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Abstract
The dynamics of mechanical systems with dry friction

elements, modeled by set-valued force laws, can be de-
scribed by differential inclusions. The switching and
set-valued nature of the friction force law is responsi-
ble for the hybrid character of such models. An equi-
librium set of such a differential inclusion corresponds
to a stationary mode for which the friction elements
are sticking. The attractivity properties of the equilib-
rium set are of major importance for the overall dy-
namic behavior of this type of systems. Conditions for
the attractivity of the equilibrium set of linear MDOF
mechanical systems with multiple friction elements are
presented. These results are obtained by application
of a generalization of LaSalle’s principle for differen-
tial inclusions of Filippov-type. Besides passive sys-
tems, also systems with negative viscous damping are
considered. For such systems, only local attractivity of
the equilibrium set can be assured under certain condi-
tions. Moreover, an estimate for the region of attraction
is given for these cases. The results are illustrated by
means of a 2DOF example. Moreover, the value of the
attractivity results in the context of the control of me-
chanical systems with friction is illuminated.
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1 Introduction
The presence of dry friction can influence the be-

haviour and performance of mechanical systems as
it can induce several phenomena, such as friction-
induced limit-cycling, damping of vibrations and stic-
tion. Dry friction in mechanical systems is often mod-
elled using set-valued constitutive models (Glocker,
2001), such as the set-valued Coulomb’s law. Set-
valued friction models have the advantage to properly

model stiction, since the friction force is allowed to be
non-zero at zero relative velocity. The dynamics of me-
chanical systems with set-valued friction laws are de-
scribed by differential inclusions. We limit ourselves
to set-valued friction laws which lead to Filippov-type
systems (Filippov, 1988). Filippov systems, describ-
ing systems with friction, can exhibit equilibrium sets,
which correspond to the stiction behaviour of those sys-
tems.

The overall dynamics of mechanical systems is largely
affected by the stability and attractivity properties of
the equilibrium sets. For example, the loss of stability
of the equilibrium set can, in certain applications, cause
limit-cycling. Moreover, the stability and attractivity
properties of the equilibrium set can also seriously af-
fect the performance of control systems. In (Alvarez
et al., 2000; Shevitz and Paden, 1994; Bacciotti and
Ceragioli, 1999), stability and attractivity properties of
(sets of) equilibria in differential inclusions are stud-
ied. More specifically, in (Alvarezet al., 2000; She-
vitz and Paden, 1994) the attractivity of the equilibrium
set of a passive, one-degree-of-freedom friction oscil-
lator with one switching boundary (i.e. one dry fric-
tion element) is discussed. Moreover, in (Shevitz and
Paden, 1994; Bacciotti and Ceragioli, 1999) the Lya-
punov stability of an equilibrium point in the equilib-
rium set is shown. However, most papers are limited
to either one-degree-of-freedom systems or to systems
exhibiting only one switching boundary.

We will provide conditions under which the equilib-
rium set is attractive for multi-degree-of-freedom me-
chanical systems with an arbitrary number of Coulomb
friction elements using Lyapunov-type stability analy-
sis and a generalisation of LaSalle’s invariance prin-
ciple for non-smooth systems. Moreover, passive as
well as non-passive systems will be considered. The
non-passive systems that will be studied are linear me-
chanical systems with a non-positive definite damp-
ing matrix with additional dry friction elements. The



non-positive-definiteness of the damping matrix of lin-
earized systems can be caused by fluid, aeroelastic,
control and gyroscopical forces, which can cause in-
stabilities. It will be demonstrated in this paper that the
presence of dry friction in such an unstable linear sys-
tem can (conditionally) ensure the local attractivity of
the equilibrium set of the resulting system with dry fric-
tion. Moreover, an estimate of the region of attraction
for the equilibrium set will be given. A rigid multibody
approach is used for the description of mechanical sys-
tems with friction, which allows for a natural physical
interpretation of the conditions for attractivity. Finally,
a preliminary study of the application of these results
in a control context is provided. It should be noted that
the results in this paper build on the work presented
in (Van de Wouw and Leine, 2004).
In section 2, the equations of motion for linear me-

chanical systems with frictional elements are formu-
lated and the equilibrium set is defined. In section 3, the
attractivity properties of the equilibrium set are stud-
ied by means of a generalisation of LaSalle’s invariance
principle. In section 4, an example is studied in order
to illustrate the theoretical results and to investigate the
correspondence between the estimated and actual re-
gion of attraction. Moreover, in section 5 we illustrate
the way in which controller design (static state feed-
back) can be used to induce attractivity of equilibrium
sets in mechanical systems with friction and the way
in which the region of attraction can be influenced by
control parameter tuning. Finally, a discussion of the
obtained results and concluding remarks are given in
section 6.

