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SERIES EXPANSIONS WITH RESPECT TO POLYNOMIAL BASES

by
S.J.L. van Eijndhoven

Summary
Given a polynomial basis (P,),cv, and a sequence (u,).em, Of positive numbers spaces,

F,[(P,), (1,)] are discussed which consist of functions ¢ with a series expansion ¢(x) = ¥, a, P,(x)
n=0

where a, = O(exp(—y, s)) for all 5,0 <s < ¢ For two such bases (P,) and (Q,) the connection
matrices (S,») and (T,,) are defined by 0, =Y, Sam Prs Pm=Y, Tnm O». Conditions on the con-
nection matrices are presented which quarantee that F, [(P,), (w,)1=F,[(Q,), (v,)]. These
classification results are applied to bases of Hermite, Laguerre and Jacobi polynomials.

A.M.S. Classifications 4605, 47D05, 33A65.



Introduction
Fora > -1, B> -11let PP denote the Jacobi polynomial
PEP )= C (1 y= 1407 (<L) (-0 1+ 0.
2" nt dx

It is a classical result of Szegd (see [Sz], Ch. IX) that a function f is analytic inside the ellipse E,,

2 2

o J
+ =1, t>0,
cosh’s  sinh?¢

if and only if f admits a Jacobi series

£ =3, a,(f) PP (2)
n=0

where foralls, O<s<t, sup I a,(f) | e™ < oo, It follows from Szegd’s result that the order of
ne N,
decay of the coefficients a,(f) does not depend on a and B. If we introduce the space F{*P as the
space of functions fon [-1, 1],
f@) =3 a,(f) P&P (x),
n=0

where a,(f)=0(™), for all s, 0<s<t Then Szegd’'s result is twofold: It gives the
classification

Vo pot Vysoo : FP = F{1

and also the characterization
f € F(a,p) if and only if f extends to an analytic function inside the ellipse E,.

From the paper [SY] of Szasz and Yeardley a similar result follows for the Laguerre polynomials
L, defined by
1 d +o
@ (x) = o y@ ¥ &, n
LY (x)—n!x e e x™).

Indeed, an even function f is analytic on the strip | Imz | < ¢ and satisfies the growth order esti-
mate

Vi 0cs<t Yy 1y1ss t fE+iy) = O(exp - 1 x°1 (s2-y*)*])

if and only if f can be expanded into a "Laguerre series"
f@)= X a,(f) e L) %)
n=0
where a,(f) = O(exp(-s ‘/;)) foralls, 0<s <t Here anyo > -1 can be taken.

In this paper we present a general approach to handle this kind of classification results.
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We start with a polynomial basis (P,) and a sequence of positive numbers (u,). The Hilbert space

X,[(P,), (u,)] consists of all f= f: a, P, with
a=0

Y la, 12 expp, ) < oo
n=0
Besides we introduce the space

L@, @)1= 0 X [Pa), (1a)].

Let (Q,) denote another polynomial basis. Then the connection matrices (S,,) and (T,,) are
defined by

On=3SwmP, and P,=3Y T, 0,

We shall show that there exist conditions on these connection matrices such that
X [®n), ()1=X, [(Qs), (14)]

and / or
Fi[(Pa), ()1 =F, [(Qp), (a)].

In case of the Laguerre polynomials and in case of the Jacobi polynomials the connection
matrices are known. It turns out that the classification results are applicable to the spaces
F [(PP), (1)) and F, [(L$Y), (1,)] whenever

Han

logn

—>oo asn —oe,

We also present characterization results. E.g. for each ¢ > 0 the spaces F, [(P&P), (n*)] withv > 1
consists of entire analytic functions of slow growth. The spaces F, [L®, (n")],0<v< 1, t>0,
are related to the Gelfand Shilov spaces Si.



1. General theory

Let P denote the vectorspace of all polynomials on RR. Consider a linear basis (P,).e v, in P where
each P, denotes a polynomial of degree n. In P we introduce the inner product (., .), by

(Zanpulepmpm)P‘_'zunEn-

By X [(P,)] we denote a completion of the pre-Hilbert space P with inner product (, ),.
We introduce the following subspaces of X [(P,)].

Definition 1.1.

Let (u,) denote a sequence of nonnegative real numbers and let ¢ > 0.
The space X, [(P,), (1,)] is defined by

XIP,), ()1 = (f€ X[ | T e 1 (£, P) 12 <o),
n=0
With the inner product
. 8)ps= i::oez““ (f. Py (Px. 8),

X, [(P,), (1,)] is a Hilbert space.
The space F,[(P,), (1,)] is defined by

Fl(Py), (1)) = OQ«X: [Py, ()]
The topology in F, [(P,), (1,)] is generated by the norms
P,(f)=N¢.flps » O<s<t.
Thus F, [(P,), (1,)] is a Frechet space. In the definition of F, [.] also ¢ = < is a permissible value.

Sometimes the formal spaces X, [(P,), (w,)] and F, [(P,), (1,)] can be considered as functions
spaces. To this end we introduce the following condition '

(A) There exists an interval 7 and T > O such that

Y | Py(x) 12 exp(-2 p, T) <0, x €.
n=0

Lemma 1.2.
Let the sequence (p,) satisfy condition (A) and let (o,),e v denote an I,-sequence. Then for all

x € Iand all ¢ > T the series Y, o, e™ P,(x) converges absolutely and
n=0
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| fj o, e P (x) 12< (f, la, 12) (i e | P(x) 1%
n=0 n=0 n=0

Proof.
Use Cauchy-Schwartz’ inequality. 1

Definition 1.3.

