

Chain coding in computer graphics

Citation for published version (APA):
Wetering, van de, H. M. M. (1991). Chain coding in computer graphics. [Phd Thesis 1 (Research TU/e /
Graduation TU/e), Mathematics and Computer Science]. Technische Universiteit Eindhoven.
https://doi.org/10.6100/IR362619

DOI:
10.6100/IR362619

Document status and date:
Published: 01/01/1991

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://doi.org/10.6100/IR362619
https://doi.org/10.6100/IR362619
https://research.tue.nl/en/publications/4a430f29-edfe-4d40-a12e-588903525081

Chain Coding in
Computer Grapbics

o-o

/ ' 0 0

6 t
~ ?
0 0

6 6
"" / 0 0 x

0 0

/ "' 0 0
t t
0 0

t 6 t ~
0 0 ' / o-o

Huub van de Wetering

Chain Coding in

Computer Grapbics

Chain Coding in
Computer Grapbics

Proefschrift

ter verkrijging van de graad van doctor aan de

Technische Universiteit Eindhoven. op gezag van

de Rector Magnificus, prof. dr. J.H. van Lint,

voor een commissie aangewezen door het College

van Dekanen in het openbaar te verdedigen

op vrijdag 22 november 1991 om 16.00 uur

door

Hubertus Martinus Maria van de Wetering

geboren te Olland (NBr)

druk: wibro dissertatiedrukkerij, helmond,

Dit proefschrift is goedgekeurd
door de promotoren
prof. dr. dipl ing. D.K. Hammer
en
prof. dr. F.J. Peters.

copromotor :
dr. ir. C.W.A.M. van OveiVeld.

Aan mijn ouders.

These investigations were partly supported by
the Netherlands Technology Foundation (STW).

Contents

0 Introduetion 1
0.0 Moûvaûon ... 1
0.1 Research position 4
0.2 OveiView 4
0.3 Notations 5

1 Basic Definitions 7
1.0 Introduetion 7
1.1 Continuons CuiVes 7
1.2 Discrete CuiVes 9
1.3 Chain coding .. 12

2 Linear Transformations of Discrete Curves 17
2.0 Introduetion 17
2.1 Linear transfonnations of discrete cuJVes 17
2.2 Bresenhru:n's line algorithms ... 22
2.2.1 The 8-connected case 22
2.2.2 The 4-connected case 26
2.3 Integer approximation of linear functions ... 28
2.4 Integer approximation of bilinear functions on a discrete cuiVe 30

3 W-curves .. 33
3.0 Introduetion .. 33
3.1 Problem De fini ti on 33
3.2 Operators on chains 35
3.2.0 The weave operator 35
3.2.1 The add8 operator 39
3.3 W -cuJVes 44
3.4. Smoothing of w-cuJVes ... 46
3.4.0 Local smoothing ... 46
3.4.1 Global smoothing ... 49
3.5 W-cuJVes: the continuous case ... 51
3.5.1 Blending functions .. 57
3.5.2 A subclass consisting of circle and ellipse segments 60
3.6 Algorithms for computing w-cuJVes .. 63
3.6.0 Algorithm for weaving ... 63
3.6.1 Algorithm for add8 ... 64
3.6.2 Algorithm for computing the pixel set of a w-cuiVe 65

3.6.2.1
3.À

4
4.0
4.1
4.2
4.2.1
4.2.2
4.3

5
5.0
5.1

6
6.0
6.1
6.1.2
6.1.2.1
6.1.3
6.1.3.1
6.1.3.2
6.2
6.2.1
6.2.2
6.2.3

7
7.0

Contents

A linear algorithm 70
Appendix ~.. 74

Extensions ofw-curves ... 75
Introduetion .. 15
Panuneterised w-curves 75
More control points 78

Consecutive weaving 78
Simultaneous weaving .. 82

Canonical w-curves 87

Filling of closed discrete curves ... 91
Introduetion .. 91
Filling a closed discrete curve 91

Thick Curves 99
Introduetion 99
Offset curves 100

Discrete nonnat veetors .. 101
Sealing of discrete nonnat veetors 103

Interpolation .. 104
Line segments .. 104
Circle segments 104

Thick curves ... 105
Computing thick curve ... 107
Detennining the type of a quadrangle .. 110
The atgorithm ... 110

Final remarks 113
Current and future research .. 115

Summary ~ ... 117

Samenvatting... 118

Dankwoord.. 119

Curriculum vitae... 120

Referenees.. 121

Index ... 123

0

Introduetion

o.o Motivation

A part of computer grapbics is concemed with displaying geometrical objects on out·
put devices, such as monitors and printers; this is referred to as renderlng. The
mathematica! description of such objects is called modelling. In this thesis the
objects of interest are curve segments. Curves are commonly-used objects in both
computer aided design (CAD) and desk top publishing (DTP), and much literature on
curves exists, handling both the modelling as well as the rendering.

In this thesis the problems we tackle for curves are modelling and rendering. Unlike
most other approaches that define curves in continuons space, we choose discrete
curves as a starting point. Discrete curves are used, e.g. in pattem recognition,
where they occur naturally, because of the discrete initial phase of most problems in
that field. From pattem recognition we also obtain the notion of chain coding
[Fre74] , the way in which discrete curves are described in this thesis. One reason for
using discrete curves for image synthesis is that this approach dismisses the need for
conversion from continuons space to discrete space. Another reason is that discrete
curves automatically bring along the benefits of integer arithmetic over ftoating point
arithmetic. These benefits are staled in the sequel.
Below a short introduetion to continuons curves and discrete curves is given. Both
introductions are divided in a mathematical description (modelling) part and a
rendering part. As in the rest of this thesis only continuons curves in R2 and
discrete curves in Z'2 are considered. Nevertheless, the vast majority of the
definitions and properties is straightforwardly generalised to R" for arbitrary n.

Mathematical Descriptions for Continuous Curves. A continuons curve may be
given by a continuons one-parameter function. In case of polynomial curves of
degree n this parameter function takes the following form.

p(u)=a0 +ua1 + · · · +u"a11 (ue[O,l])

with a; e R 2
• This form of writing a parameter function, called the algebraic form,

does not give an intuitive feel for the shape of the curve: there is no obvious relation
between the coefficient-vectors a; and the shape of the curve. This can be improved
by using the, so called, geometrie form:

2 Introdudlon

p(u)=Fo(u)po+F ,(u)p, + · · · +F,.(u)p,. (u e [0, 1])

with p; e R2 and F; e [0, 1]-t R. This fonn is called a geometrie fonn since, for
well-chosen functions F;, a geometrie interpretation may be given to the points p;.
These points then are called control points and the functions F; are called blending
functions.
Below we show two examples for n=3.

1) The points Po and p1 are the end points of the curve, and Pz and P3 are the
derivative veetors of the curve in the end points. This results, in case of poly­
nomial curves, in the cubic Hennite curves.

2) The points p0 and P3 are the end points ofthe curve and p1-p0 and p3-Pz are
tangent to the curve. This is the case of the cubic Bezier curves.

The control points p0 up to p,. fonn the characteristic polygon of a curve. A very
useful property for modeling a curve, is that the shape of the curve is independent of
the orientation, size, and position of the characteristic polygon; this property is
futtilled if a curve is affine invariant. A curve is affine invariant if the blending tune­
tions sum to 1, for all u e [0, 1].

Rendering of Continuous Curves. Nowadays this is practically equivalent to rasteri­
sation of curves; that is, computing a pixel set repcesenting a curve on a raster. The
existent algorithms are only suitable for curves of a special form. Famous examples
are: Bresenham's straight line algorithms [Bre65] , the midpoint circle algorithm
[Fol90] , and De Casteljau's algorithm [Boe84] for rendering Bezier curves.

Mathematica/ Descriptions for Discrete Curves. The notion of discrete curve is the
analogy in % 2 of the notion of continuous curve in /R2

• A discrete curve may be
described by a starting point and a string of relative veetors as shown in tigure 0.1(a).

(a) (b)

FigureO.l:
(a) a discrete curve
(b) encoding of the veetors
(c) the corresponding chain

[11010000776554]

(c)

Such a string may be represented by a string of numbers, each of which denotes one
of the relative veetors (see figure O.l(a) and (b)); this string of numbers is called a
chain and the numbers are called codes. Hence, a chain and a staning pointforma

0.0 · Motivation 3

mathematica! description of a curve. From the modeling point of view, it is, of
course, not a handy one. For discrete curves, a more compact description and one
more suitable for modeling purposes, may be obtained by using control points (in
Z 2). In this thesis wedefine a large class of discrete curves, which may be specified
by control points. These curves, called w-curves, are defined in discrete space and
are, hence, not directly related to curves in continuous space. lf a w-curve is given
by control points Po up to p,., its definition uses the chains, called bresh (p;-PH)
associated with the line segments Pi PH• for 0< i~ n, together with a so-called weav­
ing operator .!:!! for combining these n ebains into one chain. In chapters 3 and 4
several useful definitions for such an operator .!:!! are given. For all these definitions
the operator _!:!! mixes the codes of the ebains bresh(pi-Pi-t) (O<i~n) in a well­
chosen order.

The notion of affine invariance cannot be used in discrete space; e.g. rotations of
discrete curves can only be done correctly for angles that are a multiple of 90
degrees. It is shown, however, that w-curves can be related to continuous curves that
are invariant under affine transformations.

Rendering of Discrete Curves. The rasterisation of discrete curves is relatively easy.
If a discrete curve is given by a chain c and a starting point p, the pixels may be
found by staning at p and adding the veetors betonging to the elements of the chain
one after another. lf the curve is a w-curve, the corresponding chain and staning
point can easily be computed, as we will see in chapter 3.

Continuous versus discrete curves. We already indicated that curves are commonly
used in both CAD and DTP. The use of curves in CAD, if used in combination with
computer aided manufacturing (CAM), is restricted to continuous curves. This is due
to the nature of the required result: a model in fRl or IR?. However, the discrete
curves, as defined in this thesis, can be related to continuous curves, as will be shown
in chapter 3. For DTP the required result is an image on a raster device. In this case
the advantages of discrete curves as stated below may be used to their full extent

• discrete curves have relatively simple rendering algorithms.

• The algorithms for discrete curves use only integer arithmetic, which is not
only faster than floating point arithmetic but can also be realised easier in
hardware. Furthermore integer arithmetic allows for exact operations; hence,
there is no need for elaborate numerical analysis on the robustness of the algo­
rithms.

• Since all discrete curves can be represented by a chain and a point, a unilied
algorithmic approach is possible. Instead of having several algorithms for, e.g.,
filling a (closed) discrete curve or computing an associated thick curve, one
algorithm that . is based on the representation by ebains and points, suffices.
Among these algorithms are also algorithms for linear transformadons of
discrete.curves.

4 Introduetion

0.1 Research position

The work presented in this thesis is inspired by the thesis "Digitisation functions in
Computer Graphics" of Marloes van Lierop [Lie87] . In her thesis van Lierop gives a
sound theoretical basis for digitisation in general and for digitisation of straight line
segments in particular. The latter was the motive to think about general curve digiti­
sation. Furthennore, the emphasis in van Lierop's work: on properties of geometrie
objects in discrete space resulted in this study of discrete curves.

For the representation of a general discrete curve the notion of chain coding, has been
introduced by Freeman in 1961 [Fre61] . This notion is still heavily used in the
realm of image processing. In computer grapbics (image generation) chain coding,
as is indicated in this thesis, also tums out to be a useful representation method.

Discrete curve generation algorithms have been a popular subject for investigation
ever since the introduetion of raster devices. In [Fol90] some well-known examples
of these algorithms are referenced. All these algorithms render a given continuons
curve. The algorithms given in this thesis, however, use chains, i.e. representations of
discrete curves, either to render or to generate other chains.

Finally, curve rnadelling is mostly done in continuons space. Summaries of the
results in this area may be found in for instanee [Boe84] or [Mor85]. In contrast the
rnadelling of the discrete curves defined in this thesis is based on a discrete approach
by the so-called distribution functions.

Concluding we can state that although the subjects in this thesis are well-known from
other investigations, the approach chosen bere is totally different from relevant other
work.

0.2 Overview

The remaioder of this thesis consists of 7 chapters. In chapter 1 the basic definitions
are given; the notions of discrete curves and chain coding are introduced bere. In
chapter 2 not only Bresenham 's line algorithms but also algorithms for linear
transfonnations of discrete curves given by chain codes are derived. Furthennore,
properties with respect to linear transformatloos of discrete curves are given.
Chapter 3 contains the main part of this thesis. In it operators on ebains are defined;
these operators are combined into a definition for discrete curves given by three con­
trol points. These discrete curves are related to continuons curves by computing them
for different resolutions and having this resolution to go to infinity. Chapter 3 con­
clodes with some algorithms for computing the so defined discrete curves. In chapter
4 the themes of chapter 3 are extended for curves with more than 3 control points.
For this situation two new operators are introduced. The notion of a canonic chain is
introduced. Chapter 5 is a prelude for chapter 6; an algorithm is given for computing

O.l · Overview 5

the set of interlor points of a given closed discrete cu!Ve. In chapter 6 this algorithm
is used for computing thick versions of discrete cu!Ves. Offset cuiVes are also dis·
cussed in this chapter. Finally, some concluding remarks are made in chapter 7.

0.3 Notations

SETS:
N 0 the set of non·negative integer numbers
NI the set of positive non· zero integer numbers
Z the set of integer numbers
R the set of reals
[a .. b]={ieZ laSi::>b}
[a .. b)={ieZ laSi<b}
(a .. b)={ieZ la<i<b}
(a .. b] ={i eZ la<i::>b}
[x, y] ={re RlxSrSy}
[x,y)={re RlxSr<y}
(x,y) ={re Rlx<r<y}
(x, y] ={re R!x<rSy}

IS I denotes the number of elements of the setS.
A ~ B denotes the set of functions with domain A and reach B.

PREDICATE NOTATION:
(V i : R (i) : P (i))
(3 i : R (i) : P (i))

universal quantification
existential quantification

P ~ the predicate resulting from substituting in the predicate P

the expression E for x.

ARITHMETIC OPERATIONS:
(1: i: P(i) :fti)), max{fti)l P (i)}, min {fti)IP(i)}

the sum, the maximum, and minimum, respectively, offti)
for all i satisfying the predicate P (i).

(Ni : P (i)) the number of i's satisfying P (i).
Forxe R:

I x I absolute value
{x] rounding
LxJ the ftoor function.
r x l the ceiling function.

The operators div and mod are defined such that for ie Z and n e NI·
i =n(i div n)+i modn with i mod n e [O .. n).

6 Introduetion

VECfORS:
For pe IR? : p=(Px· Py).
I pi Euclidean Iength of vector p.
/p/=(/Px/./Py/)

CHAINS:
e
e; ore(t)
[823]
~

the empty chain
the ith code of chain c.
a chain with the codes 8, 2, and 3.
concatenation of n-times chain e.

p(e, i) the ith point on the chain e.
#c(C, i, j) the number of times the code c occurs in the subsequence

[c; ···ei-I] ofthe chain c.
I c I the length of the chain c (= the number of codes)
e ® d the concatenation of two ebains e and d
(ll i : R (i) : Ci)

the continued concatenation ofthe ebains c1 satisfying R(i)
for increasing i.

1

Basic Definitions

1.0 Introduetion

In this chapter we give definitions of the notions that are used in the subsequent
chapters. The most important definitions are those of discrete curves and chains.

1.1 Continuous Curves

We usually use reals to descrilJe the objectsin the real world (R 2 or R?) that we
want to conven to discrete objects on a raster device. One of these objects is a curve
segment in R 2

, which is defined in definition 1.1. A curve segment is henceforth
just called a curve. Note that only parameterised curves are considered.

1.1 Definition : continuons curve

0

A continuous curve C is a subset of IR2 that can be described by two continu­
ons one-parameter functions x and y e [0, 1] ~IR as follows

C={(x(u),y(u))lue [0, 1] }.

In case of polynomial curves of degree n the parameter functions x and y in the
definition of a continuous curve, take the following form.

(x(u),y(u))=a0 +ua1 + · · · +u"a" (u e [0, 1])

with a; e IR2
• This form of writing a parameter function, called the algebraic form,

does not give an intuitive fcel for the shape of the curve: there is no obvious relation
between the coefficient-vectors a; and the shape of the curve. This can be improved
by using the, so called, geometrie form:

(x(u),y(u))=Fo(u)po+F1(u)p, + · · · +F"(u)p" (u e[O, I])

with Pi e IR2 and F; e [0, 1] ~IR. This form is called a geometrie form since, for
well-chosen functions F;, a geometrie interpretation may be given to the veetors p;.

7

8 Basic Definitions

This may be done in several ways; below we show some examples for n = 3.

1) The points Po and p1 are the end points of the curve, and P2 and P3 are the
derivative veetors of the curve in the end points. This results, in case of poly­
nomial curves, in the cubic Hennite curves.

2) The points Po and P3 are the end points of the curve and PI-Po and P3-JJ2 are
tangent to the curve. This is the case of the cubic Bezier curves.

The points Pi are called control points and the functions Fi are called blending func­
tions.
The control points p0 up to p,. fonn the characteristic polygon of a curve. A curve
bas a very useful property for modeling if the shape of the curve is independent of the
orientation, size, and position of the characteristic polygon; this property is fulfilled
if a curve is affine invariant. An affme transformation A is a function in R 2

-.. R 2

that satisfies

(V x :xe /R.2 :Ax=t+Lx),

for some t e R 2 and some linear transfonnation L.

1.2 Definition : affine invariant
. 2

Let C (po. p1, • • • , p,.) be continuous curves, for all Pi e IR .
C (p0, p1, • • • , p,.) is affine invariant iff for all affine transfonnations A,

A (C (Po, PI• · · · , p,.)) = C (A (Po),A (PI), · · · ,A (p,.)).

D

The following two properties state relationships between affine invariancy and the
blending functions of the fonn in which a curve is given.

1.3 Property :

D

Let Pi e R? and blending functions Fi e [0, 1] -..IR. The continuous curves
given by

(x(u),y(u))=Fo(u)po+FJ(U)PJ + · · · +F,.(u)p,.,

for all u e [0, 1] , are affine invariant iff for all u e [0, 1] ,

(:Ei:ie [O .. n] :F;(u))=l.

Apart from the above mentioned geometrie fonn we also use the following fonn

(x(u),y(u))=po+F o(u)(pi-Po)+F 1 (u)(P2 -pi)+ · · · +F"_I(u)(p,.-p"_l).

Using property 1.3 we can now prove property 1.4.

1.1 · Continuons Curves 9

1.4 Property:

Continuous curves given, for u e [0, 1] by

(x(u),y(u))::::Po+F o(uXpt-Po)+F t(u)(P2 -pi}+ · · · +Fn-l (u)(p,.-Pn-t)

with p; e R 2 and F, e [0, 1]-+ R, are affine invariant
0

1.2 Discrete Curves

Befure defining the notion of discrete curves we need some introductory notions.

Elementsof .Z2 are called poims, and the coordinates of a pointpare denoted by Px
and Py. Multiplications of points with an integer and real factorand addition of two
points, are defined as usual in the vector spaces IR2 or .iZ2

• In Z 2 wedefine two
distance functions: D4 and D8• These functions are used, among other things, for the
definition of neighbourhoodship of pixels; D4 and D8 result in every pixel having 4
and 8 pixels, respectively, at distance 1. In the next definitions these functions are
defined on R 2 enabling one to make a more ftexible use of them.

1.5 Definition : D4, D8

0

For all p and q in R 2 the two distance functions D4 and D8 (both in
IR2 x IR2-+ IR) are defined by

D4(p, q):= I Px-Qx /+/ Py-Qy I
Ds(p, q):=max{/ Px-Qx /,/ Py-Qy I}.

In the remaining ofthis paragraph we use öe { 4,8} to make our definitions and pro­
perties valid for both the D4 and the D8 distance function. The properties 1.6(a) up
to (d) show that D8 is indeed a distance function.

1.6 Property :

0

For all p, q, re IR2 and all k e IR,

(a) D8(p, q)~ 0
(b) D8(p, q)=O iff p=q
(c) D8(p, q)=D6(q, p)
(d) Da(p, r)S D8(p, q)+ D8(q, r)
(e) D8(p+q, r+s)S D8(p, r)+D8(q, s)
(f) Da(kp, (0, O))=kDs(P. (0, 0))
(g) D6(p-q, r) =D11(p, r+q)

10 Basic Definitions

1.1 Definition : 8-neighbour

Two points p and q are called 8-neighbours iff D5(p, q)=l.
D

Figure 1.1 shows the ö-neighbours of a point.

{
r
~
{
{"" J

(a) (b)

Figure 1.1:
(a) the 4-neighbours of •
(b) the 8-neighbours of•

,.....
Y'"

,.....

1.8 Definition : ö-path

D

A sequence n=<po. · · ·, p11 _ 1> of points in ~2 is called aö-path iff

(V i : i e (0 .. n) : p; and PH are ö-neighbours)

A 5-path n= <po. · · ·, Pn-1 >is said tostart at Po and end at Pn-1·

1.9 Definition : P (n)

D

The point set P (n) of a 5-path n= <po. · · · , p11 _ 1 > is given by

P(n):={p;lie [O .. n)}

1.10 Definition : ö-connected set

A set Pc~ 2 is called connected iff

(V p, q : p, q E p :
(3 1t : 1t is a ö-path : P (n)ç;P and 1t starts at p and ends at q)

)

D

1.2 · Discrete Curves 11

1.11 Definition :discrete cuNe

0

A discrete CUIVe D is a connected subset of Zl2 that can be described by two
one-parameter functions x and y e [0 .. n] -+Zl as follows

D={(x(i),y(i))li e [O .. n)},

forsomen eZl +.
A 8-connected discrete cu!Ve is called a 8-cuiVe.

This definition bas been formulated in accordance with definition 1.1 of continuous
CUIVes. The notion continuityin "continuous one-parameter function", however, bas
been replaced by connectivity in "connected subset". In fact the parameter functions
in the definition of discrete cu!Ves are oot obliged, as may be seen from the following
property.

1.12 Property :

For all sets Dç;, Zl 2 the following holds.

D is a discrete cu!Ve
~

Dis a finite connected subset of Zl 2
•

Proof

D

~=
This follows directly from the definition of discrete cu!Ve.

<=:
Let D be a finite connected subset of Zl2•

Since D is a finite connected set, its points may be gathered in a path
1t= <po. · · · , p11> (n e Zl), such that P(1r)=D. (Note that in such a path some
points may occur more than once. Hence, n may be larger than I D 1.) The
parameter functions x and y forD may then be given by

x,y: [0 .. n] -+Zl with
x(i)=Pix and
y(i)=p;1 .

Hence, D= {(x (i),y (i))I ie [0 .. n] } is a discrete cuiVe.

