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Abs1:rac1: 

We present a denotational. strictly syntax
directed. semantics for Statecharts. a graphical. 
mixed specification/programming language for 
real-time. developed by Harel [H]. 
This requires first of all defining a proper syntax 
for the graphical language. Apart from more 
conventional syntactical operators and their 
semantic counterparts. we encounter unconventional 
ones. dealing with the typical graphical structure 
of the language. The synchronous nature of 
Statecharts makes special demands on the semantics. 
esp. wi th respect to the causal relation between 
simul taneous events. and requires a refinement of 
our techniques for obtaining a denotational 
semantics for OCCAM [HGR]. The model presented will 
serve as a basis for a further study of 
specification and proof systems within the 
ESPRIT-project DESCARTES. 



1.1 

Introduction 

Statecharts belongs together with Esterel [B], LUSTRE [LUSTRE], SIGNAL 

[SIGNAL] and an unknown number of local industrial concoctions to the 

group of mixed specification/programming languages used in development 

of real-time embedded systems. 

Some of these languages (LUSTRE, SIGNAL, Ester.,!) have no internal 

notion of time. An external signal needs to be provided as a clock an 

the system can use it as it likes to, hence various various clock 

operations can be specified. The disadvantage of this approach is, that 

time constraints and other specifications w.r.t. the time are not 

clearly visible in the specification/program. Statecharts adopts the 

view that these specifications should be visible and hence has an 

internal notion of time. 

Statecharts adopts, like Esterel, the synchrony hypothesis as formulated 

by Berry [B]. This means that output occurs simultaneously wi th the 

input that caused it. If applied without care, this hypothesis can lead 

to causal paradoxes, such as events disabling their own cause. In 

Esterel, these paradoxes are circumvented by syntacticLy forbidding 

situations in which they can arise. In Statecharts, they are 

semanticaLLy impossible, because there the influence of an event is 

restricted to events that didn't cause it. The semantics of Esterel and 

Statecharts coincide in the situations that are allowed by Esterel. This 

restricted influence between events in Statecharts is modelled by 

applying a partial order on the events that occur simultaneously. This 



1.2 

order describes in which direction events influence each other. 

Another problem that arises in giving a composi tional semantics of 

Statecharts, is its graphical nature. For textual languages, defined by 

means of a proper syntax, it is clear what is demanded of a 

syntax-directed semantics. It has to be compositional (a homomorphism) 

with respect to the syntactic operators. For a graphical language, 

without a proper syntax, this is not so clear. 

We succeeded in defining a syntax of Statecharts that makes use of a 

restricted set of natural operators and primitive objects. These objects 

and the intermediate results of applications of operators slightly 

generalise statecharts, by allowing transitions to be incomplete i.e. to 

have no origin states or no target states yet. 

Some syntactic operators lack a clear counterpart in conventional 

languages. This is because in the graphical representation of 

Statecharts, the notion of area plays an important role, as it defines a 

hierarchy of states. Suhareas of states are associated with alternative 

activi ties or concurrent activities. Transi tions leaving a superstate 

influence the behaviour in all its substates (which are lower in 

hierarchy). This leads to a semantics in which it is possible to extend 

the behaviour of some subchart with the behaviour of the state that is 

put higher in hierarchy. 

Unlike Esterel, Statecharts doesn't have a restricted kernel of 

operations, in terms of which all other features 'are defined. The 

designers of Statecharts adopt the view that handy operations should be 

provided as long as they can be built in. As a consequence, we had to 
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study a restricted version of Statecharts. The next version of this 

paper will include the use of variables. 
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2. Informal introduction to Statecbarts 

We give a short description of the language Statecharts and an intuitive 

semantics. For a more basic treatment of this, one is referred to [H] 

and [HPSS], 

Statecharts is a formalism designed to describe the behaviour of 

reactive systems [HP]. A reactive system is a mainly event-driven 

system, continuously reacting to external and internal stimuli. In 

contras t to transformat ionn.l sys terns, that perform transf orma t ions on 

inputs thus producing outputs, reactive systems engage in continuous 

interactions, dialogues so to say, with their environment. 

Statecharts generalize Finite State Machines (FSM's), or rather Mealy 

machines [HU], and arise out of a conscious attempt to free FSM's from 

two serious limitations: the absence of a notion of hierarchy or 

modulari ty and the abili ty to model concurrent behaviour in a concise 

way. The external and internal stimuli are called events and they cause 

transitions from one state to the other. 

concepts now. 

States 

We introduce the basic 

In contrast to FSM's, states can be structured as a tree. We call the 

descendants in such a tree substates. A state can be of two types: AND 

or OR. Being in an OR-state implies being in one of its immediate 

substates, being in an AND-state implies being in all of its immediate 

substates at the same time. The latter construction describes 

concurrency. 
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Example I (see overleaf) 

In this picture. S is an OR-state with substates A and B. Being in state 

S implies being in A or B. but not in both. A.B and T have no substates. 

a and b stand for events that trigger transitions and c is a condition. 

These events are called primitive events. because they have no further 

structure. They can be generated outside the system. but also by the 

system itself. E.g. the transition from A to B is triggered when event a 

occurs and condition c is true. 

When the system is in A and event a happens. A will go to state B. but 

will stay in S. Whenever it is in A or Band b happens. it will go to T. 

The transition to A is a defauLt transition. When the system is in T and 

b happens. it will go to S and hence to A. 

Example 2 (see overleaf) 

Now. S is an AND-state with immediate substates A and B. A and Bare 

OR-states with substates Al and A2 resp. Bl and B2. Being in S implies 

being in A and B simultaneously. when the system is in Al and B2 (and 

hence also in A. Band S) and b happens it will go to BI and stay in AI' 

Now. if a happens. it will go simuLtaneousLy to A2 and B
2

. Notice also 

the condition in (B I ) on the transition from A2 to AI' This transition 

can only be taken if and when the system is in A2 and BI and event d 

occurs. 

Transitions 

In the examples above we used simple transi tions from one state to 

another like in FSM·s. 

They can be more complicated. however. going from a set of states to a 

set of states. 
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Example 3 (see overleaf) 

When the system is in A2 and BI and a happens. it will go to T. and in 

particular to G and DI . This is the general case. In this version of the 

paper. however. we don't allow transitions leaving more than one state. 

Notice the compound event on the transition from Al to A2 . Only when a 

and b occur simultaneously this transition will be triggered. 

