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Lowest-order vertex-correction contribution to the direct gap of silicon

P. A. Bobbert and W. van Haeringen
Department of Physics, Eindhoven University of Technology, P.O. Boz 513, 5600 MB Eindhoven, The Netherlands
(Received 29 October 1993)

We have calculated the contribution of the lowest-order vertex-correction diagram to the direct
gap of silicon at the I'-point, taking into account the dynamic screening of the electron-electron in-
teraction. Our best calculation yields a contribution of 0.12 eV. This result supports the assumption
of the GW approximation that vertex corrections can be neglected. We do not find a significant

shift of the absolute energies.

I. INTRODUCTION

The GW approximation is one of the most successful
approximations made in calculating the many-particle ef-
fects on the band structure of a variety of semiconductors
and metals. The approximation amounts to replacing the
infinite series of Feynman diagrams for the electron self-
energy ¥ by a single diagram W containing the full
electron propagator G and the screened electron-electron
interaction W (Fig. 1). The bare propagator G° is sup-
posed to be the propagator of the electrons moving in
the external ion potential plus the Hartree potential. G,
G°, and X are related to each other through the Dyson
equation G = G°+ G°EG. Neglected in the GW approx-
imation are the so-called vertex corrections, of which the
lowest-order diagram is also drawn in Fig. 1. This is
the diagram on which we will focus our attention in this
paper. We will henceforth call it £VC.

Many GW calculations of the semiconductor silicon
have been performed in recent years, of which we will
only mention Refs. 1-3. One of the major difficulties in
these calculations is that in the GW diagram in principle
the exact G and W should be inserted, which of course
are unavailable. One therefore uses the best known ap-
proximations, which for G usually means that one uses
a local-density-approximation (LDA) propagator GLPA,
and for W a random-phase-approximation (RPA) screen-
ing with the LDA band structure and wave functions (an
exception is Ref. 3, where band structures and wave func-
tions obtained from an empirical pseudopotential method
are used). To speed up the calculations, often a plasmon
pole model':3 is used for the energy dependence of W,
which works well for energies not too far (several eV)
from the gap range. The band structure obtained with

FIG. 1. GW and lowest-order vertex-correction contribu-
tion to the self-energy. The screened interaction consists of
the bare interaction v and a screening part W= .
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such a procedure generally agrees within about 0.1 eV
with the experimental band structure, when, e.g., the
experimental and calculated valence-band maxima are
aligned. In Ref. 2 it was noted that the GW valence-band
maximum is about 0.5 eV below the accurate Ceperley-
Alder? LDA-value. Since the density-functional-theory
(DFT) energy for the valence-band maximum is exact
[density-functional theory yields the correct ground state
energies for the N- and (/N—1)-electron systems|, and
since the local-density approximation is known to be a
very good approximation of DFT in silicon, it was put
forward in Ref. 2 that vertex corrections should leave
relative energies unaltered, but should shift absolute en-
ergies upwards by about 0.5 eV.

Although the success of the GW approximation seems
to prove that the vertex corrections, as far as energy dif-
ferences are concerned, are indeed small in silicon, there
is from a fundamental point of view still a need for an
actual demonstration of this smallness. A very crude
estimate of the lowest-order vertex-correction contribu-
tion to the direct gap of silicon was made by Bennett.®
He employed Penn wave functions to construct the elec-
tron propagator G and used a screened static interac-
tion for W. His result is a 65 meV correction to the
direct gap (no result for the correction to the absolute
energies was reported). A more sophisticated calculation
was done in Ref. 6. In that paper the electron propa-
gator was constructed from wave functions and energies
obtained with an empirical pseudopotential method. In-
stead of the screened interaction W, the bare Coulomb
interaction was used. The gap correction found was 47
meV with an uncertainty of about 100% (the correction
to the absolute energies was about 0.2-0.3 eV). It was
argued that the screening of the interaction could only
decrease this number. A completely different approach
was followed in Ref. 7. In the Hedin equation for the
vertex function I, relating I"' to G and to the functional
derivative of ¥ with respect to G, ¥ was approximated
in that approach by the LDA exchange-correlation po-
tential V. (in the original GW scheme® ¥ was taken as
zero in the Hedin equation for I'). This leads to a “ver-
tex correction” to W, as well as to ¥. This approach
was called “GWT.” The results obtained for the energy
gaps with this method again agree within about 0.1 eV
with experimental values and with the conventional GW
approach. However, the valence-band maximum is now
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hardly shifted (10 meV) with respect to the LDA value.
Although these results are very encouraging, it is quite
unclear which Feynman diagrams in the perturbation se-
ries of the self energy have been taken into account by
such a procedure. In view of all this an estimate of the
lowest-order vertex-correction contribution with dynamic
screening effects fully included is desirable.

