EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

Chain coding in computer graphics

Citation for published version (APA):

Wetering, van de, H. M. M. (1991). Chain coding in computer graphics. [Phd Thesis 1 (Research TU/e /
Graduation TU/e), Mathematics and Computer Science]. Technische Universiteit Eindhoven.
https://doi.org/10.6100/IR362619

DOI:
10.6100/IR362619

Document status and date:
Published: 01/01/1991

Document Version:
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

* A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOl to the publisher's website.

* The final author version and the galley proof are versions of the publication after peer review.

* The final published version features the final layout of the paper including the volume, issue and page
numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain
* You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:

openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://doi.org/10.6100/IR362619
https://doi.org/10.6100/IR362619
https://research.tue.nl/en/publications/4a430f29-edfe-4d40-a12e-588903525081

Chain Coding in
Computer Graphics

Huub van de Wetering

Chain Coding in

Computer Graphics

Chain Coding in
Computer Graphics

Proefschrift

ter verkrijging van de graad van doctor aan de
Technische Universiteit Eindhoven, op gezag van
de Rector Magnificus, prof. dr. J.H. van Lint,
voor een commissie aangewezen door het College
van Dekanen in het openbaar te verdedigen
op vrijdag 22 november 1991 om 16.00 uur

door

Hubertus Martinus Maria van de Wetering
geboren te Olland (NBr)

druk: wibiro dissertatiedrukkerij, helmond.

Dit proefschrift is goedgekeurd
door de promotoren

prof. dr. dipl. ing. D.K. Hammer
en

prof. dr. FJ. Peters.

copromotor :
dr. ir. CW.AM. van Overveld.

Aan mijn ouders.

These investigations were partly supported by
the Netherlands Technology Foundation (STW).

Contents

0.0
0.1
02
03

1.0
11
1.2
13

20
2.1
22
221
222
23
24

3.0
3.1
32
320
3.2.1
33
34.
34.0
34.1
35
3.5.1
35.2
3.6
360
3.6.1
362

Introduction ... 1
Motivation 1
Research position 4
Overview rranserersanane asernenen 4
NOLALONS covovcviviriisinisisisssinsssnsrssar i sssscisssssss srssssssssssestsnssasssssssssnssens 5

Basic Definitions 7
Introduction eeerrsrernis e aesne 7
Continuous CUTVEScceevvcnviiremesmirssnesisnes 7
DASCIEte CUIVES .ovvrvanriiicnioniiosssssmsesecssasssssosese 9
Chain COdINGovemrecrrierecrteentcscses e er s e sesneesss 12

Linear Transformations of Discrete Curvesccooivveervencrccrnens 17
TAIPOAUCHON 1..ovvivreemrririoniuiereescnsronssssssosscssnsrsossasiescesssonersrorssnssansassnsssss 17
Linear transformations of discrete curves 17
Bresenham’s line algorithms 22

The 8-connected case eertrorsrsaene sesenesans 22
The 4-connected Casecvcvmernseresnniassironns 26
Integer approximation of linear functions 28
Integer approximation of bilinear ﬁmcuons ona dlscrete CUIve 30

WACUEVES .cooriecincnirercosneesecerserssancseraneesossnsssonssasesnamsnosssrassmcrsenersamsasssesrsse 33
INFOAUCHON ...oovtr it s sscsra e st esses s ssmssanesessssases 33
Problem Definitionccccomivvmenicninniminennessarmsesescsssosssnsescsesessonns 33
Operators ON ChAINScccovvnrcvcrnernnriessneesesresssosirmsreseereressarensasessesnssecs 35

TRHE WEAVE OPETALOTovvecrcrnriecesnreriasasesssnsssesensssessatossssssososssesnasanens 35
The add8 OPLIAIOL ...covvirereiciriiiicscrirrsecsen et sestsnscr e esssasssserens 39
WACUIVES treirriiernienssierrercosmsessssnensessessissessassssansersoraes sessessasessanssssssssass 44
SMOOthing Of W-CUIVES ..o crmmesiissssanes 46
Local SMOOHING .c...cviiiiiiiiirinco s st sr e rsssassensnass 46
Global SMOOMING ...oveerr ittt et e oo 49
W-curves : the CONLINUOUS CASE ...ccvvmirreercnnstmsesuserresmacssmerss sessseressose 51
Blending functions ... oo e naes 57
A subgclass consisting of circle and ellipse segmentscooevevennnnee 60
Algorithms for COMPULING W-CUIVES ...c.coverneerirencrermmarnecsemsiesconeenenine 63
Algorithm fOr WeAVINEcveermvrierrcmnsianenciniinseassesssssssassvissresesenes 63
Algorithm for add8 ..o 64

Algorithm for computing the pixel set of 8 W-Curvec.ocevvcevencn. 65

Contents

3.6.2.1 A linear algorithmcvvnecennns 70
3.A Appendixo.ccernenerninaics ehreereken et akehsasnse e R en et esanEe R s eRanae b chanans 74
4 Extensions of w-curves SOUTRTUROY .
40 Introduction 75
4.1 Parameterised w-curves 75
42 More CONIIOL POINEScoomeececrnrrimruncessserseersresananse 78
4.2.1 Consecutive weaving 18
422 Simultaneous weaving , 82
43 Canonical W-CUIVES ...occcovcermmmmconsnscesene 87
5 Filling of closed discrete curves 91
50 Introduction " 91
5.1 Filling a closed discrete curve - - 91
6 THICK CUPVES ...ttt earnr s snsnrss s sessssssanssenrsaensseneneas 99
6.0 Introductioncvcinnimerncceriannnne 99
6.1 Offset curves cerrsenirersresesreseenesensenssrtse 100
612 Discrete normal vectors 101
6.1.2.1 Scaling of discrete normal VECIOTSocovniiisinmssismsnessmens 103
6.1.3 Interpolationccoccone... " cerereesar et sasaens 104
6.1.3.1 Line segments st eraran 104
6.1.3.2 Circle SEEMENLS ...covvvicrrrrrircsiirirmcecsssnscesmersesssssstsssessersnrsesssnsasosens 104
6.2 THICK CUIVES .vviriiirciienisriarinionseesinecsesusssassonnens 105
6.2.1 Computing thick CUIVE ..c.cviviervriensrnrenecnsreresssssssmvenmsesessmssaesans 107
6.2.2 Determining the type of a quadranglecvvmciiciorvnscres 110
6.2.3 The algOorithm ... eanse 110
7 Final remarks 113
7.0 Current and fUITe TESCAICHvvvereeerivrrrrrerseresessesesssrsrsassrsrssesessnsssssen 115
SUMMALYcoooaerereeneereterverecaseesasassaenes 117
Samenvatting.. sesesssssarsasnreen At ba et st rsasea s 118
Dankwoord 119
Curriculum vitae..........cccoeecocereecercrrarerensnrennens . 120
References............ovccmiccccnmecmmmsssssssersanssrossssesssessrress . 121

IndeX.....oiicmrccinenesiser s 123

0.0

0

Introduction

Motivation

A part of computer graphics is concerned with displaying geometrical objects on out-
put devices, such as monitors and printers; this is referred to as rendering. The
mathematical description of such objects is called modelling. In this thesis the
objects of interest are curve segments. Curves are commonly-used objects in both
computer aided design (CAD) and desk top publishing (DTP), and much literature on
curves exists, handling both the modelling as well as the rendering.

In this thesis the problems we tackle for curves are modelling and rendering. Unlike
most other approaches that define curves in continuous space, we choose discrete
curves as a starting point. Discrete curves are used, e.g. in pattern recognition,
where they occur naturally, because of the discrete initial phase of most problems in
that field. From pattem recognition we also obtain the notion of chain coding
[Fre74] , the way in which discrete curves are described in this thesis. One reason for
using discrete curves for image synthesis is that this approach dismisses the need for
conversion from continuous space to discrete space. Another reason is that discrete
curves automatically bring along the benefits of integer arithmetic over floating point
arithmetic. These benefits are stated in the sequel.

Below a short introduction to continuous curves and discrete curves is given. Both
introductions are divided in a mathematical description (modelling) part and a
rendering part. As in the rest of this thesis only continuous curves in R? and
discrete curves in Z? are considered. Nevertheless, the vast majority of the
definitions and properties is straightforwardly generalised to IR” for arbitrary n.

Mathematical Descriptions for Continuous Curves. A continuous curve may be
given by a continuous one-parameter function. In case of polynomial curves of
degree n this parameter function takes the following form,

plu)=ag+ua, +--- +u’a, uel0, 1D

with a; € IR%. This form of writing a parameter function, called the algebraic form,
does not give an intuitive feel for the shape of the curve: there is no obvious relation
between the coefficient-vectors a; and the shape of the curve. This can be improved
by using the, so called, geometric form:

2 - ‘ ' Introduction

pu)=Fou)po+Fw)py+ - -« +F,(u)p, (vel0, 1)

with p;e R? and F;e[0, 1]-» R. This form is called a geometric form since, for
well-chosen functions F;, a geometric interpretation may be given to the points p;.
These points then are called control points and the functions F; are called blending
functions.

Below we show two examples for n=3.

1) The poinis pp and p; are the end points of the curve, and p, and p; are the
derivative vectors of the curve in the end points. This results, in case of poly-
nomial curves, in the cubic Hermite curves.

2) The points po and ps are the end points of the curve and p;~p, and p3~p, are
tangent to the curve. This is the case of the cubic Bezier curves.

The control points pg up to p, form the characteristic polygon of a curve. A very
useful property for modeling a curve, is that the shape of the curve is independent of
the orientation, size, and position of the characteristic polygon; this property is
fulfilled if a curve is affine invariant. A curve is affine invariant if the blending func-
tions sumto 1, forall u [0, 1.

Rendering of Continuous Curves. Nowadays this is practically equivalent to rasteri-
sation of curves; that is, computing a pixel set representing a curve on a raster. The
existent algorithms are only suitable for curves of a special form. Famous examples
are: Bresenham'’s straight line algorithms [Bre65] , the midpoint circle algorithm
[Fol90] , and De Casteljau’s algorithm [Boe84] for rendering Bezier curves.

Mathematical Descriptions for Discrete Curves. The notion of discrete curve is the
analogy in Z 2 of the notion of continuous curve in IR?. A discrete curve may be
described by a starting point and a string of relative vectors as shown in figure 0.1(a).

3 2
Kg 4 % 0 [11010000776554]
o-o/‘/ 5 7 '
6

@ (b) ©
Figure0.1:
(a) a discrete curve
(b) encoding of the vectors
(c) the corresponding chain

Such a string may be represented by a siring of numbers, each of which denotes one
of the relative vectors (see figure 0.1(a) and (b)); this string of numbers is called a
chain and the numbers are called codes. Hence, a chain and a starting point form a

0.0 Motivation . 3

mathematical description of a curve. From the modeling point of view, it is, of
course, not a handy one. For discrete curves, a more compact description and one
more suitable for modeling purposes, may be obtained by using control points (in
Z?). In this thesis we define a large class of discrete curves, which may be specified
by control points. These curves, called w-curves, are defined in discrete space and
are, hence, not directly related to curves in continuous space. If a w-curve is given
by control points pg up 10 p,, its definition uses the chains, called bresh (p;—p;-1)
associated with the line segments p;p;-, for 0<i<n, together with a so-called weav-
ing operator w for combining these » chains into one chain. In chapters 3 and 4
several useful definitions for such an operator w are given. For all these definitions
the operator w mixes the codes of the chains bresh (pi~pi-1) (0<i<n) in a well-
chosen order.

The notion of affine invariance cannot be used in discrete space; e.g, rotations of
discrete curves can only be done correctly for angles that are a multiple of 90
degrees. It is shown, however, that w-curves can be related to continuous curves that
are invariant under affine transformations.

Rendering of Discrete Curves. The rasterisation of discrete curves is relatively easy.
If a discrete curve is given by a chain ¢ and a starting point p, the pixels may be
found by starting at p and adding the vectors belonging to the elements of the chain
one after another. If the curve is a w-curve, the corresponding chain and starting
point can easily be computed, as we will see in chapter 3.

Continuous versus discrete curves. We already indicated that curves are commonly
used in both CAD and DTP. The use of curves in CAD, if used in combination with
computer aided manufacturing (CAM), is restricted to continuous curves. This is due
to the nature of the required result: a model in R? or IR®. However, the discrete
cuarves, as defined in this thesis, can be related to continuous curves, as will be shown
in chapter 3. For DTP the required result is an image on a raster device. In this case
the advantages of discrete curves as stated below may be used to their full extent.

e discrete curves have relatively simple rendering algorithms,

e The algorithms for discrete curves use only integer arithmetic, which is not
only faster than floating point arithmetic but can also be realised easier in
hardware. Furthermore integer arithmetic allows for exact operations; hence,
there is no need for elaborate numerical analysis on the robustness of the algo-
rithms,

o Since all discrete curves can be represented by a chain and a point, a unified
algorithmic approach is possible. Instead of having several algorithms for, e.g.,
filling a (closed) discrete curve or computing an associated thick curve, one
algorithm that is based on the representation by chains and points, suffices.
Among these algorithms are also algorithms for linear transformations of
discrete curves.

0.1

0.2

4 \ Introduction
Research position

The work presented in this thesis is inspired by the thesis "Digitisation functions in
Computer Graphics" of Marloes van Lierop [Lie87] . In her thesis van Lierop gives a
sound theoretical basis for digitisation in general and for digitisation of straight line
segments in particular, The latter was the motive to think about general curve digiti-
sation. Furthermore, the emphasis in van Lierop’s work on properties of geometric
objects in discrete space resulted in this study of discrete curves. '

For the representation of a general discrete curve the notion of chain coding, has been
introduced by Freeman in 1961 [Fre61] . This notion is still heavily used in the
realm of image processing. In computer graphics (image generation) chain coding,
as is indicated in this thesis, also tumns out to be a useful representation method.
Discrete curve generation algorithms have been a popular subject for investigation
ever since the introduction of raster devices. In [Fol90] some well-known examples
of these algorithms are referenced. All these algorithms render a given continuous
curve. The algorithms given in this thesis, however, use chains, i.e. representations of
discrete curves, either to render or to generate other chains.

Finally, curve modelling is mostly done in continuous space. Summaries of the
results in this area may be found in for instance [Boe84] or [Mor85] . In contrast the
modelling of the discrete curves defined in this thesis is based on a discrete approach
by the so-called distribution functions.

Concluding we can state that although the subjects in this thesis are well-known from
other investigations, the approach chosen here is totally different from relevant other
work.

Overview

The remainder of this thesis consists of 7 chapters. In chapter 1 the basic definitions
are given; the notions of discrete curves and chain coding are introduced here. In
chapter 2 not only Bresenham’s line algorithms but also algorithms for linear
transformations of discrete curves given by chain codes are derived. Furthermore,
properties with respect to linear transformations of discrete curves are given,
Chapter 3 contains the main part of this thesis. In it operators on chains are defined;
these operators are combined into a definition for discrete curves given by three con-
trol points. These discrete curves are related to continuous curves by computing them
for different resolutions and having this resolution to go to infinity. Chapter 3 con-
cludes with some algorithms for computing the so defined discrete curves. In chapter
4 the themes of chapter 3 are extended for curves with more than 3 control points.
For this situation two new operators are introduced. The notion of a canonic chain is
introduced. Chapter 5 is a prelude for chapter 6; an algorithm is given for computing

0.2 Overview 5

the set of interior points of a given closed discreie curve. In chapter 6 this algorithm
is used for computing thick versions of discrete curves. Offset curves are also dis-
cussed in this chapter. Finally, some concluding remarks are made in chapter 7.

0.3 Notations

SETS:
NN, the set of non-negative integer numbers
N, ihe set of positive non-zero integer numbers
Z the set of integer numbers
R the set of reals
[a.bl={ieZ |agish}
[a.b)={ieZ |agi<b}
(a.b)={icZ la<i<b}
(a.bl={ieZ la<ish}
[x,yl={re Rix<rsy}
[x,y)={re Rixsr<y}
(r,y)={re Rlx<r<y}
(x,yl={re Rlx<rsy}

IS | denotes the number of elements of the set S.
A - B denotes the set of functions with domain A and reach B.

PREDICATE NOTATION:
(Vi:R@):P3)) universal quantification
(Fi:R@:PH)) existential quantification

x

P the predicate resulting from substituting in the predicate P
the expression E for x.

ARITHMETIC OPERATIONS:

(Zi:P@:f0)), max{fD| P @)}, min{fDHIP @)}
the sum, the maximum, and minimum, respectively, of £i)
for all i satisfying the predicate P (i).

(Ni:PW)) the number of i's satisfying P ().

Forxe R:
[x/ absolute value
[x] rounding
Lx] the foor function.
[x] the ceiling function.

The operators div and mod are defined such thatforieZ andne IN,.
i=n(divn)+imodnwithimodne [0..n).

6 Introduction

VECTORS:
Forpe R?: p={(px. Py).
Ipl Euclidean length of vector p.
Ipl=Upxls /gD

CHAINS:

4 the empty chain

c;ore(i) the ith code of chainc.

[823}) a chain with the codes 8, 2, and 3.

¢ concatenation of n-times chain c.

plc. i) the ith point on the chain ¢.

#.(0¢, 1, j) the number of times the code ¢ occurs in the subsequence
fc; - cjgJofthe chainc.

lei the length of the chain ¢ (= the number of codes)

ced the concatenation of two chains cand d

(TLi:RG):c)
the continued concatenation of the chains ¢ satisfying R()
for increasing i.

10

L1

11

1

Basic Definitions

Introduction

In this chapter we give definitions of the notions that are used in the subsequent
chapters. The most important definitions are those of discrete curves and chains,

Continuous Curves

We usually use reals to describe the objects in the real world (R? or [R®) that we
want to convert to discrete objects on a raster device. One of these objects is a curve
segment in IR%, which is defined in definition 1.1. A curve segment is henceforth
just called a curve. Note that only parameterised curves are considered.

Definition : continuous curve

A continuous curve C is a subset of JR? that can be described by two continu-
ous one-parameter functions x and y € [0, 1] — IR as follows

C={(x@),y@)luel0,11}.
O

In case of polynomial curves of degree n the parameter functions x and y in the
definition of a continuous curve, take the following form.
x(uw),y(u))=ag+ua, + -+ +ua, wel0,1])

with a; € IR?. This form of writing a parameter function, called the algebraic form,
does not give an intuitive feel for the shape of the curve: there is no obvious relation
between the coefficient-vectors a; and the shape of the curve. This can be improved
by using the, so called, geometric form:

(x (@), y (@)=Fo(u)po+F ((w)py + * + - +Fp(u)p, welo, 1D

with p; € R? and F; e [0, 1] R. This form is called a geometric form since, for
well-chosen functions F;, a geometric interpretation may be given to the vectors p;.

1.2

13

8 Basic Definitions

This may be done in several ways; below we show some examples for n=3.

1) The points pp and p; are the end points of the curve, and p, and p; are the
derivative vectors of the curve in the end points. This results, in case of poly-
nomial curves, in the cubic Hermite curves.

2) The points pg and ps are the end points of the curve and p;—po and p3—p; are
tangent to the curve. This is the case of the cubic Bezier curves.

The points p; are called control points and the functions F; are called blending func-
tions.

The control points py up to p, form the characteristic polygon of a curve. A curve
has a very useful property for modeling if the shape of the curve is independent of the
orientation, size, and position of the characteristic polygon; this property is fulfilled
if a curve is affine invariant. An affine transformation A is a function in R*>— R?
that satisfies

(Vx:xe R?:Ax=t+Lx),

for some ¢ € R? and some linear transformation L.

Definition : affine invariant

Let C (po,p1; * * * »Pa) be continuous curves, for all p;: € R
C(po.p1, * * * ,Pn) is affine invariant iff for all affine transformations A,

A (C(vaplr te ’pn)) =C(A (po)’A (Pl): LA (Pn))-
(]

The following two properties state relationships between affine invariancy and the
blending functions of the form in which a curve is given.
Property :

Let p; IR? and blending functions F;e [0, 1]->JR. The continuous curves
given by

x @)y W)y=Fo(w)po+F ()p1+ - - +F,()pPp,
for all u € [0, 11, are affine invariant iff forall u € [0, 1],
(Zitie[0.n] :Fiw)=1
O

Apart from the above mentioned geometric form we also use the following form

(x @),y () =po+F o(u)(P1—Po) +F 1 (@)P2 =p1)+ = +Fp_1(4)(Pa—Pa-1)-
Using property 1.3 we can now prove property 1.4.

14

12

1.5

1.6

1.1 - Continuous Curves 9

Property :

Continuous curves given, forue [0,1] by

CeQu),y (@)= po+F ol)(pr=po) + F 1 u)p2 - < - - +Fp 1 u)(Pa—Ps-1)

with p; € IR? and F; € [0, 1] > IR, are affine invariant.
a

Discrete Curves

Before defining the notion of discrete curves we need some introductory notions.

Elements of Z? are called points, and the coordinates of a point p are denoted by p,

and p,. Multiplications of points with an integer and real factor and addition of two

points, are defined as usual in the vecior spaces R? or Z2. In Z? we define two

distance functions: D4 and Dg. These functions are used, among other things, for the

definition of neighbourhoodship of pixels; D4 and Dg result in every pixel having 4
and 8 pixels, respectively, at distance 1. In the next definitions these functions are

defined on IR? enabling one to make a more flexible use of them.

Definition : Dy, Dy

For all p and q in JR? the two distance functions D, and Dg (both in
R*x R*— R) are defined by

Dy(p, @)=/ px—dx [+/ py—ay/
Dy(p, q):=max{/px—qx /,/ py~ay/}.

O

In the remaining of this paragraph we use 8¢ {4,8} to make our definitions and pro-
perties valid for both the Dy and the Dy distance function. The properncs 1.6(a) up
to (d) show that D; is indeed a distance function.

Property :
Forallp,q.re R* andall ke R,

(a) Dg(p, 20
(b) Ds(p, q)=0iff p=q
(©) Ds(p. ©=Ds(q.p)
(d) Dy(p, 1)< Da(p, @)+ Ds(g. 1)
" (e) Dg(p+q, r+8)< Dys(p,)+ D;(q,)
(f) Ds(kp, (0,0))=kDs(p, (0,0))
(&) Ds(p—q, r)=Ds(p,r+q)

1.7

18

19

1.10

10 Basic Definitions

Definition : §-neighbour

Two points p and q are called 3-neighbours iff Dy(p, @)=1.
a

Figure 1.1 shows the 8-neighbours of a point.

