
 

Performance measurement and lumped parameter modelling
of single server flowlines subject to blocking : an effective
process time approach
Citation for published version (APA):
Kock, A. A. A., Wullems, F. J. J., Etman, L. F. P., Nijsse, F., Adan, I. J. B. F., & Rooda, J. E. (2006).
Performance measurement and lumped parameter modelling of single server flowlines subject to blocking : an
effective process time approach. (SE report; Vol. 2006-09). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/2006

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/c7eaa10a-eb6e-4525-b33b-2d514f6037c7


Systems Engineering Group
Department of Mechanical Engineering
Eindhoven University of Technology
PO Box 513
5600 MB Eindhoven
The Netherlands
http://se.wtb.tue.nl/

SE Report: Nr. 2006-09

Performance measurement and
lumped parameter modelling of
single server flowlines subject to

blocking: an effective process time
approach

A.A.A. Kock, F.J.J. Wullems, L.F.P. Etman, I.J.B.F. Adan, F. Nijsse, J.E. Rooda

ISSN: 1872-1567

SE Report: Nr. 2006-09
Eindhoven, December 2006

SE Reports are available via http://se.wtb.tue.nl/sereports





Abstract

The present paper extends the so-called Effective Process Time (EPT) approach to single server
flowlines with finite buffers and blocking. The power of the EPT approach is that it quantifies
variability in workstation process times without the need to identify each of the contributing
disturbances, and that it directly provides an algorithm for the actual computation of EPTs. It
is shown that EPT realizations can be simply obtained from arrival and departure times of lots,
by using sample path equations. The measured EPTs can be used for bottleneck analysis and for
lumped parameter modeling. Simulation experiments show that for lumped parameter modeling
of flowlines with finite buffers, in addition to the mean and variance, offset is also a relevant
parameter of the process time distribution. A case from the automotive industry illustrates the
approach.



1 Introduction
Single server workstations with finite buffer sizes in a tandem flowline are an important class of
manufacturing systems. Examples of such flowlines are semi–synchronous lines and assembly
lines, as e.g. encountered in the automotive industry.

The performance of a flowline is commonly expressed in terms of throughput and flow time. Both
performance indicators are influenced by blocking. The finite capacity of the buffers in the single
server flowlines considered in this paper introduces blocking in the line.

Blocking causes suspension of service to a lot (which implies loss of production capacity) since
a finished lot cannot be send on due to a saturated downstream buffer. Starvation refers to the
situation where processing of the next lot is suspended due to an empty upstream buffer.

Variability in process times is the main reason that blocking and starvation occur. The variability
of process times can be traced to several common sources. First of all, natural process times are
variable due to differences in product types, machine states at product entry, operator behaviour,
etcetera. Furthermore, disturbances such as setups, preventive maintenance, machine failures
and absence of operators occur. These disturbances cause loss of production capacity effectively
available at the workstation and increase the variability of process times, which in turn decreases
the throughput. Subsequent workstations affect one another more prominently as the variability
of process times increases. Variability of process times on workstation j can cause starvation on
workstation j + 1. Furthermore, in a flowline with finite buffers, variability of process times of
workstation j can cause blocking on workstation j − 1.

Obviously, for performance analysis of a finitely buffered flowline, an analysis tool that quantifies
both the production losses and the level of variability of process times is required. A commonly
applied performance analysis metric is the overall equipment efficiency, OEE. However, OEE
can only be used for quantifying production losses. Therefore an alternative analysis tool will be
used in this paper.

[5] introduced this alternative concept to account for irregularities in process times of worksta-
tions. The new concept, effective process time (EPT), is defined as the total time seen by a lot
at a workstation from a logistical point of view. Here, total time indicates the total time that the
lot has effectively consumed production capacity of the workstation. EPT is based on the notion
that, from a logistical perspective, a workstation does not care whether production capacity is
claimed since the server is processing the lot or whether production capacity is claimed by other
influences. These other influences are included in the EPT of the workstation.

[5]’s notion of including processing disturbances in the effective process times is not new, see
e.g. the work of [2, 4, 1]. The aforementioned authors all assume, or measure, distributions for
the various processing disturbances and combine these into one single distribution. However,
from industrial practice, it is often hard, if not impossible, to identify and quantify all individual
disturbances. Starting from the concept of EPT, [7, 8] presented a method to translate lot arrivals
and lot departures at an infinitely buffered workstation into an EPT distribution. In automated
manufacturing environments, arrival and departure data is often available.