In the conversion of a continuous cuiVe to a discrete one, rounding of reals to

integers is a frequently occurring action. Below we give the definitions and notations
for rounding and we state some properties.

12

u3 De&nition : LxJ. r xl . fxl

0

For all x e R we define,

(a) lxJ :=max{ieZ liSx}
(b) fxl :=min{ieZ li~x}
(c) [x}:=f x-~1

1.14 Property :

0

For all x eR and all ie IV0 ,

(a) OSx-lxJ < 1
(b) -1 <x-f xl S 0
(c) -Yl<x-[x}S th
(d) {i+x] =i+[x]
(e) x+Yze:Z =>[i-x]=i-[x}
(f) xe:Z =>f xl-LxJ = 1
(g) r -xl =-LxJ

1.3 Chain coding

Basic Deftnitions

In the previous paragraph we stated that a discrete curve can be represented by a
path. A path is an expensive representation of a discrete curve since it stores all the
coordinates of all the pixels in the curve. Two successive points in a path are neigh­
bours and hence storing the absolute coordinates of both is redundant; knowing the
first point and the relative position of every other point with respect to its predecessor
is enough to yield the corresponding discrete curve. The number of S-neighbours of
a point is l> and hence at most eight. These possible 8 neighbours are encoded with
the numbers 0 up to 7 according to tigure 1.2(a). Hence, a discrete curve can be
represented by a start point p and a chain (a sequence) of codes (the numbers 0 up to
7). This coding convention for discrete curves was introduced by Freeman [Fre61] in
1961, and he elaborated it in [Fre69] . Here we introduce a small extension to this
convention: we not only eneode each neighbour of a point p with a number but also
the point p itself; it is encoded by the number 8 (see tigure 1.2(b)). Below the formal
definitions of ebains and codes are given.

1.3 · Chain coding

(a) (b)

Figure 1.2: encoding of the basic directions in % 2

us Delinition : C4, Cs

C4:={0,2,4,6,8}
Cs:= { 0, 1,2,3,4,5,6,7,8}

13

11le elementsof C4 and C8 are called codes. An element i of C 8 is called ani-·
code.

0

Every i-code is related to a displacement vector v; according to the following
definition.

1.16 Delloltion : basic vector

0

The basic vectors, denoted by v; or v(i), ofthe codes i in C8 are given by

v3=(-l,l), v2=(0,l), v1=(l,l),
v4=(-l,O), vs=(O,O), vo=(l,O),
vs=(-1,-1), v6=(0,-l), v7=(l,-l).

1.17 Definition : khain

A 8-chain is a finite sequence of elements of C 8 •

0

Below we define the length of a chain. Notice that this length is not the sum of the
Euclidean lengtbs of the basic veetors of its codes, but merely the number of codes in
thechain.

14 Basic Definltlons

1.18 Definitlon : length of a ehain

0

1be length of a ehain c, denoted as I c I , is the number of codes in the sequence
;ofc.

A chain is denoted by either a bold face roman letter, typically in the range c to e,
and its i-th element is denoted by a subscript to such a letter, e.g. c;, or by c{i). A
sequence of ebains is also denoted by a subscript to this letter but in this case a bold
font is used for the subscript, e.g c1 is the i-th ehain in a sequence of chains. 1be j-th
element of ct is denoted by c1i or c1 U). Furthennore, square brackets are used as del­
imiters fora sequence of codes. Hence, a chain c can be notated by

c=[c{O)c(l) ·•• c{lcl-l))orc=[Coct ··· c1c1-tl·

1be empty cbain, the cbain with length 0, is denoted by e.

1.19 Definition : concatenation of ebains

0

The coneatenation of two ebains c and d, denoted by c 0 d, is defined by

{

c; ie [O .. Icl)
{c®d);:= di-lel ie [lcl .. lcl+ldl)

1be Product (fl i : i e [0 .. n) : ct) Of a sequence of ebains (C1), denOteS the
continued concatenation Co ®Ct® · · · ®Ca.t·

The ehain ~ is defined, for n e IV 1 by

~ := (n i :ie [0 .. n) : c).

1.20 Definition : rev(c)

0

For all ebains c the reversed cbain rev (c) of cis defined by

rev(c):= [C1c1-t c1c1-2 • • • Co I

1be individual points referred to by a ehain are given by the following definition.

1.21 Definition : p(c, i)

0

For all ebains c and all i e [0 .. I c I] the ith point on the cbain c is defined by

p(c,i):=('Ej:je [O .. i) :v(cj)).

1.3 · Chain coding

Notice that since the sumover an empty interval is zero, p(c, 0)=(0, 0).
'The total displacement vector end(c) of a cbain cis defined as follows.

1.22 Definition : end(c)

D

For all ebains c the end point end (c) is defined by

end(c):=p(c, lel)

1.23 Definition : P(c)

D

'The point set P(c) of a chain cis defined by

P(c):={p(c,i)lie [O .. Icl 1}

IS

In the introduetion of this section we introduced ebains as a way to represent,
together with a starting point, discrete curves. In the next definition we give this a
concrete foon by defining the notion DC(p, c), with pa point and ca chain, wbicb is
equally expressive as the notion of discrete curves.

1.24 Definition : DC (p, c)

D

For all p e .Z2 and all ebains c the discrete curve DC (p, c) is defined by

DC(p,c):={p+p(c,i)lie [O .. Icl 1}

1.25 Definition : #c(C, i, j)

D

For all ebains c, for all codes c and for all i,j e [0 .. I c I] with i S.j #c(c, i, j) is
defined by

#c(C, i,j) :=(N k: k E [i..j) : C,~:=c)

As an example for the above definition we can write: #c(c, 0, I c I) is the number of
codes c in the chain c~

2

Linear Transformations of Discrete Curves

2.0 Introduetion

In this section we present Bresenham's algorithms [Bre65] for approximating a line
segment by a discrete curve; the line segment is given by two points. Based on these
line algorithms algorithms for linearly transfonning discrete cutves are given. 1bese
two topics both come down to computing approximations of linear functions of one.
and two variables, respectively.
All algorithms use integer arithmetic only. Furthermore they consist of only addi­
tions, subtractions, and shifts.

U Linear transformations of discrete curves

If a discrete cutve D is the result of a rasterisation algorithm for the continuous
curves C(po, · · ·, p,._1) with PiE IR.2, it may be transfonned with a tunetion A in
R 2 ~ R 2 in the following two ways.

(1) A is applied to all the points of D. The result A (D) of this application is, hence,
defined by

A(D):= {A(p)lpeD}

(2) A is applied to the control points Pi of the continuous curve. The transfonned
control points A (Pi) are used by the algorithm to compute the rasterisation of
the cutve C (A (Po) •... , A (Pn-1)).

Here we consider affine transfonnations A. From definition 1.2 we see that affine
invariant cutves C{A (p0), ... , A(p,._1)) equal A (C(Po •... , p,._1)). Hence, for affine
invariant cutves the methods (1) and (2) lead to, possibly different, rasterisations of
the same continuous curve.

In image processing it may well be so that a discrete cutve is given, which cannot be
related to continuous cutves. let alone to cutves invariant under affine transfonna­
tions. In such a case the transformation of D must be done with the first method.

17

18 Linear Transformatioos of Discrete Curves

The main disadvantage of the first metbod is that the resulting set of points is oot
always a discrete curve. The conditions by which it is a discrete curve, are discussed
in the SC<~Uel.

Let A be a linear function in R.2-+ R 2• Let D be a discrete curve. From the
definition 1.11 of discrete curves we know that Dç; 1l? and that D is a connected
set. A (D), however, is oot necessarily a subset of Z 2• Hence, in general, A (D) is
oot a discrete curve. If, however, for all ie C8, the discrete curve { (0, 0), v;} is
mapped by the linear function A on a discrete curve, A (D) is also a discrete curve.
This is showo in the following propeny, both for 4- and 8-connected curves •.

2.1 Property :

For alllinear functions A the following holds.

Proof

=::>:

(V D: Dis a discrete S-curve: A(D) is a discrete &-curve)
<==>
(V i :ie C6 : { (0, 0), A (v (i))} is a discrete S-curve)

{ (0, 0), v (i)} is a discrete 8-curve and equals { (0, 0), A (v (i))} after applying
A to it; hence, according to the hypothesis, the last set is also a discrete 8-curve.
<::
Let D be a discrete &-curve.
We have to prove that A(D) is a discrete 8-curve and hence, that A(D) is a
finite connected subset of Z 2 (see propeny 1.12).

• A(D)~ Z 2
•

Porall peD~Z2

A(p)=pxA(v(O))+pyA(v(2))e Z 2 ,

since A is a linear function, v(0)=(1,0), and v (1)=(0,1).

• A (D) is a S-connected set.
For alO p, q e Dç;; Z 2 the following holds.

Da(p,q)S 1
=::> { definition 1.16 of v(i) }
(3 i : ie C3 : v (i)=p- q)
=::> { A is a linear function }
(3 i: i eC11 :A(v{i))=A(p)-A(q))
=::> { hypothesis: A (v {i)) and (0, 0) are S-neighbours or equal }
D11(A (p)-A (q), (0, 0))S1
=::> { propelty 1.6(g) }
D3(A (p), A (q))S 1

Hence, if <Po. · · · , Pn-1 > is a S-path in D, <A (po). · · · , A (P(n-t)> is a

1.1 , Linear transformatloos of discrete curves 19

6-path in A(D). Hence, D is konnected implies, that A(D) is 6-
oonnected.

0

'Ibis property can be applied to alllinear functions A that map v (i), for all ie C5, on
an element of { v (i) 1 i e C11 }. lf a discrete curve D is given by a chain code c and a
starting pointpas D=DC(p,c), the linearly transfonned curve A(D) can be given
by

A(D)=DC(A(p), d)

where the chain d is given by

d= (Di: ie [0 .. lel] : [a(c;)])

and a(c) is such that, for all codes c eC11, A (v(c))=v(a(c)).

2.2 Example :

0

(a) rotation over an angle ktt/2 (k e .Z).
In this case a(c) is given by a(c)=(c+2k)mod8.

(b) re Heetion in a line that bas an angle ktt/4 (k e Z) with the horizontal
axis.
In this case a (c) is given by a (c)= (2k- c) mod 8.

If A does not fulfill the requirements of property 2.1, a "good" approximation of
A (D) in Z 2 may be obtained by replacîng every point of A (D) by a nearest point in
Z 2 acoording to

{A(D)}:= {[A(p)}lpeD}.

In the next property we give a necessary and sufficient condition for [A (D)} to be a
discrete curve.

2.3 Property :

For alllinear functions A the following holds.

Proof

~=

(V D : D is a discrete o-curve : [A (D)] is a discrete 0-curve)
~

(V i : ie C6 : D 11(A (v (i)), (0, O))Sl)

For all k >0 the following holds.

kDa(A (v;), (0, 0))

20 Linear Transtormations of Discrete Curves

= { property l.6(f) of D3 }

D6(kA (v;}, (0, 0))
s { property 1.6(d) and (g) of D5 }

D~(kA(v/~[kA(v;)], (0, 0))+D3({kA(v;)], (0, 0))
s { property l.l4 of rounding and 1.6(d) and (g) of D5 }

1h+(:Ei: ie [l..k] : D11({iA(v;)}-{(i-I)A(v;)], (0, 0))
= { property 1.6(g) of D6 }

lh+(:EI:ie [l..k] :D6({iA(v;)],[(i-l)A(v;)]))
s { hypothesis and { i v i, (i -I)vi } is a discrete curve }
lh+k

I
Hence, D6(A (v;), (0, O))S I+ 2k, for all k eZ. Consequently,

D5(A (v;), (0, O))Sl.

<:=:
Let D be a discrete &-curve.
We have to prove that [A(D)] is a discrete &-curve and hence, according to
property 1.12, that {A (D)] is a finite 8-connected subset of /Z2

.

• {A(D)}ç,/Z 2

This follows directly from the definition of rounding.

• [A (D)] is a &-connected set.
Let p, q be two &-neighbours in D. First we prove that A (p) and A (q)
have a distance of at most 1.

true
~ { p and q are neighbours)
(3i:ieC8 :v(i)=p--q)
~ { A is linear }
(3 i: i eCs: A (v(i))=A (p)-A(q))
~ { hypothesis and property 1.6(g) }
D6(A (p), A (q))S 1

Using this we prove that [A (p)J and [A (q)J are neighbours.

true

~ { calculus }
Dr,({A(p)}, [A (q)J) = D3(A (p)+{A (p)}-A (p), A (q)+ {A (q)]-A (q))
~ { property 1.6(e) of D6 }

Dli({A(p)], [A (q)])S D3(A (p),A (q)) + D3({A(p)}-A(p), {A(q)j-A(q))
~ { the above result and property 1.14(c) }
D3({A(p)J, [A(q)})<2
~ { D6({A(p)/, {A(q)})eZ}
Dr.({ A (p)J, {A (q)})Sl

2.1 · Linear transformations of discrete curves 21

Hence, if <po. · · · , Pn-1 > is a path in D, <A (Po), · · · , A <P<n-1)> is a
path in {A(D)]. Hence, D is a-connected implies that ·A(D) is ö­
connected.

D

If we represent the linear function A by the matrix [~: Am] Au , [A(D)] may be

givenas

[A (D)]={ ({ xAoo+YAod, [A 10x+A nY]) I (x,y) eD}

and the requirement of the property 2.3 may be given as follows for an 8-connected
curve.

I Aool+l AmiS 1 " I A 10l+l A niS 1.

If we consider only 4-connected CUIVes this requirement can be weak:ened to

IAooiS 1AIA011S 1 "IA10IS 1AIA 11 IS 1.

That is, if D is a a-connected discrete curve, and A fulfills the respective requirement,
[A (D)} is a a-connected discrete curve.

2.4 Example :

'
(a) sealing with sealing factors at most 1.

(b) Rotation of 4-connected discrete curves.

D

In the subsequent sections we give algorithms for incrementally computing the
rounded bilinear expressions [xA 00+yA 01] and [xA 10+yA 11] for all (x,y)eD. In
order to obtain algorithms which use integer arithmetic only, we require that the
coefficients Aij are in @. This is not a serious drawback since every real can be
approximated infinitely close by a rational.

22 Llnear Transformadons of Discrete Curves

2.2 Bresenham's line algorithms

Bresenham's fine algorithm [Bre65] can be given in two ways, one producing an 8-
connected chain and the other one a 4-connected chain. Here we give both algo­
rithms. The 4-connected algorithm is given as a transformation of the 8-connected
one.

2.1.1 The 8-conneded case

Integer approximation of pairs (x,y) e R 2 fulfilling the fine equation

ay=bx

for a, b e 1l is done by Bresenham 's line algorithm.

Oz t Y OJ

o•••••ooooo
oo••••ooooe

0
J 0 o 0 e e + 0 0 0 e • 0o

ooooe+oo•••
ooooo+o••••
••••• !

••••oeooooo x

•••ooeeoooo
eeoooeeeooo

04
• 0 0 0 0 •••• 0 0 °7

ooooo•••••o

Figure 2.1: octants

Below we give this algorithm as the function bresh 8(a, b) that returns an 8-
connected chain for a line segment from (0, 0) to (a, b) where (a, b) is a point in the
octant Oo or 0 1 (octants are defined in definition 2.5). All other cases of a and b are
defined by transformations of bresh 8 ebains in these two octants.
The definition of octants is illustrated by tigure 2.1.

z.s Definition : octant

0

For all i e [0 .. 7] an octant 0 1 is defined by

Oi := .Z2n{Ri((x,y))lye [O,x)Ax~O}

where R is a rotation over n/4 radians.

Notlee that every two different octants have an empty intersection and that the union
of all the octants is .Z2\ { (0, 0)}.

l.l Bresenham's Une algorlthms 23

Bresenham's line algorithm produces the best possible digitisation of a line segment
(ay=bx. x e [0 .. a]. and (a, b) e OoU07) in the sense that for every x e [O .. a 1. y
is approximated as good as possible in integers, namely by [!!..x]. Hence, the func-

a
ûon bresh 8 bas the following property for (a, b) e OouO.,

. b
P(bresh8(a, b))={ (x, y)Jxe [0 .. a] AJ=[-x]}.

a

Notlee that this set is indeed both finite and connected for (a, b)e00uO.,, and is,
bence, a discrete CUIVe according to property 1.12.

Below we give an algorithm for computing the chain c=bresh8(a, b). The pixels
p(c,l) are given, for i e [0 .. a 1 by

p(c, i)=(i, [kt]).
a

or in an equivalent fonnulation

Px(C, i)=i 1\ -JAS Py(C, i)-kt< lh.
a

This results in the following three predicates for c.

Ro: (Vi:ie [O .. Icl] :p~.(c,i)=iA-1hSpy(c,i)-.!!..i<lh)
a

R1 : lcl=a
R: Ro "Rt

Hence, the function bresh8 is a solution to the following problem:

I[

]I

a, b: int {-aS b< a}
I[
c: chain:
c :=bresh8 (a, b)
{ R)

]I

Below we give the program for the function bresh8. Notice that it uses only integer
expressions. To obtain this we multiplied the error tenn Py(c, x)-kx in Ro by 2a; the

a
resulting integer expression is called e. Furthennore the program contains no multi-
plications, apart from shifts, and divisions. Hence, an efficient and accurate result bas
been obtained. The following invariants, based on R0 and R1, are used for its proof.

Po: (Vi:ie [O .. x] :px(c,i)=iA-1hSpy(c,i)-.!!..i<lh)
a

P1: x= lciAOSxSa Ay=py(c,x)
P:a: e =2ay-2bx
P,: -aSe<a

P: Po "Pt " P2 " P3

24 Linear Transformations of Discrete Curves

1be if-statement repairs P1 and leaves P2 A Po=-• invariant. Notlee that Po=_1 A Pt
induce P0• P3 is also valid after the if-statement, as is proved for the first alternative
by

e
e<-a A P3«+2b
= { calculus }
-2b-oSe<-a
= { b<a}
-a<e+2a<a

Hence, the addition of2a toe in the first alternative indeed induces P3•

funcbresh8(a, b:int): chain { -aSb<a}

cnuf

e, x, y :int;
e: chain;
e, x, y, c :=0, 0, 0, e; {P}
dox~a-+

x x e
e, x :=e-2*b, x+1; { Pox_1 A Ptx-l/\ P2 1\ P3e+2b}

ife<-a --+ e, y, c :=e+2*a, y+1, e ® [1]
0-aSe<a --+ e:=c® [0]
0 e~ a --+ e, y, e :=e-2*a, y-1, c ® [7]

fi {P}
od; { PA x=a; Hence, R }
bresh8 :=c

This funcûon differs from the original Bresenham algorithm in two ways:

(1) Originally the algorithm has been defined for only one octant {(a, b) e 0 1).

{2) Because of this limitation the algorithm could be made a little more
efficient by using E =e +a-2b as the new error term. The body of the loop then
is:

x :=x+1;
ifE<O --+
OE~O
fi

E, y, C :=E+2*a-2*b, y+1, c ® [1)
E, c :=E-2*b, c ® [0]

Computing bresh 8(a, b) in all octants may be done according to the following
recipe:

Transform (a, b) using a linear funcûon A such that the resulting point r is in
Oou01 . Compute c=bresh8(r11 , ry) according to the above algorithm and
apply A-1 to the discrete curve DC ((0, 0), c).

Applying the inverse transformation cao be done according to property 2.1 and
example 2.2. Below bresh 8 is defined in the other octants in such a way that

2.1. Bresenham's line algorithms 2S

property 2.6 bolds. Figure 2.2 illustrates the transfonnations used for this defuûdon
by sbowing the direction in which the rounding of the condnuous line segment points
to grid points takes place.

Figure 2.2: rounding direction for line segments resulting from bresh 8

The notadon cl~ denotes for c,deC8 the chain c with the c-codes replaced by d­

codes.

2.6 Property :

bresh S(b, a) I!:~:~ if (a, b) e o, U02

breshS(-a, b)l!:~:~ if(a, b)e03u04

bresh8(a, b):= I 07
breshS(-b, a) ~:6:5 if(a, b)e0su06

if (a, b) = (0, 0)

For all pairs (a, b) e Z 2
\{ (0, 0)} and for all k e [0 .. max {/af, I b/}].

p(bresh8(a,b),k)=[k(a,b)]
max{/a/,/b/}

0

Notlee that k (a,b > need be rounded for just one of its coordinates and hence
max{/a/,/b/}

the total error is the error in one coordinate and indeed at most ~-

26 Linear Transformations of Discrete Curves

2.7 E:xample:

0

Figure 2.3a and 2.3b show two 8--connected discrete lines generaled by bresh 8.
Their respective chain codes are:

bresh8(12, 7)= [101010110101]
bresh 8(1 0, -6) = [7070770707]

(a) (b)

Figure 2.3: example 2.7

Because max {/a/,/ bI} is the cardinality of the pixel set of bresh8(a,b), the time
complexity of this algorithm is given by 0 (max {I a I./ bI}).

The ebains generared by bresh8 have the following two properties [Wu82] :

* they contain at most two differentelementsof C8•

* these elements are distributed as unifonnly as possible along the chain.

2.2.2 The 4--connected case

In the previous section we defined the function bresh8(a, b) (a, be~) as the chain
of an 8-connected discrete cuiVe that approximates the line segment from the origin
to the point (a, b) ofthe line given by ay=bx. In this section we give a 4-connected
counterpart of bresh 8 called bresh4. We de fine the chain bresh4(a. b) for integers a
and b with (a, b) e 0 0v01• The other cases of a and b may be obtained by rotation
and reftection of chains, but we have no need for them in this thesis.

Instead of giving a treatise similar to the one in the previous section, we define the
chain bresh4(a, b) as a chain bresh S(a', b') (Qs; b' <a') in which the codes are sys­
tematically replaced by corresponding 4-connected codes. We can do this since a 4-
connected Bresettham chain has, because of the symmetry of the continuous line,

U Bresenham's line algorithms 27

properties simDar to the above mentioned properties for bresh 8 chains: it contains at
most two different elements of C4 and these elements a1so have a distribution as uni·
form as possible. By replacing the code(s) of C8 by code(s) of C4 the uniform distri­
bution remains the same. Wedefine

1
bresh4(a, b):=bresh8(a+b, b)l 2 for(a,b)e00u01•

Notice that the chain bresh8(a+b, b) has length a+b and contains a ()..codes and b
I-codes. Hence, for the end point of bresh4 holds that p(bresh4(a, b), a+b)=(a, b).
Notice furthermore, that for a chain with only 0-codes and I-codes replacing the I­
codes by 2-codes is similar to transfonning the chain with a linear function given by

the matrix [~1 °1] • Indeed,

(1,0)[~101] =(l,O)and(l,l)[\01] ={0,1)

Hence, the pixel set of the chain bresh4(a, b) is given by the following property
(compare property 2.6).