Let the sequence (p,) satisfy condition (A) and let s> T. To each f € X; [(P,), (1,)] we link the
function

f:x - f:(f,P,,)PP,(x), xel
n=0

Thus for ¢ > T the (formally defined) spaces X,[(P,), r,)] and F,[(P,), (1,)] will be considered as
function spaces in which point evaluation is continuous. Indeed, for each s> T, xe 7 and
fe X[(Pa), (),

| f(x) 1< S, (E e | P, (x) 19)%.
n=0

Remark: If condition (A) is satisfied X, [(P,) ., (1,)] is a functional Hilbert space with reproducing
kemel K, (w,y)=Y e P, (x) P,(v), x,y € L

Clearly, the polynomials (P,) establish an orthogonal basis in X, [(P,). (1,)]. We have

#P, 1, . =e*’. They establish a Schauder basis in F, [(P,), (1,)]. Each f € F, [(P,), (1,)] equals the
series

i (f’Pu)pPu
n=0

with convergence in the topology of F, [(P,), (1.)].

We proceed by introducing another linear basis (Q,) in the vector space P, where each @, is of the
order n. Let (v,) denote a sequence of nonnegative numbers. Then by Definition 1.1 foreach s > 0
the spaces X,[(Q,), (v,)] and F,[(Q,), (v,)] are well defined. Let (., .), denote the corresponding
inner product of the Hilbert space X [(Q,)].

Definition 1.4.

Let L denote a linear mapping from X, [(P,), (v»)] into X, [(Q,), (v«)] or from F; [(P,), (1,)] into
F_[(Q,), (v,)]. Then the matrix of L is defined by

Lon=(L Py, Qn)y-



a.

Lemma 1.5.

A matrix (L,,) is the matrix of a continuous linear mapping L from X, [(P,), (1,)] into
X, [(@,), (v,)]if the matrix (exp[—p,, ? +V, 1] L,,) represents a bounded linear operator on /,.

A matrix (L,,) is the matrix of a continuous linear mapping L from F, [(P,), (#,)] into

F T [(Qn) ’ (Vn)] iff V<1.0<¢1<1 a-l‘,°<8<l :
the matrix (exp[—,, s +v, 6] L,,) represents a bounded linear operator on /,.
In both cases we have

Lf=§ iLm(fiPm)an-

n=0 m=0

Proof.

We set P, mr= exp(—”m r) Py, Qm.r = exP(_Vm T ) Qm- Then (P m,r):=0 and (Qm.r):=0 are orthonor-
mal bases in X, [(P,), (tn)] a0 X, [(Qm), (vm)], TESPECtively
Now L : X,[(P.), ()] = X, [(Q.), (v,)] is continuous if and only if

(L Ppye s Onedg,o)
is the matrix of a bounded linear operator on /,. By a simple computation we obtain
(L Pm,t ’ Qu,t)q,: = €Xp ["p'n t+v, 1] (L P, Qn)q-

L is continuous from F, [(P,), (1,)] into F, [(Q,), (va)] if and only if V, o<oex Ty005< :
L extends to a continuous linear mapping from X, [(P,), (4,)]E into X, [(Q,), (V)]
Now apply a. 1

Consider the following conditions on a sequence (u,)

Bo): Veo: X exp(—pn5) <o

n=0

(Bo): Frot T explitaT) <o,

n=0

Condition (B,) yields a simple characterization of the matrices of the continuous linear mappings
from F, [(P,), (u,)] into F.[(Q,), (v,)]. Condition (B.) yields a simple characterization for the
continuous linear mappings from F o [(P,), (1ta)] INO F oo [(Q4) , (Va)l.

Lemma 1.6.

a.

Let the sequences (u,) and (v,) satisfy Condition (B8,). A matrix (L,,) represents a continu-
ous linear mapping L from F, [(P,), (1,)] int0 F . [(Q,) , (v,))] iff
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Vo.0<0<s 35, 0<s<t : sup | Ly | €Xp [ty § +V, 0] < o0,

b.  Let the sequences (p,) and (v,) satisfy condition (B..). A matrix (L,,,) is the matrix of a con-
tinuous linear mapping L from F .. [(P,), (1,) into F ., [(Q,), (v,)] iff

Vo,0<o<°° 3:,0<:<=° : il,]»? | Loy | €XP [l S + V4 O] < 2.

Proof.

a. I L:F[(P,), Ms) = F.[(Q,), (v,)] is continuous then it can be easily deduced from the
preceding lemma that its matrix ((L P, , 0.),) satisfies the requirements. Conversely, let the
matrix (L,,) satisfy the stated conditions. Consider the equality

™ €xp [=S iy + 6V, | Ly | =€Xp[—€(tp+V,)] €Xp[~(s—E) Wy + (6 +E) V] | Ly 1.

