

measurement may be derived from the impossibility of using the measurement in 

combination with subsequent measurements to violate the inaccuracy principle. 

Analogous reasoning holds true for the influence of quantum object manipulations. 

These applications of the UP in its two forms show two types of disruption of the 

connection between past and future developrnent of rnicro-systerns by the intervention 

of rnacro-systerns. 
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Ina similar vein, the well-known Wigner-Araki-Yanase theorems can be incorporated 

into the UP. In this way we have, besides achieving some unification, reduced the 

conceptual vagueness surrounding most forms of the UP thus far. They have become 

suitable for concrete applications, as can be illustrated by the SQL discussion (see 

above). An "SQL" of sorts can be derived from the inaccuracy principle. Unfortuna­

tely the plausible assumption in the usual SQL derivation regarding instrument back­

actioni, turns out to be invalid as a general property of quantum measurement. As a 

result, the SQL that does hold is extremely weak. In particular no absolute upper 

limit to gravitational wave detector sensitivity via position measurement can be 

derived. Indeed sufficiently cleverly chosen measurement operations6 can be shown to 

increase this sensitivity arbitrarily. 

The role of the UP in QM is highly analogous to that of the Lorentz contraction in 

relativity theory (RT). Just as 'Lorentz contraction' refers to an element of RT that is 

surprising only from the point of view of CM (the preceding theory), so does the UP 

highlight limitations to the micro-macro connections that appear new from the point 

of view of CM. The two forms of the uncertainty principle, corresponding to the two 

types of micro-macro connections, are only restrictions when seen from the CM point 

of view. Quantum preparations and measurements actually show much more variation 

than their classical counterparts, corresponding to more varied behavior of quantum 

objects (e.g. interference with material particles). In a similar vein the contraction as 

a physical effect appears to vanish when seen from RT ("is Lorentz contraction 

'real' ?"). And like the contraction does not need a force causing it, the UP is of a 

logical nature, not the consequence of uncontrollable disturbances 7• The analogy can 

be pursued even further. When phrasing RT in terms of Minkowskian space-time, the 

objects in the theory (4-vectors, etc.) simply do not al.low the description of an object 

that does not contract. Thus the choice of conceptual forms suitable to the theory 

under consideration, reduces aspects that appeared surprising from a dassical point of 

6H. Yuen (1984): Pkys. Rev. Lett. 52, p. 1730. See also olher references in ch. IV. 

70f course this situation would change drastically if some neo-classical theory would turn out to be 
bebind QM, but this remains speculation at this time. 
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view, to non-effects. Similarly, the QM formalism simply cannot describe macro­

devices that do not satisfy the UP. The derivation of the two forms of the UP directly 

from the formalism reflects this. lt would appear then that conceptual forms suitable 

for the interpretation of QM would make a device that does not satisfy the UP simply 

unimaginable. Classica! concepts would retain their validity only in limiting cases, 

and then only approximately. But since the interpretation of QM in genera! is not the 

subject of this thesis, we will end the discussion of this highly controversial issue 

here. 

The results in eb. m and N were achieved without recourse to models. Results 

obtained by model analysis are not necessarily generally valid. Like measurement 

models, restrictions on measurement (unbiasedness, covariance, etc.; see eb. III)ii 

may aid in the obtaining of results. But these restrictions should be seen for what they 

are: they were introduced for reasons of convenience. Thus any results derived with 

their help, like those obtained by model analysis, can only be of temporary 

significance. As soon as results can be achieved without (some or all of) the 

restrictions, they should be dropped. Unfortunately, restrictions that were originally 

introduced for convenience, to facilitate subsequent reasoning, tend to lead a life of 

their own. The results in this thesis show the importance of viewing things from the 

most genera! point of view that is practicable. 

ii 

NC1I'F.S 

The classica) spirit is responsible for the overly restrictive measurement notion of text­
book QM, as we saw in ch. 1. In particular, the classica) measurement ideal is bebind 
the 'measurement of the first kind' transfonnation. The requirement referred to here 
(see eb. IV) is a generalization, connecting measurement accuracy to scatter-after­
measurement, probably inspired by the idea that if a measurement of the first kind is 
not realizable, one should at least try to approximate it. 

In particular use of the generali:zations of first kind measurements, such as those 
referred to in note i, strongly affects the generality of the results obtained with them, 
precisely because such transfonnations are not representative. 
Note further that the restriction to finite dimensional spaces is not a great drawback 
from a pragmatic point of view because, as already said in ch. III, infinite dimensional 
results can be approximated arbitrarily well by results on finite dimensional spaces. 
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AppendixA 
Some Mathematics 

1 Convexity 

A subset .9t and a finite subset et/ ={s}M (M = {1, ... , m}) of an n-dimensional real 

linear space ~are given. Then1 

DEFINlTION 

DEFINlTION 

DEFINlTION 

DEFINlTION 

DEFINlTION 

Let {pj}M be a set of non-flegative real numbers satisfying 

EjEM pj = 1 • Then r = EjEM pj sj is a convex combination of the 
s.'s with coefficients (weights) {p.}M. 
J J 

The convex span C( et/) of et/ is the collection of all convex combi­

nations of the elements of ctl. 

The convex huil H( .9t) of .9t is the collection of all convex combi­

nations of fmite subsets of st. 

st is convex if H( .9t) = st. 

An element r of a set a is extreme if it belongs to se ' but does 

not Iie between any two points of .9t. The set of extreme elements 

of a convex set st is denoted by IJE( st). 

If .9t is a convex, compact (i.e. bounded and closed) set, then 

H(IJB( st)) = .9t • 

1P. Kelly & M. Weiss (1979): Geometry and Convexity (Wiley, NY); A. Holevo (1982): Probabilistic 
and Statistica/ Aspects of Quamum Theory (North Holland, Amsterdam). 

2Kelly & Weiss, op. cit. 
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THEO REM F.ach he H( st) is a convex combination of at most n + 1 points 

of st. 

The first of these theorems is sometimes referred to as Minkowski's theorem, the 

second is Carathéodory's theorem. Extension of these theorems on infmite dimensio­

nal spaces is not quite trivial 3. 

2 Extended Quantum Formalism 

Suppose we have two preparators that can feed objects into a measurement device. If 
we use the first preparator with probability À, and the second with probability (1-À), 

it is clear that we will see outcomes corresponding to the first preparator with proba­

bility À, and outcomes corresponding to the second with probability (1-À). In other 

words, the outcome probability distribution of the mixed preparator is given by a con­

vex combination of those of the two preparators. Given that preparators are represen­

ted by density operators p on a Hilbert space JI, and that mixing corresponds to con­

vex combinations of p's, measurement outcome probability distributions must be 

generated by affine functionals of p: 

DEFINlTION The functional/ over a convex set si is affine if 

(1) 

for all r
1 

,r
2 

e si and À e [0,1]. 

All af fine functionals over the density operators can be extended to linear functionals 

over the trace class operators4 .?'( JI). Since the set of bounded operators ~( JI) is 

the dual of the set of trace class operators, there is a 1-1 correspondence between 

3See e.g. N. Dunford & J. Schwartz (1957): Linear Operators, part I (Interscience, NY); V. KJee 
(1957): Arch. Mat. 8, p. 234, and references in Holevo, op. cit .. 

4Holevo, op. cit.; cf. Kelly & Weiss, op. cit" p. 89. 
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affine functionals and bounded operators. Thus the affinity criterion together with 

natura! requirements on probability, leads immediately to the effec~ notion (III.27). 

Similarly the operation notion (IV .2) can be derived. More technically, the relevant 

definitions are5 

DEFJNITION 

DEFINITION 

Consider an n-dimensional Hilbert space c!!I and a linear mapping 
n 

; of 9( J'l) into 9( J'I). The Hilbert space c!!I• c!!I consists of nxn 
n 

matrices (r .. ) of 9( J'I) elements. Then ; can be extended into a 
IJ 

map ; :(T .. )-1 (f[T .. ]) of c!!l•c!!I into c!!le c!!I • Now, ; is called 
ntJ u n n 

n-positive if; is positive [(IV.2.a)]; it is called completely positive n 
if it is n-positive for all n. 

An operation ; is a completely positive mapping of 3"( J'I) into 

9(J'l), satisfying (IV.2.b). If Tr(;[r]) = Tr(r) for all r in 

9( J'I), it is non-selective. 

Operations can be represented in terms of operators in the following way6 

(cf. (IV.53)): 

THEOREM 

(2) 

(3) 

(4) 

For any operatîon ; there exist operators {~}K (K finite or 

countably infinite) on c!!I satîsfying 

~EKo AJ ~ ~ 1 for all finite subsets K0 of K, 

such that foi all Tin 9( J'I) and Bin ~( J'I) 

The effect F corresponding to ; is then given by 

Sil. Davies (1976): Quantum Theory of Open Systems (Academie, l.ondon); K. Ktaus (1983): States, 
IJ;/Jects and Operations (Lecture Notes in Physics 190, Springer, Berlin); Holevo, op. cil. 

6K.raus, op. cit. 
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(If K is infinite, the two latter summations oonverge ultraweakly, whereas the first 

sum in (3) converges in the trace norm topology). Conversely, any set {.;\}K 
satisfying (2) defines an operation via (3). 

Naimark's theorem m.2 can also be phrased in another form 7, viz. 

'DIEOREM 

(5) 

Any EVM {M(da)} A on ,}'(can be written as 

M(da) = E' E(da)E' , 

where {E(da)}A is a PVM on a Hilbert space 3' 2 3, andE' is 

the projector of ,}'(' onto 3. 

Operations can also be extended onto larger Hilbert spaces, like in the following 

theorem8: 

(6) 

(7) 

For any two operations tl> and "· such that tl> + "f is non-selective, 
there exist a Hilbert space ,}'(', density operator p' on K, effect 

F' on ,}'(' and unitary operator U on ,}'(e ,}'(' such that 

t/l[r] = Tr 3 .[(1&F')U(.,ep')Ut] , 

"f[r] = Tr K[(le (1'-F'))U(.,ep')Ut] 

for all .,. in S'( dl). 

Again, the converses of these two theorems also hold: relations (5) and (6)&(7) define 

EVMs and operations, respectively. 

7Holevo, op. cit. 

8Kraus, op. cit.; M. Oi.awa (1984): J. Matk. Phys. 2S, p. 79 
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3 Stochastic Matrices 

We consider square matrices {.\k}KxK over some countable index set K. They are re­
quired to satisfy 

(8) Vj,kEK Àjk ~ 0 

(9) EjEK Àjk = 1 . 

If the set K labels physical state, Àjk may be înterpreted as the probability that the 

system will at time tn+l be in state j, if it was at time tn in state k. The matrix is 
interpreted as a set of transition probabilities. These are independent of the time and 
of the history of the system: we speak of a Markov chain with stationary transition 

probabilities9• Dependîng on the properties of the matrix, we can discem different 

classes of states. First întroduce the n-step transition probabilities À ~k> : 

(10) 

DEFINITION 

DEFINmON 

(11) 

'<1> ·= ' . '1n+11 = r ' '(n) 
"jk ' "Jlc ' "jk "°'lEK "jt "tk 

Consider the class of all n such that "'it' > 0. The greatest 
common divisor of these n's is called the pt!riod, and denoted by dk. 

If there are no such n's, the period is undefined. 

A nonempty subset J Ç K is closed if 

J is called minima/, closed if it bas no proper subsets that are closed. 

9K. Cbung (1967): Markov Chains wilh Stationary Transition ProbabiUties (2nd ed., Springer, Berlin) 
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The total set K can then be divided into classes, according to the elements' period. 

All elements in a minimal closed set have the same period. The Perron...:Probenius 

theoremto implies 

More generaltytt, 

THBORBM 

(12) 

Let J be finite and minimal closed. Then {ÀJï:}lxJ bas a simpte 
eigenvalue 1. The corresponding eigenvector (xt_>

1 
may be chosen 

such that it consists of non-negative elements. Thus there is one 

unique probability distribution (pt_l
1 

that is mapped onto itself by 

{\t.JJxJ 

Let J be a minimal closed set of period d. Then the solution of the 

equation 

xj = Lice1 Àjk xk (j E J) ' 

such that LiceJ xk < m , is unique up to a multiplicative constant. 

101. Ortega (1987): Matrix Theory (Plenum, NY) 

Uchung, op. cit" p. 3S 
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AppendixB 
Ad chapter 11 

(i) Objectifying description in terms of the quantities from CM: the classical 

quantities, in as far as they are well-defined [cf. (ii)], are object­

properties1. 

(ii) The measuring instrument must be described completely classically; the 

uncertainty principle is not relevant for its working. The unanalyzability 

("' indivisibility) of the object-meter system is symbolized by the uncer­

tainty principle. This principle shows that well-definedness of some 

classical quantities in the interaction inevitably leads to unanalyzability in 

others. This unanalyzability may, for instance, appear in the guise of an 

"uncontrollable momentum exchange" 2• The precise nature of the 

measuring instrument determines how well-defined the quantities in the 

interaction and, as a consequence, those describing the object [cf (i)] are. 

(iii) Wave particle duality plays no role. Electrons are particles and light 

consists of waves3• 

(iv) The QM formalism, used for quantitative calculation, is unvisualizable 

("' ununderstandable). It is only of symbolic ("' instrumentalistic4) value. 

