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On the Cr~ditioning of Multipoint and Integral Boundary

Value Problems

F.R. de Hoog and R.M.M. Mattheij

Abstract

We investigate linear multipoint boundary value problems from the

point of view of the condition number and properties of the fundamental

solution. It is found that when the condition number is not large, the

solution space is polychotomic. On the other hand if the solution space

ispolychotomicthen there exist boundary conditions such that the

associated boundary value problem is well conditioned.



1.1

§1. Introduction

Consider the first order system of ordinary differential equations

(1. 1 ) Ly := y' - Ay = f, O<t<l

nxn
where A E L1 (0,1) and f E n

L1 (0,1).

~e are interested in the solution of (1.1) that satisfies the multipoint

boundary condition (BC)

N
(1. 2) By := L B.y(t. ) b.

i=l 1. 1.

Here,
0 t 1 < ••• < t = 1

N

nXn
and the matrices B. E lR , k

1.

instance

l, •.• ,N have been scaled so that for

(1. 3)
N

L
i =1

B. B~ = I
1. 1.

The restriction t
1

= 0, t N = 1 has been introduced for notational

convenience and is not restrictive provided we allow for the possibility

that BO = 0 and BN = O.
--------_.----

One of the simplest examples of a multipoint boundary value problem

is that of a dynamical system with n states which are observed at

different times. Further examples and a description of numerical schemes

for the solution of such equations may be found in f12], [1], [11].

From the theory of boundary value problems, (1.1), (1.2) has a unique

solution if By is nonsingular for any fundamental solution Y of L (see

for example Keller [8J). In the sequel we assume this is the case. Then,

given any fundamental solution Y of (1.1) we may write the solution of

(1. 1), (1. 2 ) as

(1. 4)

where

yet) = ~(t)b + f~ G(t,s)f(s)ds , O~t~l



(1. Sa)

and

~(t) := yet) (By)-1

1.2

U .Sb)

G(t,s)=

~(t)

-~(t)

k -1
LB. ~ (t . ) ~ (s), t k < s < t k+1 ' t > s

i=l ~ J

N -1
LB. ep (t . ) ~ (s) , t k < s < t k+1 ' t < s

i=k+l ~ J

The function G is the Greens function associated with (1.1) (1.2).

We can now use (1.4) to examine the conditioning of (1.1), (1.2).

Let 1·1 denote the usual Euclidean norm in lR n and define

Ilull"" := sup lu(t) I
t

IIul11 = ;~Iu(t) Idt

Then it follows from (1.3) that

, U E

, U E

[L (O,l)]n
""

[ ~n

L
1

(0,1) J •

(1. 6)

where

(1. 7a)

and

(1. 7b)

a := sup IG(t,s) I
t,s

B := sup l~(t) I
t

the quantities a,B defined by (1.7) serve quite well as a condition

numbers for the boundary value problem in the sense that they give a

measure for the sensitivity of (1.1), (1.2) to changes in the data.

Consequently, if a or B is large, we may expect to have difficulties in

obtaining an accurate numerical approximation to the solution of (1.1),

(1.2).
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If a is of moderate size, the solution space of (1.1) has properties

that can (and should) be used in the construction of algorit~for calculating

an approximate solution of (1.1), (1.2). For the two point case (i.e. N=2),

de Hoog and Mattheij [5], [6] have shown that the solution space is dichotom;'

when a is not too large. A dichotomic solution space (see section 4 for a more

detailed discussion of dichotomy) essentially means that non-increasing modes

of the solution space can be controlled by boundary conditions imposed on the

left while non-decreasing modes can be controlled by boundary conditions

imposed on the right. This concept is the basis for algorithms using decoupling

ideas (see for example [10], [11]. The aim of this paper is to generalize

the results of [5], [6] to (1.1), (1.2) with N ~ 2. In this case the notion

of dichotomy has to be generalized and it turns out that, for well conditioned

problems, the solution space consists of modes that can be controlled at one

of the points t 1 , •.• t
N

(see section 4). This has allowed us to generalize the

ideas of decoupling to multipoint problems but that is discussed elsewhere [11].