2.8 Property :

For all pairs (a, b) e OoUOt and forte [0 .. a+b 1.

p(bresh 4(a, b),i) = (t -[t_È_b], [i_È_b })
a+ a+

Pfc)of

0

For all t e [0 .. a +b] the following holds.

p(bresh4(a, b), i)
= { the above definition of bresh4 }

p(bresh 8(a+b, b), i) [~1°1]
= { property 2.6)

{(i, i a!b>l[~lol]
= { calculus }

(t,[t a!bl>[~lol]
= { calculus }

(i-{i_È_b},{i_È_b})
a+ a+

28 Linear Transformations of Discrete Curves

2.9 E:xample :

D

Figure 2.4a and 2.4b contain two 4-connect.ed Bresenham lines. Tbeir ebains
are:

bresh4(12, 7)= [0200202002002020020]
bresh4(10, 6)= [0202002002020020)

. . .
--:. -. ' ; . ' .. ~--.- ~ . -............... ~ : : : : ~ ; -.--; : ... ·: -~. -:' ... :

. L ... ~ ~ .. --~---.i ~--.-~ ... -~ ~ ii ... j ___ _ : : : ; : ; : : : .
······yr··:····:····:····:····:····:····~··· , ..
<>H< '''''"'''*'''''''''''""":••••:<<>><><>•: . . .

. .. : ~ ~. : ... ·: ~

.............. ' . ' .,::;..-.:..-"---''---''__;." _, ' : '
:x:

(a) (b)

Figure 2.4: example 2.9

Tbe time complexity of computing bresh 4(a, b) is the time complexity of computing
bresh8(a+b, b) and hence, is O(jaf+/ b/).

2.3 Integer approximation of linear functions

In this section we show an integer algorithm for the computation of a linear function
on a given interval. It is an introduetion to the algorithm for approximating a bilinear
function on a given discrete curve; this algorithm is given insection 2.4 ..
We compute an integer approximation of a line segment

ay=bx withxe [O,X], Xe IV0 , aeZ, beZ, and a>O

by computing the points (i, Y [i]) for all x e [0 .. x] . Y [i] is again a best àpproxima­
tion and equals [k x 1.

a
Notice that in case -aSb<a this problem can be solved by first computing
bresh8(a, b) and afterwards simply computing Y[i]=py(bresh8(a, b), i). In general,
however, the set { (x, y)I y = { k x 1 " x e [O .. X] } is not 8-connected and hence,

a
cannot be represented by a chain. Using the predicate R given as

23 · Integer approximation oflinear fundions

R: (V x: Os> x <X: -~so Y[x]-É..x < ~)
a

the problem can now be fonnulated as follows.
Findalistof statements, called intlin, with the following property.

I[
a, b: int; {ai!:O}
x: int: {~O)

I[
Y(i: Osói<X) : arrayofint;
intlin;
{ R}

]I
]I

29

Invariants leading to the solution of this problem are simHar to those for bresh 8 in
section 2.2.

Po: (V i: os; i <x: -~so Y[i]
a
<~)

Pt: OS:x:S:X
Pz: e=2ay-2bx
P3: -as: e <a
P: Po A P1 A P2 A P3

The algorithm intlin as given below consists of two nested loops. The outer loop bas

as invariant P. The inner loop has invariant Po:_1 A P1 A P2• Notice that U the inner
loop ends P3 holds. In order to proof that this loop ends we distinguish two cases for
the value of e. In case e =a the inner loop ends after execution of e :=e-2a. In case
Ie />a. Ie I is a variant function of this loop (that is Ie I is positive and deeroases with
each iteration step) since e<-a implies le+2al</e/ and e>a implies
je-2a/</e/.

I[e, x, y : int;
e, x, y, Y [0] :=0, 0, 0, 0; { P}
do xi!:X ~

x
e, x :=e-2*b, x+l; { Pt A Pox-l}

do e<-a ~ e, y :=e+2*a, y+l
IJe?:a ~ e,y:=e-2*a,y-1

od; { P2 A Pt A Po:_1 }

Y[x] :=y; { P}
od { PA x=X; hence, R }

]I

30 Linear Transformations of Discrete Curves

The time-complexity of this algorithm is 0 (max {I X I, I X b a-1 I}).

In case os; b <a the above algorithm can be seen to be equal to:

I[c : chain ; i, y : int:
c :=breshS (a, b);
i, y :=0, 0:
do i< I c I -+

od
]I

ifc1 =1 -+
Dc1 =0 -+
fi;
Y[i] :=y

y :=y+l
skip

From the definition of bresh4 we know that bresh8(a,b) is bresh4(a-b,b) with the
2-codes replaced by I-codes. Hence, the above algorithm can also be written as:

I[c : chain; i, y : int;
c:=bresh4(a-b,b);
i, y :=0, 0;
doi<lcl-+

od
]I

ifc1 =2 -+ y :=y+l
U Ct =0 -+ skip
fi;
Y[i] :=y

1.4 Integer approximation of bilinear functions on a discrete curve

In this section we show an imeger algorithm for the computation of a bilinear func~
tion given by

cz=ax+by (a,b,c eZ A c>O),

on a the pixel set P(c) of a chain c. This algorithm is clearly related to the topic of
linear transfonnation of discrete curves, in which two of these equations play a role.
At the end of this section we show an example featuring this application. We now
fonnulate the following problem.

Find a list of statements intbi/in with the following property.

lA. Integer approximation of bilinear fundions on a discrete curve 31

I[
a, b, c: int; {c>O}
e:chain;
I[

Z(i:OSiS lel) :arrayofint:
intbilin;

]I
]I

{ R}

wilere R is a pre,licate given by

R: (V;: os iS lel : -ihs Z[i]-l!.Px(c, i}-~py(c, i)< 'h)
c c

1be invariants used in the solution below are simHar to those in section 2.3 and read
as follows.

(V j: O::>jS i: -'hSZUl-~Px(C,j)_!!_Py(C,j)< ih)
c c

OSiSiciA(x,y)=p(c,i) . t
e =2cz-211y-2ax ."''...(t,.lJJ:./1/'
-cSe<c ~~ ·

Po A Pt A P2 /'\ tyJ
We denote the inproduct oftwo veetorspand q by <p, q>.

I[

e 1 X 1 Y 1 Z 1 i ! int;
e1 x, y, i, Z1 Z[O] :=0, 0 1 01 01 0;
doi< lel~

(x, y) :=(x, y) +v (Cd;
i

e :=e-2*<(a, b), v(e;}>; { PoAPl AP1i+1 }

do e<-c ~ e1 z :=e+2*c, z+l
(] e~ c ~ e, z :=e-2*c 1 z-1

i
od; {Po A P2 A P3 A P1 1+1 }

i :=i+l;
Z[i) :=z{P}

od { R}
]I

Two remark:s can be made on this program:

x and y are ghost variables and consequently, may be left out.

The computation of an inproduct of 2 veetors needs in general two multiplica­
tions. However, in the above program these may be avoided, since the coordi­
nates ofthe veetors v(c;) are either 0, 1, or -1.

32 Linear Transformadons of Discrett; Curves

Figure 2.5: example 2.10

2.10 Example :

D

Linearly tranfonning an 8-connected discrete curve point by point may result in
an unconnected set of points (properties 2.1 and 2.3). We can compute such a
set of points by using intbilin. In order to obtain a connected set we may inter­
polate consecutive points in tbe image set for instanee with a bresh 8 chain.
In tigure 2.5 a rotation over n/4 of an 8-connected chain round its start point is
illustrated. In case of a rotation at most one extra pixel is needed for the inter­
polation of two consecutive pixels in the image. The 'square' pixels in the
figure are the pixels obtained by interpolation.
The original and the image ebains are given as follows.

[00011112112222]
[18122222242222342]

3

W-curves

3.0 Introduetion

In this chapter a metbod is defined for generating discrete cwves, called w-curves.
These curves are defined by three (control) points and two distribution functions.
Two points determine the end points of the cwve and the line segments towanls the
third point determine the tangent veetors of the curve in these end points. The distri­
bution functions are used tó de fine the shape of the the curve.

A continuous variant of these discrete curves is given. Smoothing algorithms for the
w-curves are given and also algorithms for generating them. The generating algo­
rithms for w-curves have a time complexity worse than linear in the lengtbs of the
ebains involved. A slight modification of the definition of w-curves results in (a sub­
set of) curves, called e-curves, which can be computed in linear time.

3.1 Problem Definition

In this section we give a discrete counterpart of the following continuous problem:

Given three (control) points Po· p1, and pz, find a continuous curve that

(1) interpolates the control points Po and pz; that is, it starts at Po and ends at

P2·
(2) is tangent to line segment p0p1 at Po and to the segment PtP2 at pz.

In translating this problem to a discrete problem we have to introduce a notion of
tangency for discrete curves. Wedefine this notion only for curves tangent intheir
start points. Two continuous curves are said to be tangent in a point p if they both
contain p, and if their tangent veetors in p (if any) are collinear. In accordance with
this definition, two discrete curves DC (p0, c) and DC (p1, d) can be said to be
tangent (in their start points) if Po=Pt and v(c0)=v(do). In the next definition the
notion of tangent vector is not limited to the first basic vector of a curve; if two
curves have their first n basic veetors in common they are said to be n-tangent.

33

34 W-eunes

3.1 Definition : n-tangent

0

Two ebains e and d are called n-tangent (n e N 0) iff

(Vi:ie [O .. n) :e;=di)

Two discrete curves DC (Po. e) and DC (p1, d) are said to be n-tangent (in their
start points) iff Po= p1 and the ebains c and d are n-tangent

Nodce that all pairs of discrete curves starting in the same point, are 0-tangent Ftll1h­
ennore, notlee that tangent continuous curves exist that have digitisations that are
only 0-tangent (see tigure 3.1).

' ' ~~..-~···~····~····.-····

········--····--·--~--·-·· ' ' ' . , . ' ' . .

Figure 3.1: Two tangent continuous curves with 0-tangent discretisations

Hence, 0-tangency is a useful notion in discrete space with respect to tangency in
continuous space.

The above continuous problem can now be fonnulated as follows in discrete space:

Oiven three (control) points p0 , p1, and P2 in Z 2
, find a discrete curve

DC(p,e)that

(1) interpolates the points Po and P2; that is p=po and p+end(e)=P2·

(2) is n-tangent to DC (Po. bresh 8(p1- p0)) and DC (p2 , rev (e)) is m-tangent
to DC (P2, rev (bresh 8(p2- PI))), forsome m, n e N 0 •

The reverse ebains appear in requirement (2) because the notion n-tangent is only
defined for the start point of curves. Requirement (2) is, as we saw before, a dummy
requirement since all pairs of ebains are at least 0-tangent. In this chapter we give a
metbod for solving this problem for several combinations of m and n. These solu-

3.1 . Problem Definition

tions are constructed according to the following scheme:

(a) compute the starting point:
p:=Po

(b) compute the ebains c and d:
c:= bresh 8(pt-Po)
d:=bresh 8(pz-Pt)

The ebains c: and d are called control chains .

35

(c) compute a chain e ofthe new discrete curve by combiDing all the codes of
the ebains c and d. An exact definition of combiDing is given in the
sequel.

This scbeme guarantees that the resulting curve fulfills {1) since

p+end(e)=po+end(c)+end(d)=po+(pt-Po)+(Pz-Pt>=Pz·

In section 3.2 we define two operators on chains. In section 3.3 these operators are
used for constructing the discrete curves called w-curves.

3.2 Operators on ebains

In this section two operators on chains are defined; namely, an infix operator ~ for
combining two chains and an operator add 8. for adding 8-codes to a chain.

J.l.O The weave operator

As mentioned in the introduetion we are going to construct curves by combining the
ebains of the controllines. The weave operator !:!::: combines two chains into one and
is defined as follows.

3.2 Definition : weave operator

0

For all ebains c and d the chain c~d is defined by defining the codes (c~d);
fori e [0 .. lel+ I dl) by

{

c(#0(b, 0, i))

(c~d);:= d(#l(b,O,i))

where b=bresh4(1cl, I dI).

ifb;=O

ifb;=2

Hence. the chain c ~ d contains all codes of the ebains c and d where these codes are
distributed as the 0-codes and 2-codes in bresh4(1cl, I dl), respectively. The same
distribution of codes, but now of 0-codes and 1-codes, exists in the chain

W-curves

bresh 8(I c I+ I dI, I c I) and we might have used this chain in the above definiûon.
since it müy uses the (unifonn) distribution of the codes. Notice that
bresh4(1cl, I dl) contains only 0-codes and 2-codes and bas length lel+ I dl;
hence, the above definition indeed detines every element of c:!:!:: d.

bresh4(6,3) 0 2 0 0 2

3.3 Example :

0

3.4 Example :

d
cwd

c

Figure 3.2: example 3.3

c=[OIOIOl] and d=[5221
bresh4(I c I, I dI)::::bresh4(6, 3):::: [020020020]
Hence, C!!::d=[051021021] (see tigure 3.2).

0 0

(a) c=bresh8(10, 10)::::[1110 and d=bresh8(-5, 20):::: [2322)5

bresh4(1cl, I dl)=bresh4(10, 20)=[202]10

0

Hence, C!!::d=[21321215 (see tigure 3.3 (a)).

(b) c=bresh(pt-Po) and d=bresh(pz-Pt)
with Pt-Po=(445, 194) and pz-Pt=(71,214).
Figure 3.3 (b) shows the chain C!!::d.

2 0

From the definition of :!:!:: it follows that end(c!!::d)=end(c)+end(d). In property
3.6, stated below, we give, in tenns of the pixels in the pixel set of the ebains c and d,
an expression for all the pixels in the pixel set of C!!::d. The following property is an
auxiliary property for the proof of 3.6. lt states a relation between the ebains c, d, and
bresh4(1cl, I dl).

3.l. Operators on ebains

Po

(a) (b)

Figure 3.3: example 3.4 (a) and (b)

3.5 Property :

Porall ebains c, d, and b=bresh4(lcl, I dl) and all te [0 .. I bi]

(a) p(c, Px(b. t))=(l:i :OS i <t "bi=O: v(c(#o(b.O,i))))

(b) p(d, Py(b, t))=(:Ei :OS i <t" bi=2: v(d(#2(b,O, i))))

Proof

We prove property (a) by induction. Property (b) may be proved similarly.

base:t=O

(l: i: OS i< 0" bi=O: v(c(#0(b. o. i))))
= { calculus }
(0,0)
= { p(c, 0)=(0, 0) and Px(b. 0)=0}
p(c, Px(b, 0))

step: t>O

37

The chain b contains only 0-codes and 2-codes. We only give the proof
forthe induction step ifb1_ 1=0.

(l: i : 0~ i< t 1\ bi=O: v(c(#0(b, 0, i))))

= { calculus }
(:Ei :0~ i <t-1 "bi=O: v(c(#0(b,O,i))))+v(c(#0(b,O,t-1))
= { induction hypothesis }
p(c, Px (b, t-1))+ v(c(#0(b, 0, t-1))

= { definition 1.21 of pand Px(b, t-1)=#0(b, 0, t-1) }
(l:i: 0~ i <#o(b, 0, t-1): v(ci))+v(c(#0(b. o. t-1))

= { calculus }

38

D

(I. i: OS iS #0(b, 0, t-1): v(c;))
= { #0(b, 0, t)=#o(b. 0, t-1)+1 because b,-t=O}
(I. i: OS i <lfo(b, 0, t): v(c;))
= { #o(b. 0, t)=px(b, t) and definition 1.21 ofp}
p(c, Px (b, t))

W-eurves

The expression in the next property for tbe t-th pixel of c!!: d is asymmetrie in c and
d. 1bis is due to tbe inevitable asymmetry of tbe round operator. For c and d witb

ld:!:cl +'heZ tbe expression is symmetrie, since tben, according to property

1.14(e), the following holds.

ldl lel
t-/ldl+lcl t/=/ldl+lcl t].

3.6 Property :

For all ebains c and d, and for t e [0 .. I c I+ I d I].
ldl ldl

p(c!!:d,t)=p(c,t-{ lcl+ldl t})+p(d,{ lcl+ldl t/).

Proot

0

Let b be bresh4(lcl, I dl).

p(C!!: d, t)
= { definition 1.21 ofp}
(:Ei: OS i< t: v((cwd);))
= { definition 3.2 of !!: }
(:Et: OS i< t 1\ b;=O: v(c(#0(b, 0, i))))

+
(:Ei: OS i< t 1\ b;=2: v(d(#2(b, 0, i))))

= { property 3.5 }
p(c, Px(b, t)) + p(d. Py(b, t))
= { property 2.8 }

ldl ldl
p(c,t-{lcl+ldl t/)+p(d,[lcl+ldl t})

The arguments of tbe weave operator can be any chain. lf, however, botb argument
ebains are control chains, tbat is to say botb ebains have been obtained by
Bresenham's line algoritbm, tbe pixel set of tbe resulting chain resembles a straight
line segment (see tigure 3.3 (a) and (b)). This resemblance can be explained by the
following argument: if c is a Bresenham chain of tbe line segment p0p1 and d of the

3.2·. Operators on ebains 39

line segment p1 P2, we can state, according to property 2.6, that

Pl-Po P2-Pl
p{c, t)=tl'ël A p(d, t)=tlëïl.

Hence, with property 3.6

ldl Pt-Po ldl P2-Pt P2-Jlo ·
p(C!fd, t)=(t- lel+ ldlt)-lc-1-+ lel+ ldl 'lëïl=t lel+ I dl ·

A non-mathematica! explanation of this phenomenon is: each of the ebains c, d, and
b (=bresh4(1cl, ldl)) consists of 2 unifonnly distributed codes. Consequently,
C!fd has a unifonn distribution of a maximum of four different codes, and hence, its
pixel set resembles a line segment.

3.:u Tbe add8 operator

As we saw in the previous section, the unifonn distribution of the control chains.
detennines the result of the weave operator. In this section an operator that adds 8-
codes to a chain according to some distribution function is given; this operator is
called add 8. By doing this the chain bas, in general, no longer a unifonn distribution
of codes. Consequently, the result of the weave no longer resembles a straight line
segment. Notice, furthennore, that by adding 8-codes to a chain the pixel set of that
chain does not change. In the sequel, first distribution functions are defined, and
thereupon the operator add 8 is defined.

3.7 Definition : distribution function

0

For all n e N 0 , the set of functions 1)11 is defined by

1)11:= {flfe [O .. n]~N0 }

1be elements of 1)11 (n e N 0) are called distri bution functions.

3.8 Definition : add 8

0

We define the operator add8 for all ebains c and all distribution functions

fe1)1cl by

add8(c,j) := [8]ft0> ® [Co] ® [8]ft1> ® [cd ® · · · ® [C11-d ® [8]ft">

40 W-curves

3.9 Example :

/:[0 .. 6]-+.Z withj(i):=i
add 8([000000] ,/) := [080880888088880888880888888]

D

Below a property for the pixels in the pixel set of add 8 is given along with some
definitions. First monotonous and continuous functions F are defined such that the
F(i)-th code in the chain add8(c,/) is Cj. The functions F are defined on a real
interval since their inverses are needed in the sequel.

3.10 Definition : primitive function

D

A monotonous and continuous function F : [-1, n] -+ R is called a primitive
function of a distribution functionfe 1J,. iff

F(O) =.f(O)" (V j: je [0 .. n] : FU)=FU-1)+j(j}+ 1)

The name primitive function is chosen since, as is illustrated in figure 3.4, F U>
approximates the area under thê function f + 1.

f(x)+1

/1 '\
/

I
I

''""''

'''''""
i

}:::: /i:: ,,,,, x
-1 0 i+1

Figure 3.4: primitive function F
The area ofthe gray surface equals F(i) (ie /N0).

Primitive functions are notated by the capitalietter of the corresponding distribution
function. The following remarks can be made on this definition.

(1) The sequence F(-1), ··· ,F(n) is monotonous because j(i}+l>O, for all
ie [-l..n].

3.1 · Operators on ebains 41

(2) 1be valnes of F(x), with x not an integer, are not prescribed by the above
definition. Hence, in genera!, several primitive functions of a given distri bution
function can exist Because of (1), there are primitive functions for every dis·
tribution function.

(3) Since Fis both monotonons and continuous, F has an inverse function p-l.

(4) F(-1)=-1.

1be following property gives a non-recnrsive expression for F.

3.11 Property:

D

For all ebains c and all primitive functions F of a distribntion functionfe !D1c1

the following holds.

(a) (V i :ie [-l..lcl] :F(i)=i+('E.j:je [O .. i] :.f(j)))

(b) F(lcl)= laddB(c,f)l

A proof of property 3.1l(a) follows directly from lhe definition of F; (b) can be
dednced from (a) and the fact that the sum in (a) eqnals, for i= I c I, lhe number of 8·
codes added to the chain c. Case (a) in property 3.12 states that the F(i)-lh code of
the chain d=add(c, f) is ei, for ie [0 .. I c I] ; this property may be simply checked
by nsing the definitions of add8 and F. Since, all olher codes in d are 8-codes, case
(b) also holds.

3.12 Property :

D

For all ebains c, distribution functions fe'D1ct. and all xe [0, lel] with
F (x) e N 0 the following holds for lhe chain d = add 8(c, f).

(a) x e.Z ~ d(F(x))=c(x}.

(b} xEZ ~ d(F(x))=8

1be following property is the equivalent for add8 of the property 3.6 for the operator
!!! . It stales the relaûon between lhe pixels in lhe pixel set of add8(c) and those in
the pixel set of c itself.

3.13 Property :

Por all ebains c, distribntion functions f e 'D1e 1 , and t e [0 .. F (I c I)]

p(add8(c,j), t} = p(c, r r 1(t)l).

42

Proof

D

p(add8{c,.f), t)
= { definition 1.21 of p }
(l:i:ie [O .. t) :v(add8{c,.f)(i))}
= { F is monotonous and continuous, and t e [0 .. F (I c I)) }
(l:x:xe [-1, lel] AF(x)e [O .. t) :v(add8(c,.f)(F(x))))
= {property3.12(a)and (b)andF(-1)=-1}
(l:x:xe [O .. Icl] AF(x)e [O .. t) :v(cx))
+
(1: x : x e [0, I c I] 11Z 1\ F (x) e [0 .. t) : v (8))
= { v(8)=(0,0) }
(l:i:ie [O .. Icl] AF(i)e [O .. t) :v(c;))
= { F is monotone increasing }
(l:i:ie [O .. Icl] AF(i)e [F(O) .. t) :v(c;))
= { definition 3.10: Fis monotonous and continuous}
(l:i:ie [O .. Icl] A ie [O .. r 1(t)) :v(c;))
= { F-1(t)sr1(F(Icl))= lel }
(l:i:ie [O .. r 1(t)) :v(c;))
= { definition 1.21 of p }
p{c, r r 1(t)l)

W-curves

We conclude this section with a property stating two inequalities for primitive func­
tions of the same distribution function and one inequality for the inverse of such
primitive functions.

