

Parallel programs for the recognition of P-invariant segments

Citation for published version (APA):
Katoen, J. P., & Schoenmakers, L. A. M. (1991). Parallel programs for the recognition of P-invariant segments.
(Computing science notes; Vol. 9103). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/1991

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://research.tue.nl/en/publications/c5086260-faf2-45f7-87bd-9ea74cc8befb

Parallel Programs for the Recognition
of P-invariant Segments

by

J.P. Katoen and L.A.M. Schoenmakers

91/03

April, 1991

COMPUTING SCIENCE NOTES

This is a series of notes of the Computing
Science Section of the Department of
Mathematics and Computing Science
Eindhoven University of Technology.
Since many of these notes are preliminary
versions or may be published elsewhere, they
have a limited distribution only and are not
for review.
Copies of these notes are available from the
author or the editor.

Eindhoven University of Technology
Department of Mathematics and Computing Science
P.O. Box 513
5600 MB EINDHOVEN
The Netherlands
All rights reserved
editors: prof.dr.M.Rem

prof.dr.K.M.van Hee.

Parallel Programs for the Recognition
of P -invariant Segments

J.P. Katoen
Philips Research Laboratories

P.O. Box 80.000, 5600 JA Eindhoven, The Netherlands

L.A.M. Schoenmakers
Eindhoven University of Technology

Dept. of Mathematics and Computing Science

P.O. Box 513, 5600 MB Eindhoven, The Netherlands

March 12, 1991

Abstract

Let P be an arbitrary, but fixed permutation on [O .. N), with N?O. A so-called
recognition program determines for each segment of length N of its input sequence
whether it is invariant under P. In this paper we design several parallel recognition
programs. All these programs consist of a linear arrangement of cells and have con
stant response time. The major difference between these programs is in the size of
the cells. A distinctive feature of the space efficient solutions is that they contain -in
addition to the links between neighbour cells-links between non-neighbour cells. For
some well-known instances of the general problem, such as palindrome recognition and
square recognition, these space efficient solutions are systolic and comparable to the
conventional ones; this is illustrated for the square recognition problem. Depending
on P, however, the space efficient solutions may in general be non-systolic.

o Introduction

In a series of papers design techniques for fine-grained parallel programs (in particular,
linear systolic arrays) have been demonstrated by solving instances of the following general
recognition problem: given a permutation P on [O .. N), with N?O, the problem is to design
a parallel program that determines for each segment of N successive elements of its input
sequence whether it is invariant under P ("P-invariant" for short). That is, we have to
design a parallel program with input channel a of arbitrary type T, output channel b of
type Bool, satisfying the following i/o-relation:

(0) b(i) = (V j '. ° :S j < N : a(i + j) 0= a(i + P(j))) ,

for i?O, where a(i) and b(i) denote the (i+ 1)-st elements of sequences a and b, respectively.

Simple instances of this problem are the recognition of

(i) palindromes [5, 6, 7J: P(j) 0= N - 1 - j,

and,

o

(li) squares (or carres) [5, 6J: P(j) = (j +]()modN, N = 2](.
Square recognition may be generalized into

(iii) K-rotations [2J: P(j) = (j + K)modN, 0:::; K < N.
Finally, we mention

(iv) perfect-shuffles [3J: P(j) = 2(j mod K) + j div K, N = 2K,
and its generalization, which is mentioned but not solved in [3J:

(v) KL-shuffles: P(j) = K(jmodL)+jdivL, N=KL.

1

In Section 2 we solve the general problem as specified by (0) in a rather unusual, but
systematic way. In order to resume the conventional design technique advocated in [1, 4J
we first solve problem (ii) in Section 1. (Readers familiar with this technique may skip
this section.) In Section 3 this conventional solution is compared to the solution obtained
by instantiating the program derived in Section 2. It turns out that the latter program
can be transformed into the conventional one. The same applies to problems (i) and (iii).
However, the programs obtained for (iv) and (v) are not systolic because the number of
output channels of some cells is proportional to N. This is shown in Section 4. Finally,
in Section 5 some distinctive features of our approach are summarized.

1 Recognition of squares

In this section we briefly sketch the derivation of a parallel program (or component) CK,
K"? 0, that recognizes squares. We apply the design technique explained in [1, 4J. The
i/o-relation of CK reads (d. (li) and (0)):

b(i) '" (V j : 0 :::; j < 2K : a(i + j) = a(i + (j + K) mod 2K)) ,

for i2:0. So, this component determines for each segment a[i .. i+2K) whether it is a
square. This fact is more simply expressed by the following equivalent i/o-relation (d. [7,
Section 5.2]):

(1) b(i) '" (Vj: ° $ j < K: a(i+j) = a(i+i+ K)) .

It follows from this i/o-relation that b(i) depends on all elements of a[i .. i+2K), and,
consequently, that (1) requires a communication behaviour like a2K ; (b; a)*.

The obvious way to start the derivation is to generalize (1) in some way, thereby ob
taining specifications of components Ck , OS.kS.K, with the intention that Ck has Ck-l as
subcomponent (k;iO). From experience, however, we know that such components must
have a communication behaviour that depends on k (e.g., a2k ; (b; a)*), and, consequently,
that such components do not have identical commands. Moreover, a communication be
haviour like a2k ; (b; a)* requires component Ck to detect that the 2k-th communication
along a has occurred. This dependence on k makes the components unnecessary compli
cated.

To obtain a simpler communication behaviour we therefore design a slightly different
component CK with i/o-relation

(2) b(i) 0= (Vj: ° $j <](:a(i+j - 2K) = a(i+j -K)) ,

for i"?2K. This component, then, determines for each segment a[i-2K .. i) with i"?2K
whether it is a square. Hence, we may take (bja)* as communication behaviour and CK
may be used to build component CK as follows:

com CK (in a:T, out b:Bool) :
sub poCK
I[var x:T; w:Bool;

(a?x,p·b?w; p.a!x)2K
; (a?x,p·b?w; p·a!x,b!w)*

)1
moe.