Actions 

In the label of a transi tion one can specify some events that are 

generated when the transition is performed. This is called the action of 

a transition. These events take immediately effect and can trigger other 

transitions. 

Example 4 (see overleaf) 

When the system is in A. C and E and a occurs. a chain reaction of 

transitions will be performed. The transition in Tl will generate event 

d; this event will trigger the T2-transition. which on its turn will 

generate b and c and thus trigger the T3-transition. 

All transitions that are triggered by such a chain reaction are 

considered to happen at the same time. So in this example. the next 

state configuration after (A.C.E) is (B.D.F). But see the paragraph on 

causality. 

Events 

In general. the event in the label of a transi tion has the form of a 

logic proposition. using conjunction. disjunction and negation. In these 

formulae. one can use primitive events a.b.c .... but also the structured 

events enter(S) and eXit(S). denoting the event of entering resp. 

exiting state S. 
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Another structured event is the time-out event. The expression 

time-out(e,n) stands for the time-out of n time units on event e. A 

transition labelled with this expression will be triggered when the last 

occurrence of e was exactly n time units ago. One time unit stands for 

the time that it costs to take one transition or one chain reaction of 

transitions. In this version of Statecharts a specification should go 

with an additional specification relating time units and physical time. 

Events are instantaneous and transient of nature, such in contrast to 

the conditions, which represent a more continuous situation. E.g., the 

event enter(S) can only be sensed at the time uni t when state S is 

entered, but the condition in(S) is true throughout the time that the 

system is in the state S, in other words between the occurrence of 

enter(S) and eXit(S). 

Causality 

As already mentioned above, transi tions can trigger other transi tions 

and all these transi tions occur simul taneously. Together wi th 

possibility of negation of events and conditions, this can raise causal 

paradoxes. 

If a transition is labelled with aA~b, this transition will be triggered 

when a occurs and b does not occur. Suppose this transition generates 

an event that triggers another transition which, on its turn, generates 

b. All transitions in this chain reaction are considered to be 

happening at the same time. So b did happen and the first transition 

could not occur, hence the whole chain reaction did not occur, hence ... 

These kind of paradoxes are avoided by giving the following operational 

interpretation to chain reactions. 
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Every time step is subdivided into micro-steps. each of wich correspond 

to the execution of one transition. The events that are generated by a 

transition can only influence transitions in the following micro-steps. 

So in the example above. the T1-transition takes place in the first 

micro-step. triggering the T
2
-transition in the second micro-step. 

one generates the events b and c. but these cannot prevent 

This 

the 

T1-transition anymore. because the latter has taken place in a previous 

micro-step. 

We stress that the micro-steps have nothing to do with time. Their 

sequential occurrence is only related to the way they can influence each 

other - no order in time is implied. Maximal sequences of micro-steps 

are called macro-steps; a macro-step corresponds to one step in time. 

Here. maximal means that the sequence cannot be extended without 

additional input from the environment. Hence. in example 4 above. the 

sequence consisting only of the T1-transi tion is not maximal. because 

the T
2
-transition is still possible. 
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3 Syntax 

In this chapter we give" a non-graphical syntax of statecharts. Ac

cording to this syntax any statechart is built up from primitive objects 

and some operators. These operators have a natural relationship wi th 

the pictures. The intermediate objects to which the operators are 

applied are the so-called Unvollendetes. These are incomplete 

statecharts with transitions without source state(s) or target state(s). 

Two operators, concatenation and connection can tie these dangling 

arrows together, thus creating complete transitions. 

Concatenation makes a complete transition between two Unvollendetes, 

which can semantically be compared to sequential composition. Connection 

makes a complete transition within one subchart, thus possibly creating 

loops. 

In Statecharts, there are two types of states: the AND-type and the 

OR-type. Being in an AND-state means being in all of its immediate 

substates together, being in an OR-state means being in exactly one of 

its sub-states. Statification is the operator that builds such 

hierarchical structure in statecharts. It puts a subchart inside a 

primitive state, i.e. a state without substates, thus creating a 

structured AND- or OR-state. Semantically, it means executing the 

sub-chart inside, wi th the possibility of interrupting this execution 

when one of the (incomplete) transitions leaving the superstate are 

triggered. 

The Unvollendete that Statification puts inside a state is built by the 

operator Anding, if the surrounding state is an AND-state, or by the 

operator Orring, for an OR-state. Anding corresponds to parallel 
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composition in conventional programming languages. Orring can be 

compared to non-deterministic choice. 

Finally, Closure gives the events that are considered internal for the 

particular subchart, which means that they can only be generated by that 

statechart. Hiding makes the events that are generated inside a 

statechart or Unvollendete invisible to the outside world. Neither 

operator has a graphical counterpart in the language as defined in 

[HPSS]. 

In the Appendix we give the formal relationship between the objects 

generated by the syntax and the formal objects representing statecharts 

as defined in [HPSS]. 

3.1 Transition labels 

Before we give the definition of Statecharts itself, we need the 

defini tion of the labels that can be associated to transi tions. Let a 

set of elementary events E and a set of states! be given. e 

Define the set of primitive events E = E U {enter(S),exit(S) I Sc! } 
p e 

Definition 

The set of events E is recursively defined by 

A € E, the null event; 

e € E ... e € E; 
p 

e 1 ,e2 ~ Ep ... e 1 A e2 , e 1 V e2 € E; 

e € E ... _ € E; 

n € W\{O} , e € E, ... time-out(e,n) € E o 

Remarks: ~e is here considered as an event, in contrast to [S] where it 

is a condition. Semantically they are the same, Le. we also have the 

"not yet" interpretation. 
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We abbreviate enter(S). exit(S) and time-out(e.n) by resp. en(S). exeS) 

and tm{e.n) 

tm{e.n) means: time-out of e after n seconds. 