3.14 Property :

For all n eN 0 , all functionsfe V,. and for all primitive functions Fo and Ft of

f.
(a) (Va, b:a, be [-l .. n] :IF0(a)-F1(b)(?:.la-b/)

(b) (Vx,y:x,ye [O,n] :IFo(x)-Ft(y)l?.lx-yl-2)

(c) (Vx,y:x,ye [O,Fo(n)] :1Fo-1(x)-Ft-1(y)ISix-yl+2)

Proof

ad (a):

Suppose aSb.
I Fo(a)-Ft (b)l
= { Fo(i)=Ft (i), for all ie [-1.. n] }
I Fo(a)-Fo(b)l
= { property 3.11(a) and aS b}

3.1 · Operators on ebains 43

0

I b-a+('Ej: a <j!.b :ftj))/
~ { JU)~ 0 and a:> b }
/b-a/

ad (b):

case LxJ ~ r Yl
I F(y}-F(x)f
= { ~ y and F is increasing }
F(x}-F(y)
~ { F is increasing }
F(lxJ)-F(f Yl)
~ { property 3.14 (a) and lxJ ~ f Yl }
LxJ -r Yl
~ {fx-y /S/x-LxJ /+/y-r Yl/+tlxJ +f Yl/S:/ LxJ +f Yl /+2 l
fx-y/-2

case LY J ~ r x 1 : similar.

case LYJ < r xl 1\ LYJ < r xl
/F(y}-F(x)/

ad (c):

~ { calculus }
0
~ {/x-y/<1}
fx-yf-2

(c) follows directly from (b) after substituting F0 -
1(x) and F1- 1(y) for

respectively x and y.

44 W-eurves

In Ibis section we use the two operators add 8 and :!! , introduced in 1he previous sec­
don, for constructlog 1he so called w(eave)-curve: a discrete curve given by 3 control
points and two distribution functions.

3.15 Definition : w-curve

0

For all points Po· Pt• and p2 and distribution functions je 1'1c1 and ge 1)1dl,

with c=bresh8(p1-p0) and d=bresh8(pz-p1), we define the w-curve
W(Po, p1, pz,f, g) as the discrete curve DC(p, e) with pand e given by

p=po
e=add8(c,J):!!add8(d, g).

(a) (b)

Figure 3.5: w-curves ofexample 3.16

(c)

3.16 Example :

(a) /:[0 .. 6]~1V0 j{i)=i
g:[0 .. 6]~1V0 g(i)=6-i
Po=(O, 0), Pt =(6,0),and pz=(O, 6).
c=[OOOOOO] and d=[222222].
~:=add8(c,f)= [080880888088880888880888888],
d :=add8(d, g)= [888888288888288882888288282]
bresh4(1ël,l dl)=bresh4(27,27)=[02]27 ;

Hence, in this case weaving consists of taldng codes altemately from the
ebains ë and d, and ë ~ d can be wrltten as

3.3 · W-auves 45

0

[088808888808828888088888828808888882888808828888828882]

1be 8-codes in ë~ëi do not contribute to its geometrie interÎ>retation and
hence the chain e of the w-curve can also be given by

e = [000202020222]

(b) Figure 3.5 shows 3 w-curves with as distribution functions

f.[O .. n]-dV0 withJti)=i
and g:[O .. m]~IV0 withg(i)=m-i
for suitable n and m.

The control points Po and P2 are given for all cases by Po =(0, 0) and
p2 =(92, 121). For the cases (a), (b), and (e) p1 bas the values (92, 0),
(75, 0), and (136, 0), respectively.

The following property relates the pixel set of a w-curve to the pixel sets of its con­
trol ebains and to the primitives of their distri bution functions. Note that the property ·
is stated for general ebains and not only for control chains. In the proof of the pro­
perty the similar properties 3.6 and 3.13 for the operators ~ and add8, respectively,
areused.

3.17 Property :

For all ebains c and d, and for all distri bution functions f e 1), c1 and g e 1)1 d 1 ,

the points on the ehain

e=add8(c,j)~add8(d, g)

are given for t e [0 .. Ie I] by
- -

p(e,t)=p(c.rrtct-f ldl_ t})l)+p(d,fG-t({ ldl_ t])l>
lël+ldl lël+ldl

with c=add8(c,j) and d=add8(d, g).
Proof

0

Wedefine the short hands a:= { 1
d

1
t J and t := t-<r.

lël+ldl

p(e, t)
= { d:_finition of e, ë, and d }
p{C~d. t)
= (property 3.6 and definition of t and a }
p{ië,t)+p(d,a) _
= { property 3.13, definition of ë and d }
p(C; fF-1('t)l)+p(d, fG-1(a)l)

46 W-curves

If c and d in the aoove property are control ebains on the points Po· PI, and P2·
p(c, t) and p(d, t) can be written, according to property 2.6, as

p(c, t)={ i"ï-<P•-Po)J "p(d, t)={ 1 ~ 1 (1J2-pJ)J

for te [0 .. lel] and te [0 .. ldl], respectively. Hence, property 3.17 may be
rewritten as follows.

P(e t)={ [rt(-c)] <Pt-Po)J+[[G-l(cr)] (P2-Pt)J
' lel ldl

with 't and a as in the proof of the property. Leaving out the ceiling and rounding
operators, the following approximation of p(e, t) may be given.

p(e, t)= p-t<f!:>o (p,-po)+ G~:i7> (P2-Pt)

with a= ldl_ • Clearly, p-l((l-a:)t) and c-t(at) are blending functions in this
lël+ldl lel ldl

approximation. Consequently [F-t('t)] and [G-l(cr)] can be seen as the discrete
' lel ldl

equivalents of blending functions.

3.4. Smoothing of w-curves

W-curves, as shown for instanee in tigure 3.5, appear unsmooth. Here two methods
are given to improve this, namely

• local smoothing

• global smoothing.

These two methods are fundamentally different. In the first metbod the chain of the
w-curves are fittered in order to appear smoother. In the second metbod the curve is
computed more accurately to obtain the · same objective. We clarify these two
methods in the following two sections.

3.4.0 Local smoothing

A chain makes an unsmooth impression if two consecutive codes have basic veetors
which differ too much. As a result of weaving two control chains, unsmooth combi­
natloos of codes can easily occur, since the two control ebains can consist of a max­
imum of four different codes.
Below we give ooth for 4- and 8-connectedness a definition of a smooth chain. We
only allow minimal changes in basic veetors of consecutive codes of a smooth chain.
Although 8-codes do not change the appearance of a chain, we require, for reasoos of
simplicity, that a smooth chain comains no 8-oodes. Notice that the definition fora
smooth chain as given below depends on the more or less arbitrary choice for the

3A. Smoothing of w-curves

encoding of the directions.

3.18 Definition : smooth chain

0

A 4-connected chain c is called (4-)smooth if it contains no 8-codes and

(Vt:ie (O .. Icl) :(ci-ci-1)mod4e {0,2})

An 8-connected chain c is called (8-)smooth if it contains no 8-codes and

(Vi :ie (O .. Icl) :(ci-ci-1)mod8e {0,1, 7})

47

1be 4-connected and the 8-connected ebains resulting from Bresenham's algorithms
as given in chapter 2 are smooth ehains. The ebains of w-curves are, in general,
unsmooth; even if the 8-codes are removed.

In the local smoothing method pairs of consecutive codes in the ehain which are
unsmooth, are replaced by Bresenham ebains that have the same end vector as the
original codes. This results, for 8-conneeted ebains, in the following conversion
table for pairs of codes; notlee that the order of the codes is not important A similar
table can be made for 4-connected chains.

[02]-+ [1]

[03]-+ [2]
(04]-+E
[05]-+ [6]
[06]-+ [7]

(13]-+ [22]
[14]-+ [2]
(15)-+E
[16]-+ [0]
[17]-+ [00)

[24]-+ [3)
[25]-+ [4]
[26]-+ê
[27]-+ [0]

{35]-+{44]
[36]-+ [4)
[37]-+e

[46]-+ [5]
[47]-+ [6]

In tigure 3.6 four of these converslons are illustrated.

~
(a) (b) (c)

Figure 3.6: 8-eonneeted loeal smoothing
(a) [03]-+ [2) (b) [04]-+ t
(e) [02]-+ [I] (d} [13)-+ [22]

[57]-+[66]

(d)

Replacing, using this table, eaeb time tbe left most unsmootb pair of codes, tbe final
chain beoomes a smootb cbain and bas tbe same end point as tbe original cbain.
This method ends, since after every step tbe cbain beoomes sborter; tbat is, if the
length of a ebain is measured as the sum of tbe Euclidean length of the basic vectors.
In [Fre61] Freeman uses a simHar metbod for obtaining a chain witb minimal
Euclidean length between tbe end points. In tigure 3.7 an ex.ample is given. The
main disadvantage of this metbod is, tbat it is a local metbod and hence, not related

48

1 l
(a) (b) (c) (d) (e)

Figure 3.7: steps in the process of 8-connected local smoothing
(a) [1243124] (b) [133124] (c) [223124]
(d) [222224] (e) [22223]

to the global shape of the curve. The deviation of the resulting curve and the miginal
curve may be large. as can be seen from the fact that the chain [22226666] reduces
to the empty chain after applying this method. Another disadvantage of the metbod is
that it destroys the symmetry of the curve since it makes a difference wilether the
curve is smoothed from left to light or the other way around.

3.19 Example :

In figure 3.8 the curves of figure 3.5 are shown after local smoothing.
0

(a) (b) (c)

Figure 3.8: local-smoothed w-curves of example 3.19

3.4. · Smootbing of w-curves 49

3.4.1 Global smootbing

Before explaining global smoothing we define subclasses of w-curves. A subclass is
a set of w-curves wbich contains exactly one w-curve for each triple of control
points. Moreover, the distribution functions for the w-curves in a subclass are res­
tricted to distribution functions in a so called complete set of distribution functions.
Below a complete set is defined by means of 1>11 , the set of distribution functions
withdomain [O .. n] (seedefinition3.7).

3.20 Definition : complete set (of distribution functions)

D

A complete setS (of distribution functions) is a set of distributions functions
containing for each n e N 0 exactly one element of 1>11 •

For complete sets narnes like Sf and Sg are used. The elements of 1:>,. (n e N 0) in
these sets are called / 11 and g,., respectively. The corresponding primitive functions
are called F 11 and G,..
A subclass may now be defined as follows.

3.21 Definition : subclass

D

For all complete sets Sf and Sg the subclass W (Sf, Sg) of w-curves is defined
by

W(Sf, Sg)

{W(Po. Pt• pz,f, g)l Po• P~o P2 E -Z2 l\feSfr'11:>,. 1\ g eSgr'11>m}.

with the abbreviations n and m given by n=D8(pt-Po) and m=Ds(P2-Pt).

Global smoothing of a w-curve W0 =W(Po. p 1, pz,f, g) in the subclass W(Sf, Sg)
consists of two steps:

(a) compute, forsome integer factor k, the w-curve W 1 =W(kPo. kp~o kpz,f, g),
where f and g are the appropriate distribution functions in Sf and Sg, respec­
tively.

(b) scale W 1 to the size of W 0, using the transformation algmithms as given in
chapter two.

Within a subclass W(Sf, Sg) we can define, for all k e.Z the smoothed discrete
curve C«(Po. Pt. pz, SJ, Sg) of a w-curve W(po. P~o pz,f, g) by

50

Ct(po. Pto P2• SJ, Sg) := [Ak(Dk)] with At= [k~' kQ,]
and Dt=W(kpo. kpto kP2,/. g)

W-cunes

wherefand gare the appropriate functions from S/and Sg.

3.22 Example :

0

In figure 3.9 the curves of figure 3.5 are shown after global smoothing with fac­
tor k=3. The subclass Sf and Sg contain the distribution functions /", g,. e D,.
withf,.(i)=i and g,.(i)=n-i.

(a) (b) (c)

Figure 3.9: global-smoothed w-curves of example 3.22

Notice that global smoothing does not result in smooth ebains as defined in definition
3.18. Hence, it can be useful to apply first global smoothing and afterwards local
smoothing.

It is unclear how the complete sets Sf and Sg have to be chosen. In the next chapter
the global smoothing of this section is used to construct a continuous curve from a
subclass of w-curves. A minimal requirement for the complete set of functions Sf
and Sg is the convergence of the limit process that results in the continuous curve.

Sl

3.5 W-eunes : tbe eontinuous case

In this section the notloos of continuity, convergence, unifonn continuity, and uni­
fonn convergence are used; as a consequence especially the proofs are rather teelmi­
cal For an explanation of these notions the reader is referred to a text book on
mathematical analysis, e.g. [Cou89] or [Rud76] .

The definition of w-curves is based on a discrete representation of its control Unes by
means of chains. In this paragraph a continuons counterpart of w-curves is obtained
by partitioning the controllines in infinitely small vectors. In tenns of the paragraph
3.4.1, the continuous w-curve within agiven subclass W(Sf,Sg) is given by

C(po. P~t P2• SJ, Sg)=IimAA:(DA:) ·-Fitst of all the limit of a sequence of ebains is defined. We can give for each chain c
a tunetion in [0, 1]-+ Z 2, say P, such that P(c;-t) is the sum of a fraction t of the
basic veetors of c. P is defined by

P(c;-t):=p(c, {'tIc I})

and is a parameterisation of a discrete tunetion but with a continuons parameter t.
Consider a sequence of ebains (ck)A:e/N with end(Ct)=kend(c1), for ke IV1 and
suppose that the ebains ck represent the same curve but at different sizes. Now, by
taking the limit of the functions tP(ck;t), we obtain the continuons version of the

curve represented by the ebains ck. In the sequel we assume that the sequences of
ebains are chosen such that their limit as defined in the next definition, exists.

3.23 Definition : limit of a sequence of ebains

0

The limit of a sequence of chains (ck).te IN with

end(ck)=k end(c1)

is a tunetion L : [0, 1] -+ /R2 given by

L(-t):=lim -k
1

p(ck,[t I Ct 1]).
k-+oo

Instead of saying that the limit of a sequence of ebains is L, we just say tha~the
sequence converges to L. The limit L defined in this definition is not necessarily con­
tinuous. In case of unifonn convergence on [0, 1] , however, L is continuons on
[0, 1].

52 W-eurves

3.24 Property :

lfa sequence of ebains (ck)te IN converges unifonnly to L('t) forte [0, 1], L

is continuons on [0, 1] .
Proof

0

This property follows from the following:

(a) The limit of a unifonn convergent sequence of continuons functions on
[0, 1] is continuous.

(b) Fora funetions Q, defined fora ebain c and te [0, 1] by

Q(c;t):=p(c,i)+(t-~)(p{c,i+l)-p{c,i))forte [
1
!

1
, ~;!],

it holds that Q(c~~.;t) converges unifonnly to L(t) for k-+oo,

(c) The funetions Q{ck;t) are continuons on [0, 1].

Fort=O and t= l, L(t) may be simply computed:

L{O)=(O, 0)

L (l)=end(Ct).

Using definition 3.23 we can give the following property eonceming the limit of a
sequence of chains, where these ebains are the result of weaving two ebains with 8-
codes added according to distribution functions in two given complete sets. This
property is used to compute a continuons counterpart of w-curves.

3.25 Property :

(a) Let (ck)ke IN and (dk)ke IN be sequences of ebains with

end(c~~.)=k end(ct)
end(dk)=k end(dt)

and let these sequences converge unifonnly to the functions Co and C1,

respectively. LetS/ and Sg be complete sets.
Then the sequence of ebains (ek)ke IN given by

ek =add8(ck,fletl)!:!!add8(d~~,, g ldt 1),

converges to a function C in [0, I] -+ R.Z given by

C(t)= C0(7'(t}) + C 1 ((j(t))

with the blending functions 7'(t) and (j(t) defined by

tr()·-I· Fk-
1
(Ft(k)t) d t:!()·-l' Gt-

1
(Gt(k)t)

., t .- 1m k an ':J t .- tm k •
lt.-- lt.--

3.5 . W -curves : the contlnuous case 53

(b) 1be sequence of ebains (ek)t e IN converges uniformly for 'te [0, 1] to
C('t) if the limits for the blending funcûons 1' and (j converge uniformly
on this interval.

Proof

(a) From property 3.17 we can see that the relation between the points of c.t.
dtt, and et can be given as follows:

p{tlJt,['tl ek l})=p(ck• tt)+ p(cJtt, St)

with tt and St given by

lt := r Fî~1 (t-f«t['tlek 1/})1
Sk := r Gïlk 1 ({<x~~:{ 'tI tlJt IJ])l

and «t. ck, and dk by

ldtl G 1"" 1(1dtl)
a~~:= -

I Ct, I+ ld-1 Ie. I

ck=add8(ck.ft)
dt=add8(dt,gt).

In the sequel only the second term p(cJtt, St) is considered; the other term
can be handled in a simHar way.
First we de fine"" by

Gï~kl('tGidkl(ldk I))
"" := ldkl

Given this definition of C11r. we can now state the following.

tIp (d~r.. S,t)- p(dk,f (j('t)l dk 1])/

S { triangle inequality }

t /p(dt. St)- p(dt. [CIA: I dk 1])/

+
Tfp(dk,{GA:Idk 1})- p(d~r., {(j(t)ldk I})/

This result and the two lemmas 3.26 and 3.27, stated and proved below,
result in

}~ tp(dk, SA:)-tp(dk, { q{t)ldk 1})=(0,0).

From the (uniform) convergence of the sequence (dk)ke IN to C1 it fol­
lows that

lim -t1 p(d~r.,{Ç(t)ldki])=C 1 (q('t)).
"--

Hence,

54

[]

W-curves

A similar result holds for (ck)ke IN and the proof of (a) is concluded as

follows.

C('t)

=

=

=

(b) From the uniform convergence of the sequence (dk)ke IN and the uniform
convergence ofthe limitsin the lemma's, it follows that

lim -k1
p(dk, SA:)=C t (q{t)).

k--

bas uniform convergence. A similar result holds for (ck)ke IN and hence,

the sequence (ek)ke IN converges uniformly to C(t).

3.26 Lemma:

(a) lim '-"
1

lp(dk,sk)-p(dk,fakldki])I=(O,O)
k--

(b) The limit in (a) converges uniformly forte [0, 1] .

Proof

0

I Sk-[O"k I dk I] I (1, 1)
S { definitions of sk and O"k and property 1.14 of ceiling }
I Gïltl ({ak[t I ek I]))- Gïltl (tG ldt 1 (I dk I))I (1, 1)+(3/2, 3/2)
s { property 3.14(c) of Gïlk 1 }

I fak[t lek 1])- tG ldt 1 (I dk I)I (1, 1)+(5/2, 5/2)
S { definition of ak and property 1.14 of entier } ·
(7/2, 7/2)

3.5 · W -curves : the contlnuous case ss

3.T/ Lenuna :

(a) Urn -k
1 /p(d";,[cs114,1})-p(dt,,[§(t)ldxl})/=(0,0)

k--

(b) 1be limit in (a) converges unifonnly if cs1 converges unifonnly to q(t) on
the interval [0, 1].

Proof

Ad (a).
Lete>O.
• According to the unifonn convergence of the sequence of ebains (l\.)J:e IN
(see definition 3.23) an integer K 1 exists such that for all k>K 1 and for all
te [0, 1]

/tp(d";,{tldtiJ)-Ct(t)/<E(l,l)

• (d";)J:E IN converges unifonnly 10 C 1• Consequently, according to property
3.24, C 1 is continuous on [0, 1] . Moreover, C 1 is unifonn continuous on
[0, 1] , since on a closed and bounded interval unifonn continuous and con­
tinuous are equivalent. Hence, a 8>0 exists such that for all t 1, t 2 in [0, 1] the
following holds.

/tr-'t2 /<S =>IC 1 (t1}-C 1 (tz)/ <e(l, 1)

• C:St converges to 9{t); hence, an integer K2 exists such that for all k>K2

holds.

Using unifonn convergence, continuity and convergence results for all
k>max(K1,Kz) in:

t/p(dt,{CSJ: ldt I})- p(dt,f §(-r)ldt I})/

s
/ t p(d";,{csJ: I dt I})- C 1 (est)/

+/C t(9{-r))-+ p(dt,f §(t}ldk 1})/

+/ C t(9{-r))- Ct (CSJ;)/
S { unifonn convergence }
2E(l, 1)+/Ct((](-r))-Ct(cs,.)/
S { continuity and limit of csk }

3e(l, 1}

Hence, (a) holds.

56

0

W-curves

Ad (b).

If K 1 and K 2 in the proof of (a) may be ebosen independent of 't, (b)
bolds. K 1 is independent of 't; K 2 may be ebosen independent of 't sinee
a~; converges unifonnly to g('t) fon e [0, I].

Hence, (b) bolds.

If we apply property 3.25 for w-cutVes we eboose the ebains ck and dk, for k e N 1

as the following Bresenham ebains.

~ =bresh 8(k (p1- Po))
dk =bresh8(k(p2-P1)).

The limits of these sequences of ebains are given by

Co('t)='t(P1-Po)
C1(t)='t(pz-pt).

as can be seen from property 2.6 and definition 3.23. These obsetVations lead to the
following definition fora eontinuous version of w-eutVes.

3.28 Definition : CW

0

The funetion CW(po.PtoPz,Sf,Sg) is defined for all points Pi (ie [0 .. 2])
and all complete sets SJ and Sg by

CW(po. P1• pz,SJ, Sg):=po+.1(t)(P1-Po)+g{'t)(p2-Pt).

for all te [0, I] .

A CW cutVe is ofthe fonn ofproperty I.4. Henee, the following property bolds.

3.29 Property :

0

The cutVes CW(po. Pt• P2· SJ, Sg) (po. Pt; Pz e 7l2) are affine invariant, for
all sets of complete functions SJ and Sg.

Conditions for the continuity of CW follow from the properties 3.24 and 3.25 and

3.5 W -curves : the continuous case 51

result in the following property.

3.30 Property :

The curves CW(Po. Pit pz, Sf, Sg) (Po, P~o P2 e .Z2
) are continuous on

[O,l].if

Ft-1(Ft(k'jt) G~:-1 (Gt(k'jt)
Ir. and Ir.

converge uniformly on [0, 1] for Ir.-+- (to !f(t) and 9't), respectively).
[J

3.5.1 Blending functions

The functions 'J and (j of property 3.25 are the blending functions as introduced in.
section 1.1. In this section some properties and definitions coneerDing these functions
aregiven.

331 Property :

For the blending functions !f and (j of property 3.25 the following holds.