2

So, the first 2J(outputs of subcomponent p are neglected by CK. The external commu
nication behaviour of CK is a2K ;(a;b)*.D

The program notation used in this paper resembles the notation used in [7). For
the above program the following explanation is in order. After the name, CK, of the
component the names and types of (external) input and output channels are listed. p

is a subcomponent of CK of type Ck. The block, delineated by I[and JI, consists of a
declaration part and a command. Commands are denoted in a CSP-like notation [OJ.
This entails that for channel a directed from component p to q and expression E the
simultaneous execution of alE in p and a?x in q establishes the assignment x:=E in q.
The comma indicates arbitrary interleaving of the communications connected by it; it
takes precedence over the semicolon.

Now we are left with the problem of designing Ck. As an appropriate generalization
of (2) we design components Ck, OSkSJ(, satisfying

(3) b(i) == (Vj: 0 S j < k: a(i+j - J(- k) = a(i+j - k)) ,

for i?,K +k. Then, however, values in b[O"K +k) are not specified. In order that (3)
defines b(i) for all natural i, sequence a will be extended by defining a(j) for j <0; a
suitable extension of a is chosen such that relatively simple relations result.

The derivation proceeds by partitioning i/o-relation (3) into simpler ones until we end
up with recurrence relations for the individual communications along the channels. As
communication behaviour we take (b; a)*. For Co we have b(i) == true for all natnral i,
so we proceed with the case ISk::;K. From (3) it immediately follows that b(O) == true
provided that we extend sequence a (mentally) such that a(j)=-/ for j<O, where -/ is an
arbitrary value of type T. For i?,O we derive

b(i + 1)

{ (3) }

(Vj: O::;j < k :a(i+ l+j-K-k) = a(i+ l+j-k))

{ split off j = k-l }

a(i - K) = a(i) 1\ (V j : 0 S j < k - 1 : a(i + j - K - (k - 1)) = a(i + j - (k - 1)))

{ introduce subcomponent p of type CL, with p.a(i) == a(i), for i?,O; (3) }

a(i)==a(i-K) 1\ p·b(i) .

The desired communication behaviour of Ck is (b; a)*. Hence, the following internal com
munication behaviour for Ck is possible: b; (a,p·b; p·a,b)*. Using this communication

o By using a direct connection between channels a and p·a this can be improved slightly to a2K ; (b; a)·.
Such a connection is sometimes represented by an equality a = P'Q (see [7, Section 1.4)).

a

](

b

p·a
p·e

p.

Figure 0: Conventional network for square recognition (O<k<]().

3

behaviour, C~ has a(i) and p·b(i) at its disposal for the computation of b(i+1). To provide
a(i-]() we have several options. A simple solution is to buffer the last](values received
along a in each component, but this solution is rejected because it makes the components
too bulky. To avoid this buffering, the conventional solution in this case is to equip each
component C~, except for Cx, with an extra input channel e, say, satisfying

(4) e(i)=a(i-]() ,

for i~O. The appropriate communication behaviour now is (b;a,et. Component C~
(1$k<]() must supply p·e(i) = p·a(i-I{) to its subcomponent p; since p.a(i-]() =
a(i-](), this boils down to p·e(i) = c(i). To let Cx supply a(i-]() to its subcomponent,
components Ck, O$k<](, get an extra output channel d satisfying

(5) d(i) = a(i - (k + 1)) ,

for i2::0. We then have for Cx:
p·e(i)

={ (4) }
p·a(i -]()

= {p·a(i)=a(i) }

a(i - ((K -1) + 1))
= {p is of type CX_I ; (5)}

p·d(i) ,

so Cx supplies a(i-K) to its subcomponent by simply returning the values received
along p·d. Components C" (O<k<K) determine output d as follows: d(O) = ,j and
d(i+1) = p·d(i). C~ does it differently: d(O) =,j and d(i+1) = a(i). The structure of the
network is now as depicted in Figure O. The programs become:

com C~ (in a,e:T, out b:Bool,d:T) :
I[var x, y:T;

b!true, d!,j
; (a?x, e?y; b!true, d!x)*

11
moe,

and for O<k<K:

com Ck (in a, c:T, out b:Bool, doT) :
sub p:Ck_1
I[var x, y, z:T; w:Bool;

bltrue,dlJ
;(a?x,p·b?w, c?y,p·d? z
;p·alx, bl(x=y " w),p·c!y, dlz
)*

11
moc

and finally:

com CK (in a:T, out b:Bool) :
sub P:C}"(_1
I[var x, y:T; w:Bool;

bltrue
;(a?x,p·b?w,p·d?y
;p·alx, bl(x=y " w),p·dy
)*

11
moc

This completes a quite conventional derivation.

4

The speed of a computation is analyzed by means of sequence functions (see [7, Sec
tion 2.5]) which exhibit a possible execution order by assigning all communications to
time slots. For sequence function <Th, natural <Th(a,i) denotes the time slot to which the
(i+l)-st communication along channel a of component C k is assigned. For channels a and
b we have for instance the following sequence functions:

<Tk(a, i) = 2i+ 1 + J(- k

<Tk(b, i) = 2i + J(- k ,

for OS,kS,I(' Since <Tk(b, i) is a linear function of i, we say that CK has constant response
time. Furthermore, the latency is the period oftime which elapses between the production
of an output value and the receipt of the last input value on which it depends. In our
program b(i) depends on a[i-2K..i), and therefore it follows from the above sequence
functions that it has constant latency.

2 Recognition of P-invariant segments

We now derive a parallel program PN, say, satisfying (0). As in the conventional approach
our first step is to introduce a component Pfv with i/o-relation

(6) b(i) == (Ii j : 0 S, j < N: a(i + j - N) = a(i + P(j) - N» ,

for i~N. So, Pfv determines for each segment a[i-N .. i) with i~N whether it is P
invariant. We take (b; a)* as communication behaviour for pfv, and by neglecting the first
N outputs of Pfv we obtain a program for PN.

