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Abstract 

Let P be an arbitrary, but fixed permutation on [O .. N), with N?O. A so-called 
recognition program determines for each segment of length N of its input sequence 
whether it is invariant under P. In this paper we design several parallel recognition 
programs. All these programs consist of a linear arrangement of cells and have con
stant response time. The major difference between these programs is in the size of 
the cells. A distinctive feature of the space efficient solutions is that they contain -in 
addition to the links between neighbour cells-links between non-neighbour cells. For 
some well-known instances of the general problem, such as palindrome recognition and 
square recognition, these space efficient solutions are systolic and comparable to the 
conventional ones; this is illustrated for the square recognition problem. Depending 
on P, however, the space efficient solutions may in general be non-systolic. 

o Introduction 

In a series of papers design techniques for fine-grained parallel programs (in particular, 
linear systolic arrays) have been demonstrated by solving instances of the following general 
recognition problem: given a permutation P on [O .. N), with N?O, the problem is to design 
a parallel program that determines for each segment of N successive elements of its input 
sequence whether it is invariant under P ("P-invariant" for short). That is, we have to 
design a parallel program with input channel a of arbitrary type T, output channel b of 
type Bool, satisfying the following i/o-relation: 

(0) b( i) = (V j '. ° :S j < N : a( i + j) 0= a( i + P(j))) , 

for i?O, where a( i) and b( i) denote the (i+ 1 )-st elements of sequences a and b, respectively. 

Simple instances of this problem are the recognition of 

(i) palindromes [5, 6, 7J: P(j) 0= N - 1 - j, 

and, 

o 



(li) squares (or carres) [5, 6J: P(j) = (j + ]()modN, N = 2](. 
Square recognition may be generalized into 

(iii) K-rotations [2J: P(j) = (j + K)modN, 0:::; K < N. 
Finally, we mention 

(iv) perfect-shuffles [3J: P(j) = 2(j mod K) + j div K, N = 2K, 
and its generalization, which is mentioned but not solved in [3J: 

(v) KL-shuffles: P(j) = K(jmodL)+jdivL, N=KL. 
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In Section 2 we solve the general problem as specified by (0) in a rather unusual, but 
systematic way. In order to resume the conventional design technique advocated in [1, 4J 
we first solve problem (ii) in Section 1. (Readers familiar with this technique may skip 
this section.) In Section 3 this conventional solution is compared to the solution obtained 
by instantiating the program derived in Section 2. It turns out that the latter program 
can be transformed into the conventional one. The same applies to problems (i) and (iii). 
However, the programs obtained for (iv) and (v) are not systolic because the number of 
output channels of some cells is proportional to N. This is shown in Section 4. Finally, 
in Section 5 some distinctive features of our approach are summarized. 

1 Recognition of squares 

In this section we briefly sketch the derivation of a parallel program (or component) CK, 
K"? 0, that recognizes squares. We apply the design technique explained in [1, 4J. The 
i/o-relation of CK reads (d. (li) and (0)): 

b( i) '" (V j : 0 :::; j < 2K : a( i + j) = a( i + (j + K) mod 2K)) , 

for i2:0. So, this component determines for each segment a[i .. i+2K) whether it is a 
square. This fact is more simply expressed by the following equivalent i/o-relation (d. [7, 
Section 5.2]): 

(1) b(i) '" (Vj: ° $ j < K: a(i+j) = a(i+i+ K)) . 

It follows from this i/o-relation that b( i) depends on all elements of a[i .. i+2K), and, 
consequently, that (1) requires a communication behaviour like a2K ; (b; a)*. 

The obvious way to start the derivation is to generalize (1) in some way, thereby ob
taining specifications of components Ck , OS.kS.K, with the intention that Ck has Ck-l as 
subcomponent (k;iO). From experience, however, we know that such components must 
have a communication behaviour that depends on k (e.g., a2k ; (b; a)*), and, consequently, 
that such components do not have identical commands. Moreover, a communication be
haviour like a2k ; (b; a)* requires component Ck to detect that the 2k-th communication 
along a has occurred. This dependence on k makes the components unnecessary compli
cated. 

