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model stiction, since the friction force is allowed to be
non-zero at zero relative velocity. The dynamics of me-

elements, modeled by set-valued force laws, can be dechanical systems with set-valued friction laws are de-

scribed by differential inclusions. The switching and
set-valued nature of the friction force law is responsi-
ble for the hybrid character of such models. An equi-
librium set of such a differential inclusion corresponds
to a stationary mode for which the friction elements
are sticking. The attractivity properties of the equilib-
rium set are of major importance for the overall dy-
namic behavior of this type of systems. Conditions for
the attractivity of the equilibrium set of linear MDOF

mechanical systems with multiple friction elements are

presented. These results are obtained by application

of a generalization of LaSalle’s principle for differen-
tial inclusions of Filippov-type. Besides passive sys-

tems, also systems with negative viscous damping are

considered. For such systems, only local attractivity of
the equilibrium set can be assured under certain condi-
tions. Moreover, an estimate for the region of attraction
is given for these cases. The results are illustrated by
means of a 2DOF example. Moreover, the value of the
attractivity results in the context of the control of me-
chanical systems with friction is illuminated.

Key words
Discontinuous Systems, Dry Friction, Equilibrium
Sets, Attractivity, Control.

1 Introduction
The presence of dry friction can influence the be-

scribed by differential inclusions. We limit ourselves
to set-valued friction laws which lead to Filippov-type
systems (Filippov, 1988). Filippov systems, describ-
ing systems with friction, can exhibit equilibrium sets,
which correspond to the stiction behaviour of those sys-
tems.

The overall dynamics of mechanical systems is largely
affected by the stability and attractivity properties of
the equilibrium sets. For example, the loss of stability
of the equilibrium set can, in certain applications, cause
limit-cycling. Moreover, the stability and attractivity
properties of the equilibrium set can also seriously af-
fect the performance of control systems. In (Alvarez
et al., 2000; Shevitz and Paden, 1994; Bacciotti and
Ceragioli, 1999), stability and attractivity propertiefs o
(sets of) equilibria in differential inclusions are stud-
ied. More specifically, in (Alvarezt al., 2000; She-
vitz and Paden, 1994) the attractivity of the equilibrium
set of a passive, one-degree-of-freedom friction oscil-
lator with one switching boundary (i.e. one dry fric-
tion element) is discussed. Moreover, in (Shevitz and
Paden, 1994; Bacciotti and Ceragioli, 1999) the Lya-
punov stability of an equilibrium point in the equilib-
rium set is shown. However, most papers are limited
to either one-degree-of-freedom systems or to systems
exhibiting only one switching boundary.

We will provide conditions under which the equilib-
rium set is attractive for multi-degree-of-freedom me-
chanical systems with an arbitrary number of Coulomb

haviour and performance of mechanical systems asfriction elements using Lyapunov-type stability analy-

it can induce several phenomena, such as friction- sis and a generalisation of LaSalle’s invariance prin-
induced limit-cycling, damping of vibrations and stic- ciple for non-smooth systems. Moreover, passive as
tion. Dry friction in mechanical systems is often mod- well as non-passive systems will be considered. The
elled using set-valued constitutive models (Glocker, non-passive systems that will be studied are linear me-
2001), such as the set-valued Coulomb’s law. Set- chanical systems with a non-positive definite damp-
valued friction models have the advantage to properly ing matrix with additional dry friction elements. The