(a) .?\0)= 9':0)=0
(b) .?\1)=9':1)=1
(c) !F and (jare both monotonous functions on [0, 1].

Proof

F - 1(0)
(a) !f(O)= lim

1
=0

"-- k • -1 Ft-1(0) Ft-1 (F~e(O))
Smce, Ts k < k -0.

F - 1(F (k))
(b) 'J(l)= lim " " 1.

k..- k
(c) follows directly from the monotonicity of Fk -I and GJ:-t.

0

Hence, the continuous curve C(Po. p1, p2, SJ, Sg) lies within the parallelogram with
vertices <Po. PI> Pz, Po-Pt+Pz>.

In the remaining of this section we give two special cases for distribution functions
and their primitives.

ss W--curves

3.32 Definition : multiplicative

A functionfis called mulliplieative if

(V s, t: s, t edmn(f) :f(st);j(s)/(1))

0

In appendix 3.A we show tllat a multiplicaûve function with domain IR' is either
constant 0 or I, or equalsx' fora fixed rand for all x in its domain.
Propeny 3.34 shows that in case the primitives of the functions in a complete setS/
are all multiplicative, a mueh slmpier expression for .r may be given. Tbe propeny
foUows directly from the definition of :J. the notion of multiplicative functiorts, and
the foUowing propeny of multiplicative ftu1Çtions.

3.33 Property :

0

The inverse function of a multiplicative function. ifit exists, is a multiplicative
function.

3.34 Property :

0

For all complete sets Sf = {!, E 'D,I k E IN,}, with F, a multiplicative func­
tion, for all k e IN,, the following holds .

.?'(t)= limF,-1(t) ·--
Often blending functions .?' and Çj must have some kind of symmetry. Tbe next
definition for disuibution functions supplies in this.

3.3S Definilion : symmelrical

0

Two dislribution functions I and g, both in 'D., are called symmetrical i!f

(VI !IE [O .. n] :f(i)=g(n-1)).

Tbe blending functions resulting from symmetrical dislribution functiorts are also
called symmetrical and !heir symmctry is described by propeny 3.36(b).

3.5 · W-curves: the continuous case 59

3.36 Property :

Lel S/ and Sg be complete sets with the elemenls of 1:1 •• called f. and g.,
respectively. lf/, and g, are symmelrical functions for all k e IN,, the follow­
ing holds.

(a) ('1/k,i:keiN,Aie [-l..k] :G,(i);F,(k)-F,(k-i-1)-1)

(b) (Vt:te[O,l]:J"(t);J-q{l-t))

Proor

0

(a) Lel ke IN, and ie [-l..k].

G,(i)
; (propcity 3.11 (a) I
i+(l:.j:je [O .. i] :g,UJ)
; (f and g are syinmelrical I
i+(l:.j:je [O .. i] !/,(k-j))
; (calculus I
i+(l:.j:je (k-i .. k] :f,Ul)
; (calculus I
i+(l:.j:je [O .. k] :f,Ul)-(l:.j:je [O .. k-i-1] :t.Ul)
; (propcity 3.11 (a) I
F,(k)-F,(k-i -I)-!

(b) Lette [0,1].

q{t)
; (definition of (j I

G -I (G (k)t)
lim k k

·~ k
; (from (a) follow both G,(k}=F,(k) and G,-1(i);k-1-F,-1(F,(k)-i-1) I

1 F, -I (F,(k)(i-t)-1)
liml k
·~ k
; (calculus and 3.14 (c) I

F, -I (F,(k)(l--1:))
1-lim:.___:_...:.:-..:..:..---=:..
·~ k

; (definition of J" I
1- J(l-t)

Finally, we give in this scction a propeny for primitive functions of a p:>lynomial
fonn. In lhe sequcl these primitive functions turn out to be useful. The property
states lhat under certain conditions lhe blending function 1' is independent of lhe
coefficients in the polynomial and thal il depcnds only on the highest degrcc

60

occurring in the polynomial.

3.37 Property :

Fora primitive function F11(x) satisfying

(a) F11(x)=C11xa+O(x~) for x-+co
(b) F11(k)=C11ka+O(k~) for k-+oo

(c) C"=O(k1) for k-+oo

with a+-y> p, the blending function 1ïs given fou e [0, 1] by
1

!f(t)=t-;-

Prooi

W-c:urves

Let y =F11(k';t=F11(x). It follows that xSk since F11 is increasing and te [0, 1 1;
hence, x =0 (k) for k ~ oo. For k ~oo the following derivation holds.

0

(F.-l(y))a
k

= {(a) withx=F11-
1(y) and x=O(k)}

y-O(k•)
C1k•

= { y =F"(k';t and (b) }
t+Ci"1 O(kli-a)

= { (c)}
t+O(kll-a-y)

~ { 13-a-y<O}
t

3.5.1 A subclass consisting of circle and ellipse segments

In this section we deduce the distri bution functions for a subclass of w-curves with as
continuous curves circle and ellipse segments.

An equation of a circle, given by its center m and radius R is

(x- mxi+(y-my)2=R2

By substitution in this equation, the following may be shown to be a parameterlsation
of a quarter of a circle.

(x,y)=m+R..f;a 1+~a2 with te [0, 1]

where a1 and a2 are two veetors such that fortheir Euclidean distance holds that
la111=11a211=1 and furthermore the angle of a1 and a2 is 1C12 (see tigure 3.10 (a)). If we

3.5 W-eurves: the continuons case

(a)

Po\
'
'

Pt

' P:J.
\, "" ..

\.-"" ..
\ ---m

(b)

Figure 3.10: parameterisation of a circle

61

use the following three control points, the control points for generating this circle
segment are given by (see figure 3.10(b))

Po=m+Raz
Pt=m+R(at+az)
pz=m+Ra1

and we may write m=Po-Pt+P2 and give the following parameterisation of a quar­
ter of a circle in terms of these control points.

(x,y)=po+.J;(Pt-Po)+(l-...fi='t)(pz-pt).

This parameterisation has the form of a continuous weave curve with the blending
functions 1" and (j given, for all te [0, l] , by

11:c)=.J;
9< t}= 1-...fi=t.

1" and (j are symmetrical. Therefore it suffices to determine only the distribution
functions ft for generating 1'.
1" is also a multiplicative function. We try to find a sequence of multiplicative primi­
tive functions F" such that

.?{t)=lim F~r. -1(t)
/r._.oo

By choosing all primitive functions F 1c equal to :T1 on [0, I] , we find

F~c(t~,foralhe [0,1].

Since F~c is multiplicative this also holds on [0, k]. Given a primitive function F~r,

we can compute the distribution function.fk by using definition 3.10.

[~r,(j)=F~r.(j)-F~r.(j-l)-1

for j?!O and with F~r.(-1)=-1. Hence, the.fk 's may he defined by

. {2j-2 (k"?!j>O)
.fk(j):= 0 (j=O)

62

(a)

Figure 3.11: Example 3.38

The symmetrical version Kk. of Jic is given by (see 3.35)

. {2k-2j-2 (k> j;;:;O)
g~r.U>:= o U=k)

W-curves

With these Jic and Kk. we can make a quarter of a ei rele and since an affine transforma­
tion of a quarter of a circle is an ellipse segment, the subclass W(Sf, Sg) with the
complete sets Sf and Sg given by

Sf:={/~r.lke N 0 }

Sg:={g~r.lke N 0 },

contains only circle and ellipse segments.

(a)

Figure 3.12: Example 3.38

3.5 · W -curves : the continuous case 63

3.38 Example:

Figure 3.11 contains both a circle and an ellipse generated by four w-cuJVes.
1be circle is given by a 4-connected chain, since the control ebains that were
used, were either horizontal or vertical.
Figure 3.12 shows the same cuJVes after applying the local smoothing method.

0

3.6 Algorithms for computing w-curves

In this section we give algorithms for computing w-cuJVes. According to its
definition, a w-cuJVe may be computed by computing the chainsofthe controllines.
adding the 8-codes to them according to some distribution function, and finally
weaving the results. However, this approach does not result in an algorithm with a
time complexity linear to the length of the two control chains. This is due to the fact
that the number of 8-codes added to a control chain need not be linear to the length
ofthe control chain. In this section we give an improved algorithm. And finally, we

. give a linear algorithm for the cases where the distribution functions are symmetrical.

3.6.0 Algorithm for weaving

In this section we give an algorithm for the function weave which solves the problem
given below.

I [
chain c, d, e;
e:=weave(c, d);
{ e=c~d}

]I

A solution to this problem is readily found from the definition 3.2 of weaving and
may be constructed according to the following invariant.

P: OS iS lel+ I dl "ic=#0(b, 0, i)" id=#z(b, 0, t)

"e= (Tij: OSj <i: (c~d)(j))
"b=bresh4(1cl, I dl)

64

tune weave(c, d: chain) : chain

cnuf

chain b, e;
int i, ie, id;
b, e :=bresh4 (I c I , I d I) , e;
i, ie, id:=O, 0, 0; { P}
doi<lcl+ldl -+

od;

ifb1 =0 -+ e:=e®[C1c];ic:=ie+l
D bi =2 -+ e :=e® [didl; id :=id+l
fi;
i :=i+l { p}

weave :=e

W-wrves

The total time complexity of this algorithm is given by O(lcl+ldl). The loop in
this algorithm and the loop in the algorithm for bresh 4 can be combined into one; the
if-statements in the two loops distinguish the same cases.

3.6.1 Algorithm tor add8

Here we give the function add 8 which solves the following problem.

I[
chain c, e;
array ofint:f;
e :=add8(c,j);
(e:::add8(c,f)}

]I

This problem can be solved using the invariant P defined as follows.

P: OSiS lel AOSjSF(i)AFi=F(i)
A e= (Uk: OSk<j: add8(c,f)(k))

Notice that the length of add 8(c, f) is F (I c I) and hence, P A i= I c I A j=Ft implies
e=add8(c,f).

3.6 · Algorithms for computing w-curves

func add8(c: chain, f: array of int) : chain
chain e;
int i, j, Fi;
i, j, Fi, e:=O, 0, f (0), E;

do i< 1 c 1 v j < Fi ~
ifj<Fi ~ e:=e® [8]
D j=Fi ~ e:=e® [cd;

fi;
j := j+l { p}

od
addB:=e

cnuf

i, Fi:=i+l, Fi+f (i+l)+l

The total time complexity of this algorithm is given by 0 (Ie I)=0 (F (I c I)).

3.6.2 Algorithm for computing the pixel set of a w-curve

65

In this section we derive an algorithm for computing the w-curve W(Po· p1, p2,f, g).
This problem can be formally specified by

I[

point Po, P1, P2;
array of int f, g;
set of point s;
compute_w_curve;
{S=W(po, Pl• P2, f, g)}

]I

A simpte solution to this problem has the following form

(1) compute the control chains:

c:=bresh8(pt-Po); d:=bresh8(p2-Pt);

(2) add 8-codes to the control chains:

ë:=add8(c,f); d:=add8(d, g);

(3) weave the resulting chains:

e:=weave (ë, d);

(4) compute the pixel set DC (p0 , e) by traversing the chain e.

Step (1) has time-complexity l?_ (I c I+ I dI). The steps (2) up to (4) are each of time­
complexity 0 (I el)=0(lël+l dI)= 0 (F(Ic I)+G (I dI)). Hence, this solution is not
efficient if F (I c I) or G (I dI) are large compared to I c I and I dI, respectively.

66 W-curves

Hence, in order to obtain an atgorithm whieh is linear in the lengtbs of its control
chains, the 8-codes should oot be added explieitly to the ebains c and d. The 8-codes
are oot needed for the computation of the pixel set. lndeed, in property 3.17 the fol­
lowing fonnula is stated whieh expresses p(e, t) direetly in tenns of the points of the
ebains c and d, instead ofë and d.

- -
p(e, t)=p(c, r rt(t-[I dl_ t})l)+p(d,r a-1([I dl tJ)l)

lël+ldl lël+ldl

This expression gives rise to the following invariants for compute _ w _curve.

Po te [0 .. lel]
P1 S= {po+p(e,s)lse [O .. t]}
P2 P=Po+p(c,a)+p(d, b)
P3 a=rF-1(t-[atJ)l"b=rG-1({at})l

where ex= F(l~~?ldl). We aim at a solution for compute_w_curve with the fol­

lowing strueture in which, eaeh time the body of the loop is exeeuted, one element is
added to the pixel setS.

I[
chain c, d;
int t, a, b;
point p;

c, d :=bresh8 (p1-Po), bresh8 (p2-Pl};
t, a, b :=0, 0, 0;
p, S :=pa, {pa}; { Pa,l,2,3}
do a< I c I v b< I d I ~

od
]I

ifBO ~

0Bl ~

fi

p:=p+v (Ca);

a:=a+l;
adapt t such that Po, 2, 3 hold

p :=p+v (db);

b:=b+l;
adapt t such that Pa, 2 , 3 hold

S:=SU {p} {Po,l,2,3}

The guards B 0 and B 1, and the two statement lists conceming t remaio to be found.
First we examine the effect on p(e, t) of a statement of the fonn t := î with Î> t.

3.6 . Algorithms ror computing w-curves

p(e. Î)-p(e, t)
= (property 3.17, P0, and definition 1.21 ofp}
(l';i:aSi<fF-1(t-{aî})l :v(C;))

+
(l';i:bSi<fG-1([aî})l :v(d;))

= { calculus J
if

if

r r 1(t-[aîJ)l =a+l" r a-'([aî])l =b

r r•(t-[aî])l =a" r a-1([aîJ)l =b+l

Hence, if we define 8 0 and B 1 as follows

BO :=(f r 1(t-[cii])l =a+l " f G-1([cit))l =b)
B 1 :=(fr1(î-[aîJ)l =a " fG-1({CXÎ/)l =b+l)

67

P3 "P3 are leftinvariant by the following two statement lists, if BQ and BI, respec­
tively, are preconditions of these lists.

{ BO A P2 " P3 }
p:=p+v(Ca);

a :=~+1;
t:=t

{ P:z" P3 }

{ Bl "P:z "P3]
p:=p+v(db);
b:=b+l;

t:=t

(P:z "P3 }

With some simple computing we can express the Bi's in tenns of F and Ginsteadof
their inverses.

r r 1(t--[at])l =a
= (definition of ceiling function }
a-I<F-1(t-[at})S a
= (F is a monotonous function]
F(a-1)< t-{at}SF(a)
= { t -[at J is a monotonic function in t }
min{se IV0 ls-[as}>F(a-l)} St< min{se IV0 ls-[as]>F(a)}

A similar expressioncao be deduced for band G, and reads as follows.

ra-1([at})l =b

=
min{s I [as}>G(a-l)}S t<min{sl[as}>G(a)}

So, with the following two abbreviations

M.i:=min{se IV0 Is-[as}> i}
N.i:=min{se IN0 I[rxs]>i},

68

BO and B 1 can be given by

BO=(M.F(a)SÎ<MF(a+l) A N.G(b-l)SÎ<N.G(b))
B l=(MF(a-l)SÎ<MF(a) A N.G(b)SÎ<N.G(b+l)).

W-cunes

Since B 0 and B 1 are only evaluated if P holds and since we chose î to be larger than
t, they can be simplified to

BO=(MF(a)SÎ<MF(a+l) A Î<N.G(b))
Bl=(Î<MF(a) A N.G(b)SÎ<N.G(b+l)).

Cloosing Î=MF(a) in case of BO and Î=N.G(b) in case of BI and adding tbe
invariants

P4 Fa=F(a) A Gb=G(b)
P5 tc=MFa A td=N.Gb

reduce the Bi's further to

BO=(tc<td)
Bl=(td<tc).

For both choices of i, Î> t holds. Furthermore, notlee that te ':# td as can be seen from

tc=td
=> { Ps}
tc=MFa A tc=N.Gb
=> { definition of M and N }
tc-1-[a.(tc-1)]S Fa<tc-[a.tc] A [a.(tc-l)]S Gb< {a.tc]
=> (calculus }
[a.tc] < tc-FaS 1+[a.(tc-1)] " [a.(tc-l)]S Gb< [a.tc]
=> { [a.tc] is an integer }
[a.tc]S [a.(tc-1)] A [a.(tc-1)]<[a.tc]
=> { }
{a.tc 1 < {a.tc}
=> { }
false

Hence, BOv B l=true and consequently, the if-statement covers all possible cases.
Since we added the invariants P4 and P5, we have the concern over their invariance.
P4 is kept invariant,. according to the definition of the primitive tunetion F, by the
following two statement lists.

3.6 · Algorithms for computing w-curves

{ p4}
a:=a+l;
Fa:=Fa+f(a)+l
{ p4}

{ p4}
b:=b+l;
Gb:=Gb+g(b)+l
{ p4}

69

For the invariance of P5 , we allow, for the time being, a statement of the form
t:=MFa.
The program compute _ w _curve then takes the following form.

I[
chain c, d;
point p;
int t, te, td;
int a, b, Fa, Gb;

c, d :=bresh8 (Pl-Po), bresh8 (p2-Pll;
a, b, Fa, Gb : = 0 , 0 , f (0) , g (0) ;
t, te, td :=0, M.Fa, N.Gb;
p, S :=Po.- {Po}:
do a< 1 c 1 v b< I d I -+

od
]I

ifte<td -+
p :=p+v (Ca);

a :=a+l;
Fa :=Fa+f (a)+l;
t, te :=te, M.Fa

D td<te -+

fi;

p :=p+v (db);

b :=b+l;
Gb :=Gb+g(b)+l;
t, td :=td, N .Gb

S :=S u {p}

At a first glance the time complexity of the above program appears to be linear in
I c I+ I dI , but it is not, since the computations of M.F a and N.Gb can, in general, not
be done in constant time; with binary search they can be done in O(logF(Icl))­
and 0 (log G (I d 11)-time. In that case the total time complexity is
0 (I c I log F (I c I)+ I dI log G (I dI)). Compared to the naive solution •as sketched at
the beginning of this section, the new approach is assymptotically better if the com­
putations of F and G are more than linear in their arguments.

70 W-curves

3.Ul A linear algorithm

1be algorithm given in the previous secdon was oot linear because of the computa­
tional complexity of M.Fa and N.Gb. Howeverin some cases these computations are
simpte. Here we considerthe case a=t. Hence,

_ G(ldl) _ 1
a- F(lci)+G(Idl) 2 •

Hence, F (I c I) =G (I dI). In this case the following computation on M can be made.

M.i=j
= { definition of Mand a=t }
min{sls-ftsJ>i} =i
= { property of min }
}-ft j} =i+l A j-1-ft {j-l)J =Î

= { calculus }
j-[1.. j}=i+} A [1.. j} ={J.. {j-1)}

2 2 2
= { property l.l4 of rounding }
j-ftJJ=t+l Aj mod2=1

= { property 1.14 of rounding }
j-l.j+l. =i+l Ajmod2=l

2 2
= { calculus }
j=2i+l

Hence, M.i=2i+l and one can prove similarly N.i=2i+2. In the program of the
previous section, consequently, the statements te :=M.Fa and td:=N.Gb may be
replaced by te :=2Fa+ 1 and td :=2Gb+ 2. In fact, we may completely dismiss te
and td from the program by replacing the guards B 0 and B 1 by

BO=(FaSGb)
Bl=(Fa>Gb).

This follows from substituting the new expressions for te and td. The resulting pro­
gram has computational complexity 0 (I c I+ I d I) which is linear in the lengtbs of
the control chains. The program takes the following form. Notice that we also left
out the ghost variabie t.

3.6 Algorithms for computing w-curves

l[

point Po
chain c, d;
int a, b, Fa, Gb;

c, d :=bresh8 (pl-Pol, bresh8 (P2-Pl);
a, b, Fa, Gb :=0, 0, f(O), g(O);
p, S :=po, {po};
do a< I c I v b< I d I ~

od
]I

ifFaSGb ~
p :=p+v (Ca) ;

a :=a+l;
Fa :=Fa+f (a)+l

IJ Fa>Gb ~

fi:

p :=p+v(db);
b :=b+l;
Gb :=Gb+g (b) +1

S :=S V {p}

71

Remember that this program has been derived under the assumption that a=-}, that

is F (I c I)=G (I dI). It is, henee, only applieable for restrieted combinatloos of distri­
bution functions and control ehains.

With a slight change in the definition of w-curves some subclasses of w-curves may
be handled with the above algorithm. The most important of these classes are those
featuring symmetrical distribution functions.
For the new curves, called e-curves, the control ebains are made of equal length by
adding 8-codes in a uniform way to the smallest one using the tunetion lengthen.

3.39 Definition : lengthen

For all ebains c and all positive integers k the funetion lengthen is defined by

{

c lcl;;::k
lengthen(c, k):= c~[S]k-lel Ie 1 <k

0

The following property of lengthen follows directly from property 3.6.

72 W-wrves

3.40 Property :

For all ebains c, all positive integers k, and all t e [0 .. max { k, Ie I }]

i p(c, t)
p(lengthen (c, k), t [k]

p(c,t- lel+k t)

ll!lè::k
lcl<k

D

1be definition of e-curves can now be given as follows.

3.41 Definition : e-curve

D

For all control points Po· p1, and P2· and all distribution functions/; e !Dm with
F t<m)=F o(m) and m given by

m :=max{ lc0 I, I c1 1 } with
co:=bresh 8(pi+l- Pi) and Ct :=bresh 8(Pï+l- Pi),

ane-curve E(Po.Pt.P2.f, g) is defined as the discrete curve DC(p, e) with

P:Po
e=odd8(lengthen (eo,m),f)) ~ add8(lengthen(ci,m), g).

Subclasses of e-curves can now be defined similarly to definition 3.21.

3.42 Definition : subclass for e-curves

D

For all complete sets of functions Sf and Sg with

(Vn :ne N 0 :F,.(n)=G,.(n)),

the subclass E(Sf, Sg) is defined by

E(Sf, Sg)

·­.-
{E(Po. PI> pz,f, g)lpo. PI> P2 e Z{;

2 A/eSjn1>,. "g eSglî!Dm}

with the abbreviations n and m given n =Ds<Pt-Po) and m =Ds(P2- PI).

Within a subclass E (Sf, Sg) a continuous version of an e-curve can be computed. A
property similar to property 3.25 may be given. This results in the continuous curves
CE to be defined as follows.

Algoritbms for computing w-curves 73

3.43 Definitlon : CE

0

The function CE(Po.P~tP2·Sf,Sg) is defined for all points Pi (te [0 .. 2])
and all complete sets Sfand Sg with

(V n: n e No: F"(n)=Gn(n)),

by

CE(Po, PI• P2• Sf, Sg):=Po+.?\t)(pt-Po)+ Ç(t){P2-pt),

for all te [0, 1].

