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SERIES EXPANSIONS WITH RESPECT TO POLYNOMIAL BASES

by

S.J.L. van Eijndhoven

Summary

Given a polynomial basis (P,.),.e IN. and a sequence OJ.,.),.e IN. of positive numbers spaces,
00

F,[ (P,.) , (JJ.,.)] are discussed which consist of functions q, with a series expansion q,(x) = L a,. P,.(x)
,.=0

where a,. =o(exp(-I!,. s» for all s, 0 < s < t. For two such bases (P,.) and (Q,.) the connection

matrices (S"",) and (T"",) are defined by Q... =L S"", p .. , p ... =L T"", Q... Conditions on the con

nection matrices are presented which quarantee that F, [(P,.) , OJ.,.)] =F, [(Q,.) , (V,.)]. These

classification results are applied to bases of Hennite, Laguerre and Jacobi polynomials.

A.M.S. Oassifications 4605,47005, 33A65.
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Introduction

For a > -1 , ~ > -1 let p~cx,Il) denote the Jacobi polynomial

p~cx,Il) (x) = ;~~~ (I-x)..... (1 +x)-il (~)" (l-x)"+u (1 +x)"+II.

It is a classical result of Szego (see [Sz], Ch. IX) that a function/is analytic inside the ellipse Et ,

x2 \/2
----=__=__ + --L....- =1 t > 0
cosh2 t sinh2 t ' ,

if and only if/admits a Jacobi series

00

/(z) =~ a,,(f) p~cx,Il) (z)
II=()

where for all s, 0 < s < t, SUP I a,,(f) I eM < DO. It follows from Szego's result that the order of
lie IN.

decay of the coefficients a,,(f) does not depend on a and ~. Ifwe introduce the space F~cx,Il) as the

space of functions/on [-1,1],

00

/(x) =~ a,,(f) p~cx,Il) (x),
,,=0

where a,,(f) =O(e-llS), for all s, 0 < s < t. Then Szego's result is twofold: It gives the

classification

'\-I '\-I • F(cx,Il) _ F(y,lI)
Vcx,!l>-l Vy,15>-l' t - t

and also the characterization

/ E Ft(o.,~) if and only if/extends to an analytic function inside the ellipse Et.

From the paper [SY] of Szasz and Yeardley a similar result follows for the Laguerre polynomials

L~a.) , defined by

L~a.) (x) =~ x..... eX dxd (e ..... x"+u).
n.

Indeed, an even function / is analytic on the strip I 1m z I < t and satisfies the growth order esti

mate

V'1I.0<s<t V'Y.lyl~ : /(x+iy) =o (exp [- I x'i (S2 _yZ),h])

if and only if/can be expanded into a "Laguerre series"

/(z) =i a,,(f) e-~I' L,,(o.) (z2)
,,=0

where a,,(f) = O(exp(- s -1;» for all s, 0 < s < t. Here any a > -1 can be taken.

In this paper we present a general approach to handle this kind of classification results.
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We start with a polynomial basis (P,,) and a sequence of positive numbers (jJ.,,). The Hilbert space
00

X,[(P,,) • (jJ.,,)] consists of all f =1: a" P" with
,,=0

00

1: I a" 12 exp(21l,. t) < 00.

,,=0

Besides we introduce the space

F,[ (P,,). (11,.)]:= n XII [(P,,). Ut,,)].
0<11<'

Let (Q,,) denote another polynomial basis. Then the connection matrices (S"",) and (Truro) are

defined by

We shall show that there exist conditions on these connection matrices such that

X, [(P,,) • (Il,.)] =X, [(Q,,). (jJ.,,)]

and/or

F, [(P,,). (Il,.)] =F, [(Q,,). Ut,,)].

In case of the Laguerre polynomials and in case of the Jacobi polynomials the connection

matrices are known. It turns out that the classification results are applicable to the spaces

F, [(P:-~). (jJ.,,)] and F, [(L~"», (11,.) l whenever

I!"-- ~oo asn ~oo.

logn

We also present characterization results. E.g. for each t > 0 the spaces F, [(P:-~). (n Y) l with v > 1

consists of entire analytic functions of slow growth. The spaces F, [(L~"» • (n Y) l. 0 < v < 1 • t > O.

are related to the Gelfand Shilov spaces S:t.
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1. (;eneral theory

Let P denote the veetorspace of all polynomials on JR. Consider a linear basis (P"),,e IN. in P where

each P" denotes a polynomial ofdegree n. In P we introduce the inner product (.• .)p by

a: a,. P" •1: Pm Pm)P =1: a" P",
ft ~ A

By X[(PII)] we denote a completion of the pre-Hilbert space P with inner product ( • )p.

We introduce the following subspaces ofX[(P,,)],

Definition 1.1.

Let UL,,) denote a sequence of nonnegative real numbers and let t > O.
The space X, [(Pll). (j.L,,)] is defined by

00

X,[(P,,), (j.L,,)] =(IE X[(P,,)] 11: e2tl.' I if. P,,) 12 < oo}.
,,~

With the inner product

00

if. g)P., =1: e2lA..' if. P,,)p (Pll • g)p
ll~

X, [(PII) • UL,,)] is a Hilbert space.
The spaceF,[(p,,). (j.L,,)] is defined by

F, [(PII) • (j.L,,)] = n Xs [(Pll). UL,,)].
O<.r<,

The topology inF, [(Pll). (j.L,,)] is generated by the norms

Ps if) =-Vif. f)p,s. 0 < s < t.

Thus F, [(P,,), UL,,)] is a Frechet space. In the definition ofF, [.] also t =00 is a permissible value.