1cf. Hooker [C. Hooker (1972): in Paradigms and Paradoxes (ed. by R. Colodny, Pittsburgh 
University Press), p. 67], p. 75 and p. 134 (BI). 

2cf. Hooker, op. cit., p. 135 

3Cf. D. Murdoch (1987): Niels Bohr's Philosophy of Physics (Cambridge University Press), p. 70 

4P. Feyerabend (1981): Realism, Rationalism and Scientiflc Method, vol. 1 (Cambridge University 
Press), p. 258 
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The exposition in the following is intended only to justify above four points. As a 

consequence the treatment of certain imaginary experiments, most notably the 

Einstein-Podolsk:y-Rosen experiment, is concise: an evaluation of all of (or even some 

of) the issues surrounding these experiments bas not been attempted, and the 

discussion is therefore caricatural in certain respects. 

Besides Bohr's own papers, use bas been made primarily of an essay by Hooker5• 

1 JUSTIFICATION 

When reading Bohr, it is important that one keeps the development of bis views in 

mind. That such a development took place is evident (and hardly surprising): in the 

Como lecture6, the first two points are present, although the second one only occurs 

in an embryonal form: certain formulations in the Como lecture may suggest an 

interactionalistic view on the uncertainty principle. The third point, however, is 

absent in 1927: Bohr still sticks to the concept of wave-particle duality from old QM,­

and goes even so far as to suggest wave-particle complementarity 7 [set ad (iii) further 

below]. Because of the development in Bohr's views8 his famous 1949 Einstein essay9 

is also somewhat difficult to interpret. Tuis essay is intended to give an account of the 

discussions with Einstein, and thus follows the historical course of 

5Hooker, op. cit. 
6N. Bohr (1927) [Como Lectunl]: Alti del Congresso lnternazionak dei Fisici 1927, 
Como-Pavia-Roma (Nioola Zanichelli, Bologna), p. 565. The Como lecture was, with some minor 
changes [see N. Bohr (1985): Collected Works, vol. 6 (ed. by J. Kalckar, North Holland, 
Amsterdam)] also published in Nature: N. Bohr (1928) [Nature pllllflif]: Nature (Suppl.) 121, p. 580. 

7Bohr (1928) p. 581: "[In the] problem of the nature of the oonstituents of matter [ ••. ] we are not 
dealing with contradictory, but with oomplementary pictures of the phenomena. • 

8Bohr bimself acknowledged this development [see e.g. N. Bohr (1929c) [ATDN lntroduction]: p. 1 
of N. Bohr (1934): Atomie Theory and the Description <(Nature (Cambridge University Press)], so 
that he can hardly be accused of dogmatism [Feyerabend, op. cit., p. 293]. 

9N. Bohr (1949) [Binstein essay]: p. 201 of the Schilpp volume [P. Schilpp (ed.) (1949): Albert 
Einstein, Phik>sopher-Scientist (Open Court, EvanstOn IL) [reprinted on p. 9 of J. Wheeler & 
W. Zurek (eds.) (1983): Quantum Theory and Measurement (Princeton University Press)], quotations 
from the 1983 reprint. 
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development. As a result, it is not always clear whether the opinions given in the 

essay are his views at the time of the episode he is describing, or bis 1949 views. 

It is commonplaceiO to claim that the Einstein-Podolsky-Rosen (EPR) paper (see § 4) 

brought about a major change, even a break, in Bohr's ideas. 1 do, however, not see 

any real evidence for this11• lt seems especially that the interactionalist doctrine, 

allegedly advocated by Bohr prior to EPR, is more due to Heisenberg12. Bohr, though 

admittedly wording the Como lecture in an interactionalistic way13, takes already well 

before14 1935 the limitation on the applicability of classical concepts as primary and 

the uncontrollable interaction as a reflection of this (rather than vice versa)15: "[The 

uncertainty principle] defines the latitude in the application of classical concepts [".]" 

and16 "We cannot hope to overcome this limitation of applicability because it lies 

absolutely embodied in the process of definition of space and time". The interac­

tionalist misunderstanding of Bohr is not new, already in 1928 the editorial comment 

on Bohr's Nature paper17 blames the "vagueness of position and path of an electron" 

on the necessity of employing a disturbing interaction in a quantum measurement. 

Thus the effect of EPR was probably a break in Bohr as people understood him, 

rather than a (radical) change in the views of Bohr himself18• 

In the development of Bohr's views the effect of his discussions with Einstein (few as 

they were) has, 1 think, been overestimated at the cost of especially the developments 

in particle physics in the early thirties. A substantial part of these Jatter developments 

indeed took place in Bohr's own institute, and they must have occupied Bohr. In 

lOSee e.g. M. Jammer (1974): The Philosophy of Quantum Mechanics (Wiley, NY) or 
K. Popper (1972): The Logic of Scientific Discovery (6th. rev. impr" Hutchinson, Loodon) 

11cf. Hooker, op. cit" p. 149ff. A change as regards the wave-partitie issue took place before EPR 
[see ad (iii)]. 

12Hooker, op. cit., p. 157 

13But cf. Bohr, op. cit. (1928) p. 582 

14cr. N. Bohr (1930) [Faraday LectureJ: J. Chem Soc 26 (1932), p. 349 

15Bohr, op. cit. (1930) p. 351 

16N. Bohr (1931b) [W"dls Leclure]: p. 361 of Bohr, op. cit. (1985) 

17Nature (Suppl.) 121, p. 579 (1928); See also Jammer, op. cit" p. 160 ff. 

18Hooker, op. cit" p. 149 
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particular the development of complementarity from "just" an interpretation of QM 

to a framework of more general relevance probably occurred in this period: at 

several times Bohr thought that the end of QM was in sight, and he must have thought 

about the fate of complementarity in this light. The wider methodological applicabi­

lity of complementarity was one of its major characteristics, as we saw in eb. II. 

We shall first give some concrete textual evidence for our reading of complementa­

rity. We shall then discuss some characteristic Bohrian thought experiments. 

[Quotations in the following denoted by "WZ" are from the Einstein essay, in the 

Wheeler & Zurek, op. cit. (1983) reprint.] 

ad (i) Por Bohr QM is a generalization of CM19 (the correspondence principle ! ; 

cf. eb. 1). Accordingly, in bis work the insistence on classical concepts as 

the means of understandable description (as opposed to symbolic 

description, see below) is almost ubiquitous, and epitomized by the 

remark that20 "the language of Newton and Maxwell will remain the 

language of physicists for all time", already quoted in eb. II. Classical 

concepts are necessary because only in classical terms can W!:L 

conceptually comprehend something. For Bohr it is a mistake to think 

that new forms of thought should be developed in order to obtain an 

understanding of QM21. 

With the classical concepts the objectifying mode of description is natu­

rall y brought along: Bohr uses it without qualification22 in phrases like 

"[".] a particle which bas momentum p [ ... ]" fWZ p. 21), "[".] location 

19His favorite pbrase is "rational generalization", e.g. on p. 2 of N. Bohr (1958): Phi/osophy in the 
Mid-Century (ed. by R. Klibansky, La Nuovo Italia, Florence) p. 508 [reprinted on p. 1 of N. 
Bohr (1963): Essays 1958-1962 on Atomie Physics and Human Knowledge (Wiley, NY)]. Quotations 
here and in the following from the 1963 reprint version. 

20N. Bohr (1931a) [Maxwell Lecture]: Nature (Suppl.) 128, p. 691 

21E.g. Bohr, op. cit. (1929c) p. 16: "[ ... ] it would be a misconception to believe that the difficulties 
of the atomie theory may be evaded by replacing the concepts of classical physics by new conceptual 
forms". Here Bohr also speaks of QM a8 a "rigorous reinterpretation" (p. 18) of CM. 

22Therefore 1 cannot concur with Murdoch [Murdoch, op. cit., p. 102] that Bohr nowhere insists that 
microphysical systems also have to be described classically. In fact Bohr never described them 
otherwise. Especially Bohr's views on the Stem-Gerlach (§ 3) show the importance he attaches to to 
classical concepts even in the microdomain. 
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ad (ii) 

of the particle in the plane [ ... ]" (WZ p. 22), "[".] the time an electron 

takes [ ... ] to come from the diaphragm to some other place [ ... ]" (WZ p. 

29), "[ ... ] the energy of the particle [ ... ]" (WZ p. 29). 

But there is one important limitation: the objectivism reaches only as f ar 
as the classica/ quantities are well-defined. The particular measuring 

arrangement under consideration deterrnines how well-defined the 

quantities are [see ad (ii)]. Therefore complementa.rity only ends the full 

and uncontextual applicability of classical description, not its applicability 

per se or its objectifying character. The lack of a full applicability, 

however, leads to the impossibility of a classically complete description, 

and thus entails the recourse to statistics that is also reflected by the 

Heisenberg relations23. 

Again Bohr bas been clear about this issue: already in 1929 he talks 

about24 "the invocation of classical ideas necessitated by the very nature of 

measurement", and in 1930 of25 "the classical mechanical concepts on 

which all measurements must be interpreted". The parts constituting the 

meters are so large and massive that the uncertainty principle is procti­
cally irrelevant for their working28, despite the QM nature of the particles 

that ultimately constitute the device. But as regards their description 

(epistemology) he emphasizes the full applicability of CM to the measu­

ring device. Bohr goes so far as to demand that the uncertainty principle 

23N. Bohr (1939) [Warsaw lecture]: New Theories in Physics (International Institute of InteUectual 
Co-operation, Paris), p. ll. See p. 19. Cf. also Bohr, op. cit. (1958) 

24N. Bobr (1929b) [Scandinavian Nalul'al Sc:ieotists Congress Lecture]: p. 102 of Bobr, op. cit. 
(1934), see esp. p. 114. 

25N. Bohr, op. cit. (1930) p. 377. Cf. Bobr, op. cit. (193la). 

261n the EPR answer (N. Bobr (1935) [BPR. --..er]: Phys. Rev. 48, p. 696), wben talking about test­
OOdies with which he intends to tneaSW"e a diapbragm's momentum, he argues that their momentum 
bas to he controlled. "It is true that such a control wiU essentially depend on an examination of the 
space-titne course of some process to which the ideas of classical mechanics can be applied; if, 
however, all spatial dimensions and time intervals are taken sufficiently large, this involves clearly no 
limitation as regards the accuracy of the control of their space-time coordination• (p. 698; a similar 
remark occurs in the following sentence). Cf. Bobr, op. cit. (1929c) p. 11 and Jammer, op. cit" 
p. 207 
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is fundamentally inapplicable to it. Thus, for example, he says in the 

Warsaw lecture27: "[ ••• ] a measurement can mean nothing else than the 

unambiguous comparison of some property of the object under investiga­

tion [cf. (i)] with a corresponding property of another system, serving as 

a measuring instrument, and for which this property is directly deter­

minable according to its definition in everyday language or in the 

terminology of classical physics. [ ... ] the necessity of basing the descrip­

tion of the properties and manipulation of the rneasuring instruments on 

purely classical ideas implies the neglect of all quantum effects in that 

description [my italics], and in particular the renunciation of a control of 

the reaction of the object on the instruments more accurate than is 

compatible with the [uncertainty relations]". In the Einstein essay we 

find: "The special aim of the figure is to underline that a clock is a piece 

of machinery, the working of which can be completely accounted /or by 
ordinary mechanics [my italics] and will be affected neither by a reading 

of its hands, nor by the interaction between its accessories and an atomie 

particle." (WZ p. 28), "[".] pertaining to individual ["' indivisible] 

phenomena appearing under conditions described by classical physical ·· 
concepts" (WZ p. 46)28. The fully classical description of the measuring 

instrument is, for Bohr, an epistemological need. It is a necessary 

condition for the communication of the measurement results to others211• 

The fully classical description of the meter, together with the indivisi­

bility of the quantum of action, causes the impossibility of a joint 

application of all classical concepts to the object. The elementary 

character ("' indivisibility) of the quantum of action is a reflection of the 

complementarity of the pictures involved in the description of the 

interaction [cf. ad (i)]. Any attempt to further analyze the interaction can 

only render the instrument useless (WZ p. 29)10 (cf. the discussion of 

single and double slit inch. Il). Thus the need for classical description of 

27Bohr, op. cit. (1939) p. 19; cf. the quote from the EPR-answer in the previous footnote. 

28See also Bohr, op. cit. (1939) p. 28 and Bohr, op. cit. (1958) 

29Bohr, op. cit. (1958) p. 3 

aoBohr, op. cit. (1935) p. 697 and p. 698 
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ad (iii) 

the measuring instruments is, for Bohr, not in contradiction with the 

QM nature of the components constituting the device, or with use of the 

QM formalism for quantitative results as regards the outcome probabi­

lities in different situations (WZ p. 31)31 [cf. ad (iv)]. 

The fact that the quality of definition of the object properties depends on 

the definability of the interaction with the meter indicates an operationa­

listic element in Bohr's philosophy. This is also reflected by hls opinion 

that the purpose of32 "[".] the description of nature[ ... ] is not to disclose 

the real essence of the phenomena, hut only to track down, so f ar as it is 

possible, relations between the manifest aspects of our experience". But 

Bohr (contrary, perhaps, to Heisenberg; see eb. 1) is not an operationa­

list: the concepts themselves are not defined by measuring arrangements 

(eb. Il), only the extent to which they are well-defined in a particular 

situation is determined by the classical environment. The content of the 

concepts themselves is fixed instead by their use in ordinary language and 

CM. Furthermore, Bohr takes the reality of the microdomain seriously. 