To obtain a program for Pfv we try to design components P~, OS,nS,N, satisfying (cf.
generalization (3) of (2»:

5

(7) be,) == (V j : 0:5, j < n: a(i +j - n) = a(i + P(j) - n» ,

for i2:.n, and with (b; a)* as communication behaviour. By extending sequence a with
negatively indexed elements, b(i) will be defined for all natural i.

From (7) it immediately follows that b(i) == true for P~. For n>O we have b(O) == true
provided that we extend a such that aU) = ..; for j <0 -as in the previous section. For
i2:.0 we derive:

b(i+ 1)
{ (7) }

(V j : 0 :5, j < n : a(i + 1 + j - n) = a(i + 1+ prj) - n))

{split off j 0: n-I }

a(i) 0: a(i + pen-I) - (n-I))
/I (V j : 0:5, j < n-I : a(i + j - (n-I)) 0: a(i + P(j) - (n-I)))

{ introduce subcomponent p : P~-l with p·a(i) 0: a(i), for i2:.0; (7) }

a(i)o:a(i+P(n-I)-(n-I)) /I p·b(i) .

Now recall that the intended communication behaviour is (b; a)*, hence a(i) will be avail
able for the computation of b(i+I) but the whereabouts of a(i + pen-I) - (n-I)) are
unclear. It is even possible that this value has not yet been received by P~, namely in
case P(n-l) > n-l.

Fortunately, the following observation helps us out. The right-hand side of (0) can be
rewritten as follows:

(V j: 0:5, j < N : a(i + j) 0: a(i + PU»))
{ domain split }

(V j : 0:5, j < N /I P(j) > j : a(i+ j) = a(i + PU»)
/I (Vj: 0:5, j < N /I P(j) = j: a(i + j) = a(i+ PU»)
/I (Vj: 0:5, j < N /I PU) < j: a(i + j) = a(i+ PU)))

{ dummy change j := P-IU) in first conjunct; P(P-IU» = j }

(V j : 0 :5, p-l(j) < N /I j > p-l(j) : a(i + p-I(j)) = a(i + j))
/I (V j : 0 :5, j < N /I P(j) < j : a(i + j) = a(i+ prj)))

_ {P-l is a permutation on (O .. N) }
(V j : 0:5, j < N /I p-l(j) < j : a(i + j) = a(i + p-l(j»)

/I (Vj:O:5,j<N /I P(j)<j:a(i+j)o:a(i+P(j») .

So, the original problem may be solved by solving two identical-but simpler- problems:
because p-1 is as arbitrary as P, it suffices to design components P~, O:5,n:5,N, satisfying:

(8) b(i)==(Vj:O:5,j<n /I P(j)<j:a(i+j-n)=a(i+P(j)-n» ,

for i2:.0, and with (b; a)* as communication behaviour.

Proceeding as above, we then obtain the following relations for P~ (n;iO):

p·a(i)
b(O)

b(i + 1)

a(i)

true

(Fn => a(i) = a(i + pen-I) - (n-l») /I p·b(i)

6

where Fn abbreviates pen-I) < n-l. Note that a(i + pen-I) - (n-I)) is required for
the computation of b(i+I) only if Fn holds, which ensures that this value has already
been received and has been passed on to subcomponent p via p·a.

2.0 Conventional solution

From the relations above it follows that component P:: ("cell n" for short) needs two
a-values to compute b(i+I) when Fn holds. With b; (a,p·b; p·a, b)* as communication
behaviour, a(i) and p.b(i) are available. In order to retrieve a(HP(n-I)-(n-I)) the
conventional approach is to introduce auxiliary channels between neighbouring cells. Since
pen-I) -en-I) < 0, a first guess is to equip components P:: with an extra output channel
c such that c(i) = a(i+P(n)-n) in case Pen) < n. We would theu have

b(i + 1) == (Fn =? a(i) = p·c(i)) 1\ p·b(i) .

Unfortunately, it is impossible to compute c(i) from p·c(i) in this way, since we do not
have a relation between pen) and pen-I). The fact that we are dealing with an arbitrary
permutation P forces us to introduce an array of output channels C. An appropriate i/o
relation for this array of channels is given by:

C[mJ(i) = { a(i+P(m)-n) ,P(m)<n
"don't care" ,P(m) 2::. n ,

for O~m<N. Then we may take C[mJ(i) = V for Po', and for O<n~N we take C[mJ(O) =
V and

. { a(i)
C[ml(z+l) = p.C[mJ(i)

for i:2:0, or, equivalently:

. { a(i)
C[mJ(z+I) = p.C[mJ(i)

,P(m) = n-I
, P(m) f. n-I ,

, m = p-1(n-I)
, m f. p-1(n-I)

It is interesting to note that Pj{'s output channel C satisfies C[mJ(i) = a(i+P(m)-N)
for O~m<N, hence C(i) is a permutation of a[i-N .. i). Component P:: can now compute
b(i+ 1) as follows:

b(i + 1) == (Fn =? a(i) = p·C[n - IJ(i)) 1\ p.b(i)

The computation of C(i+I) within a cell takes O(N) time when done sequentially. It
is however trivial to do this in parallel to achieve 0(1) time. The problem with this
"conventional" solution is that it is very expensive, even more when one realizes that we
have to do all of the above for p-1 as well. To summarize: we have obtained a program
with constant response time and constant latency at the expense of an area quadratic in
N (N cells consisting of N cells each).