non-positive-definiteness of the damping matrix of lin- with
earized systems can be caused by fluid, aeroelastic,
control and gyroscopical forces, which can cause in-
stabilities. It will be demonstrated in this paper that the
presence of dry friction in such an unstable linear sys-
tem can (conditionally) ensure the local attractivity of Herein, Ay, and p;, @ = 1,...,m, are the normal
the equilibrium set of the resulting system with dry fric- contact force and the friction coefficient in transla-
tion. Moreover, an estimate of the region of attraction tional joint i. Moreover, W, = g IS a matrix
for the equilibrium set will be given. Arigid multibody  reflecting the generalized force directions of the fric-
approach is used for the description of mechanical sys-tion forces. Hereing, is a column of relative slid-
tems with friction, which allows for a natural physical ing velocities in the translational joints. Equation (1)
interpretation of the conditions for attractivity. Fingll ~ forms, together with a set-valued friction law (2), a
a preliminary study of the application of these results differential inclusion. Differential inclusions of this
in a control context is provided. It should be noted that type are called Filippov systems which obey Filippov’s
the results in this paper build on the work presented solution concept (Filippov’s convex method). Con-
in (Van de Wouw and Leine, 2004). sequently, the existence of solutions of system (1) is
In section 2, the equations of motion for linear me- guaranteed. Moreover, due to the fact that> 0,
chanical systems with frictional elements are formu- @ = 1,...,m, which excludes the possibility of re-
lated and the equilibrium set is defined. In section 3, the pulsive sliding modes along the switching boundaries,
attractivity properties of the equilibrium set are stud- also uniqueness of solutions in forward time is guaran-
ied by means of a generalisation of LaSalle’s invariance teed (Leine and Nijmeijer, 2004).
principle. In section 4, an example is studied in order Due to the set-valued nature of the friction law (2), the
to illustrate the theoretical results and to investigage th  system exhibits an equilibrium set. Since we assume
correspondence between the estimated and actual rethatg; = W2, @ = 0impliesg, = 0. This means
gion of attraction. Moreover, in section 5 we illustrate that every equilibrium implies sticking in all contact
the way in which controller design (static state feed- points and obeys the equilibrium inclusion:
back) can be used to induce attractivity of equilibrium

])-

A = diag ([ An, | - A,

_sets i_n mechani_cal systems _vvith friction_ and the way Kq + W1ASign0) > 0. ©)
in which the region of attraction can be influenced by
control parameter tuning. Finally, a discussion of the o ) )
obtained results and concluding remarks are given in 1he equilibrium set is therefore given by
section 6.
&= ,q) ER™| (g =0)A
{(¢,9) | (g=0) @

2 Modeling of Mechanical Systemswith Coulomb q¢c-K WTAS|gn(0)}

Friction

In this section, we will formulate the equations of mo- and is positively invariant due to the uniqueness of the
tion for linear mechanical systems with frictional solutions in forward time.
translational joints. These translational joints restric
the mption of the syst_em toa manifold dgtermined by 3 Attractivity Analysis of the Equilibrium Set
the bllate'rql holonomlc constralnt’quaftlons lmposed Let us now study the attractivity properties of this
by these joints (sliders). Coulomb’s friction law is as-  gqjilibrium set. Hereto, we will use LaSalle’s princi-
sumed to hold in the tangential direction of the mani- ple (Khalil, 1996), but applied to Filippov systems with

fold. _ _ uniqueness of solutions in forward time (Van de Wouw
Let us formulate the equations of motions for such gnq Leine, 2004).
systems by: Let us consider the stability of linear systems with

friction and positive definite matricg®l, K and a non-
positive damping matrixC. Note that this implies that
the equilibrium point of the linear system without fric-
tion is either stable or unstable (not asymptotically sta-

Mqg+Cq+ Kq—WrAr =0, 1)

in which q is a column of independent generalized co-
ordinates,M, C and K represent the mass-matrix,

ble). In the following theorem we state the conditions
under which the equilibrium set of the system with

damping-matrix and stiffness-matrix, respectively, and friction is locally attractive. Before stating the results

A7 is a column of friction forces in the translational
joints. These friction forces obey the following set-
valued force law:

Ar € —ASign(gy), @

we introduce the following definitions. In the attrac-
tivity result, we consider the following energy-based,
positive-definite functiort/:

1, .1
=-¢"Mg+-q"Kq.

v 2 2
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Furthermore, we define an open Zgtoy

Z, ={(a,q) | V(q,q) < p} (6)
and a numbep* by
p'= min p,
with @)
5 1
Pi= 5 o7 7 o195’
2X7 llef . S

whereS is the square root aP (P = ST S) andP is
given by

_[UfkU. o0

P 0o U'mu,.|"

(8)

Moreover, in (7),n, is the number of eigenvalues of
C which lie in the closed left-half complex plane and
A; are the corresponding eigenvalues @f More-
over, in (7), (8),U . is the matrix containing the eigen-
columns ofC' and, finally,3 := 1/« is chosen such
that

g

> lelnl < apTWiUM| V.

i=1

9)

Herein,e; is a unit-column with a non-zero element on
thei-th positionang = {A;;}, fori =1,...,m. The
following result will state the conditions under which
such constan® exists.