Defini tion 

The set of conditions C is recursively defined by 

true. False" C; 

c
l
.c2 "C ~ c l A c2 • c l V c2 "C; 

c " C ~ -.c " C; 

s " }; ~ in(S) " C 

Defini tion 

o 

The set of actions A is recursively defined by: 

~ € A. the null action. 

e € E ~ e € A. 
p 

a
i 

€ A for i = l •...• n ~ al •...• an € A 

Definition 

Lab = {e[c]/a I e € E. c " C a € A}. 

o 

If e = A. c = true. a =~. we often omit that part of the label. c 

3.2 Uovolleodetes 

In order to explain the syntax we introduce the notion of incomplete 

statechart or Unvollendete. abbreviated as Unv. This is a statechart in 

the process of being built up. It differs from a complete statechart in 

that it need not have a unique root-state and that it may have so-called 

incomplete transitions. Incomplete transitions are transitions either 

without source or without target state{s}. These transitions are 

pictured as dangling arrows. Any statechart can be broken up into 

Unvollendetes and in chapter 4 we will give the semantics of these 



3.4 

Unvollendetes. Syntactically. an Unvollendete is anything that can be 

derived from a non-terminal. 

Non-terminals 

The non-terminals of our syntax are not plain symbols. but they have a 

structure of there own. They have the form 

<1.0>. 

where I is a set of incoming transitions (incomplete transitions without 

source states) and 0 is a set of outgoing transi tions (incomplete 

transitions without target states). Every derivation rule in the syntax 

must be considered as a scheme of rules. one for each appropriate choice 

of these sets. 

Terminal symbols 

The terminal symbols are the operators. as usual. and the so-called 

primitive statecharts. These are Unv's without any complete transition 

and consisting of only one state. They are denoted by 

[1.0.8] . 

where I and 0 are as in the non-terminals and 8 is the name of a state. 

Definition 

Let TI be the set of all incoming transitions ranged over by i •... ; let 

TO be the set of all outgoing transitions. ranged over by 0 ••.. ; 

TIn TO = f1l 

Let E C Ee U};. I •... C TI and O •... C TO and L: TO -+ lBb 

Then the set of Unvollendetes is defined by 

Unv = {UI 3 ICTI , OCTO: <1,0> ~ U } 

and the set of 8tatecharts by 

8tch = {V I B ~ V } 
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and ~ is the derivability relation for the following set of rules: 

B ~ Stat([I1.01.A] . <{t} . 0> . t ) 

«II U I 2),{t2} . (01 U 02),{t1}> ~ Conc«Il·0l>·tl·t2·<I2·02» 

with tl~OI and t2~I2 

<I,{t2} . 0,{t1}> ~ Conn«I.O>.t1·t2 ) 

with tl~O and t2~I 

«11 U I 2 ),{t} . 01 U 02> ~ Stat([I1.01.A] 

wi th t~I2 

«11 U I2)\{u1.···u2} • 01 U 02> ~ 

And«Il·0l>·<I2·02>·(tl·ul)·····(tn·un}» 

<II U 12 • 01 U 02> ~Or«Il·0l>.t2.<I2.02» 

<I 0> ~ Close«I.O> • E) 

<I 0> ~Hide«I.O> . E) c 

Explanation of the operators 

Concatenation (Conc(U1.t1.t2 .U2 » 

By concatenation. two Unvollendetes are "sequentially composed". An 

outgoing transition of U1 (t1) is connected to an incoming one of the U2 

(t2). thus creating a complete transition. (See fig. 3.1. overleaf) 

Connection 

Connection only differs from concatenation by taking only one chart and 

making the new transition somewhere inside. In fact we don' t need 

concatenation 1f we have connection and orring (see below). but from the 

semantic point of view. concatenation is more baSic. (See fig. 3.2. 

overleaf) 
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Statification Stat(Ul , U2 , t) 

This is the hierarchy operator; it has no counterpart in conventional 

progranuning languages. It puts an Unvollendete (U2 ) inside a state A 

(the state of a primitive Ul)' An explicitly mentioned transition from 

U
2 

(t) becomes the default of A. (See fig. 3.3, overleaf) 

Anding 

Anding in Statecharts is the parallel composition in conventional 

progranuning languages. Two Unvollendetes are put in parallel. At a 

later stage, they will become orthogonal components of an AND-state. 

Anding is a binary operator, so if there are to be more than two 

orthogonal components, it must be applied repeatedly. The semantics 

counterpart of Anding is associative. Our syntax is more liberal than 

that of [H'J, since it does not prescribe that an orthogonal component 

must have a unique root state. In the first picture you see a 

derivation of an AND-state wi th this restriction of [HPPSJ and in the 

second picture you see a derivation of an AND-state that does not 

satisfy this restriction. (See fig 3.4, overleaf) 

Orring 

This is the counterpart of Anding, it puts some subcharts together in 

non-orthogonal composi tion, wi th the intention of stat1fication by an 

OR-state. It can be compared to non-deterministic choice. (See fig. 3.5, 

overleaf) 

Closure 

In [HPSSJ, the set of primi tive events is divided into internal and 

external events. External events can be generated outside the statechart 
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itself. internal events cannot. For a compositional semantics this 

distinction is not useful. because events that are internal to the 

complete statechart. can be external to some subchart. 

Therefore. we introduce an operator that declares some events internal 

to a subchart. This is not hiding and these events are still observable. 

Hiding 

The hiding operator makes the specified events invisible for the outside 

world. 
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4 &.mUcs 

This chapter presents a denotational semantics of statecharts or rather 

of Unv·s. This semantics is compositional (syntax-directed) with regard 

to the operators defined in chapter 3. 

The maximality of the sequences of micro-steps in chapter 2 corresponds 

to the notion of maximal parallelism as modelled in [HGR.GB] (see also 

[SM]). The techniques of those papers also apply here. 

As Statecharts describes a set of state configurations (as any digital 

system). a discrete model of time is adequate. Since it is intended to 

make global time specifications. we use a global notion of time. The 

simplest domain that gives us these properties is IN. but for reasons 

that will be explained later. we use I. 

4.1 n.-in and seaantic functions 

At first sight. Statecharts are qui te different from ordinary 

programming languages. Simplest to characterise are sequential languages 

without jump-like constructs. Once jumps enter the picture we have to 

abandon the idea of giving state transformations for each command in 

isolation. Traditionally. this is solved using the idea of continuations 

[SW.M]. 

It is our aim to give a compositionat semantics of Statecharts. The 

semantics of [SW] is only given for full program blocks in which all 

labels of gotos appear. In our solution jumps (transitions) are made in 

two stages. In the first stage we have only half jumps. in which the 

place where we are jumping to or where we come jumping from is not 
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specified. These are the incomplete transitions in the syntax. 