Leto,0 <o <1. Chooses, , 0 < ¢ <1—o0. There exists §, 0 < § < ¢ such that
Sup exp (S5, + (6+&)v,] | Ly | <.
mn

Nowtake 0 <e<minf{e ,t—-5) andsets=5+e¢.
Then it follows from (*) that

Y exp[-25 pp +20Vp] | Ly, 12 < oo,

mn
Finally, apply the preceding lemma.

b.  The proof of b. runs similar to the proof of a. and therefore is omitted. 1]

Consider the following infinite matrices.

Definition 1.7.
The upper triangular matrices (S,,) and (7,,,) are defined by

snln:(QmaPn)ps Tim=Ppn, Qn)q-

Observe that 0, = f‘, Swn P, and P, = i Tom On.
a=0 LE)

Furthermore,
8,,”, = z Snj TI’" = 2 Tnj Sjm-
j=n j=n

On the basis of these transition matrices we derive the following classification results. (Similar
ideas appear in [EG3], Section 2)



Theorem 1.8.

Suppose for some ¢ > 0 the matrices (3,,, €Xp(Va—lm) £)s (Snm €XPHn— M) 1), (Brm EXP(Ha—Va) £) and
(Tnm €xp(v,—Vvy,) t) Tepresent bounded linear operators on /,. Then there exists a continuous linear

bijection j from X, [(P,) ., (it,)] onto X, [(Q,), (v,)] with the property that j(p) = p for each polyno-
mial p.

Proof.

Due to the conditions on the matrices (S,,) and (7,,,) we can properly define the continuous linear
mappings

871 X, [(Pa), (1)l = X, [(@n), (vVa)]
Tg . Xg [(Qu) ) (Vu)] —> Xt [(Qn) » (Vn)]
S: : Xg [(Pu) ] (“'n)] _)Xt [(Pn) L} (un)]

T7 1 X, [(@n), (Va)] = X, [(P,), (1a)]

S¢f= % Py On= 3 3 Sun(Fs Pr)y On

m=0 n=0

Ti2=3 3 Tun (2. On) Or

a=0 m=n

SEf= 3 3 SunlFs Pu)y Pr

a=0 m=n

T5f= Z (g9Qn)an= Z Z 5nm(g9Qm)un-
n=0 n=0 m=0
Foralln=0,1,2, --- wehave
SZP,,= SoPy=Q,
T: On= TzQu=Pn-
Soforallp € P,
(Tgo S p=p=(8;° Tp) (p).
Now set j =T o S. Then j is a continuous bijection from X, [(P.), (1,)] onto X, [(Q,), (v,)] with

jl =85 T5. Wehave j(p) =" (p)=pforallpe P. 0

The homeomorphism j of the preceding theorem yields an identification between the elements of
X, [(Pn), (1)1 and X, [(Q,), (v»)] With the property that j | P: P — P is the identity. In the case that
both X, [(P,), (1,)] and X, [(Q,). (v,)] are functional Hilbert spaces on some interval I c R we
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have (j f) (x) = f (x) and so it makes sense to write

X, [(Pa) > a)] =X, [(Qa), (va)]

These assertions are contained in the following result.

Corollary 1.9.
Let the sequence (n,) satisfy condition (A), viz. there exists an interval I ¢ R and T > 0 such that

Y 1 Py(x) 12 exp(2p, T) < o,
n=0
In addition, assume the conditions of Theorem 1.8. are valid for some t+> T. Thenforallx e I

f; exp(-2v, 1) 1 0,(x) 12 < o
a=0

(i.e. X, [(Q,), (vo)] is a functional Hilbert space) and
X [(Pn), (Ma)] =X, [(Qn) , (V5)]

as Hilbert spaces with equivalent norms.

Proof.
Since sup exp (Mm—Vm)t <eo, it follows that also the matrix (S,. exp(—v,+H,)?) represents a
me IN,

bounded linear operator on /,. Hence for each x e I the sequence

€XD (Vs 1) On(X)= 3 €XP (Vi 1) Spm Palr) =
m=0

= 3 (XD Vm+1n) 1) Sum) €7 Po(x) , me N U (0},
m=0

belongs to /,. In both Hilbert spaces X, [(P,), (1,)] and X, [(Q,), (v,)] point evaluation is continu-
ous. Now let fe X, [(P,), (v»)]. Then there exists a sequence (f,).e w Of polynomials such that
Lf—full, — 0. It follows thatll j(f—f,) I, . — 0, whence

)= lim £, = lim (i£) @)= @.

Corresponding to Theorem (1.9) we have the following result.

Theorem 1.11.

Suppose for some ¢ > 0 the identity matrix (3,,) and the matrices (S,,) and (7,,) satisfy the fol-
lowing conditions:
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Vo,0<o<t J5,0<s<¢ * the following matrices
(Snm eXP(—Mm St+u, G)) ’ (8M| CXP(—Hm sS+v, 0)) »
(TM: eXP(‘Vm S+v, 0)) [ (snm CXP(‘Vm S+H, 0))

represent a bounded linear operator on /,.
Then there exists a continuous linear bijection j from F, [(P,), (4,)] onto F, [(Q,), (v»)] such that
j@)=pforallpe P,

Proof.