Sometimes the formal spaces X, [(Pll)' UL,,)] and F, [(Pll)' UL,,)] can be considered as functions
spaces. To this end we introduce the following condition

(A) There exists an interval I and T > 0 such that

00

1: 1Pll(X) 12 exp(-21J.,.T) < 00. X E I.
ll=O

Lemma 1.2.

Let the sequence (j.L,,) satisfy condition (A) and let (a,.)"eIN denote an 12-sequence. Then for all
00

X E I and all t ~ T the series 1: all e.....' PIl(X) converges absolutely and
ll~
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1 i a" e'1i.' PII(X) 12~ c~ Iall 12
) (~ e-2I&.' I PII(x) 1

2),
II~ II~ II~

Proof.

Use Cauchy-Schwartz' inequality. I]

Definition 1.3.

Let the sequence (Jill) satisfy condition (A) and let s~ T. To eachfe Xs [(PII), (Ji,.)] we link the

function

00

]: x 1--+ l: if, PII)p PII(x) , x e I
11=0

Thus for t ~ T the (fonnally defined) spaces X,[(PII)' 1111)] and F,[(PII)' (Jill)] will be considered as

function spaces in which point evaluation is continuous. Indeed, for each s~ T , X e I and

f e Xs[(PII)' (~)],

1](x) I ~ nfl~.s ci: e-2I'"s 1PII (x) 12
)'12,

II~

Remark: If condition (A) is satisfied x, [(PII)' (Ji,.)] is a functional Hilbert space with reproducing

kemelKp,,(w, y) =l:e-2I&.' PII(x) Piv) , x, y e I.

Clearly, the polynomials (PII) establish an orthogonal basis in x, [(PII ) , (Ji,.)]. We have

HP1I1~" =e"". They establish a Schauder basis in F, [(PII ) , (Ji,.)]. Eachf e F, [(PII) , (Jill)] equals the

series

with convergence in the topology ofF, [(PII)' (Jill)]'

We proceed by introducing another linear basis (QII) in the vector space P, where each QII is of the

order n. Let (VII) denote a sequence of nonnegative numbers. Then by Definition 1.1 for each t > 0

the spaces X, [(QII) ' (VII)] and F,[(QII) ' (VII)] are well defined. Let (. , ')q denote the corresponding

inner product of the Hilbert space X [(QII)]'

Definition 1.4.

Let L denote a linear mapping from X, [(PII)' (VII)] into X.. [(QII) , (VII)] or from F, [(PII) , (Ji,.)] into

F .. [(QII) , (VII)]. Then the matrix ofL is defined by
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Lemma 1.5.

a. A matrix (LIf/ft) is the matrix of a continuous linear mapping L from x, [(P..). (J.t,.)] into
X~ [(Q..). (v..)] if the matrix (exp[-J.I.m 1+ v.. 't] L_) represents a bounded linear operator on 12 ,

b. A matrix (LIf/ft) is the matrix of a continuous linear mapping L from F, [(P..). (J.t,.)] into

F ~ [(Q..). (v..)] iff 'VCJ.o<CJ<~ 3".0<8<, :
the matrix (exp[-J.L", S +v.. 0] LIf/ft) represents a bounded linear operator on 12,

In both cases we have

ex> ex>

Lf= 1: 1: L_ (f. P",)p Q.....~",~

Proof.

a. We set Pm,r =exp(-Jl". r) P".. Qm,r =exp(-v". r) Q".. Then (Pm,r):~ and (Qm,r):~ are orthonor
mal bases in xr [(Pill)' (J.I.m)] and xr [(QIIl)' (v",)]. respectively
Now L : X,[(p..). (J.t,.)] -+ X ~ [(Q..). (v..)] is continuous if and only if

«L Pm" • Q....~)q.~)

is the matrix of a bounded linear operator on 12, By a simple computation we obtain

b. L is continuous from F, [(P..). (Jl..)] into F, [(Q..). (v..)] if and only if'VCJ,o<CJ<~ 3",0<,,<, :

L extends to a continuous linear mapping from X" [(P..). (Jl..)]E into XCJ [(Q..). (v..)].
Nowap~ya. 0

Consider the following conditions on a sequence (Jl..)

00

(Bo): 'V,,>o: 1: exp(-Jl,.s) < 00

..={)

00

(Boo): ~>o: 1: exp(-Jl,. T) < 00•

..={)

Condition (B 0) yields a simple characterization of the matrices of the continuous linear mappings
from F, [(p..). (J.t,.)] into F ~ [(Q..). (v..)]. Condition (B 00) yields a simple characterization for the
continuous linear mappings from F 00 [(P..). (J.t,.)] into F 00 [(Q..). (v..)].

Lemma 1.6.

a. Let the sequences (J.t,.) and (v..) satisfy Condition (B 0)' A matrix (LIf/ft) represents a continu

ous linear mapping L from F, [(P..). (Jl..)] into F ~ [(Q..). (v..)] iff
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'10,0<0<'< 38,0<8<1 : sup IL_ I exp [-1J.m S + v" 0] < 00.

"''''
b. Let the sequences ijl.,.) and (v,,) satisfy condition (B 00)' A matrix (L_) is the matrix of a con

tinuous linear mapping L from F 00 [(P,,), (jJ.,,) into F 00 [(Q,,) , (v,,)] iff

'10,0<0<00 38•0<8<00 : sup I L"", I exp [-1J.m S + v" 0] < 00.