Figurel.1:
(a) the 4-neighbours of @
(b) the 8-neighbours of ®

Definition : §-path
A sequence r=<py, * * *, Pp-1> Of points in Z? is called a §-path iff
(Vi:ie(0..n) :p; and p;_; are 5-neighbours)

A §-patht=<py, ' -+, py—1> is said to start at pg andend at p,,_;.
0

Definition : P ()
The point set P () of a §-path x=<pyp, * - - , Pn-1> is given by
P(m)={pilie[0..n)}

Definition : 3-connected set
A set Pc Z? is called connected iff

(Vp.q:p.qeP:
(dx:rnisas-path : P(n);Pandustar(satpandendsatq)
)

L1

1.12

1.2- Discrete Curves 11

Definition : discrete curve

A discrete curve D is a connecied subset of Z2 that can be described by two
one-parameter functions xand y € [0..n]—Z as follows

D={(x@),y@)lie[0.n]},

forsomeneZ *.
A 5-connected discrete curve is called a §-curve.
O

This definition has been formulated in accordance with definition 1.1 of continuous
curves. The notion continuity in "continuous one-parameter function”, however, has
been replaced by connectivity in "connected subset”. In fact the parameter functions
in the definition of discrete curves are not obliged, as may be seen from the following

property.

Property :
Forall sets Dc Z* the following holds.

D is a discrete curve
<>
D is a finite connected subset of Z°.

Proof

!

This follows directly from the definition of discrete curve.

g

Let D be a finite connected subset of Z>.

Since D is a finite connected set, its points may be gathered in a path
n=<pg, ***, P> (ne), such that P(n)=D. (Note that in such a path some
points may occur more than once. Hence, n may be larger than |D 1) The
parameter functions x and y for D may then be given by

xy:[0.n]-Z with
x()=pix and
y(@)y=piy.
Hence, D={(x(),y(i)lie [0..n] } is adiscrete curve,
[

In the conversion of a continuous curve to a discrete one, rounding of reals to
integers is a frequently occurring action. Below we give the definitions and notations
for rounding and we state some properties.

12 ‘ Basic Definitions

113 Definition : | x|, [x], [x]

1.14

13

For all x € IR we define,
@ |x|=max{ieZ |isx}
) [x]=min{ieZ |izx}
© [x]=[x-¥]

0O
Property :
Forallxe Randallie IN,,

@ 0<x-|x| <1
M -~1<x-{x]<0
(©) ~W<x-{x]c%
@ fi+x]=i+{x]
@) x+¥eZ =>[i-x]=i-[x]
O xeZ=>[x]-|x] =1
® [=x]=-|x]

O

Chain coding

In the previous paragraph we stated that a discrete curve can be represented by a
path. A path is an expensive representation of a discrete curve since it stores all the
coordinates of all the pixels in the curve. Two successive points in a path are neigh-
bours and hence storing the absolute coordinates of both is redundant; knowing the
first point and the relative position of every other point with respect to its predecessor
is enough to yield the corresponding discrete curve. The number of 3-neighbours of
a point is § and hence at most eight. These possible 8 neighbours are encoded with
the numbers O up to 7 according to figure 1.2(a). Hence, a discrete curve can be
represented by a start point p and a chain (a sequence) of codes (the numbers 0 up to
7). This coding convention for discrete curves was introduced by Freeman [Fre61] in
1961, and he elaborated it in [Fre69] . Here we introduce a small extension to this
convention: we not only encode each neighbour of a point p with a number but also
the point p itself; it is encoded by the number 8 (see figure 1.2(b)). Below the formal
definitions of chains and codes are given.

13

@
Figure 1.2 encoding of the basic directions in Z*

1.15 Definition : C4, Cg

C4={02,4,6,8}
C5:={0,1,2,3,4,5.6,7.8}
The elements of C4 and Cg are called codes. An ¢lement { of C; is called an i-

code.
(m}

Every i-code is related to a displacement vector v; according to the following
definition.
1.16 Definition : basic vector

The basic vectors, denoted by v; or v (i), of the codes i in Cy are given by

VB:(—LI)! VZ#O!I)o vl=(1’1)x
V4=‘-(""1 !0), V8=(0»0), V0=(1,0),
V5=‘(—1 ,-'1), V6?(0,—1), V7=(] ,—1).

1.17 Definition : 3-chain

A 8-chain is a finite sequence of elements of Cj.
0

Below we define the length of a chain. Notice that this length is not the sum of the
Euclidean lengths of the basic vectors of its codes, but merely the number of codes in
the chain.

1.18

1.19

1.20

121

14 Basic Definitions

Definition : length of a chain

The length of a chain ¢, denoted as !¢, is the number of codes in the sequence
ofc
a

A chain is denoted by either a bold face roman letter, typically in the range c to e,
and its i-th element is denoted by a subscript to such a letter, e.g. ¢;, or by ¢(@). A
sequence of chains is also denoted by a subscript to this letter but in this case a bold
font is used for the subscript, e.g ¢; is the i-th chain in a sequence of chains. The j-th
element of ¢ is denoted by c;; or ¢;(j). Furthermore, square brackets are used as del-

imiters for a sequence of codes. Hence, a chain ¢ can be notated by

e=[c0)c(l) -+ c(ici-D]ore={cpe; - €ermr]
The empty chain, the chain with length 0, is denoted by &.
Definition : concatenation of chains

The concatenation of two chains ¢ and d, denoted by ¢ ®d, is defined by
C; ie[0.lecl)
(ced) = dicier ie[lel.lei+ldl)

The Product (Fli:ie [0..n) :¢) of a sequence of chains (¢;), denotes the
continued concatenation g ®¢; ® ++ ®Cyg.
The chain ¢” is defined, forne IN, by

t=(Ilitie[0..n):¢).
0

Definition : rev(c)
For all chains c the reversed chain rev {¢) of ¢ is defined by
rev(e)=[Cici-1 Cic12 " * o]
O

The individual points referred to by a chain are given by the following definition.

Definition : p(c, i)
Forall chainscand all i € {0.. Icl] the ith point on the chain ¢ is defined by
ple.)=(Zj:je[0.i) :v(cy)).

1.2

123

1.24

1.25

1.3 - Chain coding 15

Notice that since the sum over an empty interval is zero, p(¢, 0)y=(0, 0).
The total displacement vector end (c) of a chain ¢ is defined as follows.
Definition : end(c)
For all chains ¢ the end point end (¢) is defined by
end(c):=plc, lci)

Definition : P (¢)
The point set P (¢) of a chain c¢ is defined by
Pey={p(c,]ie[0..1cl]}
O

In the introduction of this section we introduced chains as a way to represent,
together with a starting point, discrete curves. In the next definition we give this a
concrete form by defining the notion DC (p, ¢), with p a point and ¢ a chain, which is
equally expressive as the notion of discrete curves.
Definition : DC(p, ¢)

Forallpe Z 2 and all chains ¢ the discrete curve DC (p, ¢) is defined by

DC(p,cy={p+plc.,Dlie[0.. lcl]}

Definition : #.(c, i, j)

For all chains ¢, for all codes c and forall i,je [0.. 1cl] withiSj#.(c,i, /) is
defined by

#.c,i, p=(Nkikeli..j)ig=c)
0

As an example for the above definition we can write: #.(c, 0, Icl) is the number of
codes ¢ in the chain ¢

2.0

2.1

2

Linear Transformations of Discrete Curves

Introduction

In this section we present Bresenham’s algorithms [Bre65] for approximating a line
segment by a discrete curve; the line segment is given by two points. Based on these
line algorithms algorithms for linearly transforming discrete curves are given. These
two topics both come down to computing approximations of linear functions of one.
and two variables, respectively.

All algorithms use integer arithmetic only. Furthermore they consist of only addi-
tions, subtractions, and shifts.

Linear transformations of discrete curves

If a discrete curve D is the result of a rasterisation algorithm for the continuous
curves C{(pg, ' -, Pn-1) With p; € R it may be wransformed with a function A in
R?- IR? in the following two ways.

(1) Ais applied io all the points of D. The result A (D) of this application is, hence,
defined by

A(D)={A(p)lpeD}

(2) A is applied to the control points p; of the continuous curve. The transformed
control points A (p;) are used by the algorithm to compute the rasterisation of
the curve C(A (po)s..r A (Pa-1))-

Here we consider affine transformations A. From definition 1.2 we see that affine
invariant curves C (A (pg)..... A(P,-1)) equal A(C(pg, ..., ps-1)). Hence, for affine
invariant curves the methods (1) and (2) lead to, possibly different, rasterisations of
the same continuous curve.

In image processing it may well be so that a discrete curve is given, which cannot be
related 1o continuous curves, let alone 10 curves invariant under affine transforma-
tions. In such a case the transformation of D must be done with the first method.

17

2.1

18 Linear Transformations of Discrete Curves

The main disadvantage of the first method is that the resulting set of points is not
always a discrete curve. The conditions by which it is a discrete curve, are discussed
in the sequel.

Let A be a linear function in RR*— R%. Let D be a discrete curve. From the
definition 1.11 of discrete curves we know that D Z2 and that D is a connected
set. A(D), however, is not necessarily a subset of Z %, Hence, in general, A(D) is
not a discrete curve. If, however, for all i € Cg, the discrete curve {(0,0),v;} is
mapped by the linear function A on a discrete curve, A(D) is also a discrete curve,
This is shown in the following property, both for 4- and 8-connected curves..

Property :
For all linear functions A the following holds.

(VD : Dis adiscrete 5-curve : A(D) is a discrete §-curve)
<>
(ViiieCs: {(0,0), A(v(i))}is a discrete 8-curve)
Proof ’
=
{0, 0,v(@)} is a discrete 3-curve and equals {(0,0),A(v()} after applying
A to it; hence, according to the hypothesis, the last set is also a discrete §-cuive.
< ‘
Let D be a discrete 8-curve.
We have io prove that A(D) is a discrete §-curve and hence, that A(D) is a
finite connected subset of Z? (see property 1.12).
o ADZ
For all pe Dc Z*

AP)=pA(0)+p,A(vQQ)e Z2,
since A is a linear function, v(0)=(1,0), and v (1)=(0,1).

e A(D)is ad-connected set.
For alll p, qe D Z? the following holds.
Dys(p.)<
=> { definition 1.16 of v(i) }
(izieCsivii)=p—q)
=>» [A is a linear function }
(JitieCs:AW@O=A(prA®)))
=> | hypothesis: A (v(i}) and (0, 0) are 8-neighbours or equal }
Ds(A(p)-A (@, (0, 00)<1
=> { property 1.6(g) }
Ds(A(p). A(@)<1

Hence, if <pg, ***,pp1> isa§-pathin D, <A(pp), "+ , A(Pp-1y> isa

22

23

2.1 - Linear transformations of discrete curves ’ 19

&path in A(D). Hence, D is 5-connected implies, that A(D) is &
connected. :
O

This property can be applied to all linear functions A that map v (i), for all i e C5, 0n
an element of {v(i)|ieCys}. If a discrete curve D is given by a chain code c and a
starting point p as D=DC (p, ¢), the linearly transformed curve A (D) can be given
by

ADEDC(A(p), d)
where the chain d is given by

d=(Hiz:ie[0.1e1] t]alc)])
and a(c) is such that, for all codes ¢ € Cs, A (v (c))=v (a(c)).

Example :

(a) rotation over an angle kn/2 (ke Z).
In this case a(c) is given by a(c)=(c +2k) mod 8.

(b) reflection in a line that has an angle kn/4 (ke Z) with the horizontal
axis.
In this case a(c) is given by a(c)=(2k-c)mod 8.
D .

If A does not fulfill the requirements of property 2.1, a "good" approximation of
AD)in Z* may be obtained by replacing every point of A (D) by a nearest point in
Z? according to

[AD)]={[A(®)]]IpeD}.

In the next property we give a necessary and sufficient condition for JA(D)] to be a
discrete curve.

Property :
For all linear functions A the following holds.

(VD :Disadiscrete 5-curve : [A(D)] is a discrete 8-curve)
>
(Viie Cs : Ds(A (v (i), (0, 00<1)

Proof

=
For all £>0 the following holds.

kDy(A (v;), (0,0)

20

Linear Transformations of Discrete Curves

= { property 1.6(f) of D5 }

Dy(kA(v), (0,0))

4 { property 1.6(d) and (g) of D }

Dy(kA (v;)~ [KA (v))], (0, 0)) + D3([kA (v))], (0, 0))

< { property 1.14 of rounding and 1.6(d) and (g) of Dy }
Ver(Zisie [1.k] :Ds([i A(v)]-[GE-DA)]. (0. 0))
= { property 1.6(g) of D5 }

Ver(Zitie [1 k) :Ds([iA()], [G-DAGD]))

S { hypothesis and {iv;, (i—1)vi } is a discrete curve }
Yerk

Hence, Di(A(v), 0,001+ %, for alll keZ. Consequently,
Dg(A (v;), (0, O))<1.
<=
Let D be a discrete §-curve.
We have to prove that [A(D)] is a discrete 8-curve and hence, according to
property 1.12, that [A (D)] is a finite §-connected subset of Z*.
o [AD)cZ?
This follows directly from the definition of rounding.
e [A(D)] is a §-connected set.

Let p, q be two &-neighbours in D. First we prove that A(p) and A(Q)
have a distance of at most 1.

true

=> { p and q are neighbours)

(itieCsgiv(d)=p-q)

=> { A is linear }

(FitieCe: AVD=A@-AQ)

=> { hypothesis and property 1.6(g) }

Dg(A(p). A(@)<1

Using this we prove that [A (p)] and [A (q)] are neighbours.

true

=> { calculus }

Dy({AP)]. [A@])=Ds(A(pH[A(P)]-AP), A(@+[A@]-AQ)

=> { property 1.6(e)of D; }

Ds([A(P)]. [A@])< Ds(A(p), A@) + Ds([A()]-A(p), [A(@]-A(Q)
=> { the above result and property 1.14(c) }.

Dy([A()], [A(@])<2

= {Ds([A)], [A@])eZ)

Ds([A)]. [A(@))s1

24

2.1 - Linear transformations of discrete curves 21

Hence, if <pg, ** *, Pa—1> is @ path in D, <A(po), * - -, A(P(u-1)> is a
path in [A(D)]. Hence, D is 8-connected implies that -A(D) is &-
connected.

O

Aw Ag
If we represent the linear function A by the matrix [Aw Ayl [A(D)] may be

given as

[AD)]={([xAw+YAn], [Arox+A1y]) | (x,y)eD}

and the requirement of the property 2.3 may be given as follows for an 8-connected
curve.

[Aw/+[An /ST A [Ap/+/Ay /S 1.
If we consider only 4-connected curves this requirement can be weakened to
[Aw/S1A[An /ST AJA/S1A[AL /S

That is, if D is a §-connected discrete curve, and A fulfills the respective requirement,
[A(D)] is a 8-connected discrete curve.

Example :

(a) scaling with scaling factors at most 1.
A (b) Rotation of 4-connected discrete curves.
O

In the subsequent sections we give algorithms for incrementally computing the
rounded bilinear expressions [xAgo+yAg;] and [xAjg+yAq1] for all (x,y)eD. In
order to obtain algorithms which use integer arithmetic only, we require that the
coefficients A;; are in Q. This is not a serious drawback since every real can be
approximated infinitely close by a rational.

22

25

22 Linear Transformations of Discrete Curves

Bresenham’s line algorithms

Bresenham's line algorithm [Bre65] can be given in two ways, one producing an 8-
connected chain and the other one a 4-connected chain. Here we give both algo-
rithms, The 4-connected algorithm is given as a transformation of the 8-connected
one.

The 8-connected case

Integer approximation of pairs (x,y) € R? fulfilling the line equation
ay=bx '

for a, be Z is done by Bresenham’s line algorithm.

% ?Y o
ooooctooooo
Yo X N X N NoNoNoNoX

% occeeeococcee %
oNoNoNol I NoNoR N X |
eNeNoNeNoN NeN W X N
0000 - 0-09-0-9.>
eee8s0000000 ©
[X X RelleN X NoNoNeXo!

0, ®®000Ce0®000 ,

‘8000CeR®Q®O0OO0O
DO000CeGE®SGESO

0, 0,

Figure 2.1: octants

Below we give this algorithm as the function bresh8(aq, b) that retums an 8-
connected chain for a line segment from (0, 0) to (a, b) where (q, b) is a point in the
octant Oy or O7 (octants are defined in definition 2.5). All other cases of g and b are
defined by transformations of bresh 8 chains in these two octants.

The definition of octants is illustrated by figure 2.1,

Definition : octant
Forallie [0..7] an octant O; is defined by
0; = Z*n{Ri((x, Miye[0,x) Ax20}

where R is a rotation over n/4 radians.
a

Notice that every two different octants have an empty intersection and that the union
of all the octants is Z>\{(0,0)}.

22 Bresenham’sline algorithms 23

Bresenham’s line algorithm produces the best pdssible digitisation of a line segment
{(ay=bx,xe [0..a], and (g, b) € 0g207) in the sense that forevery x€ [0..al, y
is approximated as good as possible in integers, namely by [%x] . Hence, the func-
tion bresh 8 has the following property for (@, &) € OpuU04

P(bresh 8(a, b))={ & ixel0.a] Ay=[-:—x] }.

Notice that this set is indeed both finite and connected for (a,)€ OOy, and is,
hence, a discrete curve according to property 1.12.

Below we give an algorithm for computing the chain c=bresh 8(a, b). The pixels
p(c, i) are given, forie [0..a] by

pe. =G, [2i]).
or in an equivalent formulation
Px(C,) =i A A< py(C, i) - %i< .
This results in the following three predicates for ¢.
Ro: (Vitie[0. lel]:py(c =i n-1< py(c,i}-%i<%)

Ry: lel=a
R: Rga R
Hence, the function bresh8 is a solution to the following problem:
Il
a, b:int {~agb<al
i
¢ : chain;
¢ :=bresh8 (a, b)
{R}

I
I

Below we give the program for the function bresh8. Notice that it uses only integer
expressions. To obtain this we multiplied the error term py(c, x}-%x in Rg by 2a; the
resulting integer expression is called e. Furthermore the program contains no multi-

plications, apart from shifts, and divisions. Hence, an efficient and accurate result has
been obtained. The following invariants, based on Ry and Ry, are used for its proof.

Po: (Vizie[0.x]:p,(c,i)i A=< p,(c, i)-%i <%)
Py: x=lel A0Sxsany=pye.x)

Py: e=2ay-2bx

P3y: ~a<e<a

P: PoAP AP, AP

24 Linear Transformations of Discrete Curves

The if-statement repairs Py and leaves P, A Py _, invariant. Notice that Py, , A Py

induce Py. P; is also valid after the if-statement, as is proved for the first alternative
by o :

e<~a A P3:+2b
= { calculus }
—2b—agse<—a
={b<a}
-a<ed2a<a

Hence, the addition of 24 to ¢ in the first aliernative indeed induces P3.

func bresh8(a, b:int) : chain {~asb<a}
e, %, y:int;
¢ : chain;
e, X, v,¢:=0,0,0,¢e; {P}
dox#a -

e, x 1=e-2%b, x+1; { Po:_l A P;:_l AP; AP3:+2b }

ife<-a - e, y,c:i=et2*%a, y+l, ¢ @ {1]
J-ase<a - ¢:1=¢Q [0]
feza - e, y, C:=e-2%a, y-1,¢® [7]
fi{p}

od; { PAx=a; Hence,R }

bresh8 :=c¢

cnuf

This function differs from the original Bresenham algorithm in two yways:
(1) Originally the algorithm has been defined for only one octant ((g, b)e Oy).

(2) Because of this limitation the algorithm could be made a litle more
efficient by using E=¢+a~2b as the new error term. The body of the loop then
is: .

X i=X+1;
ifE<o — E, vy, ¢:=E+2%a-2*b, y+1,c® [1]
e20 - E, ¢:=E-2%b, ¢® [0]
fi
Computing bresh 8(a, b) in all octants may be done according to the following
recipe: ')
Transform (g, b) using a lincar function A such that the resulting point r is in

0y 0;. Compute c=bresh8(r,, r,) according to the above algorithm and
apply A™! to the discrete curve DC ((0, 0), ©).

Applying the inverse transformation can be done according to property 2.1 and
example 2.2. Below bresi8 is defined in the other octanis in such a way that

2.6

22. Bresenham’s line algorithms 25

property 2.6 holds. Figure 2.2 illustrates the transformations used for this definition
by showing the direction in which the rounding of the continuous line segment points
to grid points takes place.

Figure 2.2 : rounding direction for line segments resulting from bresh 8

The notation ¢ ; denotes for ¢, deCy the chain ¢ with the c-codes replaced by d-

codes.

(bresh8(b,)| 53 if (a, bye 0,L0,

bresh8(-a, b) o5 if (@, bye 0300,

bresh8(a, b) =< 1.0

bresh8(-b, a)| 735 if (a, b)e 050
£ if (a, b)=(0,0)

~

Property :
For all pairs (@, b) e Z\{(0,0)} and forall ke [0.. max{/a/./b/}],

= —_t@b) _
p(bresfz 8(a, b)’ k) [max{/a/,fbf}]

O

k{a,b)

max{/a/,/b/}
the total error is the error in one coordinate and indeed at most 4.

Notice that need be rounded for just one of its coordinates and hence

26 Linear Transformations of Discrete Curves

27 Example:

Figure 2.3a and 2.3b show two 8-connected discrete lines generated by bresh 8.
Their respective chain codes are:

bresh 8(12,)=[101010110101]
bresh 8(10, -6)=[7070770707] -

(@

®)

Figure 2.3 : example 2.7

Because max {/a/,/b/} is the cardinality of the pixel set of bresh8(a,b), the time
complexity of this algorithm is given by O(max {/a/./ b/ }).

The chains generated by bresh8 have the following two propertics [Wu82] :

* they contain at most two different elements of Cg.
* these elements are distributed as uniformly as possible along the chain.

222 'The 4-connected case

In the previous section we defined the function bresh8(a, b) (a, be Z) as the chain
of an 8-connected discrete curve that approximates the line segment from the origin
to the point (@, &) of the line given by ay=>bx. In this section we give a 4-connected
counterpart of bresh 8§ called bresh 4. We define the chain bresh4(a, b) for integers a
and b with (a, b)e OpL0y. The other cases of a and b may be obtained by rotation
and reflection of chains, but we have no need for them in this thesis.