To obtain a simpler communication behaviour we therefore design a slightly different 
component CK with i/o-relation 

(2) b(i) 0= (Vj: ° $j <]( :a(i+j - 2K) = a(i+j -K)) , 

for i"?2K. This component, then, determines for each segment a[i-2K .. i) with i"?2K 
whether it is a square. Hence, we may take (bja)* as communication behaviour and CK 
may be used to build component CK as follows: 



com CK (in a:T, out b:Bool) : 
sub poCK 
I[var x:T; w:Bool; 

(a?x,p·b?w; p.a!x)2K 
; (a?x,p·b?w; p·a!x,b!w)* 

)1 
moe. 
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So, the first 2J( outputs of subcomponent p are neglected by CK. The external commu
nication behaviour of CK is a2K ;(a;b)*.D 

The program notation used in this paper resembles the notation used in [7). For 
the above program the following explanation is in order. After the name, CK, of the 
component the names and types of (external) input and output channels are listed. p 

is a subcomponent of CK of type Ck. The block, delineated by I[ and JI, consists of a 
declaration part and a command. Commands are denoted in a CSP-like notation [OJ. 
This entails that for channel a directed from component p to q and expression E the 
simultaneous execution of alE in p and a?x in q establishes the assignment x:=E in q. 
The comma indicates arbitrary interleaving of the communications connected by it; it 
takes precedence over the semicolon. 

Now we are left with the problem of designing Ck. As an appropriate generalization 
of (2) we design components Ck, OSkSJ(, satisfying 

(3) b(i) == (Vj: 0 S j < k: a(i+j - J( - k) = a(i+j - k)) , 

for i?,K +k. Then, however, values in b[O"K +k) are not specified. In order that (3) 
defines b( i) for all natural i, sequence a will be extended by defining a(j) for j <0; a 
suitable extension of a is chosen such that relatively simple relations result. 

The derivation proceeds by partitioning i/o-relation (3) into simpler ones until we end 
up with recurrence relations for the individual communications along the channels. As 
communication behaviour we take (b; a)*. For Co we have b(i) == true for all natnral i, 
so we proceed with the case ISk::;K. From (3) it immediately follows that b(O) == true 
provided that we extend sequence a (mentally) such that a(j)=-/ for j<O, where -/ is an 
arbitrary value of type T. For i?,O we derive 

b( i + 1) 

{ (3) } 

(Vj: O::;j < k :a(i+ l+j-K-k) = a(i+ l+j-k)) 

{ split off j = k-l } 

a(i - K) = a( i) 1\ (V j : 0 S j < k - 1 : a( i + j - K - (k - 1)) = a( i + j - (k - 1))) 

{ introduce subcomponent p of type CL, with p.a( i) == a( i), for i?,O; (3) } 

a(i)==a(i-K) 1\ p·b(i) . 

The desired communication behaviour of Ck is (b; a)*. Hence, the following internal com
munication behaviour for Ck is possible: b; (a,p·b; p·a,b)*. Using this communication 

o By using a direct connection between channels a and p·a this can be improved slightly to a2K ; (b; a)·. 
Such a connection is sometimes represented by an equality a = P'Q (see [7, Section 1.4)). 



a 

]( 

b 

p·a 
p·e 

p. 

Figure 0: Conventional network for square recognition (O<k<](). 

3 

behaviour, C~ has a( i) and p·b( i) at its disposal for the computation of b( i+1). To provide 
a(i-]() we have several options. A simple solution is to buffer the last ]( values received 
along a in each component, but this solution is rejected because it makes the components 
too bulky. To avoid this buffering, the conventional solution in this case is to equip each 
component C~, except for Cx, with an extra input channel e, say, satisfying 

(4) e(i)=a(i-]() , 

for i~O. The appropriate communication behaviour now is (b;a,et. Component C~ 
(1$k<]() must supply p·e(i) = p·a(i-I{) to its subcomponent p; since p.a(i-]() = 
a(i-](), this boils down to p·e(i) = c(i). To let Cx supply a(i-]() to its subcomponent, 
components Ck, O$k<](, get an extra output channel d satisfying 

(5) d(i) = a(i - (k + 1)) , 

for i2::0. We then have for Cx: 
p·e( i) 

={ (4) } 
p·a(i -]() 