In the semantics. we record the behaviour of a subchart only between 

such jumps. And we specify for each history the incomplete transition by 

which it starts and by which it ends. This specification is just the 

syntactic identification of the transition. 

In the second stage. by concatenation or connection these half jumps are 

made into full jumps by identifying an incoming and an outgoing 

transition. Now we can also give the full semantics of the jump. as we 

know where we corne from and where we go to. This semantics is just the 

concatenation of the history that ends in one halt of it and the histor:' 

that starts with the other half. In case of connection. loops can arise. 

since we jump to the same subchart. Consequently. the semantics of this 

construct will be characterised by a fixed-point equation. 

Now there is a difference between gotos in conventional languages and 

transitions in Statecharts. namely in Statecharts the place where a jump 

can occur is not completely syntacticly determined. Transitions from a 

superstate can be triggered when execution is anywhere inside that 

state. Our solution is giving two options at any moment during execution 

inside a state: exi ting by the outside transition or continuing the 

history generated by the semantics of the interior of the state. 

The semantic domain. 

The semantics of a (incomplete) statechart. i.e .• its denotation. will 

be a set of histories. each history corresponding to one possible 

execution. 
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The set of histories, ~, is defined ~ 

~ = T U {*} x (Z ~ C) x T U {~}, where T is the set of edge-identifiers 

(transitions) and Z~ denotes the set of partiaL functions with 

indicated domain and codomain. 

A history consists of three components. The first component is the 

incoming transi tion of the chart by which the execution starts, the 

third component ei ther equals the outgoing transi tion ~ which the 

execution ends, or equals "~" in case of an incomplete computation. It 

is possible that there is no starting transi tion, indicated ~ "*". This 

is the case when we have the root state of the complete statechart, or a 

component of an AND-state that can be started implicitly by an incoming 

transition of another component. 

The second component of the history is a partiaL function that 

associates to each time unit, a so called clock record. 

Execution starts at time uni t 0 and ends at the last time uni t where the 

function is defined. The records associated to negative time values 

contain information about the past, i.e. before the execution of this 

subchart started. 

time-out events 

Notation: 

We will need this to describe the occurrence of 

o if feZ ~~ then If I = max ({ilf(i) is defined} U {-I}} + 1 

Ifl-l is the time on which the outgoing transition, 1£ there is 

one, of this execution occurs. 

o A e Z ~ C is the function that is nowhere defined; we defined If I 

in such a way, that IAI = o. 

o the shift operator changes the time in a history: 

shift(f,j}(i+j) = f(i} 

Ishtft(f,j)1 = Ifl+j 
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In order to use fixed-point definitions, we impose the structure of a 

complete partial order (cpo) on our domain. We use a standard technique 

as explained in [K&] by defining the Hoare order on prefix-closed sets. 

We distinguish extendable and ftntshed computations. Extendable 

histories correspond to incomplete computations and are charaterised by 

a bottom outgoing transition (1). We define the following partial order 

on histories: 

Defini tion: 

(t l ,f,t2 ) ~ (ti,f',t2) iff 

tl=ti A (t2=l V t 2=t2) A Ifl~lf' I A vi<lfl: f(i) = f'(i) 

If hl~~ we say that hI is a prefix of ~. 

Defini tion: 

o 

a set of histories H is prefix-closed iff~: h'~h ~h'eH 0 

So we define our semantical domain: 

Defini tion: 

ID = {HQHI H is prefix-closed} 

1m dJ 

Theorem: 

(ID'~'1m) is a cpo. 

Proof 

Standard. 

o 

o 

We define a function that turns a set of histories into the smallest 

prefix-clodsed set that encloses it: 

Definition: 

If H is a set of histories, then 

IfL = n{H'1 HgI'. H'1s prefix-closed} o 



4.5 

Before we describe the structure of C, we explain the elementary 

semantic records. 

1. lR = {a! I a € E } 
P 

a! records the fact that event a did happen at a particular time 

uni t. 

2. W = {a,a I a € E } 
p 

a and a are cLaims that event a did resp did not happen at a 

particular time. They occur in the semantics of a component that 

can be influenced from. outside by the event a. a means: the 

occurrence of event a is necessary for the described behaviour, a 
means: the occurrence of event a is prohibitive for the described 

behaviour. 

Now we can define the set of clock records, C: 

W U JR _IF 
C=2 xlJ'x:G, 

where ~ denotes the class of subsets of A. 

The first component of a clock record is a set of records and claims 

that are associated to the transitions that were taken at this time 

unit. The records give the events that are generated by these 

transi tions and the claims give the events that are necessary resp. 

prohibitive for these transitions to happen. We call this component the 

transition record. 

Unfortunately this information is not sufficient. A transition can 

influence other transitions of the same time step - by triggering them 

or by preventing them from being triggered. This influence, however, is 

restricted. A transi tion can only influence the transitions that oc-

curred in "later" micro-steps. This is the way causal paradoxes are 

avoided. 



o 
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We have to record this restricted influence too. This leads to the 

following additional information. 

A partial order on the sets of records that are generated by the 

transitions representing the way they can influence each other. E.g 

if tl causes t 2 , then we have tl ~ t 2 . This means that t2 can never 

influence transitions t3 with t3 < t l . These relationships can also 

arise from negative causes: if tl prevents t 2 , then we also have 

t2 < t
l

, because that is the only way they can occur in the same 

time step. 

Example (see fig. 4.1) 

If tl and t2 occur simultaneously, we have t1 < t 2 · This means that 

t2 can not trigger tl even though it generates b. The trigger of t1 

has to come from somewhere else. 

This information is represented by a labelled partial order. Each node 

represents a transition and is labelled with the corresponding sets of 

events and claims. 

Definition 

A labelled partial order (lpo) on S is a triple 

(V,<,e), where 

V is a set of vertices 

< is an irreflexive partial order on V 

e: V ~ 2s is a labelling function. 

Notation 

A = (0,0,0) is the empty order 

1(S)= ({v},0,e) where e(v) = S; this is the trivial one-node order 

on S. 
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In the sequel we assume that the node sets of two Ipo' s are always 

disjoint. __ 

So the second component of a clock record is a labelled partial order on 

the transition records 

W = {(v,~,e)1 e: V ~ 2muR} 

The third component, called the global record, contains the claims that 

are not associated to a particular micro step but to the complete 

macro-step. They are not associated to an action performed at the 

present time step and hence they are not associated to the influence 

relation of the transition record. They can arise from: 

1 The maximali ty constraint: the sequence of micro-steps that is 

performed as a macro-step must be maximal in the sense that no 

additional transitions are possible. These claims give the 

conditions on the environment that indeed no additional transitions 

are possible. 