But our knowledge about the microdomain is limited: we cannot compre­

hend it beyond the usability of classical concepts, and thus cannot 

comprehend the microdomain by itself (independent of measuring 

arrangements)33• 

It is sometimes said that Bohr feit that irreversibility was an essential 

ingredient in a quantum measurement. While this is true, this aspect of 

measurement was, for Bohr, nothing new or specific to quantum 

mechanics, and therefore not related to cornplementarity34• 

As we saw earlier, Bohr in 1927 still perceived wave-particle duality (or 

complementarity) as important. In fact bis views in QM took wave 

particle duality as a starting point (as opposed to discontinuity, from 

31Cf. also a letter from Bohr to Pauli from 1947 [Bohr, op. cit. (1985) p. 451), and p. 315 of 
N. Bohr (1948): Dialectica 2, p. 312. 

32Bohr, op. cit. (1929c) p. 18 

33Hooker, op. cit" p. 134 (B2 & B4) and p. 155. 

34Bohr, op. cil. (1958) p. 3 
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which Heisenberg worked35). The later (i.e. p,q) complementarity is 

inherent in the earlier as Bohr saw it then, because he as~ciated p with 

'wave' and q with 'particle'. [Such an association is highly misleading, 

however: classical waves on the one hand can be localized instead of 

monochromatic, but usually have neither a sharp k (= p/1t):nor a sharp q, 
whereas on the other hand classical particles have both.] In early 1929 

Bohr still sticks to the views expressed in the Nature paper, judging from 

bis references to it in bis Planck paper36. Later in 1929, the change 

approximately coinciding with the choice for 'complementarity' instead 

of 'reciprocity', Bohr bas become more carefuJ37: "lt is true that light 

quanta and matter waves are invaluable expedients in the formulation of 

the statistica! laws governing such phenomena as the photo-electric effect 

and the interference of electron rays. However, these phenomena belong, 

indeed, to a domain in which it is essential to take into account the 

quantum of action and where an unambiguous description is impossible. 

The symbolical character, in this sense, of the artifices [twice my italics] 

mentioned also becomes apparent in that an exhaustive description of the 

electromagnetic wave field leaves no room for light quanta and in that, in 

using the conception of matter waves, there is never an~ question of a 

complete description similar to that of the classical theories". In the 

Faraday lecture38 and the Warsaw lecture89 analogous reasoning occurs. In 

the Einstein essay there is no clear statement on this subject, although he 

does not present the double slit (WZ p. 24-27) as an example of wave­

particle duality, even though it would have been a natura! place to do so. · 

[see also ad (iv)]. 

35Cf. Bohr, op. cit. (1985) p. 27ff. and Jammer, op. cit .• See also W. Heisenberg (1967): in S. 
Ro:zental (ed.) (1967): Niels Bohr: his life and works as seen ûy his friends and colleagues (North 
Holland, Amsterdam), p. 94; see esp. p. 106. 

36N. Bohr (1929a) [Planct Paper]: Naturwiss. 17, p. 483, see esp. p. 484 

37Bohr, op. cit. (1929c) p. 17; cf also Bohr, op. cit. (1929b) p. 111 and p. 113 

38Bohr, op. cit. (1930) p. 370 and p. 374; cf also Bohr, op. cit. (1931a) 

39Bohr, op. cit. (1939) p. 16 and p. 237 
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ad (iv) 

There are, however, places where Bohr lapses: for instance in the 

Warsaw lecture4° and on p. 2S (WZ) of the Einstein essay (cf. § 2). I do, 

however, not think that too much weight should be attributed to these 

slips of the pen in view of Bohr's clarity when he is discussing the matter 

directly41. 

Bohr takes a fundamentally instrumentalistic attitude towards the QM 

formalism. Despite this attitude Bohr is not an instrumentalist. He is a 

realist, and in fact attributes properties to the objects [viz ad (i)]. Bohr, in 

view of bis opinion that all understanding must take place in classical 

terms, has no choice but to attribute no more than instrumentalist 

significance to the QM formalism. Although the formalism is necessary 

for quantitative calculations, it does not lead to understanding. In the 

EPR-answer he says42: "[ ... ] there can be no question of an unambiguous 

use of the symbols of QM other than that embodied in the well-lrnown 

rules which allow to predict the results ( ... ]". In other places he says43: 

"The symbolic garb of the methods in question [i.e. QM] closely 

corresponds to the fundamentally unvisualizable character of the 

problems concerned" and 44 "The true significance of the wave formalism 

[of Schrödinger] as a most practical means of expressing the statistical 

laws [ ... ]". Bohr's instrumentalism is in close connection with bis view on 

the symbolical nature of material waves and photons [see ad (iii)], since 

the latter are used by Bohr as tools in qualitative analogs of exact QM 

calculations. He discusses, for instance, the interference pattern as it is 

built up out of many spots, the distribution of which "[ ... ] follows a 

simple law derivable from the wave analysis" (WZ p. 24). In fact45, "[ ••• ] 

40Bohr, op. cil. (1939) bottom ofp. 15 

41Murdoch, op. cit" p. 79 

42Bohr, op. cit. (1935) p.701 

43Bohr, op. cit. (1929c) p.12 

44Bohr, op. cit. (1939) p. 16; cf a1so Bohr, op. cit. (1928) p. 586, Bohr, op. cil. (1930) p. 370, Bohr, 
op. cit. (1931b) p. 370 and Bohr, op. cit. (1958) p. 5 

45Bohr, op. cit. (1939) p. 237; cf also Bohr, op. cit. (1949) p. 37 and Bohr, op. cit. (1929c)p. 17 
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the duality between the undulatory and corpuscular conceptions [ ... ] is 

only one aspect of a symbolical formalism [ ... ]". 

Von Weizsäcker bas distinguished between "parallel" (e.g. p versus q) 

and "circular" complementarity (causa! description versus description in 

terms of the Schrödinger function)46• The latter form, like "wave particle 

complementarity", involves concepts that are not combined in any 

classical model, and therefore (ch. II) it is not surprising that Bohr 

categorically rejected circular complementarity. 

Inch. II we noted that Bohr applied the name 'measurement' also to procedures we 

pref er to call 'preparation'. Such nomenclature is natural from a classical point of 

view (ch. I). Still, Bohr certainly was aware of the difference, and explicitly stated 

that both "types of measurement" are needed fora completely specified experimental 

arrangement47: "[ ... ]all unambiguous.use of the QM formalism involves the fixation 

of the extemal conditions, defining the initia! state of the atomie system concemed 

and the character of the possible predictions as regards subsequent observable 

properties of that system. Any measurement in quantum theory can in fact only refer_ .. 

either to a fixation of the initia! state or to the test of such predictions, and it is first 

[sic; B. means 'only'?] the combination of measurements of both kinds which 

constitutes a well-defined phenomenon [my italics]". 

Here (in 1939) we find the first use by Bohr of the word 'phenomenon' in a technical 

sense, referring to "[".] observations obtained under specified circumstances, 

including an account of the whole experimental arrangement" (WZ p. 46). In earlier 

essays, Bohr uses the word in a more informal way. The quotation also shows us how 

Bohr bas to talk about preparation. Because a preparation by itself is not a phenome­

non, it has to be discussed involving counterfactual measurements ("possibilities of 

prediction"). In other words, if we have a preparative measurement, which an 

analysis bas shown to be describable in terms of the classica! concepts 1to some extent, 

this immediately gives the extent to which the results of future determinative 

measurements can be predicted, if performed. Similarly the determinative context can 

46Jammer, op. cit" p. 103 

47Bohr, op. cit. (1939) p. 20 
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be used for retrodictive deductions. If determinative and preparative context 

(properly transformed according to their time evolution) are incompatible, this means 

that predictions about measurement results based on knowledge of the preparation 

process become impossible (i.e. the results show a large amount of scatter). More 

accurately, the predictions loose their validity at least as much as they suggest 

precision beyond the uncertainty principle48• So, for example, we have the case where 

a particle with known momentum [preparative p knowledge] impinges on a photo­

graphic plate49: "Par from meeting any contradiction with the uncertainty relations, 

we have clearly here to do with a measurement arrangement [i.e. the p--preparator + 
photographic plate] which is not suited to define a phenomenon involving a test of 

predictions as regards the location of the object". Of course there remain two 

incompatible views on the situation in between the two measurements, but that is 

purely academie because it cannot lead to a conflict as regards the prediction of any 

phenomenon50: "We are dealing with an abstraction from which no unambiguous 

information conceming the previous or future behavior of the object can be ob­

tained". Extrapolation from either of the two measurements cannot be pursued past 

the following c.q. preceding measurement because5t "any observation takes place at 

the cost of the connection between the past and the future course of phenomena". If, 

for example, we prepare electrons with sharp momentum, pass them through a 

diaphragm and then measure their momentum, the slit's presence causes predictions 

as regards the measurement outcome based on knowledge of the preparation to be 

inexact. The disruption of the evolution is caused by the incomplete analyzability of 

the interaction of the object with the measuring arrangement, and is another way of 

talking about the disturbance in measurements. Accordingly, despite Bohr's emphasis 

48Although Bohr in bis examples usually discusses only extremes, in more abstract formulations he 
does take the full uncertainty principle, including intermediate cases, into account [e.g. Bohr, op. 
cit. (1939) p. 18]. 

49Bohr, op. cit, (1939) p. 23 

50Bohr, op. cit. (1928) p. 583. Bohr here discusses two successive position measurements, which also 
provide incompatible contexts because [X(t),X(t')]. # 0 (in general) if t # t'. The fact that he 
regards extrapolating away from the direct context not as a priori senseless (the problems occur not 
because of the extrapolation itself, but because of incompatibility with the following context), shows 
that already in 1928 Bohr was not really an interactionalist. 

51Bohr, op. cit. (1929c) p. 11; see also p. 18 
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on classical description, terms like "uncontrollable disturbance" do not refer to the 

change of value of certain autonomously possessed magnitudes52. 

Summarizingly, we see that a complete phenomenon requires for Bohr two measu­

rements, requires both preparation and determination. Thus a particle emerging from 

a preparator of a classical "property" cannot be unambiguously said to have that 

property: preparation does not by itself constitute a phenomenon. The case of 

incompatible determinative and preparative contexts illustrates this ambiguity. 

Experimental outcomes in such a situation are only probabilistically predictable. If the 

contexts are compatible, analysis in terms of some classical quantity is possible, and 

predictions are Qike in CM) determinate. This constitutes an important qualification 

of the remarks as regards objectivity of properties made in ad (i). 

In the following we shall further illustrate Bohr's views in a number of imaginary 

situations. The diaphragm and the related double slit experiments have been discussed 

in ch. II, so we wilt not discuss them in detail here. In Bohr's discussion of them 

(WZ p. 20-30), points (i) and (ii) are clearly present. We must, however, keep in 

mind that Bohr's wording in the Einstein essay is in several places intended to reflect 

the opinions he or Einstein held at the time of the episode described. 

2 PHOTON IN THE BOX (WZ p. 28-29) 

At the 1930 Solvay conference Einstein discussed a Gedanken experiment intended 

(according to Bohr)53 "[ ••• ] to show that the foregoing considerations [i.e. com­

plementarity] are valid as long as the viewpoint of general relativity is left out of the 

discussion". Einstein conceived of a box, in which a photon and a clock are present. 

The clock controls the shutter, so that the time of emission of the i photon can be 

521Jooker, op. ciJ., p. 155 
53Bobr, op. ciJ. (1931b) p. 368. It is, however, quite plausible that Einstein intended it for an 
altogether different purpose, namely as a predecessor of BPR [D. Howard (1990): in Sixty-two Years 
qf Uncertainty (ed. by A. Miller, NATO ASI Series B 226, Plenum, NY), p. 61]. 
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determined. He then proposed also to measure its energy by weighing (E = mc2) the 

box before and after the emission. The precision of the energy measurement need not 

be at least reciprocally related to the opening interval of the shutter. It seerns that the 

experiment is completely analogous to the diaphragm, where a momentum measure­

ment before and after scattering may be carried out (ch. II). Thus Bohr could have 

sufficed with an analogous answer: if we perform the first energy measurement 

(weighing) with accuracy 6E , events within the box after the weighing cannot be 

coordinated in time with those before, better than 116E • Similar arguments apply to 

the second weighing. In other words: the opening and closing time of the shutter may 

be well-defined within the box, but they are not so to an observer outside it. This 

seems to be the gist of the remark: "If we are interested in such conclusions [i.e. 

conceming E] we must, of course, use an arrangement where the shutter devices can 

no longer serve as accurate clocks [cf. ad (ii)], hut where the knowledge of the 

moment when the hole of the diaphragm is open involves a latitude connected with 

the accuracy of the energy measurement by the [uncertainty relation]" (WZ p. 29). 

Possibly in view of his understanding of Einstein's goal (see above), or perhaps to 

heighten the dramatic effect, Bohr used amore explicit argument involving Einstein's 

own theory of general relativity. Somewhat simplifiedi, it amounts to the following: 

(1) 

(2) 

In the box a timer is contained in addition to the photon. This timer is 

designed to open a hole in the side of the box for a pre-set period of 

time. The box is allowed to fall freely in a gravitational field of 

strength g. On t
1 

and t
2 

(both before the box opens) the box's momentum 

is measured (e.g. through collision with an object with known mass). 