= {p·a( i)=a( i) } 

a(i - ((K -1) + 1)) 
= {p is of type CX_I ; (5)} 

p·d( i) , 

so Cx supplies a(i-K) to its subcomponent by simply returning the values received 
along p·d. Components C" (O<k<K) determine output d as follows: d(O) = ,j and 
d(i+1) = p·d(i). C~ does it differently: d(O) =,j and d(i+1) = a(i). The structure of the 
network is now as depicted in Figure O. The programs become: 

com C~ (in a,e:T, out b:Bool,d:T) : 
I[ var x, y:T; 

b!true, d!,j 
; (a?x, e?y; b!true, d!x)* 

11 
moe, 

and for O<k<K: 



com Ck (in a, c:T, out b:Bool, doT) : 
sub p:Ck_1 
I[var x, y, z:T; w:Bool; 

bltrue,dlJ 
;( a?x,p·b?w, c?y,p·d? z 
;p·alx, bl(x=y " w),p·c!y, dlz 
)* 

11 
moc 

and finally: 

com CK (in a:T, out b:Bool) : 
sub P:C}"(_1 
I[var x, y:T; w:Bool; 

bltrue 
;(a?x,p·b?w,p·d?y 
;p·alx, bl(x=y " w),p·dy 
)* 

11 
moc 

This completes a quite conventional derivation. 
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The speed of a computation is analyzed by means of sequence functions (see [7, Sec
tion 2.5]) which exhibit a possible execution order by assigning all communications to 
time slots. For sequence function <Th, natural <Th(a,i) denotes the time slot to which the 
(i+l)-st communication along channel a of component C k is assigned. For channels a and 
b we have for instance the following sequence functions: 

<Tk( a, i) = 2i+ 1 + J( - k 

<Tk(b, i) = 2i + J( - k , 

for OS,kS,I(' Since <Tk(b, i) is a linear function of i, we say that CK has constant response 
time. Furthermore, the latency is the period oftime which elapses between the production 
of an output value and the receipt of the last input value on which it depends. In our 
program b(i) depends on a[i-2K..i), and therefore it follows from the above sequence 
functions that it has constant latency. 

2 Recognition of P-invariant segments 

We now derive a parallel program PN, say, satisfying (0). As in the conventional approach 
our first step is to introduce a component Pfv with i/o-relation 

(6) b(i) == (Ii j : 0 S, j < N: a(i + j - N) = a(i + P(j) - N» , 

for i~N. So, Pfv determines for each segment a[i-N .. i) with i~N whether it is P
invariant. We take (b; a)* as communication behaviour for pfv, and by neglecting the first 
N outputs of Pfv we obtain a program for PN. 

To obtain a program for Pfv we try to design components P~, OS,nS,N, satisfying (cf. 
generalization (3) of (2»: 
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(7) be,) == (V j : 0:5, j < n: a(i +j - n) = a(i + P(j) - n» , 

for i2:.n, and with (b; a)* as communication behaviour. By extending sequence a with 
negatively indexed elements, b( i) will be defined for all natural i. 

From (7) it immediately follows that b( i) == true for P~. For n>O we have b(O) == true 
provided that we extend a such that aU) = ..; for j <0 -as in the previous section. For 
i2:.0 we derive: 

b(i+ 1) 
{ (7) } 

(V j : 0 :5, j < n : a( i + 1 + j - n) = a( i + 1+ prj) - n)) 

{split off j 0: n-I } 

a(i) 0: a(i + pen-I) - (n-I)) 
/I (V j : 0:5, j < n-I : a(i + j - (n-I)) 0: a(i + P(j) - (n-I))) 

{ introduce subcomponent p : P~-l with p·a( i) 0: a( i), for i2:.0; (7) } 

a(i)o:a(i+P(n-I)-(n-I)) /I p·b(i) . 

Now recall that the intended communication behaviour is (b; a)*, hence a(i) will be avail
able for the computation of b(i+I) but the whereabouts of a(i + pen-I) - (n-I)) are 
unclear. It is even possible that this value has not yet been received by P~, namely in 
case P(n-l) > n-l. 