2 Time-out events of future transitions: performing a transition with 

a time-out event in its label lays some claims on the macro-steps 

in the past. The event must have taken place a specified number of 

time units ago and may not have taken place since. 

3 Conditions of the form In(S) on future transitions: this condition 

is only true if the state S was entered some time ago and not left 

since. 

4.2 Semantics of transitions 

Before we define the semantics of subcharts, we define a function that 

gives the semantics of transitions. When the system is in some state, it 
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can do two things with respect to a transition leaving that state. It 

can 

a) either take the transition; this means that the event expression 

in the label of the transition should be satisfied and that some 

events are generated in accordance to the action part of the label. 

b) or stay in the state; this means that the event-expression of 

the transition should not be satisfied. 

The history corresponding to a) is produced by the function ~, the 

history corresponding to b) by W. 

First we define a restricted version of ~ on event expressions. 

This function yields a simple kind of histories that gives the 

conditions on the environment that cause a transition with this 

event-expression to be triggered. This involves conditions on the 

present, i.e. the time the transition takes place (time 0) and 

conditions on the past (time -1. -2, etc) The latter in the case of 

time-out expressions. 

We assume that these expressions are in disjunctive normal form: 

e - y 1 Pij' where Pij is of the form a or ~, with 

a € E U {A'X} U {tm(e' ,n),~tm(e' ,n) I neIN, e' in normal form} 
p 

EN is the set of the normal form expressions. 

Assume that the function N:E .... EN brings a propositional formula into 

the logically equivalent normal form. 

In the following definitions of sets of partial functions we assume that 

these functions are only defined where their values are specified. 
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Defini tion 

Z-+Rec !FUIR 
~:EN -+ 2 where Rec = 2 • is defined recursively: 

~(a) = {f I f(O) = {a} } for a € Ep' 

~(~) = {f I f(O) = {a} } for a € E . p 

~(~) = {f I f(O) = 0} 

~ is the null event. the event that always occurs. 

-v.. never occurs 

~(e1 A e2 ) = {flO f2 fi € ~(ei)} 

e.g. ~(a A b)(O) = {{a.b}}. 

Here. 0 stands for the point-wise union. i.e. 

(flO f 2)(i) = fl(i} U f2(i) if both are defined. 

= fj(i) if only fj(i) is defined. 

= undefined otherwise. 

~(el V e2 ) = ~(e1) U ~(e2) 

e.g. ~(a V b)(O) = {{a}.{b}} 

Thus far. the function ~ produces only claims for one time step of 

execution. For the time-out expression. however. some claims about the 

past have to be made. 

~(tm(e.n» = {shift (fOA ... Afn.-n) I Vi: Ifi I s: 1 A 

fO € ~(e) A 

V O<i<n: fi € ~(N(~e» A fnc ~(~)} 

~(~tm(e.n» = {shift(fOA ... Afn) / Vi: Ifi/ s: 1 A 

[fO € ~(N(~e)} V 3 O<i<n: (fi € ~(e»] A fn c ~(~)} a 

Here the f1Af2 denotes concatenation: the present of f2 starts where £1 

ends and the pastime of £2 is combined with f1 

o f1Af2 = fl 0 shtft(f2' If 1 /)· 
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A time-out expression tm(e,n) is satisfied if the last occurrence of e 

was exactly n time steps ago. This is expressed by f(-n) = ~(e)(O). (e 

occurred n steps ago) and by f(i) = ~(N(~e»(O). (e didn't occur later, 

i.e. the occurrence at -n was the last occurrence). We have decided that 

it doesn't matter whether e occurs at the time of the time-out, hence no 

claims about the present are made (f(O) = 0). 

The semantics of conditions is defined as follows: 

'€: C ... ifL~ec 

'€(true) = {fl f(O) = 0} 

'€(fntse) = 0 

,€(c1 A c2 ) = {flO f2 I fi ~ ,€(ci )} 

'€(c1 V c2 ) = ,€(c1) U '€(c2 ) 

,€(tn(S» = {fl 3 n~O: fen) = {en(S)} A V n<i~O: f(i) = {;XeS)} } 

,€(~in(S) = {fl V n~O: fen) = {en(S)} V 

[3n~0: fen) = {exeS)} A V n<i~O: f(i) = {en(S)}] } 

In other words, the system is in the state S if it entered S 

some time ago and has never left it afterwards; the system is 

not in the state S if it never entered S or has left it some 

time ago and never entered it afterwards. 

The semantics of actions is as follows: 

deal = {all for a E Ep 

d(al ;a2 ) = deal) U d(~) for a 1 ,2 E A 

d(j.L) = 0. o 

Now we can extend the domain of ~ to the set of complete labels, Lab, 

and we extend the codomain to sets of functions in Z ... ~. 



'5 : Lab .... ll. .... a:: 

'5(e[c]/a) = 
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(f 3 fl € '5(N(e», f2 ~ ~(N(c»: 

f(i) = (0,A,f
1
(i)Uf2(i» for i(O, 

f(O) = (f 1(0) Uf2(0) U ~(a),1,0)} 

W gives the conditions on the environment that prevents the transition 

from being triggered: 

W: Ex C .... 2 
Z .... a:: 

W(e[c]) = {fl 3 fl€'5(N(~», f2~~(N(~»: f(i) = (0,A,f1(i)Uf2(i», 

for all i} 

4.3 S ntiCs of Unvollendetes 

A basic semantic notion is the merge of two clock records. Whenever the 

histories of two charts are combined (Anding, Statification, 

Concatenation), for each time unit the associated clock records should 

be merged. This means unifying the transi tion records and the global 

records. Unifying the partial orders, however, is not enough. 

New relationships should be added between transitions that can prevent 

one another. Hence the merge of two clock records is defined as 

follows. 