Then the initial mass m. follows from the results of these two measure-

ments: 

m = P,2-pti 
i g(t2-tl) 

1 

The final mass mf is determined analogously. Therefore the photon 

energy measurement inaccuracy 6E satisfies: 



182 

(3) 

(4) 

Appendix B 

During the m-measurement procedure (between 1
2 

and t
1
) there is a 

latitude 6 in the definition of the box's height. This leads, via the q 
gravitational redshift 

!:.T - 8...J! 
T - c2 

to an uncertainty 6
1 

in the delay of the timer due to the gravitational field. 

Thus [T-1 (1
2
-t

1
) ; h -1 6q ; f:.T-1 6): 

g6 g6 ~ 
6, 6E = =-:f1.(._t2-tl) 6E ~ 712-tl) g(1 -t ) 6 = 6p 6q ~ 1 . 

c c 2 1 p '1 

Tuis uncertainty in timer delay will lead to a corresponding uncertainty 

about the photon's emission time. Analogously to the above, the second 

weighing will make it impossible to improve the definition of time by 

opening the box qfterwards and comparing the reading of the timer to that 

of a standard clock. Both weighings imply a rupture in the box's develop­

ment as regards the time picture. On the other hand opening the box to 

compare the timer to a standard clock before the second weighing will 

render the conservation laws inappropriate and thus disturb the determina­

tion of the mass difference. 

Both elements (i) and (ii) are present. The discussion, however, contradicts (iii). The 

photon concept may not be used in the above way because it cannot aid in conceptual 

understanding and because no uncertainty relations of the type 6
1 

6E ~ 1 or 6P 6q ~ 1 

exist for photons. Einstein, however, proposed the experiment wi1h photon, so I think 

this inconsistency should not be taken too seriously. Moreover, the argument remains 

just as valid in other respects when 'electron' is substituted for 'photon'. 
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3 SPIN MFASUREMENT 

Another interesting experiment concerns the possibility of determining the magnetic 

moment (spin) of an electron with a Stem-Gerlach device. Bohr's doubts as regards 

the feasibility of such an experiment seem at first sight in contradiction to the 

astronomical precision with which the magnetic moment of electrons is known (viz. 

the anomalous g -factorH). The situation of the experiment is depicted in fig. 1. 
s 

Electrons enter the setup in a beam of width ll.q2 moving in t-direction with 

momentum p 1• The magnetic field is inhomogeneous and bas in the area of the bearn 
.... 

(q2 ~ 0 , q3 ~ 0) the value B ~ (0,bq2,a-bq3) , with in the beam area a » bq3• Note 
........ 

that (V · B) = 0 is satisfied. This is crucial in Bohr reasoning, as we shall see. 

The working of the Stem-Gerlach device is based on the existence of a spin-depen­

dent force in the 3-direction, of magnitude 

IJB 
(5) F = g8 µB o/1:.q 3 ~ e,: (Ti = 1). qa,s 3 

We also have the Lorentz-force, however. lts 3-oomponent is not constant over the 

2-width of the beam. It varies by an amount 

epi IJB b 
(6) ll.F = ---9.i.fl.q = Lp ll.q 

qaJ.. m öq
2 

2 m 1 2 

For a correct operation of the device we must have at least 

(1) Fq3,s ::? ll.Fq3,I.. :::::::> P1 ll.q2 '$ 1 :::::::> ll.q2 '$ Àl21r 

This last condition is, according to Bohr, in contradiction to the particle conception in 

the sense that use of the notion of 'beam' on which the whole analysis is based, is 

excluded by it. As we narrow down the beams in order to attempt to comply with (7), 

diffraction effects in the 1,2-plane will increase so that the attempt cannot succeed. In 

54F. Combley (1979): Rep. Progr. Phys. 42, p. 1887 
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s 

N 

fig. 1 Schematic cross-section of the Stern-Gerlach setup. The inhomogeneous 
ma.gnetic field is indicated by the dashed lines. The electrons move in the 
1-direction, perpendicular to the plane of the drawing 

Bohr's words55·ii, "[."] it is impossible to reconcile the idea of a well-defined direc­

tion of the beam, with the condition that the variation of the Lorentz-force within the 

beam shall not exceed the deflecting force due to the electron magnetization". [Of 

course in the original experiment neutra/ (silver) atoms were used, so that the 

Lorentz-force does not come into consideration there.] 

Bohr has additional arguments. In the first place angular momentum L and angle 0 

are canonically conjugate, so that t:.L A0 ~ 1. Since moreover A0 ~ 21r, AL~ 11211" 

implying a blurring of all effects due to spins&. [This argument is incorrect: due to the 

boundedness of 0 no such simple uncertainty principle for the L,0-pair57 exists. 

55N. Bohr, op. cit. (1929d): "The Magnetic Electron" p. 333 of Bohr, op. dt. (1985); quote from 
p. 335 [This manuscript's date is uncertain; in particular it is not clear whether it was written before 
or after Bohr, op. cit. (1929c).] 

56Bohr, op. cit. (1985) p. 348 (from the discussions at the 1930 Solvay conference) 

57See e.g. J. Uffink (1990): Measures of Uncenainty and the Uncertainty Principk (PhD Thesis, 
Utrecht University), unpublished. Bohr's argument is all the more strange because the problems with 
L..e had been pointed out to him by Schroedinger as early as May 1928. (Bohr, op. cit. (1985) p. 46). 
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Bohr's reasoning implies that angular momentum is not be accurately measurable at 

all!] In the second place, Bohr argues, the electron's magnetic moment is propor­

tional to ÎI., so that58 "any effect of the magnetic moment ascribed to the electron will 

disappear in the region of legitimate application of classical mechanics which involves 

the neglect of the quantum of action". 

·At first Bohr interpreted this reasoning as implying that the spin of a free electron 

could not be measured at all59• [When bound to an atom, such as in the original Stern· 

Gerlach experiment, the electron-spin is part of the atom's angular momentum, which 

does have a classica! analog.] We hear a remainder of this in the remark&o "[ ... ] the 

possibility of a direct observation of the magnetic moment of the electron would be 

inconsistent with the fundamental principles of quantum mechanics". But as Mott 

showed that through spin-dependent scattering a method of preparing ["' measuring in 

Bohr's terminology] could be devised, Bohr withdrew this radical point of view. He 

writes to Mott61: "In fact the argument 1 used in the discussion of the Stern-Gerlach 

effect was not strict due to the mixture of classical mechanics and wave theory in the 

very region where no sharp distinction is possible. Thus the argument tells only that 

as regards the electron magnetization we cannot as in the ordinary discussion of the 

Stern-Gerlach effect base our considerations on classical pictures of a moving 

magnet, but not that the closer quantum mechanical treatment will never give a 

positive effect". 

Summarizing, we can say that Bohr's point of view is that a Stem-Gerlach entails an 

object description in terms of space-time pictures. Spin does not belong to this cluster 

of concepts, and the Stem-Gerlach is therefore unsuitable for spin determination62• 

Comparison with anomalous g experiments is not as trivial as it may seem. Such 

experiments do not use a Stem-Gerlach. This would seem to be in accord with Bohr's 

reasoning. But in fact Bohr's experiment and anomalous g experiments have 

58Bohr, op. cit. (1929d) p. 333; cf. Bohr, op. cit. (1929c) p. 13 and Bohr, op. cit. (1930) p. 391 

59cf. Bohr, op. cit. (1985) and 0. Darrigol (1984): Historical Studies in the Physical Sciences 15, 
no. l, p. 38 

60Bohr, op. cit. (1929d) 

611..etter quoted on p. 56 of Darrigol, op. cit. 

62Bohr, op. cit. (1929c) p. 13 
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completely different goals: the former attempts to find out the value of z spin (i.e. up 

or down) for individual electrons, whereas the latter are intended to determine the 

value of g , which is a constant of the species 'electron'. Bohr's reasoning should be 
s 

interpreted as giving an absolute lower limit to the accuracy with which an electron-

spin measurement using a Stem-Gerlach can be carried out63• As polarized beams of 

electrons can be prepared (as Bohr himself acknowledges), there is no reason why the 

accuracy of a Stern-Gerlach device could not be determined with arbitrary precision. 

The g factor could then be derived out of a comparison of the experimental value of 

this accuracy with a theoretical result. Consequently Bohr's reasoning is not only not 

at variance with g factor determination in general, hut not even with g factor 

determination using a Stern-Gerlach. 

Especially Bohr's early opinion that electron spin could not be measured because it 

does not have a classical analog, is evidence of (i). His discussion With Mott shows 

that he nevertheless had no objection to QM calculations to get quantitative answers 

[(iv)]. Inch.Va more quantitative discussion of a Stern-Gerlach is performed. We 

see there that, contrary to Bohr's opinions, it functions reasonably well for electrons. 

4 EPR 

The most famous and thought provoking thought experiment discussed by Bohr is 

undoubtedly the one that was proposed by Einstein, Podolsky and Rosen64 (EPR) in 

1935. In the following we shall discuss it with special regard for Bohr's opinions 

(§ 4.3), in as far as these are important to establishing (i)-(iv). We shall not consider 

the locality discussion it has engendered. First, however, we discuss the experiment 

itself in some detail, since the EPR paper probably was a rather awkward reflection 

of Einstein's views (the EPR paper was not written by Einstein, but by,Podolsky65). 

83Darrigol, op. cit. 

64A. Einstein, B. Podolsky & N. Rosen (1935): Phys. Rev. 41, p. 777. See for the history of this 
experiment e.g. Howard, op. cit. 
65See e.g. M. Jammer (1985): in Symposium on the Foundations of Modern Physics, Joensuu, Finland 
(ed. by P. Lahti & P. Mittelstaedt, World Scientific, Singapore), p. 129. 
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4.1 EPRI 

In formulations of QM such as we will discuss in eb. m, the state+-i<>bservable dis­

tinction as a reflection of the preparation+-+measurement dichotomy (eb. 1) is particu­

larly clear. We saw in ch. I, however, that this distinction is not quite natural from 

the classical point of view current in the early stages of QM. The objectivism of 

classical measurement reduces it the distinction to a conceptual triviality. This also 

plays a role in the EPR debate. In fact different EPR-arguments can be distinguished 

according to how far we pursue the state+-+0bservable distinction. First we shall 

discuss the original EPR version, in which the viewpoint is quite classical. 

EPR want to find out if QM is complete. A theory T is defined to be complete when it 

reflects all of reality: 

DEFINITION T is complete . - Every element of reality corresponds to an 

element of T . 

EPR clearly find completeness an important property for a theory. They go (impli­

citly; but cf. the last paragraph of the paper) so far as think that a theory that is not 

complete, can only be of temporary significance. Incompleteness is, in their view, 

evidence of the existence of a deeper, complete, theory. Thus an incomplete theory 

can never be a candidate for the "ultimate" theory ('finality'). Completeness is a 

necessary (rather than only a sufficient) condition for finality: 

(8) T is final ~ T is complete . 

Here we already see that the finality itself plays no role in the EPR reasoning. It is 

the validity of the implication (8) rather than the validity of its premise which lends 

completeness its importance. Moreover, we have to distinguish between jinality and 

experimental adequacy: EPR find QM not acceptable as the final theory even if its 

experimental domain of validity would be infinite. In the latter case EPR would feel 

that there are parts of reality, not directly accessible, that a complete theory should 

describe, but which QM does not. Experimental adequacy was, for EPR, not at stake. 

Similarly the domain of validity was not the subject of discussion for Bohriii either, 
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although the distinction between finality and experimental adequacy made no sense 

for him66 • 

To be able to show incompleteness in a clean way, one would really need an look at 

reality from a higher meta-level. If the theory itself is used to judge what is real and 

what is not, the reasoning leading to the decision about completeness would run the 

risk of being circular. One would need extra-theoretica! arguments for the existence 

of certain elements of reality67• Such arguments are not available. Therefore EPR 

introduce a reality criterion that is only intuitively plausible: 

CRITERION We can predict the value of quantity .Á with certainty (i.e. with 

probability 1) without disturbing the system 

JJ 
There is an element of physical reality corresponding to .Á. 

EPR then consider the case where we have two particles A and B, spatially separated. 

The joint system is in a state where Pa + Pb and Qa -Qb are both sharp and both 

known (preparative knowledge; particle operators are denoted by corresponding 

indices). If we measure Pa , we can deduce the value of Pb. Similarly a measurement 

of Qa leads to a prediction about the value of Qb . Since in both cases there can be no 

question of a physical influence on the second system (spatial separation), we can 

employ the criterion: both Pb and Qb correspond to elements of reality. Since they 

are incompatible, QM cannot describe this. Therefore QM must be incomplete. 

The reality criterion is about the reality of observables. It can be seen as an adapta­

tion of the classical measurement concept, designed to avoid direct interaction 

between object and meter. In that way the criterion evades reasoning (Heisenberg) 

based on the physically disturbing influence of measurements in QM&s. The classical 

measurement concept contains, however, a counterfactual element: if a certain value 

for a quantity turns up in a measurement, we assume that the quantity would have also 

had that value if we had not made the measurement. Tuis counterfactual element is a 

66Bohr, op. cit. (1949) p. 37 

67E. McKinnon (1982): Scientific Explanation and Atomie Physics (University of Chicago Press), 
p. 339 

68w. de Muynck (1986): Found. Phys. 16, p. 973 
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consequence of the non-contextual objectivism of CM: measurement outcomes are 

regarded as reflections of properties independently possessed by the object system. 