In general one may say that if N > n there is a redundancy in the number

of conditions involved. It is therefore crucial to pick precisely n appropriate

points from which modes are actually controlled by suitable conditions. It is

quite natural to consider then a limit case of multipoint BC, viz an integral

condition (which incidentally generalizes two and multipoint conditions in

an obvious way), so

(1.8) b.

Such BC arise directly when L norms are used to scale the solution (possibly
p

after linearization) as in eigenvalue problems.

One may treat the (discrete) multipoint case separately from (1.8).

However, as it turns out, it is possible to construct a general mechanism

which handles the integral BC as well. The price to be paid for this is that

our proofs will be based on functional analytic arguments and thus are less

constructive as could be given for the discrete case.

The reward though is that we have been able to get sharp bounds in our

estimates, sharpening even the bounds given for the two point case in [6].
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§2 Notation and Assumptions

In this section we review some basic results which we need later on in our

analysis. For some general references regarding Green's functions one may

consult e. g. [2] and [9] .

2.1 Boundary conditions and their normalisation

Consider the general boundary condition (Be)

(2.1) By = b

B is a bounded linear operator from L7 1 (0,1) to ]R. n. Note that this,
includes the BC of type (1.2) and (1.8) as well.

mean those functions whose first derivative is in

n
By L1,1 (0,1) we

nL
1

(0,1). We introduce

the norm

Ilu 11 00 = max Iu (t) I , U E L~ 1 (0, 1 )
O~t$l '

where

2)~ E ]R.n.a, , a
~

lal
n

= ( L:
i=l

n aTB n rO lJFor any a e: ]R., is a linear functional from L
l

1_, to]R. We,
define

max
nae:]R

sup
n

ue:L1 , 1 (0,1)

IlaTBII
oo

lal

and

p (B) = min
n

ae:]R n

Lemma 2.1 Let 0 < P
l

(B)
nXn

< 00. Then, there exists a matrix C e:]R such

that
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IlcBII
00

and

Proof If P (B) = 0, the result is trivial. We therefore assume p (B) > a
n n

and let

Since p (EB) is continuous in E and V is closed and bounded, it follows
n

that-there is a matrix C E V such that

p (CB) ~ p (EB)
n n VEE V.

This is equivalent to the statement of the lemma. ~

This now gives us a possibility to scale the BC, cf. (1.3) in a

meaningful way:

Assumption 2.1 In the sequel, we shall assume that the Be (2.1) has

been scaled so that

(2.2a)

and

(2.2b)

In addition to assumption 2.1 we have

n
Assumption 2.2 Let (1.1), (2.1) have a solution for every fELl (0,1)



and b E JR n.

B Y E JR
nxn nxn (

Then, is nonsingular where Y E L1,1 0,1) is the

solution of

2.3

(2.3a) Ly = 0, yeO) = F

and F E JR nxn is nonsingular.

On defining

(2.3b) q>(t) := yet) (By)-l

n
we can write any function y E L

1
,1 (0,1) as

y = Py + (I-P)y

(2.4)

where

(2.5a)

(2.5b)

= Py + G(Ly)

Py := ~ (By)

Gf :=10
1

G(t,s)f(s)ds , f E L~(O,l)

and G is the Green's function defined by

(2.6a)

with

G(t,s)
. -1

= ~(t) {H(t,s) - B(q> H(' ,s»} q> (5)

It> S

(2.6b) H(t,s) =

a t < s

(cf. the special case (1.4), where B is given by (1.2».



Remark 2.1

interp reted

2.4

The operator B in the term B(~ H(·,s» above should be

n n
as an extension of B to an operator from L~(O,l) to ]R •

Note however that a sensible extension of B to Ln (O,l) is assured by
~

the Hahn-Banach Theorem.

Remark 2.2 P is a projection from L~,l (0,1) onto the solution space

{Ya I a E ]Rn}. Given such a projection P, we can define a linear

operator

where C E ]Rnxn is a scaling matrix chosen so that (1.1), (2.2 a,b)

holds. Lemma 2.1 ensures the existence of such a matrix.