Defini tion: 

Then we define 

f 1(i)lIf2(i) = 

((t,p,,,) I t = tl U t 2 , " = "1 U w2 

V a € w: a ~ t A a! ~ t, 

< = <lU<2U<' is a p.o., where <' is defined by 

V v 1 ,v2 € V: a € VI A(a € V2 Va! € v2 ) .... v1<'v2 ' 

p= (VI U V2 ,<,21 U 22) } 
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and the merge of two histories: 

fl11f2 ~ 

{fl Ifl~lfjl A f(lfjl-1)~fj(lfjl-1) 

AVi<If.I-!: 
J 

f(i) € f1(i)lIf2(i)} if Ifjl<lf3_jl or Ifll=lf21='" 

~0 if Ifll ~ If21 <'" 0 

We define the concatenation of two histories as follows: 

The existence of an irreflexive. transitive partial order with this 

property guarantees the consistency of the merge. E.g. the transitions 

labelled ~ and ~b/a can never be taken in the same time step. 

Suppose f 1(0) = ({a.b!}.1.0) 

and f 2 (0) ~ ({b.a!}.1.0) 

then f Il1f 2 = 11!. 

Note that there is at most one minimal order with the desired 

properties. 

We define the semantic function 

!/l: Charts .... ID 

by induction on the structure of Charts. 

Primitives 

A primitive has only one state and no complete transitions. Hence. all 

possible executions consist of some incoming transition. waiting in the 

state and some outgoing transition. Incomplete executions have no 

outgoing transitions (but a ~ instead) and the case that the state is 
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never left is expressed by having arbitrary long incomplete executions. 

The semantics of the outgoing transition is given by the function~. the 

semantics of the waiting is given by". Since this waiting is only 

allowed if none of the outgoing transitions can be taken. it claims that 

one of the events e 1 ..... en does not happen or that one of the 

conditions c 1 ..... c is not true. where the e.[c.]/ai are the labels of 
nIl 

the outgoing transitions. 

No semantics is given for the incoming transition. only an 

identification. In a later stage. this transition will be connected to 

an outgoing transition of another (or the same) chart. There. this 

outgoing transition will have a semantics. 

!/l([I.O.S]) = 

{(u.r.V) I u € I U {*} A v € a U {L} A 

(3 f i : [ f = faA f 1
A ... Af n A 

([v¢L A 3 f'~(L(v»: f = f' Inrlf' (n)+ex(S) !] 
n 

V [v=L A fn~W]} A 

V O<1<n: f .~W A 
1 

3 f": f"~W A fO= f"I-1-+f"(-1)+en(S)! ]}CL 

where L(O) = {e1[c1]/a1 ..... en[cn]/an}. 

and W = "(e1V ... Ven [c1V ... Vcn]); 

the +-operator on clock records is defined by: 

(t.P.w) + a = (t U {a} . p • w); 

fl~ is the notation for function substitution: 

(f In-oe)(m) = e if m=n 

= f(m) otherwise. 
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Remember that, if 0=0, then e = ~X. 

In this definition, we see that for each time-step in the execution a 

history is generated and these histories are concatenated. Note that 

they all have length I, since they are generated by W and ~. 

Although all histories are of finite length we can wait forever in this 

state. This is represented by an infinite chain of histories that have 

no outgoing transition, but L. 

Concatenation 

In the concatenation of two subcharts, new computations become possible. 

E.g., by entering the first chart, performing a computation that ends in 

the connecting transition, entering the second chart by this transition 

and performing a computation there. In our semantics, this corresponds 

to simply concatenating the histories from the first chart and those 

from the second chart that end resp. start with the connecting 

transi tion. 

It is still possible however, to perform a computation in one of the 

charts in isolation, provided that it doesn't start or end with one of 

the connecting transi tions, because these are no entering or leaving 

points anymore. 

Hence, the semantics of the concatenation of two subcharts consists of 

the concatenation of their respective histories together with their own 

histories, from which the histories that start or end in a connecting 

transition are deleted. 
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~(conc(Ul,tl,t2,U2}) = 

a. 
deletetlt2(conc~(~(Ul}'tl't2,~(U2}}} 

where delete t (D) = {(u,f,v}l(u,f,v) € D A u,v £ {t1,t2 }} 
t l , 2 

and conc~(Dl,tl,t2,D2} = 

{(u,flAf2,v}l(u,fl,tl) € Dl A (t2 ,f2 ,v) € D2} U D1 U D2 · 

Connection 

Since connection creates a transi tion from a chart to itself, it can 

involve repetition. 

Definition 

~(QQllll(U,t1,t2}) = 

delete t t (~.conc~(~(U},ti,t2'X}}a., 
l' 2 

where ~ is the least fixed-point operator 

Anding 

o 

Anding two charts means executing them in parallel. As we have real-time 

maximal parallelism, this means merging the clock records that apply to 

the same time unit. The entering is either explicitly in one component 

and impl1ci tly in the other one, or by a forked transi tion that is 

syntactically specified. 

~(And(Ul,U2,{(tl'Wl),···,(tn,wn)})} = 

{(u,f,v}1 3 (ui,fi,vi ) E ~(Ui): 

(u = u i A u3- i = *) V (u = vj A u l = tj A u2 = wj ) 

A[(lfll<lf21 A v = VI} 

V(lf21<lfll A v = v2 )] 

A f € f 1 1/ f 2} a. 
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Here, vi' ... 'v~ are the new transitions that replace resp. 

Statification 

~(Stat(Ul,U2(d» = 

{{u,f,v)1 3 (ui,fi,vi ) € ~{Ui}: 

(u = u 1 A u2 = d) V (u = u2 A ~ ¢ d) 

A[(lfll<lf21 A v = vI) 

V{ If 21 < If 11 A v = v2 )] 

A f € fIll f2}Q. 

There are three ways to start the execution of a state wi th inner 

structure. 

1) take a transition explicitly to some states inside; this is 

represented by the case u = u2 A u2 ¢ d in the definition above. 

2) take a transition to the outer state and enter some staters) inside 

by default; this is represented by the case u = u 1 A u
2 

=d. 

3) enter the outer state implicity and enter some staters) inside by 

defaul t: this has the same representation as 2). The impl ici t 

entrance is represented by u1 = *. 

Executing a state wi th inner structure means executing the structure 

inside and always being prepared to stop the execution when an outgoing 

transition of the outer state is triggered. 

This corresponds to the parallel merge II of the histories of the chart 

inside and of those of the outer state. "Being prepared to stop the 

execution, etc" just means adding the waiting claims of the outer state 

to the history and these wai ting claims is what the histories of the 

outer state are built from. 
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One can leave the execution of a statified chart either by a transition 

from the outer state (v = VI) or by a transition from the inside chart 

(v = v
2

), but never by taking them both. 