The proof is only a minor modification of the proof of the preceding theorem. We observe that
the matrices (S.,) and (7,,) generate continuous linear mappings on F,[(P,), (4,)] and on
F,[(Q,), (v,)], respectively, which map the P,’s onto the Q,’s and conversely. The identity matrix
(8.m) generates a continuous linear mapping from F, [(P,), (4,)] onto F,[(Q,), (v,)] and a continu-
ous linear mapping from F, [(Q,) , (va)] onto F, [(P,), (1,)]. 0

Remark 1.12.

- Suppose the sequences (u,) and (v,) satisfy condition (B,). Then the conditions of the previ-
ous theorem may be replaced by the following ones:

Vo,0<0<t I5,0<5<1

sup 1 S, | exp(—Hp, S + 1, 0) <00, SUP (S +Vy, O) <00
nm m
sup | T | €Xp(—V,, § + v, G) <00, SUP (—V,y § + [,y O) <
nm m

- Suppose the sequences (u,) and (v,) satisfy condition (8..). Then for ¢ = e the conditions on
the matrices (S.n), Tnm) and (3,,) can also be replaced by the above boundedness condi-
tions.

Corollary 1.13,

Let (u,) satisfy the condition (A) for some T > 0 and / c R. In addition, assume that the condi-
tions of Theorem (1.11) are valid for some ¢ > T. Then there exists s > T such that

f; exp(-25v,,) | Qpn(x) 12 < oo,
m=0

Furthermore,

F[(P,), )]l =F;[(Qn), (V)]

as Frechet function spaces with equivalent metrics.
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2. Application to Laguerre polynomials

In this section we apply the results of the preceding section to bases of Laguerre polynomials.
Before we proceed, we present some elementary estimates which are consequences of Stirling’s
formula.

Lemma 2.1.
. T a

@ Va0 Vo0 3x>0 rg:::;SK(n+1)"’, n=0,1,2, +--
. a

(i) Vae & V>0 Ix>0: % <K(n+1)e",

Proof.

Statement (i) follows simply from Stirling’s formula.
I'(x)=V2rn exp[—x + (x—%) logx] (1 +0(%)) , X—)oo,

Moreover for each x € R we have
)p=x(x+1) --- (x+n-1), (x)=1.
It follows that

T'(lxl+n)

@)l lxl,= oD

Thus (if) follows applying (i). 0
Letae R,0>-1.Forn=0,1,2, :-- the polynomial L defined by

o « O™ m
-5 O (129

is called the n-the Laguerre polynomial of order a. Here we use the standard notation

[a] _ T'(a+1)
b)] Tr@e+1NT@-b+1)"

For fixed a the polynomials L® satisfy the following orthogonality relations

@ y@y - Tatatl)

where
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@.9=[px)gx)e*xdx, p,qeP.
0

The Hilbert space X, =L,((0, ), x* ™ dx) is the natural completion of the pre-Hilbert space
P, (¢, d)-
From [MOS], p. 249 we obtain the relations

L®=Y

(a_B)m—n
% (m-n)! L.

In order to arrive at an orthonormal basis we introduce the normalized polynomials A

AR =

2r(n + 1) Y lea).
(n+a+1)

Then we have with the above formula

m
AD = 53 AP

n=0
where
gup _ @~ Bnos { Im+1) T(r+p+1) }
e (m-n)! Fm+a+1) TI(n+l)
Definition 2.2.

For each a > -1 and each ¢ > 0 we write

X (@) =X, [(AD), @]

and

F® [)]=F, [(AD), @)1

From [MOS]}, p. 248, we obtain that for any fixed x € (0, =)
A® X)=0(n*).
First, let us consider sequences (u,) satisfying condition (B), viz.

oD
. -t
V,,o.Ze “",°°.
n=0

This condition is equivalent with
Viso S“R," exp [~ p,l < oo,
ne

It follows that condition (A) is automatically fulfilled for all ¢ > 0; we mean that



-13-

Voot Viso Vizo: T | AD (x) 12 ™ < o0,
n=0

Lemma 2.3.

Let the sequence (u,) satisfy condition (B,). Then for each o.> -1 and ¢ > 0 the spaces X [(u,)]
and F® [(1,)] are genuine function spaces. Also, F® [(u,)] consists of all functions on (0, )

which admit a Laguerre series expansion ¥ a, A; where a, = O (exp(—, 5)) foralls ,0<s <.
n=0

We have the following classification theorem.

Theorem 2.3.

Let (u,) denote a monotoneously increasing sequence satisfying (B,), let > 0. Then for all & > -1
and B > -1

FP [()1=F® [y,

Proof.
By Theorem 1.11 and Remark 1.12 we have to prove that foralla, p > -1,

Vo,0<0<t 3;5,0<s<t ¢
sup | 5P | exp [—5 pp +OR,] < o=
am

A straightforward estimation based on Lemma 2.1 yields

@B _ lapi-1 | (n+1)P %
1558 1< (m-n+1) [__(m+l)“] .

Now witho < 5§ <t we get
I S%, | exp[-sVm+0Ou, 1<

< (m-n+ 1)/ (LI ep o))
(m+1)

< (m+1)* exp(~(s -6 un)

where
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3 3
max {c, 2a]—2B—1, o>p

Kop= 1p-min{la,0)-1, a<p.

Thus we see that

Ves—1 Vps—1 Vo,0<0<t Vs, ocs<t

sup | SZ8 | exp (—S py + O |,) < 0.
nm

Remark.