2 Modeling of Mechanical Systems with Coulomb
Friction

In this section, we will formulate the equations of mo-
tion for linear mechanical systems withm frictional
translational joints. These translational joints restrict
the motion of the system to a manifold determined by
the bilateral holonomic constraint equations imposed
by these joints (sliders). Coulomb’s friction law is as-
sumed to hold in the tangential direction of the mani-
fold.
Let us formulate the equations of motions for such

systems by:

Mq̈ + Cq̇ + Kq − W T λT = 0, (1)

in which q is a column of independent generalized co-
ordinates,M , C and K represent the mass-matrix,
damping-matrix and stiffness-matrix, respectively, and
λT is a column of friction forces in the translational
joints. These friction forces obey the following set-
valued force law:

λT ∈ −ΛSign(ġT ), (2)

with

Λ = diag
([

µ1|λN1
| . . . µm|λNm

|
])

.

Herein, λNi
and µi, i = 1, . . . ,m, are the normal

contact force and the friction coefficient in transla-
tional joint i. Moreover, W T

T =
∂ġ

T

∂q̇ is a matrix

reflecting the generalized force directions of the fric-
tion forces. Herein,̇gT is a column of relative slid-
ing velocities in the translational joints. Equation (1)
forms, together with a set-valued friction law (2), a
differential inclusion. Differential inclusions of this
type are called Filippov systems which obey Filippov’s
solution concept (Filippov’s convex method). Con-
sequently, the existence of solutions of system (1) is
guaranteed. Moreover, due to the fact thatµi ≥ 0,
i = 1, . . . ,m, which excludes the possibility of re-
pulsive sliding modes along the switching boundaries,
also uniqueness of solutions in forward time is guaran-
teed (Leine and Nijmeijer, 2004).
Due to the set-valued nature of the friction law (2), the

system exhibits an equilibrium set. Since we assume
that ġT = W T

T q̇, q̇ = 0 implies ġT = 0. This means
that every equilibrium implies sticking in all contact
points and obeys the equilibrium inclusion:

Kq + W T ΛSign(0) ∋ 0. (3)

The equilibrium set is therefore given by

E =
{

(q, q̇) ∈ R
2n| (q̇ = 0)∧

q ∈ −K−1W T ΛSign(0)
} (4)

and is positively invariant due to the uniqueness of the
solutions in forward time.

3 Attractivity Analysis of the Equilibrium Set
Let us now study the attractivity properties of this

equilibrium setE . Hereto, we will use LaSalle’s princi-
ple (Khalil, 1996), but applied to Filippov systems with
uniqueness of solutions in forward time (Van de Wouw
and Leine, 2004).
Let us consider the stability of linear systems with

friction and positive definite matricesM , K and a non-
positive damping matrixC. Note that this implies that
the equilibrium point of the linear system without fric-
tion is either stable or unstable (not asymptotically sta-
ble). In the following theorem we state the conditions
under which the equilibrium set of the system with
friction is locally attractive. Before stating the results
we introduce the following definitions. In the attrac-
tivity result, we consider the following energy-based,
positive-definite functionV :

V =
1

2
q̇TMq̇ +

1

2
qTKq. (5)



Furthermore, we define an open setIρ by

Iρ = {(q, q̇) | V (q, q̇) < ρ} (6)

and a numberρ∗ by

ρ∗ = min
i=1,...,nq

ρi,

with

ρi =
β2

2λ2
i

1

‖eT
n+iS

−1‖2
,

(7)

whereS is the square root ofP (P = ST S) andP is
given by

P =

[

UT
c KU c 0

0 UT
c MU c

]

. (8)

Moreover, in (7),nq is the number of eigenvalues of
C which lie in the closed left-half complex plane and
λi are the corresponding eigenvalues ofC. More-
over, in (7), (8),U c is the matrix containing the eigen-
columns ofC and, finally,β := 1/α is chosen such
that

nq
∑

i=1

|eT
i η̇| ≤ αpT|W T

T U cη̇| ∀ η̇. (9)

Herein,ei is a unit-column with a non-zero element on
thei-th position andp = {Λii}, for i = 1, . . . ,m. The
following result will state the conditions under which
such constantβ exists.

