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The same method can be used for proving the Hardy integral, 

X sin a(y -x) sin b(y -z) dy = 7r sin b(z - x) o < b < a, 
I0 

dy = 

( 

where the Parseval equation for the Fourier transform is employed. It is obvious that this 
method can be utilized for proving more general integrals for the Hankel and for other 
transforms. 

In a second solution, 0. P. LOSSERS shows that the stated equation holds generally 
for complex x and z. 

A Volume Problem 

Problem 82-4, by M. K. LEWIS (Memorial University of Newfoundland). 
An asymmetrically positioned hole of radius b is drilled at right angles to the axis of a 

solid right circular cylinder of radius a (a > b). If the distance between the axis of the drill 
and the axis of the cylinder is p, determine the volume of material drilled out. 

Solution by J. BOERSMA, P. J. DE DOELDER and J. K. M. JANSEN (Department of 
Mathematics and Computing Science, Eindhoven University of Technology, Eind- 
hoven, the Netherlands). 
Introduce Cartesian coordinates x, y, z, then the cylinder and the drill may be 

described by 

(1) Ca:x2 + y2 = a2 Cb:(x _ p)2 + z2= b2. 

The volume of the intersection of Ca and Cb is denoted by V(a, b, p). Without loss of 
generality, we may assume 0 _ b < a, p _ 0. 

From a cross-section of Ca and Cb with the plane z = 0, it is readily seen that 

(2) V(a, b, p) = 2 [b2 _ (x _ p)2] 1/2 dxdy, 

where the domain of integration is 

(3) G = {(x, y) I X2 + y2 _ a2, x-pl| _b}. 

We now distinguish three cases: 
I. 0 - p _ a - b. In this case the integral (2) reduces to 

(4) V(a, b, p) = 4 p+b [(a - x)(b + p - x)(x + b - p)(x + a)112 dx. 
p-b 

The latter integral can be expressed in terms of elliptic integrals by means of Byrd and 
Friedman [1, form. 254.38]. Omitting the details of the tedious though straightforward 
calculation, we present the result 

V(a, b, p) = 4(a + b + p)-112 (a + b _ P)-1/2 

[1/6(p2 - 2ap - 2a2 + 2b2)(a + b + p)(p + a-b)K(k) 

+ '/6 (p2 + 2a2 + 2b2)(a + b + p)(a + b - p)E(k) 