"''''
Proof.

a. If L : F,[(P,,), (jJ.,,) ~ F,< [(Q,,) , (v,,)] is continuous then it can be easily deduced from the

preceding lemma that its matrix «LP",. Q,,)q) satisfies the requirements. Conversely, let the

matrix (L"",) satisfy the stated conditions. Consider the equality

(*) exp[-sJl",+ov,,] IL"", I =exp[-£(jJ.",+v")]exp[-(s-£)Jl,,,+(o+£)v,,] IL"", I.

Let 0 • 0 < 0 < 'to Choose £1 , 0 < £1 < 't - o. There exists s•0 < s< t such that

sup exp [-s 11", + (O+£I)V,,] I L"", I < £.

...."

Now take 0 < £ < min {£1 ,t-s} and sets =s +£.

Then it follows from (ll<) that

~ exp [-2s Jl", + 20v",] I L"", 12 < 00 •

...."
Finally, apply the preceding lemma.

b. The proof of b. runs similar to the proof of a. and therefore is omitted.

Consider the following infinite matrices.

Definition 1.7.

The upper triangular matrices (5"",) and (T_) are defined by

", '"
Observe that Q", = ~ S"", P" and P1ft = ~ T_ Q".

,,=0 11=0

Furthermore,

'" '"8"", = ~ S"j Tjm = ~ T"j Sj",.
j_ j=tl

I]

On the basis of these transition matrices we derive the following classification results. (Similar

ideas appear in [EG3], Section 2)
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Theorem 1.8.

Suppose for some t > 0 the matrices (S"", exp(v" - J.l.m) t), (S"", exp(J.1." - J.l.m) t), (Slim exp(J.1." -v",) t) and

(T11m exp(v" -v",) t) represent bounded linear operators on [2' Then there exists a continuous linear

bijection j from Xl [(P,,), (J.1.,.)] onto Xl [(Q,,) , (v,,)] with the property that j (P) =p for each polyno

mialp.

Proof.

Due to the conditions on the matrices (S"",) and (T"",) we can properly define the continuous linear
mappings

s~: Xl [(P,,) , (J.1.,.)] --+Xl [(Q,,) , (v,,)]

T3 : Xl [(Q,,) , (v,,)] --+ Xl [(Q,,) , (v,,)]

s~ : Xl [(P,,), (J.1,.)] --+ Xl [(P,,), (J.1.,,)]

T~ : Xl [(Q,,) , (v,,)] --+ Xl [(P,,), (J.1.,,)]

by

00 00 00

S~f= L (f,P,,)pQ,,= L L S"",(f,P",)pQ"
,,=0 ",=0,,=0

00 00

T3 g =L L T"", (g , Q",)q Q"
"=0",=,,

00 00

S~f= L L S"", (f, P",)p P"
,,=0 "'=II

00 00 00

T~f= L (g, Q,,)q P" =L L S"", (g, Q",)q P".
,,=0 ,,=0 ",=0

For all n =0, 1, 2, ... we have

S~P,,= S~P"=Q,,

So for allp E P,

(T3 0 S~) p =p =(S~ 0 ~) (P).

Now set j =T3 0 S~. Then j is a continuous bijection from Xl [(P,,), (J.1.,.)] onto Xl [(Q,,) , (v,,)] with

r 1 =S~ 0 ~. We havej(p) =r1 (P)=p for allp E P. 0

The homeomorphism j of the preceding theorem yields an identification between the elements of

Xl [(P,,), (J.L,.)] and Xl [(Q,,) , (v,,)] with the property that j ~ P: P --+ P is the identity. In the case that

both X, [(P,,) , (J.1.,,)] and X, [(Q,,) , (v,,)] are functional Hilbert spaces on some interval Ie IR we
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have (jJ) (x) =I (x) and so it makes sense to write

X, [(P,,), Ut,,)] =X, [(Q,,), (v,,)]

These assertions are contained in the following result

Corollary 1.9.

Let the sequence Ut,,) satisfy condition (A), viz. there exists an interval I c R and T > 0 such that

:i: IP,,(x) 12 exp (-2 11" T) < 00.

,,=0

In addition, assume the conditions of Theorem 1.8. are valid for some t ~ T. Then for all x E I

00

L exp(-2v" t) IQ,,(x) 12 < 00

,,=0

(Le. X, [(Q,,), (v,,)] is a functional Hilbert space) and

X, [(PII) , Ut,,)] =X, [(Q,,), (v,,)]

as Hilbert spaces with equivalent nonns.

Since SUD exp (J.1.m -vm) t < 00, it follows that also the matrix (S_ exp(-vm+11,,) t) represents a
meINo

bounded linear operator on 12, Hence for each x E I the sequence

"exp(-vmt) Qm(x) = L exp(-vmt)S_P,,(x)=
m=O

"= 1: (exp«-vm+J.1.,.)t) S_} e""" P,,(x) , me IN u {O} ,
m=O

belongs to 12, In both Hilbert spaces X, [(P,,), (J.1.1I)1 and X, [(Q,,), (v,,)] point evaluation is continu

ous. Now let I E X, [(P,,). (VII)]' Then there exists a sequence if"),,e JN of polynomials such that

BI - I .. I~., ~ O. It follows that II j if-I..) I~. I ~ 0, whence

f (x) = lim I,,(x) = lim (jI ..) (x) = (jJ) (x) .
..-- ..--

I]

Corresponding to Theorem (1.9) we have the following result

Theorem 1.11.

Suppose for some t > 0 the identity matrix (S_) and the matrices (S_) and (T_) satisfy the fol

lowing conditions:



-10 -

'v'G,O<G<t 3..,o<.l'<t : the following matrices

(S"", exp(-~ S + ~II a», (~IIIII exp{--J.I.", S + VII a»,

(TIIIII exp(-v",s +VII a», (~IIIII exp(-v",S + ~lIa»

represent a bounded linear operator on 12 ,

Then there exists a continuous linear bijection j from Fr [(PII)' ~)] onto Fr [(QII) , (VII)] such that

j(P) =p for allp E P.