Instead of giving a treatise similar to the one in the previous section, we define the
chain bresh4(a, b) as a chain bresh8(a’, b) x b'<a’) in which the codes are Sys-
tematically replaced by corresponding 4-connected codes. We can do this since a 4-
connected Bresenham chain has, because of the symmetry of the continuous line,

2.8

22 Bresenham’s line algorithms 27

properties similar to the above mentioned properties for bresh 8 chains: it contains at
most two different elements of C4 and these elements also have a distribution as uni-
form as possible. By replacing the code(s) of Cg by code(s) of C,4 the uniform distri-
bution remains the same, We define

breshd(a, b):=bresh 8(a+b, b)| ; for (@, b)e Oy 0,.

Notice that the chain bresh 8(a+b, b) has length a+b and contains a 0-codes and b
1-codes. Hence, for the end point of bresh 4 holds that p(bresh4(a, b), a+b)=(a, b).
Notice furthermore, that for a chain with only 0-codes and 1-codes replacing the 1-
codes by 2-codes is similar 10 transforming the chain with a linear function given by

the matrix [ilol] . Indeed,
.0 [1,",] =(1,0and (1,1) [L"l} =0.1

Hence, the pixel set of the chain bresh4(a, b) is given by the following property
(compare property 2.6). '

Property :
For all pairs (a, bye Ogu0y andforie [0..a+b],
N g b b
pbresh4(a, b),i)=(i [:a+b], [ta+b])
Proof

Forallie [0..a+b] the following holds.

p(bresh4(a, b), i)
= { the above definition of bresh 4 }

p(bresh8(a+b, b), i) [_1_101}
= { property 2.6)
.. b 10
[G 3‘(‘;;5’)][._1 1J
= { calculus }
.. b 10
G, [";:g})[_l 1}
= { calculus }

. b . b
(;—[im]s[tm])

29

23

28 Linear Transformations of Discrete Curves

Example :
Figure 2.4a and 2.4b contain two 4-connected Bresenham lines, Their chains
are:
bresh4(12, 7)y= [02002020020020200201
bresh4(10, 6)= [0202002002020020}
(]

@ ®
Figure 2.4 : example 2.9

The time complexity of computing bresh4(a, b) is the time complexity of computing
bresh8(a+b, b) and hence, is O (Ja /+/b/).

Integer approximation of linear functions

In this section we show an integer algorithm for the computation of a linear function
on a given interval. It is an introduction to the algorithm for approximating a bilinear
function on a given discrete curve; this algorithm is given in section 2.4..

We compute an integer approximation of a line segment

’ ay=bxwithxe [0,X],Xe IN,,aeZ ,beZ ,and a>0
by computing the pomts @Y} forall xe [0..x]. Y[i]is again a best approxima-
tion and equals [+* 1.
Notice that in case ~a<b<a this problem can be solved by first computing

bresh8(a, b) and afterwards s1mply computing Y [{]-py(bresh 8(a, b),i). In general,
however, the set {(x, y)|y= [—x}axe [0.X]} is not 8-connected and hence,

cannot be represented by a chain. Using the predicate R given as

2.3 Integer approximation of linear functions 29

R: (Vx:0<x<X:-%< Y[x]-—%xd/‘z)

the problem can now be formulated as follows.
Find a list of statements, called intlin, with the following property.

I
a, b:int; {a#0)
X :int; {x20)
I[
Y(i:0<£i<X) :arrayofint;
intlin;
{R}
I
I

Invariants leading to the solution of this problem are similar to those for bresh 8 in
section 2.2,

Po: (Vi:0Si<x:-%sYlil-2i<!)
Py: 0sx<X
Py: e=2ay-2bx
P;: -ase<a
P: POAPIAPzAP;;
The algorithm intlin as given below consists of two nested loops. The outer loop has

as invariant P. The inner loop has invariant Pﬁi-l A Py A P,. Notice that if the inner
loop ends P holds. In order to proof that this loop ends we distinguish two cases for
the value of e. In case e=a the inner loop ends after execution of e:=e—2a. In case
/e/>a,] e/ is a variant function of this loop (that is / e / is positive and decreases with
each iteration step) since e<-a implies /e+2a/</e/ and e>a implics
Je-2al<]/e].

[e, x, y:int;
e, x, ¥, Y[0]:=0,0,0,0:{P}
dox#X—
e, Xx:1=e~2%b, x+1; {P; "\Poi.l}
doe<-a — e, y:=et+2*a, y+l
leza - e, y:=e-2%a, y~1
Od; {PzAPlApoi_l}
Y[x] :=y; {P]
od { P A x=X; hence,R }
i

30] Linear Transformations of Discrete Curves

The time-complexity of this algorithm is O (max {/X /,/X ba™ /D.
In case 0< b < a the above algorithm can be seen to be equal to:

if ¢:chain; i, y:int;
¢:=bresh8(a,b):
i, y=0, 0;
doi<|ci -
fe,=1 - yi=y+l
le;=0 - skip
fi; -
Y[{i] :=y
od
] ,
From the definition of bresh4 we know that bresh 8(a,b) is bresh4(a~b,b) with the
2-codes replaced by 1-codes. Hence, the above algorithm can also be written as:
fc:chain;i,y:int;
¢ :=bresh4 (a~b, b);
i, y:=0, 0;
doi<|c| —
ife;=2 - yimysl
Oe;=0 = skip
fi;
Y[i] :=y
od
1

24 Integer approximation of bilinear functions on a discrete curve

In this section we show an integer algorithm for the computation of a bilinear func-
tion given by

cz=ax+by (a.b.c e Z A c>0),
on a the pixel set P(c) of a chain c. This algorithm is clearly related to the topic of
linear transformation of discrete curves, in which two of these equations play a role.

‘At the end of this section we show an example featuring this application. We now
formulate the following problem. -

Find a list of statements intbilin with the following property.

24 - Integer approximation of bilinear functions on a discrete curve = 31

i
a, b, c:int; {c>0}
¢ : chain;
Il
Z(1i:05i% {¢{) :arrayofint;
intbilin;
{R}
)
1
where R is a predicate given by

R: (Vi:0sislcl :-%SZ[i]1-2py(c, i)—-lc’-py(c, <)

The invariants used in the solution below are similar to those in section 2.3 and read
as follows.

Po: (V):0<jSit-%<Z(j1-2py(c, N—2py(e.i) <)

P;: O0giglel A(x, y)=p(c, i) ;
P;: e=2cz-2by-2ax

@\’\lé"&
Py: -c<gexc (’W

P. PoaPinby A(‘)j
We denote the inproduct of two vectors p and g by <p, g>.

¢

) L
e, X, ¥, 2,1 :int;
e, %X, Y,34,2,2[0] :=0,0,0,0,0;
doi<|c| —

{x,y) i={x, yr+vicy) s

4
W F AW

e:=e-2%<(a, b}, v(¢;)>; {PgaP APy,)

doe<—c - e, z:i=e+2*c, z+1
Nezc - e, z:z=e-2%, z-1
od; {Po:\Pz AP; API;_” }
im=i+l;
Z[i]:=z {P}
od (R}
I
Two remarks can be made on this program:
x and y are ghost variables and consequently, may be left out.

The computation of an inproduct of 2 vectors needs in general two multiplica-
tions. However, in the above program these may be avoided, since the coordi-
nates of the vectors v{(c;) are either 0, 1, or -1.

32 : . Linear Transformations of Discrete Curves

......... o
...... 66
¢
O WS-
g :
e: S -
8% -
: o
& *
et .
o .
o *
o
L
ot-i-e
*eer

Figure 2.5: example 2.10

2.16 Example :

Linearly tranforming an 8-connected discrete curve point by point may result in
an unconnected set of points (properties 2.1 and 2.3). We can compute such a
set of points by using inthilin. In order to obtain a connected set we may inter-
polate consecutive points in the image set for instance with a bresh 8 chain.

In figure 2.5 a rotation over n/4 of an 8-connected chain round its start point is
illustrated. In case of a rotation at most one extra pixel is needed for the inter-
polation of two consecutive pixels in the image. The ‘square’ pixels in the
figure are the pixels obtained by interpolation.

The original and the image chains are given as follows.

[00011112112222]
[18122222242222342]

3.0

31

3

W-curves

Introduction

In this chapter a method is defined for generating discrete curves, called w-curves.
These curves are defined by three (control) points and two distribution functions.
Two points determine the end points of the curve and the line segments towards the
third point determine the tangent vectors of the curve in these end points. The distri-
bution functions are used to define the shape of the the curve.

A continuous variant of these discrete curves is given. Smoothing algorithms for the
w-curves are given and also algorithms for generating them. The generating algo-
rithms for w-curves have a time complexity worse than linear in the lengths of the
chains involved. A slight modification of the definition of w-curves results in (a sub-
set of) curves, called e-curves, which can be computed in linear time.

Problem Definition

In this section we give a discrete counterpart of the following continuous problem:
Given three (control) points py, py. and ps, find a continuous curve that

(1) interpolates the control points pg and pj; that is, it starts at po and ends at
p2.
(2) istangent to line segment pop; at pg and to the segment p, p; at ps.

In translating this problem to a discrete problem we have to introduce a notion of
tangency for discrete curves. We define this notion only for curves tangent in their
start points. Two continuous curves are said to be tangent in a point p if they both
contain p, and if their tangent vectors in p (if any) are collinear. In accordance with
this definition, two discrete curves DC (pg, ¢) and DC(p;,d) can be said to be
tangent (in their start points) if po=p; and v(cp)=v(dp). In the next definition the
notion of tangent vector is not limited to the first basic vector of a curve; if two
curves have their first n basic vectors in common they are said to be #-tangent.

33

31

34 . W-curves

Definition : n-tangent
Two chains ¢ and d are called n-tangent (n € IN,) iff
(Vi:ie [0..n) :C;=d")

Two discrete curves DC (py, ¢) and DC (p;, d) are said to be n-tangent (in their
start points) iff pp =p, and the chains ¢ and d are n-tangent.
O

Notice that all pairs of discrete curves starting in the same point, are O-tangent. Furth-
ermore, notice that tangent continuous curves exist that have dlgmsatlons that are
only O-tangent (see figure 3.1).

Figure 3.1 Two tangent continuous curves with O-tangent discretisations

Hence, O-tangency is a useful notion in discrete space with respect to tangency in

continuous space.

The above continuous problem can now be formulated as follows in discrete space:
Given three (control) points py, p;, and p, in Z2, find a discrete curve
DC(p,e) that
(1) interpolates the points pg and py; that is p=pg and p+end(e)=p,.

(2) is n-tangent to DC (o, bresh 8(p,—po)) and DC (py, rev(e)) is m-tangent
10 DC (py, rev(bresh 8(p;—p;), forsome m, ne IN,

The reverse chains appear in requirement (2) because the notion n-tangent is only

defined for the start point of curves. Requirement (2) is, as we saw before, a dummy

requirement since all pairs of chains are at least O-tangent, In this chapter we give a
method for solving this problem for several combinations of 1 and n. These solu-

3.1. Problem Definition " 35

tions are constructed according to the following scheme:

(a) compute the starting point:
P=po
(b) compute the chains ¢ and d:
c:=bresh 8(py~po)
d:=bresh 8(p2~py)
_ The chains ¢ and d are called control chains .

(c) compute a chain e of the new discrete curve by combining all the codes of
the chains ¢ and d. An exact definition of combining is given in the
sequel. \

This scheme guarantees that the resulting curve fulfills (1) since

p+end(e)=pot+end (cH end(d)=po+(p1—po)+ (P2~ P1 = P2.

In section 3.2 we define two operators on chains. In section 3.3 these operators are
used for constructing the discrete curves called w-curves.

32 Operators on chains

In this section two operators on chains are defined; namely, an infix operator w for
combining two chains and an operator add 8 for adding 8-codes to a chain.

3.20 The weave operator

32

As mentioned in the introduction we are going to construct curves by combining the
chains of the control lines. The weave operator w combines two chains into one and
is defined as follows.

Definition : weave operator

For all chains ¢ and d the chain c¢wd is defined by defining the codes (ewd);
forie [O. lcl+1dl) by

c(#(p, 0,1)) ifb;=0
€wdi=) 4e,m.0.07) ifb=2

where b=bresh4(lcl, 1d1).
a

Hence, the chain ¢ wd contains all codes of the chains ¢ and d where these codes are
distributed as the O-codes and 2-codes in bresh4(icl, 1dl), respectively. The same
distribution of codes, but now of 0-codes and 1-codes, exists in the chain

33

34

" 36 , W-curves

bresh8(lcl+1di,1cl) and we might have used this chain in the above definition,
since it only uses the (uniform) distribution of the codes. Notice that
bresh4(lcl, 1dl) contains only O-codes and 2-codes and has length lcl+1dl;
hence, the above definition indeed defines every element of cwd.

breshd(6.3) 0 2 0 0 2 0 0 2 0

cwd

Figure 3.2 example 3.3

Example :

¢=[010101] and d=[522}
bresh4(lcl, 1d)=bresh4(6, 3)=[020020020]
Hence, cwd=[051021021] (see figure 3.2).

O
Example :
(@) c=bresh8(10,10)=[1]'° and d=bresh 8(-5, 20)=[2322]°
bresh4(lcl, \dl)=bresh4(10, 20)=[202]'
Hence, cwd=[213212 1 (see figure 3.3 (a)).
(b) c=bresh(p;—po) and d=bresh(p;~p;)
with py~po=(445,194) and p,—p;=(71,214).
Figure 3.3 (b) shows the chaincwd.
a

From the definition of w it follows that end(cwd)=end(crend(d). In property
3.6, stated below, we give, in terms of the pixels in the pixel set of the chains ¢ and d,
an expression for all the pixels in the pixel set of cwd. The following property is an
auxiliary property for the proof of 3.6. It states a relation between the chains ¢, d, and
bresh4(lel, 1dl).

32 Operators on chains 37

3.5 Property:

@ (®)
Figure 3.3 : example 3.4 (a) and (b)

For all chains ¢, d, and b=bresh4(l ¢!, Id|)and all & [0.. IbI]

(a)
)
Proof

pe, pr(b,)= (Xi:0Si <t Ab=02v(CH M 0,i)))
p(d, py(b, N=(Zi:0si <t Ab=2:v(d{#®.0,)))

We prove property (a) by induction. Property (b) may be proved similarly.
base:t=0

step:

(Xi:08i<0Ab=0:v{clH®0,i)))
= { calculus } '

©,0)

= { p(c, 0)=(0, 0) and py (b, 0)=0 }
p(c, px(b, 0))

>0
The chain b contains only 0-codes and 2-codes. We only give the proof
for the induction step if b, _,=0.

(Xi:02i<t ab=0:v(cHEMm0.))

= { calculus }

(Zit0gi<t~1 Ab=02:v{cWb, 0,))+v(c@HEib, 0,1-1)
= { induction hypothesis }

P(C, Pa(b, 1-1))+ v (c(#o(d, 0,1-1))

= { definition 121 of p and py(b, t-1)=#y(b, 0, 1~-1) }
(Zi:0si<#y(b,0,t-1): vic;)) +v(ciHolb, 0, 1-1))

= { calculus }

36

38 W-curves

(Zi:02is#(b,0,t~1):v(c))

= { #y(b, 0, t)=#y(b, 0, t—~1)+1 because b,_;=0 }
(Ti:02i<#y®,0,8):v(c))

= { #p(b, 0, t)=py (b, 1) and definition 1.21 of p }
p(e, px(b, 1))

|

The expression in the next property for the ¢-th pixel of cwd is asymmetric in ¢ and

d. This is due to the inevitable asymmetry of the round operator. For ¢ and d with
T‘T}ﬂ—cl»-&’/zﬁz the expression is symmetric, since then, according to property

1.14(e), the following holds.

1dl el
qrerer =
Property :
Forall chains cand d, and forte [0.. lcl+1d]],
Idi 1l
pewd, y=p(e, t~[D + P, [ormaeD.
Proof
Letb be bresh4(lcl, 1dl).
pewd, t))

= { definition 1.210f p }
(Zi:0<i<t:v(ewd)))

= { definition 3.2 of w }

(Xi:02i<t Ab=0: v(eWd,0,0)))

+ .
(Zi:0Si<t Ab=2:v({d#®,0,i)))

= { property 3.5 }

P, px(b, 1)) + p(d. py(b, 1))

= { property 2.8

pe -/ :d:al‘j)+p(d [Ic!]fl!d! 2l

g

The arguments of the weave operator can be any chain. If, however, both argument
chains are control chains, that is to say both chains have been obtained by
Bresenham’s line algorithm, the pixel set of the resulting chain resembles a straight
line segment (see figure 3.3 (a) and (b)). This resemblance can be explained by the
following argument: if ¢ is a Bresenham chain of the line segment pop; and d of the

3.21

3.7

38

3.2. Operators on chains | 39

line segment p; p,, we can state, according to property 2.6, that

Pi—Po o
o Ap(d,t)-t——-—-ldl .

pc, =

Hence, with property 3.6
gt P1=Po a1 P2=P1 __P2-Po

-,
-3

lel«1dl 7 Jel lel+1dl |di lel+1dl°

A non-mathematical explanation of this phenomenon is: each of the chains c, d, and
b (=bresh4(lcl, 1d1)) consists of 2 uniformly distributed codes. Consequently,
cwd has a uniform distribution of a maximum of four different codes, and hence, its
pixel set resembles a line segment.

plewd, 5)=(t

The add8 operator

As we saw in the previous section, the uniform distribution of the control chains
determines the result of the weave operator. In this section an operator that adds 8-
codes to a chain according to some distribution function is given; this operator is
called add 8. By doing this the chain has, in general, no longer a uniform distribution
of codes. Consequently, the result of the weave no longer resembles a straight line
segment. Notice, furthermore, that by adding 8-codes 10 a chain the pixel set of that
chain does not change. In the sequel, first distribution functions are defined, and
thercupon the operator add 8 is defined.

Definition : distribution function
Forall n e IN,, the set of functions D, is defined by

De={flfe{0.n]—-N,}

The elements of D, (n e IN,) are called distribution functions,
0

Definition : add8

We define the operator add8 for all chains ¢ and all distribution functions
fe Dy by

add8(c,) = [8V® ® [cp] ® [8VV @ [;1® - ® [¢c,1] ® [8P™

39

3.10

40 W-curves
Example :
f:[0..6]1>Z with fi):=i

add 8([000000 1,f) := [080880888088380838880838888]
a

Below a property for the pixels in the pixel set of add 8 is given along with some
definitions. First monotonous and continuous functions F are defined such that the
F (i)-th code in the chain add8(c, f) is ¢;. The functions F are defined on a real
interval since their inverses are needed in the sequel. :

Definition : primitive function

A monotonous and continuous function F:[-1,n]— R is called a primitive
function of a distribution function fe D, iff

FO=f0A(Vj:jel0.n] :F()=FG-1)+fj)}+1)
O

The name primitive function is chosen since, as is illustrated in figure 3.4, F(j)
approximates the area under the function f+1.

AN

f(x)+1

Figure 3 4 : primitive function F
The area of the gray surface equals F (i) (i € IN,).

Primitive functions are notated by the capital letter of the corresponding distribution
function. The following remarks can be made on this definition.

(1) The sequence F(-1), ---,F(n) is monotonous because fi)+1>0, for all
ie[~1..n].

32- Operators on chains 41

(2) The values of F(x), with x not an integer, are not prescribed by the above
definition. Hence, in general, several primitive functions of a given distribution
function can exist. Because of (1), there are primitive functions for every dis-

 tribution function.

(3) Since F is both monotonous and continuous, F has an inverse function F 1.

@) F(1)=-1 ‘

The following property gives a non-recursive expression for F.

3.11 Property :
For all chains ¢ and all primitive functions F of a distribution function fe D,
the following holds.
@ (Vitie[-1.lct]iF@)=i+(Zj:jel0.i1:/)))
) F(lel)=ladd8(c,fl
0
A proof of property 3.11(a) follows direcily from the definition of F; (b) can be
deduced from (a) and the fact that the sum in (a) equals, for i = I¢|, the number of 8-
codes added to the chain ¢. Case (a) in property 3.12 states that the F (i)-th code of
the chain d=add(c, f) is ¢;, fori e [0.. 1¢|]; this property may be simply checked
by using the definitions of add8 and F. Since, all other codes in d are 8-codes, case
(b) also holds.
3.12 Prbperty :
For all chains ¢, distribution functions fe Dy, and all xe [0, Icl] with
F (x)e IN,, the following holds for the chain d =add 8(c, f).
@ xeZ = dFE)H=c().
) xeZ => AF(x)=8
a
The following property is the equivalent for add 8 of the property 3.6 for the operator
w. It states the relation between the pixels in the pixel set of add 8(c) and those in
the pixel set of ¢ itself.
313 Property :

For all chains ¢, distribution functions fe Dy, and z¢ [0.. F(I¢l)]
pladd8(c, f),)= p(e, [F1 (@)).

314

42 W-curves
Proof
pladd 8(c, /), t)
= { definition 1.21 of p }
(Tizie[0..t) :v(add8(c,p)i))
= { F is monotonous and continuous, and te [0..F(icl)) }
(Zxixe[-1,lel] AF(X)e[0..t) :v(add8(c, HF X))
= { property 3.12 (a) and (b) and F(~1)=-1}
(Zx:xe[0.lcl]AFX)e[0..1) tv(c))
+
(Zx:xe[0,lcl Y/ Z AF(x)e[0..1) :v(8))
= {v(8)=(0,0) }
(Ziztiel0..1cl] AF@e[0..t) :vic))
= { F is monotone increasing }
(Zitie[0..1cl) AF@e[F©)..t):v(c))
= { definition 3.10: F is monotonous and continuous }
(Ziziel0..lcl] Aie[0..F' (@) 1v(c))
= {FlWsFIF(ch)=lcl }
(Ziziel[0..F (1)) :vic))
= { definition 1.21 of p }
pe [F'@))
O

We conclude this section with a property stating two inequalities for primitive func-
tions of the same distribution function and one inequality for the inverse of such
primitive functions.