Fortunately, the following observation helps us out. The right-hand side of (0) can be 
rewritten as follows: 

(V j: 0:5, j < N : a(i + j) 0: a(i + PU»)) 
{ domain split } 

(V j : 0:5, j < N /I P(j) > j : a(i+ j) = a(i + PU») 
/I (Vj: 0:5, j < N /I P(j) = j: a(i + j) = a(i+ PU») 
/I (Vj: 0:5, j < N /I PU) < j: a(i + j) = a(i+ PU))) 

{ dummy change j := P-IU) in first conjunct; P(P-IU» = j } 

(V j : 0 :5, p-l(j) < N /I j > p-l(j) : a(i + p-I(j)) = a(i + j)) 
/I (V j : 0 :5, j < N /I P(j) < j : a( i + j) = a( i+ prj))) 

_ {P-l is a permutation on (O .. N) } 
(V j : 0:5, j < N /I p-l(j) < j : a(i + j) = a(i + p-l(j») 

/I (Vj:O:5,j<N /I P(j)<j:a(i+j)o:a(i+P(j») . 

So, the original problem may be solved by solving two identical-but simpler- problems: 
because p-1 is as arbitrary as P, it suffices to design components P~, O:5,n:5,N, satisfying: 

(8) b(i)==(Vj:O:5,j<n /I P(j)<j:a(i+j-n)=a(i+P(j)-n» , 

for i2:.0, and with (b; a)* as communication behaviour. 

Proceeding as above, we then obtain the following relations for P~ (n;iO): 

p·a( i) 
b(O) 

b(i + 1) 

a(i) 

true 

(Fn => a(i) = a(i + pen-I) - (n-l») /I p·b(i) 
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where Fn abbreviates pen-I) < n-l. Note that a(i + pen-I) - (n-I)) is required for 
the computation of b(i+I) only if Fn holds, which ensures that this value has already 
been received and has been passed on to subcomponent p via p·a. 

2.0 Conventional solution 

From the relations above it follows that component P:: ("cell n" for short) needs two 
a-values to compute b( i+I) when Fn holds. With b; (a,p·b; p·a, b)* as communication 
behaviour, a( i) and p.b( i) are available. In order to retrieve a( HP( n-I )-( n-I)) the 
conventional approach is to introduce auxiliary channels between neighbouring cells. Since 
pen-I) -en-I) < 0, a first guess is to equip components P:: with an extra output channel 
c such that c(i) = a(i+P(n)-n) in case Pen) < n. We would theu have 

b(i + 1) == (Fn =? a(i) = p·c(i)) 1\ p·b(i) . 

Unfortunately, it is impossible to compute c( i) from p·c( i) in this way, since we do not 
have a relation between pen) and pen-I). The fact that we are dealing with an arbitrary 
permutation P forces us to introduce an array of output channels C. An appropriate i/o
relation for this array of channels is given by: 

C[mJ(i) = { a(i+P(m)-n) ,P(m)<n 
"don't care" ,P(m) 2::. n , 

for O~m<N. Then we may take C[mJ(i) = V for Po', and for O<n~N we take C[mJ(O) = 
V and 

. { a( i) 
C[ml( z+l) = p.C[mJ( i) 

for i:2:0, or, equivalently: 

. { a( i) 
C[mJ(z+I) = p.C[mJ(i) 

,P(m) = n-I 
, P(m) f. n-I , 

, m = p-1(n-I) 
, m f. p-1(n-I) 

It is interesting to note that Pj{'s output channel C satisfies C[mJ(i) = a(i+P(m)-N) 
for O~m<N, hence C(i) is a permutation of a[i-N .. i). Component P:: can now compute 
b( i+ 1) as follows: 

b(i + 1) == (Fn =? a(i) = p·C[n - IJ(i)) 1\ p.b(i) 

The computation of C(i+I) within a cell takes O(N) time when done sequentially. It 
is however trivial to do this in parallel to achieve 0(1) time. The problem with this 
"conventional" solution is that it is very expensive, even more when one realizes that we 
have to do all of the above for p-1 as well. To summarize: we have obtained a program 
with constant response time and constant latency at the expense of an area quadratic in 
N (N cells consisting of N cells each). 