Proof.

The proof is only a minor modification of the proof of the preceding theorem. We observe that

the matrices (SII/II) and (T11/II) generate continuous linear mappings on Fr [(PII)' ~)] and on

Ft [(QII) , (VII)]' respectively, which map the PlI's onto the QII'S and conversely. The identity matrix

(~II/II) generates a continuous linear mapping from F t [(PII ) , ~)] onto F t [(QII) , (VII)] and a continu

ous linear mapping from F t [(QII) , (VII)] onto F t [(PII)' ~II)]' 0

Remark. 1.12.

Suppose the sequences (~II) and (VII) satisfy condition (B 0)' Then the conditions of the previ

ous theorem may be replaced by the following ones:

sup I SII/II I exp(-~",s +~ a) < 00, sup (--J.I.",S + V'" a) < 00

~m m

sup I TII/II I exp(-v",s + VII a) < 00, sup (-v",s + ~'" a) < 00

~'" '"

Suppose the sequences ~II) and (VII) satisfy condition (B 00)' Then for t =00 the conditions on

the matrices (SII/II), (T11/II) and (~II/II) can also be replaced by the above boundedness condi

tions.

Corollary 1.13.

Let ~) satisfy the condition (A) for some T> 0 and I c JR. In addition, assume that the condi

tions of Theorem (1.11) are valid for some t > T. 1ben there exists S > T such that

00
L exp(-2sv",) I Q",(x) 12 < 00.

",=0

Furthermore,

Ft[(PII)' ~II)] =Ft [(QII)' (VII)]

as Frechet function spaces with equivalent metrics.
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2. Application to Laguerre polynomials

In this section we apply the results of the preceding section to bases of Laguerre polynomials.

Before we proceed, we present some elementary estimates which are consequences of Stirling's

fOImula,

Lemma 2,1.

(I') ...,..., 3 r(n+a) ()fI-I> 0 2
VfI>O Vb>O K>O: r(n +b) :s; K n+ 1 ,n = ,1, ,'"

(1'1') ...,..., 3 I(a)" I )1411-1>
VGelR Vb>O K>O: (b)" :S;K(n+I .

Proof,

Statement (i) follows simply from Stirling's fonnula,

r(x) = & exp [-x + (x-t) Iogx] (1 +O( ~», x ~ 00.

Moreover for each x E lR we have

(x),,=x(x+I) .. , (x+n-I). (x)o= 1.

It follows that

Ie) 1< 1 I =r(lxl+n)
x" - x" r( I x I) .

Thus (ii) follows applying (i).

Let a E R, a > -1. For n =0, I, 2, ", the polynomial L~a) defined by

L(a) (x) = ~ (-1)/11 [n+aJ x/ll
" ::0 m! n-m

is called the n-the Laguerre polynomial of ordera. Here we use the standard notation

[
aJ - r(a+I)
b - r(b+I)r(a-b+I)'

For fixed a the polynomials L~a.) satisfy the following orthogonality relations

(L(a) L(a» = r(n +a+ 1) 6
" , /II U 2 r(n + 1) II1II

where

o
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00

(p, q)o. =Jp(x) q(x) e-x xo. dx, p, q E P.
o

The Hilbert space X0. =L2«0. 00). xo. e-x dx) is the natural completion of the pre-Hilbert space
(P, (. , .)0.).

From [MOS], p. 249 we obtain the relations

In order to arrive at an orthonormal basis we introduce the normalized polynomials A~o.)

A(0.) =[ 2r(n + I) ] 'h L(o.)
" r(n+a+ I) " .

Then we have with the above formula

III

A (0.) - 't" s"'~ A (~)
m-~ 11Ift II

,,=0

where

s:-!:: (a-~)IlI-" { r(m+l) r(n+~+I)}
(m-n)! r(m+a+l) r(n+l) .

Definition 2.2.

For each a > -I and each 1 > 0 we write

and

From [MOS], p. 248, we obtain that for any fixed x E (0, 00)

A~o.) (x) =0 (n--7).

First, let us consider sequences ijL,.) satisfying condition (B 0), viz.

00

'\,.I • 't" e-tJl" 00v,>o· ~ ,.
,,=0

This condition is equivalent with

\7">0 : sup n exp [-I J1,,] < 00.
"e1N

It follows that condition (A) is automatically fulfilled for all 1 > 0; we mean that
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00

\'u>-1 \">0 \'20 : ~ I A~") (X) 12
e-t,," < 00,

11=0

Lemma 2.3.

Let the sequence (JL,.) satisfy condition (Bo). Then for each a > -I and t > 0 the spaces x~..)[(JL,.)]

and F~") [(IJ.II)] are genuine function spaces. Also, F~") [(JL,.)] consists of all functions on (0,00)
00

which admit a Laguerre series expansion ~ all A: where all =0 (exp(--j.l.,. s» for all s , 0 < s < t.
11=0

We have the following classification theorem.

Theorem 2.3.

Let (JL,.) denote a monotoneously increasing sequence satisfying (B 0), let t > O. Then for all a > -1

and~>-I

F~") ((JLII)] =F~r.) [(JLII)]'

Proof.