II. METHOD

We have evaluated the contribution AeVC of the
vertex-correction diagram X VC to the energies of the
threefold-degenerate highest valence state I';; and the
threefold-degenerate lowest conduction state I'y5 at the
T point (k = 0) of Si by calculating

A’ = B{d1x=0|ZVC (€1, k = 0)|d1x=0)- (1)

We used energies ¢; and wave functions ¢y (r) obtained
from a LDA calculation. In Ref. 1 it was shown that the
GW wave functions are practically indistinguishable from
the LDA wave functions. The GW energies, however,
differ appreciably from the LDA energies. To estimate
the effect of taking the GW energies in Eq. (1) instead
of the LDA energies, we also calculated

9%V (e, k = 0)

51VC = h(¢l,k:0| Oe

|#re=0).  (2)

e=¢

We used the LDA electron propagator for G in the vertex-
correction diagram. We started from a LDA calculation
with a plane wave basis having an energy cutoff of 11.2
Ry. The ab initio ion potential of Ref. 9 was used.

The static screened interaction W for ¢ = 0 was calcu-
lated with a RPA dielectric constant and its energy de-
pendence was modeled with the plasmon pole model of
Engel and Farid.!° This model is superior to the plasmon
pole models used in Refs. 1 and 3 in that the plasmon
bands have a clear physical interpretation. In Ref. 10,
the authors also show that the energy dependence of some
important elements of the inverse dielectric matrix result-
ing from the full RPA calculation is reproduced better by
their own plasmon pole model than by the plasmon pole
model of Hybertsen and Louie.! Of crucial importance
for our purpose, however, is the fact that by using this
model some of the reciprocal lattice sums in the expres-
sion for £VC decouple, which is essential for making our
calculations feasible. In Appendix A we briefly review
this plasmon pole model. The plasmon pole model al-
lows us to perform the two energy integrations occurring
in the vertex-correction diagram analytically.

We can write the screened interaction as a sum of the
bare Coulomb interaction v and a screening part W=*
(see also Fig. 1). When we now split up the vertex-
correction diagram into subdiagrams according to the
specific time order of the four vertices and according to
the number of occurrences of the screening part WS,
we get in total 38 different possibilities. These subdia-
grams are shown in Fig. 2 and classified into 16 classes.
Each of these diagrams contains two Brillouin zone in-
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tegrations over the momenta q; and q; exchanged at
the internal vertices. These two integrations were re-
placed by discrete sums over the (2N)3 points of the grid
q = (nlbl +n2b2 +n3b3)/(2N) (TL,; =-—-N + 1,"',N,
with q reduced to the first Brillouin zone if necessary),
where b;, bz, and b3 are the primitive vectors of the
bcc reciprocal lattice of Si. When the points of this grid
are transformed to the irreducible wedge by point group
transformations, only 8, 16, 30, 48, 74 different points
remain for N = 2, 3, 4, 5, 6. Because £VC is evalu-
ated at k = O one of the momentum integrations can
be restricted to the irreducible wedge, whereas the other
integration should be performed over the whole Brillouin
zone. The integrand of each class of diagrams in Fig. 2,
when sandwiched between the I'y; or I'y5 LDA wave func-
tions, has its particular singularity when q; — 0 or
q2 — 0. These singularities are all integrable and are
handled analytically in a way similar to that described
in Appendix B of Ref. 6. As an example, for the diagram
CVVS the expression obtained for V€ is worked out in
Appendix B.

The integrands of the diagrams CVC, all of the di-
agrams contributing to CVCS, and all of the diagrams
but the last contributing to CVCSS, contain an energy

vcv=% vcvs:{Z + , + ‘ +
cvCcss = :/ + ::: + :: + :\: +
VCVss = N:: + :: + :: + :: +
CVVs = CVVsS= \ + ‘,\,\: +

VVCSS =

+
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FIG. 2. Classification of the 38 subdiagrams contributing
to the vertex-correction diagram. A directed line stands for
an electron propagator, a dotted line for the bare Coulomb
interaction, and a dashed line for the screening part of the
screened interaction. Time increases from bottom to top.
“C” and “V” stand for the conduction-band and valence-band
parts of the electron propagator respectively and “S” stands
for the screening part of the interaction.
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denominator € — €, (q1) + €1, (q1 + q2) — €1,(q2), where
l; and I3 are conduction-band indices and I, a valence-
band index (see the caption of Fig. 2 for an explanation
of the names of these diagrams). If € is the energy of
I';s (lowest conduction state at the I’ point), there is a
region in 1BZx1BZ where this denominator can become
zero (this is because in the LDA band structure the en-
ergy difference between the energy of I';5 and the energy
of the lowest conduction state is larger than the indirect
gap energy). However, on the grids used for the Brillouin
zone integrations this energy denominator never became
smaller than 0.2 eV and caused no problems in the cal-
culation of Ae¥€ for I'ys.