Hence, CE equals CW, for complete sets Sf and Sg suitable for e-curves. The com­
plete sets computed in section 3.5.2 for ellipse and circle segments, consist of sym­
metrical distribution functions. These circles and ellipse segments, consequ_ently,
may be genereted with the integer algorithm for the pixel sets of e-cmves and in a
time linear to the length of the control chains.

74 W-curves

3.A Appendix

3.44

3.45

3.46

Let/be a continuons multiplicative function (see definition 3.32) with domaio Ir.

Property:

(a) J{O)=Ov .1{0)= 1
(b) J{l)=Ov .1{1)= 1

Proof

Both (a) and (b) follow directly from dl =a::;> J{a)2 =ft:a).
0

Property:

(a) .1{0)= 1 ::;>(V x: xe Ir :J{x)=l)
(b) .1{1)=0::;> (V x :xe Ir :J{x)=O)

Proof

(a) follows from./{0)= .l{x)/(0) and (b) from.l{x)=J{l)J{x).
0

Property:

If .1{0) = 0 and .1{1) = 1 then an re Ir exists such that the following holds.

(Vx:xe lr":J{x)=x')

Proof

0

Let x e Ir with x:;t.O "X'jl!; 1. Let Xe Ir with X> 1. We write X as X =x"x+rx
with nx e IV0 and rxe [0, 1).
Notice that j{x)~ 0, since J{x)=J{..f;)Jrf;) and that J{x):;t.O, because
1 =J{l)=J{x)j(.!..). Hence, J{x)>O and similarly, J{X)>O. Consequently, we

may write
x

Iog.I{X) _ nxlogj(x)+log.l{x'x)

logX - nxlogx+log(x'x)

Consequently,

(Vx:xelr"-{0,1}: lim logj(X) log.l{x)).
X-too logX logx

By defining r := ~~~:~) , and noticing that r is positive, the proof of the pro­

perty is completed.

4

Extensions of w•curves

4.0 Introduetion

In conventional curve modeling the shape of a curve may be controlled in two ways.

(a) choosing different curve Havours, e.g. Bezier curves instead of Hennite curves.

(b) introducing more control points and using these control points for fine tuning
the shape of the curve.

Both (a) and (b) may be translated into the realm of w-curves. For (a) insection 4.1
parameterised 8-distribution functions are introduced. For (b) we give insection 4.2
two methods for defining w-curves with more than three control points. Both
methods come down to defining some weaving scheme for more than two control
chains; the schemes given in sections 4.2.1 and 4.2.2 are called consecutive weaving
and simultaneous weaving, respectively. Distribution functions for secónd and third
order Bezier curves are given in an example of simultaneous weaving.

Finally, we give in section 4.3 a metbod for improving the computational effort
needed for w-curves. The metbod is based on precomputing the order in which codes
are taken from the control chains. This order is represented by a so-called canonical
chain.

4.1 Parameterised w-curves

W -curves are defined by three control points and two distri bution funcûons. The
control points are used for controlling the tangents in the end points, whereas the dis­
tribution functions can be used to change the flavour of the curves. This last possibil­
ity is clearly not available for well-known curves as Bezier and Hennite, since they
come just in one flavour: there is exacdy one (Bezier) curve on three given control
points. So if we can control in an intuitive manner the flavour of the curve by adapt­
ing the distribution functions, w-curves have a clear advantage over other curves.
Here we give an example for adapting distribution functions by adding a parameter
mechanism.

75

76 Extensions of w-curves

In the algorithms for computing the pixel set of a w-curve, as given in section 3.6.2, a
distribution tunetion was represented by an array of integers; there was, however, no
mentioning of how this array was filled. The filling of the array should, preferably,
be of low cost, e.g. by means of an incremental scheme for computing polynomials.
In this section we give another cheap way for incrementally computing a distribul.ion
function.

A distribution funcl.ion is, as we defined in 3.7, a funcl.ion with an interval [O .. n 1
(for some n e IV 0) as its domain and a subset of IV 0 as its reach. Below we generate
such a tunetion from a discrete curve, i.c; a w-curve given by 3 control points; one of
these control points is used as a parameter to control the shape of the resulting distri­
bution tuncl.ion.

Let W be a discrete curve with the property that for all x e [0 .. n] at least one
y exists such that (x, y) e W. For · such a discrete curve W a funcl.ion
Iw: [O .. n]-+IV0 is defined for all xe [0 .. n] by

lw(x) :=max{y I {x,y) e W}

Hence, if we can define a curve with the proper "domain" and the proper "reach"
U; IV 0) the above defined tunetion Iw is a distribution tunction. As a first example
such a discrete curve W is defined as a w-curve.

J W:=W(qo, q1, q2,J, g)

where the points q0 and qz are given by

qo= (0, 0) " qz= (n, n)

and where I and g are two already known distribution functions, e.g. the identity
funcl.ion and the tunetion symmetrical to the identity.

q2= {n,n)

qo= (0,0)

Figure 4.1: parameterised distribution tunctionfw

The remaining control point q1 can be used as a parameter (see figure 4.1). The
choices for qo and q1 are not arbitrary; they are chosen such thatfw is smallat the
beginning and relatively large at the end of its domain. Hence, fw can be used as a

4.1 - Parameterised w·curves 77

distribution function fora w-curve that is tangent to a control chain at its start point

1be function Iw can be computed incrementally by generating the w-CU:rve W. Simi­
lady a symmetrical version gw of Iw can be defined. Using these two distribution
functions, the w-curve C=W(Po, P~t pz,lw.gw) can be inftuenced by the choice of
q1; if q1 is chosen closer to the lower right corner of the square, the distribution func­
tion Iw has relative small values at the beginning, and consequently, C is closer to the
controllines. By choosing q1 .x =q1.y, the resulting distribution function is the iden­
tity function, and hence, according to section 3.5.2, in that case C is an ellipse seg­
ment. By moving q1 away from the diagonal of the square, the deviation from an
ellipse segment beoomes larger.

(a)

Figure 42: parameterisation of w-curves
(a) example 4.1
(b) example 4.2

(b)

4.1 Example:

0

Figure 4.2(a) shows 4 curves parameterised with the scheme of figure 4.1 with
n=413. The values of q1 areforthese curves from left to right given by
(413,0), (267,133), (0,0) and (0,413), respectively. Hence, the third curve bas
the identity tunetion as its distribution function and is, consequently, an ellipse
segement.

The scheme shown above for defining a distribution function leaves room for all kind
of variations.

By defining W as the union of two w-curves W 0 and W 1, the distribution tune­
tion Iw can vary more. Not only a linear functionlw can now be made but also
a constant tunetion <fw(i)=n) and a peak tunetion lfw(i)=O for i~n. lw(n)=n).
W-curve W0 is given by Qo=(O; 0), Qot• and Q~o and Wt by Qt> Qtz, and
Qz =(n, n); q1 is again the parameter point and q01 and q12 are the leftmost and
rightmost intersecdon point, respectively, of the square with the line through q1
with slope 1. See example 4.2.

78

. qo=(O,O)

·---------
' '

Extensions of w-curves

qr (n,n)

Figure 4 3: parameterised distribution functionfw with W = W 0uW 1

4.2 Example :

0

Figure 4.2(b) shows 4 curves parameterised with the scheme of ligure 4.3. The
points qi are chosen as in example 4.2. Again the third curve is an ellipse seg­
ment. The peak function (q1 =(413,0)) results in a curve that ooioeides with the
controllines of the curve, whereas the constant function (q1 =(0,413)) results
in a line segment joining the two end points.

p More control points

In chapter 3 w-curves are defined as curves given by three control points and in their
definition the operators add 8 and .!!: are used. In this section w-curves given by
more than three control points are defined. Two essentially different extensions of
w-curves are defined; both are based on the weave operator for combining two
chains. In the first, the ebains are weaved in some order using the weave operator; in
the second approach, the ebains are weaved all at once, using a generalisation of the
weave operator .!!: . These two approaches are called consecutive weaving and simul­
taneous weaving, respectively.

4.2.1 Consecutive weaving

In case of consecutive weaving the operator !!:: is used (repeatedly) for combining
ebains (initially control çhains) in some order. The order of weaving the ebains
could, for instance, be from left to right: weave the first two control chains, weave
the result with the next chain etc. If this scheme is used, curves with the same

4.2. More control points 79

control points but with these points in reversed order, may not be exactly the same
pixel sets. To avoid this asymmetry we choose a recursive scheme in which in cases
of an odd number of ebains extra control points are introduced. Figures 4.4 (a), (b),
and (c) illustrate the recursive subdivision scheme used in the following delinition.

4.3 Definition : W,.

0

For all complete sets of functions Sf and Sg, for all ~1. and for all control
points p; (ie [O .. n]), W,.(Po,plt · · · ,p,.,Sf,Sg) is defined as the discrete
curve DC (p, e) with

p=po
e=X (Po, Pt• · · ·, p,.)

where the chain X (q0, q1, • • • • Qk) is recursively defined, for all Ir. e N 1 and all
points q; (ie [0 .. k]), by

add8(X(q0, ••• , Qn),j) ~ add8(X(q11 , ••• , qx),g)

ifk=2h

add8(X (q0, ••• , Qn; q), f) ~ add8(X (q, Qh+l• •.• , qx), g)

if h> 0 A k=2h+l, with q={(q11+qn+t)12]

bresh8(qt-Qo).

ifk=l

with/and g the appropriate functions from S/and Sg, respectively.

Notlee that W 1 is equal to a Bresenham line and that W 2 equals a w-curve.

For computing the continuons curve corresponding toa W,.-curve property 3.25 can
be used. Here we give an expression for the continuous curve betonging to
W 4(Po. Pt> P2• P3• P4• Sf, Sg). The limit of the sequences (X (kPo,kP~t lr.pû).te JN

and (X (kp2. kp3, kp4)).te JN are called C 0 and C 1, respectively, and are given,
according to property 3.25 or definition 3.28, by

C o(t)=!F(t)(pt- Po)+ q{t)(P2-Pt)
C ,{t)=1{t)(p3-Pû+ q{t)(p4-P3)

Hence, the limit C of the sequence (X (kpo. kp1• kp2, kp3, kp4))A:e JN is given for
te [0, 1] by

C(t)
= { property 3.25 }
C o(!F('t))+C 1 (q{t))

80 Extensions of w-c:urves

= { the above expressions for C 0 and C 1 }

:F(1{'t))(pt-Po)+ g(1{'t))(pz-Pt)+ :F(q('t)}(P3- Pz}+ g(q('t))(p4- ()3).

(a) (b)

Figure 4.4: consecutive weaving
(a) the control points

(c)

(b) the curves DC(Po,X(po.P~tPtû) and DC(po.X(Pt2•P2·P3))
(c) W 3(Po, P~o P2• P3, Sf, Sg)

Hence, applying consecutive weaving results in curves with higher order blending
functions. The figures 4.5, 4.6, and 4.7 show the construction of a W 5-curve.

Pt P12

Figure 4.5: construction of a W s (1)

Figure 4.8 illustrates the computation of a W 4-curve. The two "weave" subtrees
correspond to W 2-curves. The chains at level 0 are the control ebains and may he

4.l . More control points 81

Pt

Figure 4.6: construction of a W s (2)

·P~4--------~-----~----~-,P3

Figure 4.7: construction of a W 5 (3)

computed in 0 (mo) time where mi is the maximum length of the ebains at level i of
the tree. In section 3.6.2.1 we saw that the computation of the pixel set of a W 2

curve may be done in 0 (m0) time if the following two conditions are met:

(a) the control ebains have both length m.
(b) the distribution functions are compatible: F(m)=G(m)

Here, however, the chain of a W 2-curve, including the 8-codes, must be computed.
This computation takes O(m 1) time. Consequently, if n> I, a W,.-curve may, in gen­
eral, not be computed in 0 (m 0) time. The definition of W,.-curves may be adapted,
resulting in different curves, such that the resulting curve is computable in 0 (mo)

82 Extensions of w-curves

weave 4

~~
add8 add8 3

t t
weave weave 2

/ ' / ' add8 add8 add8 add8 1

t t t t
bresh8 bresh8 bresh8 bresh8 0

Figure 4.8: computation scbeme for W 4 -curve

time. Sucb an adaptation is not given bere, since we introduce in section 4.3 a
metbod by wbicb W,.-curves may be computed in time linear to m0 .

4.2.2 Simultaneous weaving

In simultaneous weaving all control ebains are weaved at once using the simultane­
ous weave operator W, as defined below. Insection 3.6.2.1 we used the fact that the
ebains are (and remain) of equallength to arrive at a linear algorithm for e-curves.
For this reason it suffices to define simultaneous weaving for ebains of equal length
only.

4.4 Definition : simultaneous weave operator

0

For all n 0!:1 and ebains c1 (ie [0 .. n)), all of the same length, the cbain
(W i : i e [0 .. n) : cd oflength n I co I is defined by

(Wi:ie [O .. n) :c.}(t):=Cm(d),

for all t e [0 .. n I c0 I) with the abbreviations m and d given by m = t mod n and
d=tdiv n.

Figure 4.9 illustrates the W-operator.

4.5 Property :

For all n;:: 1 and for the ebains c1 (i e [0 .. n)), all of the same length,

p((Wi: i~ [O .. n): cd. t) =(:Ei: iE [O .. n): p(c., r !.=i.l)
- n

for all t e [0 .. n I Co I] .

4.2. More control points 83

Figure 4.9: the simultaneous weave operator W
Co=[OOOO], Ct=[1111], C2 =[2222]
e=(W i: ie { 0, 1, 2} : cd=[012012012012]

Proof

0

We use c as a shorthand for the chain (W i: ie [0 .. n) : c1). Let
te [O .. nleol].

p(c,t)
= { definition 1.21 of p }
(l:.j :je [O .. t) :v(c(j)))
= (definition of c and W }
(l:.j, m, d: je [O .. t) "m=j mod n "d=j div n: v(cm(d)))
= { definition of mod and div: j=n(j div n)+ j mod n" me [0 .. n) }
(l:.m, d: dn+me [0 .. t) "me [0 .. n) : v(cm(d)))
= (calculus }
(l:.m:me [O .. n): CY..t!:dn+me [O .. t) :v(c .. (d))))

= { calculus }
(l:.m:me [O .. n) :(I:d:de [..::!!!. .. t-m) :v(c .. (d))))

n n
= { calculus }
(l:.m:me [O .. n) :(Y..d:de [o .. r t-ml) :v(c,..(d))))

n
= { definition 1.21 ofp}
(l:.m:me [O .. n): p(Cm, f t-ml)

n

Given this operator W for weaving a number of ebains definition 3.41 of e-curves can
be extended to curves with any number of control points.
Notlee that in the definition below, the combination of add8 and lengthen together
with the condition Fi(m) = F 0 (m), results in equal-length ebains for weaving with the
Woperator.

84 Extensions of '!-curves

4.6 Definition : nth-order e-cutves

0

For all n~ 1, all control points p; (i e [0 .. n)), and all distribution functions
/; e 1J". with F;(m) =F 0(m) with m given by

m:=mcu{ lc1111e [O .. n)}

with the ebains Ct given by

Ct :=bresh 8(pi+l-p;) ,

the nth-order e-cutve E,.(po. Pt, · · ·, p,../o./t. · · · ,fn-t) is defined as the
discrete cUJVe DC(p, e) with

p=Po
e=(W i: ie [O .. n) : add8(lengthen(c..m),fï)).

A continuons variant CE ofthe E,.-cutves may be defined similar to CW in definition
3.28 and CE in definition 3.43. In the definition of CE we notate by fv. the distribu­
tion tunetion in the complete set S/; with domain [0 .. k] . The primitive of fï.t is
notated by Fi,k· The limit of Fi,k• according to definition 3.25, is notated by !J;.

4.7 Definition :CE

0

For all n, all control points Pi• and all complete sets SJi. (ie [0 .. n]) with

(Vi,k:ie [O .. n] AkeN0 :Fi,t(k)=Fo,k(k)),

the continuous cutve C =CE(Po. p1, • • • , p,.. Sfo. Sft, · · ·, Sf,.-t) is defined,
for allt e [0, 1] by

C(t) :=Po+ { l: i :ie [0 .. n) : !Ji(t)(Pi+t-Pi))

Below an example of simultaneous weaving with 2 and 3 control ebains is sbown; it
results in second and third order Bezier cutves. The first part of the example shows
an ordinary weave, since it only concerns two control chains; it is given bere as an
introduetion to the second part.

4.8 Exarnple :

An nth-order Bezier curve (see for instanee [Boe84]) is denoted by B,.(t) and
given, for all te [0, 1] by

B,.(t)= (l: i : ie [0 .. n] : (7)tî(l--t)"-ip;),

where Po up to p,. are its control points. First we consider B2(t). In order to

4.2 More control points 85

fiud suitable 8-distribution functions for this curve, its parameter function is
rewritten in the affine invariant form ofproperty 1.4.

B2(t)
= { definition of 2ud order Bezier curve }
(l-'t)2pg+2t(l-'t)Pt~P2
= { calculus }
Po+(1-{l-'t)2)(pt-Po~<P2-Pt)

1be bleuding functions in the above expression are symmetrical (see property
3.36) and hence it suffices to find an 8-distribution function for the bleuding
function 1'1 (t) =~. t è [0 .. 1]. 1'1 is multiplicative (definition 3.32); multipli­
cative 8-distribution functions Fï1A:> however, with 1'1 (t)=limfï1t(t) do not

t k~ •

exist. This follows from the fact that Fï~t(t)=~ implies F 1,t(t)=f.; and conse­
quently, F 1,1(k)="i. This last fact contradiets with property 3.11, since distri­
bution functions are non-negative on their domain. Fortunately, by
reparameterising the curve, a way around may be found.

B2(t)
= { reparameterisation with a=~ }
Po+(l-{1-~)2)(pt-Pol+a(P2-Pt)

The new blending functions, however, are neither symmetrical nor multiplica­
tive. A second attempt to cast the Bezier form in a more manageable affine
form is done by choosing new control points ri; this results in different bleud­
ing functions. Ifthe new control points ri are chosen as follows,

ro=Po
r, =po+2(p,-Po)

r2 =P2•

B 2 is given by

82(t)
= { calculus }
ro+~(rt- ro)+a(r2-rt)

These new bleuding functions are multiplicative but not symmetrical.
Nevertheless distribution functions for these blending functions can be fouud
(see property 3.37) and are, for instance, given, for all te [0 .. k] and k e N 0

by

fo,lc(i)=i

/t,l(i)=O

These functions, however, do not fulfill the requirement for consecutive weav­
ing, F o,k(k)=F u(k). They can be changed according to the same property
3.37to

86

0

/o,~:Ji)= 2i
!J.~t;(i)=k

Extensions of w-curves

and these functions are such that. according to property 3.11(a), Fo,1(k) =
F u(k) = k(k+2).
A simtlar deduction for a third order Bezier curve results in

with

83(t)
= { definition of 3rd order Bezier curve }
(1-t)3Po+3t(l-t)2 PI +3t2(1-t)pz~ P3
= { calculus }
ro+t(r,-ro~(rz-rt~(r3-rz)
= { reparameterisation with a=~ }
ro+at (r,- ro>+of (rr ft)+a(r3- r:z)

ro=Po
ft =po+3(pt-Po)
rz =Po+ 3(p2- Pt)
r3=P3·

From property 3.37 we can see that these functions can be generated by the fol­
lowing primitive functions.

F o,~:(x):= [Co,~cx3]
F l,k(x):=[C t,~cxVx}
F 2,t(X):={Cz,kX}

for appropriate values of C;,k· F o,~c(k)=F l,lt:(k)=F 2,t(k) can now be established
by choosing:

1 Cot __ _
. - k...fk

Cu= I
C~~t=k...fk

Given a primitive ftmction the corresponding distribution tunetion can be
readily computed (see definition 3.10 of primitive functions) by

/o,t(O) =F;,~c(O)
/;,;.(i)=F;,A:(i)-F;,1(i-l)-l, for ie [1 .. k 1

In tigure 4.10 the results of using these distri bution functions are shown.

4.3 · Canonieal w-curves 87

Pt

(a) (b)

Figu.re4.10: Example 4.8
Bezier curves obtained by simultaneous weaving.

4.3 Canonical w-curves

In the previous sections the weave operator is applied to compute a discrete curve
from a set of control chains. Distri bution functions are used to control the final result
of weaving. Independent of what distribution funetions are chosen, some relations
between the control ehains and the resulting chain after weaving can be stated.

Consider the following situation: let ct be control chains, for i e [0 .. n) ; we say the
codes of chain c1 have colour i. Let r c be the result of weaving the control ebains c1
using a given set of distri bution functions. The ehain r c has the following two pro­
perties.

(a) The chain re equals ei after all codes of colours different from i are removed.

(b) The colouring of r c is independent of the actual codes in the control chains. It
is, however, inftuenced by the length of the control chains.

Hence, the chain r c can be constructed from the colouring s of r c and the control
ebains c1, by replacing, according to (a), all codes of colour i by the codes of ehain ct.
Note that according to (b) the chain r d, for control chains d1 with I d1 I =I c1 I , can also
be constructed from the colouring s of r c· For control chains d1 with I d11:S; I c11, s
can also be used to. eompute rd; this is simply accomplished by lengthening the
ebains c:t. to the length of chain I ct I by means of the lengthen operator. This does in
general not result in exaetly the same chain r d (not even after removing the added 8-
codes); the corresponding continuous curves, however are the same.
Hence, the chain s may be used to compute (an approximation of) r d for all control

88 Extensions of w-curves

ebains cJa with ld11S Ie. I.
Below a definition of a discrete curve based on the colouring of a chain is given; such
a colouring is called a caoooical chain

4.9 Defioition : caoooical chain

0

A caoooical chain s (of order n) is a finite sequence of colours, elements of
[0 .. n] . An element s; of a canonical chain is called a colour code.

4.10 Definition : caoonical weave curves

0

Given a canonical chain s containing n colours aod N codes of each colour;
given the control points p; (ie [0 .. n]) with I bresh 8(p;+t-pil I SN
(i e [0 .. n) , the caoooical weave curve CA (po, Pt, · · · , pil ,s) of order n is
defined as the discrete curve DC (p, e) with the point p aod the chain e given by

P=Po
(Vk, j, i: ke [0 .. Is I) A s~r:=i A #;(s, 0, k)=j: e(k)=c1(j))

with c1 =lengthen(bresh 8(Pi+t-P;)) (ie [0 .. n)).

Computation of a caoooical weave curve of order n takes the following steps:

(0) colour mix selection
computation of a canonical chain s with n different colours aod I sI =nN. This
may be done using a w-curve algorithm but other methods are also allowed. N
should at least be the size of the largest possible control chain. This may be
considered as a preprocessing step; it needs to be done only once.

(1) geometry computation
Compute the control ebains aod make them of length N with the lengthen
operator.

(2) chain construction
Reptace every colour code in s with the next code of the (lengthened) control
chain of the same colour.

