

A compositional semantics for statecharts

Citation for published version (APA):
Huizing, C., Gerth, R. T., & Roever, de, W. P. (1987). A compositional semantics for statecharts. (Computing
science notes; Vol. 8715). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/1987

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://research.tue.nl/en/publications/c46ddeed-3364-4daf-a0d2-242ca9f295e2

A compositinal semantics for statecharts

by
G. Huizing

R. Gerth

W.P. de Roever

87/15

-

december 1987

A Compositional Semantics

Statecbarts

c. Huizing'*'
R. Gerth

W.P. de Roever

first version May 30. 1987
second version July 4. 1987
third version August 26. 1981

Department of Mathematics & Computing Science
Eindhoven University of Technology
P.O. Box 513
5600 ME Eindhoven
The Netherlands

This research was carried out in the context of ESPRIT-project 937.
DESCARTES (Development and Specification of Ada Real-Time Embedded
Systems) .

..
Electronic mail address:

or
mcvax!eutrc3!wsinkees.UUCP
wsdckeesh@heithe5.BITNET

Computing Science Notes

This is a series of notes of the Computing Science Section of the
Department of Mathematics and Computing Science of the Eindho
ven University of Technology.
Since many of these notes are preliminary versions or may be pub
lished elsewhere, they have a limited distribution only and are not
for review.
Copies of these notes are available from the author or the editor.

Eindhoven University of Technology
Dept. of Mathematics and Computing Science
P.O. Box 513
5600 MB Eindhoven
The Netherlands
All rights reserved
editor: F.A.J. van Neerven

- i -

Abs1:rac1:

We present a denotational. strictly syntax
directed. semantics for Statecharts. a graphical.
mixed specification/programming language for
real-time. developed by Harel [H].
This requires first of all defining a proper syntax
for the graphical language. Apart from more
conventional syntactical operators and their
semantic counterparts. we encounter unconventional
ones. dealing with the typical graphical structure
of the language. The synchronous nature of
Statecharts makes special demands on the semantics.
esp. wi th respect to the causal relation between
simul taneous events. and requires a refinement of
our techniques for obtaining a denotational
semantics for OCCAM [HGR]. The model presented will
serve as a basis for a further study of
specification and proof systems within the
ESPRIT-project DESCARTES.

1.1

Introduction

Statecharts belongs together with Esterel [B], LUSTRE [LUSTRE], SIGNAL

[SIGNAL] and an unknown number of local industrial concoctions to the

group of mixed specification/programming languages used in development

of real-time embedded systems.

Some of these languages (LUSTRE, SIGNAL, Ester.,!) have no internal

notion of time. An external signal needs to be provided as a clock an

the system can use it as it likes to, hence various various clock

operations can be specified. The disadvantage of this approach is, that

time constraints and other specifications w.r.t. the time are not

clearly visible in the specification/program. Statecharts adopts the

view that these specifications should be visible and hence has an

internal notion of time.

Statecharts adopts, like Esterel, the synchrony hypothesis as formulated

by Berry [B]. This means that output occurs simultaneously wi th the

input that caused it. If applied without care, this hypothesis can lead

to causal paradoxes, such as events disabling their own cause. In

Esterel, these paradoxes are circumvented by syntacticLy forbidding

situations in which they can arise. In Statecharts, they are

semanticaLLy impossible, because there the influence of an event is

restricted to events that didn't cause it. The semantics of Esterel and

Statecharts coincide in the situations that are allowed by Esterel. This

restricted influence between events in Statecharts is modelled by

applying a partial order on the events that occur simultaneously. This

1.2

order describes in which direction events influence each other.

Another problem that arises in giving a composi tional semantics of

Statecharts, is its graphical nature. For textual languages, defined by

means of a proper syntax, it is clear what is demanded of a

syntax-directed semantics. It has to be compositional (a homomorphism)

with respect to the syntactic operators. For a graphical language,

without a proper syntax, this is not so clear.

We succeeded in defining a syntax of Statecharts that makes use of a

restricted set of natural operators and primitive objects. These objects

and the intermediate results of applications of operators slightly

generalise statecharts, by allowing transitions to be incomplete i.e. to

have no origin states or no target states yet.

Some syntactic operators lack a clear counterpart in conventional

languages. This is because in the graphical representation of

Statecharts, the notion of area plays an important role, as it defines a

hierarchy of states. Suhareas of states are associated with alternative

activi ties or concurrent activities. Transi tions leaving a superstate

influence the behaviour in all its substates (which are lower in

hierarchy). This leads to a semantics in which it is possible to extend

the behaviour of some subchart with the behaviour of the state that is

put higher in hierarchy.

Unlike Esterel, Statecharts doesn't have a restricted kernel of

operations, in terms of which all other features 'are defined. The

designers of Statecharts adopt the view that handy operations should be

provided as long as they can be built in. As a consequence, we had to

1.3

study a restricted version of Statecharts. The next version of this

paper will include the use of variables.

2.1

2. Informal introduction to Statecbarts

We give a short description of the language Statecharts and an intuitive

semantics. For a more basic treatment of this, one is referred to [H]

and [HPSS],

Statecharts is a formalism designed to describe the behaviour of

reactive systems [HP]. A reactive system is a mainly event-driven

system, continuously reacting to external and internal stimuli. In

contras t to transformat ionn.l sys terns, that perform transf orma t ions on

inputs thus producing outputs, reactive systems engage in continuous

interactions, dialogues so to say, with their environment.

Statecharts generalize Finite State Machines (FSM's), or rather Mealy

machines [HU], and arise out of a conscious attempt to free FSM's from

two serious limitations: the absence of a notion of hierarchy or

modulari ty and the abili ty to model concurrent behaviour in a concise

way. The external and internal stimuli are called events and they cause

transitions from one state to the other.

concepts now.

States

We introduce the basic

In contrast to FSM's, states can be structured as a tree. We call the

descendants in such a tree substates. A state can be of two types: AND

or OR. Being in an OR-state implies being in one of its immediate

substates, being in an AND-state implies being in all of its immediate

substates at the same time. The latter construction describes

concurrency.

2.2 "."

Example I (see overleaf)

In this picture. S is an OR-state with substates A and B. Being in state

S implies being in A or B. but not in both. A.B and T have no substates.

a and b stand for events that trigger transitions and c is a condition.

These events are called primitive events. because they have no further

structure. They can be generated outside the system. but also by the

system itself. E.g. the transition from A to B is triggered when event a

occurs and condition c is true.

When the system is in A and event a happens. A will go to state B. but

will stay in S. Whenever it is in A or Band b happens. it will go to T.

The transition to A is a defauLt transition. When the system is in T and

b happens. it will go to S and hence to A.

Example 2 (see overleaf)

Now. S is an AND-state with immediate substates A and B. A and Bare

OR-states with substates Al and A2 resp. Bl and B2. Being in S implies

being in A and B simultaneously. when the system is in Al and B2 (and

hence also in A. Band S) and b happens it will go to BI and stay in AI'

Now. if a happens. it will go simuLtaneousLy to A2 and B
2

. Notice also

the condition in (B I) on the transition from A2 to AI' This transition

can only be taken if and when the system is in A2 and BI and event d

occurs.

Transitions

In the examples above we used simple transi tions from one state to

another like in FSM·s.

They can be more complicated. however. going from a set of states to a

set of states.

2. '2~

lSI
<: £> c.J .D~

.~
..... ~c....lII~~ - 0, [

J ..:II T ,
A, -

~ ---
)

" CO\. ---------------;; ~ C' -.... ..

~
--t::.----

<,
a .L:.

I. I B.~ a,
....:.I
r_ -

,

.51
'T.i ;T. Ie' I e

T,

[J J I I
I I

I I I

I £.".,1 o..A..'lb/d : d/Io;c
I

...l,k" ~ I ok.. I
F

,
I

l> I r~ I
I J I -I I

2.3

Example 3 (see overleaf)

When the system is in A2 and BI and a happens. it will go to T. and in

particular to G and DI . This is the general case. In this version of the

paper. however. we don't allow transitions leaving more than one state.