Theorem 1
Consider system (1) with friction law (2). If the follow-
ing conditions are satisfied:

1. the matricesM , K are positive definite and the
matrixC is symmetric,

2. define byλi, i = 1, . . . , nq, the eigenvalues ofC
for which λi ≤ 0 and the corresponding eigen-
columnsU ci

satisfyU ci
∈ span{W T } for i =

1, . . . , nq,
3. E ⊂ Iρ∗ ,

then the equilibrium set (4) is locally attractive.

We present the proof of this theorem here since it
unifies the results presented in (Van de Wouw and
Leine, 2004) and it provides an estimate for the region
of attraction of the equilibrium set, which will be used
in sections 4 and 5.

Proof. We consider the positive definite functionV as
in (5). Using friction law (2) and the fact thatġT =

W T
T q̇, the time-derivative ofV is

V̇ = q̇T (−Cq̇ − Kq + W T λT ) + q̇TKq

= −q̇TCq̇ − ġT
T ΛSign(ġT )

= −q̇TCq̇ − pT|ġT |
= −q̇TCq̇ − pT|W T

T q̇|,

(10)

where the column|ġT | is defined by |ġT | =
{|ġTi

|} , for i = 1, . . . ,m. Equation (10) implies that
V̇ is a continuous single-valued function (ofq andq̇).
It holds thatp ≥ 0 and that ifq̇ = 0 thenġT = 0.
We now apply a spectral decomposition ofC =

U cΩcU
T
c , whereU c is an orthonormal matrix con-

taining all eigencolumns ofC andΩc is the diagonal
matrix containing all eigenvalues ofC, which are real.
Note that alsoU c is a real matrix. Moreover, we intro-
duce coordinatesη such thatq = U cη. Consequently,
V̇ satisfies

V̇ = −q̇TU cΩcU
T
c q̇ − pT|W T

T q̇|
= −η̇T

Ωcη̇ − pT|W T
T U cη̇|.

(11)

The matrixC hasnq eigenvalues in the closed left-
half complex plane; all other eigenvalues lie in the open
right-half complex plane. Consequently,V̇ obeys the
inequality

V̇ ≤ −
nq
∑

i=1

λiη̇
2
i − pT|W T

T U cη̇| ∀ η̇, (12)

where we assumed that the eigenvalues (and eigen-
columns) ofC are ordered in such a manner thatλi,
i = 1, . . . , nq, correspond to the eigenvalues ofC

in the closed left-half complex plane. Assume that
∃α > 0 such that (9) is satisfied. Assuming that such
anα can be found, (12) results in

V̇ ≤−
nq
∑

i=1

λiη̇
2
i − β

nq
∑

i=1

|η̇i| ≤ 0,

∀ η̇ ∈
{

η̇ | β

λi

≤ η̇i ≤ − β

λi

}

for λi < 0,

∀ η̇i ∈ R for λi = 0,

(13)

for i = 1, . . . , nq with β = 1

α
and η̇i = eT

i η̇. Let us
now investigate when∃α > 0 such that (9) is satisfied.
Note, hereto, that if

ei ∈ span
{

UT
c W T

}

, ∀ i ∈ [1, . . . , nq] ,

then ∃γ such thateT
i = γTW T

T U c. It therefore
holds that |eT

i η̇| = |γTW T
T U cη̇| and |eT

i η̇| ≤



|γT||W T
T U cη̇|. Choose the smallest̃αi such that

|γT| ≤ α̃ip
T, where the sign≤ has to be under-

stood component-wise. Then it holds that|eT
i η̇| ≤

α̃ip
T|W T

T U cη̇| ∀ η̇, ∀ i ∈ [1, . . . , nq]. Note that
α in (9) can be taken asα =

∑nq

i=1
α̃i. Finally, one

should realize that if and only if

U cei ∈ span{W T } , (14)

or, in other words, if thei-th columnU ci
of U c sat-

isfies U ci
∈ span{W T } (note in this respect that

U c is real and symmetric), then it holds thatei ∈
span

{

UT
c W T

}

. Therefore, a sufficient condition for

the validity of (13) can be given by

U ci
∈ span{W T } , ∀ i ∈ [1, . . . , nq] . (15)