III. RESULTS AND DISCUSSION

For the most accurate calculation!! performed, the
contributions to AeYC of the different classes of diagrams
are tabulated in Table I. For the grid used for the Bril-
louin zone integrations we took N = 3 (216x216 points
in 1BZx1BZ). The number of plane waves taken into ac-
count in all the reciprocal lattice vector summations was
Npw = 137. The number of electron and plasmon bands
taken into account was Npanq = 65. These numbers are
comparable to the ones used in Ref. 1. The results are
AeVC = —0.089 and 0.033 eV for I',g and I';s, respec-
tively. Hence, we find a gap correction of 0.122 eV.

With the same cutoffs and grid we calculated the en-
ergy contribution of the GW diagram to several valence
and conduction states, incorporating the contribution
due to the energy derivative at the LDA energies. The
results for the direct band gaps at the I', L, and X points
are 3.31 eV, 3.33 eV, and 4.20 eV, respectively. These
values are quite comparable to those of, e.g., Hybertsen
and Louie! (3.35 eV, 3.54 €V, and 4.43 eV). Experimental
values are 3.40 eV, 3.45 eV,'? and 4.25 eV.!3 The con-
tribution of the lowest-order vertex correction leads to a
direct gap at I' which is also in good agreement with the
experimental value (we do not want to attach too much
value to the fact that the agreement seems even better
now, since there are still uncertainties of the order of 0.1
eV due to several approximations, e.g. the fact that the
LDA propagator is not the exact one).

With a coarser grid (N = 2) we find for the lowest-
order vertex-correction contribution AeV® = —0.126 and
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0.106 eV for I';,, and I';5, respectively. Taking into ac-
count fewer plane waves (Npw = 89) or more bands
(Nbana = 89) these latter numbers changed by only a few
hundredth of an eV. Since the gap correction calculated
with the coarser (N = 2) grid is larger than that calcu-
lated with the finer (N = 3) grid, we expect the value
of 0.12 eV to be an upper bound. Calculations with an
even finer grid (N = 4) were beyond the computational
reach.

The results of the N = 3, Npw = 137, and Npapna =
65 calculation for §V¢ [Eq. (2)] are —0.066 and —0.051
for T, and TI'ys, respectively. Considering the fact that
the GW energies are shifted with respect to the LDA
energies by typically a few tenths of an eV, the first-order
correction of AeVC, related to the energy derivative of
£VC is minute. We also calculated the vertex correction
to the energy of the second-lowest conduction state I'y:
AeVC = —0.045 eV and 6VC = —0.048. These values are
in line with the values reported above. For the lowest
valence state I'; we were not able to calculate reliable
values, because of frequent occurrences of small energy
denominators.

A remarkable fact is that the smallness of AeVC is not
a result of systematic cancellations among the different
classes of diagrams in Table I. It is true that contributions
of diagrams which can be obtained from each other by
reversing the time order are of opposite sign, but the
cancellation is far from complete. Only when adding up
all contributions do we get small numbers. It therefore
seems dangerous to make general predictions about the
size of Ae¥C for other materials.

We can check the assertion of Ref. 6 that screening
effects will decrease the contributions of the diagrams
CVC and VCV. From Table I we see that the CVC dia-
gram yields an energy correction of 1.590 and 1.454 eV
to 'y and T'ys, respectively. Screening one interaction
(CVC+CVCS) these numbers change to 0.500 and 0.500
eV. Screening both interactions (CVC+CVCS+CVCSS)
we get 0.722 and 0.658 eV. For the time-reversed dia-
grams these numbers are —0.826 and —0.765 eV (VCV),
—0.316 and —0.119 eV (VCV+VCVS), —0.355 and
—0.269 eV (VCV+VCVS+VCVSS). Hence, screening ef-
fects do decrease the contributions of the diagrams CVC
and VCV to the energy corrections of I'jg and I'ys, but
only with a factor of roughly 0.5. The effect on the con-
tribution to the gap is less systematic: it changes from

TABLE 1. Lowest-order vertex-correction contribution AeVC in eV to the energies of I';s and
I'1s (highest valence state and lowest conduction state at k = 0) of Si. The different classes of

diagrams are indicated in Fig. 2.