Notice the compound event on the transition from Al to A2 . Only when a

and b occur simultaneously this transition will be triggered.

Actions

In the label of a transi tion one can specify some events that are

generated when the transition is performed. This is called the action of

a transition. These events take immediately effect and can trigger other

transitions.

Example 4 (see overleaf)

When the system is in A. C and E and a occurs. a chain reaction of

transitions will be performed. The transition in Tl will generate event

d; this event will trigger the T2-transition. which on its turn will

generate b and c and thus trigger the T3-transition.

All transitions that are triggered by such a chain reaction are

considered to happen at the same time. So in this example. the next

state configuration after (A.C.E) is (B.D.F). But see the paragraph on

causality.

Events

In general. the event in the label of a transi tion has the form of a

logic proposition. using conjunction. disjunction and negation. In these

formulae. one can use primitive events a.b.c but also the structured

events enter(S) and eXit(S). denoting the event of entering resp.

exiting state S.

2.4

Another structured event is the time-out event. The expression

time-out(e,n) stands for the time-out of n time units on event e. A

transition labelled with this expression will be triggered when the last

occurrence of e was exactly n time units ago. One time unit stands for

the time that it costs to take one transition or one chain reaction of

transitions. In this version of Statecharts a specification should go

with an additional specification relating time units and physical time.

Events are instantaneous and transient of nature, such in contrast to

the conditions, which represent a more continuous situation. E.g., the

event enter(S) can only be sensed at the time uni t when state S is

entered, but the condition in(S) is true throughout the time that the

system is in the state S, in other words between the occurrence of

enter(S) and eXit(S).

Causality

As already mentioned above, transi tions can trigger other transi tions

and all these transi tions occur simul taneously. Together wi th

possibility of negation of events and conditions, this can raise causal

paradoxes.

If a transition is labelled with aA~b, this transition will be triggered

when a occurs and b does not occur. Suppose this transition generates

an event that triggers another transition which, on its turn, generates

b. All transitions in this chain reaction are considered to be

happening at the same time. So b did happen and the first transition

could not occur, hence the whole chain reaction did not occur, hence ...

These kind of paradoxes are avoided by giving the following operational

interpretation to chain reactions.

2.5

Every time step is subdivided into micro-steps. each of wich correspond

to the execution of one transition. The events that are generated by a

transition can only influence transitions in the following micro-steps.

So in the example above. the T1-transition takes place in the first

micro-step. triggering the T
2
-transition in the second micro-step.

one generates the events b and c. but these cannot prevent

This

the

T1-transition anymore. because the latter has taken place in a previous

micro-step.

We stress that the micro-steps have nothing to do with time. Their

sequential occurrence is only related to the way they can influence each

other - no order in time is implied. Maximal sequences of micro-steps

are called macro-steps; a macro-step corresponds to one step in time.

Here. maximal means that the sequence cannot be extended without

additional input from the environment. Hence. in example 4 above. the

sequence consisting only of the T1-transi tion is not maximal. because

the T
2
-transition is still possible.

3.1

3 Syntax

In this chapter we give" a non-graphical syntax of statecharts. Ac

cording to this syntax any statechart is built up from primitive objects

and some operators. These operators have a natural relationship wi th

the pictures. The intermediate objects to which the operators are

applied are the so-called Unvollendetes. These are incomplete

statecharts with transitions without source state(s) or target state(s).

Two operators, concatenation and connection can tie these dangling

arrows together, thus creating complete transitions.

Concatenation makes a complete transition between two Unvollendetes,

which can semantically be compared to sequential composition. Connection

makes a complete transition within one subchart, thus possibly creating

loops.

In Statecharts, there are two types of states: the AND-type and the

OR-type. Being in an AND-state means being in all of its immediate

substates together, being in an OR-state means being in exactly one of

its sub-states. Statification is the operator that builds such

hierarchical structure in statecharts. It puts a subchart inside a

primitive state, i.e. a state without substates, thus creating a

structured AND- or OR-state. Semantically, it means executing the

sub-chart inside, wi th the possibility of interrupting this execution

when one of the (incomplete) transitions leaving the superstate are

triggered.

The Unvollendete that Statification puts inside a state is built by the

operator Anding, if the surrounding state is an AND-state, or by the

operator Orring, for an OR-state. Anding corresponds to parallel

3.2

composition in conventional programming languages. Orring can be

compared to non-deterministic choice.

Finally, Closure gives the events that are considered internal for the

particular subchart, which means that they can only be generated by that

statechart. Hiding makes the events that are generated inside a

statechart or Unvollendete invisible to the outside world. Neither

operator has a graphical counterpart in the language as defined in

[HPSS].

In the Appendix we give the formal relationship between the objects

generated by the syntax and the formal objects representing statecharts

as defined in [HPSS].

3.1 Transition labels

Before we give the definition of Statecharts itself, we need the

defini tion of the labels that can be associated to transi tions. Let a

set of elementary events E and a set of states! be given. e

Define the set of primitive events E = E U {enter(S),exit(S) I Sc! }
p e

Definition

The set of events E is recursively defined by

A € E, the null event;

e € E ... e € E;
p

e 1 ,e2 ~ Ep ... e 1 A e2 , e 1 V e2 € E;

e € E ... _ € E;

n € W\{O} , e € E, ... time-out(e,n) € E o

Remarks: ~e is here considered as an event, in contrast to [S] where it

is a condition. Semantically they are the same, Le. we also have the

"not yet" interpretation.

3.3

We abbreviate enter(S). exit(S) and time-out(e.n) by resp. en(S). exeS)

and tm{e.n)

tm{e.n) means: time-out of e after n seconds.

Defini tion

The set of conditions C is recursively defined by

true. False" C;

c
l
.c2 "C ~ c l A c2 • c l V c2 "C;

c " C ~ -.c " C;

s " }; ~ in(S) " C

Defini tion

o

The set of actions A is recursively defined by:

~ € A. the null action.

e € E ~ e € A.
p

a
i

€ A for i = l •...• n ~ al •...• an € A

Definition

Lab = {e[c]/a I e € E. c " C a € A}.

o

If e = A. c = true. a =~. we often omit that part of the label. c

3.2 Uovolleodetes

In order to explain the syntax we introduce the notion of incomplete

statechart or Unvollendete. abbreviated as Unv. This is a statechart in

the process of being built up. It differs from a complete statechart in

that it need not have a unique root-state and that it may have so-called

incomplete transitions. Incomplete transitions are transitions either

without source or without target state{s}. These transitions are

pictured as dangling arrows. Any statechart can be broken up into

Unvollendetes and in chapter 4 we will give the semantics of these

3.4

Unvollendetes. Syntactically. an Unvollendete is anything that can be

derived from a non-terminal.

Non-terminals

The non-terminals of our syntax are not plain symbols. but they have a

structure of there own. They have the form

<1.0>.

where I is a set of incoming transitions (incomplete transitions without

source states) and 0 is a set of outgoing transi tions (incomplete

transitions without target states). Every derivation rule in the syntax

must be considered as a scheme of rules. one for each appropriate choice

of these sets.

Terminal symbols

The terminal symbols are the operators. as usual. and the so-called

primitive statecharts. These are Unv's without any complete transition

and consisting of only one state. They are denoted by

[1.0.8] .

where I and 0 are as in the non-terminals and 8 is the name of a state.