Property :

For all n e IN,, all functions fe D, and for all primitive functions Fy and F; of
f

@ (Vabia bel[-1.n]:/Fy(a)-Fib)/2/a-b])

® (Vx,y:x,yel0,n]:/Fo@)-Fi()/2/x-y/-2)

© (Vxyixyel0, Fom)]:/Fo™ x)-F i 0)/$/x-y/+2)

Proof
ad (a):
Suppose a<b.
[Fo(a)y-F1(b)/
={Fo(@)=F @), forallie[-1..n]}
[Fo(@)-Fo(b)/

= { property 3.11(a) and a< b }

32

Operators on chains ' 43

Jb—a+{(Zjra<jsbifp)/

2 {fH20and b}

/b-a/

ad (b):

case | x| 2[yl
IFOY-Fx)/f
= { x2yand F is increasing }
Fx)y-F(y)
2 { Fisincreasing }
F(Lx] »-F(y])
2 { property 3.14 (a) and | x] 2 [y] }
Lx] T
2 (/x-y/$/x~Lx] [+1y=Ty] 1+ 1x] +19) 1$ /1) +[9] 142)
[x=y[|-2

case | y|2[x] : similar,
case |y] <[x] aly) <[x]
IFO)Y-Fx)/ '

2 { calculus }
0

2 {/x-y/<1}
[x—y /-2

ad (c):

(c) follows directly from (b) after subsututmg Fy~'(x) and F;™\(y) for
respectively x and y.

44 W-curves
3.3 W-curves

In this section we use the two operators add 8 and w, introduced in the previous sec-
tion, for constructing the so called w(eave)-curve: a discrete curve given by 3 control
points and two distribution functions.

3.15 Definition : w-curve

For all points pg, p1, and p; and distribution functions fe Dy and ge D)y,
with c=bresh8(p;—po) and d=bresh8(p;~p;), we define the w-curve
W (po. p1, p2. £, 8) as the discrete curve DC (p, €) with p and e given by

P=Po
e=add8(c, fiwadd 8(d, g).

@ ® | ©
Figure 3.5 : w-curves of example 3.16

3.16 Example :

(@ f:[0..6]-N, fi=i
g:[0.61-N, gli)=6~i
pa=(0, 0), p; =(6,0), and p,=(0, 6).
¢=[000000] and d=[222222].
€:=add 8(c,) = [080880888088880883880883888],
d :=add8(d, g)= 888888288888288882838288282]
bresh4(1€1,1d1)=bresh4(27,27)=[02 1*";

Hence, in this case weaving consists of taking codes alternately from the
chains € and d, and Cw d can be written as

33 Weurves 45

®

(N

[088808888808828888088888828808888882888808828888828882]

The 8-codes in Ev_ga do not contribute 1o its geometric interbretation and
hence the chain e of the w-curve can also be given by

e=[000202020222]

Figure 3.5 shows 3 w-curves with as distribution functions

£[0..n15 N, with fi}=i
and 2:[0.m]- N, with g()=m~i
for suitable n and m.

The control points po and p, are given for all cases by po=(0,0) and
p2=(92, 121). For the cases (a), (b), and (¢) p; has the values (92,0),
(75, 0), and (136, 0), respectively.

The following property relates the pixel set of a w-curve to the pixel sets of its con-
trol chains and to the primitives of their distribution functions. Note that the propenty
is stated for general chains and not only for control chains. In the proof of the pro-
perty the similar properties 3.6 and 3.13 for the operators w and add 8, respectively,

are used.

317 Property :

For all chains ¢ and d, and for all distribution functions fe D, and g e D41,
the points on the chain

e=add8(c,)wadd8(d, g)

are given forte [0.. lel] by

ple, H=p(c, [F1 (1~ v ‘]ﬂ)+pdd, [G“([| :d:dl)

with ©=add 8(c, /) and d=add 8(d, g).

Proof

We define the short hands o ~‘[T t] and 1:=t-0.

ple, 1) _

= { definition of ¢, ¢, and d }

pEwd, 1)

= { property 3.6 and definitionof tand ¢ }
P(és ‘!)'*'P(dy o) -

= { property 3.13, definition of €and d }
p(. [F @D+pd. [G' @)

34,

340

46 . W-curves

If ¢ and d in the above property are control chains on the points pg, i, and pa,
p(c, t) and p(d, ¢) can be written, according to property 2.6, as

p(C, D)= 7 (P1=Po)] A P, =[5 (p2—p1)]

for te [0..1cl] and te[0.. 1d]], respectively. Hence, property 3.17 may be
rewritten as follows.

ple,)=[IF—;ﬁfﬂ—(pn—pe)} +[Jm—(pz 1)/

idl

led

with t and o as in the proof of the property. Leaving out the ceiling and rounding
operators, the following approximation of p(e, £) may be given. V

=3 . -1
ple,)= =2 (p, - LD (p—py)
with a= —Iﬁ. Clearly, £ "‘ﬂ(lT“)’) and G'd(“’) are blending functions in this
ci+

approximation. Consequently, [F- | (I‘)] and | G (")L can be seen as the discrete

equivalents of blending functions.

Smoothing of w-curves

W-curves, as shown for instance in figure 3.5, appear unsmooth. Here two methods
are given {o improve this, namely

e local smoothing
e global smoothing.

These two methods are fundamentally different. In the first method the chain of the
w-curves are filtered in order to appear smoother. In the second method the curve is
computed more accurately to obtain the same objective. We clarify these two
methods in the following two sections.

Local smoothing

A chain makes an unsmooth impression if two consecutive codes have basic vectors
which differ too much. As a result of weaving two control chains, unsmooth combi-
nations of codes can easily occur, since the two control chains can consist of a max-
imum of four different codes. :

Below we give both for 4- and 8-connectedness a definition of a smooth chain. We
only allow minimal changes in basic vectors of consecutive codes of a smooth chain.
Although 8-codes do not change the appearance of a chain, we require, for reasons of
simplicity, that a smooth chain contains no 8-codes. Notice that the definition for a
smooth chain as given below depends on the more or less arbitrary choice for the

318

34. Smoothing of w-curves 47
encoding of the directions.

Definition : smooth chain
A 4-connected chain ¢ is called (4-)smooth if it contaihs no 8-codes and
(Vitie(0. lel) s (c—c;)modde {0,2})
An 8-connected chain ¢ is called (8-)smooth if it contains no 8-codes and
(Vitie (0. 1cl) 2 (¢;~¢c;-;)mod8e {0,1,7})
0

The 4-connected andﬁthe 8-connected chains resulting from Bresenham’s algorithms
as given in chapter 2 are smooth chains. The chains of w-curves are, in general,
unsmooth; even if the 8-codes are removed.

In the local smoothing method pairs of consecutive codes in the chain which are
unsmooth, are replaced by Bresenham chains that have the same end vector as the
original codes, This results, for 8-connected chains, in the following conversion
table for pairs of codes; notice that the order of the codes is not important. A similar
table can be made for 4-connected chains.

[02}-{1] [13]1-{22] [24}-[3]) [35]-{44] [46]>([5]1 [571-[66]
[03]—=[2] [14]-[2] [25]—[4] (36]-[4] [47]—]6]

[04]—¢ [15]>¢ [26]—¢ [37]—>¢

[05]-[6] [16]-[0]1 [27]-[0]

[06]—>[7] [17]-[00] '

In ﬁgxire 3.6 four of these conversions are illustrated.

Bl mae s | I

(@) : ® © (@
Figure 3.6: 8-connected local smoothing
@[03]-[21 (b [04]-e
©[02]-11] @) [13]->[22]

Replacing, using this table, each time the left most unsmooth pair of codes, the final
chain becomes a smooth chain and has the same end point as the original chain,
This method ends, since after every step the chain becomes shorter; that is, if the
length of a chain is measured as the sum of the Euclidean length of the basic vectors.
In {Fre61] Freeman uses a similar method for obtaining a chain with minimal
Euclidean length between the end points. In figure 3.7 an example is given. The
main disadvantage of this method is, that it is a local method and hence, not related

48 , - W-curves

@) © @ (e)
Figure 3.7 : steps in the process of 8-connected local smoothing
(a) [1243124] (b) [133124] (c) [223124]
(d) [222224)] (e) [22223]

to the global shape of the curve. The deviation of the resulting curve and the original
cutve may be large, as can be seen from the fact that the chain [22226666] reduces
to the empty chain after applying this method. Another disadvantage of the method is
that it destroys the symmetry of the curve since it makes a difference whether the
curve is smoothed from left to right or the other way around.

3.19 Example :

In figure 3.8 the curves of figure 3.5 are shown after local smoothing,
a

.

(@ b ©
Figure 3.8 local-smoothed w-curves of example 3.19

341

3.20

2z

34. Smoothing of w-curves ’ 49
Global smoothing

Before explaining global smoothing we define subclasses of w-curves. A subclass is
a set of w-curves which contains exactly one w-curve for each triple of control
points. Moreover, the distribution functions for the w-curves in a subclass are res-
tricted to distribution functions in a so called complete set of distribution functions.
Below a complete set is defined by means of D,, the set of distribution functions
with domain [0..n] (see definition 3.7).

Definition : complete set (of distribution functions)

A complete set § (of distribution functions) is a set of distributions functions
containing for each n € IV, exactly one element of D,.
0

For complete sets names like Sf and Sg are used. The elements of D, (ne IV,) in
these sets are called f, and g,, respectively. The corresponding primitive functions
are called F,, and G,,.

A subclass may now be defined as follows.

Definition : subclass

For all complete sets Sf and Sg the subclass W(Sf, Sg) of w-curves is defined
by

W (1. Sg)

{W(po.p1.P2.f+ 8)1P0, P1. P2 € Z* AfeSfnD, ngeSgnD,}.

with the abbreviations n and m given by a=Dg(p;—pg) and m=Dg(pr—p1).
O

Global smoothing of a w-curve Wo=W(pg. p1. P2, f. &) in the subclass W(Sf, Sg)

consists of two steps: ‘

(a) compute, for some integer factor k, the w-curve W =W (kpo, kps, kp2. £ B),
where f and g are the appropriate distribution functions in Sf and Sg, respec-
tively.

(b) scale W, to the size of Wy, using the transformation algorithms as given in
chapter two.

Within a subclass W(Sf, Sg) we can define, for all keZ the smoothed discrete

curve Ci(po, P1, P2, Sf, Sg) of a w-curve W(po, p1. p2, f, 8) by

2

50 - W-curves

. -1
Ci(Po, P1, P2, 5, S8) :=[Ax(Dy)] with AF[y k(‘)‘]
and Dy=W(kpo, kp1, kp2.f, 8)
where f and g are the appropriate functions from Sf and Sg.

Example :
In figure 3.9 the curves of figure 3.5 are shown after global smoothing with fac-
tor k=3. The subclass Sf and Sg contain the distribution functions f,, g, €D,
with f,(i)=i and g,({)=n-i.

O

@ () ©
Figure 3.9: global-smoothed w-curves of example 3.22

Notice that global smoothing does not result in smooth chains as defined in definition
3.18. Hence, it can be useful to apply first global smoothing and afterwards local
smoothing.

It is unclear how the complete sets Sf and Sg have to be chosen. In the next chapter
the global smoothing of this section is used to construct a continuous curve from a
subclass of w-curves. A minimal requirement for the complete set of functions Sf
and Sg is the convergence of the limit process that results in the continuous curve.

35

- 323

51
W-curves : the continuous case

In this section the notions of continuity, convergence, uniform continuity, and uni-
form convergence are used; as a consequence especially the proofs are rather techni-
cal. For an explanation of these notions the reader is referred to a text book on
mathematical analysis, e.g. [Cou89] or [Rud76] .

The definition of w-curves is based on a discrete representation of its control lines by
means of chains. In this paragraph a continuous counterpart of w-curves is obtained
by partitioning the control lines in infinitely small vectors. In terms of the paragraph
3.4.1, the continuous w-curve within a given subclass W (Sf,Sg) is given by

C(Po. P1. P2, Sf, Sg)=lim A, (D)
ko0

First of all the limit of a sequence of chains is defined. We can give for each chain ¢
a function in [0, 11— Z?, say P, such that P(c;x) is the sum of a fraction < of the
basic vectors of ¢. P is defined by

P(c;)=p(c, [lcl])

and is a parameterisation of a discrete function but with a continuous parameter <.

Consider a sequence of chains (e)ie IV With end (¢)=k end(cy), for ke IN, and
suppose that the chains ¢ represent the same curve but at different sizes. Now, by
taking the limit of the functions %P(ck;t}, we obtain the continuous version of the

curve represented by the chains ¢. In the sequel we assume that the sequences of
chains are chosen such that their limit as defined in the next definition, exists.

Definition : limit of a sequence of chains
The limit of a sequence of chains (¢)ee v With
end(ex)y=k end(cy)
is a function L: [0,1]— RR? given by
L(xy=lim -i—p(cg.['c I).

0

Instead of saying that the limit of a sequence of chains is L, we just say that the
sequence converges to L. The limit L defined in this definition is not necessarily con-
tinuous. In case of uniform convergence on [0, 1], however, L is continuous on
[0,1].

52 - W-curves

324 Property:
If a sequence of chains (cx)xe v converges uniformly to L(x) forte [0,1], L
is continuous on [0, 1].
Proof
This property follows from the following:

(a) The limit of a uniform convergent sequence of continuous functions on
[0, 1] is continuous.

(b) For a functions @, defined for a chain c andte [0, 1] by

Oe)=p(e, MHa- T)p(e. i+1)-p(e,) forte [, 151,

it holds that Q(c:1) converges uniformly to L (z) for k—oo,
(¢) The functions Q(cy ;1) are continuous on [0, 1].
a

For t=0 and 1= 1, L(1) may be simply computed:

L(0)>=(0,0)
L(1)=end(cy).

Using definition 3.23 we can give the following property conceming the limit of a
sequence of chains, where these chains are the result of weaving two chains with 8-
codes added according to distribution functions in two given complete sets. This
property is used to compute a continuous counterpart of w-curves.

3.25 Property :

(@ Let{ore v and (di)ie v be sequences of chains with

end(cy)=k end(cy)
end(dy)=k end(d;)

and let these sequences converge uniformly to the functions Cp and Cy,
respectively. Let Sf and Sg be complete sets.
Then the sequence of chains (eg s v given by

" ex=add8(cy, fie, 1) wadd 8(dy, g1a,1),
converges to a function Cin [0, 1] R? given by
CO=Co(F)+C1{G()
with the blending functions F(z) and G () defined by

Fi (Fuky) G Gtk

Fompim = wa Gompim =

35 . W-curves: the continuous case 53

(b) The sequence of chains (ex)re IV converges uniformly for 1€ [0,1] 1o
C(z) if the limits for the blending functions ¥ and G converge uniformly

on this interval.
Proof
(a) From property 3.17 we can see that the relation between the points of ¢,
dy, and ex can be given as follows:
plex, [v1eg 1 [)=plex. &)+ pldy, 5¢)
with #; and s; given by

ty:=[Fig (t~[oxltIex1]])]
se:=[G (oulvlex)]

and oy, Cx, and dy by
_ Idy ! G g (ld 1)
T al1g, ™
ey =add 8(cx.fi)
dy= add 8(d, gs).

In the sequel only the second term p(dy, s;) is considered; the other term
can be handled in a similar way.
First we define o, by

- Gk G 1,1 (1 1))
k= Tdy !

Given this definition of o, we can now state the following.

+/P x50 - P, [G dx 1]/
< { triangle inequality }
+/P(d, 50 = p(dx, [1 d 1)/

+

+/p(x. [or)) - pldy, [GO A1)/

This result and the two lemmas 3.26 and 3.27, stated and proved below,
result in

lim - (e, 5~ Py, [GO) i 1])=(0, 0).

From the (uniform) convergence of the sequence (dg)ie v to C; it fol-
lows that -

lim & p(de., [G0l dic =C1(G).

Hence,

54 . . W-curves

Jim 4 p(d, 5p)=C1(G)).

A similar result holds for (cx)re IV and the proof of (a) is concluded as
foliows.

C(7)

lim 1 plew. [tlex!])

Tim - plex, £+ lim - p(dy, 55)

Co(F@N+C1(G ()

(b) From the uniform convergence of the sequence (dg)xe IV and the uniform
convergence of the limits in the lemma’s, it follows that

Jim 4 p(de, 5)=C1(G).

has uniform convergence. A similar result hplds for (cx)re v and hence,
the sequence (ex);c v converges uniformly to C().

326 Lemma :

@ lim /p@x 50~ P, [or1dc1])/=(0.0)

(b) The limit in (a) converges uniformly forte [0, 1].
Proof

/Py, 5) — p(dy, [o tdi 1)/

<

[si—[oldi 1]/ (1, 1)

< { definitions of s; and o, and property 1.14 of ceiling }

1Gih 1 (Lot e |]]) = G, GG 1y (10 1)/ (1, 1)+ (312, 3/2)
< { property 3.14(c) of GT.‘M }

[[ogltlexg1]] —1G g, (1dg 1)/ (1, 1)+(5/2, 5/2)

< { definition of oy and property 1.14 of entier } -

(712,712)

35 W-curves : the continuous case 55
327 Lemma :

@ lim %/p(dx, [o1di 1)~ pldx, [G(D)1dx 1]}/ =(0,0)

(b) The limit in (a) converges uniformly if &, converges uniformly to G(t) on
the interval [0, 1].

Proof

Ad (a).

Lete>0.

® According to the uniform convergence of the sequence of chains (dg)ie v
(see definition 3.23) an integer X; exists such that for all k>K,; and for all
te[0,1]

14 P [t1d |)-C1(@)/ <e(1, 1)

' (d)ie v converges uniformly to €. Consequently, according to property
3.24, C is continuous on [0, 1]. Moreover, C, is uniform continuous on
[0, 1], since on a closed and bounded interval uniform continuous and con--
tinuous are equivalent. Hence, a 5>0 exists such that forall 1,1 in [0, 1] the
following holds.

[0~ /<8=>/C (1)~ Ci(r)/ <e(1, 1)

® o converges to ((1); hence, an integer K, exists such that for all k>K,
holds.

| Gr-ok/<8
Using uniform convergence, continuity and convergence results for all
k> max(K,K3)in:

+ /P, [ox 1 dk |) - pldx.[GD 11)]

<

/4 P@.fox1dc1) - C (0w

+CUGE) - P [G)]

+/ C1(G(D) ~ Cilor)/

£ { uniform convergence }
2e(1, D+ C(G(W) ~ C(op)/
< { continuity and limit of o, }
3e(1, 1)

Hence, (a) holds.

3.28

3.29

56 : . . W-curves

Ad (b).
If K, and X, in the proof of (a) may be chosen independent of <, (b)
holds. K; is independent of t; K, may be chosen independent of t since
o, converges uniformly to G(t) forte [0, 1].

Hence, (b) holds.
O

If we apply property 3.25 for w-curves we choose the chains ¢k and dy, for ke N,
as the following Bresenham chains.

cx =bresh 8k (p;-po))
dy =bresh 8(k (p2—p1)).

The limits of these sequences of chains are given by

Co(®)=1(p1—Ppo)
Ci@)=1(p2—~p1)-

as can be seen from property 2.6 and definition 3.23. These observations lead to the
following definition for a continuous version of w-curves.
Definition : CW

The function CW (pg, p1, P2, 5f, Sg) is defined for all points p; (ie [0..2])
and all complete sets Sf and Sg by

CW (po, P1, P2, SF» S8):=po+F()(p1—PpoX+ G(O)(P2—pP1)s

forallte [0,1].
(]

A CW curve is of the form of property 1.4. Hence, the following property holds.

Property :

The curves CW (po, p1, pé, Sf, Sg) (po.p1.p2€ 2 2) are affine invariant, for
all sets of complete functions Sf and Sg.
|

Conditions for the continuity of CW follow from the properties 3.24 and 3.25 and

330

331

35 W-curves: the continuous case 57
result in the following property.

Property :

The curves CW (Do, p1» P2, S, Sg) (Po, P1.p2€ Z>) are continuous on
[0,1],if

FFkyy G Gk
and
k k
converge uniformly on [0, 1] for k—eo (o F(z) and G(%), respectively).

O

Blending functions

The functions ¥ and G of property 3.25 are the blendingifunctions as introduced in
section 1.1, In this section some properties and definitions concerning these functions
are given,

Property :
For the blending functions ¥ and G of property 3.25 the following holds.
(@) A0)=G(0)=0
® KDH=G1=1

(c) Fand G are both monotonous functions on [0, 1].

Proof
F (O
@ Fo=tin2 92 o
TR FOEO)
. -1 _ Fy . (Fi
e & < =
Since, s PR 3
Fi Y (Fuk
k—yo0 k
(c) follows directly from the monotonicity of 7! and G, .

0.

L

O

Hence, the continuous curve C(pg, p1, P2, S, 5g) lies within the parallelogram with
vertices <pg, P1. P2, Po-P1+p2>.

In the remaining of this section we give two special cases for distribution functions
and their primitives.

i3

M

3.35

58 W-turves

Definition : multiplicative
A function £is called mulliplicative if
(Vs 25 tedom(f) 1 fa)=f)f (7))
L]

In appendix 3.4 we show that a multiplicative function with domain R* is either
constant O or 1, or equals x” for a fixed r and for all x in ils domain.]
Property 3.34 shows that in case the primitives of the functions in a complete set 8/
are all multiplicative, a much simpler expression for F may be given. The property
follows dirgctly from the definition of ¥, the notion of mulliplicative functions, and
the following property of multiplicative functions.

Property :

The inverse function of a multiplicative function, if it exists, is a multiplicative
function,
a

Property :

For all complete sets §f = {fi e Dh 1k e &V, }, with F; a multiplicative func-
tion, for all £ & IV, the following holds,

Fix)= lim Fil
1

Often blending functions F and G must have some kind of symmetry. The next
definition for distribution functions supplies in this.

Definition : symmetrical
Two distribution functions fand g, both in @, are called symmetrical iff
(Viziel0.n):fi=gln-i))
i

The blending functions resulting from symmetrical disirbution functions are also
calied symmetrical and their symmelry is described by propenty 3.36(b),

35 W-curves: the continuous case 59

336 Property :

Let Sf and Sg be complete sets with the elements of D), called f, and g,,
respectively. If f, and g, are symmetrical functions for all k e IV, the follow-
ing holds.
(@ (VhkitkelNyniel-1..k]:G)=Fk)yFelk—-1)~1)
® (Viite[0,1]: F=1-G1-1))

Proof

(@) LetkeN,andie[-1.k].