Remark 2.3 It is easy to verify that the Green's function has the form

(2.7)
--1 Y(t)G(t,s)

-Y (t)

-1
(I-E(s» Y (s)

-1
(E (s) Y (s)

, t > s

, t < s

nxn
where E E L~ (0,1). Conversely, given a function of the form (2.7), we

have

L{J 1 G(.,s)f(s)ds}o

In addition, if we define

n
f , fELl (0,1) •

then

(py ) (t)

(Py) (t)

1
:= y(t) -J0 G(t, s) (Ly) (s) ds,

1 -1
+ Y(t)JO E(s)Y (s)(Ly) (s)ds

= Y(t) {y-1 (0) y (0) +JO
l
E(s) Y-1 (s) (Ly) (5) ds }
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It is easily verified that P is a projection. Thus, B defined by

-1 1-1By = c {y (0 ) y (0) +JOE (s ) Y (s) (Ly (s) )d s } ,

where C € ]Rnxn is a scaling matrix choosen so that (2.2 a,b) holds1gives

a bounded linear operator for which G is the associated Green's function.
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2.2 Auerbach's lemma

Let V be a normed linear space of dimension k with norm denoted

by 11·11 *and let V be the space of all linear functionals from V + lR •

*Define a norm on V by

(2.8)
*

Ily*ll* = sup W, , y* E V*.
XEV X

Definition 2.1 A boundary of V is any set

such "that

* *V C {y EV 11/ II * ~ 1}

Ilxl \ = *sup y (x)

*y EV

Lemma 2.2. (Auerbach see [4, lemma 4J).

*If V is a closed boundary of V then there exist Yi E V, Yj E V;

i,j = 1, ••• ,k such that

Ily~ll* = 1, Ily.11 = 1; i,j = 1, ••• ,k.
1 J.

{y* E V* ISince

that

Ily*II*~ }1 is a closed boundary, it follows Dnmediately

* *Corollary 2.1 There exist Yi € V , Yj € V; i,j = 1, ••• ,k such that

o..
1J

Ily~ll* = 1, Ily.11
1 J

1 i,j = l, ... ,k.



3.1

§3 Conditioning of Differential Equations

In this section we consider the relation between a and e and the

effect of the normalisation of the BC as in assumption 2.1.

nRecall that for yELl 1 (0,1) (cf.(2.4»,

1
yet) <I>(t) By +J

o
~(t,s) (Ly) (s)ds

Hence, on taking norms

where

I I<I>a I I00

max -rar
aElR n

a = sup !G(t,s) I
t,s

In addition to a and a, it is useful to also consider

-1P.: = y (By) B.

Lemma 3.1

p (B) e ;;a II p II .;$ p (B) e
n 00 1

Proof the result follows immediately from the definition of

~ (B) and Pn (B). #-



3.2

- n n-
Lemma 3.2 Let 0 be a linear operator from L

1
,1 (0,1) to R and a

-
be the constant associated with B and the differential equation (1.1).

Then,

Proof Let

~ := y (By)-l and Gf := f
0

1 G (.,s) f(s)ds,

where G is defined similarly to G in (2.6a), i.e. B replaced by B.
- --1

Clearly, ~ = y (By) and consequently P = P P

(I-P) Gf and henceThat is, Gf

-
11 Gf II ~

.. 00

-
1 + II P II )11 Gf II

00 00

Thus, a ~ ( 1 + II P II ) a
00

o

It is clear that the result of Lemmas 3.1 and 3.2 can be combined

to give

a ;;; (1 + P (8) S ) a
1

Since it has been assumed that (2.2 a,b) holds we obtain the estimate

~ ~

(3.1) a ;;; (1 + 13) a

Note however that a and II P II are independent of the scaling (2.2 a,b)
00

but that p (B), p (B) and S are not. We therefore examine some of the
1 n

ramifications of assumption 2.1

Lemma 3.3

Proof let
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That is, V are the linear functionals of the form aTB. Since B~ I,

dim (V) = n.

For t E V, define

Ilill = n Sup &~: = Ililloo
YELl, 1 (0,1)

V equipped with the norm 11·1 I is an n dimensional normed space. From

Auerbach's Theorem (Corollary 2.1), there exist

* *i. E V , i. E Vi i,j = 1, ••. ,n such that
) 1.