7 

2.1 Alternative solution 

A key step in the conventional approach is that we try to retrieve value a(i + P(n-l)
(n-l)) from cell n-l (component P::-1 ), a value which has been passed on to subcom· 
ponents in the mean time. Depending on n-l - P(n-l), this value has reached some 
cell k, say, with k<n, in the time slot when it is needed by cell n. Our idea noW is to 
link cell n (n>O) with the appropriate cell k, such that value a(i + P(n-l) - (n-l)) can 
be supplied to n by k at the right moment, thereby avoiding the need for buffers in both 
cells. More precisely, we add an auxiliary channel directed from cell k to cell n, called c 
in cell k and q·c in cell n -accordingly, q will be used as local name for cell k in cell n
and we determine k such that channel q·c satisfies 

(9) q·c(i) = a(i + P(n-l) - (n-l) , 

for i~O. For cell n (n>O) we then have 

p·a(i) 

c( i) 
b(O) 

b(i+ 1) 

= 

= 

a( i) 
a( i) 
true 

(Fn =} a(i) = q.c(i)) II p·b(i) 

A possible communication behaviour that is consistent with the partial order that 
these relations impose is 

(10) b; (a,p·b,q·c;p·a,b,c)* 

Unfortunately, this behaviour causes deadlock (cf. [7]): since cells nand k may be 
arbitrarily far apart, cell k will initially not be ready to participate in a communication 
along c. As a solution to this problem we alter the communication behaviour of odd 
numbered cells so as to activate all cells "right from the start": 

(11) p·b; (p·a,b,c; a,p·b,q·c), . 

(In Section 2.2 we give another solution to this problem.) Obviously, communication 
behaviours of neighbouring cells match and communication behaviours w.r.t. channel c 
match if and only if n-k is odd. 

Since odd and even numbered cells are distinguished we obtain two kinds of cells which 
satisfy slightly different relations. For even n (n;iO) we take the relations as found before. 
For odd n, we take, in accordance with (11), p·a(i)=a(i-l) for i~O, and, consequently, 
since p.a(i)=V and a(i-l)=V for i<O, we have p·a(i)=a(i-l) for all integer i. Now 
b(O) == true and for i~O we derive: 

b( i + 1) 

{ see previous derivation (page 5) } 

Fn =} a(i) = a(i + pen-I) - (n-I)) 
II (Vj:05.j<n-IIIP(j) <j:a(i+j-(n-I)=a(i+P(j)-(n-I)) 

{ p·a(i) = a( i-I) for all integer i } 

Fn =} a(i) = a(i + pen-I) - (n-I)) II 

(Vj: 05.j<n-I II P(j)<j :p.a(i+1+j - (n-l)) =p·a(i+1+P(j) - (n-I))) 



{ (9); p is of type P::-t> (8) } 

(Fn =;. a(i) = q·c(i» /I p.b(i + 1) 

Thus we take the following relations for odd numbered cells: 

p·a( i) = a(i - 1) 

c( i) = a(i - 1) 

b(O) - true 

b( i + 1) - (Fn =;. a(i) = q·c(i» /I p·b(i+ 1) 
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Given the above relations, we can now compute k such that (9) holds and n-k is odd. 
As cell n-I is, viewed from cell n, equivalent to subcomponent p, we may write q as pn-k. 
Since the relations for even and odd numbered cells are different, we distinguish the cases 
k is even (and n is odd) and k is odd (and n is even). 

If k is even, we have q.a( i)=q·c( i), and, in order to avoid buffering in both cell nand 
cell k, we want k to satisfy pn-k ·a( i) = a( i + P( n-1) - (n-I». From the relations above 
it can be verified that pn-k·a(i) = a(i - (n-k+1) div 2), using that n is odd. This gives 
rise to the following equation: 

(12) k: P(n-1) - (n-1) = -(n-k+1) div2 

For odd k, we have q·a(i-1)=q·c(i), so we want k to satisfy: pn-k.a(i_1) = a(i + 
P(n-I) - (n-I». Now n is eveu and therefore pn-k.a(i_1) = a(i-1-(n-k) div 2). As 
equation for k we thus obtain P(n-1) - (n-1) == -«n-k)div2+ 1), but, since n-k is 
odd, this equation is equivalent to (12). 

Using that n-k+1 is even we obtain as solution to (12): 

(13) kn =2P(n-1)-n+3 . 