Counterfactuality is not explicitly mentioned in above criterion, but EPR obviously do 

talk about such classica! reality. Accordingly, it may be argued that if we can predict 

the value a quantity has without disturbance, we may safety assume, that the object 

had the same value as a property before the measurement that allowed us to make the 

prediction, took place. In fact, we may (according to EPR) attribute the value as a 

property to the object even if that measurement does not take place at all. EPR do use 

counterfactuality, albeit implicitly, and only thus can they jointly attribute Pb and ~ 

values to system B. 

Consequently EPR seem to take for granted that measurements bring to light pre­

existing quantities: the EPR reasoning uses classica!, non-contextual, objectivism as 

regards measurement (ch. 1), with all its disadvantages. One may argue that the 'no 

disturbance' proviso is useless: even if we assume that the value of the quantity is 

changed in the measurement, we get value attributions not reproducible in QM from 

the classica! measurement objectivism by itself. If we, on the other hand, assume that 

a measurement creates a property69, the EPR measurement scheme creates the Pb and 

Qb values to system B in different situations. They do not exist jointly. Whereas a 

change in a pre-existing quantity may obviously be regarded as a disturbance, it is not 

clear whether the creation of an element of reality where there was none before, can 

be regarded as such. Thus the EPR reasoning leaves a lot to be desired. In the 

following sub-section we present an argument that is purer, and probably closer to 

what Einstein actually had in mind. 

4.2 EPRil 

We consider, like in EPR I, a two particle system in an entangled state: 

69Such a view on measurement was advocated by e.g. Jordan [Jammer, op. cil. (1974) p. 161], 
although Bohr did not approve of it [Bohr, op. cit. (1939, 1949)]. 
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We also assume, like above, that the two systems are spatially separated and do not 

interact. We then make some measurement on system À. The state giving the QM 

description of system B afterwards will depend on the measurement outcome and on 

the kind of measurement performed1v. We now assume: 

AssUMPTION If a system is not interacting with other systems, the system 

independently possesses a property (~ element of reality) called 

the 'state' of the system. 

Even without making completely specific what we mean by 'state', it is clear that 

wave vector and density operator are the only QM candidates for the job. Since a 

A-measurement cannot physically disturb B, we must assume that the B-state resulting 

from the .A-measurement really is that system's state. But the same reasoning can be 

applied to all the different B-states resulting from different types of À-measurement. 

(Note that the dependence on the outcome of the À-measurement corresponds to a 

classically understandable correlation, and is unproblematic.) All may be considered 

as representing the second system's real state. This is absurd. Thus neither QM state 

description is satisfactory, and we must conclude that there is no element of QM 

corresponding to the element of reality 'state'. QM is incomplete. 

This EPR formulation does not make any idealizing assumptions about measurement. 

We have in particular not assumed that the measurement is anything like an ideal 

classical measurement, or like a first kind measurement. Thus many of the objections 

against EPR 1 are invalid here. This allows us to focus more clearly on the real issue, 

as embodied in the assumption, without the quasi-logical clouding of the EPR-paper. 

In view of the formulations Einstein himself chooses70 to describe the EPR situation, 

there can be little doubt that this reasoning is much closer to bis views than that in the 

EPR paper. Pauli perceived this at once. He writes to Heisenberg 71: "Aber woran 

70see e.g. his reply to the essays in the Schilpp volume [A. Einstein (1949): in Schilpp, op. cit" 
p. 665), a letter to Popper [K. Popper, op. cit.(1972), app. *xii], a letter to Schroedinger [quoted on 
p. 173 of Murdoch, op. cit.] and a 1948 paper [A. Einstein (1948): Diakctica 2, p. 320). Cf. also 
Howard (1989), Murdoch, op. cit" p. 166 and Hooker, op. cit., p. 88 

71"But what [Einstein] is annoyed about in this conection is the way in which in QM two systems 
constitute one joint system•. W. Pauli (1979): Wissenschqftlûfher Briefwechsel (ed. by A. Herman, K. 
von Meyenn & V. Weissk:opf, Springer, Berlin), vol. II, letter no. [412] 
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[Einstein] sich in Verbingung damit stöBt, ist die Weise, wie in der Quantenmechanik 

zwei Systeme zu einem Gesamtsystem zusammengesetzt werden". It is unfortunate 

that Bohr's reaction, discussed in the next section, was focused on the EPR reasoning, 

rather than on Einstein's own. 

4.3 Bobr's answer 

Bohr answered the EPR challenge almost immediately72. From his answer it is clear 

that he regards the EPR imaginary experiment as just another simple example, similar 

to the ones he bas treated earlier (diaphragm, double slit). Thus he starts the paper by 

giving a general overview of complementarity, leaving the mathematics of EPR to a 

footnote. Then he goes over to the EPR case, "[ ... ] which does not actually involve 

any greater intricacies than the simple examples discussed above" (EA p. 699; 

quotations denoted by EA are from Bohr, op. cit. (1935)) v. In bis discussion Bohr 

then shows that EPR's reality criterion is ambiguous, and that their conclusion is 

therefore untenable. Before we discuss Bohr argument in more detail, we can on the 

basis of the earlier section already see that that must be Bohr's way out: as we noted, 

EPR talk about i"ndepellll.ently possessed real attributes (in EPR 1 these correspond to 

quantities, in EPR II to states). Por Bohr, however, we must talk about reality in 

classica! terms [(i)], and which terms are applicable is detennined by the experimental 

surroundings. The indivisibility of the quantum of action implies the impossibility of 

all concepts' being applicable (beyond the uncertainty principle). Thus we cannot talk 

about reality independent of the means by which we investigate it. EPR's reality 

criterion cannot be but ambiguous. 

Consider a slightly more general example than that introduced by EPR (the reason for 

the generalization will become clear later), where wa and~ are "correlated"' and so 

are Ya and Z.,. The operators Wa and Ya are taken such that they do not commute, and 

similarly ~ and Z., do not commute. In the EPR case, of course, Wa = Qa , 

~ = Qb, Ya =Pa and Z., = Pb. How does this "correlation" come about? In QM 

72eobr, op. cit. (1935) 
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it is inherent in the state description, and from this we conclude that it must come 

from the state preparation. Thus Bohr, because he cannot use the QM state to 

understand the experiment [(iv)], must give an account of the preparation. He bas to 

give the •measurement" that brought the "correlation" into being73• Indeed Bohr 

spends the latter half of p. 699 (BA) on a discussion of a device consisting of a double 

slit diaphragm and a momentum meter that can (approximately) prepare two particles 

in the state used by EPR. Now we can, e.g., perform an w.-rneasurement on 

system .A. Then obviously the W -picture is incompatible with the picture in which the a 
correlations are defined, in particular with the Ya,z., -side of it. As discussed earlier, a 

measurement must make predictions based on earlier measurements (in the Bohrian 

sense) worthless (at least) in as far as they would otherwise conflict with the uncer­

tainty principle. Thus the W -measurement will impair predictions based on the 
a 

Y.,Z.,-"correlation", whereas the Wa 1.Ki,-"correlation" remains usable. Analogously we 

can discuss the case of an Y -measurement. Thus different measurements give rise to 
a 

different "types of prediction" (BA p. 700) as regards system B. The phrase "types of 

prediction" refers to the types of B-arrangement in which the knowledge of Ä+B pre­

paration combined with .A-measurement can be put to use. An W -measurement will 
a 

enable us to make predictions about .Ki, , if we perform that measurement. If we 

perform a rneasurement other than of .Ki, (the choice is ours), then the predictions 

become useless because of the incompatibility of the observable measured and the one 

we can predict. In fact a phrase similar to "types of prediction" also occurs in the 

Warsaw lecture74, where Bohr is describing state preparation (see above). Thus the 

EPR-setup (..t+B-preparation combined with .A-measurement) is for Bohr just another 

state preparation procedure. In this sense Bohr's reasoning closely reflects the EPR­

description in the QM formalism. 

The extra complication, from EPR's point of view, is of course that we can prepare 

system B in different states (viz. EPR II) without tampering with it. EPR argue that if 

the QM state description is complete, this can only be understood via a (non-local) 

physical interaction. This reasoning is, however, only compelling when one thinks of 

the 'state' as an independent object-property. Por Bohr there is nothing in system B 

73de Muynck, op. cit. (1986) 

74Bohr, op. cit. (1939) p. 20 
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that is mechanically influenced by the type of measurement we choose to perform. 

Instead the type of .4-measurement we choose to perform, determines (via the 

Ä+B-preparation) the type of B-preparation arrangement (EA p. 700; the preparator 

corresponds to the QM B--state description). As these arrangements must be analyzed 

in different, incompatible, pictures, they are mutually exclusive. This illustrates the 

more general rule that there can be no talk of a 'state' indepe11dent of the arrangement 

(i.e. the preparator) that brought it about15• Our earlier remarks regarding the limited 

ontical significance of a preparation by itself (a preparation alone is not a phenome­

non), also apply here. Accordingly, we here cannot talk about properties of system B 
when no measurement is performed on it 76• Only if we perform the B-measurement 

the setup allows us to predict, we can consistently ascribe a property to system B. 

We have chosen a somewhat more general description of Bohr's answer, because the 

original one is, quite understandably, bound to the particular form EPR gave their 

objection. Thus Bohr's answer in above form can be more closely related to EPR Il. 

It bas the further advantage that certain misunderstandings as regards Bohr's answer 

can be cleared up. Usually the fact that Bohr (unlike EPR) explicitly describes an 

arrangement that prepares the EPR correlation, is·overlooked77• But then we lack the 

connection needed to base B-predictions on .4-measurement. In the original EPR 

example momentum is correlated with momentum, and position with position. That 

suggests the possibility of fixing the problem by assuming that a Q -measurement 
a 

makes momentum inapplicable to the whole setup, i.e. to both system ..( and system B. 

Then the possible type of prediction for system B is always the same as that which is 

measured on system ..(, regardless of the type of initial "correlation" (Ä+B prepara­

tion). On the basis of this reasoning a viable answer to EPR can be given, but only 
when their formulation is strictly adhered. to. If EPR had chosen to take an initial state 

such that Q
8 

is correlated with Pb and P
8 

with ~, this form of Bohr's answer would 

have no Jonger made sense. That it is incorrect can also be seen by a consideration of 

the further arguments to support it given by Hooker78• He discusses a more concrete 

75eohr, op. cil. (1939) p. 21 

76de Muynck, op. cit. (1986) 

77E.g. by Hooker, op. cit., McKinnon, op. cil. (1982) and by de Muynck, op. dt. (1986) 

78Hooker, op. dt., p. 222ff 
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fig. 2 

Appendix B 

Hooker 's gedanken experiment. The frame F, to which a movable dia­
phragm (N p) on the B-side and a fixed one (tv q) on the .4.-side are 
attached, explicitly defines the coordinate system (figure taken /rom 
Hooker, op. cit.). 

device (fig. 2). A Qa-device and a Pb-device are both firmly bolted toa frame F. He 

then argues that in the Q -measurement an uncontrollable amount of momentum is 
a 

passed into F, obscuring the relation (in p picture) between F and the momentum 

meter on the B-side. Now the Pb -measurement can be saved, according to Hooker, 

by sawing Fin half, but then we lose the connection between the two measurements. 

The flaw in the argument is that for the quality of th,e Pb-measurement not the inde­

terminateness of the frame's momentum is important, but the indeterminateness of its 

velocity. By increasing F's mass we can reduce this unwanted effect indefinitely. 

Moreover, Hooker's reasoning is in fact in conflict with Bohr's views. For Hooker 

the indeterminate momentum exchange leads to an indeterminate frame momentum. 

But that argument is only correct when momentum conservation is applied to system 

.4.+F (including diaphragm). But then application of space-time pictures to the .4-side 

is out of the question: the diaphragm no longer measures position. The amount of 

momentum flowing into the diaphragm's support is in fact untraceable because the 

support is unmovable. Bohr always effectively takes the frame's mass to be infinite, 

so that momentum is not conserved. Thus Hooker's version of Bohr's answer is in 
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conflict with Bohr's views, totally ignores (unlike Bohr) the "correlation" in the 

initia! state, and can be countered by a simple change in the EPR argument. 

In Bohr's answer especially (i) is clear. In bis intuitive explanation Bohr has to choose 

a very awkward wording ("an influence on the very conditions which define the 

possible types of predictions regarding the future behavior of the system", 

BA p. 700), because of the necessity of describing the situation in classica! terms and 

because a preparation by itself does not constitute a phenomenon (see above dis­

cussion about Bohr & preparation). Bohr cannot have recourse to the QM state 

description [(iv)], as it does not lead to conceptual comprehension (EA p. 701). In 

conclusion, Bohr finds that QM is not incomplete as it takes all available information 

in a consistent way into account79 (EA p. 700). 'Completeness' in the Einsteinian sense 

is, for Bohr, simply nota well-define<' "Otion. 