By Theorem 1.11, the condition that the sequence (p,) is monotoneously increasing can be weak-
ened in the following sense: there exists a monotoneously increasing sequence (ji,) such that for
alle>0

limsup []1,;“(14‘8)”.,,]:—“
n—00

and
limsup [p, — (1+€)fi, ] = —oo.
n—y00
It then follows that

F® [(p)]=F® [(3,)] = F? [([1,)] = F® [(e)).

Next, we impose condition (B.) on the sequence (u,), Viz. 3159 : Y, exp(-u, T) < oo,
n=0

Then forall o > -1,

T 1AD 12 exp(—, T) < oo,
n=0

So we get

Lemma 2.4.

Let (u,) satisfy condition (8..). Then for each a > -1 the space F&® [(n,)] is a genuine function
space over (0, =) and can be characterized as follows: A function fon (0, =) belongs to F& [(s,)]
iff f admits a Laguerre series expansion

f=Ya, AP

with a, = 0 (exp(-y, 1)) for allz > 0,

The following statement is valid
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Theorem 2.5.

Let (u,) denote a monotoneously increasing sequence satisfying (B.). Then for all a > -1 and
B>-1

FO (1)) =F® [(1,)].

Proof.
According to Theorem 1.11 and the remark proceding it we have to prove that for alla, p > -1
Vo0 Je>0 2 SUp | S%B 1 exp [~5 iy + O}, ] < oo
nm

With the aid of the estimate on the matrix entries we see that the above condition is satisfied for
the sequence (u,,). 0

Remark: In the above theorem the monotoneously increasing sequence (u,) satisfying (B ) can be
replaced by any sequence (u,) satisfying (B..) for which there exists a monotoneously increasing
sequence (ji,) with

Jeso : limsup (, — (1 +€) fiy) = oo
R—y0

and

Fes0 : imsup (i, — (1 +€)p,) =2,

It then follows that
FO ()1 =F& [()] = F [@)] =F® [(,)].

Closely related to the Laguerre polynomials are the Laguerre functions defined by
LY @)=e3¥ A® xY), n=0,1,2, ---

The functions L establish an orthonormal basis in the Hilbert space L, ((0, o), x***! dx).
Correspondingly we introduce the following spaces.

Definition 2.6.

- The subspace Y [(u)] of L, ((0, =), x**" dx) consists of all ¢ € L,((0, =), x> dx) for
which

Y exp(2tp,) | (0, LY 12 < oo,
n=0
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- The subspace G [(u,)] is given by
G [l= VY ()]

The functions L establish an orthogonal basis in Y{* [(u,)] and a Schauder basis in G [(1,)].
Now the Hankel transformation I, is defined by

(Ho9) )= [ Gy)™Ja (x) 60) y** dy
0

Then from [MOS], p. 244, we obtain the relations
H, LY =(-1)" LY
It follows immediately that the spaces Y [(4,)] and G [(s,)] remain invariant with respect to

H,. The following stronger result is valid.

Theorem 2.7.

Let (u,), (v,) denote monotoneously increasing sequences satisfying condition (By) and (B..),
respectively, and let ¢ > 0. Then foralla >-1andp > -1

G ()] =GP [)] =G, [(1,))

and
G [(v)] =GP [(v,)] =G ul(vy)].
Moreover, for each y>-1 the functions LY ,n=0,1,2, --- establish a Schauder basis in

G, [(1,)] and G o [(V,)).

The (function) spaces G, [(#,)] and G.. [(v,)] remain invariant under each Hankel transformation
H,.
The remaining part of this section is devoted to analytic characterizations of certain spaces
G, [(1,)] and G, [(v,)]. Therefore we introduce the Hermite functions. Namely, the functions
L™ are equal to the even Hermite functions v,,, where

C et (Ly ),

Va= (r* 2" nt)*

The functions vy, establish an orthonormal basis in L, (RR), and satisfy
F y,= it Vn

where FF denotes the Fourier transformation. So on the basis of the functions v, there arise a great
lot of Fourier invariant function spaces. We mention the following.
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- The Schwartz space S.
The space S consists of all C*-functions ¢ with the following growth behaviour

. k
Viten: SUp Ix 0P (x) | <oo.

Now Simon has proved the following characterization of § in terms of Hermite expansions:
A square integrable function ¢ belongs to S if and only if

View: @,V =0 @™

cf. [Si]. Let S, denote the subspace of all even functions in S. Then we have the following char-
acterizations of S ..

Theorem 2.8.

For each a > -1, S equals G [(logn + 1)] as a Frechet space. So an even square integrable
function ¢ on R belongs t0 S, if and only if

View: (0. L®), =0 (™).

Proof.

From Simon’s result we get
Seven = G [Qogn + 1)].
Next apply Theorem 2.7 with v, = log (n + 1). ]

Remark: The above result has also been obtained in [EG1] by a different method based on com-
plex analysis.

- The Gelfand-Shilov spaces S

For @ >0, S5 denotes the subspace of S consisting of all ¢ § with the following growth
behaviour

Fapc>0 Viu: sup 1 x* 60 (1) 1< € A B! (k) ().
For0 <o <L the space 53 is trivial, and for 1 < o <1 it consists of entire functions with the fol-
lowing growth behaviour in the complex plane

Jeapso: l0G+iy) ISCexpl-alx 1 +b1yl1V™]

For details on these spaces we refer to [GS2].
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Zhang has proved the following characterization (cf. [Zh]).