The obtained EPT distributions can be used for performance optimization. Based on the char-
acteristic parameters of the EPT distributions, i.e. the mean effective process time te and the
squared coefficient of variation c2e , a bottleneck analysis can be performed, after which an ap-
proximating model can be used to predict the changes in system performance. [6] also use te and
c2e as workstation parameters in an open queueing network model for flowline optimisation. How-
ever, they compute te and c2e from the theoretical process time values by assuming that outages
are adequately represented by exponentially distributed failures and repairs. The EPT framework
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presented in this paper follows the concept of [7, 8], which does not require the characterisation
of the various contributing disturbances. This is a clear advantage of the EPT–approach since, as
mentioned above, it is in practice often hard or impossible to quantify all individual sources of
disturbances.

This paper aims to generalize the EPT–approach for application to single server flowlines subject
to blocking. That is, the paper considers finite buffers rather than infinite ones. Workstations can
no longer be analysed in isolation due to the dependencies introduced by blocking. Therefore,
an EPT–algorithm for the blocking case is presented. Furthermore, the effect of the distribution
shape on the accuracy of the EPT lumped parameter (ELP) model is investigated. Two theoretical
examples and a case from automotive industry is used to illustrate the EPT–approach. Note that
throughout the paper, mainly the effects of blocking are discussed since starvation also occurs in
infinitely buffered workstations.

The paper is organized as follows. In Section 2, an outline of the EPT–approach is presented.
Subsequently, computation of EPT–realisations for single server workstations with finite buffers
is considered in Section 3. EPT–based lumped parameter modelling in the context of finitely
buffered flowlines is discussed in Section 4. The concepts discussed throughout this paper are
illustrated using the aforementioned examples and case in Sections 5 and 6. Finally, Section 7
concludes the paper.

2 A framework for implementing EPT
The EPT–approach, based on the concept of [8], consists of four stages, as visualized in Figure 1.
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Figure 1: Schematic representation of the EPT–approach

First, EPT–realisations are obtained from the discrete manufacturing system. An EPT realisation
is defined by [8] as: ‘the time a lot was in process plus the time a lot (not necessarily the same
lot) could have been in process’. EPT–realisations can be computed from event data, such as
arrivals and departures of lots on workstations. The EPT–realisations are computed by means of
an EPT–algorithm. The EPT, or similar concepts (such as completion time) are used in sample
path analyses of queueing systems. Sample path equations are typically used to determine lot
departures from lot arrivals and the effective process time. The EPT–concept presented in this
paper uses the sample path equations differnetly, that is, effective process times are determined
from arrival and departure data. The sample path equations are thus a means to obtain EPT–
realisations from an operating production system. The operation time as defined by [11] is very
similar to EPT; however, [11] do not use it to quantify the level of variability.

Next, the EPT–realisations are fitted to distributions. Here, distributions are fitted based on rele-
vant workstation properties, such as the mean EPT te and the squared coefficient of variation c2e .

3 A framework for implementing EPT



Parameter te quantifies the mean effective capacity used for a lot by the workstation, c2e quantifies
the effective variability.

Subsequently, a so–called EPT lumped parameter (ELP) model can be built using the fitted distri-
butions. This ELP model can be used for performance prediction and optimisation. The structure
of the ELP model follows the original system in terms of the number of servers on each worksta-
tion, the buffer sizes of workstations, the flow of materials between workstations, etcetera. In this
model, detailed modelling of shop–floor realities such as failures, repairs, setups, operators and
lot sizes is avoided. The various sources of variability are aggregated into the EPT–distributions
of the workstations. [8] used the term ‘meta model’ rather than ‘lumped parameter model’. How-
ever, the phrase ‘meta model’ may suggest that a simplified model is derived from another model.
Since this is certainly not the case, the terminology ‘lumped parameter model’ is used in this pa-
per. Here, the lumped parameters refer to the distribution parameters of the EPT–distributions.

Before the ELP model is accepted, it is validated by comparing the throughput and flow time
as estimated by the model to those observed in the actual system, since one is interested in how
well the lumped parameter model describes the behaviour of the actual system. If the estimated
throughput and flow time are accurate enough, the ELP model and the EPT–distributions are
accepted. If they are rejected, distribution fitting and model building are reconsidered. Possible
changes include enhancing the level of detail of the model or using more parameters to fit more
accurate distributions.

If the EPT–distributions and the ELP model are accepted, they can be used for performance
analysis and optimisation. A bottleneck analysis can be carried out based on the distribution
parameters te and c2e of the various workstations. The effect of suggested improvements can be
evaluated using the ELP model by accordingly adjusting the EPT distribution parameters in the
model.