Theorem 1
Consider system (1) with friction law (2). If the follow-
ing conditions are satisfied:

1. the matriceVl, K are positive definite and the
matrixC' is symmetric,

2. define byx;, i = 1,...,ny, the eigenvalues of
for which \; < 0 and the corresponding eigen-
columnsU ., satisfyU,., € spaiWr} fori =
1,...,ng

3. £ECI,,

then the equilibrium set (4) is locally attractive.

W 7.4, the time-derivative of/ is

V=¢"(-Cqg—Kq+WrAr)+q Kq
=—q' Cq— grASigngy)
=—4"Cq—-p"lgs|
=—¢"Cq—p" W14,

(10)

where the column|g,| is defined by |g,| =
{lg7,1}, fori=1,...,m. Equation (10) implies that
V is a continuous single-valued function (@&ndg).

It holds thatp > 0 and that ifg = 0 theng, = 0.

We now apply a spectral decomposition 6f =
UCQCUI, whereU .. is an orthonormal matrix con-
taining all eigencolumns of” and (2. is the diagonal
matrix containing all eigenvalues @I, which are real.
Note that alsd/ . is a real matrix. Moreover, we intro-
duce coordinateg such thaiyg = U .n. Consequently,
V satisfies

V=-q'URU;q-p"Wrq| 1)
= —0"Q) - p" |W1Ua|.

The matrixC' hasn, eigenvalues in the closed left-

half complex plane; all other eigenvalues lie in the open

right-half complex plane. Consequently, obeys the
inequality

V<Y Nl —pTWiUeil| Va,  (12)
=1

where we assumed that the eigenvalues (and eigen-
columns) ofC are ordered in such a manner that

i = 1,...,n4, correspond to the eigenvalues ©f

in the closed left-half complex plane. Assume that
Ja > 0 such that (9) is satisfied. Assuming that such
anca can be found, (12) results in

Ng Ng

V<= =8 Ll <0,
i=1 1=1

(13)
Ve 1’7|£§7‘7i§—£ for \; <0,
i i
VvV, € Rfor \; =0,
fori =1,...,n, with 3 = L ands; = ef'n. Letus

We present the proof of this theorem here since it now investigate whed o > 0 such that (9) is satisfied.
unifies the results presented in (Van de Wouw and Note, hereto, that if

Leine, 2004) and it provides an estimate for the region

of attraction of the equilibrium set, which will be used
in sections 4 and 5.

Proof. We consider the positive definite functidhas
in (5). Using friction law (2) and the fact thgt, =

e; € span{UCTWT}, Vi e[l,...,ng,

then 3~ such thate] = "W U,. It therefore
holds that|efn| = |¥"WiU.n| and |e]n| <



IvT||WTU.f|. Choose the smallest; such that
v < a;pT, where the sign< has to be under-
stood component-wise. Then it holds thaf'n| <
apTWiU.m| Vn, Vi€ [l,...,n,]. Note that
ain (9) can be taken as = _?, &;. Finally, one
should realize that if and only if

U.e; € spa{Wr}, (14)

or, in other words, if the-th columnU ., of U, sat-
isfiesU,., € spanr{W} (note in this respect that
U. is real and symmetric), then it holds that €
span{UfWT}. Therefore, a sufficient condition for

the validity of (13) can be given by

U, espa{W}, Viell,...,n,. (15)

Now, we apply LaSalle’s Invariance Principle. Let us,
hereto, define a s€tby

(16)
where(Uch) _denotes the-th element of the column

U. . Moreover, let us use the definition of a &t
as in (6) and choose the maximal constaisuch that
1,cc:

max

. 17
{p:I,,CC}p ( )

Pmax =

Let us now prove thgimax = p*, with p* defined in (7).
Note thatV can be written a3/ = Ja™ Pz, with
z" = [nT /"] and P defined in (8). The valugmaxis
the lowest value op for which the sefZ,, touches one
of the hyperplanes aiC. We definep;, i = 1,...,ng,
to be that value op for which the sefZ, touches the
hyperplandn;| = —/\ﬁ Accordingly, pmax is defined
by

(18)

Equating the hyperplang);| =
the relation

—{ with 0Z,,, gives

|73, -5
A b

i

(19)

sup
sllzlp=pi

where||z||% = =T Px. A decomposition of?