Definition

Let TI be the set of all incoming transitions ranged over by i •... ; let

TO be the set of all outgoing transitions. ranged over by 0 ••.. ;

TIn TO = f1l

Let E C Ee U};. I •... C TI and O •... C TO and L: TO -+ lBb

Then the set of Unvollendetes is defined by

Unv = {UI 3 ICTI , OCTO: <1,0> ~ U }

and the set of 8tatecharts by

8tch = {V I B ~ V }

3.5

and ~ is the derivability relation for the following set of rules:

B ~ Stat([I1.01.A] . <{t} . 0> . t)

«II U I 2),{t2} . (01 U 02),{t1}> ~ Conc«Il·0l>·tl·t2·<I2·02»

with tl~OI and t2~I2

<I,{t2} . 0,{t1}> ~ Conn«I.O>.t1·t2)

with tl~O and t2~I

«11 U I 2),{t} . 01 U 02> ~ Stat([I1.01.A]

wi th t~I2

«11 U I2)\{u1.···u2} • 01 U 02> ~

And«Il·0l>·<I2·02>·(tl·ul)·····(tn·un}»

<II U 12 • 01 U 02> ~Or«Il·0l>.t2.<I2.02»

<I 0> ~ Close«I.O> • E)

<I 0> ~Hide«I.O> . E) c

Explanation of the operators

Concatenation (Conc(U1.t1.t2 .U2 »

By concatenation. two Unvollendetes are "sequentially composed". An

outgoing transition of U1 (t1) is connected to an incoming one of the U2

(t2). thus creating a complete transition. (See fig. 3.1. overleaf)

Connection

Connection only differs from concatenation by taking only one chart and

making the new transition somewhere inside. In fact we don' t need

concatenation 1f we have connection and orring (see below). but from the

semantic point of view. concatenation is more baSic. (See fig. 3.2.

overleaf)

I,

.' t

A

U • U2 St...t (U., U~ ~-I:)

.ci~).~

0 DOD
-1,

-QD
u, u. (k (u, > u~)

3.6

Statification Stat(Ul , U2 , t)

This is the hierarchy operator; it has no counterpart in conventional

progranuning languages. It puts an Unvollendete (U2) inside a state A

(the state of a primitive Ul)' An explicitly mentioned transition from

U
2

(t) becomes the default of A. (See fig. 3.3, overleaf)

Anding

Anding in Statecharts is the parallel composition in conventional

progranuning languages. Two Unvollendetes are put in parallel. At a

later stage, they will become orthogonal components of an AND-state.

Anding is a binary operator, so if there are to be more than two

orthogonal components, it must be applied repeatedly. The semantics

counterpart of Anding is associative. Our syntax is more liberal than

that of [H'J, since it does not prescribe that an orthogonal component

must have a unique root state. In the first picture you see a

derivation of an AND-state wi th this restriction of [HPPSJ and in the

second picture you see a derivation of an AND-state that does not

satisfy this restriction. (See fig 3.4, overleaf)

Orring

This is the counterpart of Anding, it puts some subcharts together in

non-orthogonal composi tion, wi th the intention of stat1fication by an

OR-state. It can be compared to non-deterministic choice. (See fig. 3.5,

overleaf)

Closure

In [HPSSJ, the set of primi tive events is divided into internal and

external events. External events can be generated outside the statechart

('r I

Tj

A

StG<t ([~ t, ~ > f t2 L T] > U.) *)

U", An'" (AVId (U'l U 2 • }(tJ,tl()f). Ul ~ ¢)

,

u, ~ Si:o.J ([v!>l ¢. "] I u..') is)

U~:: ~icd ([,p, ¢. T~ J. 1..1/. t()
U3 ;: Sto..t ([~, (4, TJ] J l..l3' ~ -t1)

.-" dO'} D'
lA, U'

2 a ' .3

-l: ,

Fr: ~~ d-
, J I 5--J, T "'t

'-'"'-] 'r··-" r- l ft> l~! C
, I I

I L - L, __ ..J '-,-
, _________ ...J

~t~f (r i~, ~ . } i~ (• T J ~ V, ioo)
V ~ A "I.,l (A..,~t (il,'. U;, ~ (of 3, tl(J J J LJ;. ¢) .

3.7

itself. internal events cannot. For a compositional semantics this

distinction is not useful. because events that are internal to the

complete statechart. can be external to some subchart.

Therefore. we introduce an operator that declares some events internal

to a subchart. This is not hiding and these events are still observable.

Hiding

The hiding operator makes the specified events invisible for the outside

world.

4.1

4 &.mUcs

This chapter presents a denotational semantics of statecharts or rather

of Unv·s. This semantics is compositional (syntax-directed) with regard

to the operators defined in chapter 3.

The maximality of the sequences of micro-steps in chapter 2 corresponds

to the notion of maximal parallelism as modelled in [HGR.GB] (see also

[SM]). The techniques of those papers also apply here.

As Statecharts describes a set of state configurations (as any digital

system). a discrete model of time is adequate. Since it is intended to

make global time specifications. we use a global notion of time. The

simplest domain that gives us these properties is IN. but for reasons

that will be explained later. we use I.

4.1 n.-in and seaantic functions

At first sight. Statecharts are qui te different from ordinary

programming languages. Simplest to characterise are sequential languages

without jump-like constructs. Once jumps enter the picture we have to

abandon the idea of giving state transformations for each command in

isolation. Traditionally. this is solved using the idea of continuations

[SW.M].

It is our aim to give a compositionat semantics of Statecharts. The

semantics of [SW] is only given for full program blocks in which all

labels of gotos appear. In our solution jumps (transitions) are made in

two stages. In the first stage we have only half jumps. in which the

place where we are jumping to or where we come jumping from is not

4.2

specified. These are the incomplete transitions in the syntax.

In the semantics. we record the behaviour of a subchart only between

such jumps. And we specify for each history the incomplete transition by

which it starts and by which it ends. This specification is just the

syntactic identification of the transition.

In the second stage. by concatenation or connection these half jumps are

made into full jumps by identifying an incoming and an outgoing

transition. Now we can also give the full semantics of the jump. as we

know where we corne from and where we go to. This semantics is just the

concatenation of the history that ends in one halt of it and the histor:'

that starts with the other half. In case of connection. loops can arise.

since we jump to the same subchart. Consequently. the semantics of this

construct will be characterised by a fixed-point equation.

Now there is a difference between gotos in conventional languages and

transitions in Statecharts. namely in Statecharts the place where a jump

can occur is not completely syntacticly determined. Transitions from a

superstate can be triggered when execution is anywhere inside that

state. Our solution is giving two options at any moment during execution

inside a state: exi ting by the outside transition or continuing the

history generated by the semantics of the interior of the state.

The semantic domain.

The semantics of a (incomplete) statechart. i.e .• its denotation. will

be a set of histories. each history corresponding to one possible

execution.

4.3

The set of histories, ~, is defined ~

~ = T U {*} x (Z ~ C) x T U {~}, where T is the set of edge-identifiers

(transitions) and Z~ denotes the set of partiaL functions with

indicated domain and codomain.

A history consists of three components. The first component is the

incoming transi tion of the chart by which the execution starts, the

third component ei ther equals the outgoing transi tion ~ which the

execution ends, or equals "~" in case of an incomplete computation. It

is possible that there is no starting transi tion, indicated ~ "*". This

is the case when we have the root state of the complete statechart, or a

component of an AND-state that can be started implicitly by an incoming

transition of another component.

The second component of the history is a partiaL function that

associates to each time unit, a so called clock record.

Execution starts at time uni t 0 and ends at the last time uni t where the

function is defined. The records associated to negative time values

contain information about the past, i.e. before the execution of this

subchart started.

time-out events

Notation:

We will need this to describe the occurrence of

o if feZ ~~ then If I = max ({ilf(i) is defined} U {-I}} + 1

Ifl-l is the time on which the outgoing transition, 1£ there is

one, of this execution occurs.

o A e Z ~ C is the function that is nowhere defined; we defined If I

in such a way, that IAI = o.

o the shift operator changes the time in a history:

shift(f,j}(i+j) = f(i}

Ishtft(f,j)1 = Ifl+j

4.4

In order to use fixed-point definitions, we impose the structure of a

complete partial order (cpo) on our domain. We use a standard technique

as explained in [K&] by defining the Hoare order on prefix-closed sets.

We distinguish extendable and ftntshed computations. Extendable

histories correspond to incomplete computations and are charaterised by

a bottom outgoing transition (1). We define the following partial order

on histories:

Defini tion:

(t l ,f,t2) ~ (ti,f',t2) iff

tl=ti A (t2=l V t 2=t2) A Ifl~lf' I A vi<lfl: f(i) = f'(i)

If hl~~ we say that hI is a prefix of ~.