By Theorem 1.11 and Remark 1.12 we have to prove that for all a, ~ > -I,

sup I S:-! I exp [-s ~ +ojJ.,.] < 00•

...'"
A straightforward estimation based on Lemma 2.1 yields

1 S:-! I ~ (m_n+I)'u-ll1-1 [ (n+I)r.] th.
(m+ 1)"

Now with a < s < t we get

IS~ 1 exp(-sv",+ojJ.,.]~

~ (m_n+I)'u-ll1-l {(n+I):}t exp(-(s-o)lJ.".]
(m+l)

where
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{
max{a,;a}-;~-I' a>~

ko,l\= t ~-min{t a, a} -1, a~~.

Thus we see that

'v'cx>-l 'v'l\>-l 'v'o,o<o<t 'v'.,O<.8<t:

sup I S~ 1exp (-s IJ.m + (J~) < 00.
...'"

Remark.

By Theorem 1.11, the condition that the sequence ij.L1I) is monotoneously increasing can be weak
ened in the following sense: there exists a monotoneously increasing sequence (Jill) such that for
alle>O

lim sup [J:ill - (l +e) ~II ] =-00
II~

and

lim sup [~II - (l +e) 1111] =-00.
II~

It then follows that

00

Next, we impose condition (Boo) on the sequence ij.L1I)' viz. 3T>o: 1: exp(-~ n < 00.
11=0

Then for all a > -1,

00

1: I A~a) 12 exp(4L,. T) < 00.
11=0

So we get

Lemma 2.4.

Let ~) satisfy condition (B 00)' Then for each a > -I the space Fr,:> [~)] is a genuine function
space over (0,00) and can be characterized as follows: A function/on (0,00) belongs to Fr,:> [~)]

iff/admits a Laguerre series expansion

/ =1: all A~a>

with all = 0 (exp(-~ t)) for all t > O.

The following statement is valid
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Theorem 2.5.

Let ~) denote a monotoneously increasing sequence satisfying (B co). Then for ali a > -1 and

p>-1

F~) [~)]=F~) [(~)].

Proof.

According to Theorem 1.11 and the remarlc. proceding it we have to prove that for alia, P > -1

V'a>0 3">0 : sup I S:;: I exp [-s IJ.", + all.. ] < 00.
11,11I

With the aid of the estimate on the matrix entries we see that the above condition is satisfied for

the sequence <J.L..). 0

Remark: In the above theorem the monotoneously increasing sequence <J.L..) satisfying (B co) can be

replaced by any sequence <J.L..) satisfying (B co) for which there exists a monotoneously increasing

sequence (Jill) with

300 : lim sup <J.LII - (1 +£)~) =-00...........

and

300 : lim sup (Jill - (1 +£)~) =-00............

It then follows that

F~) [~)] =F~) [(11,.)] =F~) [(Ji..)] =F'!} [~)].

Oosely related to the Laguerre polynomials are the Laguerre functions defined by

The functions L~u) establish an orthononnal basis in the Hilbert space L 2 «0,00), X2a+l dx).

Correspondingly we introduce the following spaces.

Definition 2.6.

The subspace 11u
) [<J.L..)] of L 2 «0,00), X2u+l dx) consists of alilll E L 2 «0,00), X2a+l dx) for

which

co
~ exp(2t~) 1 (1II, L~u) 12 < 00.
..=0
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The subspace G~o;) [(JJ.,.)] is given by

The functions L~o;) establish an orthogonal basis in no;) [(JJ.II)] and a Schauder basis in G~o;) [(JJ.II)]'

Now the Hankel transfonnation DIll is defined by

00

(DIIIlll)(x) =J(xYr" J II (x y) cKY) y2<*1 dy
o

Then from [MOSJ, p. 244, we obtain the relations

DI L(o;) =(-1)" L(II)
II " II

It follows immediately that the spaces nil) [(JJ.,.)] and G~") [(JJ.,.)] remain invariant with respect to

DIll' The following stronger result is valid.

Theorem 2.7.

Let (JJ.II)' (v,,) denote monotoneously increasing sequences satisfying condition (B 0) and (B 00)'

respectively, and let t > O. Then for all a > -1 and ~ >-1

and

Moreover, for each "( > -1 the functions L~), n =0, I, 2, ... establish a Schauder basis in
Gt [(JJ.,,)] and Goo [(v,,)].

The (function) spaces Gt [(JJ.,,)] and Goo [(v,,)] remain invariant under each Hankel transfonnation

DIy.

The remaining part of this section is devoted to analytic characterizations of certain spaces
Gt [(JJ.II)] and Goo [(VII)]' Therefore we introduce the Hennite functions. Namely, the functions
L~~) are equal to the even Hermite functions '1'211' where

The functions 'I'll establish an orthonormal basis in L 2 (IR), and satisfy

where IF denotes the Fourier transfonnation. So on the basis of the functions '1'" there arise a great
lot of Fourier invariant function spaces. We mention the following.
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- The Schwartz space S.
The space S consists of all COO-functions, with the following growth behaviour

"rIlc,leJN: sUP I Xl ,(I) (x) 1<00.
"e 1R

Now Simon has proved the following characterization ofS in terms of Hermite expansions:
A square integrable function, belongs to S if and only if

"rile IN : (ell, 'lllIk.(lR) =0 (n.....t:)

cf. [Silo Let Sevm denote the subspace of all even functions in S. Then we have the following char
acterizations ofSeven'

Theorem 2.8.

For each a> -I, Seven equals G(a.) [(logn + 1)] as a Frechet space. So an even square integrable

function, on JR belongs to Seven if and only if

Proof.

From Simon's result we get

Seven =G(-'h) [(logn + 1)].

Next apply Theorem 2.7 with VII = log (n +1). o

Remark: The above result has also been obtained in [EGl] by a different method based on com
plex analysis.