Implementation of the EPT–approach provides several significant advantages. First of all, many
shop–floor realities are included in the EPT–distributions and thus do not have to be included
explicitly in the ELP model. Now, an ELP model can be obtained that is accurate, yet simple
when compared to the detailed models that are typically used. Second of all, since the process-
ing disturbances are included in the EPT–distributions, directly obtained from industrial data,
the EPT parameters te and c2e readily give insight in the behaviour of the flowline, allowing for
straightforward bottleneck analysis.

3 Measuring EPT
The EPT was introduced by [5] to be used in queueing models. Similar concepts, such as com-
pletion time, are used in sample path equations. In all references, the respective distributions are
assumed to be known a priori, and then the sample path equations are used to derive properties
concerning flow time, throughput, etcetera. None of the authors, however, specifies how these
distributions should be estimated from industrial data.

[8] presented a method to compute EPT–realisations for infinitely buffered, isolated workstations
from industrial data. Their method does not assume the effective process time distributions a
priori, but, in a way similar to using a sample path equation, determines these distributions. For
a single machine workstation, the sample path equation is:

EPTi,j = ADi,j −max
{
AAi,j,ADi−1,j

}
, (1)

where EPTi,j denotes the EPT realisation of lot i on workstation j, ADi,j is the departure of lot i
from workstation j and AAi,j is the arrival of lot i on workstation j. From Equation (1), one sees
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that an EPT realisation encompasses all time during which the server could have been processing
the lot. For the events holds that AAi,j 6 ADi,j. In case of timeless transport, ADi,j−1 = AAi,j.

Algorithmic extensions have been presented for workstations with multiple parallel servers [8]
and with batching [?]. However, the algorithms are only applicable to workstations with an in-
finitely large buffer. This paper studies finite buffers, which gives rise to blocking. Due to block-
ing, EPTi,j depends on events occurring on workstation j − 1, rendering the previous algorithms
inapplicable.

Considering finitely buffered workstations, the sample path equation for the departure of lots is
given by (see page 184 of [1] or [?]):

D
(j)
i = max

[
max

{
D

(j−1)
i , D

(j)
i−1

}
+ EPT

(j)
i , D

j+1
i−bi+1

]
(2)

Herein, D(j)
i is the ith departure from workstation j; the term max

{
D

(j−1)
i , D

(j)
i−1

}
represents the

time at which processing of the lot can start; EPT j
i represents the completion time and D

(j+1)
i−bi+1

represents the earliest time at which the receiving workstation has sufficient capacity available
to receive the lot. Thus, max

{
D

(j−1)
i , D

(j)
i−1

}
+ EPT

(j)
i equals the time at which the lot can leave

the workstation, provided that the receiving workstation has sufficient capacity available. In
this paper, this moment is denoted as PDi,j. However, the lot only actually leaves, ADi,j, if the
receiving workstation is available. Thus, the difference between a possible departure and an
actual departure is caused by blocking. Hence,

PDi,j = max
{
AAi,j,ADi−1,j

}
+ EPTi,j , (3)

which can be rewritten to
EPTi,j = PDi,j − max

(
AAi,j ,ADi−1,j

)
. (4)

As can be seen, one should replace ADi,j in Equation (1) by PDi,j. Possible occurences of
blocking should not be included in the EPT realisation. They are a physical part of the finitely
buffered flowline and will also appear in the EPT based lumped parameter (ELP) model.

4 Lumped parameter modelling
Distribution fitting is the second phase of the EPT–approach. The relevant distribution parameters
are estimated based on the measured EPT–realisations and appropriate distribution functions are
proposed.

Process time distributions based on the first two moments of the distribution are often used in
models of manufacturing systems consisting of workstations with infinitely large buffers. The
two–moment fits are supported by queueing theory, see [1] and [3].

For workstations in a flowline with finite buffer sizes, distribution fitting could be more com-
plicated. Due to blocking, workstations are expected to affect one another more prominently.
Therefore, extra information may be needed. Regardless, in queueing theoretical approaches,
two moment distribution fits are used for computational reasons. However, in case of simulation,
the use of higher order information may be reconsidered. A typical example thereof is presented
by [9]. They study constant natural process times with exponentially distributed times to failure
and times to repair. In the EPT-approach, the sources of disturbances are lumped. In this respect,
no assumptions regarding the distribution of the process times or disturbances are made. The ne-
cessity of additional distributional information in ELP models of finitely buffered flowlines will
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be studied here.