Now, we apply LaSalle’s Invariance Principle. Let us,
hereto, define a setC by

C =

{

(q, q̇) | |
(

UT
c q̇

)

i
| ≤ − β

λi

, i = 1, . . . , nq

}

,

(16)

where
(

UT
c q̇

)

i
denotes thei-th element of the column

UT
c q̇. Moreover, let us use the definition of a setIρ

as in (6) and choose the maximal constantρ such that
Iρ ⊂ C:

ρmax = max
{ρ:Iρ⊂C}

ρ. (17)

Let us now prove thatρmax = ρ∗, with ρ∗ defined in (7).
Note thatV can be written asV = 1

2
xTPx, with

xT =
[

ηT η̇T
]

andP defined in (8). The valueρmax is
the lowest value ofρ for which the setIρ touches one
of the hyperplanes of∂C. We defineρi, i = 1, . . . , nq,
to be that value ofρ for which the setIρ touches the
hyperplane|η̇i| = − β

λi
. Accordingly,ρmax is defined

by

ρmax = min
i=1,...,nq

ρi. (18)

Equating the hyperplane|η̇i| = − β
λi

with ∂Iρi
gives

the relation

sup
1

2
‖x‖2

P
=ρi

|η̇i| = − β

λi

, (19)

where‖x‖2
P = xTPx. A decomposition ofP

P = STS, P = UT
p ΩpUp, S = UT

p Ω
1

2

p Up,
(20)

whereS is the square root ofP and a transformation
y = Sx gives the relationship

sup
‖y‖=√

2ρi

|eT
n+iS

−1y| = − β

λi

, (21)

with ‖y‖ = ‖x‖P and η̇i = xn+i = eT
n+ix. With a

transformationz = y/
√

2ρi, (21) transforms to

√

2ρi sup
‖z‖=1

|eT
n+iS

−1z| = − β

λi

. (22)

Using the definition of the norm of a matrixA as
‖A‖ = sup‖x‖=1 ‖Ax‖, (22) yields

√

2ρi‖eT
n+iS

−1‖ = − β

λi

. (23)

Consequently,ρi is given by (7). This concludes the
proof thatρmax = ρ∗.
Moreover, we define a setS ⊂ Iρ∗ by S =
{(q, q̇) ∈ Iρ∗ : q̇ = 0}. Furthermore, the largest in-
variant set inS is the equilibrium setE , since according
to the third condition in the theoremE ⊂ Iρ∗ . Note that
V̇ = 0 if and only if (q, q̇) ∈ S andV̇ < 0 otherwise.
Application of LaSalle’s invariance principle concludes
the proof of the local attractivity ofE under the condi-
tions stated in the theorem. �

At this point several remarks should be made:

1. It should be noted that the proof of Theorem 1
provides us with a conservative estimate of the re-
gion of attractionA of the locally attractive equi-
librium setE . The estimateB can be formulated in
terms of the generalized displacements and veloc-
ities: B = Iρ∗ , whereρ∗ satisfies (7);

2. The proof of Theorem 1 also shows that bounded-
ness of solutions (starting inB) is ensured and that
the equilibriumpoint (q, q̇) = (0,0) is Lyapunov
stable.

3. It can be shown that if1T
Λ

TW T
T K−TW T Λ1 <

2ρ∗, with 1 a m × 1-column with ones, thenE ⊂
Iρ∗ . In that case the entire equilibrium setE is
locally attractive.

4. An important consequence of Theorem 1 is that
when the damping-matrixC is positive definite,
global attractivity of the equilibrium set is assured.
Note, hereto, that in the proof of Theorem 1, (15)
is automatically satisfied andρ∗ can be taken arbi-
trarily large in that case.