*i. (.t, )
) 1.

o. 0' Ili~ll*
1.) J ".e. II1.

1; i,j 1, ... ,n.

Clearly, for some E E JR nxn ,

n
L

i=l
a . .e.

1. 1.
Va

Furthermore,

II aT E B II
00

n

II L a. i. II
i=l 1. 1. 00

n
L a . .t.)

i=l 1. 1.

n ...
L a. l.

j=l ) );;<:
---"'-----------n

II L a . .t~ II *
j=l J )

Thus,
1

Pn (E B) ;;<: ~n •

In addition, II aTEB II
00

n

II L
i=l

a . .t. II
1. 1. 00

n

~ i:1 I a i I 1.I.ti II e:: ~ n1 I a I

and hence from (2.2b)
P

n
(EB)

-1;;<: n

o
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For boundary conditions of the form (1,2) we can obtain somewhat
f'

sharper estimates.

Lemma 3.4 For B given by (1.2) and satisfying (1.1), (2.1),

where N is the number of nontrivial matrices B. in (1.2).
1 ~

Proof Without loss of generality, we take N = N
1

II aT E B II =
00

Nt (aTE
N T ETa)t~ L: B. B.

i=l ~ ~

Nt IE
N T ETltl al~ L B. B.

.:i=1 ~ ~

~ Nt IE
N

B: ET ItThus, p (E B) L B.
1 i=l ~ ~

On the other hand,

II aT E B II
00

N T T
L: lB. E a I

i=l ~

N
~ Iai/I (E L

i=1

Thus,
N

~ 1/ (E L:
i=l

T T -1 ItB. B. E )
~ ~

I f we now take

then, from (2.2b),
p (EB)

p (B) ~ _n > N-t
n - P (Ea) =

1



For an important class of boundary conditions, the bound in Lemma 3.4 is

attained.

Lemma 3.5 Let B be given by (1.2),

N

r rank (B
i

) = n
i=l

and N
1

be the number of nontrivial matrices B
i

in (1.2). Then,

In addition, (2.2a,b) holds if and only if

N T -1
LB.B.=N

1
I

i=l ~ ~

Proof: Let us assume without loss of generality that N
1

=N,

3 • .s

and

T 2
B. B; n. = a. n.
~ ... ~ ~ ~

1n.1 = 1
~

, i = l,-.,N

1
k-1

= sign { n~ B~ L Wi Bi n
i

}, k=2, •• ,N
i=l
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Now,

P (8)
1

max
a

{ I
Wi aT Bi "i I} =

lal

= \ ~ w. B. n. I ~ (~ n': B~ B, n.)'
i=i ~ ~ ~ i=i ~ ~ ~ ~

This result holds for all singular values a" and we may therefore take
~

a, = IB, I• Then
~ ~

III addition, for a
k ~ 0

N N

fi~i laTBill f i~i aT B.I
lP (8) min a

k
min ~

~
n l la I f l la I IBk nkl Ja a

N

fi:,laTBill

L IaT B
k

n
k
If

,

Note that the last equality is not valid if L rank (B.) > n. Nor is it valid
~

for an arbitrary vector n
k

.

Pn (8)
~ min

a
k ~ N- tThus 2 tPi (8) k

(i~i IB.\ )~

which proves the first part of the lemma.

Now let (2.2a,b) hold. From lemma 3.4 and the result above
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Since, ok is an arbitrary singular value, all the singular values are equal,

and using (2.2a) it follows that
N
L: B B

T

i=l i i
-1

N I •

Finally, let

N
L:

i=l
B. B.

1. 1.

Then, as previously, and

N

I L:
i=l

T t
B. B. I = 1 •

1. 1.

Thus,

In addition, as in lemma 3.4

p (8) ~
n 1 / I

( N T \-1 t

\
L: B. B. ) I

i=l 1. 1.

-t
N

and as this is the best possible, (2.21,b) holds.