Using simulation, the influence of the offset parameter is investigated. The offset parameter is
chosen since, in practice, many operations require at least a minimum amount of time. The
offset refers to the smallest possible value of a distribution. The simulation model is a flowline
consisting of three unbuffered single server workstations in which lots do not overtake. The
three workstations have process times distributed according to a shifted Gamma distribution. The
distributional parameters are te = 1.0, c2e = 1.0 and offset ∆e. The offset parameter is varied from
∆e = 0.0 to ∆e = 0.9.

The corresponding simulation results are presented in Figure 2. The results show that for large
offsets, significant differences in throughput (δ) and flow time (ϕ) are observed. Increasing ∆e

from 0.0 to 0.9 results in a throughput increase of 50% and a flow time decrease of 21% (see
Figure 2).
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Figure 2: Influence of the offset parameter on δ and ϕ

The observed phenomenon can readily be explained by considering the nature of the offset. An
offsetted distribution consists of a constant part, ∆e, that is increased by a random variable with
mean tl and squared coefficient of variation c2l , where tl = te−∆e. Since the variance of the process
time distribution does not change, one knows that t2e c2e = t2l c

2
l . Now, if tl = 0.1te (i.e. ∆e = 0.9),

c2l = 100c2e . Due to the large c2l , most process times will be small (& ∆e), and sporadically a
value greatly exceeding the average (� te) will occur. The sporadic large process time reali-
sation therefore causes massive amounts of blocking on preceding and starvation on successive
workstations. If ∆e = 0.0 however, all process times will be centred around te. Process times
will thus often be larger than te, frequently causing some blocking and starvation on preceding or
successive workstations.

A new set of simulations is used to test how relevant the usage of ∆e is. As stated above, one
can expect the shape of the distribution to have more influence if the amount of blocking and
starvation increases. This expectation is investigated using simulation. For a flowline consisting
of three finitely buffered workstations with a single server, the number of bufferspaces between
WS0 and WS1 and between WS1 and WS2 will be changed. In addition, the level of variability is
changed. Process times on the workstations will have identical te. However, c2e is chosen at 1.0 at
the first workstation, but is varied from 0.5 to 2.0 at the other two workstaitons. The throughput
and flow time will be evaluated at offset levels of ∆e = 0.0 and ∆e = 0.9. The corresponding
simulation results are depicted in Figure 3.

Several observations can be made from Fig. 3. The first observation is that the mean throughput
for ∆e = 0.9 approaches the throughput for ∆e = 0.0 as the amount of buffer spaces increases.
A second important observation, from comparing Fig. 3(a) to Fig. 3(c), is that the difference
in mean throughput between ∆e = 0.9 and ∆e = 0.0 becomes larger as the squared coefficients
of variation are increased. A change in the squared coefficient of variation has more effect on
performance for ∆e = 0.0 than for ∆e = 0.9. This observation can be explained by the fact that
a flowline with ∆e = 0.0 is more likely to be blocked than a flowline with ∆e = 0.9. Since an
increase in variability implies an increase in the amount of blocking, the flowline with ∆e = 0.0
is more heavily affected.
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(a) c2e,1 = 1.0, c2e,2 = 0.5 and c2e,3 = 0.5
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(b) c2e,1 = 1.0, c2e,2 = 1.0 and c2e,3 = 1.0
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(c) c2e,1 = 1.0, c2e,2 = 2.0 and c2e,3 = 2.0

Figure 3: Influence of buffer spaces on throughput and flow time

These results, and additional simulation results presented in [10], imply that, as the amount of
blocking and starvation in the flow line increases (by reducing the number of bufferspaces or by
increasing the level of variability), the influence of higher order information of the distribution
shape increases.

5 Example
Two examples are presented to validate the computation of EPT–realisations and to illustrate the
EPT–approach.

Example I

Consider a flow line consisting of five workstations labelled WSi for i = 0, . . . , 4. Each work-
station has a buffer of size one and one server. The first workstation is never starved whereas the
final workstation is never blocked. All workstations have exponentially distributed natural pro-
cess times with mean t0,i = 1.0 for all i. The servers are subject to operation dependent failures,
with busy time between failures exponentially distributed with mean tf ,i = 15 for all i. Once a
failure has occurred, the server is repaired. Repair times are exponentially distributed with mean
tr,i = 2 for all i. After the repair is finished, processing of the lot is continued for a period of
time equal to the remaining process time. The flowline is represented using a detailed discrete
event simulation model, explicitly modelling the failure and repair behavior. This model will be
referred to as the ‘original’ model.