4 Illustrating example
In this section, we will illustrate the results of the pre-

vious section by means of an example concerning a
2DOF mass-spring-damper system, see Figure 1. The
equation of motion of this system can be written in the



Figure 1. 2DOF mass-spring-damper system with Coulomb friction.

Figure 2. Cross-section of the region of attractionA with the plane defined bẏx1 = 0 andẋ2 = 0.

form (1), withqT =
[

x1 x2

]

and the generalized fric-
tion forcesλT given by the Coulomb friction law (2).
Herein the matricesM , C, K, W T andΛ are given
by

M =

[

m1 0
0 m2

]

, C =

[

c1 + c2 −c2

−c2 c1 + c2

]

,

K =

[

k1 + k2 −k2

−k2 k1 + k2

]

,

W T =

[

1 0
0 1

]

, Λ =

[

µ1m1g 0
0 µ2m2g

]

,

(24)

with m1,m2, k1, k2 > 0 andµ1, µ2 ≥ 0. Moreover,
the tangential velocitẏgT in the frictional contacts is

given by ġT =
[

ẋ1 ẋ2

]T
. Let us first compute the

spectral decomposition of the damping-matrix,C =
U−T

c ΩcU
−1
c , with (for non-singularC):

U c =
1√
2

[

1 −1
1 1

]

, Ωc =

[

c1 0
0 c1 + 2c2

]

. (25)

The equilibrium setE , as defined by (4), is given by

E = {(x1, x2, ẋ1, ẋ2) | ẋ1 = 0 ∧ ẋ2 = 0∧

|x1| ≤
(k1 + k2)µ1m1g + k2µ2m2g

k2
1 + 2k1k2

∧

|x2| ≤
(k1 + k2)µ2m2g + k2µ1m1g

k2
1 + 2k1k2

}

.

(26)

Let us now consider two different cases for the damp-
ing parametersc1 andc2:
Firstly, we consider the case thatc1 > 0 and
c2 > −c1/2. Note thatC > 0 if and only if c1 > 0
andc2 > −c1/2. Consequently, the global attractivity
of the equilibrium setE is assured. It should be noted
that this is also the case when one or both of the friction
coefficientsµ1 andµ2 vanish.
Secondly, we consider the case thatc1 > 0 and

c2 < −c1/2. Clearly, the damping matrix is not pos-
itive definite in this case. As a consequence, the equi-



librium point of the system without friction is unsta-
ble. Still the equilibrium set of the system with fric-
tion can be locally attractive. Therefore, Theorem 1
can be used to investigate the attractivity properties of
(a subset of) the equilibrium set. For the friction sit-
uation depicted in Figure 1, condition (15) is satisfied
if µ1 > 0 andµ2 > 0. Namely,W T spans the two-
dimensional space and, consequently, the eigencolumn
of the damping matrix corresponding to the unstable

eigenvaluec1 + 2c2, namely
[

−1 1
]T

, lies in the space
spanned by the columns ofW T .

Since the attractivity is only local, it is desirable to
provide an estimateB of the region of attractionA
of (a subset of) the equilibrium set. Here, we present
a comparison between the actual region of attraction
(obtained by numerical simulation) and the estimateB
for the following parameter set:m1 = m2 = 1 kg,
k1 = k2 = 1 N/m, c1 = 0.5 Ns/m,c2 = −0.375 Ns/m,
µ1 = µ2 = 0.1 andg = 10m/s2. An estimate for the
region of attractionB can be provided analytically as
B = Iρ∗ , with ρ∗ according to (7), which yields for
this example:

ρ∗ =
1

2

m1m2γ
2

m1 + m2

, whereγ = −min(µ1m1g, µ2m2g)

c1 + 2c2

.