We now have the tools to assess the condition numbers a,S. Let us

consider in particular (1.1) and the multipoint Be (1.2),

#

N
B y = L:

i=l
B. y(t.),

1. 1.

for which we have the following useful properties

(3.2) ~(t) B. = G+(t,t.) - G-(t,t.), i=l, ••. ,N,
1. 1. 1.

where

+
i=1, ••• ,N-1,(3.3a) G (t,t.) = lim+ G(t,s) ,

l.
s+t.

l.

- (t, t. ) G(t,s) , i=2, •.. ,N,(3.3b) G = lim
1. -s+t.

l.

+ - (t,O)(3.3c) G (t,l) = G = O.
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Theorem 3.1 For B given by (2.1) and satisfying (2.2 a,b)

2 N1 a t
13 ~ ---- ~ 2 N

1
a min (n, N )

P (B)
n

where N1 is the number of nontrivial matrices B
1

in (3.2). If, in

addition
N

r
i=l

rank (B.) = n,
~

then 13 ~ 2 N
1

a .~

Proof. Without loss of generality, we take N
1

I 4> (t) B. I ~ 2 CL
~

N .' From (3.2), (3.3)

( N 2,t (N
and hence 14> (t) I ~ I.r 14>(t) B

i
1 } I .r

\~=1 ~:=1

T
B. B.
~ ~

-1 t

) 1

N T)-1 t
~ 2 a Nt I ( r B. B. I·

i=l ~ ~

The first result now follows from the inequality

and lemmas 3.3 and 3.4.

However, if
N

r
i=l

rank (B.) = n
~

(N )-1 ~it follows from lemma 3.5 that I r B. B~ I
i=l ~ ~

and this establishes the second part of the theorem. #

Thus, when B is given by (2.1) and N is not too large, the single

parameter a is a suitable measure of the conditioning of the problem.

However, as N ~ ~ we cannot bound 13 in terms of a using the results of
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Theorem 3.1 which suggests that in general it is not possible to obtain

such bounds. This is confirmed by the following example.

Example 3.1 Consider the problem

Ly = y' + ay , a > 0,

_ 1
By = '0 y(s)ds,

-a
for which a = 1,a = a (l-e ) and Pl (B)

as a -to co •

1. Clearly, a becomes unbounded

#

Thus, in general both ex and /3 need to be addressed in a discussion

of stability.
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§4. Polychotomy

For two point boundary value problems (i.e. N=2) it has become

almost traditional to assume that the solution space

can be separated into a space

of 'non-decreasing' solutions and a space

V(t) = {¢(t) (I-p)clc E lR n }

of 'non-increasing' solutions. In addition, if neither l(t) nor V(t) is

trivial, (i.e. P ~ O,I) it is usually assumed that the angle 0 < n(t) < n/2

between l(t) and V(t), defined by

cos n(t) =

is not too small. This has led to the notion of

Definition 4.1 The solution space is dichotomic if there exists a

projector P and a constant K such that

(4.1a) I¢ (t )P¢-1 (s) I < K t > S

(4.1b) t < S

K is called the dichotomy constant

Although a projector always exists such that (4.1) is valid for some

constant K, we are primarily interested in the case when K is of moderate

size. In fact a more precise definition would involve the size of K as



with K

4.2

well; we do not dwell on this however. It turns out that dichotomy is

intimately connected with the conditioning of two point boundary value

problems. Specifically, de Hoog and Mattheij [4J,CSJ have shown that:

Theorem 4.1 When N = 2, there exists a projector P such that (4.1) holds

2= a + 4a . Altematively, if (4.1) holds, then there exist matrices

B
1

, B
2

€ lR
nxn such that a ~ K.

Thus, if N = 2 and a is of moderate size, the solution space is

dichotomic (i.e. K is also of moderate size). Conversely, if the solution

space isdichotomic, there is a two point boundary value problem for

which the condition number is not too large.

However, a well conditioned multipoint problem does not necessarily

have a dichotomic solution space as can be seen from

Example 4.1 Consider the problem

y(~) = 1.

For this example,

f A > 0

and hence

~(t)

yet)
t -1= ~(t) +f~ ~(t)~ (s)f(s)ds

a = 1 (for all A).