1bat is why the two histories that are merged cannot have the same 

length, unless both are infinite and the chart is not left. 

When the statified chart is left, all execution is stopped. This 

corresponds to the deletion of the records from the longer history that 

are associated to time units after the time of the leaving transition. 

We also delete records that are associated to the ~ time unit as when 

the leaving transition takes place. These records come from transitions 

that should occur simultaneously with the the transition that leaves the 

complete subchart. It is clear that these transitions are not possible. 

These records also contain information about the waiting at that moment. 

If we should preserve this information, it would mean that it is not 

allowed to leave a subchart as long as internal transitions are 

possible. This doesn't seem to be a very reasonable semantics. 

Closure 

There are two ways of closing a statechart. One way is closing for 

events and one is closing for states. When a statechart is closed for a 

set of events, this means that these events can now be discarded because 

claims on the occurrence of events can now be justified. In the 

semantics this means that we check for each time record in each history 

if there exists a legal influence ordening between the transitions that 

gives each internal event a cause. 

Closing a statechart for a set of state(names) is obtained by clOSing it 
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for the set events of the form en(S} and exeS) for every state S in the 

set of states. 

Let f(i} = (t,p,w) and p = (V,<,~) 

Then we define 

Cl(f(i),E) = {(t',p',w')IV a € wf)E: a! € t 

and 

A 3<': <' is a minimal p.o. on V s.t. 

< C <' A 

V VI € V: a € VI ~ 

3 v2 € V: a! € v2 A v2 <' vi 

A p' = (V,<',~tt') 

A t' = t'{a,al acE) A w' = w'{a,al acE} 

A f(i) = (t,p,w) } 

Cl(f,E) = {f'IV i: f'(i) € Cl(f(i),E)}. 

Here, ~tt' stands for ~ with a restricted codomain: 

(~tt')(v) = ~(v) n t'. 

Then 

!1!(Close(U,E» = 

Hiding 

{(u,f,v)1 3 (u,f',v) e !1!(U) A feCl(f',E')}. 

where E' = (E n Ep) U {en(S),ex(S)I SeE} 

Hiding some events in a statechart from the outside world is only 

consistent when the statechart is closed for these events. Hence the 

hiding operator first closes the statechart for the specified events and 

then deletes all occurrences of them from the histories. 
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Let f(i) = (t,p,w) and p = (V,<,l) and t' = t'{a! la£E} , then define 

and 

Then 

Hi(f(i),E) = (t' , (V,<,~tt') , w) 

Hi(f,E) = f' iff Vi: f'(i) = Hi(f(i),E} 

W(Hide(U,E» = 

{(u,f.v) I 3f'~Ct(f,E): f = BtU' ,E')} 

where E' = (E n E ) U {en(S),ex(S)I S ~ E}. 
p 
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5 Discussion 

In this chapter we discuss the problem of abstraction of the semantics. 

the future extension of statecharts with variables. and a possible other 

definition of the semantics with respect to causal ity between 

micro-steps. 

5.1 Full Abstraction 

The presented semantics records many properties of a statechart that we 

are not directly interested in. but are necessary to define a 

compositional semantics. The properties we are interested in anyway is 

called the observable behaviour. The decision what is observable and 

what not is in principle a free one. Here we adopt the reasonable 

choice of all (not hidden) occurrences of events. related to the time of 

their occurrence. In other words. all records of the form a! in the 

histories are observable. but claims of the form a or a and the partial 

ordering are not. Now we intend to make our semantics fully abstract 

w.r.t. this notion of observable behaviour. As usual. this means that 

two programs only have a different semantics if there is a syntactical 

context in which they have a different observable behaviour. In a 

formula: 

VP.Q: W(P)~(Q) ~ 3C: O(C(P»¢O(C(Q» 

where 0 associates to each statechart its observable behaviour and 

C is a syntactical context. a statechart wi th a hole in which 

another statechart can be plugged in. thus yielding a complete 

statechart. 

The reader is referred to [HGRJ for further details. 
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We can find many statecharts for which this implication doesnot hold. 

E.g., in fig. 5.1, P and Q have different semantics, but they will 

behave equally in any context. The only difference between P and Q -

the extra claim b in one transition record of some histories of ~(P) -

is irrelevant, because this claim is already fulfilled due to the 

presence of b! in the same transition record and its precedence in the 

partial ordering. 

More examples of this redundancy of claims within a particular history 

can be found. These redundancies can easily be removed by changing the 

definition of the merge ( /I ) of two histories. Here, the information 

that becomes redundant due to the added information (empty labelled 

nodes and identical nodes in the partial ordering, fulfilled claims) 

should be removed. 

A more complicated kind of redundancy occurs between the histories of a 

particular denotation. E.g., in fig. 5.2, P and Q have different 

semantics, but cannot be distinguished observably by any context. The 

history h with h(O)=({a.,b},1.0) in !Il(P) is not present in !Il(Q) , but 

cannot influence the observable behaviour in any context, because any 

behaviour the history h can generate, can be generated by one of the 

histories of D(Q) - and vice versa of course. 

In [HGR] and [GB], a technique is presented to make comparable models 

for real-time languages fully abstract. This technique can also be 

applied here and this will dissolve the kind of redundancy described in 

this example, but not the one shown in fig. 5.3. 

It is quite clear that there does not exist a context that can 

distinguish P and Q observably. Whether a occurs or not, the system 
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will go from S to T. Yet they have different semantics: some histories 

of !D(P) contain an empty transi tion record and these do not occur in 

!D(Q) . 

To remove this kind of redundancy we now study a generalisation of the 

technique used in [HGR.GB]. 

5.2 Variables 

The full version of this paper will include the use of variables in the 

labels of transitions (in conditions and in actions as assignments). 

This will not involve an essential extension of the model. The same 

technique used for the condition in(S) can be applied here. All changes 

to variables are signalled in the form of events and the satisfaction of 

conditions is checked by an inspection of the history. 

5.3 Other definition on causali~ 

In the semantics of [HPSS]. the influence of a transition is restricted 

to the transitions that follow it in the sequence of micro-steps 

building the macro-step. In our compositional semantics. this is 

modelled by the partial order in the clock record. This solves the 

causal paradox of the transition annulating its own cause (see fig. 