Defini tion:

o

a set of histories H is prefix-closed iff~: h'~h ~h'eH 0

So we define our semantical domain:

Defini tion:

ID = {HQHI H is prefix-closed}

1m dJ

Theorem:

(ID'~'1m) is a cpo.

Proof

Standard.

o

o

We define a function that turns a set of histories into the smallest

prefix-clodsed set that encloses it:

Definition:

If H is a set of histories, then

IfL = n{H'1 HgI'. H'1s prefix-closed} o

4.5

Before we describe the structure of C, we explain the elementary

semantic records.

1. lR = {a! I a € E }
P

a! records the fact that event a did happen at a particular time

uni t.

2. W = {a,a I a € E }
p

a and a are cLaims that event a did resp did not happen at a

particular time. They occur in the semantics of a component that

can be influenced from. outside by the event a. a means: the

occurrence of event a is necessary for the described behaviour, a
means: the occurrence of event a is prohibitive for the described

behaviour.

Now we can define the set of clock records, C:

W U JR _IF
C=2 xlJ'x:G,

where ~ denotes the class of subsets of A.

The first component of a clock record is a set of records and claims

that are associated to the transitions that were taken at this time

unit. The records give the events that are generated by these

transi tions and the claims give the events that are necessary resp.

prohibitive for these transitions to happen. We call this component the

transition record.

Unfortunately this information is not sufficient. A transition can

influence other transitions of the same time step - by triggering them

or by preventing them from being triggered. This influence, however, is

restricted. A transi tion can only influence the transitions that oc-

curred in "later" micro-steps. This is the way causal paradoxes are

avoided.

o

i· ~=-_-...!.-_ L ... --_.-
_J

4.6

We have to record this restricted influence too. This leads to the

following additional information.

A partial order on the sets of records that are generated by the

transitions representing the way they can influence each other. E.g

if tl causes t 2 , then we have tl ~ t 2 . This means that t2 can never

influence transitions t3 with t3 < t l . These relationships can also

arise from negative causes: if tl prevents t 2 , then we also have

t2 < t
l

, because that is the only way they can occur in the same

time step.

Example (see fig. 4.1)

If tl and t2 occur simultaneously, we have t1 < t 2 · This means that

t2 can not trigger tl even though it generates b. The trigger of t1

has to come from somewhere else.

This information is represented by a labelled partial order. Each node

represents a transition and is labelled with the corresponding sets of

events and claims.

Definition

A labelled partial order (lpo) on S is a triple

(V,<,e), where

V is a set of vertices

< is an irreflexive partial order on V

e: V ~ 2s is a labelling function.

Notation

A = (0,0,0) is the empty order

1(S)= ({v},0,e) where e(v) = S; this is the trivial one-node order

on S.

4.7

In the sequel we assume that the node sets of two Ipo' s are always

disjoint. __

So the second component of a clock record is a labelled partial order on

the transition records

W = {(v,~,e)1 e: V ~ 2muR}

The third component, called the global record, contains the claims that

are not associated to a particular micro step but to the complete

macro-step. They are not associated to an action performed at the

present time step and hence they are not associated to the influence

relation of the transition record. They can arise from:

1 The maximali ty constraint: the sequence of micro-steps that is

performed as a macro-step must be maximal in the sense that no

additional transitions are possible. These claims give the

conditions on the environment that indeed no additional transitions

are possible.

2 Time-out events of future transitions: performing a transition with

a time-out event in its label lays some claims on the macro-steps

in the past. The event must have taken place a specified number of

time units ago and may not have taken place since.

3 Conditions of the form In(S) on future transitions: this condition

is only true if the state S was entered some time ago and not left

since.

4.2 Semantics of transitions

Before we define the semantics of subcharts, we define a function that

gives the semantics of transitions. When the system is in some state, it

4.8

can do two things with respect to a transition leaving that state. It

can

a) either take the transition; this means that the event expression

in the label of the transition should be satisfied and that some

events are generated in accordance to the action part of the label.

b) or stay in the state; this means that the event-expression of

the transition should not be satisfied.

The history corresponding to a) is produced by the function ~, the

history corresponding to b) by W.

First we define a restricted version of ~ on event expressions.

This function yields a simple kind of histories that gives the

conditions on the environment that cause a transition with this

event-expression to be triggered. This involves conditions on the

present, i.e. the time the transition takes place (time 0) and

conditions on the past (time -1. -2, etc) The latter in the case of

time-out expressions.

We assume that these expressions are in disjunctive normal form:

e - y 1 Pij' where Pij is of the form a or ~, with

a € E U {A'X} U {tm(e' ,n),~tm(e' ,n) I neIN, e' in normal form}
p

EN is the set of the normal form expressions.

Assume that the function N:E EN brings a propositional formula into

the logically equivalent normal form.

In the following definitions of sets of partial functions we assume that

these functions are only defined where their values are specified.

4.9

Defini tion

Z-+Rec !FUIR
~:EN -+ 2 where Rec = 2 • is defined recursively:

~(a) = {f I f(O) = {a} } for a € Ep'

~(~) = {f I f(O) = {a} } for a € E . p

~(~) = {f I f(O) = 0}

~ is the null event. the event that always occurs.

-v.. never occurs

~(e1 A e2) = {flO f2 fi € ~(ei)}

e.g. ~(a A b)(O) = {{a.b}}.

Here. 0 stands for the point-wise union. i.e.

(flO f 2)(i) = fl(i} U f2(i) if both are defined.

= fj(i) if only fj(i) is defined.

= undefined otherwise.

~(el V e2) = ~(e1) U ~(e2)

e.g. ~(a V b)(O) = {{a}.{b}}

Thus far. the function ~ produces only claims for one time step of

execution. For the time-out expression. however. some claims about the

past have to be made.

~(tm(e.n» = {shift (fOA ... Afn.-n) I Vi: Ifi I s: 1 A

fO € ~(e) A

V O<i<n: fi € ~(N(~e» A fnc ~(~)}

~(~tm(e.n» = {shift(fOA ... Afn) / Vi: Ifi/ s: 1 A

[fO € ~(N(~e)} V 3 O<i<n: (fi € ~(e»] A fn c ~(~)} a

Here the f1Af2 denotes concatenation: the present of f2 starts where £1

ends and the pastime of £2 is combined with f1

o f1Af2 = fl 0 shtft(f2' If 1 /)·

4.10

A time-out expression tm(e,n) is satisfied if the last occurrence of e

was exactly n time steps ago. This is expressed by f(-n) = ~(e)(O). (e

occurred n steps ago) and by f(i) = ~(N(~e»(O). (e didn't occur later,

i.e. the occurrence at -n was the last occurrence). We have decided that

it doesn't matter whether e occurs at the time of the time-out, hence no

claims about the present are made (f(O) = 0).

The semantics of conditions is defined as follows:

'€: C ... ifL~ec

'€(true) = {fl f(O) = 0}

'€(fntse) = 0

,€(c1 A c2) = {flO f2 I fi ~ ,€(ci)}

'€(c1 V c2) = ,€(c1) U '€(c2)

,€(tn(S» = {fl 3 n~O: fen) = {en(S)} A V n<i~O: f(i) = {;XeS)} }

,€(~in(S) = {fl V n~O: fen) = {en(S)} V

[3n~0: fen) = {exeS)} A V n<i~O: f(i) = {en(S)}] }

In other words, the system is in the state S if it entered S

some time ago and has never left it afterwards; the system is

not in the state S if it never entered S or has left it some

time ago and never entered it afterwards.

The semantics of actions is as follows:

deal = {all for a E Ep

d(al ;a2) = deal) U d(~) for a 1 ,2 E A

d(j.L) = 0. o

Now we can extend the domain of ~ to the set of complete labels, Lab,

and we extend the codomain to sets of functions in Z ... ~.