7

2.1 Alternative solution

A key step in the conventional approach is that we try to retrieve value a(i + P(n-l)
(n-l)) from cell n-l (component P::-1), a value which has been passed on to subcom·
ponents in the mean time. Depending on n-l - P(n-l), this value has reached some
cell k, say, with k<n, in the time slot when it is needed by cell n. Our idea noW is to
link cell n (n>O) with the appropriate cell k, such that value a(i + P(n-l) - (n-l)) can
be supplied to n by k at the right moment, thereby avoiding the need for buffers in both
cells. More precisely, we add an auxiliary channel directed from cell k to cell n, called c
in cell k and q·c in cell n -accordingly, q will be used as local name for cell k in cell n
and we determine k such that channel q·c satisfies

(9) q·c(i) = a(i + P(n-l) - (n-l) ,

for i~O. For cell n (n>O) we then have

p·a(i)

c(i)
b(O)

b(i+ 1)

=

=

a(i)
a(i)
true

(Fn =} a(i) = q.c(i)) II p·b(i)

A possible communication behaviour that is consistent with the partial order that
these relations impose is

(10) b; (a,p·b,q·c;p·a,b,c)*

Unfortunately, this behaviour causes deadlock (cf. [7]): since cells nand k may be
arbitrarily far apart, cell k will initially not be ready to participate in a communication
along c. As a solution to this problem we alter the communication behaviour of odd
numbered cells so as to activate all cells "right from the start":

(11) p·b; (p·a,b,c; a,p·b,q·c), .

(In Section 2.2 we give another solution to this problem.) Obviously, communication
behaviours of neighbouring cells match and communication behaviours w.r.t. channel c
match if and only if n-k is odd.

Since odd and even numbered cells are distinguished we obtain two kinds of cells which
satisfy slightly different relations. For even n (n;iO) we take the relations as found before.
For odd n, we take, in accordance with (11), p·a(i)=a(i-l) for i~O, and, consequently,
since p.a(i)=V and a(i-l)=V for i<O, we have p·a(i)=a(i-l) for all integer i. Now
b(O) == true and for i~O we derive:

b(i + 1)

{ see previous derivation (page 5) }

Fn =} a(i) = a(i + pen-I) - (n-I))
II (Vj:05.j<n-IIIP(j) <j:a(i+j-(n-I)=a(i+P(j)-(n-I))

{ p·a(i) = a(i-I) for all integer i }

Fn =} a(i) = a(i + pen-I) - (n-I)) II

(Vj: 05.j<n-I II P(j)<j :p.a(i+1+j - (n-l)) =p·a(i+1+P(j) - (n-I)))

{ (9); p is of type P::-t> (8) }

(Fn =;. a(i) = q·c(i» /I p.b(i + 1)

Thus we take the following relations for odd numbered cells:

p·a(i) = a(i - 1)

c(i) = a(i - 1)

b(O) - true

b(i + 1) - (Fn =;. a(i) = q·c(i» /I p·b(i+ 1)

8

Given the above relations, we can now compute k such that (9) holds and n-k is odd.
As cell n-I is, viewed from cell n, equivalent to subcomponent p, we may write q as pn-k.
Since the relations for even and odd numbered cells are different, we distinguish the cases
k is even (and n is odd) and k is odd (and n is even).

If k is even, we have q.a(i)=q·c(i), and, in order to avoid buffering in both cell nand
cell k, we want k to satisfy pn-k ·a(i) = a(i + P(n-1) - (n-I». From the relations above
it can be verified that pn-k·a(i) = a(i - (n-k+1) div 2), using that n is odd. This gives
rise to the following equation:

(12) k: P(n-1) - (n-1) = -(n-k+1) div2

For odd k, we have q·a(i-1)=q·c(i), so we want k to satisfy: pn-k.a(i_1) = a(i +
P(n-I) - (n-I». Now n is eveu and therefore pn-k.a(i_1) = a(i-1-(n-k) div 2). As
equation for k we thus obtain P(n-1) - (n-1) == -«n-k)div2+ 1), but, since n-k is
odd, this equation is equivalent to (12).

Using that n-k+1 is even we obtain as solution to (12):

(13) kn =2P(n-1)-n+3 .

Channel c is thus directed from cell kn to cell n, O<n'5,N. Depending on P, however, kn
may be negative, and the array of cells is therefore extended with negatively numbered
cells whose only purpose is to buffer a-values that are to be returned along c-channels.
These cells are programmed as follows (n<O). For eveu n:

com P:: (in a:T, out coT) :
sub P:P::-1

I(var x:T;
(a?x; p·a!x, c!x)*

]I
moc

and for odd n:

com P:: (in a:T, out coT) :
sub P:P::_ 1

I[var x:T;
p.a!';, c!';
; (a? Xj p-a!x, c!x)"'

11
moc

9

Of course, there should be a last cell to end this array. As stated on page 5 the original
problem (0) is solved by solving two identical problems (for P and its inverse). The index
of the last cell in the array is therefore given by

(14) (Min n : O<nSoN II Fn : kn) min 0 min (Min n : O<nSoN II Gn : In) ,

where Gn ;;, P-'(n-l) < n-l and In = 2P-'(n-l)-n+3. The program for this cell is
omitted.

For positive n we obtain the following programs. For even n:

com P:: (in a:T, out b:Bool, coT) :
sub p:P::-1 , q:Pkn , T:P!~
I[var x,y,z:T; w:Bool',

b!true
j(a?x,p·b?w, q-c?y, roc? z
;p·a!x,b!((Fn :} x=y) II (Gn :} x=z) II w),c!x
)*

11
moc

and, for odd n:

com P:: (in a:T, out b:Bool, coT) :
sub p:P::-1 , q:Pk~' r:P{~
I[var x, y, z:T; w:Bool;

p.b?w; p·a!y', b!true, c!y'
j(a'?x,p·b?w, q-c?y, roc? z

;p·a!x, b!((Fn :} x=y) II (Gn :} x=z) II w), c!x
)*

11
moc

Finally, for n=O we find (assuming that cell 0 is not the last cell of the array):

com Po (in a:T, out b:Bool, coT) :
sub p:P:!.,
I[var x:T;

b!true
j(a?xjp·a!x, b!true, c!x)*

11
moc

The resulting programs can be simplified significantly by removing redundant channels
and/or components. For example, input channel q·c may be removed from cell n when
,Fn holds. Such simplifications will be applied and further explained in Section 3.