The first stage of the EPT approach is carried out by applying Equation (4) to the arrival and
departure events generated by the original model. This leads to a large set of EPT realizations for
each of the workstations. During the second stage of the approach, the realizations are translated
into shifted Gamma distributions with mean te,i, squared coefficient of variation c2e,i and offset
∆e,i as presented in Table 1. The te and c2e values of the table are verified using Equation (5) as
presented by [5]. Herein, t0 is the mean natural process time, c20 is the corresponding squared

7 Example



coefficient of variation, c2r is the squared coefficient of variation of the times to repair, and A is
the availability. The equation gives values te,i = 1.13 and c2e,i = 1.42 for all i, which corresponds to
the measured equivalents in Table 1.

te,i =
t0,i
Ai

,

Ai =
tf ,i

tf ,i + tr,i
, (5)

c2e,i = c20,i +
(
1 + c2r,i

)
Ai (1 − Ai)

tr,i
t0,i

.

Since the natural process times are exponentially distributed, as are the failures and repairs, the
effective process time distributions of the workstations do not have an offset, i.e. ∆e = 0.0. As
can be seen in Table 1, the estimated value of ∆e is indeed 0.0.

The original simulation model has δ = 0.495 ± 0.01% and ϕ = 14.15 ± 0.01%. This implies that,
with a probability of 95%, the range (0.49495,0.49505) contains the true value of δ and the
range (14.1486, 14.1514) contains the true value of ϕ.

WSi ∆e,i te,i c2e,i
WS0 0.00 1.13 1.41
WS1 0.00 1.13 1.42
WS2 0.00 1.13 1.42
WS3 0.00 1.13 1.42
WS4 0.00 1.13 1.42

Table 1: Measured EPT parameters for example I

During the third stage of the approach, the approximated distributions are used as input for a dis-
crete event EPT-based lumped parameter (ELP) model. The structure of the ELP model follows
the structure of the original system, i.e. five workstations consisting of one buffer space and one
server. Servers have process times distributed according to the shifted Gamma distribution, with
parameters according to Table 1. The ELP model finds approximates δ̃ = 0.491 and ˜ϕ = 14.26,
which means that the difference between the EPT approximation and the original situation is
0.81% in throughput and 0.77% in flow time. The error in the approximation is computed by:

∣∣∣∣
δ − δ̃

δ

∣∣∣∣ · 100% and
∣∣∣∣
ϕ − ˜ϕ

ϕ

∣∣∣∣ · 100% (6)

Note that (6) is used in the remainder of this paper to compute the error in approximations.

If both the original system and the ELP model do not contain buffer spaces, the original model
gives performance measures δ = 0.399 and ϕ = 9.23, whereas the approximation is δ̃ = 0.393
and ˜ϕ = 9.34, giving an error of 1.5% for throughput and 1.2% for flow time. Increasing the
number of buffer spaces on all workstations to 5 leads to δ = 0.656 and ϕ = 29.72 for the
original model compared to δ̃ = 0.657 and ˜ϕ = 29.76 for the EPT-based meta model. This is an
error of 0.2% in throughput and 0.1% in flow time. Obviously, the error decreases as the number
of buffer spaces in the line increases, which corresponds with the observations of section 4.

Example II

Consider a flowline consisting of five workstations WSi for i = 0, . . . , 4. Workstation WSi

has bi buffer spaces and one single server, where [b0, b1, b2, b3, b4] = [0, 2, 1, 2, 1]. The flowline
produces two product types, pt0 and pt1 in the deterministic sequence [pt0, pt1, pt0, pt1, . . . ]. The
first workstation is never starved whereas the final workstation is never blocked. At WS0, all
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products are processed with exponentially distributed natural process times with mean 1. At WS1

and WS3, natural process times for products of type pt0 are distributed according to a shifted
Gamma distribution with ∆0,0 = 0.6, t0,0 = 1.5 and c20,0 = 0.75, whereas ∆0,1 = 0.2, t0,1 = 0.5 and
c20,1 = 0.75 on these stations for products of type pt1. On workstations WS2 and WS4, products
of type pt0 are processed with natural process times according to a triangular distribution with
∆0,0 = 0.4, t0,0 = 0.5 and maximum 0.6 and thus, c20,0 = 6.67 · 10−3; for pt1 however ∆0,1 = 1.2,
t0,1 = 1.5 and maximum 1.8 giving c20,1 = c20,0. On WSi for i = 1, 2, 3, 4, a constant setuptime
of 0.1 time units is required if the product type is changed. The servers are subject to operation
dependent failures, with busy time between failures exponentially distributed with mean tf ,i = 15
for all i. Once a failure has occurred, the server is repaired. Repair times are exponentially
distributed with mean tr,i = 2 for all i. After the repair is finished, processing of the lot is resumed
at the point where it was interrupted. Simulation results for the example have been obtained for
95% confidence levels with a relative width of 1% or less of the corresponding mean.