CVC CVCS CVCSS VCCS+CCVS|{ VCCSS+CCVSS CCCSsSs Total
The 1.590 —1.090 0.222 —1.641 0.797 —0.116 —0.238
I'is 1.454 —0.954 0.158 —0.670 0.264 —0.363 —0.111
VCV VCVS VCVSS| CVVS+VVCS| CVVSS+VVCSS| VVVSS Total
s —0.826 0.510 —-0.039 0.509 —-0.211 0.206 0.149
I'is —0.765 0.646 —0.150 0.804 —0.416 0.025 0.144
Total Total Total Total Total Total Total
'25 0.764 —0.580 0.183 —1.132 0.586 0.090 —0.089
T'is 0.689 —0.308 0.008 0.134 —0.152 —0.338 0.033
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FIG. 3. RPA approximation of the irreducible polarization
P and its lowest-order vertex correction.

—0.136 (CVC) and 0.061 eV (VCV) for the unscreened di-
agrams to —0.064 (CVC+CVCS+CVCSS) and 0.086 eV
(VCV+VCVS+VCVSS) for the fully screened diagrams.

The most surprising result in Table I, however, is the
large contribution of the diagrams in which at least two
subsequent fermion lines are of either the type C or V
(see Fig. 2). Such diagrams can only exist due to the
noninstantaneous character of the screened interaction
W. The reason for the unexpectedly large contribution
of these diagrams can be traced back to the fact that
for these diagrams at one or both of the internal vertices
an electron or hole can come in and go out in the same
band. When the momentum carried by the interaction
line connected to such a vertex approaches zero, we end
up with an inner product between states with the same
Bloch vector. This inner product is zero if these states
are in different bands, but unity if they are equal (see
the example in Appendix B). These diagrams were not
accounted for in Ref. 6 nor in Ref. 5.

Our calculations do not yield the 0.5 eV energy shift,
predicted in Ref. 2. One possible reason for this could be
that the screened interaction is calculated with a RPA di-
electric constant. This could be checked by also calculat-
ing the lowest-order vertex correction to the irreducible
polarizability P (see Fig. 3). Unfortunately, this would
produce an even more difficult numerical task. However,
according to the calculations of Ref. 7 it is not the vertex
correction of W which causes the energy shift (this cor-
rection even leads to a small decrease of the energies), but
the vertex correction of ¥. This inevitably seems to lead
to the conclusion that higher-order vertex corrections are
responsible for the energy shift.

Having established the smallness of the contribution
of the lowest-order vertex-correction diagram to the di-
rect gap, it still has to be realized that there is no a
priori guarantee that the total contribution of all vertex-
correction diagrams is also small.

J

PK:.,Kz (k Z)

> d1,q(Q)d}, 4 (Q - Ki)
Q

In this expression ¢ (k) is a band energy (CB stands for
conduction-band and VB for valence-band index) and
dix(K) are the plane wave coefficients of the wave func-
tion ¢y with wave vector k and band index I:
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APPENDIX A
In Ref. 10 the energy-dependent screened interaction

WK k,(k,€) in a plane wave basis (K; is a reciprocal
lattice vector) is written as

Wk, k. (k,€) = vk, k, (k) + WK k,(k,¢),  (Al)
where vk, k, (k) is the bare Coulomb interaction
e
kk\=———§ . A2
UKl,Kz( ) €0|k+ K1|2 K,,K: ( )

For W§T ¢, (k,€) the following plasmon pole model is
derived:

SCI' 1 1
Wik, (K, €) = ;(e—wm(k)+in~6+wm(k)—iﬂ>
X Wit (K1)} (K2), (A3)

where 7 is a small positive energy. The plasmon pole
energies wm, (k) and the coefficients wmi(K) of the plas-
mon functions in this expression can be related to the
following generalized eigenvalue problem:

1

X = ~ o7 g M0 (A4)