G (i) '

= { property 3.11 (a) }
i+(Zjijel0.i]:8d0))
={ fand g are symmetrical]
i+(Zj:jel0.0]:filk=f))
= { calculus}

P+ (Zjije k= k] H0D)
= { calculus}

P+ (Zjje 0.k M)A ZEjje[0.k—i-1] 1 fi())
= { property 3.11 (a) }
Fy(k)Fylk—i =1)~1

(b) Lette[O0,1].
G0

= {definition of G)
G (G
lim ———

k—yoo

k
= { from (a) follow both G, (k)=F,(k) and G, (i) =k —1-F,~ (Fy(k)—i—1))
i 1oL P Fio=9-1)

i X

= { calculus and 3.14 (c))

1-lim

koo k
= { definition of F')
1- 1=

O

Finally, we give in this scclion a property for primitive functions of a polynomial
form. In the sequcl these primitive functions tum out to be useful. The property
states that under certain conditions the blending function ¥ is independent of the
coefficients in the polynomial and thal it depends only on the highest degree

60 : ‘ » W-curves
occurring in the polynomial.
337 Property :

For a primitive function F;(x) satisfying

@ Fux)=Cix®+0 xP) for x—oo
) Fuk)=Cik®+0 (kP) for k—o0
(©) Ci=0®") for k—oe

with o+ v> B, the blending function ¥ is given forte [0, 1] by

1
Fo=1"
~ Proof
Lety=F (kyi=F(x). It follows that x< % since F, is increasing and te [0, 1];
hence, x=0 (k) for k— oo, For k-»eo the following derivation holds.
F, -
(& k(y))a

= { (a) withx=F,"(y) and x=0(k) }

y- o (k’)
Cik*

={y=Fy(k)rand (b) }
+Cl OGP ™)

={(c)}
t+0 (koY)

- {p~o~y<0}
T

352 A subclass consisting of circle and ellipse segments

In this section we deduce the distribution functions for a subclass of w-curves with as
continuous curves circle and ellipse segments.)

An equation of a circle, given by its center m and radius R is
(x—m,’Hy —m,)*=R?

By substitution in this equation, the following may be shown to be a parameterisation
of a quarter of a circle.

(r,y)=m+RVra, +RV1—ta, with 1€ [0, 1]

where a; and a, are two vectors such that for their Euclidean distance holds that
lla,li=llayli=1 and furthermore the angle of a; and a; is a/2 (see figure 3.10 (a)). If we

3.5 W.curves: the continuous case 61

Figure 3.10: parameterisation of a circle

use the following three control points, the control points for generating this circle
segment are given by (see figure 3.10(b))

po=m+Ra,
pi=nHR(a;+a;)
p2=m+R31

and we may write m=py—p;+p; and give the following parameterisation of a quar-
ter of a circle in terms of these control points.

(Y=o Ve (p1—poH1-V1-)(po-py) .

This parameterisation has the form of a continuous weave curve with the blending
functions Fand G given, forallte [0, 1], by

,‘F('c)=\3;
ﬁt):l—\’lt't.

¥ and G are symmetrical. Therefore it suffices to determine only the distribution
functions f; for generating .

F is also a multiplicative function. We try to find a sequence of multiplicative primi-
tive functions F such that

Fo=limF, " ()
k—yo0
By choosing all primitive functions F, equal to ¥ on [0, 1], we find
Fy(v=2, forallte [0,1].

Since F, is multiplicative this also holds on [0,k]. Given a primitive function F
we can compute the distribution function f; by using definition 3.10.

F(G)=F()-Fe(j-1)-1
for j20 and with F(~1)=~1. Hence, the f;’s may be defined by

(2522 k2j>0)
f¥=10 (j=0)

62 , . W-curves

QL

Figure 3.11 : Example 3.38

The symmetrical version g, of f; is given by (see 3.35)
2k-2j-2 (k>j20)
U=56
With these f; and g; we can make a quarter of a circle and since an affine transforma-

tion of a quarter of a circle is an ellipse segment the subclass W(Sf, Sg) with the
complete sets Sf and Sg given by

Sf={filke IN,}
Sgi={grlke IN,},

contains only circle and ellipse segments.

Q0

Figure 3.12 : Example 3.38

&)=

3.38

3.6

35 W-.curves : the continuous case ' 63

Example :

Figure 3.11 contains both a circle and an ellipse generated by four w-curves.
The circle is given by a 4-connected chain, since the control chains that were
used, were either horizontal or vertical.

Figure 3.12 shows the same curves after applying the local smoothing method.

Algorithms for compufing w-curves

" In this section we give algorithms for computing w-curves. According to its

definition, a2 w-curve may be computed by computing the chains of the control lines,
adding the 8-codes to them according to some distribution function, and finally
weaving the results, However, this approach does not result in an algorithm with a
time complexity linear to the length of the two control chains. This is due to the fact
that the number of 8-codes added to a control chain need not be linear 1o the length
of the control chain. In this section we give an improved algorithm. And finally, we

_give a linear algorithm for the cases where the distribution functions are symmetrical.

3.6.0 Algorithm for weaving

In this section we give an algorithm for the function weave which solves the problem
given below.

i
chain ¢, d, e
e:=weave(c, d);
{e=cwd}

1

A solution to this problem is readily found from the definition 3.2 of weaving and
may be constructed according to the following invariant.

P: Osigicl+idl Aic=#(b,0,0) A id=#(b,0,i)
re=(Tlj:0<j<it (cwd))))
Ab=breshd(lcl, idl)

361

64 ' C W-curves

func weave(c, d: chain) : chain:
chain b, e;
int i, ic, id;
b, e:=breshd{fc], 1d}|), &;
i, ic, id:=0, 0, 0;: { P}
doi<jc|+ |d} -
ifb,=0 — e:=e®[¢;]rici=ictl
Ob;=2 — e:=e®[dig];id:=id+l
fi; : v
i:=i+1 {P}
od;
weave =¢
cnuf

The total time complexity of this algorithm is given by O(ici+idl). The loop in
this algorithm and the loop in the algorithm for bresh4 can be combined into one; the
if-statements in the two loops distinguish the same cases.

Algorithm for add8

Here we give the function add 8 which solves the following problem.

.

chain ¢, ¢
array ofint: f;
e:=add8(c, f)
{e=add8(c,f)}
1

This problem can be solved using the invariant P defined as follows.

P. OSiSlel A0S jSF)AFi=F ()
ne=(TIk:0sk<j:add8(c, f)k))

Notice that the length of add 8(c, f) is F(iel) and hence, P A i= ¢l A j=Fi implies
e=add8(c,). :

3.6 Algorithms for computing w-curves 65

func add8(c: chain, £: array of int) : chain
chaine;
inti, j, Fi;
i, j, Fi, e:=0, 0, £(0), &;
doi<|c| v j<Fi -
if j<Fi — e:=e®[8]
O0ij=Fi — e:=e®[c;];
i, Fi:=i+l, Fi+f (i+1)+1
fi;
ji=3+1 (P}
od
add8:=e
cnuf

The total time complexity of this algorithm is given by O (lel)=0 (F (Icl)).

3.6.2 Algorithm for computing the pixel set of a w-curve

In this section we derive an algorithm for computing the w-curve W(po, p1, P2, /. 8)-
This problem can be formally specified by

point po, Py, P2
array ofint £, g;

set of point s;

compute_w_curve;

{S=W(po, P1, P2, £, 9}
1l

A simple solution to this problem has the following form

(1) compute the control chains:
c:=bresh 8(p1—po); d:=bresh 8(p,—p1);
(2) add 8-codes to the control chains:
C=add8(c, f); d:=add8(d, g);
(3) weave the resulting chains:
e:=weave (C, d);
(4) compute the pixel set DC (po, e) by traversing the chain e.

Step (1) has time-complexity O (Icl+ 1d1). The steps (2) up to (4) are each of time-
complexity O (lel)=0(l¢l+1d1) =0 F (lcIG (1dl)). Hence, this solution is not
efficient if F(1cl) or G (1d1) are large compared to Icl and 1d!, respectively.

66 . : W-curves

Hence, in order to obtain an algorithm which is linear in the lengths of its control
chains, the 8-codes should not be added explicitly to the chains ¢ and d. The 8-codes
are not needed for the computation of the pixel set. Indeed, in property 3.17 the fol-
lowing formula is stated which expresses p(e, ¢) directly in terms of the points of the
chains ¢ and d, instead of € and d.

ple.)=p(c, [F1(t- = = x1>1)+p<d rG"a‘ o D))

This expression gives rise to the following invariants for compute_w_curve.

Po te [0 lel]

P; S={potp(e,s)|se[0..£]1}

P, p=pot+p(c, a)tp(d, b)

Py a=[F¢-[at])] Ab=[G'(ot])]

G(ldl) : . . i
where a= FlielHG(1an” We aim at a solution for compute_w_curve with the fol

lowing structure in which, each time the body of the loop is executed, one element is
added to the pixel set S.
i
chain ¢, d;
int t, a, b;
point p;

¢, d :=bresh8 (p;~py), bresh8 (p,-p;1):
t,a, b:=0,0,0:;
P, S:=po, {Po}: {Po,1,2,3)

doa<|c|vb<|d]| -
ifBO —»
p:=p+v(c,):
a:=a+l;

adapt t such that Py, 5, 3 hold

lB1 -
p:=pt+vid,):
b:=b+1;
‘ adapt t such that' Py 5, 5 hold
fi
S:=su{p} (Po,1,2,3}
od
1

The guards BO and B 1, and the two statement lists concerning ¢ remain to be found.
First we examine the effect on p(e, ¢) of a statement of the form ¢:=7 with 7> 1.

36

Algorithms for computing w-curves 67

ple,)-ple, 1)
= { property 3.17, Py, and definition 1.21 of p}

(Tizasi<[FG~[ad])] :vic))

+

(Zisbgi<[G Y a])] 2v(d))

= { calculus }

vied) if [FG-[oi])] =a+]l A[G ([cd])] =b
vidy) it [F'G-[ai])] =a A [G ' ([od])] =b+1

Hence, if we define B0 and B 1 as follows

BO:=([F'G-[ai])] =a+1 A [G'(ai])] =b)
BL:=([F'@~[ci])] =a A [GT'([a2])] =b+1)

P3 A Pj are left invariant by the following two statement lists, if B0 and B 1, respec-
tively, are preconditions of these lists.

{BOAP, AP;) ' : {BLAP;APy)
p:=ptvic,):; p:=ptvidy);
ar=atl; b:=}5_>+l;
t:i=t t:=t
{P2AP;} (P2AP3}

With some simple computing we can express the Bi's in terms of F and G instead of
their inverses.

[Fla~[u])] =a

= { definition of ceiling function }

a-1<Fl¢-[atDh<a

= { F is a monotonous function }

F(a-1)<t—~[at]<F(a)

= { t—foz] is amonotonic functioninz }

min{se IN,|s—[as]>F(a~1)} St<min{se IN,|s~[os]>F(a)}

A similar expression can be deduced for b and G, and reads as follows.

[G'((w])] =b

min{s|[es]>G (a-1)}<t<min{s)[as]>G(a)}

So, with the following two abbreviations

Mi=min{se IN,|s-[as]>i}
Ni=min{se IN,|[os]>i},

68 . W-curves

B0 and B 1 can be given by

BO=(M.F(a)SI<MF(a+1) A NG(b-1s IKNG®))
Bl=(MF(@a-D)Si<MF(a) A NG()SI<NG®b+1)).

Since B0 and B 1 are only evaluated if P holds and since we chose to be larger than
t, they can be simplified to

BO=(MF(@)<Ii<MF(a+l) A I<NG®))
Bl=(I<MF(a) A NGB)SI<NG{d+D).

Choosing i=M.F(a) in case of B0 and =N.G(b) in case of B1 and adding the
invariants

Py Fa=F@)aGb=G(b)

Ps tc=MFanrid=NGb

reduce the Bi’s further to

BO=(tc<1td)
Bl=(1d<ic).

For both choices of 7, 7> ¢ holds. Furthermore, notice that z # td as can be seen from

te=1td
= {Ps}
=MPFa ntc=NGb
=> { definitionof Mand N }
te-1-[aftc-1)]s Fa<tc—fatc] A [afte-1)]s Gb< [asc]
= { calculus }
[arc]<te—Fas1+[ofte-1)] A [o(tc~1)]S Gb< [ouac]
=> { [ouc] is an integer)
[arc]s [o(e~1)] A [a(tc-1)] < [ouc]
= {}
[osc]< [atc]
= {}
Jalse

Hence, BOv B 1=true and consequently, the if-statement covers all possible cases.
Since we added the invariants P4 and Ps, we have the concern over their invariance.
Py is kept invariant, according to the definition of the primitive function F, by the
following two statement lists.

36 Algorithms for computing w-curves 69

(P4} {Pq})

a:=a+l; b=b+l; -
Fa:=Fa+f (a)+1 " Gb:=Gb+g (b)+1
{Ps)} {Ps}

For the invariance of Ps, we allow, for the time being, a statement of the form
t:=M Fa.
The program compute_w_curve then takes the following form.

I

chain c, d;
point p;

int ¢, tc, td;
int a, b, Fa, Gb;

¢, d:=bresh8(p,—pg), bresh8 (p,—p;):
a, b, Fa, Gb:=0, 0, £(0), g(0):

t, tc, td:=0, M.Fa, N.Gb;

P, S:=po, {Po}:

doa<|c|vb<|d] -
ifte<td —
p:=ptvic,);
a:=a+l;

Fa :=Fa+f (a)+1;
t, tc:=tc, M.Fa

ltd<te -
p:=ptvidy);
b :=b+1;

Gb :=Gb+g (b)+1;
t, td:=td, N.Gb
fi;
S:=su {p}
od
1

At a first glance the time complexity of the above program appears to be linear in
Icl+1dl, but it is not, since the computations of M.Fa and N.Gb can, in general, not
be done in constant time; with binary search they can be done in O (log F(lcl))-
and O(logG(ldIf)-time. In that case the total time complexity is
O(lcllogF (icl)+1dllogG(Idl)). Compared to the naive solution as sketched at
the beginning of this section, the new approach is assymptotically better if the com-
putations of F and G are more than linear in their arguments.

70 7 B W-curves
3.62.1 A linear algorithm

The algorithm given in the previous section was not linear because of the computa-
tional complexity of M.Fa and N.Gb. However in some cases these computations are
simple. Here we consider the case a=;- . Hence,

(L 1)
T F(lehG(1dl)

Hence, F (1el)=G (1d1). In this case the following computation on M can be made.

M.i=j

= { definition of M and a=% }

min{sls—[%sbi} =j

= { property of min }

j=IL jl=i+1 A j1-[L G-D] =i

= { calculus }

J~lk jl=i+1 A [2 =[5 G-D)]

= { property 1.14 of rounding }

J=l% jl=i+1 A jmod2=1

= { property 1.14 of rounding }

3 j+y =i+l A jmod2=1

= { calculus }

j=2i+1

=1,
F)

Hence, M.i=2i{+1 and one can prove similarly N.i=2i+2. In the program of the
previous section, consequently, the statements tc =M.Fag and td:=N.Gb may be
replaced by tc ==2Fa+1 and td =2Gb+2. In fact, we may completely dismiss tc
and #d from the program by replacing the guards B0 and B 1 by

BO=(FasGb)
B1=(Fa>Gb).

This follows from substituting the new expressions for tc and td. The resulting pro-
gram has computational complexity G(lci+ {d!) which is linear in the lengths of
the control chains. The program takes the following form. Notice that we also left
out the ghost variable 1.

36 - Algorithms for computing w-curves : 7

If

point po

chain ¢, d;
int a, b, Fa, Gb;

¢, d:=bresh8 (p;—p;), bresh8(p,~p;):
a, b, Fa, 6b:=0, 0, £(0),g(0);
P, S :=Pg, {PO};

doa<jci{vb<id] -
ifrasGb -
p=pivic,)
a:=a+l;
Fa:=Fa+f(a)+l
lra>cb —
p:=ptvidy):
b :=b+l;
Gb :=Gb+g (b) +1
fi:
s:=svu {p}
od
i

Remember that this program has been derivéd under the assﬁmpu'on that a=;- , that

is F(lel)=G(ldl). 1tis, hence, only applicable for resiricted combinations of distri-
bation functions and control chains.

With a slight change in the definition of w-curves some subclasses of w-curves may
be handled with the above algorithm. The most important of these classes are those
featuring symmetrical distribution functions.

For the new curves, called e-curves, the control chains are made of equal length by
adding 8-codes in a uniform way to the smallest one using the function lengthen.

3.39 Definition : lengthen

For all chains ¢ and all positive integers k the function lengthen is defined by

c lelzk
lengthen(c, k):= cw[8F'et lel<k

O

The following property of lengthen follows directly from property 3.6.

72) W-curves

340 Property :
For all chains c, all positive integers k, and all t € [0..max{k, Icl }]
rencthen (e k ple,) leizk
(7 LK)t :
P(lengthen (c, k) p(e.t~[;elf+k‘]) lel<k

a

The definition of e-curves can now be given as follows.

341 Definition : e-curve

For all control points pg, p;, and p;, and all distribution functions f; ¢ D,, with
Fy(m)=F y(m) and m given by

m=max{icyl,leyl } with
Co:=bresh 8(p;.1—pi) and ¢y :=bresh 8(p;1—Pi)»

an e-curve E (po.p1.p2. f») is defined as the discrete curve DC (p, e) with

P=Po
e=add 8(lengthen (co,m), f)) w add 8(lengthen (cg,m), g).

0

Subclasses of e-curves can now be defined similarly to definition 3.21.

342 Definition : subclass for e-curves
For all complete sets of functions Sf and Sg with
(Vnine IN,:F,(n)=G,(n)),
the subclass E(Sf. Sg) is defined by
E(Sf,S8)

{E@o.p1.P2.f. 8)IPo.P1. P2 Z* AfeSfAD, ngeSgn Dy}

with the abbreviations # and m given n=Dg(p;— po) and m =Dg(p;—py).
)

Within a subclass E(Sf, Sg) a continuous version of an e-curve can be.computed. A
property similar to property 3.25 may be given. This results in the continuous curves
CE to be defined as follows.

3.6 - Algorithms for computing w-curves 73

343 Definition : CE

The function CE(pg, p1. P2, Sf, Sg) is defined for all points p; (i€ [0..2])
and all complete sets Sf and Sg with

(Vnine N, :F,(n)=G,(n))},
by
CE(po, P1, P2, 5> 58):=po+F1)p1—port G(O)pz—p1)

forallte [0,1].
0

Hence, CE equals CW, for complete sets Sf and Sg suitable for e-curves. The com-
plete sets computed in section 3.5.2 for ellipse and circle segments, consist of sym-
metrical distribution functions. These circles and ellipse segments, consequently,
may be genereted with the integer algorithm for the pixel sets of e-curves and in a
time linear to the length of the control chains.

3A

34

345

3.46

74 : W-curves
Appendix

Let fbe a continuous multiplicative function (see definition 3.32) with domain R".

Property :
(@ RO)=0vA0)=1
b AH=0vAD=1
Proof
Both (a) and (b) follow directly from a* =a => fa)* =fa).
O
Property :
@ AO=1=>(Vx:ixe R :fix)=1)
® f)=0=>(Vxixe R":f(x)=0)
Proof
(a) follows from f0)=Rx)f(0) and (b) from Ax)=A1Ax).
O
Property : -
If f0)=0and {1)=1 then an re IR exists such that the following holds.
(Vxixe R :fix)=x")
Proof V

Let xe IR* withx20 Ax#1. Let X e R* with X> 1. We write X as X=x"*"*
withnye N, and rye [0, 1),

Notice that fx)20, since fix)=A¥x)AVx) and that fx)#0, because
1=A1)=fx) j(%). Hence, fx)>0 and similarly, £X)>0. Consequently, we
may write '

logfix) _ mxlogfxyog fix™)
logX nylog x+og (x™*)

Consequently,

(Vx:xe R*-{0,1}: lim log fX) _log fix)).

X-—e logX logx
By defining r:= —g———l’iog), and noticing that r is positive, the proof of the pro-
perty is completed.

4.0

4.1

4

Extensions of w-curves

Introduction

In conventional curve modeling the shape of a curve may be controlled in two ways.
(a) choosing different curve flavours, e.g. Bezier curves instead of Hermite curves.

(b) introducing more control points and using these control pomts for fine tuning
the shape of the curve. :

Both (a) and (b) may be translated into the realm of w-curves, For (a) in section 4.1
parameterised 8-distribution functions are introduced. For (b) we give in section 4.2
two methods for defining w-curves with more than three control points. Both
methods come down to defining some weaving scheme for more than two control
chains; the schemes given in sections 4.2.1 and 4.2.2 are called consecutive weaving
and simultaneous weaving, respectively. Distribution functions for second and third
order Bezier curves are given in an example of simultaneous weaving.

Finally, we give in section 4.3 a method for improving the computational effort
needed for w-curves. The method is based on precomputing the order in which codes
are taken from the control chains. This order is represented by a so-called canonical
chain,

Parameterised w-curves

W-curves are defined by three control points and two distribution functions. The
control points are used for controlling the tangents in the end points, whereas the dis-
tribution functions can be used to change the flavour of the curves. This last possibil-
ity is clearly not available for well-known curves as Bezier and Hermite, since they
come just in one flavour: there is exactly one (Bezier) curve on three given control
points. So if we can control in an intuitive manner the flavour of the curve by adapt-
ing the distribution functions, w-curves have a clear advantage over other curves.
Here we give an example for adapting distribution functions by adding a parameter
mechanism.

75

76 Extensions of w-curves

In the algorithms for computing the pixel set of a w-curve, as given in section 3.6.2, a
distribution function was represented by an array of integers; there was, however, no
mentioning of how this array was filled. The filling of the array should, preferably,
be of low cost, e.g. by means of an incremental scheme for computing polynomials.
In this section we give another cheap way for incrementally computing a distribution
function.

A distribution function is, as we defined in 3.7, a function with an interval [0..a]

(for some n € IN,) as its domain and a subset of IV, as its reach. Below we generate
such a function from a discrete curve, i.c; a w-curve given by 3 control points; one of
these control points is used as a parameter to control the shape of the resulting distri-
bution function.

Let W be a discrete curve w:mmeproperty that forall xe [0..n] at least one
y exists such that (x,y)eW. For such a discrete curve W a function
fw:[0.a}—- N, isdefined forall xe [0..n] by

Sw(x)=max{y I(x,y)eW}

Heme, if we can define a curve with the proper "domain" and the proper "reach”
(c IV ,) the above defined function f is a distribution function. As a first example
such a discrete curve W is defined as a w-curve.

$ W=W(go, q1. 42, f, &)
where the points qg and q; are given by
qo=10,0) A q2=(n, n)

and where f and g are two already known distribution functions, e.g. the identity
function and the function symmetrical to the identity.