First, EPT realisations are computed for each of the workstations by applying Equation (4) to the
arrival events (AA) and departure events (PD,AD) obtained from the simulation model. Next, the
realisations are translated into shifted Gamma distributions with mean te,i, squared coefficient of
variation c2e,i and offset ∆e,i as presented in Table 2. The te and c2e values of the Table are verified
using Equation (5). To properly apply these equations, the two natural process time distributions
of a workstation are first translated into a general natural process time distribution. Let X denote
the overall natural process time and X0 and X1 reflect the type specific natural process times.
Then:

t0,i = E [Xi] , for i = {0, 1} (7)

c20,i =
E

[
X2
i

]

(E [Xi])
2 − 1 (8)

E [X2] = 0.01 + 0.1 (t0,0 + t0,1) + 0.5
(
t20,0

(
c20,0 + 1

)
+ t20,1

(
c20,1 + 1

))
, (9)

t0 = E [X ] = 0.1 +
t0,0 + t0,1

2
, (10)

c20 =
E [X2]

(E [X ])2
− 1. (11)

Equations (5), (10) and (11) yield te,0 = 1.27, c2e,0 = 1.66, te,1 = te,3 = 1.39, c2e,1 = c2e,3 = 1.59 and
te,2 = te,4 = 1.39, c2e,2 = c2e,4 = 0.82. As can be seen in Table 2, the estimated EPT parameters are
correct. When considering the input distributions, one knows that ∆e,0 = 0.0, ∆e,1 = ∆e,3 = 0.3
and ∆e,2 = ∆e,4 = 0.50, which also corresponds to the values presented in the Table.

WSi ∆e,i te,i c2e,i
WS0 0.00 1.27 1.66
WS1 0.30 1.39 1.59
WS2 0.50 1.39 0.82
WS3 0.30 1.39 1.59
WS4 0.50 1.39 0.82

Table 2: Measured EPT parameters for example II with a single EPT distribution

The observed flowline performance is δ = 0.462 ± 0.01% and ϕ = 15.70 ± 0.01%. This implies
that, with a probability of 95%, the range (0.46195,0.46246) contains the true value of δ and the
range (15.69843,15.70157) contains the true value of ϕ.

Next, shifted Gamma distributions with parameters as presented in Table 2 are used as input for
an ELP model. The ELP model approximates δ̃ = 0.444 and ˜ϕ = 16.74, which means that the
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difference between the EPT approximation and the original situation is 4.0% for throughput δ
and 6.6% for flow time ϕ.

Part of these errors can be explained as follows. Firstly, the ELP model assumes identically and
independently distributed (iid) process times on all workstations. In the case considered here,
each lot is of a different type than the preceding one. Since ti,0 differs from ti,1 i = 1, 2, 3, 4,
a correlation is expected for successive process times on a workstation. Due to the assumption
of iid process times in the ELP model, these correlations between successive process times on
a workstation are neglected. Secondly, in the ELP model, the process times of one lot on the
successive workstations are assumed to be independent. In the original model however, process
times for one lot on successive workstations are correlated due to the type–specific natural process
times. The lumped parameter model again does not incorporate this correlation.

The error in the approximation can be reduced by fitting EPT–distributions for each product
type per workstation. The new distributional properties are presented in Table 3. Comparing
these values with Equations (10) through (11) again shows that the estimated values are correct.
Inserting the distribution properties of Table 3 into the lumped parameter model yields δ̃ = 0.460
and ˜ϕ = 15.78, which is an error of 0.4% for throughput and 0.5% for flow time.

pt0 pt1
WSi ∆e,i te,i c2e,i ∆e,i te,i c2e,i
WS0 0.00 1.27 1.66 0.00 1.27 1.66
WS1 0.70 2.03 1.07 0.30 0.76 1.63
WS2 0.50 0.76 1.11 1.30 2.03 0.42
WS3 0.70 2.03 1.07 0.30 0.76 1.63
WS4 0.50 0.76 1.11 1.30 2.03 0.42

Table 3: Measured EPT parameters for example II with deterministic lot type sequence and prod-
uct type specific EPT–distributions

The latter procedure is repeated for different levels of buffering. If both the original system
and the lumped parameter model contain no buffer spaces, the original model gives performance
measures δ = 0.364 and ϕ = 10.16, whereas the approximation finds δ̃ = 0.358 and ˜ϕ = 10.29,
giving an error of 1.7% for throughput and 0.3% for flow time. Increasing the number of buffer
spaces on all workstations to 5 leads to δ = 0.565 and ϕ = 25.06 for the original model compared
to δ̃ = 0.565 and ˜ϕ = 25.05 for the approximation. This is an error of less than 0.1% for both
throughput and flow time. These results correspond to the observations of section 4.