'5 : Lab ll. a::

'5(e[c]/a) =

4.11

(f 3 fl € '5(N(e», f2 ~ ~(N(c»:

f(i) = (0,A,f
1
(i)Uf2(i» for i(O,

f(O) = (f 1(0) Uf2(0) U ~(a),1,0)}

W gives the conditions on the environment that prevents the transition

from being triggered:

W: Ex C 2
Z a::

W(e[c]) = {fl 3 fl€'5(N(~», f2~~(N(~»: f(i) = (0,A,f1(i)Uf2(i»,

for all i}

4.3 S ntiCs of Unvollendetes

A basic semantic notion is the merge of two clock records. Whenever the

histories of two charts are combined (Anding, Statification,

Concatenation), for each time unit the associated clock records should

be merged. This means unifying the transi tion records and the global

records. Unifying the partial orders, however, is not enough.

New relationships should be added between transitions that can prevent

one another. Hence the merge of two clock records is defined as

follows.

Defini tion:

Then we define

f 1(i)lIf2(i) =

((t,p,,,) I t = tl U t 2 , " = "1 U w2

V a € w: a ~ t A a! ~ t,

< = <lU<2U<' is a p.o., where <' is defined by

V v 1 ,v2 € V: a € VI A(a € V2 Va! € v2) v1<'v2 '

p= (VI U V2 ,<,21 U 22) }

4.12

and the merge of two histories:

fl11f2 ~

{fl Ifl~lfjl A f(lfjl-1)~fj(lfjl-1)

AVi<If.I-!:
J

f(i) € f1(i)lIf2(i)} if Ifjl<lf3_jl or Ifll=lf21='"

~0 if Ifll ~ If21 <'" 0

We define the concatenation of two histories as follows:

The existence of an irreflexive. transitive partial order with this

property guarantees the consistency of the merge. E.g. the transitions

labelled ~ and ~b/a can never be taken in the same time step.

Suppose f 1(0) = ({a.b!}.1.0)

and f 2 (0) ~ ({b.a!}.1.0)

then f Il1f 2 = 11!.

Note that there is at most one minimal order with the desired

properties.

We define the semantic function

!/l: Charts ID

by induction on the structure of Charts.

Primitives

A primitive has only one state and no complete transitions. Hence. all

possible executions consist of some incoming transition. waiting in the

state and some outgoing transition. Incomplete executions have no

outgoing transitions (but a ~ instead) and the case that the state is

4.13

never left is expressed by having arbitrary long incomplete executions.

The semantics of the outgoing transition is given by the function~. the

semantics of the waiting is given by". Since this waiting is only

allowed if none of the outgoing transitions can be taken. it claims that

one of the events e 1 en does not happen or that one of the

conditions c 1 c is not true. where the e.[c.]/ai are the labels of
nIl

the outgoing transitions.

No semantics is given for the incoming transition. only an

identification. In a later stage. this transition will be connected to

an outgoing transition of another (or the same) chart. There. this

outgoing transition will have a semantics.

!/l([I.O.S]) =

{(u.r.V) I u € I U {*} A v € a U {L} A

(3 f i : [f = faA f 1
A ... Af n A

([v¢L A 3 f'~(L(v»: f = f' Inrlf' (n)+ex(S) !]
n

V [v=L A fn~W]} A

V O<1<n: f .~W A
1

3 f": f"~W A fO= f"I-1-+f"(-1)+en(S)!]}CL

where L(O) = {e1[c1]/a1 en[cn]/an}.

and W = "(e1V ... Ven [c1V ... Vcn]);

the +-operator on clock records is defined by:

(t.P.w) + a = (t U {a} . p • w);

fl~ is the notation for function substitution:

(f In-oe)(m) = e if m=n

= f(m) otherwise.

4.14

Remember that, if 0=0, then e = ~X.

In this definition, we see that for each time-step in the execution a

history is generated and these histories are concatenated. Note that

they all have length I, since they are generated by W and ~.

Although all histories are of finite length we can wait forever in this

state. This is represented by an infinite chain of histories that have

no outgoing transition, but L.

Concatenation

In the concatenation of two subcharts, new computations become possible.

E.g., by entering the first chart, performing a computation that ends in

the connecting transition, entering the second chart by this transition

and performing a computation there. In our semantics, this corresponds

to simply concatenating the histories from the first chart and those

from the second chart that end resp. start with the connecting

transi tion.

It is still possible however, to perform a computation in one of the

charts in isolation, provided that it doesn't start or end with one of

the connecting transi tions, because these are no entering or leaving

points anymore.

Hence, the semantics of the concatenation of two subcharts consists of

the concatenation of their respective histories together with their own

histories, from which the histories that start or end in a connecting

transition are deleted.

4.15

~(conc(Ul,tl,t2,U2}) =

a.
deletetlt2(conc~(~(Ul}'tl't2,~(U2}}}

where delete t (D) = {(u,f,v}l(u,f,v) € D A u,v £ {t1,t2 }}
t l , 2

and conc~(Dl,tl,t2,D2} =

{(u,flAf2,v}l(u,fl,tl) € Dl A (t2 ,f2 ,v) € D2} U D1 U D2 ·

Connection

Since connection creates a transi tion from a chart to itself, it can

involve repetition.

Definition

~(QQllll(U,t1,t2}) =

delete t t (~.conc~(~(U},ti,t2'X}}a.,
l' 2

where ~ is the least fixed-point operator

Anding

o

Anding two charts means executing them in parallel. As we have real-time

maximal parallelism, this means merging the clock records that apply to

the same time unit. The entering is either explicitly in one component

and impl1ci tly in the other one, or by a forked transi tion that is

syntactically specified.

~(And(Ul,U2,{(tl'Wl),···,(tn,wn)})} =

{(u,f,v}1 3 (ui,fi,vi) E ~(Ui):

(u = u i A u3- i = *) V (u = vj A u l = tj A u2 = wj)

A[(lfll<lf21 A v = VI}

V(lf21<lfll A v = v2)]

A f € f 1 1/ f 2} a.

4.16

Here, vi' ... 'v~ are the new transitions that replace resp.

Statification

~(Stat(Ul,U2(d» =

{{u,f,v)1 3 (ui,fi,vi) € ~{Ui}:

(u = u 1 A u2 = d) V (u = u2 A ~ ¢ d)

A[(lfll<lf21 A v = vI)

V{ If 21 < If 11 A v = v2)]

A f € fIll f2}Q.

There are three ways to start the execution of a state wi th inner

structure.

1) take a transition explicitly to some states inside; this is

represented by the case u = u2 A u2 ¢ d in the definition above.

2) take a transition to the outer state and enter some staters) inside

by default; this is represented by the case u = u 1 A u
2

=d.

3) enter the outer state implicity and enter some staters) inside by

defaul t: this has the same representation as 2). The impl ici t

entrance is represented by u1 = *.

Executing a state wi th inner structure means executing the structure

inside and always being prepared to stop the execution when an outgoing

transition of the outer state is triggered.

This corresponds to the parallel merge II of the histories of the chart

inside and of those of the outer state. "Being prepared to stop the

execution, etc" just means adding the waiting claims of the outer state

to the history and these wai ting claims is what the histories of the

outer state are built from.

4.17

One can leave the execution of a statified chart either by a transition

from the outer state (v = VI) or by a transition from the inside chart

(v = v
2

), but never by taking them both.

1bat is why the two histories that are merged cannot have the same

length, unless both are infinite and the chart is not left.

When the statified chart is left, all execution is stopped. This

corresponds to the deletion of the records from the longer history that

are associated to time units after the time of the leaving transition.

We also delete records that are associated to the ~ time unit as when

the leaving transition takes place. These records come from transitions

that should occur simultaneously with the the transition that leaves the

complete subchart. It is clear that these transitions are not possible.

These records also contain information about the waiting at that moment.

If we should preserve this information, it would mean that it is not

allowed to leave a subchart as long as internal transitions are

possible. This doesn't seem to be a very reasonable semantics.

Closure

There are two ways of closing a statechart. One way is closing for

events and one is closing for states. When a statechart is closed for a

set of events, this means that these events can now be discarded because

claims on the occurrence of events can now be justified. In the

semantics this means that we check for each time record in each history

if there exists a legal influence ordening between the transitions that

gives each internal event a cause.