5.4). but this solution is not fully satisfactory. E.g .. a transition 

labelled -.a can always be taken. even if a happens during that time 

unit. (It only differs from a transition labelled A in that it need not 

be taken when a happens.) Furthermore. the semantics depends heavily on 

the relative order in which the micro-steps occur. whereas the 



5.4 

micro-steps are definitely not observable - they are only introduced to 

solve the causal problems. 

A new version of the operational semantics is under study by Pnueli 

and others. in which gLobaL contradictions are not allowed. A global 

contradiction occurs when two transitions with conflicting labels take 

place in the same macro-step. E.g .• a transition labelled ~ can never 

take place in the same macro-step with a transition labelled ... /a. even 

if the latter occurs in a later micro-step. This leads to a simpler and 

more intuitive semantics. The main drawback. however. is that causal 

paradoxes such as the one in fig. 5.4 now lead to a run time error. 

There is no acceptable behaviour anymore to associate to these 

situations and there is no way to detect them syntactically. 

We can eaSily adapt the compositional semantics to model this new 

operational semantics. All negative claims of the form a should be put 

into the glohal component of the clock record. even if they come from 

actual transitions. The partial order is not ~xtended at the merge of 

histories. because there are no negative claims anymore in the 

transition record. All other things stay the same. 



6 Conclusion 

We presented a compositional semantics for the graphical specifica

tion/programming language Statecharts. as described in [HPPSJ. For 

this. we had to define a proper generative syntax. The operators in 

this syntax have simple graphical counterparts as well as a natural 

semantics. The model extends the model of [HGR] to deal with broadcast 

and. specifically. wi th the micro-step semantics of State-charts as 

described in [HPS]. This is a subtle operational notion to deal wi th 

the consequences of the synchrony of action and reaction. The 

composi tional semantics does not model the micro-steps directly. but 

records only the occurrence relationship between the micro-steps. 

This work serves as a basis for extending the work of Hooman on 

proof-systems for CSP-R [H] and that of Zwiers [Z]. 
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A.I 

Appendix 

In [HPSS] the set of statecharts is not defined by a generative grammar. 

but in a more direct way. We shall call these objects H-statecharts and 

define the formal relationship between H-statecharts and the elements of 

the set Stch, the expressions generated by the syntax as defined in 

chapter 3. 

Defini tion: 

Let a set of states ~ and a set of labels Lab be given. 

A H-statecbart is a qUintuple (S,p,t,o,T) where 

S C ~ is the set of states; 

p: 8 ~ 28 is the hierarchy function; 

t: 8 ~ {AND,OR} is the type function; 

0: 8 ~ 28 is the default fucntion; 

T ~ SxLahxS is the set of transitions, 

with the following restrictions: 

(i) 

(i i) 

(iii) 

+ V st8: s~p (8) 

Vs I ,s2: s 1 

V st8: o(s) 

;ts2~P(sl) 

+ 
~ p (s) 

(iv) 3! rtS: p*(r) = S A V ttT: r~<t A r~t>. 

(v) V st8: (3 xt8: Stp(x) A t(x)=AND) ~ V ttT: s~<t A s~t> 
The set of H-statecharts is called HS. 

Notation: 

< A > 
if ttT and t=(sl,I,s2)' then t=sl' t=l and t =s2' 

o 

* + where p and p are the reflexive resp. irreflexive transi tive 

closure of p. 

We define a function ~: HS ~ Stch as follows. 

Let a=(S,p,t,o,T) be given. 

Define a function g: 8 ... Unv that gives for each substatechart con-
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sisting of a state and its interior the associated Unvollendete. Then 

we can define: 

~(a) = oCr) where r is the root state of a. i.e. V s6S: rEp(s). 

Define Tr= {(t.s)eTxSl set>} U {(sl. s2)cSxSl s2eO(sl)} 

TO= {(s.t)e8xTI se<t) 

L: TO .... Uili 

L(s.t) = t 

Notation: if i e Tr and i=(t.s). then .> t> d 
1 = an tr( i )=t; 

if o e TO and o=(s.t). then < < 0= 0 and tr(o)=t. 

Tr and TOwill serve as the set of incoming resp. outgoing transitions 

for the Unvollendetes we are going to use. 8ince defaults are made out 

of incoming transitions. we need some for these purpose. 

Define an auxiliary function GpO 8 .... Unv 

opes) = [r.0.8] with r = {(t.s)eTrl set> 

and 0 = {(s.t)eTol se<t) 

For U e Unv. define 

Ine(U) = I if u=<r.o> 

Outg(U) = 0 if U=<I.O>. 

We need a function & i; 8 .... Unv that gives for each state the Unvoll

endete that should be associated to the interior of that state. It 

depends on whether it is an AND-state or an OR-state. 

We define & and 0i mutually recursively: 

o(s) = .p(s) if p(s)=0 ; 
&(s) = 8tat( & (s). 6.(s). (s.s·) ) if pes) ~ 0. 

p 1 

with (s.s·) e Inc(o.(s» for some s'; 
1 

The definition of •. (s) is the most complicated. 
1 

Let s e 8 be given and let pes) = (sl •.... sn). n>l. 

Distinguish two cases: 

(i) ,pes) = AND 

Define a sequence of Unvollendetes A1 •...• An as follows: 

Al = o(sl) 
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Aj = And{ Aj _1• '(Sj)' a j ) for 2~j~n 

and a j = {{i 1.i2 )EI1xI2 ! SjEi
2

> A 3 l~k<j: skEil>} 

and II = Inc{A j_1). I2=Inc(€(sj)}' 

Then 'i(s) = An' 

(ii) pes) = OR 

Let U = Or( ... Or(€(sl)' (s2» ..... €(sn» 

Let {t1 ..... t n} = {tET! LCA(t) = s}. Here. LCA is a function 

defined in [HPSS); LCA(t) gives the smallest state that encloses 

transition t: 

< > Let R = t U t . then LCA(t) = x iff 

1. 

2. 

+ R ~ P (x) 

Hx) = OR 

3. 
+ .. V sER: if ~(s) = OR then R ~ p (s} ~ XEP (s). 

Define a sequence of Unvollendetes BO •.... Bn as follows. 

BO = U 

B
j 

= Conn(B
j

_ 1 .0
j
.i

j
) for l~j~n. 

where tr(i.) = tr{o.) = t .. 
J J J 

Then €. (s) = B . 
1 n 
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