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The action elimination algorithm for

Markov decision processes

by

* **N.A.J. Hastings and J.A.E.E. van Nunen

Abstract

An efficient algorithm for solving Markov decision problems is proposed.

The value iteration method of dynamic programming is used in conjunction

with a test for nonoptimal actions. The algorithm applies to problems

with undiscounted or discounted retu~ns with infinite or finite planning

horizon. In the finite horizon case the discount facto~ may exceed unity.

The nonoptimality test, which is an extension of Hastings test for the

undiscounted reward case, is used to identify actions which cannot be

optimal at the current stage. As convergence proceeds the proportion of

such actions increases producing major computational savings. For problems

with discount factor less than one the test is shown to be tighter than

that of MacQueen.

1. Introduction

We consider a finite Markov decision chain with or without discounting.

The state space is S, where the states are labeled i = 1,2, ••• ,N. If

the system is in state i € S at time n an action k has to be selected

from a nonempty finite set K
i

• As a consequence of this action k € K i
we earn a(n) (expected) reward rei k) and the system moves to state j E S

at time n + 1 with probability p(i,j,k).We assume r p(i,j,k) = 1.
j

The Cartesian product of all sets K. is the policy space A. For any
J.

policy 0 € A we denote by P(o) the transition probability matrix and

by reo) the column vector of rewards. Rewards earned in the n-th period

are discounted by a factor B > 0 (eventually B ~ 1). Our goal is to find

a strategy that maximizes the total expected reward over a time horizon

T € :IN U {oo} , and to determine the corresponding optimal reward vector

vT ' Here, a strategy ~T for a T-horizon problem is a sequence of policies

*Monash University, Melbourne, Australia (from 1 July 1977)
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~T := (01'02,···,OT)· Note that we restrict the considerations, as is

allowed, to nonrandomized strategies. For T = ~ it is even permitted

to consider only stationary strategies i.e. ~ := ~ := (0,0,0, ••• ).
~

The optimal value vector v; can be computed by the value iteration

algorithm of dynamic programming. For finite horizon problems we refer

to Hinderer [4J and HUbner [6J. For T = ~ we refer to e.g. Hastings [lJ

or Van Nunen [9J. In the latter situation dynamic programming yields

in the limit policies which can be used to constitute stationary strategies

that are optimal.

As indicated in e.g. [lJ, [4J, [6J, [10J convergence is monitored by

. * bus~ng upper and lowerbounds on the optimal return vector vT ' These ounds

are used to construct sub-optimality tests, see for example references

[8J, [3J, [2J, [10J. The test proposed here increases the efficiency of

the dynamic programming method considerably a nonoptimal action for a

given stage (iteration) is one which does not form part of an optimal

policy for that stage. Until now, in the discounted case, tests have

been devised whereby only those actions which can be identified as being

nonoptimal for all subsequent stages are eliminated. For the average

reward situation Hastings [3J proposed to eliminate actions for one or

more stages after which they may reenter the state space. Here we extend

this idea to Markov decision processes which may be undiscounted or dis­

counted, may have a finite or infinite time horizon and in the finite

horizon case may have a discount factor that is!allowed to be greater than cne.

2. The test

Let f(n,i) be the maximum total expected return generated when the system

starts in state i € S and continues for n-stages. Then

(1) f(n,i) := max [r(i,k) + e Lp(i,j,k)f(n - 1,j)J
k€K

i
j€S

where f(O) is given and e > O. The value iteration algorithm computes

f(n,i) for i € Sand n = 1,2, ••• ,T.
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Define

(2) f(n,i,k) := r(i,k) + S L p(i,j,k)f(n - l,j)
jES

(3)

(4)

y(n,i,k) := f(n,i) - f(n,i,k) ~ 0

a (n) := mCl,x [f(n,i) - f(n - 1 ,i) J
u

iES

(5) aR, (n) := min [f(n,i) - f(n - 1,i)J
iES

(7)