The preprocessing may be relatively expensive, the steps (1) aod (2), however, have a
computational complexity linear to N.

We come to the following conclusions.

(1) Caoooical curves make the inefficient weave algorithms worthwhile.

(2) In fact caoooical curves are ao abstraction from weave curves, since all kind of
algorithms cao be usèd to generate a caoonical chain of colours.

4.3 · Canonical w-curves 89

(3) 1be use of the lengthen operator to obtain a chain of lengtil N seems inefficient
in memory usage and seems to introduce overhead in computing the chain.
However, the memory usage is relatively small compared to that of the frame
buffer. The overhead introduced by lengthening the curve to lengtil N may be
reduced by storing also canonical ebains of lengtil N 12, N 14 etc. This solution
only doubles the memory usage but limits this overhead to the length of the
control chain.

5

Filling of closed discrete curves

5.0 Introduetion

In this chapter an algorithm for drawing the interlor and the boundary of a closed
discrete curve is given. For this purpose a well-known scan-conversion algorithin for
polygons is adapted. (See for instance, [Fol90]). lts general principles are as fol­
lows.

(a) compute all intersections of the polygon with all (relevant) scan lines and sort
these intersections for every scan line from left to right.

(b) fill the scan lines between the found intersection points according to some
filling rule. Several of these rules exist; the non-zero winding rule is used bere.
Another well-known rule is the even-odd rule.

Different from normal scan line filling routines is that there is no need for computa­
ûons of intersection points; hence, no problem with inaccurate computations. It is
suitable for every discrete curve. It resembles more polygon filling using edge coher­
ence, in that it efficiently computes the intersection point with the next scan line.
Moreover this algorithm is suitable for processing ebains since it uses all codes once
and in the sequence as they occur in the chain.

5.1 Filling a closed discrete curve

First of all we define the notion of incidence of a discrete curve and a horizontal scan
line. A discrete curve is incident with a scan line if it bas points on the scan line. An
incidence may be an intersection. A curve intersects a scan line if it bas points both
below and above the scan line. An intersection may be described with a 6-tuple con­
taining the following items:
- i, j: the indices of the first and last point on the scanline
- min, max: the x-coordinate of the leftroost and lightmost point on the scan line
- y: the y-value of the scan line
- d: the direcûon of intersection: de {up, down}
An incidence is also described by such a 6-tuple. lt can take one other form, namely a
local maximum or minimum, in these cases dir is hor. Figure 5.1 shows all the three

91

92 Fil6ng of dosed discrete curves

possible cases for an incidence with respect to its direction.
The fomlal definilion of incidence given below uses the expression dir(e, j) to indi­
cate the direction of the code c(j mod Ie I); dir is defined as follows.

S.I Definilion : dir(c,j)

For all chains c and all j e .Z dir (c, j) is defined as follows.

{

up ifvy(c(jnwdlcl))=l

dir(c,j):= hor ifvy(c(jmodlci))=O

down ifvy(c(jnwdlcl))=-1

D

5.2 Definilion : incidence

D

An incidence of a discrete closed curve DC (p, c) with scan line y is a a 6-tuple
(i, j, min, max, y, d) with

and

ie [O .. Iel) Aje (i .. co)
min,maxe.Z
de {up, hor, down}

dir(e, i):F.hor 1\ (V k: k e (i .. j) : dir(c, k)=hor) 1\ dir(c, j):F.hor

min=min{Px+Px(C,k)lke (i .. j]}
max=max{Px:+Px(e,k)lke (i .. j]}

{
dir(c, i)

d= hor
if dir(c, i)=dir(c, J)
if dir(c, i):#:dir(c, j)

Horizontal closed discrete curves, curves with points on only one scan line, have
according to the above definitions no incidences. Computing of the interlor and the
boundary pixels of a horizontal curve is trivial. In the algorithms below only non­
horizontal curves are considered.

First an algorithm is given for computing all incidences of a discrete curve DC (p, c)
with the scan lines with numbers y in a given integer interval, say [0 .. Y] . This
algorlthm also sorts these incidences per scan line y on their x-coordinates in a list
S [y] of incidences.

5.1 · Filling a closed discrete curve

lJI
y

V i~
!,-'> ..

........ fJ
p(

min mlll

(a)

v
min mu.

(b)

Figure 5.1: three typesofincidences
(a) intersecdon with d=up
(b) incidence with d=hor
(c) intersecdon with d=down

Hence, with predicate R given by

R All incidences I of DC (p, c) with U e [0 .. I c I)
and l.y e [0 .. Y]. are added toS.

we can write down the following invariants.

P All incidences I of DC (p, c) with /.i e [0 .. i)
and l.y e [0 .. Y] , are added toS

Po dir(c,i)#wu.(Vk:ke (i..j) :·dir(c,k)=:hor)
Pt min=min{px+Px(C,k)lke (i .. j]} A

max=max{Px+Px(c,k)lke (i..j]}
Pz (x, y)=p+p(c,j)

93

min -

(c)

1be assumption that the curve DC (p, c) is not horizontal implies that at least two
codes inchave a non-horizontal basic vector. Using the invariants P; we come to the
following program for the calculation of the array S. In it we use the procedure
Add _incidence _to _S that is informally specified by

add_incidence_to_S (i, j, min, max, y, d)

94 Filling of closed discrete curves

i, (x, y) := 0, p;
do dir (c, i) =hor --+

od;

(x, y) :=(x, y)+v(c;);

i:=i+l

(x, y) :=(x, y)+v(c;);
j, min, max :=i+l, x, x; { P 1\ Pa-2 }

do i< I c I--+
ifdir(c, j)=hor--+

(x, y) :=(x, y) +v (Cj mod n);

ifmin>x--+min :=x IJ ma~x--+max :=x fi;
j :=j+l

IJ dir (c, j):;t:hor--+
if dir (c, i) :;t: dir (c, j)--+ d:=hor
l]dir(c, i)=dir(c, j)--+d:=dir(c, i)

fi; is an incidence }
{Po-2/\dir(c, j)":;t:hor=> (i, j, min, max, y, d)
add_incidence_to_S (i, j, min, max, y, d);
(x, y) :=(x, y)+v(Cjmodn);
i, j, min, max:=j, j+l, x, x

fi { p 1\ Pa-2 }
od { R}

After computing the incidences we can start filling the curve. As mentioned before
the non-zero winding rule is used for determining which points are inside the curve
and which are not. The rule can roughly be stated as follows:

a point p is inside a closed curve if the number of intersections of the curve
with a half line starting at p, differs from zero. The number of intersections is
counted by adding 1 if the half line is intersected in one direction (up) and -1 if
it is intersected in the other direction (down).

In our case this half line is chosen to be a horizontal half line starting at the point p
and going to the left. Our definition of winding number can, hence, be given as fol­
lows.

5.3 Definition : winding number for points

0

A winding number wnr (x,y) fora point (x, y) is defined as

wnr(x,y) :=
(NI: I is an incidence inS [y] 1\ l.min<x 1\ l.dir=up)

(NI: I is an incidence inS [y] 1\ l.min<x 1\ l.dir=down)

S.l · Filling a closed discrete curve 95

Figure 5.2 illustrates the notion of winding number. Notlee that in the point Set
DC (p, c) both points with a non-zero winding number and points whh a zero wind­
ing number can exist. Using winding numbers the region of a curve DC (p, c) is
defined as follows.

5.4 Deftnltlon : region

region(p, c):={ (x,y)e Z 2 1 wnr(x,y);tO} uDC(p, c)
0

It is suffîcient to know winding numbers at the leftmost points of incidences, since
the points inbetween two succesive leftmost points have the same winding numbers.
Instead of using winding numbers as defined above, we therefore define winding
numbers for incidences and use these new numbers for computing a region. A wind­
ing number for incidences is defined as the winding number of its leftmost point
(min, y). If two incidences on the same scan line, ho wever, have the same min, the
value of their winding number depends on their order in the list S [y]; remember that
the list S [y] of incidences is sorted on min. In the next definition we denote With #L
the number of elements of the list L. For convenience sake we define a winding
number fora non-existing incidence L [#L]; for (closed) curves this winding number
is always 0.

····~··z 0
0 7 .. 71 .. : ...

wnrO 0 0 1 0 0 0 0 0 -1 -1 -1 -1 -1 0

wrui 0 0 -1 0

span

Figure 5.2:

5.5 Definition : winding number for incidences

0

For the j-th incidence (je [0 .. #L]) in a sorted list L of incidences the winding
number wnri (L, j) is defined by

wnri (L, j) :=
(N k: ke [O .. j) AL[k].dir=up)

(N k: ke [O .. j) AL[k].dir=down)

96 FiJilog of closed discrete curves

Tbe winding numbers of meidences are such that if (x, y) lies between two begin
points of consecutive incidences with the scan line y, the winding number of (x, y) is
the winding number of the rightmost incidence. Using this property of wnrt a span is
defined as an interval of points on a scan line. A span is a 4-tuple (i, j, min, max). It
starts at incidence S[y][i] and endsatan incidence S[y]U]. Tbe maximum and
minimum x-coordinates for the spans S[y][i] and S[y]U] are min and max, respec­
tively. Tbe indices i and jare such that the scan line y lies for the x-coordinates in
[min .. max] in the region (p, e).

S.6 Definition : span

0

A span of scan line y is a tupel (i, j, min, max) with

Q:; iS j <#S [y]

and

min,maxeZ

wnri(S[y], i)=O"
(V k: k e (i..j] : wnri (S[y],l):!I!O)"
wnri (S [y], j + 1)=0

min=S[y][i].min
max=max{S[y][k].maxlke [i .. j]}

The following property indicates that it suffices to compute and draw all spans for all
scanlinesye [O .. Y].

5.7 Property :

region(p, c)r. {(x, y) I x eZ "y e [O .. Y]}
=
{(x, y)ly e [0 .. Y] "(3 s: sis a span of scan line y: xe [s.min .. s.max])}

0

An algorithm for computing spans and drawing them using the drawspan function is
given below. It consistsof two nested loops one over all scan lines and one over all
incidences of the scan line with the curve. The invariant for the outer loop is given
by

Q The spans of the scan line with numbers in [0 .. y) are drawn
"wnri=O

5.1 Filling a closed discrete curve

The invariants ofthe inner loop are:

P All spans sof scan line y with s.j e [0 .. j) have been drawn.
Po ie[O .. j]
P1 wnri(S[y],i)=OA(Vk:ke (i..j] :wnri(S[y],j):;t:O)
P2 wnri =wnri (S [y], j)
P3 max=max{S[y][k].maxlke [i .. j)}

y, wnri :=0, O; { Q}
doy<Y~

od

i,j,max:=O,O,-inf; {PAPo-3 }

do j<>ts [yJ ~

od;

s:=S [y] [j];

if s .max>max ~ max := s. max fi;
ifs.dir=up ~wnri:=wnri+l
0 s. dir=hor ~ skip
0 s. dir=down ~ wnri :=wnri-1

j
fi; { Po " Pt " P2-3 j+l }

ifwnri=O ~{(i, j, S[y] [i].min, max) isaspan}
drawspan (S [y] [i] .min, max, y);

i, max:=j+l,-inf
fi;
j := j+l { P" Po-4 }

y:=y+l { Q}

97

The above algorithm can be improved to draw less points by adding a variabie which
keeps track of which part of the current scan line bas already been drawn. This
prevents that a pixel is drawn twice by drawspan. The time complexity of the total
algorithm is dominated by the number of pixels which must be drawn by the
drawspan functions. The number of times a drawspan function is called is majored
by the number of incidences.

6

Thick Curves

6.0 Introduetion

Page description languages, e.g. PostScript [Adobe] , use drawing primitives like
Jines, circles, Beziers etc. These languages often not only support the rendering of
these primitives but also the rendering of thick versions of these primitives; that is
the same primitive, but drawn as if a brush of some fonn and a given thickness is
used instead of a pen; a pen is a brush with thickness one pixel. Two standard fonns
for brushes are a circle and a rectangle. If a circular brush is used, a mathematica!
description of a thick cutVe of thickness d reads: the set of points with distance at
most d toa point on the original cutVe. The original cutVe is called the center curve.
If a rectangular brush is used a mathematica! description of such a thick cutVe is the
set of all points within a perpendicular distance d of the center cutVe. These two
descriptions are not equivalent as can be seen in ligure 6.1.

(a) (b)

Figure 6.1: border of a thick ei rele segment
(a) circular brosbed (b) rectangular brosbed

Several techniques exist for drawing thick primitives. Tilree are discussed shortly
below. A more detailed summary of these and other methods is given in [Fol90] .

(0) For some primitives like circles and lines a thick cutVe can be drawn by filling
between an inner and outer primitive, which both might happen to be a drawing
primitive. However, for some primitives, like ellipses, the inner and outer
cutVe are hard to compute and are certainly not drawing primitives.

99

100 Thlck Curves

(1) Another technique often used is basedon transfonning the primitive toa poly­
line representation and subsequently drawing the thick edges of the polyline as
tilled rectangles. Several ways of filling the cracks between the reetangles exist

(2) An elegant method for circular broshing discrete curves is given in [Pos89] . It
is based on drawing a filled circle for each pixel on its center curve and is suit­
able for all curves given by a 4- or 8-connected chain.

Notice that a circular-brushed curve is a rectangular-brushed curve with at the end­
points, if any, a tilled circle. For this reason, only rectangular broshing is considered
in the sequel. In this chapter an algorithm for drawing a thick representation of a
center curve, using a rectangular brush, is given. 1be center curve may be any
discrete curve and in contrast with the metbod in [Pos89] the set of pixels fonning
the thick curve will be generated in horizontal spans inslead of pixel for pixel. 1be
algorithm computes the two curves at distance d of the center curve and uses the till
algorithm as given in the previous chapter for filling a region between these curves,
called offset curves. Offset curves are not only of interest as an intennediate result in
computing thick curves but also play a role in design of e.g. fonts. In [Far89] a
metbod is given for approximating the offset curve of a conic curve by another conic
curve.

In section 6.1 we give an algorithm for producing the offset curves. In section 6.2
this chapter is concluded with an algorithm for computing thick curves.

u Offset curves

Let C be a continuous curve with n(x, y) for every point (x,y) e C a nonnal vector of
C with given handiness, assuming that these nonnat veetors exist. An offset curve
oe at distance dof C can now be defined by

OC:={ (x,y)+dn(x,y) l(x,y)e C} (OC)

Another offset curve can he obtained by subtracting d n(x, y) rather than adding it to
(x,y). For some continuous curves offset curves can he readily computed; for others,
they are rather complex. Circles, for instance, have circles as offset curves; the offset
curves of ellipses (see figure 6.2), on the other hand, can he shown to he 8-th order
polynomials ([Fol90] attributes this result to [Sal96])
Our concern is not with continuous curves but with discrete curves (given by chains).
The above definition of offset curves cannot immediately he extended to discrete
curves since the notion of normal veetors is not defined for discrete curves. 1bere are
only 4 basic veetors of Euclidean length 1. In order to have more possible directions
we ignore the length requirement for discrete nonnat veetors and only require that
they are perpendicular to the discrete curve. In section 6.1.2 we define what we con­
sider to he perpendicular to a discrete curve.
Let nd(c, i) be a discrete vector along a nonnat vector of a chain c and let it he a

6.1 OITset curves 101

Figure 6.2 : an ellipse and its two offset curves

vector of approximated Iength d. A definition fora set of points OD, similar to the
definition of OC may now be given by

OD := {p(c,i)+nd(c,i)lie [O .. Icl] }. (00)

Notice that OD is in general not a connected set and hence, not a discrete curve. In
section 6.1.3 interpolation schemes are given to make thesetOD connected.

6.1.2 Discrete normal veetors

In this section a definition is given for normal veetors of points on a discrete curve.
Considering the continuous curve obtained by connecting the points of a discrete
curve by straight line segments, it is obvious that in most of these points a (continu­
ous) normal vector does not exist.
Supplying a normal vector for every edge of a discrete curve can easily be done by
rotating the basic vector 7tl2 radians. Using these normal veetors for the computation
of offset curves, however, does not give the desired result since we are interested in a
discrete representation of a continuous thick curve. Hence, the normal veetors have
to be defined in such a way that they resembie the veetors dn(x, y) of equation (OC).
This can be done in several ways, since a discrete curve is a discretisation of an
infinite number of continuous curves.
In the definition below a discrete normal vector for a point on a chain is defined by
rotating an approximation of a difference vector, which plays the role of a tangent
vector, by 7tl2 radians. This rotation is accomplished by adding 2 to every code
involved (see example 2.2). For most points p(c, i) the difference vector is simply
given by p(c, i+n)-p(c, i-n), forsome appropriate n. For points near the beginning
or end of the curve this definition must be slightly adapted. In the definition below a
closed curve is also considered as a special case.

102 Thick Curves

6.1 Definidon :(discrete) nonnal vector

0

For all ebains c, ie [0 .. I c I] , and n e IV 1, a nonnal vector n(c, i) of order n al

:9te i-lh point p(c, i) of chain c is defined by

n(c, i):= (:Ek: k e [max{O, i-n} .. min{ lel, i+n}) : R(v(Ct)))

wbere R is a rotation over 7rl2 radians.
For closed ebains c the definition reads

n(c, i):= (:Ek: k e [i-n .. i+n) : R(v(ckmod lel)))

The choice of the order n of a nonnal vector is inftuenced by the following two argu­
ments.
(1) If we choose to use nonnal veetors of low order, the number of distinct veetors is
limited and so the number of directions these veetors can point in, is limited (see
figure 6.3).

(a) (b)

Figure 63: possible directions for normal veetors in octant 0
(a) normal veetors of order 1
(b) normal veetors of order 2

Let m be lhis number of directionsin octant 0 0 • An angle of atleast 27rl(8m) radians
between adjacent directions exist. Notice that lhe largest gap between two adjacent
direcdons is directly related ton and given by arctan(~), the angle between (1, 0)

and (2n, 1). Hence, the Euclidean distance of these veetors after sealing them to
lenglh d, is majored by lhe are length d arctan(~)=:;,. +0(: 3). Hence, the max-

imum distance of adjacent points on the offset curves beoomes smallerif n beoomes
larger.
The behaviour of m for n~oo is given by lhe following number theoretic result (see
for instanee [Bak84 J) (gcd (i, j) denotes the greatest oommon divisor of i and J)

m = (N (i, j) : (i, j) e 0 0 " i==> 2n " gcd (i, j)=l) = ~ (2n)2+0(nlog(n))

6.1 · Offset curves 103

(2) By choosing a large onier lhe discrete nonnal vector may differ more trom tbe
expected nonnal vector in that point In case of a cir'Cle this effect cannot be
observed, since the difference between every two points on this curve is a "good"
approximation for nonnal veetors in the point in the middle. In tigure 6.4 the effect is
demonstraled for a curve other than a circle. This effect is most annoying ü it occurs
at the beginning of a (not-closed) chain.

. . ' ' . . ' ' . .
~ .. ·~~ -~ .. -.. . .. ; : ~ ~ :. ~ ' .

·····~··· ~-···~····f··· f-.-.f····~···•·······•···f····
..... : ... : : ... : : ...•..•..•... ::.. .. : : : ' . ' . . ' '

··•···f····:····:····f····~····:····'····
.. ~ ~ ~ ; . . ' . .

... ~"' ' . ~ .. -. ~ ... -; . . ' .

Figure 6.4: nonnal veetors of different order in start point of the curve

Argument (1) and (2) contradiet each other and in practice a oompromise must be
made between resolution measured in the number of possible nonnal vector direc·
tions and accuraey in approximating the 'true' nonnal. For most cases values of n
near 10 turn out to be adequate.

A nonnal vector n(e, i) of order n may well be (0, 0) according to its definition. To
prevent this we require that the chain e is a smoothed chain (see seetion 3.4.) and
adapt the definition of a nonnal vector sueh that if the nonnal vector is (0, 0) aecord­
ing to the definition 6.1, the largest order nonnal vector of order smaller than n, and
different from (0,0), is chosen. Such a vector clearly exists if the chain is smooth.

6.U.l Sealing of discrete normal veetors

Sealing a discrete nonnat vector n(e, i) to the vector na(e, i) of approximately length
d may be done by simpte ftoating point arithmetic. Using integer arithmeûc it may
be done by computing a table of scaled veetors as a preproeess and, subsequently,
applying a simple table lookup. This table should contain an entryfor all (4n+1)2 -1
possible nonnal veetors of order n. Using symmetry the size of the table can be
reduced to (2n +3)n, the number of points in {(i, j)l i e (0 .. n] A je [0 .. i] } .
This preprocessing can simply take place by oomparing all possible nonnal veetors to
points on a discrete circle with radius d and storing the ciosest point in the table.

104 Thick Curves

6.1.3 Interpolation

The set of points OD of an offset cuJVe, wbich can be generated given the scaled nor­
mal veetors Dt.~(C, t), is in general not a connected set. Hence, we need to add points
to it to make it a discrete cuJVe. These points are added by interpolating the points of
OD. Several interpolation schemes can be used, the most obvious of which are:
interpolation with line segments and interpolation with circle segments. Both
schemes can be implemented easily.

6.1.3.1 Une segments

lnterpolating the points of OD with line segments is done by computing the ebains
bresh8(q,-qo). where qt and qo are two points in OD betonging to two consecutive
points of the cuJVe. The concatenation of all these ebains forms a discrete cuJVe for
an offset cuJVe at distance d. lf the gap between q0 and q 1 is big, interpolation with
line segments does not look nice. Moreover linear interpolation does not accord with
the fact that we compute normal veetors in the end points of the edges and not on the
edges. Indeed the offset cuJVe of an edge is a straight line while, on the other hand an
offset cuJVe for a point is a circle.

6.1.3.2 Circle segments

Interpolating two points q0 and q1 on an offset cuJVe with a circle segment is ambi­
guous, since an infinite number of interpolating circle segments exist. In our case we
can simply choose the following solution (see Figure 6.5): let Po=p{c, i) and
p1=p(c, i+ I) be the points on the center cuJVe corresponding to q0 and q~o respec­
tively, on the offset cuJVe. From the (integer) sealing metbod as described above, we
know that qi- p; is a point on the ei rele with center (0, 0) and radius d. Let ë be the
chain segment representing the circle are between q0-Po and q1-p1• We can use the
chain ë,!!;[C;], or any other combination of the samecodes for interpolating q0 and
q,. By choosing this specific combination c, is inserted somewhere in the middle ofë
and so a situation is obtained in which the offset cuJVe in q0 is a circle segment of a
circle with center Po and radius d, in q1 it is a circle segment with center p1• This
situation fits in perfectly with the fact that we compute the normal veetors on the
points of the center curve and not on the edges of its chain.

6.2 · Thick curves

.. ·
.••. ···•··

.......................

l'

I
l
I

\ l
\ :

\ /
··..