Like the "conventional" solution from Section 2.0, this solution has constant response
time and constant latency, but the attractive thing about this solution is that its size

10

is linear in N.1 A serious problem is however that it may be non-systolic; this will be
illustrated in Section 4.

2.2 Yet another solution

In the previous section we have distinguished odd and even cells in order to avoid deadlock.
Deadlock could occur because cell k could initially be unable to engage in a communication
with cell n along channel c. Another way to avoid such a deadlock is therefore to avoid
these initial communications along c in cell n. To this end we take a commuuication
behaviour of the following form:

(15) b; (a,p·b;p.a,b,c)'; (a,p·b,q.c;p·a,b,c)* ,

where t is determined such that cell k is able to communicate along q·c. Note that bel)
through b(t) have to be computed without the use of channel q·c. Since it turns out that
t is smaller than n (see below), this is no problem: it is sufficient that relation (8) holds
for i~n, and therefore we may take arbitrary values for bel) through bet).

For the above communication behaviour we first determine an expression for kn , the
cell to which cell n is to be connected. We do this by means of sequence functions. The
relevant sequence functions for cell n are given by:

2i + 1 + N - n

<Tn(c,i) = 2i+2+N-n

lTn(q·c,i) = 2t+2i+I+N-n

Since we want to have a(i) and a(i+P(n-l)-(n-l)) available in cell n in the same time
slot, we have the following equation for kn, using that c(i) = a(i):

lTn(a,i) = lTkn(c,i+P(n-I) - (n-I)) ,

which has the same solution as equation (12):

kn = 2P(n-l) - n + 3 .

Given this expression for kn we can now compute t. We determine t such that the
communication behaviours of cells nand kn match. As equation for t we obtain:

for i~O. Using the above sequence functions we find:

2t + 2i + 1 + N - n = 2i + 2 + N - kn

{ above relation for kn }

2t- n = 1- (2P(n-l) - n+ 3)

{ }

t=(n-I)-P(n-l) .

lThe program texts for the components may suggest a non-linear network. For each integer n, however,
there is at most one instance of component P::, which may occur more than once as subcomponent of
components with larger numbers.

11

--":.... ra
, I---+- - ~ 1---+-- ,.. ~-

-J{+2
-1L

2J{ b 2J{-1 ... J{+1 J{ .. . 1 0 ...
~ I- - -i qe q·e q·e Ie e e

Figure 1: General program for square recognition.

Since channel q·c is only used in cells for which Fn holds, we have that P(n-I) < n-I
and hence that O<t. Furthermore we have th.at t < n because P(n-I)~O. Hence O<t<n.

For p-1 we obtain a similar communication behaviour, which can be "merged" with
the communication behaviour for P.

The disadvantage of this solution is that the cells are not identical because the length
of the initialisation in cell n equals (n-I) - P(n-I).

3 Comparison

In this section we generate a program for the square recognition problem by instantiating
the program for arbitrary P given in Section 2.1. Subsequently, the thus obtained solution
is compared with the one presented in Section 1. For the sake of convenience we assume
[(to be even and sufficiently large (e.g., [(~4).

As a first step, we observe that the permutation for the square problem, given by
P(j) = (j+[() mod 2[(for OSj<2[(, is equal to its inverse. Consequently, Gn == Fn and
kn = In, and therefore we can simplify the general program significantly by removing
subcomponents r.

A further reduction is possible by observing that Fn is equivalent to (n-l + [() mod 2[(
< n-l which may be simplified to [(<nS2K. This enables us to remove input g·c
from cells n, ISnSK. For K <ns2K we have P(n-l)=n-l-K so we obtain (cf. (13)):
kn = n-2K +1. Since Fn == K <nS2K, it follows from (14) that the last cell has number
-J{+2, and moreover that -J{+2Skn <2, as a consequence of which output c may be
removed from cells n with 2SnS2J{.

Since ~Fn holds for O<nsJ{ and b(i) == true for cell 0, we have b(i) == true for all
these cells, and therefore we can remove the b-channels from cells 0 through K -1 and let
cell [(generate sequence b. Figure 1 gives an impression of the network thus obtained;
it consists of 3[(-1 cells. By folding the array of cells over a 180 degrees between cells
J{ +1 and [(, and between cells 2 and 1, the length of each c-channel can be reduced to a
constant (independent of [(), which implies that the program is systolic.

To obtain a program comparable with the program from Section 1 we apply two more
transformations.

Inspection of the computation performed by the network in Figure 1 learns us that
cells -](+2 through 0 can be removed at the expense of](-1 extra channels between
cells](+1 through 2J{. This improvement follows from the observation that cell 1 sends,
in the same time slot, the same a-value to both cell 0 (via p·a) and cell 2]((via c). In the
next time slot cell 0 passes this a-value to cell 2](-1 via c, which however could equally
well be retrieved from cell 2](. For this purpose we equip cell 2](-1 with an additional

12

input channel e, say, called p·e in cell 2](. A similar reasoning applies to cells -](+3
through o.

Finally, we integrate cells 1 through](with cells 2](through](+1, respectively. That
is, mentally we fold the array between cells](+1 and](over a 180 degrees, and then we
combine the cells opposite to each other. For this purpose we rename the a-cha.nnels of
cells 1 through](to j-channels.