Here the shorthand notations A for matrices Ak, k, and
Z for vectors xx were adopted. In Eq. (A4), x(k,e = 0)
is the full polarizability at zero energy. The full polariz-

ability at complex energy z is related to the irreducible
polarizability P(k, z) by

x(k, z)

with I the unit matrix. The RPA expression for P(k, 2)
is:14,15

= P(k,2) [I — v(k)P(k,z)] ", (A5)

o7 fu (2,5 5 5 awiaacw

1,ECBIl;€VB

l;€VB 1, €CB
D d}1q(Q)diqk(Q — Kz) (AS6)
Q
[
Sne(r) = % 3 due(K) ik (A7)
K

with Q the crystal volume.
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The matrix M(k) in Eq. (A4) is related to the plane
wave coeflicients of the density p(K) through

hz
MKl,Kz (k) = ;L—

e

(k+Ky)- (k+Kz)p(K - K), (A8)
with m. the electronic mass. It can be shown that the
matrix x(k,z = 0) is Hermitian and negative definite,
whereas M (k) is Hermitian and positive definite. Hence,
the eigenvalues w2, (k) are real and positive. The eigen-
vectors Z,,x should be normalized according to

& M (K)Znk = G,

and satisfy the completeness relation

K1 Kz(k €
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= M (k). (A10)

R
E TmkT,
m

The coefficients w,,x(K) in Eq. (A3) are related to the
eigenvectors .,k (K) of Eq. (A4) by

1
Wk = ———v(k) M (k)% Al1l
x r)m(k)_( )M (K)Zmx (A11)
APPENDIX B
(A9)
The general expression for £VC is
J
3
2ﬂ_ 8h4 /Bzd q1 /BZd Q2/ d€1/ de; Z GQ.K,-Q. (91, €1)
Q:--Qe
XGQs-Qs5,Q:i—Qs (A1 + 92 — k, €1 + €2 — €)Gk, -Qq,,Q;s (A2, €2)
XWQE,Qz’(k —dq1,€1 — E)WQuQa (k —q2,€2 — 6). (Bl)
The Lehmann representation for the noninteracting LDA electron propagator GLPA is:16
die(K1)dj (K2)
LDA lk 1)0 2
Gk, (k€)= hze_q (B2)

) + insgnler(k) — )’

with g the chemical potential. Inserting Eq. (B2) into Eq. (B1) and using the plasmon pole model Eq. (A3) for W
given in Appendix A, the €; and €, integrations can be performed analytically with contour integration. For each
of the 38 diagrams in Fig. 2 one obtains a different expression. It is of no use to give all these expressions here,
because this would fill several pages and because the derivations are straightforward. As an example we will give the
expression for the contribution of the diagram CVVS (see Fig. 2) to AeVC [Eq. (1)] of the wave function with band
index !l at k =0:

AeCVVS = {1 k=0|Z°VV5(e1,k = 0)|¢11—0)

e2 /
= T~ 75 e d3Q1/ dSQZ
€0(2m)® Jimz BZ

1
DIPNDYD Z[ft, (a1) — €, (q1 + Q2) + wim(q2)][e(k = 0) — €1,(q2) + wm(q2)]

1,ECBIl,€VBIlzeVB m

d1k=0(K2)dj 4, (K2 — Q2)
xxzz,c:h - |;1i32|2 & Zdrm (Qs)diq1+4;(Qs — Q)
x d?,k:o(Kl)dlsqz(Kl—Ql)wm,—qz(Ql)
K., Q:
X Z w:n,—qz(QG)dllth(Q4)d;2q1+q3(Q4-QG)' (B3)
Q4,Qs

The advantage of using the plasmon pole model of Ref. 10
instead of that of Ref. 1 is clear: the Q; and Qg summa-
tions in the above expression can be performed indepen-
dently.

If I € CB, the Q2 = 0 term of the expression Eq. (B3)
diverges like 1/|q;|2 when q; — 0. The reason for this is
that for Q2 = 0,1; = 1,13 = l3, and q; — 0 we have twice
an inner product of a wave function with itself, which is
unity. For I € CB the expression Eq. (B3) remains finite,
however, when q2 — 0, because the 1/|qz| divergences of

Wm,—q,(Q1) for Q1 = 0 and of wy, _, (Qs) for Qe = 0
are canceled by two factors of the form

Z d;(lql (K)dlz'-'h +a2 (K)
K

if g2 = 0 and l; # l,. If |l € VB, the expression Eq. (B3)
diverges like B - q;/|q:|? when q; — 0 and like 1/|q2|
when q2 — 0. The contribution of the diagram CVVS
o 6VC is simply obtained by multiplying the integrand
of Eq. (B3) by —[ei(k = 0) — €1,(q2) + wm(g2)]™*

= By, 1,(q1) - g2, (B4)
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