Closing a statechart for a set of state(names) is obtained by clOSing it

4.18

for the set events of the form en(S} and exeS) for every state S in the

set of states.

Let f(i} = (t,p,w) and p = (V,<,~)

Then we define

Cl(f(i),E) = {(t',p',w')IV a € wf)E: a! € t

and

A 3<': <' is a minimal p.o. on V s.t.

< C <' A

V VI € V: a € VI ~

3 v2 € V: a! € v2 A v2 <' vi

A p' = (V,<',~tt')

A t' = t'{a,al acE) A w' = w'{a,al acE}

A f(i) = (t,p,w) }

Cl(f,E) = {f'IV i: f'(i) € Cl(f(i),E)}.

Here, ~tt' stands for ~ with a restricted codomain:

(~tt')(v) = ~(v) n t'.

Then

!1!(Close(U,E» =

Hiding

{(u,f,v)1 3 (u,f',v) e !1!(U) A feCl(f',E')}.

where E' = (E n Ep) U {en(S),ex(S)I SeE}

Hiding some events in a statechart from the outside world is only

consistent when the statechart is closed for these events. Hence the

hiding operator first closes the statechart for the specified events and

then deletes all occurrences of them from the histories.

4.19

Let f(i) = (t,p,w) and p = (V,<,l) and t' = t'{a! la£E} , then define

and

Then

Hi(f(i),E) = (t' , (V,<,~tt') , w)

Hi(f,E) = f' iff Vi: f'(i) = Hi(f(i),E}

W(Hide(U,E» =

{(u,f.v) I 3f'~Ct(f,E): f = BtU' ,E')}

where E' = (E n E) U {en(S),ex(S)I S ~ E}.
p

5.1

5 Discussion

In this chapter we discuss the problem of abstraction of the semantics.

the future extension of statecharts with variables. and a possible other

definition of the semantics with respect to causal ity between

micro-steps.

5.1 Full Abstraction

The presented semantics records many properties of a statechart that we

are not directly interested in. but are necessary to define a

compositional semantics. The properties we are interested in anyway is

called the observable behaviour. The decision what is observable and

what not is in principle a free one. Here we adopt the reasonable

choice of all (not hidden) occurrences of events. related to the time of

their occurrence. In other words. all records of the form a! in the

histories are observable. but claims of the form a or a and the partial

ordering are not. Now we intend to make our semantics fully abstract

w.r.t. this notion of observable behaviour. As usual. this means that

two programs only have a different semantics if there is a syntactical

context in which they have a different observable behaviour. In a

formula:

VP.Q: W(P)~(Q) ~ 3C: O(C(P»¢O(C(Q»

where 0 associates to each statechart its observable behaviour and

C is a syntactical context. a statechart wi th a hole in which

another statechart can be plugged in. thus yielding a complete

statechart.

The reader is referred to [HGRJ for further details.

-f;~ So. I (

,

l

p

p

"
I 1 !
I J I

0-",61 /4.)1 I
I I

I
I
I)

p

l

" [l
I

I
I

I
o..A-,b/c :

~, I

l 1
___ .-' I

Q

f~~)

,

.,
II lJ

r 1
I I

c/b

5.2

We can find many statecharts for which this implication doesnot hold.

E.g., in fig. 5.1, P and Q have different semantics, but they will

behave equally in any context. The only difference between P and Q -

the extra claim b in one transition record of some histories of ~(P) -

is irrelevant, because this claim is already fulfilled due to the

presence of b! in the same transition record and its precedence in the

partial ordering.

More examples of this redundancy of claims within a particular history

can be found. These redundancies can easily be removed by changing the

definition of the merge (/I) of two histories. Here, the information

that becomes redundant due to the added information (empty labelled

nodes and identical nodes in the partial ordering, fulfilled claims)

should be removed.

A more complicated kind of redundancy occurs between the histories of a

particular denotation. E.g., in fig. 5.2, P and Q have different

semantics, but cannot be distinguished observably by any context. The

history h with h(O)=({a.,b},1.0) in !Il(P) is not present in !Il(Q) , but

cannot influence the observable behaviour in any context, because any

behaviour the history h can generate, can be generated by one of the

histories of D(Q) - and vice versa of course.

In [HGR] and [GB], a technique is presented to make comparable models

for real-time languages fully abstract. This technique can also be

applied here and this will dissolve the kind of redundancy described in

this example, but not the one shown in fig. 5.3.

It is quite clear that there does not exist a context that can

distinguish P and Q observably. Whether a occurs or not, the system

5.3

will go from S to T. Yet they have different semantics: some histories

of !D(P) contain an empty transi tion record and these do not occur in

!D(Q) .

To remove this kind of redundancy we now study a generalisation of the

technique used in [HGR.GB].

5.2 Variables

The full version of this paper will include the use of variables in the

labels of transitions (in conditions and in actions as assignments).

This will not involve an essential extension of the model. The same

technique used for the condition in(S) can be applied here. All changes

to variables are signalled in the form of events and the satisfaction of

conditions is checked by an inspection of the history.

5.3 Other definition on causali~

In the semantics of [HPSS]. the influence of a transition is restricted

to the transitions that follow it in the sequence of micro-steps

building the macro-step. In our compositional semantics. this is

modelled by the partial order in the clock record. This solves the

causal paradox of the transition annulating its own cause (see fig.

5.4). but this solution is not fully satisfactory. E.g .. a transition

labelled -.a can always be taken. even if a happens during that time

unit. (It only differs from a transition labelled A in that it need not

be taken when a happens.) Furthermore. the semantics depends heavily on

the relative order in which the micro-steps occur. whereas the

5.4

micro-steps are definitely not observable - they are only introduced to

solve the causal problems.

A new version of the operational semantics is under study by Pnueli

and others. in which gLobaL contradictions are not allowed. A global

contradiction occurs when two transitions with conflicting labels take

place in the same macro-step. E.g .• a transition labelled ~ can never

take place in the same macro-step with a transition labelled ... /a. even

if the latter occurs in a later micro-step. This leads to a simpler and

more intuitive semantics. The main drawback. however. is that causal

paradoxes such as the one in fig. 5.4 now lead to a run time error.

There is no acceptable behaviour anymore to associate to these

situations and there is no way to detect them syntactically.

We can eaSily adapt the compositional semantics to model this new

operational semantics. All negative claims of the form a should be put

into the glohal component of the clock record. even if they come from

actual transitions. The partial order is not ~xtended at the merge of

histories. because there are no negative claims anymore in the

transition record. All other things stay the same.

6 Conclusion

We presented a compositional semantics for the graphical specifica

tion/programming language Statecharts. as described in [HPPSJ. For

this. we had to define a proper generative syntax. The operators in

this syntax have simple graphical counterparts as well as a natural

semantics. The model extends the model of [HGR] to deal with broadcast

and. specifically. wi th the micro-step semantics of State-charts as

described in [HPS]. This is a subtle operational notion to deal wi th

the consequences of the synchrony of action and reaction. The

composi tional semantics does not model the micro-steps directly. but

records only the occurrence relationship between the micro-steps.

This work serves as a basis for extending the work of Hooman on

proof-systems for CSP-R [H] and that of Zwiers [Z].

References

[B] Berry G.. Cosserat L.. The Synchronous Programming Language
ESTEREL and its Mathematical Semantics. Seminar on Concurrency.
Springer-Verlag. LNCS 197. Science of Programming 1984.

[BG] Gerth R.. Boucher A.. A Timed Failures Model for Extended
Communicating Processes. Proc. ICALP 1986. LNCS 267. pp 95-114.
Springer Verlag. Berlin.

[DD] Damm W.. Dohmen G. (1987). An axiomatic approach to the
specification of distributed computer architectures. LNCS 258.
Springer Verlag. Berlin.

[H] Harel D.. Statecharts: A visual Approach to Complex Systems.
Science of Computer Programming. Vol.8-3. pp231-274. 1987.