NOTES 

Bohr's original version of the experiment is more complicated, and involves a balance. 
His description of the experiment is rather too condensed to be easily accessfüle. So, 
e.g., it seems to imply that one would bave to read the balance inaccurately in order to 
obtain an accurate weighing. The version given here is simpler and just as suitable. 

il Bohr's reasoning is rather strange (cf. Casimir's remark on p. 111 of Ro:rental, op. 
cit. ). The fact that the magnetic field is divergence-free is crucial. Thus bis argument 
would falter if magnetic monopoles would turn out to exist. Similarly, Bohr's use of 
genera! relativity to defend a part of QM in § 2 is questionable from a methodological 
point of view (cf. Jammer, op. cit. (1974), p. 136ff). 

iii Bohr always kept a (more than) open mind to the possibility that QM would end (cf. 
eb. II and, for instance, the closing paragraphs of the Faraday lecture [Bohr, op. cil. 
(1930)D, and he suggested fundamental revisions on a number of occasions (none of 
them tumed out to be necessary; cf. Bohr, op. cil. (1985) and E. McKinnon (1985): 
Niels Bohr, a Centenary Volume (ed. by A. French & P. Kennedy; Harvard University 
Press), p. 101). Bohr, among the founders of QM, was probably the one with least 
confidence in it. 

79McKinnon, op. cit. (1982) p. 345 
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iv Note that the state description of CM (probability distribution over phase space) aJso 
exhibits such dependencies. There, however, they are resolved by the reaJi:zation that 
this state description is incomplete. The "real" state (point in phase space) is never 
correlated. 
It is sometimes claimed (e.g. by H. Margenau (1936): Phys. Rev. 46, p. 240) that the 
postulate (1.2.e) of the measurement of the first kind is the cause of the EPR trouble. 
Dut this is not the case. Postulate (1.2.e) is not used at all. It is a statement about what 
happens to system 1 after it bas been su~ected to measurement. The fate of system 1, 
however, is of no concern to EPR. The measurements involved may be destructive 
(viz. the Aspect experiment), a situation certainly not described by (1.2.e). In fact, the 
"empirica]" argument given by von Neumann in favor of (1.2.e) [ch. I], is based on a 
similar misunderstanding. 
In the EPR-11 argument we may as well use the more genera} formalism to be discussed 
in ch. m. without affecting essentials. 

v Bohr seems to imply that EPR's argument is, from his point of view, a needless 
complication. If the EPR challenge would really have been so important as to cause a 
major change in Bohr's views, his style of presentation in the EPR answer (and this 
remark in particular) would reduce to pure demagogy. 
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AppendixC 
Ad chapter 111: proofs 

For the proofs in this appendix we will assume that all elements of an EVM are non­

zero. It can straightforwardly be checked that this is possible without loss of 

generality. We shall further assume all outcome sets to be subsets of some fixed 

countably infinite outcome set F. 

1 AD§ 2.2 

LEMMA 1 Any two equivalent and pairwise linearly independent EVMs are equal up 

to their labeling. 

PROOF OF LEMMA 1 

Suppose two EVM's n = {Nl}L and o = {Om}M are given such that 
n +-+ o and such that both EVM's are pairwise linearly independent. 

There exist non-ideality matrices {,\lm} and {µml} such that: 

Nl = EmEM Àlm.Om (l EL); om = ElEL P.m/'11. (m E M). 

De fine: 

Then: 

Using the notation pm = Tr(p O.J (p arbitrary), this amounts to the 

eigenvalue equation pk= EmeM·'YJm (eigenvalue 1). 
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(3) 

(4) 

Appendix C 

A square matrix like { "Y1an} can be used to represent a Markov chain with 

stationary transition probabilities1 (app. A). Seen from tha,t point of view, 

eq. (2) means that this chain has a summable stationary distribution (one 

for every p). 

lf a non-empty set J Ç M has the property that V mEJ EiceJ "Y1an = 1, we 
call it closed. If the set J has no proper closed subsets, it is minimal 
closed or, equivalently, essential (see app. A). It can be shown that, given 

that (2) is satisfied and that V mEM 0 m # 0 , a non-empty proper subset of 

Mis closed if its complement in Mis either closed or empty. We intro­

duce the index set I, 

I := {m E Ml "Y < l} , mm 

which we shall assume to be non-empty. Then Ï, the complement of I 

in M, is either empty or closed in M , which means 1 is closed, too. Look 

at the smallest closed set J i Ç 1 containing {i} for some i E 1. Since 1 is 

closed and not empty there is such a subset. On Ji the eigenvalue equation 

reduces to: 

(k E J.). 
l 

The matrix {"Ykm}J·xJ· has, because of (1), a period equal to 1. [The 
l l 

period of a stochastic matrix r is the smallest number m > 0 such that 

the diagonal elements of rm are non-zero2 .] Since the set J. is minimal 
l 

closed by construction, the stationary summable distribution is unique up 

toa scalar factor3• This means that (4) has a solution: 

P = Aa (m E M· À > O)· 
m m ' - ' 

for some fixed non-negative sequence (a ). This would imply for (2) that 
m 

0 Nok if k,m E J .. Since 0 was pairwise linearly independent by m 1 

1K. Chung (1967): Markov Chains with Stationary Transition Probabilities (2nd ed.; Springer, Berlin) 
2Chung, op. cit.; App. A 

3For finite Ji this is a consequence of the Perron-Frobenius theorem [J. Ortega (1987): Matrix Theory 
(Plenum, NY); see app. A]. 
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assumption, this means that J. cannot contain other elements than i. But 
1 

then the eigenvalue 1 can only be achieved if 'Y.·. = 1 , contradicting the 
11 

definition (3) of I . 

Since p was arbitrary, I does not contain any minimal closed subset and 

must be empty. Hence 'Y1on = ElEL ~lm = 6km . Similarly one can 

prove that EmEM ÀJmt. = 6kl. It is not difficult to see that this implies 

that {Àlm} and {µml} must be permutation matrices. 

D 

PROOF OF TimOREM 4 

An arbitrary EVM m = {Mk}K is given. Divide K into subsets: 

(5) .K := {1 Ç K 1 VkEI [vmEK Mk"' Mm ~ m E 1]} 

Obviously .K can be mapped into F. We have: 

vkEK 3!JE .K k e J . 

This allows us to define the EVM m' = {M1'}x: 

This EVM is pairwise linearly independent by construction and obviously 

m +-+ m'. Por another EVM n in m's equivalence class we can similarly 

construct a pairwise linearly independent EVM n'. Then n' and m' are 

equal upto their labeling (lemma 1). This proves the theorem. 

D 

PROOF OF TimOREM S 

Since our Hilbert spacé is finite dimensional, there is an affme decom­

position into (not necessarily orthogonal) one dimensional projectors for 
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every positive operator, and consequently for every Mk e {.U.:}K, too: 

(7) .U.: = L c1anl'if'1anHtP1anl (k E K; clan~ 0). 
m=O, 1,". 

The set L: = {(k,m)eFxlN 1 clan# O} can be mapped into F. Consequently 

this decomposition gives us an EVM n = {Nlan}L satisfying n - m: 

(8) Nlan : = clan l 'l/J1an) ( tP1an 1 [(k,m) e L]. 

Hence, fora given EVM m there is always an EVM n = {Nl}L such that 

n - m and V LEL Nl E ö 9J+. But since we assumed m to be max.imal, we 

must have 

(9) Nt = l:.:eK ,\Ik Mk (l e L; {,\ik} a non-ideality matrix). 

The fact that V LEL Nl e ö9J+ means that all non-q.ero elements on the 

right-hand side of (9) must be N Nl . Since there can be no k E K for 

which there is no l e L such that ,\Ik > 0 , it follows that 

vkEK .U.: e ö9J•. 

Suppose that m satisfies the premise (i.e. VkEK Mk E IJ9J+). We can, just 

as in the proof of th. 4, construct a pairwise linearly independent EVM 

m' = {M~}M such that m' - m and VmEM M~ e IJ9J+. 
Suppose further that there is a pairwise linearly independent EVM 

n = {Nt}L satisfying n - m'. Then there exists a non-ideality matrix 

{,\ml} such that: 

M~ = LLeL ,\ml Nt (m e M). 

Since V mEM M~ E IJ9J+ and m' is pairwise linearly independent, there is 

for every l e L precisely one m E M such that Nl"' M~. Moreover, since 

LmeM ,\ml= 1, for every l e L such that Nl # 0 there is a me M such 

that Nt = M~ . Hence m - n. 
a 
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LEMMA 2 For every EVM m there is a self-extremal and pairwise linearly 

independent EVM 

vlEL 3keK Nl N Mk · 

PROOF OF LEMMA 2 

such that nl...m 

The set B(m) is closed since K(m) is closed and it is bounded since: 

SUPX,l'EB(m) llX - Yll ~ 2 supXEB(m) llXll ~ 

~ 2 supXEB(m) Tr(X) = 2 < m • 

and 

The set B(m) is also convex. It is a subset of the space ~( df) of linear 

operators on dl. Since dl is finite dimensional, so is ~( df). Therefore, 

using Minkowski's and Carathéodory's theorems (see app. A), we see that 

every element of B(m) can be written as a convex sum of finitely many 

elements of öaB(m). It is not difficult to see that4: 

(10) öaE(m) = B(m) n öK(m) . 

For these reasons there is a countable set {Xl}L Ç öaE(m) such that we 

can write: 

We can assume that for every l E L there is a k E K such that 'iel > 0. If 

this were untrue for some l
0 

E L, we would not have included Xl
0 

in 

{Xl}L. Moreover, EiceK 'iel bas to be finite because EiceK ~ = 1 and 

Xl # 0 for all LEL. Now define: 

Nl : = <EiceK '\; xl (l E L); 

\l : = '\l <EiceK '\/l (k E K; l E L). 

4See e.g. G. Jameson (1970): Ordered Linear Spaces (Lecture Notes in Mathematics 141, Springer, 
NY), § 1.9. 
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It follows that n = {Nt}L is a self-extremal and pairwise linearly 

independent EVM, and that p.kl} is a non-ideality matrix. Hence n - m. 

Since V LEL Nt E K(m), there must be a non-negative matrix {,Bik} such 

that: 

Since also V LEL Nt E ÖK(m), all non..,zero terms on the right-band side 

must be "' Nt . Consequently f or every m E L there is an l E L such that 

Nm"'Mt. 
[J 

Note that, although the relation of lemma 2 is stronger than ..!... , we cannot in genera! 

achieve equivalence. 

PR.OOF OF THEOREM 6 

We can, for a given EVM m, construct a pairwise linearly independent 

EVM n = {Nt}L such that n ..!... m and V LEL Hi_ E 8Kmax(m), using an 

algorithm similar to the one we used in the proof of lemma 2. 

Assume mis i-maximal. We must then also have: 

Since VLEL NL E öKmax(m) all non-zero terms on the right-hand side 

of (11) must be"' NL. There can be nok e K for which there is nol EL 

such that ,\ik > 0, soit follows that VkEK Mk E ÖKmax(m): 

Suppose that m satisfies the premise (i.e. VkEK Mk E 8Kmax(m)). We 

can, just as in the proof of th. 4, construct a pairwise linearly independent 
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EVM m' = {M~}M satisfying: 

V EM M' e 8K (m) = 8K (m') and m' +--+m. m m max max 

Suppose n = {Nl}L satisfies nl. m, and is pairwise linearly indepen­

dent. Hence there exists a non..fdeality matrix {Àml} such that: 

M.;,_ = ElEL ,\mlNl (m E M). 

Since V EM M' E 8K (m') and m' is pairwise linearly independent m m max 
we have V leL 3!mEM Nl"' M~ . Combining this with EmeM ,\ml = 1 
gives V lEL 3mEM Nl =M.;,_. Hence m- n. 
a 

PROOF OF TIIBORBM 7 

This proof of is simpte: every EVM n such that n - i is equivalent to i, 

and for every EVM n it is true that i - n. 

a 

PROOF OF TIIBORBM 9 

If dim( R) = 2, we only have to show that if m is i-maximal and not 

minimal, it is maximal. 

We can always write: 

Here ~ is a projector onto a 1-<limensional subspace, and ~ is its 

orthogonal complement. We assume (without loss of generality) that 

ckl ~ ck2 for all k e K. There must be at least one ~ e K for which 

ckol > cko2, since mis not minimal (tb. 7). This means that 

cml = cm2 (k0 # m E K) ::::} Mm E L(i) Ç K(m)\ÖK(m) . 
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Since m is i-maximal, there can be no such m (th. 6). Consequently we 

must have ckl > ck2 for all k e K. Then it follows that 

lJK(m) = {X 1 3kEK 0 ~ X"' 1\} . 

Since Vk:EK {1\;,~} Ç lJ$+ and an i-maximal EVM is self-extremal, this 

means (tb. 5) that m is maximal. 

If dim( .N) > 2, the PVM {E,Ë} (E 'f 0, E 'f 1) is i-maximal, but neither 

maximal nor minimal. 

IJ 

PROOF OF THBOR.EM 10 

For the first part of the theorem we only need to prove that an i-minimal 

EVM is minimal (cf. th. 8). Suppose m is i-minimal, but not minimal. 

Choose an EVM n with the same outcome as m, such that 

VkE.K Nk = ckl 'f 0. Define: 

Ok := .>.Mk + (1-.>.)Nk (k E K; 0 < .>. < 1). 

Obviously o = {Ok}K is an EVM satisfying 

assumption we must also have o - m, and thus: 

i m - o. Because of our 

In view of the definition of o, the matrix ;kl can be chosen: 

'Ykt = ).l\t + (l-.>.)[LmeK #\mem] ; 
{l\m} a non-ideality matrix for o - m. 