Implications

Two main observations can be derived from the examples presented here. First, the measured
EPT parameters comply with the analytically calculated parameters. Secondly, adding detail
to the ELP model, by using product type specific EPT–distributions, results in more accurate
approximations.

6 Industrial case
A case from an automotive manufacturing plant will be used to illustrate the practical applicability
of the EPT–approach.
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System description

Experimental data has been obtained from one of the clients of Steelweld B.V. This particular
client produces two types of cars, called pt0 and pt1 in the remainder of this section. Focus is
on a small semi–synchronous flowline within the manufacturing plant. On this flowline, referred
to as FL in the remainder of this section, lots are produced according to a constant product mix,
i.e. pt0/(pt0 + pt1) = 0.57. The actual sequence of lots is determined by an overhead scheduler.
Since the scheduler is not considered in this case, the stream of lots entering the system will have
a random lot type sequence.

FL consists of a transport system and eleven workstations in tandem (i.e. sequential). The work-
stations are labelled WS0 to WS10. Here, WS1 and WS2 are manual workstations, served by one
operator. Workstations WS7 and WS8 are single buffer spaces. Workstation WS10 is used for
(occasional) manual quality checks. All other workstations in the line are used for hotmelting.

First stage of the EPT–approach

The event data needed for the EPT analysis is obtained from the programmable logic controllers
(PLCs) within FL. In their present configuration, only possible departures and actual arrivals
can be measured using the PLCs; the actual departures thus would have to be reconstructed.
However, since the workstations can contain at most one lot at a time, one knows that AAi,j will
always exceed ADi−1,j, hence ADi−1,j is not required for determining EPT realisations. However,
ADi,j should be known on the last workstation so that flowtimes can be computed for validation.

The actual arrival occurs only after transport from the sending workstation to the receiving work-
station has ended. Therefore, if the logged actual arrival and possible departure are used, transport
is excluded from the EPT realisation. However, the workcycle of these unbuffered workstations
always begins with transport. Therefore, the actual arrival should be adapted so that the EPT
realisation will include transport. Transport takes a fixed, known amount of time ∆min, the value
of which will not be reported here for reasons of confidentiality. By decreasing AAi,j with ∆min,
transport is included in the EPT.

No data was available for WS7 and WS8. Therefore, WS5 is the last workstation on which actual
departures can be computed. Hence, workstations WS6 and above will not be studied in the case.

Since not all gathered events are useable, the data must be filtered. First of all, a number of the
events result in EPT–realisations that are unrealistically low or even negative if either possible
or actual arrivals are registered too late. Furthermore, since the machines are reliable, large
EPT–realisations due to failures and repairs only occur sporadically. Since only a few of these
realisations occur within the considered time period, no reliable statistics concerning these high
realisations can be obtained. The EPT realisation for lot i on workstation j is thus only used
during the analysis if it satisfies Equation (12), hence machine failures are excluded.

∆min? ,j 6 EPTi,j 6 ∆max? ,j (12)

Second stage of the EPT–approach

Distribution fitting, the second stage of the EPT–approach, is done by computing the values for
∆e, te and c2e per workstation from the obtained filtered EPT realisations, as presented in Table 4.
The data in Table 4 have been slightly rescaled, in order to respect the confidentiality of the data.
Based on this data, shifted Gamma distributions were fitted for all workstations.
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WSi te c2e ∆e
te
∆e

WS0 82.73 0.106 57.19 1.45
WS1 76.78 1.259 27.61 2.78
WS2 94.32 0.765 19.72 4.78
WS3 116.61 0.149 90.71 1.29
WS4 112.09 0.077 78.88 1.42
WS5 130.82 0.021 114.37 1.14

Table 4: Fitted distributions for the industrial case

Third stage of the EPT–approach

In the third stage, the shifted Gamma distributions with parameters as presented in Table 4 are
used as input for an ELP model, a discrete event simulation model in this case. The structure of
the model is identical to the structure of FL, i.e., six unbuffered single server workstations in a
flowline.

A distribution capturing the starvation observed on the first workstation has been obtained from
the data to model the starvation of the first workstation in the flowline. In order to obtain this
starvation distribution, a filter similar to Equation (12) has been applied. The starvation distribu-
tion has properties ts = 63.63, c2s = 2.564 and ∆s = 29.58. If it is starving, the first workstation
requests a lot from the generator. The generator sends a lot on to the first workstation after an
appropriate period of starvation. Similarly, for the final workstation in the flowline, a distribution
capturing the observed blocking is obtained. The parameters of this blocking distribution are
tb,5 = 15.10, c2b,5 = 8.04 and ∆b,5 = 1.97.