- The Gelfand-Shilov spaces S:
For Cl) > 0, S: denotes the subspace of S consisting of all 'E S with the following growth
behaviour

For 0 < Cl) < t the space S: is trivial, and fort ~ Cl) < 1 it consists of entire functions with the fol

lowing growth behaviour in the complex plane

3c.lI,b>o: I ell (x+iy) I ~ C exp [-a I x IV. + b I y 11/1
_].

For details on these spaces we refer to [GS2].
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Zhang has proved the following characterization (cf. [Zh]).

A square integrable function 1\1 belongs to S:, Q)~ ~ if and only if

3
'
>0 : (1\1, 'l'n)L.(lR) = 0 (exp (-t n'hoo».

Zhang's result obviously implies the following.

Corollary 2.9.

Let Q)~ lh. Then we have

SeD G(-l.) [( 'hoo)]....even=u I' n ,
1>0

whence for each a. > -1

SeD - u G(a) [(n 'hoo)]....even - 1>0 I •

o

It follows that for each a. > -1, S:'even remains invariant under the Hankel transfonnation Dfa' In

addition, to Zhang's characterization we have

A even square integrable function 1\1 belongs to S:, Q)~~, if and only if
3

'
>0 : (1\1, Lia»a =0 (exp(-t n 'hoo».

Remarks.

From De Broijn's paper [Brl, Theorem 6.4 it follows that G~-t> [(n)] consists of all even

entire functions 1\1 with the following property

II\I(x+iy) I ~ C exp [-Ax2+ ~ y2].

So Theorem 2.7 yields the same characterization for the spaces G~a) [(n)] a. > -1. In [Hi],

Hille has proved the following result A square integrable function 1\1 on JR can be extended

to an analytic function ~ on a strip I 1m z I < t on which it satisfies the growth condition

(*) I ~ (x + iy) I ~ C exp [- I x I (t2_y2)'Ia]

if and only if

(1\1, 'l'n)L. =0 (exp (-t n 'Ia».
It follows that for each a. > -1, the Frechet space G~a.) [(n'....)] consists of even functions on JR

which admit an analytic extension to a strip J 1m z I < t where it satisfies the estimate (*).
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-The Gelfand-5hilov spaces w~r.
Let m denote a monotoneously increasing differentiable function on [0, 00] with m(O) =o.
We write

%

M(x)=Jm(t)dI, x~ 0
o

and

.,
M%(Y)=Jm+-(t)dt, y~O.

o

The pair (M ,M") satisfies Young's inequality

xyS M (x) +M%(y)

with equality if and only ify =m (x). M is called an Orlicz function.

In [053] the space W~r is introduced as follows.
An entire function ep belongs to w~r if and only if

I ep(x+iy) Is C exp [-M (a I x I)+M% (b I Y I)]

where a , b and C are suitable constants.

Under the following mild conditions on the function m also the space w~r admits a charac
terization in tenns of Hennite expansion coefficients, viz.

- m is concave and m (t) ~ 00 (t~ 00)

- m (t) decreases strictly to zero as t ~ 00.
t

Now the characterization is as follows
A square integrable function ep belongs to w~r if and only if

3/>0 : (ep, 'I'"k.(JR) =V (exp (-t M(n on))).

For a proofof this result we refer to [JE]. 50 consequently as for the spaces S: we have

Corollary 2.10.

For all a> -I,

w~reven =u G~u) [(M (n'h))].
• 1>0

In particular, for each a> -I, wZ~even is DIv-invariant.
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3. Jacobi polynomials.

In [MOS], p. 201, the Jacobi polynomials p~a,I!) are defined by

p(a,I!) (x) = (-1)" (l-xf'" (l+x)-lI (~),. [(l-x)ca+" (l+x)P.M
,. n! 2" dx .

They satisfy the following orthogonality relations

1

f p~a,I!) (X)p:-II) (x)(l-x)'" (I+X)1I dx=
-1

= 2ca+\\+1 r(n+a+l)r(n+~+I)

2n+a+~+1 r(n+l)r(n+a+~+I) ~_.

Here we consider the normalized Jacobi polynomials R~...I!)

R(a,II) - K(a,I!) p(a,I!)
" -" "

with

K(...II)={ 2n+a+~+1 r(n+l)r(n+a+~+I)}on
,. 2ca+\\+1 r(n+a+l)r(n+~+I)'

The polynomials R~a,I!) establish an orthonormal basis in the Hilbert space

Xa,I!=L 2 ([-I,ll. (I-x)'" (l+x)lIdx). HenceX...1! is the natural completion of the vector space P

with respect to the inner product

1

(p, q)a,1I = f p (x) q (x)(l-x)'" (l +x)1I dx.
-1

We want to estimate the matrix entries S~-,6) where

'"R~·6) =1: s~·"&) R~a,I!)

,.=0

To this end, we apply the following formula, derived in [As], p. 63

p~6) = (a+ I)", i (-1)"'- (~-~)III- (a+ ~+ 1),. •
(a+~+2)", ,.=0 (m-n)! (a+l),.

• (a+~+2b (m+a+~+I),. p(a,I!)
(a+~+1)2tI (m+a+~+2),. ,. .

It follows that S~all) =

{
K!:....6)} { (a+ 1) (~-P)III_ (a+~+ 1),. (a+~+2)2tI (m+a+~+ I),.}

(-1)"'- K;I!) • (a+P+~", (m-n)! (a+ 1),. (a+~+ 1)2tI (m+a+p+2),. .