S=U U,
(20)

pP=s's, P=U,QU,,

where S is the square root oP and a transformation
y = Sz gives the relationship

- p
sup |65+i5 1y| =T (21)
lyll=v2p: g
with |ly|| = ||lz||p and?; = zn4; = e ;x. With a
transformatiorz = y/+/2p;, (21) transforms to
T -1 _ ﬂ
vV 2pi HSI‘Tp e, S 2| = - (22)
z||=1 7

Using the definition of the norm of a matrid as
|A|| = supj =1 | Az||, (22) yields

_ B
V2piller ;87 = - (23)

7

Consequentlyp; is given by (7). This concludes the
proof thatpmax = p*.

Moreover, we define a se§ C I,- by § =
{(g.q) € Z,~ - ¢ = 0}. Furthermore, the largest in-
variant set irS is the equilibrium sef, since according
to the third condition in the theorethC Z,-. Note that
V = 0ifand only if (¢,q) € S andV < 0 otherwise.
Application of LaSalle’s invariance principle concludes
the proof of the local attractivity of under the condi-
tions stated in the theorem. |

At this point several remarks should be made:

1. It should be noted that the proof of Theorem 1
provides us with a conservative estimate of the re-
gion of attraction4 of the locally attractive equi-
librium set€. The estimatés can be formulated in
terms of the generalized displacements and veloc-
ities: B = 7,-, wherep* satisfies (7);

2. The proof of Theorem 1 also shows that bounded-
ness of solutions (starting ifl) is ensured and that
the equilibriumpoint (g, g) = (0, 0) is Lyapunov
stable.

3. Itcan be shown that f"ATW LK " TW A1 <
2p*, with 1 am x 1-column with ones, thed C
Z,-. In that case the entire equilibrium sgtis
locally attractive.

4. An important consequence of Theorem 1 is that
when the damping-matriC' is positive definite,
global attractivity of the equilibrium set is assured.
Note, hereto, that in the proof of Theorem 1, (15)
is automatically satisfied ane can be taken arbi-
trarily large in that case.

4 lllustrating example

In this section, we will illustrate the results of the pre-
vious section by means of an example concerning a
2DOF mass-spring-damper system, see Figure 1. The
equation of motion of this system can be written in the
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Figure 1. 2DOF mass-spring-damper system with Coulomb frictio

Figure 2. Cross-section of the region of attractidrwith the plane defined by; = 0 andio = 0.

form (1), withq™
tion forcesAr given by the Coulomb friction law (2).
Herein the matriced, C, K, W and A are given
by

. -ml 0 _|catc2 —c2
M__O m2:|7c_|:—02 61+CQ:|’

. -k1+k2 —ko
E=1n k1+k2]’ (24)

_[10 _fmmig 0
W%‘_M}’A‘[ 0 mmw}

with mi, Mg, kl, ko >0 andul,m > 0. Moreover,
the tangential velocityy, in the frictional contacts is
given by g, = [i1 a‘cg]T. Let us first compute the
spectral decomposition of the damping-matiX, =
U;"Q.U_ ", with (for non-singulaiC):

1-1
|:1 1:|) QC

1

V2

0

_|a
Ue N |:0 c] + 202:| - (29)

[21 23] and the generalized fric-

The equilibrium set, as defined by (4), is given by

&= {($1,w2,i'1,x'2) | 1 =0A1To=0A
(k1 + ko)pimag + k2M2m29/\

<
o < 12 + 2k ks
2] < (k1 + k2)pamag + kapiimag
- k‘% + 2k1 ko '

(26)

Let us now consider two different cases for the damp-
ing parameters; andcs:

Firstly, we consider the case that; >0 and
ca > —c1/2. Note thatC > Oifand only if¢; > 0
andc, > —c; /2. Consequently, the global attractivity
of the equilibrium set is assured. It should be noted
that this is also the case when one or both of the friction
coefficients; andgus vanish.

Secondly, we consider the case thgt> 0 and
co < —c1/2. Clearly, the damping matrix is not pos-
itive definite in this case. As a consequence, the equi-



librium point of the system without friction is unsta- 5 Controlling Attractivity

ble. Still the equilibrium set of the system with fric-  So far we have concentrated on the asymptotic proper-
tion can be locally attractive. Therefore, Theorem 1 ties of mechanical systems with friction. In particular,
can be used to investigate the attractivity properties of we presented results on the attractivity of equilibrium
(a subset of) the equilibrium set. For the friction sit- sets in such systems. Let us now present a prelimi-
uation depicted in Figure 1, condition (15) is satisfied nary study of the application of these results in a con-
if u1 > 0anduy > 0. Namely, W spans the two-  trol context. Hereto, we consider a class of controlled
dimensional space and, consequently, the eigencolummmechanical systems with Coulomb friction:

of the damping matrix corresponding to the unstable

eigenvalue; + 2c, namely[—1 1]T, lies in the space Mg+Cq+Kq— Wy = Su,  (28)
spanned by the columns & 7.