The true mean flow time ϕ of FL is determined by computing the individual flow times from the
obtained data and deleting the unrealistic flow times. Flow time realisations are thus again filtered
using a filter similar to Equation (12). Due to filtering, some EPT–realisations are discarded
during data analysis. Consequently, the mean throughput cannot be computed as the amount of
bodies produced during the measured time period. Instead, mean throughput δ will be computed
by determining the mean interdeparture time of bodies on workstation WS0.

The ELP model underestimates the throughput δ̃ by less than 1.0%, whereas the flow time ˜ϕ is
overestimated by 3.7% (simulation results presented in this section have a confidence level of 99%
and a relative width of less than 0.1% of the mean). As can be seen, only a small error remains in
the approximation. This error can partially be explained using the inter- and intra-correlations of
workstations, as was presented in Example II of Section 5.

To improve on this, type specific EPT–distributions can be fitted, as presented in Table 5. The
new distributions are used in the ELP model. The model now overestimates both δ̃ and ˜ϕ by less
than 1.0%. By adding more detail, the approximations have become more accurate.

pt0 pt1
WSi te c2e ∆e

te
∆e

te c2e ∆e
te
∆e

WS0 86.01 0.139 59.16 1.45 78.42 0.041 57.19 1.37
WS1 40.46 1.400 27.61 1.47 127.52 0.362 67.05 1.90
WS2 138.68 0.157 86.76 1.60 38.08 0.308 19.72 1.93
WS3 112.59 0.243 90.71 1.24 121.87 0.036 92.68 1.31
WS4 105.67 0.021 78.88 1.34 121.89 0.119 110.43 1.10
WS5 134.26 0.016 120.29 1.12 126.30 0.023 114.37 1.10

Table 5: Type specific fitted distributions for the industrial case
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Fourth stage of the EPT–approach

A bottleneck analysis is performed, after which the suggested improvements are simulated by
accordingly changing the EPT–distributions. It is used to determine which workstations are the
major restrictions on throughput and flow time. Workstations with high te or c2e are potential
bottlenecks since they may cause starvation or blocking.

Using the information of Table 5, one can see that the values of te range from 38.08 to 138.68.
Out of this range, acceptable values of te seem to lie between 100 and 125 seconds (although
lower values are obviously desirable). Therefore, parameters te1,1 , te2,0 , te5,0 and te5,1 are reduced to
125.00 seconds

Furthermore, Table 5 illustrates that for most situations, c2e < 0.25. Reduction of c2e1,1 and c2e2,1 to
0.25 is assumed to be feasible, whereas it is assumed that c2e1,0 can be reduced to 0.75.

The suggested changes have been implemented in the ELP model. Implementation of these
changes would, according to the ELP model result in an increase of 3.5% in δ and a decrease
of 4.0% in ϕ. The simulation study with the unscaled data predicted improvements of the same
order of magnitude; which was further confirmed (for the throughput) during implementation on
the factory floor; the flow time was not studied during implementation.

7 Conclusions
A new method for performance analysis and lumped parameter modelling of single server flow-
lines subject to blocking has been proposed. The method is based on the effective process time
(EPT). In previous work, EPT has only been considered for infinitely buffered, isolated work-
stations. Here, a calculation method for EPT-realizations for single server flowlines subject to
blocking has been presented and validated. The method translates event data (actual and possible
arrivals and departures of lots) into EPT–realisations using sample-path like equations.

The EPT of a lot is the time experienced by the lot on a workstation from a logistical perspective.
It is implemented by means of an approach consisting of four stages, the so–called EPT–approach.
In the first stage, EPT–realisations are gathered from industrial data. Next, the realisations are
translated into distributions. Typically, distributions are fitted using the first two moments (te, c2e ).
Simulation results however show that for flowlines subject to blocking the offset ∆e should be
used as an additional distribution parameter. In the third stage, an ELP model can be built and
validated. Finally, in the fourth stage, the flowline can be optimized.

The EPT–approach has been applied to a case study taken from automotive industry. The ELP
model accurately estimated both throughput and flow time. Adding more detail to the ELP model
(i.e., including product type specific shifted Gamma distributions) further reduced errors to less
than 1.0%. Based on the EPT–approach, changes in te and c2e were proposed to increase through-
put and to decrease flow time.
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