Employing the inequalities of Lemma 2.1 the first factor between braces { } is estimated by

K 1 ( m+ 11 )on and the second factor by
n+
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for certain K 1 and K 2 > o.
Observe that

(m+a+~+ 1).. _ r(m+a+p+2) r(m+n+a+~) <
(m+a+p+2).. - r(m+a+S+l) r(m+n+a+p+l)-

We arrive at the following estimate

I S~·a6) IS K ( n + 11 )~h (m -n +1)'&-\11-1.
m+

Further, since p~...II) (x) =(-It p~.a) (-x) and K~...II) = K~·a) we have

S~'lIl) = (_1)"'-" S~Il'Y).

Hence

Lemma 3.1.

Let a, p,1. ~ > -1. Then the following estimation is valid for all m , n E JN0, m ~ n,

Proof.

We have

'"S(ajI,,s) - ~ S('lf\·'l6) S(ajI,'lIl)
..... -~"I 1m.

j-

so that

sf (~+ 1 rv. (.1±.!... )a+'h (j-n+ 1)'''-1\1-1 (m- j+l)'T""l'I-l
j_ ]+ 1 m+ 1

S (m-n + 1) l...-yl+IHI-l (n+ 1):: f (j + l)a-Il m-n+ 1
(m+l) j=tl (m-j+l)(j-n+l)

m-n+ 1 '" {(n+ l)a-Il ifa < p
Finally, observe that (m _ j + 1) (j _ n + 1) S 1 and that~ (j + 1)a-ll S (m - n + 1) (m + l)a-Il ifa~ p.
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o

For convenience, we set

X~II [(JJ.,.)] =X, [(R~...II) ), (JJ.,.)]

and

From [MOS], p. 216, we derive that

R~... II) (x) =O(n9 ), x E [-1. 1]

where q =max {a+ 'h. P+ 'h, OJ. SO we can deal with the same class of sequences (JJ.,.) as used in
the case of the Laguerre polynomials. viz. we consider sequences (JJ.,.) satisfying condition (B 0) or
condition (B 00).

Lemma 3.2.

Let (J,L,,) denote a sequence satisfying condition (B 0) and let t > O. Then for all a, p> -1 the spaces
X~II [(J,L,,)] and F~II [(J,L,,)] are function spaces. We have

00

ell E F~II [(J,L,,)] iff ell (x) =1: a" R~... II) (x), x E [-I, 1],
,,=0

with \",f,O<,f<1 : a" =0 (exp(;J.,. s».

Proof.

We observe that for all s > 0 and x E [-1, 1]

00

1: e.......,f IR~... II) (x) 12 < 00.

,,=0

o

Theorem 3.3.

Let (j.L,.) denote a monotoneously increasing sequence satisfying condition (B 0). Then for all t > 0
and a, P, 'Y,li >-1

F~II [(JJ.,.)] =F1,6 [(J,L,,)].

Proof.

Due to the estimate on the matrix entries S~'I6) the proof contains precisely the same arguments
as the proof ofTheorem 2.3. We leave it to the reader. 0
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Remark: As in Theorem 2.3, the condition that (J,l.,,) is monotoneously increasing can be replaced

by a weaker condition.

The statements corresponding Lemma 2.4 and Theorem 2.5 are the following

Lemma 3.4.

Let (J.l.,,) denote a sequence satisfying condition (Boo). Then for all a, ~ > -1, the spaceF~1I [(J.l.,,)] is

a function space:

with '1'>0 : a" = 0 (exp(4J... t».
o

Theorem 3.5.

Let (J.l.,,) denote a monotoneously increasing sequence satisfying condition (B 00)' Then for all

a,~,l,a>-1

o

The polynomials R~-'h,-'h) are called Chebysev polynomials. They satisfy the following useful

relation.

[
1t '

R~-'h (cos w) = 1t

~ cosnw,
1t

n=O

n =1,2, ...

With this relation a number of space of type F't'll [(J.l.,,)] can be completely characterized. We start

with a derivation of a classical result of Szego, see [Sz].

Theorem 3.6.

Let a, ~ > -1 and let t > O. The space F';.II [(n)] consists of all functions ep which are analytic within

the ellipse E"

Proof.

The following statement can be readily checked:

A function 'I' is 27t-periodic and analytic on the strip I1m w I < t iff there exists a sequence
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00

(b,,):'-' satisfying 't1.0<6<1 : sup Ib" I exp(1 n Is) < 00 such that ",(w) = L b" eUlw
•

"
00

Now let cp E F';'f> [(n)] =F,t.-t [(n)]. Then cp (cosh w) = t ao + La" cosnw where
,,=1

't1.0<1<1 sup I a" I exp(ns) < 00.
II

So w fo.o7 cp(cosw) is a 2n-periodic even function which is analytic on the strip 11m w 1 < I. The

confonnal mapping z =cos w sends the rectangle (w I I1m w I < I 1\ -1t~ Rew ~ 7t) onto the inte-

. . x2 -.Lnor ofthe ellipse 2 + . 2 = 1, z = x + iy. Hence cp is analytic within E,.
cosh I sinh I

Conversely, if cp is analytic within E
"

then the function w fo.o7 cp(cosw) is 2n-periodic, even and

analytic on the strip 11m w I < I. Hence

00

cp(cosw)=t ao+ L a"cosnw, I/mw I <I,
,,=1

with a" =0 (exp(-ns», 0 < s < I, which yields

CI> E r;'h--'h [(n)] =F';'f> [(n)].

o

Next, we present a characterization of the spaces F';'f> [(M(n»], where a, ~ > -I, t > 0 and, where

M denotes an Orlicz function,

%

M(x)= Jm(t)dt
o

with m monotoneously increasing, m (0) =0 and m (00) =00.

Theorem 3.7.

The space F';'f> [(M(n»] consists of all entire analytic functions cp with the following growth

behaviour in the complex plane

'tl 0<6<1 3c : I cp(z) 1~ CI exp [s M%(1.. log I z I)].
•• S

Proof.