+ (a2 - b2)p(p + a - b)Hl(a2, k)], 

where 

2 4ab 2 2b (6) 
~~~~(a?+b?+p)(a?+b -p)' aa? b?+p 
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In (5), K(k), E(k) and ll(a2, k) denote Legendre's complete elliptic integrals of the first, 
second and third kinds, respectively, as defined in [1, form. 110.06-08]. 

II. a - b _ p _ a + b. In this case, the integral (2) reduces to 

(7) V(a, b, p) = 4 a [(b + p - x)(a - x)(x + b - p)(x + a)]'12 dx, 
p-b 

which can again be evaluated by means of [1, form. 254.38]. Thus we obtain 

V(a, b, p) = 2a-1/2b-1/2 [-I3a(p + a - b)(2ab - 2b2 + (3a + b) p)K(k) 

(8) + 2/3ab(p2 + 2a2 + 2b2)E(k) 

+ (a2 - b2)p(p + a - b)lH(a2, k)] 
where 
(9) k2 (a + b + p)(a + b - p) 2 a + b -p 

4ab '2a 

III p _ a + b. In this case the drill Cb is outside the cylinder Ca, hence 

(10) V(a,b,p)=0. 

The results in (5) and (8) may be combined into a single formula, viz., 

V(a, b, p) = 2312[ab(a + b + p)(a + b _ p)]-1/4 

(11) * {1/3a(a + b + p)(2ab + 2b2 _ (3a - b)p)k'/2K(k) 

+ ?3(p2 + 2a2 + 2b2)[ab(a + b + p)(a + b - p)]12 k-'12[E(k) - K(k)] 

+ (a2 - b2)p(p + a - b)kl/2211(a2, k)} 

where k2, a2 are given by (6) in case I, and by (9) in case II. It has been verified that the 
results (I 1) for cases I and II are related by the reciprocal modulus transformation (cf. [1, 
form. 162.02]) 

Re k'/2K(k,) = k'12K(k), Re k- 1/2 [E(kQ) - K(k,)] = k-'12[E(k) - K(k)], (12) 
Re k' /2l l(a2, kl ) = k' /21 (a2 k) 

where k, = 1/k, ac = 2/k2 a2 _ k2 = 1 
The previous general results simplify in the following special cases: 
1. p = 0. Then it is found from (5) that 

(13) V(a, b, 0) = 4/3 (a + b)[(a2 + b2)E(k) - (a - b)2K(k)], 

where k2 = 4ab/(a +b)2. By means of Gauss' transformation [1, form. 164.02] the latter 
result can be reduced to 

(14) V(a, b, 0) =8/3a [(a2 +b2)E () -(a -b)K 

The same result can also be found directly from (4) with p = 0, by use of [1, form. 
219.11]. 

2. p = a - b. The expression for V(a, b, p) in this case should follow continuously 
from (5) and (8). Indeed, by taking the limit forp a - b in (5) and (8) we find 

(oga 1/2 +bl2 
( 5) V(a, b, a - b) = 4/3 (ab)'12(3a2 + 3b2 - 2ab) - 4(a - b)2(a + b)lI (a1 - b)1/2' 

which has been checked by a direct calculation from (4) with p = a - b. 
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3. p a + b. Then Cb is tangent to Ca on the outside, and it is found from (8) and 
(10) that 

(16) V(a, b, a + b) = 0. 

4. a b. Then the result in (8) simplifies to 

(17) V(a, a, p) = 4/3 a [(p2 + 4a2) E(k) - 2p2K(k)], 

where k2 = 1 - p2/4a2. 
5. a = b,p = 0. Then it follows from (14), (15) or (17) that 

16 
(18) V(a,a,0)= - a3, 

3 
which result can also be found immediately from (4). 

By means of (5) and (8) we have computed a table of V(a, b, p) to four decimal 
places, for values of the argument 

a = 1, b = 0.1(0.1)1, p = 0(0.1)1 + b. 

The required elliptic integrals were calculated by standard procedures taken from 
Bulirsch [2]. 

TABLE 

V(1, b, p) 

b 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 
p\" 

0 0.0628 0.2501 0.5591 0.9848 1.5200 2.1550 2.8763 3.6664 4.4999 5.3333 
0.1 0.0624 0.2488 0.5561 0.9794 1.5113 2.1416 2.8566 3.6373 4.4534 5.2557 
0.2 0.0615 0.2449 0.5472 0.9630 1.4846 2.1006 2.7955 3.5436 4.3029 5.0786 
0.3 0.0598 0.2383 0.5320 0.9350 1.4384 2.0290 2.6842 3.3665 4.0833 4.8341 
0.4 0.0575 0.2287 0.5098 0.8938 1.3698 1.9180 2.5042 3.1363 3.8161 4.5399 
0.5 0.0543 0.2157 0.4795 0.8368 1.2707 1.7501 2.2828 2.8716 3.5149 4.2089 
0.6 0.0501 0.1985 0.4389 0.7571 1.1253 1.5509 2.0373 2.5843 3.1900 3.8515 
0.7 0.0447 0.1758 0.3826 0.6411 0.9577 1.3364 1.7785 2.2836 2.8505 3.4767 
0.8 0.0373 0.1436 0.2997 0.5111 0.7826 1.1168 1.5151 1.9777 2.5040 3.0922 
0.9 0.0262 0.0947 0.2107 0.3809 0.6097 0.9002 1.2546 1.6736 2.1576 2.7055 
1.0 0.0085 0.0472 0.1283 0.2596 0.4467 0.6937 1.0036 1.3780 1.8179 2.3230 
1.1 0.0000 0.0130 0.0611 0.1546 0.3004 0.5037 0.7684 1.0969 1.4910 1.9511 
1.2 0.0000 0.0163 0.0724 0.1769 0.3362 0.5548 0.8363 1.1828 1.5958 
1.3 0.0000 0.0190 0.0821 0.1967 0.3685 0.6016 0.8990 1.2628 
1.4 0.0000 0.0214 0.0908 0.2147 0.3982 0.6449 0.9576 
1.5 0.0000 0.0235 0.0987 0.2313 0.4258 0.6855 
1.6 0.0000 0.0255 0.1060 0.2468 0.4517 
1.7 0.0000 0.0273 0.1129 0.2613 
1.8 0.0000 0.0290 0.1193 