(27)
The numerical simulations are performed using
an event-driven integration method as described
in (Pfeiffer and Glocker, 1996). The event-driven
integration method is a hybrid integration technique
that uses a standard ODE solver for the integration
of smooth phases of the system dynamics and a LCP
(Linear Complementarity Problem) formulation to de-
termine the next hybrid mode at the switching bound-
aries. For these parameter settings,E ⊂ int(Iρ∗) and
the local attractivity of the entire equilibrium setE is
ensured. In Figure 2, we show a cross-section ofAwith
the planeẋ1 = 0 andẋ2 = 0, denoted byÂ, which was
obtained numerically. Hereto, a grid of initial condi-
tions in the planėx1 = ẋ2 = 0 was defined, for which
the solutions were obtained by numerically integrating
the system over a given time spanT . Subsequently, a
check was performed to inspect whether the state of the
system at timeT was in the equilibrium setE . Initial
conditions corresponding to attractive solutions are de-
picted with a light color (setÂ) and initial conditions
corresponding to non-attractive solutions are depicted
with a dark grey color (set̂D). Moreover,Ê andB̂ are
also shown in the figure, where theˆ indicates that we
are referring to cross-sections of the sets. It should be
noted thatÊ ⊂ B̂. As expected the setB is a conserva-
tive estimate for the region of attractionA. In (Van de
Wouw and Leine, 2004), more examples are discussed
in which the crucial condition for local attractivity (15)
is not satisfied.

5 Controlling Attractivity
So far we have concentrated on the asymptotic proper-

ties of mechanical systems with friction. In particular,
we presented results on the attractivity of equilibrium
sets in such systems. Let us now present a prelimi-
nary study of the application of these results in a con-
trol context. Hereto, we consider a class of controlled
mechanical systems with Coulomb friction:

Mq̈ + Cq̇ + Kq − W T λT = Su, (28)

whereM = MT > 0 andu is a column with con-
trol inputs andS is a matrix concerning the general-
ized force directions in which the actuators can influ-
ence the system dynamics. This open-loop system may
not exhibit positive definite damping- and stiffness ma-
trices; think of linearizations of systems (systems with-
out Coulomb friction) of which the equilibrium under-
goes a Hopf or pitchfork bifurcation. Consequently,
such systems do not satisfy the conditions of Theo-
rem 1. Now, we propose a PD-type of feedback law
u = −F 1q − F 2q̇ in order to ensure that the closed-
loop dynamics, described by

Mq̈ + Cclq̇ + Kclq − W T λT = 0, (29)

with Ccl = C + SF 2 andKcl = K + SF 1, satisfies
the conditions of Theorem 1. Consequently, the condi-
tions on the control design can be stated as follows:

1. (K + SF 1) = (K + SF 1)
T > 0,

2. Ū ci
∈ span{W T },

3. Ccl is symmetric,

whereŪ ci
, i = 1, . . . , n̄q, represent the eigencolumns

of Ccl corresponding to the remaininḡnq closed left-
half plane eigenvalues ofCcl. The second condition
can be formulated as follows:∃F2 such that the pair
[−(C + SF 2),W T ] is stabilizable. The latter condi-
tion, in turn, is equivalent to the stabilizability of the
pair [−C, [W T , S]]. This stabilizability condition is
intuitive since it expresses the fact that one should be
able to counteract instabilities due to negative viscous
damping either by dry friction effects or by means of
feedback in order to attain attractivity. Moreover, we
can reformulate the first condition using the following
result from (Yakubovichet al., 2004):

Theorem 2
The following two statements are equivalent:

1. ∃P = P T > 0
2. ∃A, with A Hurwitz s.t.PA + ATP < 0.

Now we use this result to reformulate condition 1; the
following two statements are equivalent:

1. ∃F1 s.t.(K + SF 1) = (K + SF 1)
T > 0,

2. ∃A, Y with A Hurwitz s.t.
KA + ATKT + SY + Y TST < 0 with Y =
F 1A.
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Figure 3. Controlled 2DOF mass-spring-damper system with

Coulomb friction.

The LMI in the previous statement can be used to
construct the feedback gain-matrixF 1 throughF 1 =
Y A−1. In such a way the equilibrium set can be ren-
dered attractive and the following example will illus-
trate that the region of attraction can also be influenced
by tuning the control parameters.