[HGR] Huizing C .. Gerth R .. De Roever W.P .. (1987). Full Abstraction
of a Real-Time Denotational Semantics for an OCCAM-like language.
Proc. POPL 1987.

[Ho] Hooman J .. A compositional proof theory for real-time distributed
message passing. LNCS 259. pp 315-332 (1987).

[HP] Harel D .. Pnueli A .. On the Development of Reactive Systems.
Logic and Models of Concurrent Systems. K.R. Apt Ed .. Springer
Verlag. Berlin (1985). pp 477-498.

[HPSS] Harel D .. Pnueli A .. Pruzan-Schmidt J .. Sherman R .. On the
Formal Semantics of Statecharts. Proc. Symposion on Logic in
Computer Science 1987 (LICS). pp54-64.

[HU] Hopccroft J.E .• Ullman J.D .. Introduction to automata theory.
languages. and computation. Addison-Wesley. Reading. 1979.

[K&] Koymans R.. Shyamasundar R.K.. De Roever W.P.. Gerth R ..
Arun-Kumar S. (1986). Compost tional Semantics for Real-Time
Distributed Computing. Information and Control. to appear.

[LUSTRE] Bergerand J.-L .• Caspi P .. Halbwachs N .. (1985). Outline of a
real-time dataflow language. Proc. IEEE-CS Real-Time systems
Symposium. San Diego.

[M] Mazurkiewicz A .. Proving algorithms by tail functions. Information
and Control. 18. (1971). pp 220-226.

[SIGNAL] Le Guernic P .. Beneviste A .. Bournal P .. Gauthier T .. SIGNAL:

A Data Flow Oriented Language For Signal Processing, IRISA Report
246, IRISA, Rennes, France (1985).

[SM] Salwicki A., Klildner T., (1981), On the Algorithmic Properties of
Concurrent Programs, LNCS 125, Springer Verlag, New York.

[SW] Strachey C., Wadsworth C.P., Continuations: A Mathematical
Semantics for Handling Full Jumps, Technical Monograph PRG-ll,
Oxford University Computing Laboratory, Oxford.

[Z] Zwiers J., Composi tional i ty and dynamic networks of processes:
Investigating verification systems for DNP, Ph.D. Thesis to appear
in November, 1987, Eindhoven University of Technology.

A.I

Appendix

In [HPSS] the set of statecharts is not defined by a generative grammar.

but in a more direct way. We shall call these objects H-statecharts and

define the formal relationship between H-statecharts and the elements of

the set Stch, the expressions generated by the syntax as defined in

chapter 3.

Defini tion:

Let a set of states ~ and a set of labels Lab be given.

A H-statecbart is a qUintuple (S,p,t,o,T) where

S C ~ is the set of states;

p: 8 ~ 28 is the hierarchy function;

t: 8 ~ {AND,OR} is the type function;

0: 8 ~ 28 is the default fucntion;

T ~ SxLahxS is the set of transitions,

with the following restrictions:

(i)

(i i)

(iii)

+ V st8: s~p (8)

Vs I ,s2: s 1

V st8: o(s)

;ts2~P(sl)

+
~ p (s)

(iv) 3! rtS: p*(r) = S A V ttT: r~<t A r~t>.

(v) V st8: (3 xt8: Stp(x) A t(x)=AND) ~ V ttT: s~<t A s~t>
The set of H-statecharts is called HS.

Notation:

< A >
if ttT and t=(sl,I,s2)' then t=sl' t=l and t =s2'

o

* + where p and p are the reflexive resp. irreflexive transi tive

closure of p.

We define a function ~: HS ~ Stch as follows.

Let a=(S,p,t,o,T) be given.

Define a function g: 8 ... Unv that gives for each substatechart con-

A.2

sisting of a state and its interior the associated Unvollendete. Then

we can define:

~(a) = oCr) where r is the root state of a. i.e. V s6S: rEp(s).

Define Tr= {(t.s)eTxSl set>} U {(sl. s2)cSxSl s2eO(sl)}

TO= {(s.t)e8xTI se<t)

L: TO Uili

L(s.t) = t

Notation: if i e Tr and i=(t.s). then .> t> d
1 = an tr(i)=t;

if o e TO and o=(s.t). then < < 0= 0 and tr(o)=t.

Tr and TOwill serve as the set of incoming resp. outgoing transitions

for the Unvollendetes we are going to use. 8ince defaults are made out

of incoming transitions. we need some for these purpose.

Define an auxiliary function GpO 8 Unv

opes) = [r.0.8] with r = {(t.s)eTrl set>

and 0 = {(s.t)eTol se<t)

For U e Unv. define

Ine(U) = I if u=<r.o>

Outg(U) = 0 if U=<I.O>.

We need a function & i; 8 Unv that gives for each state the Unvoll

endete that should be associated to the interior of that state. It

depends on whether it is an AND-state or an OR-state.

We define & and 0i mutually recursively:

o(s) = .p(s) if p(s)=0 ;
&(s) = 8tat(& (s). 6.(s). (s.s·)) if pes) ~ 0.

p 1

with (s.s·) e Inc(o.(s» for some s';
1

The definition of •. (s) is the most complicated.
1

Let s e 8 be given and let pes) = (sl •.... sn). n>l.

Distinguish two cases:

(i) ,pes) = AND

Define a sequence of Unvollendetes A1 •...• An as follows:

Al = o(sl)

A.3

Aj = And{ Aj _1• '(Sj)' a j) for 2~j~n

and a j = {{i 1.i2)EI1xI2 ! SjEi
2

> A 3 l~k<j: skEil>}

and II = Inc{A j_1). I2=Inc(€(sj)}'

Then 'i(s) = An'

(ii) pes) = OR

Let U = Or(... Or(€(sl)' (s2» €(sn»

Let {t1 t n} = {tET! LCA(t) = s}. Here. LCA is a function

defined in [HPSS); LCA(t) gives the smallest state that encloses

transition t:

< > Let R = t U t . then LCA(t) = x iff

1.

2.

+ R ~ P (x)

Hx) = OR

3.
+ .. V sER: if ~(s) = OR then R ~ p (s} ~ XEP (s).

Define a sequence of Unvollendetes BO •.... Bn as follows.

BO = U

B
j

= Conn(B
j

_ 1 .0
j
.i

j
) for l~j~n.

where tr(i.) = tr{o.) = t ..
J J J

Then €. (s) = B .
1 n

TIR82.!

TIR83.1

TIR83.2

TIR84.1

TIR84.2

TIR84.3

TIR84.4

TIR85.1

TIR852

Available Reports from the Theoretical Computing Science Group

Autbor(s)

R. Kuiper,

W.P. de Roever

R. Koymans,
J. Vytopil,

W.P. de Roever

H. Barringer,

R.Kuiper

R. Gerth,

W.P. de Roever

R. Gerth

H.Barringer,

R. Kuiper,
A. Poueli

H. Barringer,

R. Kuiper

W.P. de Roever

O. Griinberg,

N. Francez,
J. Makowsky,

W.P. de Roever

Title

Fairness Assumptions for CSP in a Temporal

Logic Framework

Real-Time Programming and Synchronous

Message passing (2nd ACM PODC)

Towards the Hierarchical, Temporal Logic,

Specitication of Concurrent Systems

A Proof System for Concurrent Ada Pro

grams (SCP4)

Transition Logic - how to reason about tem

poral properties in a compositional way (16th
ACMFOCS)

Now you may compose Temporal Logic

Specifications (Proc. STOC84)

Hierarchical Development of Concurrent

Systems in a Temporal Logic Framework

The Quest for Compositionality - a survey of
assertion-based proof systems for concurrent

progams, Part I: Concurrency based on

shared variables (IFIP85)

A proof-rule for fair termination of guarded

commands (Inf.& Control 1986)