Thus the problem is well conditioned but the fundamental solution now
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increases on the interval O<t<~ and decreases on ~<t<l. Such behaviour

is quite common in mUltipoint problems. Indeed, the results of de Hoog

and Mattheij [4J,:5J can be used to show that there exist projectors

Pi' i=l, .•• ,N-l such that

14> (t) (I-Pi) 4>-1 (s) I < K, t
i

<t<s<t
i
+1

where K is of moderate size if a is not large. Thus, on each interval

t i <t<t i +1 , i=l, .•. ,N-l the solution space is dichotomic.

However the examination of a number of well conditioned multipoint

problems has suggested that additional structure is present in the

solution space. This leads to the following generalization of dichotomy.

Definition 4.2 The solution space S(t) is polychotomic if, for some

M E IN, and 0= x ~ x ~. •. ~ x = 1 there exist projectors
12M

P
k

' k = 1, ••• ,M and a constant K such that

M
L P

k
= I

k=l
P P = P. p.

i j J 1.
o.. p.

1.J J

(4.2a)

(4.2b)

14>(t)

\4>(t)

k
L P. 4>-l(s) I < K

j=l J
M
r p. 4>-l(s) I < K

j=k+l )
x < s < x , t < s

k k+1

In section 5 we show that the concept of polychotomy is closely

related to the conditioning of multipoint boundary value problems in the

sense that K will be of moderate size when a is not too large. It turns

out that this relationship can be exploited in the construction of

efficient numerical schemes for the solution of (1.1),(1.2) and this is

discussed in detail in r5j.
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§5. Bounds for Polychotomy

In this section we show how the condition number a can be used to

obtain bounds for K. Initially we consider separable boundary conditions.

5.1 Separable BC

Definition 5.1 The boundary condition (1.2) is called separable if

N
1:

i=l
rank (B.) = n.

1.

Thus for separable boundary conditions, the solution space consists of

a number of modes each of which is controlled by a condition at one of

the points when rank (B.) F O.
1.

We shall see that when the boundary condition (1.2) is separable,

the solution space is polychotomic with constant K = Q. However before

we can show this some preliminary results are required.

Lemma 5. 1 If C
k

E JR nxn, K = 1, ••• , N

N
1: C

k
= I

k=l

and

N
1: rank (Ck ) = n

k=l

then C
k

, k=l, ••• ,N are projectors (Le. C
i

Cj = Cj Ci = 0ij Cj ) •

Proof The result follows from the arguments used in [6, Theorem 3.2J. ~

Lemma 5.2 For E E JR nxn k = 1 N letk ' , ••. , ,
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N

E rank (E
k

) = n
k=l

and define

(
i -1

y(t) E E
k

Y (s) t
i

< s < t
i

+
1

, t > s

--t k=lG(t,s)

N -1
-Y (t) E E

k
Y (s) ; t

i
< s < t

i
+

1
, t < s

k=i+l

where Y is a fundamental solution of (1.1). Then there exists a boundary

condition

(5.1)
N

By:= E
i=l

B.y(t. )
~ ~

satisfying rank (B
i

) = rank (E
i

) and

N -T -1
E B. B. N1

I

i=l
~ ~

such that G is the Green's function associated with (1.1),(5.1) and N1 is

the number of nontrivial matrices E ..
~

Proof: Consider the LQT decomposition

h L lR nxn. 1 . 1 d . 1 d Q ...., (N+1 ) nxnwere € 1S ower tr~angu ar an nons~ngu ar an €~.

is orthogonal (i.e. QTQ = nxn
I). Now define B. € lR , k=l, ..• ,N by

1

If we define



5.3

we see that ~(t) = y(t)L. It is easy then to verify that G is the Green's

function associated with (1.1),(5.1), viz,

can be identified with G(t,s)

G (t,s)

K
~(t) I:

{
1=1

= _ N

-~ (t) I:
i=k+l

-1
B. ~(t.) ~ (s), t > s
~ ~

-1
B. ~(t.) ~ (s), t <s
~ ~

The relationship between polychotomy and the condition number for

separable boundary conditions is now straightforward. Specifically we

have

Theorem 5.1 If the boundary condition (1.2) is separable then the

soiution space is polychotomic with K ~ a

Conversely, if the solution space of (1.1) is polychotomic with constant

K, then there exists a separable boundary condition (1.2), satisf~ring

assumption 2.1, such that a ~ K

Proof If the boundary condition (1.2) is separable

and

N

I:
i=l

rank (B.)
~

= n

Thus

N
L B

i
~(t) = I (cf.(2.3b))

19 ...