Channel c is thus directed from cell kn to cell n, O<n'5,N. Depending on P, however, kn 
may be negative, and the array of cells is therefore extended with negatively numbered 
cells whose only purpose is to buffer a-values that are to be returned along c-channels. 
These cells are programmed as follows (n<O). For eveu n: 

com P:: (in a:T, out coT) : 
sub P:P::-1 

I(var x:T; 
(a?x; p·a!x, c!x)* 

]I 
moc 

and for odd n: 

com P:: (in a:T, out coT) : 
sub P:P::_ 1 

I[var x:T; 
p.a!';, c!'; 
; (a? Xj p-a!x, c!x)"' 

11 
moc 
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Of course, there should be a last cell to end this array. As stated on page 5 the original 
problem (0) is solved by solving two identical problems (for P and its inverse). The index 
of the last cell in the array is therefore given by 

(14) (Min n : O<nSoN II Fn : kn) min 0 min (Min n : O<nSoN II Gn : In) , 

where Gn ;;, P-'(n-l) < n-l and In = 2P-'(n-l)-n+3. The program for this cell is 
omitted. 

For positive n we obtain the following programs. For even n: 

com P:: (in a:T, out b:Bool, coT) : 
sub p:P::-1 , q:Pkn , T:P!~ 
I[var x,y,z:T; w:Bool', 

b!true 
j( a?x,p·b?w, q-c?y, roc? z 
;p·a!x,b!((Fn :} x=y) II (Gn :} x=z) II w),c!x 
)* 

11 
moc 

and, for odd n: 

com P:: (in a:T, out b:Bool, coT) : 
sub p:P::-1 , q:Pk~' r:P{~ 
I[ var x, y, z:T; w:Bool; 

p.b?w; p·a!y', b!true, c!y' 
j( a'?x,p·b?w, q-c?y, roc? z 

;p·a!x, b!((Fn :} x=y) II (Gn :} x=z) II w), c!x 
)* 

11 
moc 

Finally, for n=O we find (assuming that cell 0 is not the last cell of the array): 

com Po (in a:T, out b:Bool, coT) : 
sub p:P:!., 
I[var x:T; 

b!true 
j( a?xjp·a!x, b!true, c!x)* 

11 
moc 

The resulting programs can be simplified significantly by removing redundant channels 
and/or components. For example, input channel q·c may be removed from cell n when 
,Fn holds. Such simplifications will be applied and further explained in Section 3. 

Like the "conventional" solution from Section 2.0, this solution has constant response 
time and constant latency, but the attractive thing about this solution is that its size 
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is linear in N.1 A serious problem is however that it may be non-systolic; this will be 
illustrated in Section 4. 

2.2 Yet another solution 

In the previous section we have distinguished odd and even cells in order to avoid deadlock. 
Deadlock could occur because cell k could initially be unable to engage in a communication 
with cell n along channel c. Another way to avoid such a deadlock is therefore to avoid 
these initial communications along c in cell n. To this end we take a commuuication 
behaviour of the following form: 

(15) b; (a,p·b;p.a,b,c)'; (a,p·b,q.c;p·a,b,c)* , 

where t is determined such that cell k is able to communicate along q·c. Note that bel) 
through b( t) have to be computed without the use of channel q·c. Since it turns out that 
t is smaller than n (see below), this is no problem: it is sufficient that relation (8) holds 
for i~n, and therefore we may take arbitrary values for bel) through bet). 

For the above communication behaviour we first determine an expression for kn , the 
cell to which cell n is to be connected. We do this by means of sequence functions. The 
relevant sequence functions for cell n are given by: 

2i + 1 + N - n 

<Tn(c,i) = 2i+2+N-n 

lTn(q·c,i) = 2t+2i+I+N-n 

Since we want to have a(i) and a(i+P(n-l)-(n-l)) available in cell n in the same time 
slot, we have the following equation for kn, using that c( i) = a( i): 

lTn(a,i) = lTkn(c,i+P(n-I) - (n-I)) , 

which has the same solution as equation (12): 

kn = 2P(n-l) - n + 3 . 