whereM = M™ > 0 andw is a column with con-

Since the attractivity is only local, it is desirable to trol inputs andS is a matrix concerning the general-
provide an estimatds of the region of attractiond ized force directions in which the actuators can influ-
of (a subset of) the equilibrium set. Here, we present ence the system dynamics. This open-loop system may
a comparison between the actual region of attraction not exhibit positive definite damping- and stiffness ma-
(obtained by numerical simulation) and the estinate trices; think of linearizations of systems (systems with-
for the following parameter setin; = mo = 1Kg, out Coulomb friction) of which the equilibrium under-
k1 = ks =1N/m,c; = 0.5Ns/m,c2 = —0.375Ns/m,  goes a Hopf or pitchfork bifurcation. Consequently,
pi1 = pz = 0.1 andg = 10m/s’. An estimate for the  such systems do not satisfy the conditions of Theo-
region of attraction3 can be provided analytically as rem 1. Now, we propose a PD-type of feedback law

B': T,-, with p* according to (7), which yields for 4 = —F,q — F»q in order to ensure that the closed-
this example: loop dynamics, described by
MG+ Cuq+ Kuq— Wrdr =0, (29)
1 mamony? MiN(j1m1 g, fam withC, =C + SFy;andK ., = K + SF, satisfies
pr = gﬁ, wherey = — (Mi 41_92(/.0 29) the conditions of Theorem 1. Consequently, the condi-
1 2 -1 -2

27) tions on the control design can be stated as follows:

The numerical simulations are performed using 1. (K + SF,)= (K + SF;)" >0,
an event-driven integration method as described 2 7. e spaqfW},

in (Pfeiffer and Glocker, 1996). The event-driven 3. ¢, is symmetric,

integration method is a hybrid integration technique _ B _
that uses a standard ODE solver for the integration WNeréUe,, i = 1,. .., 7, represent the eigencolumns
of smooth phases of the system dynamics and a LcPOf Ce corresponding to the remainirg, closed left-
(Linear Complementarity Problem) formulation to de- Nalf plane eigenvalues af’;. The second condition
termine the next hybrid mode at the switching bound- ¢@n be formulated as followsiF; such that the pair
aries. For these parameter settin§s; int(Z,-) and [__(C_+ SF??’ WT]_ is stabilizable. The_z Iatt_gr condi-
the local attractivity of the entire equilibrium sétis tion, in turn, is equivalent to the stabilizability of the

ensured. In Figure 2, we show a cross-sectiodafith ~ Pair [=C, [Wr, S]|. This stabilizability condition is
the planei;, — 0 and:i, — 0, denoted byd, which was intuitive since it expresses the fact that one should be

obtained numerically. Hereto, a grid of initial condi- able to counteract instabilities due to negative viscous
tions in the plane:; — i» — 0 was defined, for which damping either by dry friction effects or by means of

the solutions were obtained by numerically integrating feedback in order to _attaln atFr_achty. Moreover, we
the system over a given time sp@n Subsequently, a can reformulate the f_|rst condition using the following
check was performed to inspect whether the state of the'€SUlt from (Yakubovicfet al., 2004):

system at time&l” was in the equilibrium sef. Initial Theorem 2

conditions corresponding to attractive solutions are de- 1o following two statements are equivalent:

picted with a light color (setd) and initial conditions

corresponding to non-attractive solutions are depicted 1. 3P = PT >0

with a dark grey color (sebP). Moreover,£ and5 are 2. 3A, with A Hurwitz s.t PA + A" P < 0.

also shown in the figure, where thindicates that we
are referring to cross-sections of the sets. It should be
noted that C B. As expected the sét is a conserva-
tive estimate for the region of attractiof In (Van de 1. 3F; st.(K + SF;) = (K + SF,)T > 0,
Wouw and Leine, 2004), more examples are discussed 2. 3A, Y with A Hurwitz s.t.

in which the crucial condition for local attractivity (15) KA+ ATK" +8Y +Y'8T < owithY =
is not satisfied. FA.

Now we use this result to reformulate condition 1; the
following two statements are equivalent:
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Figure 3. Controlled 2DOF mass-spring-damper system with
Coulomb friction.