N
L

i=1
rank (E. ~ (t . ) )

~ ~
= n
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and from Lemma 5.1,

P.
1.

B. ~(t.)
1. 1.

i = 1, ••• ,N

are projectors. On sUbstituting for p. in the Green's function (1.5) and
1.

comparing the resulting expression with the definition of polychotomy

(see definition 5.1), we find that (4.2) holds with K = a, M = N and

t ..
]

If on the other hand the solution is polychotomic, then

IG(t,s) I ~ K

where

G(t,s)

yet)
k
L

i=l
p. y- 1 (s)

1.
~ < s < x , t > s

k k+l

and

M -1
-yet) L p. Y (s)

i=k+1 1.

x < s < x , t < s
k k+1

M
L

i=l
p.

1.
I , p. p. = p. p. = 0 .. P.

1. J J 1. 1.J J

But from Lemma's 5.2 and 3.5 there exists a separable boundary condition

of the form (1.2) which satisfies assumption 2.1 and is such that G is

the Green's function associated with (1.1),(1.2) when N = M and t. x .•
1. 1.

#

5.2 General BC

We now turn again to the general BC (2.1) and show how we can select

appropriate separable BC from them; this is based on the theory giVen~~

in section 2. ~

Let
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with

Ilyll = /IYII"" ' y € S

Clearly, S equipped with the norm 11.1 I is a normed space of dimension n.

In addition,

* *1 *V = {y € S Y (y)

is a closed boundary for S. Hence, from Auerbach's Lemma (Lemma 2.2)

* V Sthere exist y. € Yi € ; i, j = 1 , ••• , n such that
J

* <5 11/11* IIYill"" =Yj(Yi) , = 1 , 1 ; i,j 1 , •.• , n
ij J

That is, there exist c. € lR n
1

' Ic . I
J J

1 , points t
j

with 0 ~ t
j

~ 1

j = 1, ••• ,n and y. E S , i = 1, •.. ,n such that
~

(5.2) i,j = 1, ... ,n.

Furthermore,

c. = y.(t.)
J J J

and hence

(5.3) T Oif i ;t j and t. t.c. c. = =
~ J ~ J

Let

- n T(Py) (t) := 1: y. (t) c. y(t.)

i=l ~ ~ ~

Thus,

IIPYII""
n

~ 1: Ilyi II ex> II y II""
i=l

~ n II y II""
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Hence

IIPII.., ~ n

and, as in Lemma 3.2, we find that

a ~ (l + IIPII..,)a

~ (n + 1) a.

In addition, we have

,. ,.
B q, I

where

(5.4)

N ..
(5.5) By := l: . By (t. )

i=l ~ ~

B =
-t

[;} + k+h positionk
N

1

and N
1

is the number of distinct points in the set {tkl. From (5.2), (5.3)

I

and hence from lemma 3.5, the boundary condition B defined by (5.5), which

is clearly separable, satisfies (2.2 a,b). Finally from (5.2), (5.5)

Thus, we have shown

Theorem 5.2 For a general BC (2.1) one
_ _ n

B of the form By:= l: B. y(t.), with
i=l ~ ~

can construct a separable BC

t. €[O,D, such that B satisfies
~

(2.2a) and (2.2b) and for which (cf.(1.7»
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8 := sup I~ (t) I s n
t

a. := sup IG(s,t) I :5: (n+1 ) a.
s,t

Corollary 5.1 If ~e BVP (1.1),(2.1) hws a condition number a., ~hen the

solution space is polychotomic with

K S (n+1) a

Note that the result of this corollary is somewhat different from

Theorem 3.16 of [6J, where bounds are derived - a.2 for the two point

case. For large a we may therefore say that this more general result is

sharper, though not constructive,
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