Classification

EUT DESCARTES

TIR85.3 F.A. Stomp,

W.P. de Roever,

R. Gerth

TIR85.4 R. Koymans,

W.P. de Roever

TIR85.5 H. Barringer,

R. Kuiper,

A. Pnueli

TIR86.1 R. Koymans

TIR86.2 J. Hooman,
W.P. de Roever

TIR86.3

TIR86.4

TIR86.5

TIR86.6

R.Genh,

L. Shira

R. Koymans,

R.K. Shyamasundar,

W.P. de Roever,

R. Gerth,

S. Arun Kumar

C. Huizing,

R. Gerth,
W.P. de Roever

J. Hooman

TIR86.7 W.P. de Roever

TIR86.8 R. Gerth,

A. Boucher

TIR86.9 R. Gerth,

W.P. de Roever

-2-

The Il-calculus as an assertion language for

fairness arguments (lnf.& Control 1987)

Examples of a Real-Time Temporal Logic

Specification (LNCS207)

A Compositional Temporal Approach to a

CSP-like Language

Specifying Message Passing and Real-Time CSN86/0l

Systems (extended abstract)

The Quest goes on: A Survey of Proof Sys- EUT-Report

terns for Partial Correctness of CSP 86-WSK-OI

(LNCS227)

On Proving Communication Closedness of CSN86/07

Distributed Layers (LNCS236)

Compositional Semantics for Real-Time Dis

tributed Computing (Inf.&Control 1987)

Full Abstraction of a Real-Time Denotational

Semantics for an OCCAM-like Language

A Compositional Proof Theory for Real

Time Distributed Message Passing

CSN86/08

CSN86/09

CSN86/1O

Questions to Robin Milner - A Responder's CSN86/II

Commentary (lFIP86)

A Timed Failures Model for Extended Com- CSN86/12

municating Processes; extended abstract

(lCALP87)

Proving Monitors Revisited: a first step CSN86/13

towards verifying object oriented systems

(Fund. Informatica IX4)

PE.OI

TRA-I-I(l)

TR.44(I)

TIR86.1O R. Koymans

TIR86.11 H. Barringer,

R. Kuiper,

A. Pnueli

TIR87.1 R. Gerth

TIR87.2 R. Kuiper

TIR87.3 R. Koymans

TIR87.4 R. Koymans

TIR87.5 F. A. Stomp,

W.P. de Roever

TIR87.6 J. Hooman

TIR87.7 C.Huizing,

TIR88.1

R. Gerth,

W.P. de Roever

R. Gerth,

M.Codish,

Y.Lichtenstein,

E. Shapiro

TIR88.2 F.A. Stomp,

W.P. de Roever,

S.Ramesh

-3-

Specifying Message Passing Systems CSN86/14

Requires Extending Temporal Logic

A Really Abstract Temporal Logic Semantics

for Concurrency (Proc. POPL86)

On the existence of sound and complete CSN87/0l

axiomatizations of the monitor concept

Enforcing Nondeterminism via Linear Time CSN87/05

Temporal Logic Specifications

Temporele Logica Specificatie van Message CSN87/06

Passing en ReaJ-Time System en (in Dutch)

Specifying Message Passing and Real-Time CSN87/07

Systems with Real-Time Temporal Logic

A correctness proof of a distributed

minimum-weight spanning tree algorithm

A Compositional Proof System for an CSN87/14

OCCAM-like Real-Time Language

A Compositional Semantics for Statecharts

Fully Abstract Denotational Semantics for

Concurrent PROLOG

A New Decomposition Principle for Verify

ing Distributed Algorithms, Formalizing their

Designer's Intuition

CSN87/l5

CSN87/2l

PE.02

PE.03

D4-l-2

D4-2-l

In this series appeared :

No. AuthoRs) Title

85/01 R.H. Mak. The fonnal specification and derivation of

CMOS-circuits

85/02 W.M.C.J. van Overveld On arithmetic operations with M-out-of-N-codes

85/03 W.J.M. Lemmens Use of a computer for evaluation of flow films

85/04 T. Verhoeff Delay insensitive directed trace structures satisfy

H.M.J .L. Schols the foam rubber wrapper postulate

86/01 R.Koymans Specifying message passing and real-time

systems

86/02 G.A. BUSSing ELISA, A language for fonnal specifications

K.M. van Hee of infonnation systems

M. Voornoeve

86/03 Rob Hoogerwoord Some reflections on the implementation

of trace strucrures

86/04 G.J. Houben The partition of an infonnation system in

J. Paredaens several parallel systems

K.M. van Hee

86/05 Jan L.G. Dietz A framework for the conceprual modeling of

Kees M. van Hee discrete dynamic systems

86/06 Tom Vernoeff Nondetenninism and divergence created by

concealment in CSP

86m R. Gerth On proving communication closedness

L. Shira of distributed layers

- 2 -

86/08 R Koymans Compositional semantics for real-time

RK. Shyamasundar disnibuted computing (Inf. & Control 1987)

w.P. de Roever

R. Gerth

S. Arum Kumar

86/09 C.Huizing Full abstraction of a real-time denotational

R. Gerth semantics for an OCCAM-like language

W.P. de Roever

86/10 J. Hooman A compositional proof theory for real-time

distributed message passing

86/11 W.P. de Roever Questions to Robin Milner - A responders

commentary (lFlP86)

86/12 A. Boucher A timed failures model for extended

R. Gerth communicating processes

86/13 R Gerth Proving monitors revisited: a first step towards

W.P. de Roever verifying object oriented systems

(Fund. Informatica IX -4)

86/14 R.Koymans Specifying passing systems requires

extending temporal logic

87/01 R. Gerth On the existence of a sound and complete

axiomatizations of the monitor concept

87/02 Simon J. Klaver Federatieve Databases

Chris F.M. Verbeme

87/03 G.J. Houben A formal approach to disnibuted

J. Paredaens information systems

87/04 T. Verhoeff Delay-insensitive codes -

An overview

87/05 R Kuiper Enforcing non-determinism via linear time

temporal logic specification

- 3 -

87/06 R. Koymans Temporele logica specificatie van message passing

en real-time systemen (in Dutch)

871m R. Koymans Specifying message passing and real-time

systems with real-time temporal logic

87/08 H.M.I.L. Schols The maximum number of states after projection

87/00 I. Kalisvaart Language extensions to study structures

L.R.A. Kessener for raster graphics

W.I.M. Lemmens

M.L.P van Lierop

P.I. Peters

H.M.M. van de Wetering

87/10 T. Verhoeff Three families of maximally nondeterministic

automata

87/11 P. Lemmens EldoradO ins and outs.

Specifications of a data base management

toolkit according to the functional model

87/12 K.M. vanHee OR and AI approaches to decision support

A. Lapinski systems

87/13 I. van der Woude Playing with patterns, searching for strings

87/14 I. Hooman A compoSitional proof system for an occam-

like real-time language

87/15 G. Huizing A compositional semantics for statecharts

R. Gerth

W.P. de Roever

87/16 H.M.M. ten Eikelder Normal forms for a class of formulas

I.C.P. Wilmont

87/17 K.M. van Hee Modelling of discrete dynamic systems

G.1. Houben framewOIx and examples

I.L.G. Dietz

-4-

87/18 C.W.A.M. van Overveld An integer algorithm for rendering

curved surfaces

87/19 A.I. Seebregts Optimalisering van file allocatie in

gedistribueerde database systemen

87f}.O G.I. Houben The R 2-Algebra: An extension of

1. Paredaens an algebra for nested relations

87m R. Gerth Fully abstract denotational semantics

M. Codish for concurrent PROLOG

Y. Lichtenstein

E. Shapiro

88/01 T. Verhoeff A Parallel Program That Generates the

Mllbius Sequence

88/02 K.M. van Hee Executable Specification for Information

G.l. Houben Systems

LJ. Somers

M. Voomoeve

&&/03 T. Verhoeff Settling a Question about Pythagorean Triples

	Abstract
	Introduction
	2. Informal introduction to Statecharts
	3. Syntax
	3.1 Transition Labels
	3.2 Unvollendetes
	4. Semantics
	4.1 Domain and semantic functions
	4.2 Semantics of transitions
	4.3 Semantics of Unvollendetes
	5. Discussion
	5.1 Full Abstraction
	5.2 Variables
	5.3 Other definition on causality
	6. Conclusion
	References