= (n’n)

qe= (0,0)

Figure 4.1 : parameterised distribution function fiy

The remaining control point q; can be used as a parameter (see figure 4.1). The
choices for go and q; are not arbitrary; they are chosen such that fiy is small at the
beginning and relatively large at the end of its domain. Hence, fiy can be used as a

4.1

4.1- Parameterised w-curves el

distribution function for a w-curve that is tangent to a control chain at its start point.
The function fiy can be computed incrementally by generating the w-curve W, Simi-
larly a symmetrical version gw of fir can be defined. Using these two distribution
functions, the w-curve C=W (pg, p1. P2, fiw.8w) can be influenced by the choice of
qy; if q; is chosen closer 10 the lower right comer of the square, the distribution func-
tion f has relative small values at the beginning, and consequently, C is closer to the
control lines. By choosing q; .x =q, .y, the resulting distribution function is the iden-
tity function, and hence, according to section 3.5.2, in that case C is an ellipse seg-
ment. By moving q, away from the diagonal of the square, the deviation from an
ellipse segment becomes larger.

@ ®
Figure 4.2 : parameterisation of w-curves
{a) example 4.1
(b) example 4.2

Example :

Figure 4.2(a) shows 4 curves parameterised with the scheme of figure 4.1 with
n=413, The values of q; are for these curves from left to right given by
(413,0), (267,133), (0,0) and (0,413), respectively. Hence, the third curve has
the identity function as its distribution function and is, consequenily, an ellipse
segement.

O

The scheme shown above for defining a distribution function leaves room for all kind
of variations.

By defining W as the union of two w-curves Wy and W, the distribution func-
tion fy can vary more. Not only a linear function fiy can now be made but also
a constant function (fyw(i)=n) and a peak function (fiw(Q)=0 for i=n, fw(n)=n).
W-curve Wy is given by qo=(0;0), qo1, and q;, and Wy by ¢, g2, and
qz=(n, n); q, is again the parameter point and qg; and q;, are the leftmost and
rightmost intersection point, respectively, of the square with the line through qy
with slope 1. See example 4.2. .

42

4.2

421

78 Extensions of w-curves

Q= (n,n)

. go=(0.0) 4

o1

Figure 4.3 : parameterised distribution function fiy with W=W oUW,
Example :

Figure 4.2(b) shows 4 curves parameterised with the scheme of figure 4.3. The
points q; are chosen as in example 4.2. Again the third curve is an ellipse seg-
ment, The peak function (g; =(413,0)) results in a curve that coincides with the
control lines of the curve, whereas the constant function (q; =(0,413)) results
in a line segment joining the two end points,

More control points

In chapter 3 w-curves are defined as curves given by three control points and in their
definition the operators add8 and w are used. In this section w-curves given by
more than three control points are defined. Two essentially different extensions of
w-curves are defined; both are based on the weave operator for combining two
chains. In the first, the chains are weaved in some order using the weave operator; in
the second approach, the chains are weaved all at once, using a generalisation of the
weave operator w. These two approaches are called consecutive weaving and simul-
taneous weaving, respectively.

Consecutive weaving

In case of consecutive weaving the operator w is used (repeatedly) for combining
chains (initially control chains) in some order. The order of weaving the chains
could, for instance, be from left to right: weave the first two control chaing, weave
the result with the next chain etc. If this scheme is used, curves with the same

43

42. More control points 79

control points but with these points in reversed order, may not be exactly the same
pixel sets. To avoid this asymmetry we choose a recursive scheme in which in cases
of an odd number of chains extra control points are introduced. Figures 4.4 (3), (b),
and (c) illustrate the recursive subdivision scheme used in the following definition.

Definition : W,

For all complete sets of functions Sf and Sg, for all n21, and for all control
“points p; (Ge[0..2]), Wa(po. 1, "+ Pus 5. Sg) is defined as the discrete
curve DC (p,) with
P=Po
e=X(pq, P10 Pn)
where the chain X (qg, ;. - - * , q¢) is recursively defined, forall ke IV, and all
points q; (F e [0..k]), by : ‘

add8(X (Go, . .. @),) W add8(X{(Gs, . .., Q) &)
if k=2h

X * * et 2 = . .
@: Q172 =Y ey 0 A k=2h+1, with q=[(Qy+Gpe1)2]

bresh 8(q)—qp)
ifk=1

“

with fand g the appropriate functions from Sf and Sg, respectively.
[m]

Notice that W is equal to a Bresenham line and that W, equals a w-curve,

For computing the continuous curve corresponding to a W,-curve property 3.25 can
be used. Here we give an expression for the continuous curve belonging to
Wa(po, P1> P2, P3. P, £, Sg). The limit of the sequences (X (kpo, kP1» kP2)ee N
and (X(kp2, kp3, kps)die v are called Cp and €y, respectively, and are given,
according to property 3.25 or definition 3.28, by

Co(m=Hr)(p1—por+ G)Xp2—p1)
C1@=F)p3-p2)+ GE)P4—p3)
Hence, the limit C of the sequence (X (kpo.kp1, kpP2. kPs. kPsdie v 18 given for
1e[0,1] by ‘
C
= { property 3.25 }
- Co(F+Ci(G()

add8(X (qo, ..., @ @, f) w add8(X(Q, Qrs1s .. . » Qi) &)

80 Extensions of w-curves

= { the above expressions for Co and C }
FFNP1-por GFNP2-Pr Y+ FIGRNPs— P2+ G(GD)PaP3)-

@ (b) ©
Figure 4 4 : consecutive weaving
(a) the control points
(b) the curves DC (pg, X (po.P1.P12)) and DC (po, X (P12.P2.P3))
© Wilpo. pi:p2, P3. 5. S8)

Hence, applying consecutive weaving results in curves with higher order blending
functions. The figures 4.5, 4.6, and 4.7 show the construction of a Ws-curve.

P4

o

41 'Pnz

Figure 4.5 : construction of a Ws (1)

Figure 4.8 illustrates the computation of a W4-curve. The two "weave” subtrees
correspond 10 W-curves. The chains at level 0 are the control chains and may be

42 More control points - 81

4]

Figure 4.6: construction of a W (2)

Pa P3

P2

1

Figure 4.7 : construction of a W (3)

computed in O (my) time where m; is the maximum length of the chains at level i of
the tree. In section 3.6.2.1 we saw that the computation of the pixel set of a W3
curve may be done in O (m,) time if the following two conditions are met:

(a) the control chains have both length m.
(b) the distribution functions are compatible: F(m)=G(m)

Here, however, the chain of a W,-curve, including the 8-codes, must be computed.
This computation takes O (m) time. Consequently, if n>1, a W,-curve may, in gen-
eral, not be computed in O (mg) time. The definition of W,-curves may be adapted,
resulting in different curves, such that the resulting curve is computable in O (mg)

82 v Extensions of w-curves

weave 4
adds adds 3
} | b
weave weave 2
VAN /7N
adds add8 © add8 add8 1
} } } }
bresh8 bresh8 bresh8 bresh8 0

Figure 4.8: computation scheme for W 4-curve

time. Such an adaptation is not given here, since we introduce in section 4.3 a
method by which W,-curves may be computed in time linear to mg.

422 Simultaneous weaving

44

4.5

In simultaneous weaving all control chains are weaved at once using the simultane-
ous weave operator W, as defined below. In section 3.6.2.1 we used the fact that the
chains are (and remain) of equal length to arrive at a linear algorithm for e-curves.
For this reason it suffices to define simultaneous weaving for chains of equal length

- only.

Definition : simultaneous weave operator

For all n=1 and chains ¢; (ie [0..n)), all of the same length, the chain
(Witie[0..n) :¢c;)of length nicy! is defined by

(Witiel0..n) 1)@ =cnld),

forallte [0.. nlegl) with the abbreviations m and d given by m=t¢ mod n and
d=tdivn.
()

Figure 4.9 illustrates the W-operator.

Property :
For all n21 and for the chains ¢; (i € [0..n)), all of the same length,
p(Witie[0.n):¢),0=(Zizie[0..n):pc, %"])

forallte [0.nlcyl].

42 More control points 83
€2
€ 2 2 2 2
¢ 1 1 1 1
0 0 0 0
Co
Figure 4.9 the simultaneous weave operator W
co=[0000],¢;=[1111], ¢, =[2222]
ez(wi :ie{0,1,2} 1 ¢)=[012012012012)
Proof
We use ¢ as a shorthand for the chain (Witie[0..n): c;) Let
te[0.nleyl].
ple.n)
= { definition 1.21 of p }
(Zj:jel0.t) 1v(e(j))
= { definitionof cand W }
(Limdijel0.t) am=jmodn rd=jdivniv(c,(@))
= { definition of mod and div : j=n(jdivay+jmodnrme [0..n) }
(Zmdidntmel0..t) Ame[0.n) :v(c,(@))
= { calculus }
(Em:me[0..n):(Ed:dn+me [0.1) :vica(d)))
= { calculus }
(Emime [0..n):(E’uf:a‘e{-:;”l
= { calculus }
(Em:ime[0.n):(Zd:def0.[= 1) v(en(d)))
= { definition 1.21 of p }
(Em:me [0..n) : plem, [52])
0

Given this operator W for weaving a number of chains definition 3.41 of e-curves can
be extended to curves with any number of control points.

Notice that in the definition below, the combination of add8 and lengthen together
with the condition F;(m)=F 3(m), results in equal-length chains for weaving with the
W operator.

84 , Extensions of w-curves

4.6 Definition : nth-order e-curves

For all n21, all control points p; (i€ {0..n)), and all distribution functions
£ € D, with Fi(m)=F y(m) with m given by

m=max{lc;l}ie[0..n)}
with the chains ¢; given by
o;i=bresh 8(p;v1—pi)

the nth-order e-curve E,(Po.P1s " * s Pu-Joo fis * "+ fa-1) is defined as the
discrete curve DC (p,) with

P=po
e=(Wiz:ie[0..n) : add8(lengthen(c;,m).f)).

O

A continuous variant CE of the E,-curves may be defined similar to CW in definition
3.28 and CE in definition 3.43. In the definition of CE we notate by f; « the distribu-
tion function in the complete set Sf; with domain [0..k]. The primitive of f;; is
notated by F; ;. The limit of F;, according to definition 3.25, is notated by #;.
47 Definition : CE
For all a, all control points p;, and all complete sets Sf; (i € [0..2]) with
(Vik:ie[0.n] ke Nyt Fiu(k)=Fo k),

the continuous curve C=CE(pg, P1» * ** » Pus 0, 51, *** 1 8fa-1) is defined,
forallte [0, 1] by

Cy=po+(Zitie[0..n) : FxXpin—p))
0

Below an example of simultaneous weaving with 2 and 3 control chains is shown; it
results in second and third order Bezier curves. The first part of the example shows
an ordinary weave, since it only concerns two control chains; it is given here as an
introduction 1o the second part.

48 Example :

An nth-order Bezier curve (see for instance [Boé84}) is denoted by B,(z) and
given, forallte [0,1] by

B,w=(Zizie[0.n]:(DI(1—"p;),

where py up to p, are its control points. First we consider B;(7). In order to

42

More control points -85

find suitable 8-distribution functions for this curve, its parameter function is
rewritten in the affine invariant form of property 1.4.

By(x)

= { definition of 2nd order Bezier curve }
(1-)?po+2t(1-1)py +°p,

= { calculus }
PoH1=(1-0°)1~ P+ (P2-P1)

The blending functions in the above expression are symmeltrical (see property
3.36) and hence it suffices to find an 8-distribution function for the blending
function F;(x)=7%, 7€ [0..1]. F; is multiplicative (definition 3. 32), multipli-
cative 8-distribution functions F} 1,z however, with }'1(1)=hmF‘ (t) do not

exist, This follows from the fact that F” W)= =7 implies Fy, k(r) ’r and conse-
quently, F;,*(k)ﬂ/l? This last fact oomradxcts with property 3.11, since distri-
bution functions are non-negative on their domain. Fortunately, by
reparameterising the curve, a way around may be found. . B

Ba(7)
"= { reparameterisation with 6=1 }

 poH(1~(1-V5)2)(p1 ~ porro(pz—p1)

The new blending functions, however, are neither symmetrical nor multiplica-
tive. A second attempt o cast the Bezier form in a more manageable affine
form is done by choosing new control points r;; this results in different blend-
ing functions. If the new control points r; are chosen as follows,

ro=Ppo
ry=po+2(p1~po)
r2=pa,

B, is given by

By (1)
= { calculus }

ro+Vo (1 ro)Mo(r,—ry)

These new blending functions are multiplicative but not symmetrical.
Nevertheless distribution functions for these blending functions can be found
(see property 3.37) and are, for instance, given, forall ie [0..k] and ke IN,
by

Jou)=i
Hx@)=0
These functions, however, do not fulfill the requirement for consecutive weav-

ing, Fox(k)=F (k). They can be changed according to the same property
3.37t0

Extensions of w-curves

Soull)=2i
)=k

and these functions are such that, according to property 3.11Qa), Fgu(k) =
Fya(k) = k(k+2).
A similar deduction for a third order Bezier curve results in

B3(v)

= { definition of 3rd order Bezier curve }
(1= po+3e(1-1)? py +3e%(1-1)p,+1° Py
= { calculus }

Po+H(r — o HT(F— T 4T (F3—T2)

= { reparameterisation with o=1" }
ro+o7 (= Fo)+os (=T Ho(rs—rs)

with

To=Po

r1=po+3(p1—Ppo)

r2=po+3(p2—p1)

r3=ps.
From property 3.37 we can see that these functions can be generated by the fol-
lowing primitive functions.

Fouxy=[Cou xj,].

Fra()=[C1:xVx]

Foux)=[Cayx]

for appropriate values of C; 4. F g (k)=F 1 x(k)=F 2 ,(k) can now be established
by choosing:

1
Cop=—7
"kl
C]’k = 1
Cori=kVk
Given a primitive function the corresponding distribution function can be
readily computed (see definition 3.10 of primitive functions) by

Fou(O)=F; (0
ﬁ‘g(l‘)zF;’g(!‘)—F;.g(f—1)—1, foriefl..k]

In figure 4.10 the results of using these distribution functions are shown.

4.3

4.3 Canonical w-curves 87

Po

P

@ ®)

Figure 4.10: Example 4.8
Bezier curves obtained by simultaneous weaving,

Canonical w-curves

In the previous sections the weave operator is applied 10 compute a discrete curve
from a set of control chains. Distribution functions are used to control the final result
of weaving. Independent of what distribution functions are chosen, some relations
between the control chains and the resulting chain after weaving can be stated.

Consider the following situation: let ¢; be control chains, forie [0..n); we say the
codes of chain ¢; have colour i, Let r. be the result of weaving the control chains ¢;
using a given set of distribution functions. The chain r, has the following two pro-
perties.

(a) The chain r. equals ¢; after all codes of colours different from i are removed.

(b) The colouring of r, is independent of the actual codes in the control chains, It
is, however, influenced by the length of the control chains.

Hence, the chain r, can be construcied from the colouring s of r. and the control
chains ¢;, by replacing, according to (), all codes of colour i by the codes of chain ¢;.
Note that according to (b) the chain ry, for control chains d; with id; =l !, can also
be constructed from the colouring s of r.. For control chains d; with Id;1<igl, s
can also be used to compute ry; this is simply accomplished by lengthening the
chains d; 10 the length of chain I¢; | by means of the lengthen operator. This does in
general not result in exactly the same chain ry (not even after removing the added 8-
codes); the corresponding continuous curves, however are the same.

Hence, the chain s may be used to compute (an approximation of) r, for all control

4.9

4.10

88 Extensions of w-curves

chains d; with dji< lgl.
Below a definition of a discrete curve based on the colouring of a chain is given; such
a colouring is called a canonical chain,

Definition : canonical chain

A canonical chain s (of order ») is a finite sequence of colours, elements of
[0..n]. Anelements; of a canonical chain is called a colour code.
O

Definition : canonical weave curves

Given a canonical chain s containing » colours and N codes of each colour;
given the control points p; ((ef0..n]) with lbresh8(p;y-p)isN
(ie[0..n), the canonical weave curve CA(pg,p1, “ ", Pa,S) of order n is
defined as the discrete curve DC (p, e) with the point p and the chain e given by

P=pPo

(Vk jitke[0.151) Ase=i A#(s,0,k)=j:e(k)=¢;())
~ with ¢ =lengthen(bresh 8(p;.1—p)) (e [0..n)).
O

Computation of a canonical weave curve of order » takes the following steps:

(0) colour mix selection
computation of a canonical chain s with » different colours and isi=nN. This
may be done using a w-curve algorithm but other methods are also allowed, N
should at least be the size of the largest possible control chain. This may be
considered as a preprocessing step; it needs to be done only once.

(1) geometry computation
Compute the control chains and make them of length N with the lengthen
operator.

(2) chain construction ,
Replace every colour code in s with the next code of the (lengthened) control
chain of the same colour.

The preprocessing may be relatively expensive, the steps (1) and (2), however, have a
computational complexity linear to N.

We come to the following conclusions.
(1) Canonical curves make the inefficient weave algorithms worthwhile,

(2) In fact canonical curves are an abstraction from weave curves, since all kind of
algorithms can be used to generate a canonical chain of colours.

4.3 - Canonical w-curves 89

(3) The use of the lengthen operator 10 obtain a chain of length N seems inefficient
in memory usage and seems to introduce overhead in computing the chain.
However, the memory usage is relatively small compared to that of the frame
buffer. The overhead introduced by lengthening the curve to length N may be
reduced by storing also canonical chains of length N/2, N/4 etc. This solution
only doubles the memory usage but limits this overhead to the length of the
control chain.

50

51

S

Filling of closed discrete curves

Introduction

In this chapter an algorithm for drawing the interior and the boundary of a closed
discrete curve is given. For this purpose a well-known scan-conversion algorithm for
polygons is adapted. (See for instance, [Fol90]). Iis general principles are as fol-
lows.

(a) compute all intersections of the polygon with all (relevant) scan lines and sort
these intersections for every scan line from left to right.

(b) fill the scan lines between the found intersection points according 1o some
filling rule. Several of these rules exist; the non-zero winding rule is used here.
Another well-known rule is the even-odd rule.

Different from normal scan line filling routines is that there is no need for computa-
tions of intersection points; hence, no problem with inaccurate computations. It is
suitable for every discrete curve. It resembles more polygon filling using edge coher-
ence, in that it efficiently computes the intersection point with the next scan line.
Moreover this algorithm is suitable for processing chains since it uses all codes once
and in the sequence as they occur in the chain,

Filling a closed discrete curve

First of all we define the notion of incidence of a discrete curve and a horizontal scan
line. A discrete curve is incident with a scan line if it has points on the scan line., An
incidence may be an intersection. A curve intersects a scan line if it has points both
below and above the scan line. An intersection may be described with a 6-tuple con-
taining the following items:

- i, j: the indices of the first and last point on the scan line ,

- min, max: the x-coordinate of the leftmost and rightmost point on the scan line

- y: the y-value of the scan line

- d: the direction of intersection: d e { up, down }

An incidence is also described by such a 6-tuple. It can take one other form, namely a
local maximum or minimum, in these cases dir is kor. Figure 5.1 shows all the three

91

5.1

52

2 Filling of closed discrete curves

possible cases for an incidence with respect to its direction.
The formal definition of incidence given below uses the expression dir(e,) to indi-
cate the direction of the code ¢(j mod lcl); dir is defined as follows.

Definition : dir (¢, j)
For all chains c and all je Z dir(c, J) is defined as follows.
up ifvy(e(jmodlcl)=1

dir(e, jy=1 hor ifvy(c(j modlel))=0
down if vy(c(jmodicl))=-1

|

Definition : incidence
An incidence of a discrete closed curve DC (p, €) with scan line yis a a 6-tuple
@, j, min, max, y, d) with

ie[0.lel) Aje(i.o)
min,maxe 2
de {up, hor, down}

and

dir (¢, iythor A (Vk ke (i.j) tdir(e, ky=hor) A dir(c, jyzhor

min=min{ py+p.(c.)lke (i..j1}
max=max{p,+pe(c, k) ke (i.j]1}

dir(e,i) if dir(c, i)=dir(c,)
4=1 hor if dir (¢, i) #dir (¢, J)

O

“Horizontal closed discrete curves, curves with points on only one scan line, have

according to the above definitions no incidences. Computing of the interior and the
boundary pixels of a horizontal curve is trivial. In the algorithms below only non-
horizontal curves are considered. '

First an algorithm is given for computing all incidences of a discrete curve DC (p, ©)
with the scan lines with numbers y in a given integer interval, say [0..Y]. This
algorithm also sorts these incidences per scan line y on their x-coordinates in a list
S[y] of incidences.

5.1 Filling a closed discrete curve 93

N
«{;_ \ [T
i' AN \ ¥ wed
¥ I wed ¥ f""z T ped B
- » -
wed | 4 N wed) | g
L/ L/
min ~ max min mex min max
@ ' ®) ©

Figure 5.1: three types of incidences
(a) intersection with d=up
{b) incidence with d=hor
(¢) intersection with d=down

Hence, with predicate R given by

'R All incidences 7 of DC(p,c) withLie [0.. lel)
andlye [0..Y], areadded to S.

we can write down the following invariants.

P Allincidences ! of DC(p,¢) withlie [0..i)
andlye [0..Y], areaddedto §
Py dir(c, i)zhor n(Vkike (i..j) vdir(c, k)=hor)
P; min=min{p+ps(c.)lke (i..j1} A
max=max{px+pslc. k) [ke (i..j]}
P, (xy)=p+pc.))
The assumption that the curve DC (p, ¢) is not horizontal implies that at least two
codes in ¢ have a non-horizontal basic vector. Using the invariants P; we come to the
following program for the calculation of the array S. In it we use the procedure
Add_incidence_to_S that is informally specified by

add_incidence_to_S({i, j, min, max, y, d)

53

94 Filling of closed discrete curves

i, (x, y) =0, P
dodir(c, i)=hor -
(x,y):=(x,y)+v(c;);
S =il
od;
(x, y):=(x, y)+v(c;);
jemin, max:=i+l, %, x; { PAPy, }
doi<ic|->
ifdir (¢, j)=hor—
(x, ¥) :=(%x, Y)+V(Cjnoan);
if min>x—min:=x [l max<x—max:=x fi;
je=j+1
Ddir (¢, j)#hor—
ifdir(c, i)#dir (¢, j)— d:=hor
ldir(e, i)=dir(c, j)—>d:=dir (¢, i)
fi; is an incidence }
{ Po-2 Adir(c, j)#hor=> (i, j, min, max, y, d)
add_incidence_to_S (i, j, min, max, y, d);
(x, ¥) :=(x, y}+V(Cimodn):
i, j, min, max:=j, j+1, x, X
fi{PAP, ;)
od {R)}

After computing the incidences we can start filling the curve. As mentioned before
the non-zero winding rule is used for determining which points are inside the curve
and which are not. The rule can roughly be stated as follows:
a point p is inside a closed curve if the number of intersections of the curve
with a half line starting at p, differs from zero. The number of intersections is
counted by adding 1 if the half line is intersected in one direction (up) and -1 if
it is intersected in the other direction (down).
In our case this half line is chosen to be a horizontal half line starting at the point p
and going to the left. Our definition of winding number can, hence, be given as fol-
lows.