It can be seen that for the matrix { 'Ykt} the whole index set K is minimal 

closed. Hence we can use reasoning similar to that of the proof of lemma 

1 to complete this proof. 
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The second part of the theorem is immediately clear if one considers 

th. 7, def. m.3 and the above. 

D 

PROOF OF THEO.REM 11 

For a given EVM m one can find a maximal EVM n - m simply by 

using (8), thus proving the first part of the theorem. Because the 

decomposition (8) is usually not unique, there exist in general many non­

equivalent maximal EVM's related to a given EVM. 

We now proceed with the second assertion of the theorem. Fora given 

EVM m one can find an i-maximal EVM n L m by repeating the 

construction of the proof of lemma 2, using K (m) instead of K(m). 
max 

Because the corresponding base B (m) is not always a simplex, this 
max 

i-maximal EVM is in genera! also not unique. 

The third assertion of the theorem is trivial. 

The fourth is a straightforward corollary of th. 10. 

D 

Note that, if dim( ,H) = 2, the conditions of th. 12 and th. 13 coincide because of 

th. 9. This proves the converse part of th. 12 and th. 13 for dim( ,H) = 2. 

In the following two proofs we shall use the fact that i-maximal EVM's are 

self-extremal (def. 111.8). 

PROOFOFTHEO.REM12 

First the counter-example. If dim( ,H) > 2 there is a PVM {E
1
,E

2
,E

3
} (ji 

Ei # 0). Define m = {M
1
,M

2} := {E
1 

+ îE
2 , îE2 

+ E
3}. This binary 

EVM is i-maximal, pairwise linearly independent and B(m) is a simplex. 

It is not extreme. 
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The major part of the theorem's proof consists of four stages: 

a) First assume that m is not pairwise linearly independent. Then (viz. proof 

of th. 4) there is a pairwise linearly independent EVM o = { Ol}L such 

that 

with non-ideality matrix {>'ki} satisfying Vk 3!l \l > 0. The matrix 

{>.kl} cannot consist entirely of 1 's and O's because m is not pairwise 

linearly independent. Such a matrix { \l} can be written as a convex sum 

of two different non-ideality matrices. Consequently m can be written as 

a convex sum of two other EVM's, and is not extreme. 

b) Now assume that mis pairwise linearly independent, but not self-extremal 

(def. m.8). Then (lemma 2) there is a pairwise linearly independent self­

extremal EVM o = { Ol}L such that o -+ m and: 

VlEL 3kEK Vmf.l \m = O . 

The matrix {\l} cannot consist entirely of l's and O's because m is not 

self-extremal. We can use the above reasoning (stage a) to complete 

stage b. 

c) Suppose mis self-extremal and pairwise linearly independent, but B(m) is 

not a simplex. Since L(m) must be finite dimensional, there must be a 

finite set J Ç K such that B({Mk}J) is not a simplex (Ç::::} the number of 

elements of J is greater than dim[L({Mk}
1
)] ; see app. A). 

Then there is an operator X e K({~}1) that can be written as 

X = EiceJ vkMk for two distinct non-negative finite sequences (vk)J. 
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Hence there is a non-trivial bounded sequence <at>x: such that 

L.ceK °tMk = 0. Define: 

Mf := (1 ± ..\a~Mk (k e K; O < À < (supkeK<l'\;l>r
1 

). 

Under these conditions {Mf }kEK are different EVM's, and: 

Hence m is not extreme. 

d) Now suppose B(m) is a simplex, m is self-extremal and pairwise linearly 

independent, but not i-maximal. Then (proof of tb. 11 (part 2), lemma 2) 

there is a pairwise linearly independent i-maximal EVM 

o = {Ol}L i+ m . 

If the matrix {Àkl} in Mk = I:lEL Àtt°l does not consist entirely of l's 

and O's, we can use the reasoning of stage a to see that mis not extreme. 

If this matrix {\tl does consist entirely of l's and O's, the set B(o) 

cannot be a simplex because L(o) = L(m) and B(o) contains more extreme 

elements than B(m). Hence o is not an extreme EVM (stage c) and can be 

written as the convex sum of two different EVMs. These lead, through 

this same { \t}, to two different EVMs of which m is a convex sum. 

Consequently under these circumstances mis not extreme either. 

a 

PROOF OF THBOREM 13 

First the counter-example. A PVM {E,Ë} (E :f. 0, E :f. 1) is extreme, but 

neither minimal nor maximal if dim( H) > 2. 

If m is minimal, self-extremal and pairwise linearly independent it must 

be equal to i up to labeling. Such an EVM is clearly extreme. 
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A more meaningful statement results if we assume that m is maximal and 
satisfies the other criteria, too. We then have (use tb. 5): 

~ = ).~1) + (l-À)M~2) => (À= 0 v M~1) N MJ 

for all EVMs {M~ 1> }kEK and {~ 2> }kEK • 

Therefore there is a non-negative sequence (liJK such that 

~ 1> = vkMk . But since m is self-extremal, pairwise linearly indepen­
dent and B(m) is a simplex there can be only one sequence (vJK such that 

~EK vkMk = 1, namely vk = 1. Hence it follows that ~ 1> = Mk . 
a 

2 AD§2.3 

PROOF OF TIIEOREM 17 

a 
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Theorem 18 is a simple consequence of tb. 17 and def. m.4. Theorems 19 and 20 are 

corollaries of the following lemma: 

LBMMA 3 Suppose that n and m are two EVMs as above, such that n ~ m with 

non-ideality matrix p.kl}. A sequence (gi)K is given such that !:iceK gkMk 

and l:iceK g; Mk converge. Deftne: 

(l2) jl := ~EK gk \t . 

Then ElEL/ !ft = !:iceK gkMk and: 

'f.lEL.t; Nl ~ l:iceK g; Mk ' 

PR.OOF OF LEMMA 3 

It is easily seen that the first part is true. We shall proceed with the proof 

of the second part: 

= r.lEL Nl{ EiceK g; ·\l - <EiceK gk>.k/} = 

= 'f.lEL Nl EiceK Eic 1 EK gk{ bkk,Àkl - Àklk1 l}gk, = 

If we regard {Alif,> } as a matrix-valued function of l, it is seen to be 

equal to the identity matrix minus the projector onto the vector (~ l > )K ; 

~ t J = ./Aki . This vector bas norm 1, since: 

!:iceK (~t > >
2 

= !:iceK \t = 1 · 
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Therefore the summation over k and m always results in a non-negative 

number, so that: 

D 

Theorems 19 and 20 are corollaries of lemma 3 

PROOF OF THEOREM 21 

The first part of the theorem is obvious. We therefore proceed with the 

proof of the second part. We can construct, just as in the proof of th. 4, 

two pairwise linearly independent EVM's m' and n' such that m' +--+ m 

and n' +--+ n. If a sequence if)L for nis such that there is none better 

(alternative i) false), this sequence must have the property that fl = f m 

for all l,m EL for which Nl N Nm. Through m +--+ m' +--+ n' +--+ n we 

can then for every such sequence explicitly construct a sequence (giJK for 

m that satisfies the demands. 

D 

Note that lemma 3 implies that alternative i) of tb. 21 is true iff there is a sequence 

(gk)K such that: 
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3 AD§2.4 

Theorem 22 is a consequence of (IIl.67) and the following lemma5: 

LliMMA 4 Suppose two non-ideality matrices {\l} and {µtm} (k e K, l e L, me M) 

are given. Then: 

1({LlEL \ptm}; <P.J) ~ i({.~ld}; <EmeM l"J.J) 

1( {LleL \f'tm}; <P.J) ~ 1( {µtm}; <P.J) 

for all probability distributions (p.JmeM. 

PROOF OF Tl:IEOREM 23 

First the counter-example. Consider a binary PVM e = {E
1
,E

2
} and the 

equivalent EVM e' = {Ept~.;E2}. We take as weighting distributions 

<PI the sequences (t,t) and (t,t,t), respectively. Note that these 

distributions correspond to the same density operator p. Only under that 

restriction are J's for e and e' comparable. We can write 

I satisfies lemma 4, so that in particular /e-n = /e,-n. The entropies of 

the two distributions <Pt are, however, not equal. Therefore 

Je-n # Je, -n for any non-ideal version n of e. 

Right-order preservation follows analogously to lemma 4. 

D 

5See e.g. R. McEliece (1977): The Theory of lnformaJion and Coding (Addison-Wesley, Loodoo), 
p. 27 
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4 AD§ 2.S 

Introduce two maximal PVMs J. = {l\JK and tJ = {Fk}K, 

(13) ~ = lxk)(xkl and Fk = IYk)(ykl , 

where (lxk))K and (lyk})K (K = 0, ... , n-1) are orthonormal bases foren with 

(15) 

x := L ck''-' ~, F1.' + L C:''-' FL, R, ~ o k' ,L' k' ,L' -ic 
it 

There are complex UkL , VkL , l\1. and real Pk , 'Y1. such that: 

ukl V:1. = l\1.f kl 

2pk ~ E1. 1 ukl.1 2 

2ryl ~ ~ 1 Vkl.12 

[{~}K and {Fk}K as in (13)]. 

PR.OOF OF LEMMA 5 

Define the following vectors: 

and the projector (up toa scalar factor): 
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Explicit calculation using (15) shows: 

Moreover: 

a 

PROOF OF THEORBM 24 

(16) 

We shall first prove the theorem for maxima! PVMs J.'. and t) as in (13). 

Consider the EVM m = {~l}L><M : 

~l := 
~ .....fkl) ~ 
.'-' (.,k' l' ~' Fl, + ,i.J 

k',l' k',l' 

with: 

.....fkl) ' (.,k' l' complex (k' ,,' e K) 

That Mkl is self-a.djoint and that Ek EtMkl = 1 is evident. If each 
element of the operator valued measure defined by (16) satisfies the 

condition of lemma 5, mis an EVM. Then the fact that mis associated 

with a joint non-ideal measurement of r. and t) can be seen from: 

~EL Mkl = EmEK >. ~!' F m ; ElEM Mkl = EmEK >.~!_> Em ; 

with: 

).C 2> = 2 Re[B'] · 
lm m ' 
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À< 1 l =2Re[At]. lm m 

Given that m is an EVM, the matrices >.i}> and >.i~' are non-ideality 

matrices because i and t) are PVM's. 

This leaves us with the task of providing a set of coeffiçients q~!~ that 

satisfies lemma 5, and the assertions of the theorem. First note that the 

EVM m is a non-trivia! joint measurement of i and IJ if we cannot 

C(kl) . f h fi ,q(kl) + (ki) Th. . . separate k' l' mto a sum o t e orm Pk' 'Yt' • 1s requirement, 

as well as invertibility, is sàtisfied by the following choice: 

(17) q~!? = E[26[[k-k'IlOÓ[l-l']]O + 

+ ./F ó[[l-l'IlO + ./F ó[[k-k'IlO] 

with: 

[[a]] .- amodn ; L=M=K ; 

This example is also in accord with lemma 5, as we can see if we take: 

q~~~ = ~~!~ = .p; óffk-k'JJO óUt-t'lJOJlfk't'I exp(itOk't'> 

(kl) - ~ ~ 
~, l' - 2E v[k-k'IlO v[[l-1.'IlO 

f'~~l) = 'Y~~l) = E ./F Ó[[k-k'IlO 

with: 

/kl. = lfktl exp(iOiJ 

and note that: 
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(18) 

For the non-ideality matrices we have in this case: 

,\ < 1> = >.< 2> = 2t: [<2 + n./.F)ó. + ./Fl 
kl kl kl J 

Now to the genera! case. Any two PVMs e = {~} ~ and f = {F1} JtJ 
can be decomposed into maximal PVMs as in (13): 

(19) ~ = Eice1 ~ (1 e ~; FJ = Eice1 Fk (J e .ltJ). 

We have chosen (without loss of generality) the outcome sets ~ and J[f 

to be partitions of K = {O, 1, ... , n-1}. Then we can apply the analog 

of (19) to m = {Mkl}K><K (defined by (16) and (17)): 

Mu : = Eice1 ELEJ Mkl (I e ~ • 1 e JtJ>. 

The EVM {Mu} ~x J[f thus defined is easily seen to satisfy the 

requirement of the theorem because of the particular form (18) of the 

non-ideality matrices above. 

a 

Note that formula (16) can easily be extended to the joint measurement of arbitrary 

non-coexistent EVM's. The analogous extension of (15) might not be so easy. In any 

case, however, we see that positivity conditions like (15) will prevent such a joint 

measurement from ha ving arbitrarily small non-ideality. 