Note that

m-l
H(m,n,i,k) := y(n,i,k) - L ~(R,)

R,=n

m > n

(8) H(m + l,n,i,k) ~ H(m,n,i,kl •

In the test we will use, any action k E Ki is nonoptimal for state i E S

at value iteration stage m if

H(m,n,i,k) > 0 •

3. Basic properties

Lemma 1

a)

b)

~(m) $ S~(m - 1)

f(n + l,i,k) - f(n,i,k) $ sa (n)
u

c)

d)

e)

f(n + l,i) - f(n,i) ~ saR,(n)

y(m,i,k) ~ H(n,i,k) for m > n

1 _ Sm-n
H(m,n,i,k) ~ y(n,i,k) - 1 _ S ~(n), m > n
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Proof. Part a is a direct consequence of Hubner [6J theorem The

second part of the lemma follows from

f(n+l,i,k) -f(n,i,k) =r(i,k) + 13 ~ p(i,j,k)f(n,j) -r(i,k) ­
jES

13 ~ p(i,j,k)f(n-1,j) •
jES

= 13 ~ p(i,j,k)[f(n,j) -f(n-1,j)J
jES

~ f3a (n)
u

consider

f(n+l,i) -f(n,i) ~r(i,kO) +13 ~ p(i,j,kO)f(n,j) -r(i,kO) ­
jES

- 13 l p(i,j,kO)f(n - l,j)
jES

= e l p(i,j,kO) [f(n,j) - f(n - l,j) ] ~ eaR, (n)
jES

with kO that action in K
i

for which the maximum in f(n,i) is attained.

This proves part e).

Since

y(m,i,k) =f(m,i) -f(m,i,k) ~f(m-1,i) +f3a (m-1) -f(m-l,i,k) ­
R.

-ea (m - 1) = y(m-l,i,k) - q>(m - 1)
u

the result d) follows by iterating stagewise.

The final statement of the lemma is a direct consequence of part a of

this lemma and the definition of H(m,n,i,k).

Theorem 1

a) Action k at state i is nonoptimal at stage m > n if H(m,n,i,k) > O.

o
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b) Action k at state i is nonoptimal at stage m > n if

1 _ Sm-n
y(n,i,k) - 1 _ a lp(n) > 0

c) Action k at state i is nonoptimal for all subsequent stages if

1 _ ST-n
y(n,i,k) - 1 _ a lp(n) > 0 , T > n •

Proof. The proof follows from the foregoing lemma. Part b) and c) can

also be found in HUbner [6J.

1 _ Sm-n
Remark. For a = 1 the term 1 _ S has to be replaced by (m - n). For

T = ~. the theorem makes sense only if a < 1. However, the condition can

be weakened see HUbner [6J or Porteus [llJ.

Since in our test actions are eliminated which are nonoptimal for perhaps

only one stage, it will be clear that the first stage at which our test

eliminates an action for the first time will ,in general be much earlier

than the first stage at which e.g. the MacQueen test [8J or the Hastings

and Mello test [2J eliminates that action.

This follows directly from the foregoing theorem.

Corollary 1. For 0 < a < 1 our test is tighter than MacQueen's test and

the Hastings and Mello test for eliminating optimal actions.

Proof. MaCQueen based his test on part c) of theorem 1, with T = ~.

So in his test an action k is nonoptimal in state i if

y(n,i,k) - 1 ~ S lp(n) > 0 •

In our test an action is eliminated for the first time if y(n,i,k) > lp(n).

Clearly

o

lp (n) < lp <n)
1 - a for 0 < a < 1 •

Since the MacQueen test is tighter than the Hastings and Mello test the

corollary is proved.
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Remark. Note that for S ~ 1 the relative power of our test will be
-1

greater since (1 - S) ~ ~ as S ~ 1.

4. Computational method

To illustrate the computational method we give a flow chart of the test.

Before drawing such a flow chart we have to give some more preliminaries.