A square integrable function ¢ belongs to S%, o>% if and only if
Fis0 1 (0. WadL,cmy = O (exp (—t n*®)).

Zhang’s result obviously implies the following.

Corollary 2.9.
Let w2 14, Then we have

S even = U G5 [(nP)],
0

whence for each o > -1

Seeven = U G [(n”*)).
>0

It follows that for each a > -1, $2,., remains invariant under the Hankel transformation #,. In
addition, to Zhang’s characterization we have

A even square integrable function ¢ belongs to S5, ©2%, if and only if
3i>0 1 (0, L)a = O (exp(—1 n™)).

Remarks.

From De Bruijn’s paper [Br], Theorem 6.4 it follows that G{’ [(n)] consists of all even
entire functions ¢ with the following property

Va4, O<A<itanhl ¢ Jeso:
. 2,1 2
lo(x+iy) 1< Cexp[-Ax +Xy 1

So Theorem 2.7 yields the same characterization for the spaces G [(n)] «>-1. In [Hi],
Hille has proved the following result A square integrable function ¢ on R can be extended
to an analytic function ¢ on a strip | Im z | < on which it satisfies the growth condition

Q) 1o x+iy)ISCexp[-lx1(2-yH*]
if and only if
(®, Va)r, = O (exp(-tn™)).

It follows that for each o > -1, the Frechet space G [(n*)] consists of even functions on R
which admit an analytic extension to a strip | Im z | < ¢ where it satisfies the estimate (*).
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-The Gelfand-Shilov spaces W .
Let m denote a monotoneously increasing differentiable function on [0, o] with m(0)=0.
We write

M@=[m@d, x20
0
and
y
M*3)=[m"(@dr, y20.
0

The pair (M , M) satisfies Young’s inequality
xy<S M @) +M*(y)

with equality if and only if y = m (x). M is called an Orlicz function.
In [GS3] the space W¥ is introduced as follows.
An entire function ¢ belongs to W4’ if and only if

lox+iy) IS Cexp[-M@lx1)+M*(blyl)]
where a, b and C are suitable constants.
Under the following mild conditions on the function m also the space W) admits a charac-

terization in terms of Hermite expansion coefficients, viz.
— mis concave and m (1) — oo (t —»o0)

- '"T(t) decreases strictly to zero as ¢ — co.

Now the characterization is as follows
A square integrable function ¢ belongs to W) if and only if
310 1 (0, Wadmy =V (€xp (-t M(n™))).

For a proof of this result we refer to [JE]. So consequently as for the spaces S we have

Corollary 2.10.
Forall o > -1,

Wi even = Y G (M (n*))].

In particular, for each o > ~1, Wit ¢ is IH,-invariant.
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3. Jacobi polynomials.
In [MOS], p. 201, the Jacobi polynomials P&? are defined by
Pe® )= S sy oy (L ta-0™" (0P
n2* dx

They satisfy the following orthogonality relations

1
[ P&® () PSP (x) (1-x)" (1 +x) dx =
-1

__ o T(r+a+DI@+B+1) o
2n+oa+p+1 T(r+DI(a+a+p+1) "™

Here we consider the normalized Jacobi polynomials R$-P

Rgo,b) = Kg«.ﬂ) p,(‘u,ﬂ)

with

<leB = 2n+o+B+1 T(r+D)T(rn+a+B+1) | %
" pthl Fa+a+)T(n+p+1) |

The polynomials RP establish an orthonormal basis in the Hilbert space
Xo3=Ly (-1, 1], (1-x)* (1 +x)" dx). Hence X4 is the natural completion of the vector space P
with respect to the inner product

1
@2 Qep= [ P&)aG) 1-2)" 1 +x)° ax.
]

We want to estimate the matrix entries S&® where

m
RSI.S) = z Sgnb.'ﬁ) R‘(‘u»ﬂ)
a=0

To this end, we apply the following formula, derived in [As], p. 63

((X+ l)m m (S—B)m—u ((!+ p+ l)n
(8 . > ~/m _1ym—n
Pu®=arpen 20 =t @+,

(@+B+2)y, (m+a+d+1), P
" @+B+1), (M+a+B+2), "

It follows that $&&9 =

(_1),.*{ K‘:"}{ @+ Dn (BB @+B+D. (©@+B+2n <m+a+a+1),.}

K@P (a+p+2), (m-n)! (@+1), (x+B+1), (m+a+P+2),

Employing the inequalities of Lemma 2.1 the first factor between braces { } is estimated by
K ("':T": Y and the second factor by
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n+l

K, ( )'M (m-n+1)'&d-t

for certain K, and K, > 0.
Observe that

(m+a+8+1), _T(m+ta+B+2) T(m+n+o+9)
(m+a+B+2), TI'(m+a+d+1) I'm+n+o+p+1) "~

<Ky (m+1)M nan+ 1)L

We arrive at the following estimate

n+1

| SR 1S K P (m-n+1)'?,

Further, since P&® (x) = (-1)* P$? (-x) and x> = x®* we have

Sg'lnﬂ-vﬂ) =" S&B:.h).
Hence

| SEBB | < K (;’"li—ll P+ (m—n +1)r=1,

Lemma 3.1.