1.9 0.0000 0.0306 
2.0 0.0000 

Boersma and Kamminga [3] calculated the volume of intersection, V(p, q), of a 
sphere of unit radius and a cylinder of radius p, with i denoting the distance of the center 
of the sphere and the axis of the cylinder. Their expressions for V(p, q) in terms of elliptic 
integrals are quite similar in form to the present expressions (5) and (8). In addition it was 
shown in [3] that V(p, 7) can be represented by an infinite integral of a product of three 
Bessel functions, viz., 

(19) V(p, r) = 2irpVff /7J J1(pt)Jo(?7t) 312( dt. 
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We shall now derive a similar integral representation for the volume of intersection 
V(a, b, p) of two cylinders. Following [3], we introduce the functionf(p) defined by 

(0 for p > b, 

(20) f(p) = b f Jo(pt) Ji (bt) dt= 1/2 for p =b, 

"I for0_p<b 

(cf. Watson [4, form. 13.42(9)]). Let p denote the distance to the axis of the cylinder Cb, 
then V(a, b, p) may be determined by integratingf(p) over the volume of the cylinder Ca. 
Thus, employing cylindrical coordinates r, X, z, one has 

(21) p= V(rcoso-_p)2+zZ2 

V(a,b,p) = 2fardrf2rdp f(V(rcosk _ p)2 + z2)dz 

(22) 
= 2b a r dr f2X d f dzf JO(tV(r cos 0 p)2 + Z2) J, (bt) dt. 

By interchanging the order of integration, we may successively perform the integrations 
with respect to z, 0 and r by means of [4, form. 13.47(5), 2.3(1), 5.1(1)]: 

(23) Jo (t+ z) dt = ( J)2 ) 1,2(t) = c(t 

(24) 2s cos (t(r cos 0 - p)) do = 2-r cos (pt) Jo(rt), 

a a 
(25) rJo(rt) dr = - J1 (at). 

As a result we obtain the integral representation 

(26) V(a, b, p) = 4rab J(at)J(bt) (pt) dt, 

and implicitly it is found that the latter Bessel function integral is given by (5), (8) and 
(10). Infinite integrals of products of Bessel functions have been studied by Bailey [5], 
and listed by Luke [6, ?13.4], Okui [7]; however none of these references contains the 
particular integral (26). According to [5, form. (7.1)] the integral (26) can be expressed 
in terms of an Appell function of the two variables a2/p2, b2/p2; furthermore, by [5, form 
(8.3)] the integral vanishes if p _ a + b, in accordance with (10). The special case p = 0 
of (26) is given in [7, form. 1.2.7(1)] and the result agrees with (13); see also [4, form. 
13.4(2)] for a representation in terms of a hypergeometric function of argument b2/a2, 
which is equivalent to (14). The special case a = b of (26) can be derived from [7, form. I. 
2.3(3)] and the result agrees with (17). 

Also solved by W. B. JORDAN (Scotia, NY) and the proposer. M. RENARDY 

(University of Minnesota) submitted a partial solution. 
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A Maximum, Minimum Problem 

Problem 82-5, by T. SEKIGUCHI (University of Arkansas). 
In Euclidean space E3, with origin at 0 and coordinates (xI, X2, X3), let Ube a ray in 

the closed first orthant, and ai be the angles between the positive xi axes and OX, i = 1, 2, 
3. 

Determine the maximum and minimum values of a, + a2 + a3. 

Solution by 0. P. LOSSERS (Eindhoven University of Technology, Eindhoven, the 
Netherlands). 
Without loss of generality we assume (xI, X2, X3) to be on the unit sphere in the closed 

first octant, denoted by 

2 
X + X2 + X3 

2 

(XI >- 0, X2 0, X3 _- 0. 

The function to be considered then reads 

F(x,,X2, X3) := arccos xl + arccosx2 + arccosX3. 

(i) At the boundary points of S, we have F(x1, X2, X3) = ir since 

arccos 0 + arccos x + arccos - = ir. 

(ii) In the interior of S, we find stationary points for F in those points where grad 
F = grad (X2 + x2+ 1), i.e., 

XI X2 2 = X3 3- 

Squaring, we obtain 

XI _ X2 - XI X24= , etc. 

(xI - x2)(xI + x2)(1 _ x2 _ x2) = 0, etc. 

In this product for the interior points only the first factor can be zero, so 
X= X2=X3=3 1/2 

At this point, F attains the value 3 arccos 3-1/2. 

Hence 

3 arccos 3-1/2 _ F(xI, X2, X3) _ T. 

Also solved by G. A. HEUER (Concordia College), C. KNOSHAUG (Bemidji State 
University), I. I. KOTLARSKI (Oklahoma State University), U. PURSIHEIMO (University 
of Turku, Turku, Finland), M. RENARDY (University of Minnesota), G. SCHLUETER 
(Virginia Polytechnic Institute and State University) and the proposer. 
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