Let us now consider the 2DOF mass-spring-damper
system as depicted in figure 3, in which massesm1 and
m2 can be controlled by actuatorsu1 andu2, respec-
tively. Here PD-control of the two masses will be con-
sidered:u1 = −p1x1 − d1ẋ1, u2 = −p2x2 − d2ẋ2.
The control problem to be addressed can be formu-
lated as follows: how can we influence the attractiv-
ity properties (and the corresponding region of attrac-
tion) of the equilibrium set by tuning of the control
parametersp1, d1, p2 and d2? For the sake of sim-
plicity we limit ourselves to the case that the control
laws for the two actuators are identical, i.e.p2 = p1

andd2 = d1. Note that the condition onKcl stated
above is guaranteed ifp1 > 0. Moreover, the condi-
tion Ū ci

∈ span{W T } is satisfied for all values of
d1. However,p1 and d1 should be chosen such that
condition 3 in Theorem 1 is satisfied. The influence
of the control design on the attractivity of the equilib-
rium set will be investigated along two routes: firstly,
we will investigate the influence of the gaind1 of the
derivative action and, secondly, we will investigate the
influence of the proportional actionp1. In accordance
with (27) the region of attraction for the controlled sys-
tem is given byB = Iρ∗ , with ρ∗ given by (27) with
c1 = d1. This clearly indicates that the region of at-
traction can be effectively influenced by the control
design. In figure 4, the effect of the derivative gain
on the region of attraction is depicted. Once more,
a similar cross-section of state-space as in figure 2 is
considered. Herein, the following system parameter
values are used:m1 = m2 = 1 kg, k2 = 1 N/m,
c2 = −0.375 Ns/m, µ1 = µ2 = 0.1, g = 10m/s2.
Moreover, the proportional gain isp1 = 1 N/m. Fig-
ure 4 clearly displays the increase of the estimated re-
gion of attraction for increasing derivative control gain.
As this gain approaches the valued1 = 0.75, (i.e.
d1 = −2c2) the estimated region increases progres-
sively until at d1 = −2c2 the attractivity becomes
global. Moreover, when the derivative gain drops be-
low a certain level the attractivity of the equilibrium set

as a whole can not be guaranteed anymore.
The influence of the proportional gain is of an entirely

different nature. Namely, (26) (withp1 substituted for
k1) expresses the fact that the equilibrium set decreases
whenp1 increases. However, the estimated region of
attraction also decreases. In this respect, it should be
noted that for increasingp1 the setC, defined in (16),
and consequentlyρ∗ remain unchanged; however, since
the estimated region of attraction is now given by

B = {x ∈ R
4 | 1

2

(

m1ẋ
2
1 + m2ẋ

2
2

+(p1 + k2)(x
2
1 + x2

2) − 2k2x1x2

)

< ρ∗
}

,

(30)

the size ofB decreases for increasing proportional gain.
Obviously, a similar analysis can be performed for the

case that different PD-control designs are used for the
actuatorsu1 andu2.

6 Conclusions
Conditions for the (local) attractivity of equilibrium

sets of mechanical systems with friction are derived.
The systems are allowed to have multiple degrees-of-
freedom and multiple switching boundaries (friction el-
ements). It is shown that the equilibrium setE of a lin-
ear mechanical system, which without friction exhibits
a stable equilibrium pointE, will always be attractive
when Coulomb friction elements are added. More-
over, it has been shown that even if the system with-
out friction has an unstable equilibrium pointE, then
the equilibrium setE of the system with friction can
under certain conditions be locally attractive and the
equilibrium pointE ⊂ E is stable. The crucial condi-
tion can be interpreted as follows: the space spanned
by the eigendirections of the damping matrix, related
to negative eigenvalues, lies in the space spanned by
the generalized force directions of the dry friction ele-
ments.
Lyapunov stability of the equilibrium set of non-

passive systems is not addressed, however, the com-
bination of the attractivity property of the equilibrium
set and the boundedness of solutions withinB can be
a valuable characteristic when the equilibrium set is a
desired steady state of the system. Moreover, an esti-
mate of the region of attraction of the equilibrium set is
provided.
Finally, the attractivity results are applied to design a

linear state-feedback controller to guarantee attractiv-
ity of an equilibrium set of a controlled system with
friction. Moreover, it is shown that the region of attrac-
tion can effectively be shaped by tuning of the control
parameters.
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