Given this expression for kn we can now compute t. We determine t such that the 
communication behaviours of cells nand kn match. As equation for t we obtain: 

for i~O. Using the above sequence functions we find: 

2t + 2i + 1 + N - n = 2i + 2 + N - kn 

{ above relation for kn } 

2t- n = 1- (2P(n-l) - n+ 3) 

{ } 

t=(n-I)-P(n-l) . 

lThe program texts for the components may suggest a non-linear network. For each integer n, however, 
there is at most one instance of component P::, which may occur more than once as subcomponent of 
components with larger numbers. 
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Figure 1: General program for square recognition. 

Since channel q·c is only used in cells for which Fn holds, we have that P( n-I) < n-I 
and hence that O<t. Furthermore we have th.at t < n because P(n-I)~O. Hence O<t<n. 

For p-1 we obtain a similar communication behaviour, which can be "merged" with 
the communication behaviour for P. 

The disadvantage of this solution is that the cells are not identical because the length 
of the initialisation in cell n equals (n-I) - P(n-I). 

3 Comparison 

In this section we generate a program for the square recognition problem by instantiating 
the program for arbitrary P given in Section 2.1. Subsequently, the thus obtained solution 
is compared with the one presented in Section 1. For the sake of convenience we assume 
[( to be even and sufficiently large (e.g., [(~4). 

As a first step, we observe that the permutation for the square problem, given by 
P(j) = (j+[() mod 2[( for OSj<2[(, is equal to its inverse. Consequently, Gn == Fn and 
kn = In, and therefore we can simplify the general program significantly by removing 
subcomponents r. 

A further reduction is possible by observing that Fn is equivalent to (n-l + [() mod 2[( 
< n-l which may be simplified to [( <nS2K. This enables us to remove input g·c 
from cells n, ISnSK. For K <ns2K we have P(n-l)=n-l-K so we obtain (cf. (13)): 
kn = n-2K +1. Since Fn == K <nS2K, it follows from (14) that the last cell has number 
-J{+2, and moreover that -J{+2Skn <2, as a consequence of which output c may be 
removed from cells n with 2SnS2J{. 

Since ~Fn holds for O<nsJ{ and b(i) == true for cell 0, we have b( i) == true for all 
these cells, and therefore we can remove the b-channels from cells 0 through K -1 and let 
cell [( generate sequence b. Figure 1 gives an impression of the network thus obtained; 
it consists of 3[( -1 cells. By folding the array of cells over a 180 degrees between cells 
J{ +1 and [(, and between cells 2 and 1, the length of each c-channel can be reduced to a 
constant (independent of [(), which implies that the program is systolic. 

To obtain a program comparable with the program from Section 1 we apply two more 
transformations. 

Inspection of the computation performed by the network in Figure 1 learns us that 
cells -](+2 through 0 can be removed at the expense of ](-1 extra channels between 
cells ](+1 through 2J{. This improvement follows from the observation that cell 1 sends, 
in the same time slot, the same a-value to both cell 0 (via p·a) and cell 2]( (via c). In the 
next time slot cell 0 passes this a-value to cell 2]( -1 via c, which however could equally 
well be retrieved from cell 2](. For this purpose we equip cell 2]( -1 with an additional 
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input channel e, say, called p·e in cell 2](. A similar reasoning applies to cells -](+3 
through o. 

Finally, we integrate cells 1 through ]( with cells 2]( through ](+1, respectively. That 
is, mentally we fold the array between cells ](+1 and ]( over a 180 degrees, and then we 
combine the cells opposite to each other. For this purpose we rename the a-cha.nnels of 
cells 1 through ]( to j-channels. 

This results in the following programs (assuming that ]( is even). 

com P~/f( (in a:T, out b:Bool) : 

sub P:P~I<-l 
I[var x, z:T; w:Bool; 

b!true 

JI 
moc 

i( a?x,p.b?w,p·j?z 
;p·a!x,b!(x=z /I w),p·e!z 
)* 

For ]( <n<2]( we have for even n: 

com P~ (in a, e:T, out b:Bool, j:T) : 
sub P:P~-l 
I[var x, y, z:T; w:Bool; 

b!true 

JI 
moc 

;( a?x,p.b?w, e?y,p·j? z 
ip·a!x,b!(x=y /I w),p·e!y,j!z 
)* 

and, for odd n: 

com P:: (in a, e:T, out b:Bool, j:T) : 
sub P:P~-l 
I[var x, y, z:T; w:Bool; 

JI 
moe 

p·b?w; p·a!V', b!true, p·e!V', f!V' 
;( a?x,p·b?w, e?y,p·j?z 
;p·a!x,b!(x==y /I w),p·e!y,f!z 
)* 

Finally, cell ]( generates true's along channel b (assuming ]( even): 

com PJ{ (in a,e:T, out b:Bool, f:T) : 
I[var x,y:T; 

b!true 
; (a?x, e?y; b!true, j!x)* 

JI 
moc 
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Apart from the fact that all cells are active "right from the start" -performing dummy 
actions initially- the obtained network is equivalent to the conventional one. 