Let (bll):"- denote a bounded sequence. Then for each (J > 0 the function

00

x(w)= L bll exp[-<JM(ln I)] eUlw

II=-<lO

is 27t-periodic and holomorphic. Further, a simple application of Cauchy-Schwartz' and of

Young's inequality yields the following estimate



(lie)

-25 -

I v I
I x(w) I ~ Cs .. exp [s M"(--)] , w =u +iv... s

where 0 < s < a.

Conversely, if a 2n-periodic holomorphic function 9 admits the asymptotic behaviour as given in
(lie) for each s, 0 < s < t, then we have

GO

9(w)= ~ b,.e illw-
where for each v E JR.,

" "1 J " 1 I "( ")b,.= 2n -1C 9(u)e
UlU du= 21t -1C 9(u+iv)e--"+&V duo

So for each s , 0 < s < t

(lie lie) I btl 1~ Cs 8 inf exp [sM"(~)+ nv] =CS8 exp [-s M(I n I)].
• "eJR S •

Let Cl> E F;"t·-t [(M(n»]. Then

GO

x(w):=Cl>(cosw)=t ao+ ~ a,.cosnw
,.=1

with for each 0 < a < t, SUD (I a,. I exp[aM(1 n I)]) < 00.

1le JJv.

It follows that Xis an even 2n-periodic holomorphic function with

[ Iv I]I X(w) I ~ Cs•x exp [s M" -s- ], 0 < s < a.

Conversely, an even, 2n-periodic holomorphic function 9 can be written as 9(w) ='I'(cosw) where
'I' is holomorphic. If9 satisfies

then by ("'lie) we see that 'I' E F~-t.-t) [(M(n»].

Finally, the wanted characterization is obtained by applying the confonnal mapping w=cosz, viz.

z =log (w+i ..Jl-w2 ) where we observe that

4 I w 12 - 3~ I w+i..Jl-w2 12~ 4 I W 12 + 1.

D

In the next theorem we present a condition on the sequence (JJ.,.) which yields a classification of
the Hilbert spaces xr-P [(JJ.,.)].
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Theorem 3.8.

Let ijI.,,) denote a sequence of nonnegative numbers. Suppose there exists a sequence (Vj) with the

following properties

00

- "i/t>o::E e-'lf,t < 00
j=l

Then for all t > 0 and all a, P, 'Y, ~ > -1

X~1l [ijI.,,)] =Xl'" [Utll)]

as function Hilbert spaces.

Proof.

It is clear that:E e-v..s < 00 for all s > O. Hence the spaces x~1l [Utll)] can be regarded as functional

Hilbert spaces. According to Theorem 1.9 we have to prove that a, P, 'Y, l) > -1 and all t > 0 the
matrix

a~r) =S~"l6 exp ijI."-~) t

represent a bounded linear operatora~aIl."l6) from 12 into 12,

Therefore, we proceed as follows. Fix a, P, 'Y, l) > -1, and put at =a~aIl."j6). Then we write

00

at = :E l:it,j U
j

j=O

where U denotes the unilateral shift

U (~ , ~1 , ~2' ••. ) =(~1 , ~2' ...)

and l:it•j the diagonal operator on 12 with entries

(I:it)kJc =a~1~!r.

From Lemma 3.1 we obtain

S KU+ l)q exp [-Vj t].

Here r = I a-'Y I + I p-l) I,p =1.(1 +min{a, P)) and q= q - min{O,p}. So we get
2
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00

10,1, -+l ~ ~ • At)' U j
., -+,

2 2 ~, I 2

j=4.'J

00

~ K ~ (j + I)' exp(-vj t) < 00.

j=4.'J

It follows that at is a bounded linear operator from 12 into 12, o

For each v ~ 1the sequence (n V) satisfies the conditions stated in the preceding theorem. Hence for
all v~ l,a, ~, 1,~» -1 and all t > 0 we have

X~1l [(n V
)] =X~T,15) [(nV

)].

In the paper [EG3] there is given a characterization of the spaces x~1l [(n V)] for v > 1 and t > O.

Indeed,

, E X~1l [(n V)] if and only if, is a ho10morphic function satisfying

UI ,(x+iy) 1
2 g"v (x, y) dx d:y < 00

where

and

g,.V (x, y) =(x 2 +y2r 1 Oog(x 2 +y2l'" exp [- ~ Oog(x2+l»1/Jl ]

K=.!. 2-v , J1= v-I, 1..=1. [_t_] 1"""'Jl.
4 v-I v I! I-I!

Finally, we devote some attention to the standard example of a sequence satisfying condition
(Boo): we consider the sequence I!.. =logn + 1. Following Lemma 3.4 the spaces F':;,11 [(logn + 1)],
a, ~ > -1, are genuine function spaces and according to Theorem 3.5

F':;,11 [log(n +1)] =F1;.15 [log(n +1)]

for all a, ~, 1, ~ > -1.

Theorem 3.9.

For all a, ~ > -1 , F':;,11 [(log(n + 1)] consists of all COO-functions on [-1, 1].

Proof.

It can be readily checked that each even, 2ft-periodic COO-function X on JR can be expanded into a
Fourier cosine series
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00

X(u)=t ao+ L a"cosnu
,,=1

where a" =V (n-l:) for all kEN. Conversely, each such series represents an even 21t-periodic

COO-function. It follows that ell E F~-'I& [(log(n + 1))] if and only if ell is a function on [-1, 1] such

that u ~ eIl(cosu) is infinitely differentiable. Thus the result follows. 0
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