Leta, 8, v, 8 > —1. Then the following estimation is valid forallm,ne IN,, m>n,

| Sieb®) 1<K (m- n+1)l¢-1|+lHl ( ”"'11 yi Homin(p)
m+

Proof.
We have
SEBO = 3 S S(eb®)
Jj=n
so that
| S&80 | <

+1 +1 - -
2(:‘+1 )D+'ﬁ ( J )¢+‘/‘x (’ n+1)l6—5| 1 (m ]+1)I1-al 1
jﬂ

_ layi+1p-sl-1_(n+ 1% m-n+1
S tmont D e 20 " i+ DG-ntD

n+1)*Pifa<p

. m-n+1 @ (4 1y0h _
Finally, observe that (m_j+1)(l__n+l)s1andthatj§(;+l) <(m n+l){

m+1)*Pifa> .
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For convenience, we set
XeP [l =X, [(R&P), (1))

and

FP ()= oQ«X:’b ()l
From [MOS], p. 216, we derive that

REP =0, xe[-1,1]

where ¢ = max{a+%, B+, 0}. So we can deal with the same class of sequences (u,) as used in
the case of the Laguerre polynomials, viz. we consider sequences (u,) satisfying condition (B,) or
condition (B ).

Lemma 3.2.

Let (u,) denote a sequence satisfying condition (B,) and let ¢ > 0. Then for all o, B > -1 the spaces
X%P [(1,)] and F&P [(u,)] are function spaces. We have

e FoP [liffo(x) = 3 a, R®P (v), xe -1, 1],

n=0

with ¥ ocs¢r & @, = O (€Xp(—iip 5)).

Proof.
We observe that forall s >0andx e [-1, 1]

T e™ IREP (x) 12 < oo,
n=0

Theorem 3.3.

Let (u,) denote a monotoneously increasing sequence satisfying condition (B,). Then for all ¢ > 0
ando,B,y,8>-1

FEP ()] = FF° ()]

Proof.

Due to the estimate on the matrix entries S the proof contains precisely the same arguments
as the proof of Theorem 2.3. We leave it to the reader. I
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Remark: As in Theorem 2.3, the condition that (u,) is monotoneously increasing can be replaced
by a weaker condition.

The statements corresponding Lemma»2.4 and Theorem 2.5 are the following

Lemma 3.4.

Let (u,) denote a sequence satisfying condition (B..). Then for all o, B > -1, the space F&P [(,)] is
a function space:

o€ F&P [(m)]iff ¢ (x)= Y a, RSP (x), x € [1, 1]

with V. : @, = O (exp(-1, £)).

Theorem 3.5.

Let (u,) denote a monotoneously increasing sequence satisfying condition (B..). Then for all
a, B ’ 'Yv 8 > _1

F2P [(ua)1=F2 [(1a)].

The polynomials R{™™ are called Chebysev polynomials. They satisfy the following useful

relation.
.‘,l
2n » n=0
,‘,1
—cosnw , n=1,2, ---
n

With this relation a number of space of type Fi* [(u,)] can be completely characterized. We start
with a derivation of a classical result of Szegd, see [Sz].

R;%™ (cosw) =

Theorem 3.6.

Leta, B> -1 and let ¢ > 0. The space F&P [(n)] consists of all functions ¢ which are analytic within
the ellipse E,,

x2 )’2 -1

+ =1.
cosh®s  sinh?¢

Proof.

The following statement can be readily checked:
A function v is 2r-periodic and analytic on the strip | Imw | <t iff there exists a sequence
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(b)Y meco SASTYING Y, geser 2 SUP | by L exp(l | 5) < oo such thaty(w)= Y b, ™.

R=—00

Now let ¢ € F&P [(n)] = F;3*+ [(n)). Then ¢ (coshw) = -12- ag+ Y, a,cosnw where
n=1

Vs, 0<s<: SUp | a, | exp(ns) < oo.

Sow > ¢(cosw) is a 2n-periodic even function which is analytic on the strip | /mw | <t. The

conformal mapping z = cosw sends the rectangle {w | I/Imw | <t A —n< Rew< =} onto the inte-
2 2
y . .
+ =1, z=x+iy. Hence ¢ is analytic within E,,
cosh®t  sinh?¢ Y ¢ yu '

Conversely, if ¢ is analytic within E,, then the function w — ¢(cosw) is 2n-periodic, even and
analytic on the strip | Imw | < . Hence

rior of the ellipse

)
¢(cosw)=% ag+ Y apcosnw, |Imwl<t,
n=1

with a, = O (exp(-ns)), 0 <s <¢, which yields
o€ F7%7% [(n)] = F&P [(n)].

Next, we present a characterization of the spaces F&? [(M (n))], where o, B > -1, ¢ > 0 and, where
M denotes an Orlicz function,

M (x)=[m (@)t
0
with m monotoneously increasing, m (0) =0 and m (e0) = oo,

Theorem 3.7.

The space F*P [(M (n))] consists of all entire analytic functions ¢ with the following growth
behaviour in the complex plane

2 1
Viow< 3¢ i 10(2) 1<C,explsM (}- loglz )]

Proof.