This results in the following programs (assuming that](is even).

com P~/f((in a:T, out b:Bool) :

sub P:P~I<-l
I[var x, z:T; w:Bool;

b!true

JI
moc

i(a?x,p.b?w,p·j?z
;p·a!x,b!(x=z /I w),p·e!z
)*

For](<n<2](we have for even n:

com P~ (in a, e:T, out b:Bool, j:T) :
sub P:P~-l
I[var x, y, z:T; w:Bool;

b!true

JI
moc

;(a?x,p.b?w, e?y,p·j? z
ip·a!x,b!(x=y /I w),p·e!y,j!z
)*

and, for odd n:

com P:: (in a, e:T, out b:Bool, j:T) :
sub P:P~-l
I[var x, y, z:T; w:Bool;

JI
moe

p·b?w; p·a!V', b!true, p·e!V', f!V'
;(a?x,p·b?w, e?y,p·j?z
;p·a!x,b!(x==y /I w),p·e!y,f!z
)*

Finally, cell](generates true's along channel b (assuming](even):

com PJ{ (in a,e:T, out b:Bool, f:T) :
I[var x,y:T;

b!true
; (a?x, e?y; b!true, j!x)*

JI
moc

13

Apart from the fact that all cells are active "right from the start" -performing dummy
actions initially- the obtained network is equivalent to the conventional one.

4 A non-systolic program

As mentioned before, instantiation of the program for arbitrary P may result in a non
systolic solution. Take, for example, the perfect-shuffle permutation. Its inverse is given
by p-l(j) = K(jmod2) + j div 2, for 05,j<2K. For odd n we have p-l(n-l)=(n-l)/2,
so it immediately follows that Gn , i.e. (n-l)/2<n-l, holds for n>1 (n odd). We then
obtain In=2 for all cells n with n odd and larger than one, which means that all these cells
are connected to cell 2. In other words, cell 2 "broadcasts" the same a-value to all these
cells. Evidently, the resulting program is therefore not systolic. (In (3] a systolic program
for perfect-shuffle recognition is derived. In that program the computation is organized
such that only a small number of cells need the same a-value in the same time slot. This
program is outside the scope of the approach presented in this paper.)

In order to guarantee that instantiation of the program from Section 2 results in a
systolic program, that is, a program in which the fan-out of each cell is bounded, P should
satisfy the following restriction:

where # denotes 'number of' and M is a positive constant (independent of N). Using
(13) the above formula reduces to

(16) (#m,n: 05,m<N flFmflO5,n<N flFn : 2(P(m-l) -P(n-l)) = m- n) 5, M

Of course, p-l has to meet a similar requirement. Using (16) it can easily be verified
whether our approach yields a systolic solution for a particular P. For instance, for
palindrome recognition we have P(n-l)=N -n which obviously satisfies (16) with M=l.

5 Summary of results

Typical for the "linear array" solutions to several instances of the general recognition
problem (2, 3, 5, 6, 7] is that at some stage in the design auxiliary channels are introduced
between neighbour cells to carry input values (to the program) indirectly via a chain of
neighbouring cells to the right cell at the right moment. It is shown that for the general
problem this approach forces us to introduce an array of auxiliary channels, resulting in
a program of a size quadratic in N. To obtain a program of linear size, a quite different
approach is taken, in which an (input) value is directly retrieved from the cell that received
that value just before. In this way, cells that are arbitrarily far apart may be connected
and the need for buffering in linked cells is avoided. Depending on P, the array of cells
is extended with a number of extra cells whose sole purpose is to buffer input values that
are to be returned via the direct feedback connections.

To ensure the feasibility of the above approach, we have transformed the problem of
recognizing P-invariant segments into two simpler problems involving P and P-l. An
other problem that had to be solved was the design of a deadlock-free communication
behaviour. We have chosen to let the communication behaviours of odd and even num
bered cells alternate so as to activate all cells "right from the start" -performing dummy

14

actions initially. We have also shown that it is possible to avoid these initial commu
nications altogether, the drawback of this solution being that the cells of the resulting
program have a more complicated initialisation.

Using our general solution, it is rather straightforward to construct a parallel program
for an instance of P. For some concrete cases the resulting program can be transformed
into the more "conventional" programs. This is illustrated by means of the square recog
nition problem. Depending on the permutation at hand, the solution may be non-systolic
because the number of output channels of some cells may be proportional to N. We have
characterized the permutations for which it is guaranteed that a systolic solution results.

In conclusion, the direct retrieval of input values from the cell that received this value
just before is the major design decision made. Furthermore, cells are started simultane
ously by distinguishing odd and even cells, and extra cells are introduced that only buffer
input values that are to be returned via auxiliary channels. The resulting program has
a size linear in N and has constant response time and constant latency. The traditional
approach leads to program with a size quadratic in N. Therefore the applied technique
is considered to be a fruitful extension of the conventional design technique [1, 4J.

Acknowledgements
We would like to thank Prof. F.E.J. Kruseman Aretz for some helpful comments on
the presentation of this paper. The members of the Eindhoven Algorithm Club are also
gratefully acknowledged for a critical reading of an earlier version of this paper.

References

[0] Hoare C.A.R.
Communicating Sequential Processes.
Communications of the ACM 21 (1978) 666-677.

[1] Kaldewaij A., Rem M.
The Derivation of Systolic Computations.
Science of Computer Programming 14 (1990) 229-242.

[2J Katoen J.P., Rem M.
Recagnizing K-rotated Segments.
In: proceedings workshop on Massive Parallelism: Hardware, Programming and
Applications, Amalfi, Italy (1989). (to appear)

[3] Katoen J.P., Schoenmakers L.A.M.
Recagnizing Perfect-Shuffies.
In: J.P. Katoen, Case Studies in Calculational Program Design, Eindhoven Univer
sity of Tecllllology, The Netherlands (19S9) 49-6l.

[4] Rem M.
Trace Theory and Systolic Computations.
In: J.W. de Bakker et al. (eds), PARLE'S7: Parallel Architectures and Languages
Europe, LNCS 258, Springer-Verlag (19S7) 14-33.

[5] Robert Y., Tchuente M.
Reseaux Systoliques pour des Problemes de Mots.
R.A.I.R.O. Informatique theorique/Theoretical Informatics 19 (1985) 107-123.