Definition : winding number for points

A winding number wnr (x,y) for a point (x, y) is defined as

wnr(x,y) = .
(N1:1isanincidence in S{y] A L.min<x A l.dir=up)

(N1:1isanincidence in S[y] A L.min<x A l.dir=down)

54

55

5.1 - Filling a closed discrete curve 95

Figure 5.2 illustrates the notion of winding number. Notice that in the point set
DC (p, ©) both points with a non-zero winding number and points with a zero wind-
ing number can exist. Using winding numbers the region of a curve DC(p, ¢) is
defined as follows.

Definition : region

region (p, c):={ (x.y) € Z*|wnr(x,y)#0} uDC(p, ¢)
|

It is sufficient to know winding numbers at the leftmost points of incidences, since
the points inbetween two succesive leftmost points have the same winding numbers.
Instead of using winding numbers as defined above, we therefore define winding
numbers for incidences and use these new numbers for computing a region. A wind-
ing number for incidences is defined as the winding number of its leftmost point
(min, y). If two incidences on the same scan line, however, have the same min, the
value of their winding number depends on their order in the list S [y]; remember that
the list S [y] of incidences is sorted on min. In the next definition we denote With #L.
the number of elements of the list L. For convenience sake we define a winding
number for a non-existing incidence L[#L }; for (closed) curves this winding number
is always 0.

wnr 0 0 O
wnri 0 1 0 -1 0
span L — - -

Figure 5.2:

Definition : winding number for incidences

For the j-th incidence (j € [0..#L]) in a sorted list L of incidences the winding
number wari(L, j) is defined by

wnari(L, j)=
(Nk:kel0.j) ALlkldir=up)

(Nk:ke[0.j) ALlk)dir=down)

5.6

5.7

96 - Filling of closed discrete curves

The winding numbers of incidences are such that if (x, y) lies between two begin
points of consecutive incidences with the scan line y, the winding number of (x, y) is
the winding number of the rightmost incidence. Using this property of wari a span is
defined as an interval of points on a scan line. A span is a 4-tuple (i, j, min, max). It
starts at incidence S{y][i] and ends at an incidence S[y][j]. The maximum and
minimum x-coordinates for the spans S[y}{i] and Sy 1/} are min and max, respec-
tively. The indices i and j are such that the scan line y lies for the x-coordinates in
[min..max] in the region (p, c).

Definition : span
A span of scan line y is a tupel (i, j, min, max) with

i< j<#S[y]
min, maxe 2

and

whri(S[yl, H)=0xa .
(Viske(i.jliwnri(S[y),0#0) A
wari(S[yl, j+1)=0

min=S8[yllil.min

a

The following property indicates that it suffices to compute and draw all spans for all
scanlinesye [0.Y].

Property :

region(p,ON{(x, NixeZ ~yel0.Y]}

{G»Iyel0..Y] A(Js:sisaspanofscanliney :xe [s.min..s.max])}
[}

An algorithm for computing spans and drawing them using the drawspan function is
given below. It consists of two nested loops one over all scan lines and one over all
incidences of the scan line with the curve. The invariant for the outer loop is given
by

Q The spans of the scan line with numbers in [0..y) are drawn
Awnri=0 ,

S§.1 Filling a closed discrete curve) 97

The invariants of the inner loop are;

P

Py
Py
)
P3

All spans s of scan line y with s.j € [0..j) have been drawn.
ie[0.]

wiriS[y1, i=0A (Vi ke (i..j] swari(S[yl,/)#0)
wari =wari(S[y1, j)

max=max{S[ylikl.maxikeli.j)}

y,wnri:=0,0;{Q]
do y<Y—

od

i, jo,max:=0,0,~inf; {(PAPyg;}
do j<>#S(yl—
s:=8 [yl [3];
if s.max>max —» max:=s.max fi
ifs.dir=up -»wnri:=wnri+l
l s.dir=hoxr —» skip
0s.dixr=down - wnri:=wnri-1

fi; (PoaPy APs;),)
ifwnri=0 — { (i, 3§, S{yl[i].min, max) is aspan}
drawspan{S({yl{i] .min, max, y);
i, max:=j+l, —inf
fi;
ji=3+1 {PAaPgy}
od;
y:=y+l {Q}

The above algorithm can be improved to draw less points by adding a variable which
keeps track of which part of the current scan line has already been drawn. This
prevents that a pixel is drawn twice by drawspan. The time complexity of the total
algorithm is dominated by the number of pixels which must be drawn by the
drawspan functions. The number of times a drawspan function is called is majored
by the number of incidences.

6

Thick Curves

6.0 Introduction

Page description languages, e.g. PostScript [Adobe] , use drawing primitives like
lines, circles, Beziers etc. These languages often not only support the rendering of
these primitives but also the rendering of thick versions of these primitives; that is
the same primitive, but drawn as if a brush of some form and a given thickness is.
used instead of a pen; a pen is a brush with thickness one pixel. Two standard forms
for brushes are a circle and a rectangle. If a circular brush is used, a mathematical
description of a thick curve of thickness d reads: the set of points with distance at
most d to a point on the original curve. The original curve is called the center curve.
If a rectangular brush is used a mathematical description of such a thick curve is the
set of all points within a perpendicular distance d of the center curve. These two
descriptions are not equivalent as can be seen in figure 6.1.

(a (b)
Figure 6.1 border of a thick circle segment
(a) circular brushed (b) rectangular brushed

Several techniques exist for drawing thick primitives. Three are discussed shortly
below. A more detailed summary of these and other methods is given in [Fol90] .

(0) For some primitives like circles and lines a thick curve can be drawn by filling
between an inner and outer primitive, which both might happen to be a drawing
primitive. However, for some primitives, like ellipses, the inner and outer
curve are hard to compute and are certainly not drawing primitives.

99

6.1

100 Thick Curves

(1) Another technique often used is based on transforming the primitive to a poly-
line representation and subsequently drawing the thick edges of the polyline as
filled rectangles. Several ways of filling the cracks between the rectangles exist,

() An elegant method for circular brushing discrete curves is given in [Pos89] . It
is based on drawing a filled circle for each pixel on its center curve and is suit-
able for all curves given by a 4- or 8-connected chain.

Notice that a circular-brushed curve is a rectangular-brushed curve with at the end-
points, if any, a filled circle. For this reason, only rectangular brushing is considered
in the sequel, In this chapter an algorithm for drawing a thick representation of a
center curve, using a rectangular brush, is given. The center curve may be any
discrete curve and in contrast with the method in [Pos89] the set of pixels forming
the thick curve will be generated in horizontal spans instead of pixel for pixel. The
algorithm computes the two curves at distance d of the center curve and uses the fill
algorithm as given in the previous chapter for filling a region between these curves,
called offset curves. Offset curves are not only of interest as an intermediate result in
computing thick curves but also play a role in design of e.g. fonts. In [Far89] a
method is given for approximating the offset curve of a conic curve by another conic
curve,

In section 6.1 we give an algorithm for producing the offset curves. In section 6.2
this chapter is concluded with an algorithm for computing thick curves.

Offset curves

Let C be a continuous curve with n(x, y) for every point (x,y)e C a normal vector of

- C with given handiness, assuming that these normal vectors exist. An offset curve

OC at distance d of C can now be defined by

OC={{(x,yydn(x, N lxy)eC} (00)

Another offset curve can be obtained by subtracting dn(x, y) rather than adding it to
(x,y). For some continuous curves offset curves can be readily computed; for others,
they are rather complex. Circles, for instance, have circles as offset curves; the offset
curves of ellipses (see figure 6.2), on the other hand, can be shown to be 8-th order
polynomials ([Fol90] attributes this result to [Sal96])

Our concern is not with continuous curves but with discrete curves (given by chains).
The above definition of offset curves cannot immediately be extended to discrete
curves since the notion of normal vectors is not defined for discrete curves. There are
only 4 basic vectors of Euclidean length 1. In order to have more possible directions
we ignore the length requirement for discrete normal vectors and only require that
they are perpendicular to the discrete curve. In section 6.1.2 we define what we con-
sider to be perpendicular to a discrete curve.

Let n,(c, i) be a discrete vector along a normal vector of a chain ¢ and let it be a

6.1.2

6.1 Offset curves ’ 101

Figure 6.2 an ellipse and its two offset curves

vector of approximated length 4. A definition for a set of points OD, similar 1o the
definition of OC may now be given by

OD = {p(c, iyrnglc, D}ic [0.. 1c1]}. . OD)

Notice that OD is in general not a connected set and hence, not a discrete curve. In.
section 6.1.3 interpolation schemes are given to make the set 0D connected.

Discrete normal vectors

In this section a definition is given for normal vectors of points on a discrete curve.
Considering the continuous curve obtained by connecting the points of a discrete
curve by straight line segments, it is obvious that in most of these points a (continu-
ous) normal vector does not exist.

Supplying a normal vector for every edge of a discrete curve can easily be done by
rotating the basic vector n/2 radians. Using these normal vectors for the computation
of offset curves, however, does not give the desired result since we are interested in a
discrete representation of a continuous thick curve. Hence, the normal vectors have
to be defined in such a way that they resemble the vectors dn(x, y) of equation (OC).
This can be done in several ways, since a discrete curve is a discretisation of an
infinite number of continuous curves.

In the definition below a discrete normal vector for a point on a chain is defined by
rotating an approximation of a difference vector, which plays the role of a tangent
vector, by n/2 radians. This rotation is accomplished by adding 2 to every code
involved (see example 2.2). For most points p(c, i) the difference vector is simply
given by p(c, i +n)~p{c, i—n), for some appropriate n. For points near the beginning
or end of the curve this definition must be slightly adapted. In the definition below a
closed curve is also considered as a special case.

102 Thick Curves

6.1 Definition : (discrete) normal vector

For all chains ¢, ie {0.. Icl], and n € IN,, a normal vector n(c, i) of order n at
the i-th point p(c, i) of chain ¢ is defined by
n(e, i) =(Zk:ke [max{0,i-n} . min{ict,i+n}) tRv(c)))

where R is a rotation over n/2 radians.
For closed chains ¢ the definition reads

ne, D=(Zkike[i-n.. i+n) RO Comodic))
W]

The choice of the order n of a normal vector is influenced by the following two argu-
ments.

(1) If we choose to use normal vectors of low order, the number of distinct vectors is
limited and so the number of directions these vectors can point in, is limited (sce
figure 6.3).

Py

=i

@ (b)
Figure 6.3 possible directions for normal vectors in octant 0
(a) normal vectors of order 1
(b) normal vectors of order 2

Let m be this number of directions in octant Q. An angle of at least 2r/(8m) radians
between adjacent directions exist, Notice that the largest gap between two adjacent
directions is dircctly related to n and given by arctan (%), the angle between (1,0)

and (2n, 1). Hence, the Euclidean distance of these vectors after scaling them to
length d, is majored by the arc length 4 arctan ("21?):7‘1"*0(;13—)‘ Hence, the max-
imum distance of adjacent points on the offset curves becomes smaller if n becomes

larger.
The behaviour of m for n—so0 is given by the following number theoretic result (see
for instance (Bak841) (ged (i, j) denotes the greatest common divisor of i and j)

m=(NG, j):G, j)eOy AiS2n A ged(, j)=1)=%{2n)2+0(n10g(n))

6.1 - Offset curves ‘ 103

(2) By choosing a large order the discrete normal vector may differ more from the
expected normal vector in that point. In case of a circle this effect cannot be
observed, since the difference between every two points on this curve is a "good”
approximation for normal vectors in the point in the middle. In figure 6.4 the effect is
demonstrated for a curve other than a circle. This effect is most annoying if it occurs
at the beginning of a (not-closed) chain.

Figure 6.4 : normal vectors of different order in start point of the curve

Argument (1) and (2) contradict each other and in practice a compromise must be
made between resolution measured in the number of possible normal vector direc-
tions and accuracy in approximating the 'true’ normal. For most cases values of n
near 10 turn out to be adequate.

A normal vector n(c, i) of order n may well be (0, 0) according to its definition. To
prevent this we require that the chain ¢ is a smoothed chain (see section 3.4.) and
adapt the definition of a normal vector such that if the normal vector is (0, 0) accord-
ing to the definition 6.1, the largest order normal vector of order smaller than n, and
different from (0,0), is chosen. Such a vector clearly exists if the chain is smooth.

6.1.2.1 Scaling of discrete normal vectors

Scaling a discrete normal vector n(c,) to the vector ny(c, i) of approximately length
d may be done by simple floating point arithmetic. Using integer arithmetic it may
be done by computing a table of scaled vectors as a preprocess and, subsequently,
applying a simple table lookup. This table should contain an entry for all (4n+1)? -1
possible normal vectors of order n. Using symmetry the size of the table can be
reduced to (2n+43)n, the number of points in {(, H]ie(0.nlAje[0.i]}.
This preprocessing can simply take place by comparing all possible normal vectors to
points on a discrete circle with radius 4 and storing the closest point in the table.

104 Thick Curves
6.13 Interpolation

The set of points OD of an offset curve, which can be generated given the scaled nor-
mal vectors ny(c, I), is in general not a connected set. Hence, we need to add points
to it to make it a discrete curve. These points are added by interpolating the points of
OD. Several interpolation schemes can be used, the most obvious of which are:

interpolation with line segments and interpolation with circle segments. Both
schemes can be implemented easily.

6.1.3.1 Line segments

Interpolating the points of OD with line segments is done by computing the chains
bresh 8(q;—qo). where q; and g are two points in OD belonging to two consecutive
points of the curve, The concatenation of all these chains forms a discrete curve for
an offset curve at distance d. If the gap between qp and q; is big, interpolation with
line segments does not look nice. Moreover linear interpolation does not accord with
the fact that we compute normal vectors in the end points of the edges and not on the
edges. Indeed the offset curve of an edge is a straight line while, on the other hand an
offset curve for a point is a circle.

6.1.3.2 Circle segments

Interpolating two points qp and ¢; on an offset curve with a circle segment is ambi-
guous, since an infinite number of interpolating circle segments exist. In our case we
can simply choose the following solution (see Figure 6.5): let po=p(c,i) and
pi=p(c, i+1) be the points on the center curve comesponding to qp and q;, respec-
tively, on the offset curve. From the (integer) scaling method as described above, we
know that ¢;—p; is a point on the circle with center (0, 0) and radius d. Let € be the
chain segment representing the circle arc between qp—po and q;—p;. We can use the
chain €wic;], or any other combination of the same codes for interpolating go and
q;. By choosing this specific combination ¢; is inserted somewhere in the middle of €
and so a situation is obtained in which the offset curve in g is a circle segment of a
circle with center py and radius d, in qq it is a circle segment with center py. This
situation fits in perfectly with the fact that we compute the normal vectors on the
points of the center curve and not on the edges of its chain. '

6.2 Thick curves 105

90

& offset curve

center curve

., -~
., o
......
........
.............

Figure 6.5 : interpolation in an offset curve using circle segments

6.2 Thick curves

A seemingly obvious algorithm for drawing thick curves takes approximately the fol-
lowing steps: V

algorithm1:

{a) compuic the offset curves

{(b) produce a closed curve by concatenating the offset curves; that is, add the
lines joining the begin and end points of the offset curves to the begin
and end point of the center curve, respectively.

(c) fill this closed curve.

At first glance, this algorithm seems to work properly. Indeed, in many cases this
method yields a correctly drawn thick curve. And by using the scan conversion algo-
rithm of section 5.1 for filling a closed discrete curve, it is even a fast method. As we
show in some examples below, it is, however, not a correct solution in general.

Firstly we show an example which demonstrates that only knowing the offset curves
is not enough for correctly producing a thick curve by filling the area between the
offset curves.

Consider a circle with radius r. The inner offset curve belonging to the thicknesses
d<r equals the inner offset curve for thickness 2r—d (see figure 6.6). Giving just
these curves to a filling algorithm would yield at least for one of these two cases an
incorrect solution. This clearly shows that offset curves contain not enough informa-
tion.

106 Thick Curves

Figure 6.6:
(a) circle with radius r and the same inner offset curves
for the thicknesses 4 and 2r—d. '
(b) filled between center curve and offset curve for thickness d
(¢) as(b) for thickness 2r—d

As a second example showing the failure of filling between offset curves, we use a
center curve which is a concatenation of two quarter circles with radius r, as shown
in figure 6.7(a). Computing its offset curves results in the curves of figure 6.7(b).

@ «)
Figure 6.7:
(a) centercurve
(b) the corresponding offset curves; the gray areas should be brushed
but are not in the area bounded by the offset curves.

Filling these offset curves again produces the wrong result. The two gray areas in the
figure should have been drawn, but clearly are not.

From this example we conclude that offset-curves do not (always) determine the
complete boundary of the corresponding thick curve.

If in the above examples the thickness for the curves is chosen smaller than the radius
of curvature for every point on the center curve, algorithm I works fine.

6.2 Thick curves 107
621 Computing thick curve

The basic flaw in algorithm I is a result of the fact that it does not use information on
which points on the center curve and offset curve are associated. This had for
instance the effect that the gray areas in figure 6.7 were, incorrectly, not drawn.
Algorithm I circumvents this flaw by filling two quadrangles for each pair of con-
secutive points on the center curve: one on each side of the center curve, If the center
curve points are pg and p;, and their respective points on one of the offset curves are
qo and q;, the quadrangle is formed by the curve segments pop; . p19q;, the interpola-
tion of q; and qg, and qppg.

In algorithm I we denote with inpol{qg,q;) the interpolation of two points on the
offset curve as given in either section 6.1.3.1 or 6.1.3.2. The code ¢;;+4 is the code
with as basic vector the vector v (¢;y) rotated over x radians (see example 2.2). With
Jill (p, ¢) a fill procedure is denoted that fills the closed discrete curve DC(p, ¢), e.g.
the algorithm given in chapter 5.

Below algorithm 11 is stated preceded by its postcondition R and two invariants Po
and Py.

R the center curve DC (p, ©) is drawn with thickness 4

Po the center curve DC (p, [e(0) - - - ¢(i—1)]) is drawn with thickness d
Arie[0.. icl]

Py po=p(c, i) A go=Po+ny(c, i) A Tg=po—nglc, i)

algorithmII;

i, pg:=0, pi
Qos Fo:=Potng (¢, 0), po—nalc, 0}; Py AP}
doi<ijc|—
Pi, Qi Fpi=potvie(i)), prtng(c, 1), pp—ngic, i)
€, ¢y :=bresh8 (py, Qo) - bresh8(q;, p1);
£il1l(py, co®inpol{qp, Q1) ®C1® [C11+4]);
fill (pll 01®inp01 {rg, rl) ®Cy ® [01_1] ¥
i, PorQor Foi=itl, p1, qu, N {Po APy }
od {PyAi=]c]| :hence,R}

This algorithm lacks the flaw of the algorithm 1, it has, however, the disadvantage
that it contains numerous calls to the fill routine, whereas the first algorithm contains
only one such call. Thus algorithm I is efficient but wrong, where algorithm II is
inefficient but correct. We combine the two algorithms in order to obtain an efficient
and correct algorithm.

Algorithm I is more efficient since it fills larger regions; a way for making algorithm
II more efficient is by diminishing the number of areas to be filled while still the
same points are drawn. For a small curve the quadrangles that are filled by algorithm
II are drawn in figure 6.8(a). In 6.8(b) as many as possible consecutive quadrangles

108 Thick Curves

are joined into larger closed curves without loss of interior points.

(a) ®
Figure 6.8:
(a) the quadrangles between the center curve (@) and its offset curves.
(b) as (a) but with as much as possible consecutive quadrangles joined.

This reduces, in this example, the number of areas from 8 t0 4. In the sequel we give
some rules for indicating when two quadrangles may be joined.

Let region(D) with D a discrete curve DC (p, ¢) denote the set region(p, ¢). We
define the sum of two closed discrete curves C and D by given its region as follows.
(With war (C, x, y) we denote the winding number war (x, y) with respect to the
discrete curve €)

region(C+D):=DuUCuU {(x,y) e Z* | wnr (D, x. yrwnr(C, x, y)#0}.

Notice, that the region of C+D is the same set as obtained by the algorithm in the
previous section if the lists of incidences of C and D are merged (per scan line).
Stated otherwise,

wnr(C+D, x, yy=wnr(C, x, yy+wnr (D, x, y).

We distinguish 3 types of curves. A curve of type 1 is a curve with all the winding
numbers of its interior points larger than 0. For type -1 all the winding numbers of
the interior points are smaller than 0. Finally, for type 0 both points with winding
numbers larger than 0 and points with winding numbers smaller than zero, exist in
the interior. In figure 6.9 quadrangles of these 3 types are shown.

The following property holds for curves of the same non-zero type.

region (C+D)=region (C) L region (D).

6.2 Thick curves 109

| | |

__.//‘— m ,{”}‘ B _.//‘_ B

T T P

I | |

@ ®) ©
Figure 6.9 quadrangles of type -1 (2), 0 (b), and 1 (¢}

Hence, two curves may be added without loss of interior points if they are of the
same non-zero type.

We use this property for joining consecutive quadrangles in the thick curve algo-
rithm. :

qy | inpol

Yk+1

bresh8

Py

P+t
Figure 6.10 : quadrangle Q (k)

First we define the discrete curve Q (k) as the kth quadrangle in the thick curve algo-
rithm H (see figure 6.10):

Q(k):=DC (P41, d ® bresh 8(qx+1,Pr+1)) With
dy:=[c,+4] ® bresh 8(py,qy) ® inpol (Qy, Qis1)

forke [0..1¢l]. Notice that if Q (k) and Q (k-+1) are of the same type and the chain
e, is given by

€= inpol (Qr+1,qe+2) ® bresh 8(qus2,Pre2) @ [Cr41H,
the following holds.