We assume the terminal values f(O) = 0 and apply the test from stage two

onwards. We set the test quantity T(n,i,k) at zero at stage 1.

An action fails the test if its test quantity (called flag) is positive

or if its flag is "nonoptimal". If the action fails at stage n its trial

value f(n,i,k) is then not evaluated at that stage. For an action which

passed the test at stage n, the flag T(n,i,k) could be reset to

. {"nonoptimal" if y(n,i,k) -

T(n,~,k) :=

y(n,i,k) else.

1 _ ST-n
1 - S ~(n) > 0 ,

For an action which fails the test at stage n - 1, the flag T(n,i,k) is

given by

T (n, i,k)
:= {"nonoptimal" if T (n - 1, i,k) =

T(n - l,i,k) - ~(n - 1) •

"nonoptimal" ,

However as in [3J, to avoid the making of a second pass it is preferable

to use by resetting the "flag" after an action passed the test

f(n - 1,i,k) + Set(n - 1) - f(n,i,k)

instead of

y(n,i,k) := f(n,i) - f(n,i,k) •

The effect of the test is to reduce the number of times that the time

consuming step of evaluating f(n,i,k) is carried out. (This step is

marked by a dotted line).

The flow chart of the action elimination algorithm has the following

structure.
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-1
rj next action I

~
YES flag = "nonoptimal"?/

,,. NO

flag := flag -q>(n-l)/

~
YES flag > 0 ? I

r=---~--~~--------'
: canpute f (n, i ,k)!
I

and note if optimal
I

I I
I I
'- - -t -- - ---'

Iflag := nonoptimal I
411>

reset flag I
1

YES flag -
1 _ aT- n+1

q> (n - 1) > 0 ? NO
1 - a

5. Numerical example*

The extreme efficiency of the test will be shown by applying it to

Howard's automobile replacement problem [5 p.p. 54-59J with

discountfactor e = 0.97. We use the dynamic programming algorithm of

MacQueen [7J. We compare the number of actions eliminated by the Hastings

and Mello test [2J with the number of eliminated actions.by the test

proposed in this paper. In the first test only actions which are non­

optimal for the whole future are eliminated. We start the dynamic program­

ming algorithm with a starting vector with all components equal to zero

i.e. f(O,i) = 0 for all i E S.

In figure 1 we see that the difference between the number of actions

that are eliminated is significant. From iteration 8 until iteration 22

this difference is even over 1000 actions.

* The authors are grateful to mr. K. van der Hoeven for computational
support.
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figure 1

Application to the automobile Replacement problem

i
numbers of

actions

eliminated

-_.---~-----~--.----- ....­
/"./----....

./
/

./
./

/
"//

/,.,
I

I
I

I
/

500

1600

1500

1000

0 5 10 15 20 25 30 35 40
-+-

stage

Hastings and Mello

------------- our test

7. Some extensions and remarks

In this note we have assumed the equal row sum property. However, the

same ideas can be used for a nonoptimality test, in the case that this

assumption is released. We then have to exploit more sophisticated

bounds for the values f(n + m,i). These bounds are described for example

in Porteus [llJ or Van Nunen [10J.

In [9J and [10J a whole set of successive approximation algorithms for
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Markov decision problems containing the Jacobi-, the Gauss Seidel- and

overrelaxation algorithms is developed. The nonoptimality test can be

incorporated in those algorithms as well.

It is known see e.g. HUbner [6J; Porteus [llJ that the contraction

factor is sometimes even smaller than the discount factor 8. In that

case the nonoptimality test can be refined by using the more sophisticated

contraction factor.

For infinite horizon problems (in the equal row sum case) with respect

to the total reward criterion convergence of f(n,i) is only guaranteed if

a < 1. However, for finite horizon problems S is allowed to be greater

then or equal to one. If the equal row sum property is not satisfied,

convergence of the total expected reward may occur for a ~ 1, see Porteus

[llJ or Van Nunen [10J.
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