[6) Snepscheut J.L.A. van de, Swenker J.B.
On the Design of Some Systolic Algorithms.
Journal of the ACM 36 (1989) 826-840.

(7) Zwaan G.
Parallel Computations.
Ph.D. thesis, Eindhoven University of Technology, The Netherlands (1989).

15

In this series appeared :

No. Author(s)

85/01 R.H. Mak

85/02 W.M.C.J. van Overveld

85/03 W.J.M. Lemmens

85/04 T. Vemoeff
H.M.LJ.Scho1s

86/01 R. Koymans

86/02 G.A. Bussing
K.M. van Hee
M. Voorhoeve

86/03 Rob Hoogerwoord

86/04 G.J. Houben
J. Paredaens
K.M. van Hee

86105 J.L.G. Dietz
K.M. van Hee

86/06 Tom Verhoeff

86{07 R. Gerth
L. Shira

86{08 R. Koymans
R.K. Shyamasundar
W.P. de Roever
R. Gerth
S. Arun Kumar

86109 C. Huizing
R. Gerth
W.P. de Roever

86/10 J. Hooman

86/11 W.P. de Roever

86{12 A. Boucher
R. Gerth

86/13 R. Gerth
W.P. de Roever

Title

The formal speCification and derivation of CMOS-circuits.

On aritlunetic operations with M-out-of-N-codes.

Use of a computer for evaluation of flow fihns.

Delay insensitive directed trace structures satisfy the foam
the foam rubber wrapper postulate.

Specifying message passing and real-time systems.

ELISA, A language for formal specification of
information systems.

Some reflections on the implementation of trace structures.

The partition of an information system in several
systems.

A frameworlc for the conceptual modeling of
discrete dynamic systems.

Nondeterminism and divergence created by
concealment in CSP.

On proving communication closedness of distributed
layers.

CompoSitional semantics for real-time distributed
computing (Inf.&Control 1987).

Full abstraction of a real-time denotational
semantics for an OCCAM-like language.

A compositional proof theory for real-time
distributed message passing.

Questions to Robin Milner - A responder's
commentary (IFIP86).

A timed failures model for extended communicating
processes.

Proving monitors revisited: a first step towards
verifying object oriented systems (Fund. Informatica
IX-4).

86/14 R Koymans

87/01 R. Gerth

87/02 Simon J. Klaver
Chris F.M. VeIberne

87/03 G.J. Houben
J .Paredaens

87/04 T. Vemoeff

87/05 RKuiper

87/06 RKoymans

87/07 R.Koymans

87/08 H.M.J.L. Schols

87/09 J. Kalisvaart
L.RA. Kessener
W.J.M. Lemmens
M.L.P. van Lierop
F.J. Peters
H.M.M. van de Wetering

87/10 T. Vemoeff

87111 P.Lemmens

87/12 K.M. van Hee and
A.Lapinski

87/13 J.C.S.P. van der Woude

87/14 J. Hooman

87/15 C. Huizing
R Gerth
W.P. de Roever

87/16 H.M.M. ten Eikelder
J.C.F. Wilmont

87/17 K.M. van Hee
G.-J.Houben
J.L.G. Dietz

Specifying passing systems requires extending
temporal logic.

On !he existence of sound and complete axiomati
zations of !he monitor concept.

Federatieve Databases.

A formal approach to distributed information
systems.

Delay-insensitive codes - An overview.

Enforcing non-determinism via linear time temporal logic
specification

Temporele logica specificatie van message
passing en real-time systemen (in Dutch).

Specifying message passing and real-time
systems wi!h real-time temporal logic.

Tbe maximum number of states after projection.

Language extensions to study structures for raster
grapltics.

Three families of maximally nondeterministic
automata.

Eldorado ins and outs. Specifications of a data base manage
ment toolkit according to !he functional model.

OR and AI approaches to decision suppon systems.

Playing wi!h patterns - searclting for strings.

A compositional proof system for an occam-like
real-time language.

A compositional semantics for statecharts.

Normal forms for a class of formulas.

Modelling of discrete dynamic systems
framework and examples.

87/18 C.W.A.M. van Overveld An integer algorithm for rendering curved
surfaces.

87/19 A.J.Seebregrs Optimalisering van fIle allocatie in
gedistribueerde database systemen.

87{20 G.J. Houben The R2 -Algebra: An extension of an algebra
J. Paredaens for nested relations.

87{2l R. Gerth Fully abstract denotational semantics for concurrent
M. Codisb PROLOG.
Y. Lichtenstein
E. Shapiro

88/01 T. Vemoeff A Parallel Program That Generates the MObius Sequence.

88{02 K.M. van Hee Executable Specification for Information Systems.
G.J. Houben
L.J. Somers
M. V oorhoeve

88/03 T. Vemoeff Settling a Question about Pythagorean Triples.

88{04 G.J. Houben The Nested Relational Algebra: A Tool to Handle
J .Paredaens Structured Information.
D.Tabon

88/05 K.M. van Hee Executable Specifications for Information Systems.
G.J. Houben
L.J. Somers
M. Voorhoeve

88/06 H.M.J.L. Schols Notes on Delay-Insensitive Communication.

88/07 C. Huizing Modelling Statecharts behaviour in a fully abstract
R. Gerth way.
W.P. de Roever

88{08 K.M. van Hee A Formal model for System Specification.
GJ. Houben
L.J. Somers
M. V oorhoeve

88{09 A.T.M. Aerts A Tutorial for Data Modelling.
K.M. van Hee

88{10 J.C. Ebergen A Formal Approach to Designing Delay Insensitive Circuits.

88/l! G.J. Houben A graphical interface formalism: specifying nested
J.Paredaens relational databases.

88/12 A.E. Eiben Abstract theory of planning.

88/13 A. Bijlsma A unified approach to sequences, bags, and trees.

88/14 H.M.M. ten Eikelder Language theory of a lambda-calculus with
R.H. Mak recursive types.