4 A non-systolic program 

As mentioned before, instantiation of the program for arbitrary P may result in a non
systolic solution. Take, for example, the perfect-shuffle permutation. Its inverse is given 
by p-l(j) = K(jmod2) + j div 2, for 05,j<2K. For odd n we have p-l(n-l)=(n-l)/2, 
so it immediately follows that Gn , i.e. (n-l)/2<n-l, holds for n>1 (n odd). We then 
obtain In=2 for all cells n with n odd and larger than one, which means that all these cells 
are connected to cell 2. In other words, cell 2 "broadcasts" the same a-value to all these 
cells. Evidently, the resulting program is therefore not systolic. (In (3] a systolic program 
for perfect-shuffle recognition is derived. In that program the computation is organized 
such that only a small number of cells need the same a-value in the same time slot. This 
program is outside the scope of the approach presented in this paper.) 

In order to guarantee that instantiation of the program from Section 2 results in a 
systolic program, that is, a program in which the fan-out of each cell is bounded, P should 
satisfy the following restriction: 

where # denotes 'number of' and M is a positive constant (independent of N). Using 
(13) the above formula reduces to 

(16) (#m,n: 05,m<N flFmflO5,n<N flFn : 2(P(m-l) -P(n-l)) = m- n) 5, M 

Of course, p-l has to meet a similar requirement. Using (16) it can easily be verified 
whether our approach yields a systolic solution for a particular P. For instance, for 
palindrome recognition we have P(n-l)=N -n which obviously satisfies (16) with M=l. 

5 Summary of results 

Typical for the "linear array" solutions to several instances of the general recognition 
problem (2, 3, 5, 6, 7] is that at some stage in the design auxiliary channels are introduced 
between neighbour cells to carry input values (to the program) indirectly via a chain of 
neighbouring cells to the right cell at the right moment. It is shown that for the general 
problem this approach forces us to introduce an array of auxiliary channels, resulting in 
a program of a size quadratic in N. To obtain a program of linear size, a quite different 
approach is taken, in which an (input) value is directly retrieved from the cell that received 
that value just before. In this way, cells that are arbitrarily far apart may be connected 
and the need for buffering in linked cells is avoided. Depending on P, the array of cells 
is extended with a number of extra cells whose sole purpose is to buffer input values that 
are to be returned via the direct feedback connections. 

To ensure the feasibility of the above approach, we have transformed the problem of 
recognizing P-invariant segments into two simpler problems involving P and P-l. An
other problem that had to be solved was the design of a deadlock-free communication 
behaviour. We have chosen to let the communication behaviours of odd and even num
bered cells alternate so as to activate all cells "right from the start" -performing dummy 
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actions initially. We have also shown that it is possible to avoid these initial commu
nications altogether, the drawback of this solution being that the cells of the resulting 
program have a more complicated initialisation. 

Using our general solution, it is rather straightforward to construct a parallel program 
for an instance of P. For some concrete cases the resulting program can be transformed 
into the more "conventional" programs. This is illustrated by means of the square recog
nition problem. Depending on the permutation at hand, the solution may be non-systolic 
because the number of output channels of some cells may be proportional to N. We have 
characterized the permutations for which it is guaranteed that a systolic solution results. 

In conclusion, the direct retrieval of input values from the cell that received this value 
just before is the major design decision made. Furthermore, cells are started simultane
ously by distinguishing odd and even cells, and extra cells are introduced that only buffer 
input values that are to be returned via auxiliary channels. The resulting program has 
a size linear in N and has constant response time and constant latency. The traditional 
approach leads to program with a size quadratic in N. Therefore the applied technique 
is considered to be a fruitful extension of the conventional design technique [1, 4J. 
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