PROOF OF THEOREM 2S 

(20) 

For an EVM o = {C.V
1 

such that 0-1, the expression (III.78) can be 

rewritten as 

J" n = L 0! Tr(O.) Hx(o./Tr(O.)) , 
"-+ jEJ .t J J 

where of course 
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(22) 

Appendix C 

If o is in fact the marginal m< 11 of an EVM m = {M.ii' }1"1, that 

represents a joint non-ideal measurement of e and f (def. m.11) we get, in 

view of the concavity of the entropy functional Hx, 

~ 1 ~ Tr(M .. ,) [ ] 
Je m<1J ~ k -Tr(M< 1l) k IJ Hx M",/Tr(M",) 

;-...+ jEJ n m j'EJ' Tr(MPl) 11 ll 
j 

Proceeding analogously for the other marginal EVM (ml 2J) we get, using 

a functional Hf'defined analogously to Hxin (21), 

(23) Je;--+m! 1> + Jf;--+m< 2> 

(111.75) 

L L [Hx(M..,/Tr(M..,)J + H:r[M .. ,/Tr(M..,)J•]!Tr(M .. ,). 
jEJ j'EJ' Jl Jl .U .lJ n Jl 

We resolve cases where the PVM's e and f have eigenspaces in common 

by introducing a third PVM { GJ 
1 

satisf ying 

V. (tik [G.,R l = 0 A Vt [G"Fl = 0) . 
1 1 lr'- 1 t'-

We loose no generality here, because this PVM may be minimal (i.e. 

{Gi}I = {l}, which occurs when e and f have no eigenspaces in common). 

lts properties insure that 

Tr(G.M .. ,) [ ] 
~ L·ei 1 

.U Hx GM .. ,G./Tr(G.M .. ,) 
t Tr(M .. ,) ' ll t ' JJ 

JI 

and analogously for H f' . At this point we can use 

(25) H-J.C!Tr(C)] + H,J:C!Tr(C)] ~ Tr(C R)/Tr(C) 
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(26) 

(III.77) 

with c~ o and 

R = E.G.c. 
1 1 l 

an inequality that can be derived8 from 

(IIl.5) arccos((A)t] + arccos((B)t] ~ arccos[llAB!lt] , 

(III.76) 

(28) 

which holds for any two projectors À and B. Eq. (25) limits the entropies 

on the right-hand side of (23), and yields, since EjEJ EmEM Mntj = 1 , 

the inequality 

Je-m< o + Jf-+m< 2J ~ EiEI Tr(Gi) ei • 

Por the case of maxima! (non-ilegenerate) PVMs as in (13) the Maassen­

Uffink relation (III.3) can be used to improve (III. 76) to 

The bound of (27) is non-trivia! if the maximal PVMs have elements in 

common. The case where i and lJ are two maximal PVMs with 

already treated in ch. IIl, fumishes an example. By taking {Gi}I = 
{G

1
,G

2
} = {E

1
,E

2 
+E

3
}, we get the bound log(2) for (27). If, however, 

we have an inner product matrix close to this one, hut not reducible to 

block form, like (28), our bound will be quite bad. This suggests that a 

better operator R in (25) can be found. Similarly, the bound of (III. 76) is 

not optima! either. 

6H. Maassen & J. Utlïnk (1988): Phys. Rev. Lett. 60, p. 1103 
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Results of numerical work along these lines for three- and four-dimensi­

onal spaces inspire the conjecture that a bound as low as: 

2log(n) +~~EI log(max.:,eK lfkk, 1
2
] 

is achievable for (27). 

c 

5 AD§2.6 

PltOOF OF THBORBM 26 

SxXSÎ = [[X-l]] = X-l + nE0 ; 

Sxxs1 = 8x<LiceKfkOt_>S} = ~eKfi:[k-l)]Ok 

Combining these two equations: 

Analogously we have: 

and accordingly: 

8 1 = ~EK ~2 - /k + fi:[k-2]])0k - 80 

= ~EK~l -/[[k-1]] + /[[k-2~0k 

In this way we prove that there is a matrix {l\l} such that 

~ = ElEK l\Pl. Since both J and o consist of n elements, {l\l} is a nxn 
matrix. The range over which the vector (xt_>K; xk = Tr(p Ei) varies for 
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variable p is n-dimensional. Hence {J'icl} is invertible. There is a 

matrix Pul such that Ok = ELEK >.t.P1.· Since 1 is a PVM, {\,}bas to 

have the properties of a non-ideality matrix if o is to be an EVM. 

0 

Note that the EVM mof def. m.14 for the joint non-ideal measurement of 1 and lJ [as 

defined in § m.2.6, incl. (III.82)], is also of the form (16). 'Ibis can be seen by 

taking: 

..Jkl) = l..k_, l' 

PROOF OF TIIEOREM rl 

'Ibis follows easily from the fact that: 

vteK sY~s} = ~ . 

Every operator can be written as: 

so that we can write: 

n-1 n-1 

SYGs: = ~ 6 gab lxa}(xbl exp(j~a-b)) 
Combining these two equations gives S GSt = G ~ gab = g' 6 b • y y a a 
Hence G is diagonal in X;epresentation. If we now substitute o, for G, 

the fact that 1 is a PVM implies that the coefficients involved constitute a 

non-ideality matrix. 

0 
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PROOF OF TIIEOREM 28 

(29) 

This can be seen when one realizes that: 

exp(i~[[X•l' + l•X']]) = exp[i~•l' + l•X')] = 

= exp(i2,..:X)8exp(i2rx') 
n n 

and that: 

[exp(i2r:X)eexp(i2,..X'), exp(i2".f)eexp(i2rY')] = 0 , 
n n n n 

as follows from 7 

s• sb = sh s• exp(-i!!ab) (a,b e 71.). 
x y y x n 

IJ 

PROOF OF 1HEOREM 29 

We can write8 P. = L r s• sb . So: 
0 babxy a, 

Appendix c 

Tr(M. s• sh) = ! L r Tr(St s's•; sh' (Sk s')ts• sh) = 
kl x y n , b' a'b' x y x y x y x y 

a ' 

= exp(i~-a.t+kb-ab)) r[[-a]][[-b]] 

Fourier transformation gives: 

= n
2 

r[[-d]]c exp(i~) 6[[c+b]]O 6[[d-a]]O 

7J. Schwinger (1960): Proc. Nat. Acad. Sc. 46, p. 570 
8Schwinger, op. cit. 
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For an arbitrary p, write p = I, fab Sa Sb to get: 
b 

x y 
a, 

6 exp(i~ck+dl)) Tr(Mkl p) = n
2 

'U-dJJc/ d([-c]] exp(i~d) 
Thus, if the distribution (fr[Mtt p]) is known, /d[[-c]] can be calculated in 

the Fourier-domain iff r [[-dJ]c # 0 for all d,c. 

0 

Not surprisingly, the state separation condition of th. 29 is stronger than the condition 

for invertibility, which reads 

(30) V aEK Tr(p0 s;) # 0 A Tr(p0 s;) # 0 , 

as can be proved analogously [p
0 

as defined in (Ill.84)]. 
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Samenvatting 

Het onzekerheidsbeginsel is een van de meest karakteristieke punten van verschil 

tussen de quantummechanica en de klassieke mechanica. Dit beginsel wordt met de 

steeds verder voortschrijdende experimentele nauwkeurigheid relevant voor de prak­

tijk. Daarnaast komen een aantal van de problemen van de interpretatie van de quan­

tummechanica ook aan de orde in de interpretatie van het onzekerheidsbeginsel. 

Daarom is het feit dat in de gebruikelijke literatuur het beginsel wordt geïntroduceerd 

op een informele manier, die sinds 1930 nauwelijks nog ontwikkeling heeft vertoond, 

nogal onbevredigend. De gebruikelijke wijze van invoering, besproken in hoofdstuk 1, 

is in feite afgeleid uit het werk van Niels Bohr. In hoofdstuk II is dat dan ook aan een 

nadere analyse onderworpen. Bohr's redeneringen, in tegenstelling tot echte 

berekeningen die het quantumformalisme op een niet-triviale manier gebruiken, zijn 

sterk intuïtief van aard. Dit heeft tot gevolg dat de draagwijdte van Bohr's visie op 

het onzekerheidsbeginsel niet ten volle tot uiting komt in de wiskundige relaties, zoals 

de Heisenberg-relaties, die uit de berekeningen volgen. 

Bohr's interpretatie van de quantummechanica is niet de enig mogelijke. Daarenboven 

maken intuïtieve redeneringen niet ondubbelzinnig duidelijk welke typen van 

onzekerheidsrelaties er nu precies gelden. Daarom is verdere studie zinvol, en hoofd­

stuk m is daaraan gewijd. De verschillende kanten van het onzekerheidsbeginsel 

kunnen echter niet besproken worden binnen het kader van de quantummechanica 

zoals die in de gebruikelijke leerboeken gepresenteerd wordt, de quantummechanica 

die door von Neumann en Dirac is opgezet. We gebruiken dus een algemener for­

malisme: dat van Davies en Ludwig. Hierin komen effect-waardige maten als genera­

lisatie van Hermitische operatoren voor om observabelen te representeren. In het 

bijzonder is aangetoond dat incompatibele observabelen alleen gelijktijdig meetbaar 

zijn met beperkte precisie: er is een onnauwkeurigheidsrelatie afgeleid uit het forma­

lisme. Hierbij wordt een concretisatie van een 'niet-ideale' of 'onnauwkeurige' me­

ting als partiële ordening op de verzameling van effect-waardige maten gebruikt. 
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Deze begrenzing van meetnauwkeurigheid vormt samen met de Heisenberg-relaties 

(spreidings-relaties) een tweezijdig onzekerheidsbeginsel. Dit dubbele beginsel stelt 

ons in staat een groot deel van de verwarring die rond de betekenis van het onzeker­

heidsbeginsel heerste, weg te nemen. Het representeert Bohr's onzekerheidsbeginsel 

afdoende, zoals aangetoond is in hoofdstuk IV: andere populaire versies van het 

beginsel, zoals de 'verstoringsinterpretatie', kunnen worden afgeleid. Het een en 

ander is verder gelllustreerd aan de hand van gedachtenexperimenten en uitvoerbare 

experimenten. 
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". stellingen 

behorende bij het proefschrift van Hans Martens 



1 
De bewering van Hilgevoord & Uffink dat Heisenberg's '}'-microscoop los staat van de 

problematiek rond gelijktijdige metingen, is onjuist. 

2 

J. Hilgevoord & J. Uffink (1990): in Sixty-two Years of Uncertainty (ed. by A. Miller, 

Plenum, NY), p. 121; dit proefschrift. 

De rol van covariantie bij de bestudering van gelijktijdige metingen is zeer misleidend. 

Enerzijds vergemakkelijkt covariantie het bereiken van resultaten zeer, anderzijds zijn 

die resultaten in het geheel niet representatief. Daarom zijn algemene conclusies over 

eigenschappen van onnauwkeurigheidsrelaties op basis van covariante gelijktijdige 

metingen onmogelijk. 

3 

A. Holevo (1982): Probahiüstic and Statistical Aspects of Quantum Theory (North Holland, 

Amsterdam); dit proefschrift. 

De gebruikelijke definitie van (gegeneraliseerde) tijdmeting als een effectwaardige 

maat die covariant is ten opzichte van tijdverschuivingen, moet verzwakt worden tot de 

eis dat de effectwaardige maat compatibel is met tijdverschoven versies van zichzelf. 

A. Holevo (1982). 

4 
De bewering van Ballentine (en anderen) dat in de "statistische" interpretatie een pro­

jectiepostulaat overbodig is, is onjuist. Wel is het zo dat vanuit een instrumentalistisch 

standpunt, de achterliggende filosofie van vele voorstanders van de "statistische" inter­

pretatie, het meetprobleem niet opgelost behoeft te worden. 

L Ballentine (1970): Rev. Mod. Phys. 42, p. 358 



5 
De bewering van Beltrametti et al. dat 'objectivering' een essentieel kenmerk van 

meten is, is onjuist. 

E. Beltrametti, G. Casinelli & P. Lahti (1990): J. Math. Phys. 31, p. 91; dit proefschrift. 

6 
In het formalisme van de quantumoptica kunnen twee vormen van interferentie onder­

scheiden worden: klassieke (corresponderend met de coherente toestand 1 a+,B}) en 

quantummechanische interferentie (corresponderend met de superpositie 1 a) +IP}). 
Daarom is het tw~letenexperiment (proef van Young) in het algemeen geen goede 

illustratie van specifiek quantummechanische effecten (incompatibiliteit, "golf-deeltje 

dualisme"). 

A. Aspect & P. Gnmgier (1990): Sixty-two Years of Uncertainty (ed. by A. Miller, Plenum, 

NY), p. 45. 

7 
De hoeveelheid energie die in neoklassieke "verklaringen" van de Bell-ongelijkheden 

wordt gestoken, in verhouding tot de energie die besteed wordt aan mechanische "ver­

klaringen" van de Lorentz-contractie, zegt veel over de moeite die natuurkundigen 

hebben om te accepteren dat de realiteit op het microniveau van heel andere aard kan 

zijn dan die in onze dagelijkse ervaring. 

8 
In klassieke probabilistische theorieën treedt ook een meetprobleem op, als 'kans' in 

zo'n theorie ontisch geïnterpretreed wordt (bijvoorbeeld als propensity). 



9 
De proliferatie van eufemismen vormt een belangrijker bron van taalverloedering dan 

slechte spelling. 

10 
Het motto "mens agitat molem" blijkt bij juiste vertaling beter bij een theologische uni­
versiteit te passen, dan bij een technische. 

Vergilius, Aeneû (boek VI). 

11 
De term 'zelfconsistente oplossing' is behalve een anglicisme ook een pleonasme: een 
niet in zichzelf consistente oplossing is geen oplossing. Ter aanduiding van een bere­
keningsmethode (in plaats van ter aanduiding van de oplossing) is de term 'successieve 
substitutie' aanzienlijk beter. 