88/15 R. Bos
C. Hemerik

88/16 C.Hemerik
J.P.Katoen

88/17 K.M. van Hee
G.J. Houben
L.J. Somers
M. Voorhoeve

88/18 K.M. van Hee
P.M.P. Rambags

88/19 D.K. Hammer
K.M. van Hee

88/20 K.M. van Hee
L. Somers
M.Voorhoeve

89/1 E.Zs.Lepoeter-Molnar

89/2 R.H. Mak
P.Struik

89/3 H.M.M. Ten Eike1der
C. Hemerik

89/4 J.Zwiers
W.P. de Roever

89/5 Wei Chen
T.Verhoeff
J.T.Udding

89/6 T.Verhoeff

89n P.Struik

89/8 E.H.L.Aarts
A.E.Eiben
K.M. van Hee

89/9 K.M. van Hee
P.M.P. Rambags

89/10 S.Ramesh

89/11 S.Ramesh

89/12 A.T.M.Aerts
K.M. van Hee

An introduction to the category theoretic solution
of recursive domain equations.

Bottom -up tree acceptors.

Executable speCifications for discrete event systems.

Discrete event systems: concepts and basic results.

Fasering en documentatie in software engineering.

EXSPECT, the functional part.

Reconstruction of a 3-D surface from its nonnal vectors.

A systOlic design for dynamic programming.

Some category theoretical properties related to
a model for a polymorphic lambda-calculus.

Compositionality and modularity in process
specification and design: A trace-state based
approach.

Networks of Communicating Processes and their
(De-)Composition.

Characterizations of Delay-Insensitive
Communication Protocols.

A systematic design of a paralell program for
Dirichlet convolution.

A general theory of genetic algorithms.

Discrete event systems: Dynamic versus static
topology.

A new efficient implementation of CSP with output guards.

Algebraic specification and implementation of infinite
processes.

A concise formal framework for data modeling.

OJ

89/13 A.T.M.Aerts A program generator for simulated annealing
K.M. van Hee problems.
M.W.H. Hesen

89/14 H.C.Haesen ELDA, data manipulatie taal.

89/15 J.S.C.P. van der Woude Optimal segmentations.

89/16 A.T.M.Aerts Towards a framewOlx for comparing data models.
K.M. van Hee

89/17 M.J. van Diepen A formal semantics for Z and the link between
K.M. van Hee Z and the relational algebra.

90/1 W.P.de Roever-H.Barringer Formal methods and tools for the development of
C.Courcoubetis-D.Gabbay distributed and real time systems, pp. 17.
R.Gerth-B .Jonsson-A.Pnueli
M.Reed-J.sifakis-J.Vytopil
P.Wolper

90/2 K.M. van Hee Dynamic process creation in high-level Petri nets,
P.M.P. Rambags pp.19.

90/3 R. Gerth Foundations of Compositional Program Refinement
- safety properties - , p. 38.

90/4 A. Peeters Decomposition of delay-insensitive circuits, p. 25.

90/5 I.A. Brzozowski On the delay-sensitivity of gate networks, p. 23.
J.C. Ebergen

90/6 A.J.J.M. Marcelis Typed inference systems : a reference document, p. 17.

90{7 A.J.J .M. Marcelis A logic for one-pass, one-attributed grammars, p. 14.

90/8 M.B. Josephs Receptive Process Theory, p. 16.

90/9 A.T.M. Aerts Combining the functional and the relational model,
P.M.E. De Bra p. 15.
K.M. van Hee

90/10 MJ. van Diepen A formal semantics for Z and the link between Z and the
K.M. van Hee relational algebra, p. 30. (Revised version of CSNotes 89/17).

90/11 P. America A proof system for process creation, p. 84.
F.S. de Boer

90/12 P.America A proof theory for a sequential version of POOL, p. 110.
F.S. de Boer

90/13 K.R. Apt Proving termination of Parallel Programs, p. 7.
F.S. de Boer
E.R. Olderog

90/14 F.S. de Boer A proof system for the language POOL, p. 70.

90/15 F.S. de Boer Compositionality in the temporal logic of concurrent systems,
p. 17.

90/16 F.S. de Boer
C. Palamidessi

90/17 F.S. de Boer
C. Palamidessi

90/18 J.Coenen
E. v .d.Sluis
E.v.d.Velden

90/19 M.M. de Brouwer
P.A.C. Verlcoulen

90/20 M.Rem

90/21 K.M. van Hee
P.A. C. Verlcoulen

91/01 D. Alstein

91/02 R.P. Nederpelt
H.C.M. de Swan

91/03 J.P. Katoen
L.A.M. Schoenmakers

91/04 E. v.d. Sluis
A.F. v.d. Stappen

91/05 D. de Reus

91/06 K.M. van Hee

A fully abstract model for concurrent logic languages, p. 23.

On the asynchronous nature of communication in concurrent
logic languages: a fully abstract model based on sequences,
p.29.

Desigu and implementation aspects of remote procedure calls,
p. 15.

Two Case Studies in ExSpect, p. 24.

The Nature of Delay-Insensitive Computing, p.18.

Data, Process and Behaviour Modelling in an integrated
specification frameworlc, p. 37.

Dynamic Reconfiguration in Distributed Hard Real-Time
Systems, p. 14.

Implication. A survey of the different logical analyses of "if...,
then ... ", p. 26.

Parallel Programs for the Recognition of P-invariant Segments,
p. 16.

Performance Analysis of VLSI Programs, p. 31.

An Implementation Model for GOOD, p. 18.

SPECIFICATIEMETHODEN, een overzicht, p. 20.

	Abstract
	0. Introduction
	1. Recognition of squares
	2. Recognition of P-invariant segments
	2.0 Conventional solution
	2.1 Alternative solution
	2.2 Yet another solution
	3. Comparison
	4. A non-systolic program
	5. Summary of results
	References