6.2.3

110 Thick Curves

region(Q (k)+Q (k+1))

:egion (Q (kyroregion(Q (k+1))

region(DC (P41, de ®€4)),

The last equal-sign is based on the fact that the chains bresh8(qi41.pr+1) and
bresh 8(pi.+1,9x+1) cancel each other out in the computation of war.

Hence we can compute a discrete curve with the same region as the sum of consecu-
tive quadrangles of the same non-zero type. We use this in algorithm HI by filling
this discrete curve instead of the individual quadrangles.

Determining the type of a quadrangle

Determining the type of a quadrangle may be done by checking for possible inter-
secting sides of the quadrangle. We ease this task by dividing the quadrangle along a
diagonal in two triangles. From the types of these triangles we compute the type of
the quadrangle. The types of the triangles may be simply determined since no inter-
sections occur. In contrast with the definition of type of a curve, as given above, we
say that a triangle has type 0 if its three vertices are collinear.

Let £; and ¢, be the types of the so obtained triangles. The following algorithm now
determines the type 1 of the original quadrangle.

ifti=t2 - ti=tl
Dt1#t2 At2=0 - ti=tl
Oti1zxt2 Aatl=0 - ti=t2
Jtiz~t2 - t:=0
fi

The algorithm

In this section we give an algorithm for computing thick curves, by filling sets of
consecutive quadrangles. The algorithm is simplified in two ways;

(1) only one half of the thick curve is drawn;
(2) the computations of the center curve points p,=p{c, i) and the offset curve
points q;=p;+ny4{c, {) are left out.

Algorithm II does not contain these simplifications and may be used to complete
algorithm III.

Invariant Py indicates that the first j quadrangles are already filled. P, asserts that
the quadrangles Q () upto Q (i-1) are bounded by the chain ¢ and bresh 8(q;, p;)-

6.2. Thick curves 111

P, filledarea=(U k:kel0..j) :region(Qk))

ajef0.lctl aniel0.1cl]
Py region(p,c®bresh8(q.p)y=(Vkikelj. i) regwn(Q(k)))
P, t=type of region(p;,c ® bresh 8(q;.p;))

algorithm IIT :

i,3:=1,0;
c:=[cp+4] ®bresh8 (py, §o) ®inpol(qe, q1);
t:=type of Q(0);
doi<|c|—
tq:=type of Q(i);
ftgrtvig=0—
£i1l(p;, c®bresh8(q;, p;)):
= [¢;+4] ®bresh8(p;,q;) ®inpol{q;,qis1):
t,ji=tq, i
lte=t Atgz0—
=[c;+4] ®c®inpol (qi, Gis1)
fi;
fe=i+l
od; {Po, ad=lc]| }
£i11(p;,c®bresh8{(q;,p:};:
Ji=i {Pypai=ic] }

P, is kept invariant as can be seen by checking that the follov}ing is also an invariant
of the loop.

c=rev({Ilk:ike[j.i) ile+4]))
® bresh 8(p;.q;)
O(Mk:kelj..i) s inpol (qu.qe1))

The results of the above algorithm are ambiguous; on the one hand the algorithm pro-

duces correctly drawn thick curves, on the other hand it is not as éffective as one may

hope for. Typically the performance improvement over algorithm II is only 25%;

that is 25% less fill operations are performed. However, both discrete curves with a

100% improvement and discrete curves with 0% improvement exist. The lack of

performace improvement can be explained by

(1) if for strongly-bended curves one quadrangle is of a non-zero type, its neigh-
bour on the other side is most likely a zero-type quadrangle.

(2) The discrete normal vectors form, because of their inaccuracy a quadrangle of
type O where their continuous counterparts would not.

Hence, part of the solution lies in improved computations of the normal vectors. This
can for instance be obtained by using a curve at a higher resolution for computing the
normals of a curve at normal resolution. Another possible improvement lies in
smoothing the offset curve. Note that in smoothing always the relation between a

112 Thick Curves

point on the center curve and its offset points must be known in order to guarantee a
correct thick curve. The latter method has two advantages firstly the number of zero-
type quadrangles becomes less and secondly the borders of the filled area become
smoother.

7

Final remarks

With chain coding all discrete curves can be described. This enables one to treat
discrete curves, independent of the flavour of the curve ("Bezier’, "Hermite’, circle,
etc.). This is illustrated in the algorithms for linear transformation, computation of
offset curves, computation.of thick curves, and filling a closed curve; all of these are
presented in this thesis. Where these algorithms merely serve to process existing
discrete curves, the main part of this thesis is concerned with the formal specification
of discrete curves called w-curves and with algorithms for rendering these curves.
The curves fulfill a mild condition conceming tangency with its defining control lines
(spanned by its control points). The main difference with ordinary curve discretisa-
tion algorithms is that the latter are based upon a continuous curve definition.
(Although, indirectly, w-curves are also based on such a definition, since its
definition is based on Bresenham’s line discretisation algorithm.) Despite their
discrete nature, there exist w-curves that are discretisations of, for instance, second
order Bezier curves or ellipses.

@ ®
Figure 7.1: two curves not representable by w-curves

Not every continuous function has a w-curve as its discretisation; see figure 7.1(a) for
a curve that violates the condition that the w-curve should lie within the parallelo-
gram spanned by the control points. Which curves within the bounds of a parallelo-
gram are w-curves is to be investigated, but clearly curves as in figure 7.1(b) are not
among them.

As we saw in chapter 3, the rendering of w-curves can only under certain conditions
be done in a time linear to the length of the control chains. These conditions were
met in the definitions of e-curves. For simultaneous weaving a similar definition as
for e-curves accomplishes linear complexity. For consecutive weaving, however, we

113

114 v Final remarks

did not give such a solution, but instead referred to the notion of canonical chains,
which is a general solution for keeping the time complexity linear for discrete curves
of a certain flavour. Another way to achieve this linear time complexity is 10 elim-
inate the 8-codes each time the weaving operaior is applied. The resulting curves can
be computed in linear time but do not have the nice property that a closed formula for
their continuous counterparts is known. As an alternative so-called index chains are
introduced in [Nie91] ; index chains use run length encoding on the 8-codes in a
chain. The computations for consecutive weaving of index chains can also be done in
linear time.
The algorithms concerning chain coding as given in this thesis have three properties
which facilitate implementation in hardware.
(a) They use only simple integer arithmetic, i.c. addition, subtraction, and shifting.
(b) They have simple structures; typically one loop in which per step of the itera-
tion one code of the input or output chain is handled.
(¢c) They can easily be partitioned in building blocks. These building blocks are
used, for instance, for generating a chain for a line or the weaving of two input
chains.

l WERVE]

l bresh8 | I bresh8 , { bresh8 r l bresh& l

Figure 7.2 : building block structure for consecutive weaving

Figure 7.2 shows a possible configuration of such building blocks for the computa-
tion of consecutive weave curves. However, considering the fact that all codes gen-
erated by the lower blocks in the tree arrive at the root block, a pipeline structure
would be more appropriate with respect to load balancing. In [Nie91] these and other
considerations are elaborated for consecutive weaving on a transputer network.

70

115
Current and future research

In this thesis we only consider chains in a two dimensional rectangular grid which is
either 4-connected or 8-connected. For other regular grids, be it a higher dimensional
grid or one with another connectedness, the curve algorithms as given in this thesis
can be applied. In all these cases discrete line algorithms can be used for producing a
chain representation of a control line; to these chains the same weave and add8
operations can be applied. Hence, extensions, for instance curve algorithms on a 3
dimensional grid, are straightforward. Extending to surfaces, however, is not so
straightforward, since chains essentially can represent only 1-dimensional objects. In
{Ove90] and [Bri%0] a bilincar surface definition is given based on four boundary
curves given by chains, Since this surface definition depends on boundary chains, all
methods for chain modelling can be applied to model the boundary chains and,
indirectly, the surface. A surface modeller, called pret, based on these principles is
discussed in [Ove91] . The usefulness of prer as a surface modeller remains to be
investigated.

In [Maa90] an integer algorithm is given for computing a chain for a Bezier curve of
arbitrary order. The algorithm is based on computing a linear combination of chains
representing Bezier curves; so a chain of a Bezier curve of higher order is obtained.

In [Lie87] the notion of closeness is introduced; closeness is a measure for the accu-
racy by which a discrete curve approximates a continuous curve. The closeness of
w-curves with respect to their corresponding continuous curves remains to be investi-
gated.

In chapter 3 and 4 distribution functions are given for circle and ellipse segments,
second order Bezier curves, and third order Bezier curves. For some curves it would
be nice to compute distribution functions; for others applying canonical chains seems
to be a much more realistic approach. The computation of these canonical chains is
in general far from obvious; some further research is required here.

Summary

In this thesis applications of chain coding in the realm of computer graphics are dis-
cussed. Chain coding is a technique developed in image processing for representing
a discrete curve, a connected set of pixels, by a chain of codes representing the
sequence of difference vectors between consecutive pixels. In this thesis chain cod-
ing is not only used in processing discrete curves but also in defining discrete curves.

In design continuous curves are ofien modelled by means of control points indicating
the global shape of the curve. The shape of the curve depends also on the flavour of
the curves, e.g. Bezier curves, Hermite curves, B-splines eic. The curves, defined in
this thesis and called w-curves, are also modelled by means of control points. The
flavour of a w-curve is determined by, so-called, distribution functions: a discrete
parameterisation scheme. The chain of a w-curve consists precisely of the codes of .
the chains belonging to the, so called, control lines: line segments connecting con-
secutive control points. The order of these codes in the chain for a w-curve is deter-
mined by the distribution functions. The w-curves are tangent to the first and last
control line. The usefulness of w-curves is readily indicated by the fact that they can
be used to represent, among others, (discretisations of) ellipses, and second and third
order Bezier curves.

Algorithms for rendering w-curves are given. These algorithms use only simple
integer arithmetic. For the efficient computation of higher order curves the notion of
canonic chain is introduced. In a canonic chain the order of the codes of the control
lines is stored; the actual generating of the chain for the w-curve is reduced to pro-
ducing the codes in that given order. This is a general approach, which may be used
outside the realm of w-curves.

The use of chains for the representation of discrete curves allows for algorithms that
are applicable for all discrete curves and not only for curves of a specific flavour. In
this thesis algorithms for discrete curves are given for the following.

- linear transformation
- computation of offset curves
- computation of thick curves
- filling a closed curve

These algorithms use only simple integer arithmetic and typically have one loop in
which per step of the iteration one code of the input or output chain is handled.

117

. Samenvatting

In dit proefschrift worden applicaties van chain coding in het vakgebied van de
computergrafick besproken. Chain coding is een techniek voor het representeren van
een discrete curve, een samenhangende verzameling pixels; deze techniek komt
oorspronkelijk uit de beeldverwerking. Een chain is een rijtje codes; ieder van deze
codes representeert een richting in het discrete viak. In dit proefschrift wordt chain
coding niet alleen gebruikt voor het verwerken van discrete curven maar ook voor het
defini€ren van discrete curven.

Voor het modelleren van discrete curven worden vaak de zogenaamde stuur- of
controlepunten gebruikt; deze punten geven de globale vorm van de kromme weer.
De vorm van de curve wordt ook bepaald door de soort curve; bijvoorbeeld Bezier
curven, Hermite, B-splines etc. De curven, genaamd w-curven, die in dit proefschrift
worden gedefini€¢erd worden ook gemodelleerd door controlepunten. De soort curve
wordt echter bepaald door een discreet parameterisatieschema met behulp van de
zogenaamde distributicfuncties. The chain van een w-curve bestaat precies uit de
codes van de chains van de bijbehorende controlelijnen: lijnsegmenten die de
controlepunten verbinden. De volgorde van deze codes wordt bepaald door de
distributiefuncties. W-curven raken aan hun eerste en aan hun laatste controlelijn.
Het nut van w-curven laat zich afmeten aan het feit dat met w-curven onder andere
(discretisaties) van ellipsen, en tweede en derde order Bezier curven gerepresenteerd
kunnen worden.

Algoritmes voor w-curven worden gegeven. Deze algoritmen gebruiken slechts
eenvoudige integer aritmetiek. Voor het effici€nt berekenen van hogere orde curven
wordt het begrip canonieke chain ingevoerd. In een canonicke chain wordt de
volgorde van de codes van de controle lijnen vastgelegd; het uiteindelijke renderen
van de chain is dan gereduceerd to het produceren van codes in deze gegeven
volgorde, Deze aanpak is ook algemener dan louter voor w-curven toepasbaar.

Het gebruik van chains voor het representeren van discrete curven staat een algemene
algoritmische aanpak toe; algoritmen zijn niet langer slechts voor een soort curven
toepasbaar maar voor alle door chains gerepresenieerde discrete curven. In dit
proefschrift worden in dit kader algoritmen voor discrete curven gegeven die het
volgende bewerkstelligen: lineaire transformaties, berckenen van offset-curven,
berekenen van dikke curven, het vullen van gesloten curven. Al deze algoritmen
gebruiken slechts eenvoudige aritmetische bewerkingen en bestaan typisch uit een
lus waarin iedere keer een code van de invoer of uitvoer chain wordt afgehandeld.

118

Dankwoord

In het bijzonder een dankwoord voor Kees van Overveld met wiens steun en
inspirerende ideeén dit proefschrift zijn huidige vorm en inhoud heeft gekregen,
Verder ook een speciaal dankwoord voor Marloes van Lierop voor het nauwkeurig en
gezet lezen van eerdere versies en voor Rens Kessener de projectleider van het STW
project "Datastructuren voor rastergrafiek” waarbinnen dit proefschrift zijn aanvang
vond.

Dank aan mijn promotoren Dieter Hammer en Frans Peters voor hun opmerkingen
die dit procfschrift door het laatste stadium hebben geholpen.

Dank aan mijn ouders aan wie ik dit proefschrift opdraag en aan wie ik alles.te
danken heb,

Dank aan Marja Nuys voor haar organisatietalent en haar aangenam{ gezelschap.

Dank ook aan al mijn collega’s voor het scheppen van een fijne werksfeer en aan
mijn vrienden voor de aangename tijd die ik buiten de universiteit hebk doorgebracht.

Dank aan allen die zoveel geduld met mij hebben gehad.

119

Curriculum vitae

11-08-61 geboren te Olland.

1973-1979 Gymnasium-f aan het Jacob Roeland Lyceum te Boxiel,

1979-1985 Wiskunde studie aan de Technische Universiteit Eindhoven.

1985-1989 Project medewerker van het STW-project "Datastructuren voor rastergrafiek”.
1989 - Universitair docent aan de Technische Universiteit Eindhoven.

120

References

Adobe

Bak84

Boe84

Bre65

Bri%0

Cou89

Far89

Fol90

Fre61

Fre61

Fre69

Fre74

Lie87

Maa%0

-Adobe Systems mcorporatéd, PostScript language reference manual,

Addison-Wesley, June 1990, 16th printing

Alan Baker, A concise introduction to the theory of numbers, Cambridge
university press, Cambridge, 1984,

Wolfgang Boehm, Gerald Farin, and Jurgen Kahmann, “*A survey of
curve and surface methods in CAGD,” Computer Aided Geometric
Design, vol. 1, pp. 1-60, 1984.

JE. Bresenham, ‘‘Algorithms for Computer Control of a Digual
Plotter,”” IBM Systems Journal, vol. 4, pp. 25-30, 1965.

van den Brink and Timmermans, Discrete bilinear blending (revisited),
1990. Intemal report, Eindhoven University of Technology

Courant, Richard and John, Fritz, Introduction to calculus and analysis,
Springer, Berlin, 1989,

Gerald Farin, **Curvature Continuity and Offsets for Piecewise Conics,”
ACM Transactions on Graphics, vol. 8, no. 2, pp. 89-99, April 1989.
James D. Foley, Andries van Dam, Steven K. Feiner, and John F.
Hughes, Computer Graphics: Principles and Practice, The systems pro-
gramming series, Addison-Wesley, 1990. 2nd edition

Herbert Freeman, *‘On the Encoding of Arbitrary Geometric
Configurations,”” IRE Transactions on Electronic Computers, pp. 260-
268, June 1961.

H. Freeman, ‘‘Techniques for the digital computer analysis of chain-
encoded arbitrary plane curves,”” in Proceedings of the National Elec-
tronics Conference, vol. 17, pp. 421-432, Chicago, 1961. (
Herbert Freeman, “* A scheme for the efficient encoding of graphical data
for communication and information processing,”” in Advance in Elec-
tronics, proceedings of the 16th electronics congres, pp. 340-348, Rome,
24-27 March 1969.

Herbert Freeman, ‘‘Computer Processing of Line-Drawing Images,”
Computing Surveys, vol. 6, pp. 57-97, March 1974,

Marloes van Lierop, Digitisation Functions in Computer Graphics, Ein-
dhoven, 1987. Ph.D. Thesis, Eindhoven University of Technology

C.A. van der Maas, C.W.AM. van Overveld, and HM.M. van de Weter-
ing, An integer algorithm for rendering Bezier curves, 1990. Submitted
for publication in CAD

121

122

-Mor85

Niedl

Oved0

Ovedl

Pos89

Rud76

Sal%6

Wu82

References

Michael E. Mortenson, Geometric Modeling, John Wiley & Sons, New
York, 1985,

AL, Niessen, Consecutive weaving on a transputer network, 1991. mas-
ter thesis, Eindhoven University of Technology

C.W.AM. van Overveld, ‘*Discrete bilinear blending and its application
in rendering curved surfaces,”’ Computer Aided Design, vol. 22, no. 6,
pp. 332-343, August 1990.

C.W.AM. van Overveld, Analysis of the pret system, Februari 1991,
Intemal Report, Eindhoven University of Technology

K.C. Posch and W.D. Fellner, ““The Circle-Brush Algorithm,”” ACM
Transactions on Graphics, vol. 8, no. 1, pp. 1-24, January 1989,

Walter Rudin, Principles of mathematical analysis, Mathematical series,’
McGraw-Hill, 1976.

Salmon, G, A Treatise on Conic Sections, Longmans, Green, & Co.,
London, 1866. 10th edition

Li-De Wu, *‘On the Chain Code of a Line,”’ IEEE Transactions on Pat-

tern Analysis and Machine Intelligence, vol. PAMI-4, no. 3, pp. 347-
353, May 1982,

Index

lel

Lxl . [%1. [x]
®

LAC)

(discrete) normal vector
add8

affine invariant
basic vector

bresh8

bresh4

Cs, Cy

canonical chain
canonical weave curves
center curve

control chain .

CE

§-chain

complete set
concatenation of chains
S-connected set
continuous curve
cw

D,

DC(p,¢)

Dy, Dg

discrete curve
dir(c, j)

distribution function
e-curve

e-curve, nth-order
end(c)

filt

incidence

inpol

length of a chain
lengthen

limit of a sequence of chains

multiplicative

14
12
14
15
102
39

13
23,25
27
13
88
88

35
73,84
13
49
14
10

56
39
15

11

39
72

15
167
92
107
14
71
51
58

123

8-neighbour

octant

offset curve

P(m)

P()

p(c.)

§-path

primitive function
region

rev{c)

simultaneous weave operator
Sf

smooth chain

span

subclass

subclass for e-curves
symmetrical

n-tangent

type of a curve

v, Vi

W,

W(p()! P, pZ’fv g)
W(sf. Sg)

w-curve

weave operator

winding number for incidences
winding number for points

10
22

100
- 10

15
14
10

95
14
82
49
47

49
72
58

108

13
79
44
49

35
95

Am Grunde der Moldau wandern die Steine

Es liegen drei Kaiser begraben in Prag

Das Grosse bleibt gross nicht,

Und klein nicht das Kleine.

Die Nacht hat zwéif Stunden dann kommt schon der Tag
Dann kommt schon der Tag.

Bertold Brecht, Das Lied von der Moldau / Happy End (1929)

Algoritmen voor het genereren van w-curven op een regelmatig rooster zijn
onafhankelijk van de connectedness van dat rooster.

(dit proefschrift - paragraaf 3.6.2)

De continue varianten van w-curven zijn affien invariante curven.

(dit proefschrift - paragraaf 3.5)

Het gebruik van een canonicke chain als repmsemant van een klasse discrete
curven biedt een flexibel altemnatief voor het implementeren van een curve-
discretisatie algoritme,

(dit pmcfschnﬁ - paragraaf 4.3)

Het in dit proefschrift veelvuldig gebruikte lijnalgoritme van Bresenham is
beter dan "close": het wordt gekarakteriseerd door de constanten 1/2 en 3/4 in
formules ¢d0 en cd1 in (1) in plaats van 1en 1. o

(1) Digitisation functions in computer graphics, Marloes van Lierop,
Proefschrift Technische Universiteit Eindhoven, pagina 12.

Door het toevoegen van boolean labels aan de zijden van de opgedeelde
drichoeken is het algoritme in (2) aanzienlijk efficiénter te maken.

(2) A consistent algorithm to fill triangles and triangular patches, CW.AM.
van Overveld & M.L.P van Lierop, Proceedings of the European Computer
Graphics Conference and Exhibition, 1986.

Voorzover de problemen zoals die beschreven zijn in (3) ten aanzien van
consistentie van operaties op een geometrisch model van stochastische aard
zijn zullen zij zich in versterkte mate voordoen bij het animeren van zo'n
model.

(3) Computational Geometry and Software Engineering: Towards a
Geometric Computing Environment, AR. Forrest in Techniques for
Computer Graphics edited by David F. Rogers and Rae A. Earnshaw.

10.

11

12,

Een mensenmaatschappij gebaseerd op schaarste is inherent hi€rarchisch.

De cijfers voor het aantal dierslachtingen in Nederland ten behoeve van de
vleesproduktic (in 1988: 6.000 paarden, 455.000 schapen, 1.100.000
runderen, 1.100.000 kalveren, 20.800.000 varkens en daamaast nog
485.000.000 kilo pluimvee) maken vegetarisme eenvoudig verdedigbaar,

(4) Statistisch Jaarboek 1990, Centraal Bureau voor de Statistiek.

Een semantische beschouwing doet vermoeden dat "overheid” en "overhead”
etymologisch verwant zijn.

De verslaving van de modeme westerse mens aan visuele prikkels heefi
onnodige milieuvervuiling tot gevolg.

Het steeds vaker gebruiken van ’s’ als meervoudsuitgang zal er voor zorgen
dat pils in het ziekenfondspakket opgenomen wordt.

Er is geen reden om naast limmermah woorden als timmervrouw of
timmermens t¢ bezigen daar man ook mens betekent; het lijkt echter toch
nuttig om ook vrouw in de betekenis van mens te gebruiken.

(5) van Dale, Groot Woordenboek der Nederlandse Taal.