The LMI in the previous statement can be used to
construct the feedback gain-mati, through F';
Y A~'. In such a way the equilibrium set can be ren-
dered attractive and the following example will illus-
trate that the region of attraction can also be influenced
by tuning the control parameters.

Let us now consider the 2DOF mass-spring-damper
system as depicted in figure 3, in which massgsand
mso can be controlled by actuatotg andu., respec-
tively. Here PD-control of the two masses will be con-
Sidered:u1 = —p1T1 — dlil, U = —pPaly — doTo.
The control problem to be addressed can be formu-
lated as follows: how can we influence the attractiv-
ity properties (and the corresponding region of attrac-
tion) of the equilibrium set by tuning of the control
parameter®,, d;, po andd,? For the sake of sim-
plicity we limit ourselves to the case that the control
laws for the two actuators are identical, iz®. = p;
andd, = d;. Note that the condition o ., stated
above is guaranteed jf, > 0. Moreover, the condi-
tion U., € spaf{W} is satisfied for all values of
dy. However,p; andd; should be chosen such that
condition 3 in Theorem 1 is satisfied. The influence
of the control design on the attractivity of the equilib-
rium set will be investigated along two routes: firstly,
we will investigate the influence of the gaihh of the
derivative action and, secondly, we will investigate the
influence of the proportional actign. In accordance
with (27) the region of attraction for the controlled sys-
tem is given byB = Z,-, with p* given by (27) with
c¢1 = dy. This clearly indicates that the region of at-
traction can be effectively influenced by the control
design. In figure 4, the effect of the derivative gain
on the region of attraction is depicted. Once more,
a similar cross-section of state-space as in figure 2 is
considered. Herein, the following system parameter
values are usedm; = mo = 1kg, ko = 1N/m,
co = —0.375Ns/m, 1 = pp = 0.1, g = 10m/s.
Moreover, the proportional gain j5 = 1 N/m. Fig-

ure 4 clearly displays the increase of the estimated re-
gion of attraction for increasing derivative control gain.
As this gain approaches the valde = 0.75, (i.e.
di = —2c¢p) the estimated region increases progres-
sively until atd; = —2c¢y the attractivity becomes
global. Moreover, when the derivative gain drops be-
low a certain level the attractivity of the equilibrium set

as a whole can not be guaranteed anymore.

The influence of the proportional gain is of an entirely
different nature. Namely, (26) (with, substituted for
k1) expresses the fact that the equilibrium set decreases
whenp; increases. However, the estimated region of
attraction also decreases. In this respect, it should be
noted that for increasing; the setC, defined in (16),
and consequently* remain unchanged; however, since
the estimated region of attraction is now given by

1 . .
B={x cR?| i(mlx% + mods

+(p1 + ko) (2F + 23) — 2komiz0) < p*},
(30)

the size o3 decreases for increasing proportional gain.

Obviously, a similar analysis can be performed for the
case that different PD-control designs are used for the
actuators:; andus.

6 Conclusions

Conditions for the (local) attractivity of equilibrium
sets of mechanical systems with friction are derived.
The systems are allowed to have multiple degrees-of-
freedom and multiple switching boundaries (friction el-
ements). It is shown that the equilibrium geof a lin-
ear mechanical system, which without friction exhibits
a stable equilibrium poinE, will always be attractive
when Coulomb friction elements are added. More-
over, it has been shown that even if the system with-
out friction has an unstable equilibrium poift, then
the equilibrium setf of the system with friction can
under certain conditions be locally attractive and the
equilibrium pointE C £ is stable. The crucial condi-
tion can be interpreted as follows: the space spanned
by the eigendirections of the damping matrix, related
to negative eigenvalues, lies in the space spanned by
the generalized force directions of the dry friction ele-
ments.

Lyapunov stability of the equilibrium set of non-
passive systems is not addressed, however, the com-
bination of the attractivity property of the equilibrium
set and the boundedness of solutions withican be
a valuable characteristic when the equilibrium set is a
desired steady state of the system. Moreover, an esti-
mate of the region of attraction of the equilibrium setis
provided.

Finally, the attractivity results are applied to design a
linear state-feedback controller to guarantee attractiv-
ity of an equilibrium set of a controlled system with
friction. Moreover, it is shown that the region of attrac-
tion can effectively be shaped by tuning of the control
parameters.
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