Let (b,)m-e denote a bounded sequence. Then for each ¢ > 0 the function

x®)= 5 byexpl-oM(In1)]e™

n=—o0

is 2n-periodic and holomorphic. Further, a simple application of Cauchy-Schwartz’ and of
Young’s inequality yields the following estimate
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*) lxw) 1< C;, exp [sM"('—:L)] , W=u+iv

where0<s <o.
Conversely, if a 2n-periodic holomorphic function 6 admits the asymptotic behaviour as given in
(*) foreach s, 0 < s < ¢, then we have

o(w)= i b, e™
where foreachve R,
by = % f 0 (u) e™ du = Elu‘ } 0 (u+iv) e " gy,
So foreachs,0<s <1t
(**) by 1< C;p vienlg exp [sM‘(ILsI)+nv] =C,qexp[-sM(In )]

Leto € Fyi~ [(M(n))]. Then

x (w) :=¢(cosw)=% ap+ Y, a, cosnw
n=1

with foreach0O<o <1, sup (Ya, | exploM(ln 1)]) < oo,
ne N,
It follows that %, is an even 2n-periodic holomorphic function with

lxw) 1= Csy exp[sM‘[I—;—l-] 1, O<s<o.

Conversely, an even, 2z-periodic holomorphic function 6 can be written as 6 (w) = y (cosw) where
v is holomorphic. If o satisfies

5 1v]
Veocsr 36501 1008) 1< C, expls MH(— )]

then by (**) we sec thaty e F{E—3) [(M(n))).
Finally, the wanted characterization is obtained by applying the conformal mapping w = cosz, viz.
z =log (w+i V1-w?) where we observe that

41wi12-3< iw+iVi-w? 12€4 1w i2+1,

In the next theorem we present a condition on the sequence (u,) which yields a classification of
the Hilbert spaces X®? [(u,)]. :
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Theorem 3.8.

Let (11,) denote a sequence of nonnegative numbers. Suppose there exists a sequence (v;) with the
following properties

o0
-~ Vpo: Y e <eo
i=

= Vew, VieN i Hasj—Ha2 Vj.
Thenforallt>0and alla, B, y, 5> -1
X2 [(ua)] =XT° [(1a)]

as function Hilbert spaces.

Proof.

It is clear that 3° e™ < o for all s > 0. Hence the spaces X{P [(1,)] can be regarded as functional
Hilbert spaces. According to Theorem 1.9 we have to prove that o, B,y, 8> -1 and all ¢t > 0 the
matrix

olB1® = S exp (1p — ) ¢

represent a bounded linear operator 6¢**® from [, into /,.
Therefore, we proceed as follows. Fix o, B, v, § > —1, and put 6, = 6{**®_ Then we write

6= 8,; U’
j=0
where U denotes the unilateral shift

U(§0’§17§21 ”')=(§1’§2’---)

and A, ; the diagonal operator on [, with entries
(Al, i)kk = Gi_af:zz),

From Lemma 3.1 we obtain

lAt.jnl,—)l, =S|:p | Ui?g‘,:ﬁ)' 1<

. k+1 |p
r - <
SK(+1) sgp[ k+j+l] exp [(uisj — ) t1<
<K(G+1)% exp[-v;t].

Herer=lo—yl + 1B-3 I,p=%(1+min{a,B]) and § = ¢ - min{0, p}. So we get
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oo .
IO’, “12_,12 < Z i A,’j v’ I,I_,Iz
j=0

<K Y (j+1)7 exp(-v;1) < oo,
=0
It follows that 6, is a bounded linear operator from /, into /,. 1]
For eachv2 1 the sequence (n") satisfies the conditions stated in the preceding theorem. Hence for
allvz 1,a, B, vy, 8>-1and all t > 0 we have
X [(aN)] =X [(n")].

In the paper [EG3] there is given a characterization of the spaces X [(n)] forv>1 and ¢ > 0.
Indeed,
¢ € X3P [(n")] if and only if ¢ is a holomorphic function satisfying

)szl¢(x+iy)|2g,,v (x,y)dxdy <o

where
& x,y)=1 for x2 +y25 1

and

v (6,9) =7 +y2)™ (log(x? +y exp [ (log(s?+y%)'™

2-v _v-1 ).——1- |t
V—l 14 }‘l' v ? u .

K=

&=

Finally, we devote some attention to the standard example of a sequence satisfying condition
(B): we consider the sequence u, =logn + 1. Following Lemma 3.4 the spaces FZP [(logn +1)],
o, B > -1, are genuine function spaces and according to Theorem 3.5

F&P [log(n+1)1=F¥ [log(n+1)]

foralla,B,y,8>-1.

Theorem 3.9.
Foralla, B> -1, F%P [(log(n +1)] consists of all C*-functions on [-1, 1].

Proof.

It can be readily checked that each even, 2z-periodic C*-function %, on R can be expanded into a
Fourier cosine series
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x(u)=% ap+ Y, a,cosnu
A=)
where a,=V (n™¥) for all ke IN. Conversely, each such series represents an even 2x-periodic
C>-function. It follows that ¢ € F2*™ [(log(n + 1))] if and only if ¢ is a function on [-1, 1] such
thatu +— ¢(cosu) is infinitely differentiable. Thus the result follows. 1}
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