··· ' ~ ··..
....................................... ~··

Figure 6.5: interpolation in an offset curve using circle segments

6.2 Thick curves

105

A seemingly obvious algorithm for drawing thick curves takes approximately the fol­
lowing steps:

algorithrn I :

(a) compute the offset curves

(b) produce a closed curve by concatenating the offset curves; that is, add the
lines joining the begin and end points of the offset curves to the begin
and end point of the center curve, respectively.

(c) fill this closed curve.

At first glance, this algorithm seems to work properly. Indeed, in many cases this
metbod yields a correctly drawn thick curve. And by using the scan conversion algo­
rithm of section 5.1 for filling a closed discrete curve, it is even a fast method. As we
showinsome examples below, it is, however, nota correct solution in genera!.

Firstly we show an example which demonstrales that only knowing the offset curves
is not enough for correctly producing a thick curve by filling the area between the
offset curves.
Consider a circle with radius r. The inner offset curve betonging to the thicknesses
d< r equals the inner offset curve for thickness 2r-d (see tigure 6.6). Giving just
these curves to a filling algorithm would yield at least for one of these two cases an
incorrect solution. This clearly shows that offset curves contain not enough informa­
tion.

106

(a)

Figure6.6:
(a) circle with radius r and the same inner offset curves

for the tilielmesses d and 2r-d.

Thick Curves

(c)

(b) filled between center curve and offset curve for thickness d
(c) as (b) for thickness 2r-- d

As a second example showing the failure of filling between offset curves, we use a
center curve which is a concatenation of two quarter circles with radius r, as shown
in tigure 6.7(a). Computing its offset curves results in the curves of tigure 6.7(b).

(a) (b)

Figure 6.7:
(a) center curve
(b) the corresponding offset curves; the gray areas should be brushed

but are not in the area bounded by the offset curves.

Filling these offset curves again produces the wrong result. The two gray areas in the
tigure should have been drawn, but clearly are not.
From this example we conclude that offset-curves do not (always) determine the
complete boundary ofthe corresponding thick curve.

If in the above examples the thickness for the curves is chosen smaller than the radius
of curvature for every point on the center curve, algorithm I works fine.

Thick curves 107

6.2.1 Computing thick curve

The basic tlaw in algorithm I is a result of the fact that it does not use infonnation on
which points on the center curve and offset curve are associated. This had for
instanee the effect that the gray areas in tigure 6.7 were, incorrectly, not drawn.
Algorithm 11 circumvents this fiaw by filling two quadrangles for each pair of con­
secutive points on the center curve: one on each side of the center curve. If the center
curve points are Po and PI , and their respective points on one of the offset curves are
q0 and qi, the quadrangle is fonned by the curve segments PoPt, PI qi, the interpola­
tion of q1 and qo. and qoPo·

In algorithm 11 we denote with inpol(q0,qJ) the interpolation of two points on the
offset curve as given in either section 6.1.3.1 or 6.1.3.2. The code C;-1 +4 is the code
with as basic vector the vector v (C;-1) rotated over x radians (see example 2.2). With
fill(p, c) a fill procedure is denoted that fills the closed discrete curve DC(p, c), e.g.
the algorithm given in chapter 5.

Below algorithm 11 is stated preceded by its postcondition R and two invariants Po
and Pt.

R the center curve DC (p, c) is drawn with thickness d
Po the center curve DC (p, [c(O) · · · c(i-1)]) is drawn with thickness d

tde[O .. Icl]
P1 P<J=p(c, i)" qo=Po+Dd(c, i)" ro=Po-nd(c, i)

algorithm n :
i, Po :=0, p;
qo, ro :=po+nd (c, 0 l, Po-nd (c, 0); (Po" pl }
do i< 1 c 1----t

P1, ql, r1 :=pa+v(c(i}), P1+nd (c, i), p1-nd (c, i);
Co, Ct:=bresh8(po, qo), bresh8(q1, pt);
fill(po, Co®inpol(qo, qt) ®Ct® [Ci-1+4]);

fill (Pl, Ct® inpol (ro, r1) ®Co® [ci-1]);
i, Po,qo, ro:=i+l, P1, ql, r1 {PoAPl}

od{PoAi=ICI ;hence,R}

This algorithm lack.s the flaw of the algorithm I, it has, however, the disadvantage
that it contains numerous calls to the fill routine, whereas the first algorithm contains
only one such call. Thus algorithm I is efficient but wrong, where algorithm II is
ineflicient but correct. We combine the two algorithms in order to obtain an efficient
and correct algorithm.

Algorithm I is more eflicient since it fills larger regions; a way for mak.ing algorithm
11 more efficient is by diminishing the number of areas to be lilled while still the
same points are drawn. For a small curve the quadrangles that are tilled by algorithm
11 are drawn in tigure 6.8(a). In 6.8(b) as many as possible consecutive quadrangles

108 Thick Curves

are joined into larger closed curves without loss of interlor points.

".~~""' -f- i-""'

..;' ~ r\ ..;' ~

/"" I
I ~ \ I
,~ ['.. V r\] V r\'

I ~ V i'. I V
I 1"'-. \ I ['.. \

~ IX ' V.

(a) (b)

Figure 6.8:
(a) the quadrangles between the center curve (e) and its offset curves.
(b) as (a) but with as much as possible consecutive quadrangles joined.

This reduces, in this example, the number of areas from 8 to 4. In the sequel we give
some rules for indicating when two quadrangles may be joined.

Let region(D) with D a discrete curve DC(p, c) denote the set region(p, c). We
define the sum of two closed discrete curves C and D by given its region as follows.
(With wnr(C, x, y) we denote the winding number wnr(x, y) with respect to the
discrete curve C)

region(C+D):=DuCu { (x,y)e ~2 1wnr(D, x, y)+wnr(C, x, y):;l:()}.

Notice, that the region of C + D is the same set as obtained by the algorlthm in the
previous section if the lists of incidences of C and D are merged (per scan line).
Stated otherwise,

wnr(C+D, x, y)=wnr(C, x, y)+wnr(D, x, y).

We distinguish 3 types of curves. A curve of type 1 is a curve with all the winding
numbers of its interlor points larger than 0. For type -1 all the winding numbers of
the interlor points are smaller than 0. Finally, for type 0 both points with winding
numbers larger than 0 and points with winding numbers smaller than zero, exist in
the interlor. In figure 6.9 quadrangles of these 3 types are shown.
The following property holds for curves of the same non-zero type.

region (C + D)= region (C) u region (D).

6.2 · Thlck curves 109

~ ~""" '} .,..". "...

r\ J
la

I \
~ "... ~ .",. ~

(a) (b) (c)

Figure 6.9: quadrangles of type -1 (a), 0 (b), and 1 (c)

Hence, two curves may be added without loss of interlor points if they are of the
same non-zero type.

We use this property for joining consecutive quadrangles in the thick curve algo­
rithm.

Clk+l

breshB

pk Pk+l

Figure 6.10: quadrangle Q (k)

FtrSt we de fine the discrete curve Q (k) as the kth quadrangle in the thick curve algo­
rithm n (see ft gure 6.1 0):

Q(k):=DC(Pt+lt dk ®bresh8(Qk+l•Pt+l)) with
d1:= [cA:+4] ®bresh 8(pk,Qk) ® inpol (QA:tQk+l)

for k e [0 .. I c I] . Notice that if Q (k) and Q (k + 1) are of the same type and the chain
ek is given by

ek:= inpol (Qk+l ,Qk+2) ® bresh 8(Qk+2•Pk+Û ® [CA:+J+4],

the following holds.

110 Thiclt Curves

region (Q (k)+Q (k + 1))

=
region(Q(k))uregion(Q(k+1))

region (DC <Pt+l• dt ® e.~;)),

The last equal-sign is based on the fact that the ebains bresh8(<tt+ttPt+t) and
bresh 8(P.t+t•<lk+t) cancel each other out in the computation of wnr.
Hence we can compute a discrete curve with the same region as the sum of consecu·
tive quadrangles of the same non-zero type. We use this in algorithm lil by filling
this discrete curve inslead of the individual quadrangles.

6.2.2 Detennining the type of a quadrangle

Detennining the type of a quadrangle may be done by checking for possible inter­
secling sides ofthe quadrangle. Weease this task by dividing the quadrangle along a
diagonal in two triangles. From the types of these triangles we compute the type of
the quadrangle. The types of the triangles may be simply detennined since no inter·
sections occur. In contrast with the definition of type of a curve, as given above, we
say that a triangle has type 0 if its three venices are collinear.

Let t 1 and t2 be the types ofthe so obtained triangles. The following algorithm now
detennines the type t of the original quadrangle.

iftl=t2 ~ t:=tl
IJ tl;t:t2 A t2=0 ~ t:=tl
IJ tl;tt2 A tl=O ~ t:=t2
IJ tl=-t2 ~ t:=O
fi

6.2.3 The algorithm

In this section we give an algorithm for computing thick curves, by filling sets of
consecutlve quadrangles. The algorithm is simplified in two ways;

(1) only one half ofthe thick curve is drawn;

(2) the computations of the center curve points p;=p(c, i) and the offset curve
points Qi=p;+nd(c, i) are left out.

Algorithm II does not contain these simplifications and may be used to complete
algorithm 111.
Invariant Po indicates that the first j quadrangles are already filled. P1 asserts that
the quadrangles Q(j) upto Q(i-1) are bounded by the chain c and bresh 8(qi, Pi).

6.2 . Thick curves

Po filled area=(U k: k e [0 .. j) : region (Q (k)))
Aje [O .. Icl] A ie [O .. Icl]

P1 · region(p;,c~bresh8(CJI,pt})=(Uk: k e [j .. i) : region(Q(k)))
P2 t=type of region (pj,C ® bresh 8(q;,p;))

algorithm m :
i, j :=1, O;
c := [c0+4] ®bresh8 (Po, Qo) ®in pol (Qo, qt);
t:=type of Q(O);
do i< I c I~

tq:=type of Q(i);

iftq;tt vtq=O~
fill (Pi, c®bresh8 (qi, Pd);
c:= [c1+4] ®bresh8 (p1 1 qd ®inpol (qit Q1+1);

t, j :=tq, i
[] tq=t "tq:;t-0~

c := [ci+41 ®c® inpol (qi 1 qi+i)
fi;
i:=i+l

od; { Po-1 "i= I c I
fill (p1 , c~bresh8 (Qi, Pi);

j :=i { Po " j= I c I }

111

P1 is kept invariant as can beseen by checking that the following is also an invariant
oftheloop.

c=rev((11k: k e [j .. i) : (ck+4]))
®bresh8(pi,qi)
®(Tik: ke [j .. i): inpol(Qk,qk+t))

The results of the above algorithm are ambiguous; on the one hand the algorithm pro­
duces correctly drawn thick curves, on the other hand it is not as effective as one may
hope for. Typically the performance improvement over algorithm 11 is only 25%;
that is 25% less fill operations are perfonned. However, both discrete curves with a
100% improverneut and discrete curves with 0% improvement exist. The lack of
perfonnace improvement can be explained by

(1) if for strongly-bended curves one quadrangle is of a non-zero type, its neigh­
bour on the other side is most likely a zero-type quadrangle.

(2) The discrete nonnal veetors form, because of !heir inaccuracy a quadrangle of
type 0 where their continuous counterparts would not.

Hence, part of the solution lies in improved computations of the nonna! vectors. This
can for instanee be obtained by using a curve at a higher resolution for computing the
nonnals of a curve at nonnat resolution. Another possible improvement lies in
smoothing the offset curve. Note that in smoothing always the relation between a

112 Thick Curves

point on the center curve and its offset points must be known in order to guaratltee a
correct thick curve. The latter metbod bas two advantages firstly the number of zero­
type quadrangles becomes Iess and secondly the borders of the tilled area become
smoother.

7

Final remarks

With chain coding all discrete curves can be described. This enables one to treat
discrete curves, independent of the ftavour of the curve ('Bezier', 'Hennite', circle,
etc.). This is illustrated in the algorithms for linear transfonnation, computation of
offset curves, computation of thick curves, and filling a closed curve; all of these are
presented in this thesis. Where these algorithms merely serve to process existing
discrete curves, the main part of this thesis is concemed with the fonnal specification
of discrete curves called w-curves and with algorithms for rendering these curves.
The curves fulfill a mild condition conceming tangency with its defining controllines
(spanned by its control points). The main difference with ordinary curve discretisa­
tion algorithms is that the latter are based upon a continuous curve definition.
(Although, indirectly, w-curves are also based on such a definition, since its
definition is based on Bresenham's line discretisation algorithm.) Despite their
discrete nature, there exist w-curves that are discretisations of, for instance, second
order Bezier curves or ellipses.

··· ...

(a) (b)

Figure 7.1: two curves not representable by w-curves

Not every continuous function bas a w-curve as its discretisation; see figure 7.1(a) for
a curve that violates the condition that the w-curve should lie within the parallelo­
gram spanned by the control points. Which curves within the bounds of a parallelo­
gram are w-curves is to be investigated, but clearly curves as in figure 7.1(b) are not
amongthem.

As we saw in chapter 3, the rendering of w-curves can only under certain conditions
be done in a time linear to the length of the control chains. These conditions were
met in the definitions of e-curves. For simultaneous weaving a similar definition as
for e-curves accomplishes linear complexity. For consecutive weaving, however, we

113

114 Final remarks

did not give such a solution, but instead referred to the notion of canonical chains.
which is a general solution for keeping the time complexity linear for discrete curves
of a certain llavour. Another way to achieve this linear time complexity is to elim­
inate the 8-codes each time the weaving operator is applied. The resulting curves can
be computed in linear time but do not have the nice propeny that a elosed formula for
their continuons counterparts is known. As an alternative so-ealled index ebains are
introduced in [Nie91] ; index ebains use run length encoding on the 8-codes in a
ehain. The computations for eonsecutive weaving of index ebains can also bé done in
linear time.

The algorithms conceming chain coding as given in this thesis have three propernes
which facilitate implementation in hardware.

(a) They use only simple integer arithmetic, i.e. addition, subtraction, and shifting.

(b) They have simpte structures; typically one loop in which per step of the itera-
tion one code of the input or output chain is handled.

(e) They can easily be panitioned in building blocks. These building blocks are
used, for instance, for generating a chain for a line or the weaving of two input
ehains.

Figure 7.2: building block structure for consecutive weaving

Figure 7.2 shows a possible contiguration of such building blocks for the computa­
tion of consecutive weave curves. However, considering the fact that all codes gen­
eraled by the lower blocks in the tree arrive at the root block, a pipeline structure
would be more appropriate with respect to load balancing. In [Nie91] these and other
considerations are elaborated for consecutive weaving on a transputer network.

115

7.0 Current and future research

In this thesis we only consider ebains in a two dimensional reetangolar grid which is
either 4-connected or 8-connected. For other regular grids, be it a higher dimensional
grid or one with another connectedness, the curve algorithms as given in this thesis
can be applied. In all these cases discrete line algorithms can be used for producing a
chain representation of a control line; to these ebains the same weave and add8
operadons can be applied. Hence, extensions, for instanee curve algorithms on a 3
dimensional grid, are straightforward. Extending to surfaces, however, is not so
straightforward, since ebains essentially can represent only 1-dimensional objects. In
[Ove90] and [Bri90] a bilinear surface definition is given based on four boundary
curves given by cbains. Since this surface definition depends on boundary chains, all
methods for cbain modelling can be applied to model the boundary ebains and,
indirectly, the surface. A surface modeller, called pret, basedon these principles is
discussed in [Ove91] . The usefulness of pret as a surface modeller remains to be
investigated.

In [Maa90] an integer algorithm is given for computing a cbain for a Bezier curve of
arbitrary order. The algorithm is based on computing a linear combination of ebains
representing Bezier curves; so a chain of a Bezier curve of higher order is obtained.

In [Lie87] the notion of closeness is introduced; closeness is a measure for the accu­
racy by which a discrete curve approximates a continuous curve. The closeness of
w-curves with respect to their corresponding continuous curves remains to be investi­
gated.

In chapter 3 and 4 distribution functions are given for circle and ellipse segments,
second order Bezier curves, and third order Bezier curves. For some curves it would
be nice to compute distribution functions; for others applying canonical ebains seems
to be a much more realistic approach. The computation of these canonical ebains is
in general far from obvious; some further research is required bere.

Summary

In this thesis applications of chain coding in the realm of computer grapbics are dis­
cussed. Chain coding is a technique developed in image processing for representing
a discrete curve, a connected set of pixels, by a chain of codes representing the
sequence of difference veetors between consecutive pixels. In this thesis chain cod­
ing is not only used in processing discrete curves but also in defining discrete curves.

In design continuous curves are often modelled by means of control points indicating
the global shape of the curve. The shape of the curve depends a1so on the ftavour of
the curves, e.g. Bezier curves, Hennite curves, B-splines etc. The curves, defined in
this thesis and called w-curves, are also modelled by means of control points. The
flavour of a w-curve is detennined by, so-called, distribution functions: a discrete
parameterlsation scheme. The chain of a w-curve consists precisely of the codes of.
the ebains betonging to the, so called, control lines: line segments connecting con­
secutive control points. The order of these codes in the chain for a w-curve is deter­
mined by the distrlbution functions. The w-curves are tangent to the first and last
controlline. The usefulness of w-curves is readily indicated by the fact that they can
be used to represent, among others, (discretisations of) ellipses, and second and third
order Bezier curves.
Algorlthms for rendering w-curves are given. These algorlthms use only simple
integer arlthmetic. For the efficient computation of higher order curves the notion of
canonic chain is introduced. In a canonic chain the order of the codes of the control
lines is stored; the actual generating of the chain for the w-curve is reduced to pro­
ducing the codes in that given order. This is a general approach, which may be used
outside the realm of w-curves.

The use of chains for the representation of discrete curves allows for algorlthms that
are applicable for all discrete curves and not only for curves of a specific ftavour. In
this thesis algorlthms for discrete curves are given for the following.

- linear transfonnation
- computation of offset curves
- computation of thick curves
- filling a closed curve

These algorlthms use only simple integer arlthmetic and typically have one loop in
which per step of the iteration one code of the input or output chain is handled.

117

, Samenvatting

In dit proefschrift worden applicaties van chain coding in het vakgebied van de
computergrafiek besproken. Chain coding is een techniek voor het representeren van
een discrete curve. een samenhangende vetzameling pixels; deze teclmiek komt
oorspronkelijk uit de beeldverwerldng. Een chain is een rijtje codes; ieder van deze
codes representeert een richting in het discrete vlak. In dit proefschrift wordt chain
coding niet alleen gebruikt voor het verwerken van discrete curven maar ook voor het
definiëren van discrete curven.

Voor het modelleren van discrete curven worden vaak de zogenaamde stuur- of
controlepunten gebruikt; deze punten geven de globale vorm van de kromme weer.
De vorm van de curve wordt ook bepaald door de soort curve; bijvoorbeeld Bezier
curven, Hermite, B-splines etc. De curven, genaamd w-curven, die in dit proefschrift
worden gedefiniëerd worden ook gemodelleerd door controlepunten. De soort curve
wordt echter bepaald door een discreet parameterisatieschema met behulp van de
zogenaamde distributiefuncties. The chain van een w-curve bestaat precies uit de
codes van de ebains van de bijbehorende controlelijnen: lijnsegmenten die de
controlepunten verbinden. De volgorde van deze codes wordt bepaald door de
distributiefuncties. W -curven raken aan hun eerste en aan hun laatste controlelijn.
Het nut van w-curven laat zich afmeten aan het feit dat met w-curven onder andere
(discretisaties) van ellipsen, en tweede en derde order Bezier curven gerepresenteerd
kunnen worden.

Algoritmes voor w-curven worden gegeven. Deze algoritmen gebruiken slechts
eenvoudige integer aritmetiek. Voor het efficiënt berekenen van hogere orde curven
wordt het begrip canonieke chain ingevoerd. In een canonieke chain wordt de
volgorde van de codes van de controle lijnen vastgelegd; het uiteindelijke renderen
van de chain is dan gereduceerd to het produceren van codes in deze gegeven
volgorde. Deze aanpak is ook algemener dan louter voor w-curven toepasbaar.

Het gebruik van ebains voor het representeren van discrete curven staat een algemene
algoritmische aanpak toe; algoritmen zijn niet langer slechts voor een soort curven
toepasbaar maar voor alle door ebains gerepresenteerde discrete curven. In dit
proefschrift worden in dit kader algoritmen voor discrete curven gegeven die het
volgende bewerlcstelligen: lineaire transformaties, berekenen van offset-curven,
berekenen van dikke curven, het vullen van gesloten curven. Al deze algoritmen
gebruiken slechts eenvoudige aritmetische bewerkingen en bestaan typisch uit een
lus waarin iedere keer een code van de invoer of uitvoer chain wordt afgehandeld.

118

Dankwoord

In het bijzonder een dankwoord voor Kees van Overveld met wiens steun en
inspirerende ideeën dit proefschrift zijn huidige vorm en inhoud heeft gekregen.

Verder ook een speciaal dankwoord voor Marloes van Lierop voor het nauwkeurig en
gezet lezen van eerdere versies en voor Rens Kessener de projectleider van het STW
project "Datastructuren voor rastergrafiek" waarbinnen dit proefschrift zijn aanvang
vond.

Dank aan mijn promotoren Dieter Hamroer en Frans Peters voor hun opmerkingen
die dit proefschrift door het laatste stadium hebben geholpen.

Dank aan mijn ouders aan wie ik dit proefschrift opdraag en aan wie ik alles te
danken heb.

Dank aan Matja Nuys voor haar organisatietalent en haar aangename gezelschap.

Dank ook aan al mijn collega's voor het scheppen van een fijne welksfeer en aan
mijn vrienden voor de aangename tijd die ik buiten de universiteit heb doorgebracht.

Dank aan allen die zoveel geduld met mij hebben gehad.

119

Curriculum vitae

11-08-61 geboren te Olland.
1973-1979 Gymnasium-~ aan het Jacob Roeland Lyceum te Boxtel.
1979-1985 Wiskunde studie aan de Technische Universiteit Eindhoven.
1985-1989 Project medewelker van het STW-project "Datastructuren voor rastergrafiek".
1989 - Universitair docent aan de Technische Universiteit Eindhoven.

120

References

Adobe

Bak84

Boe84

Bre65

Bri90

Cou89

Far89

Fol90

Fre61

Fre61

Fre69

Fre74

Lie87

Maa90

Adobe Systems Incorporated, PostScript language rej'erence manual,
Addison-Wesley, June 1990. 16th printing

Alan Baker, A concise introduetton to the theory of numbers, Cambridge
university press, Cambridge, 1984.

Wolfgang Boehm, Gerald Farin, and Jurgen Kahmann, "A survey of
curve and surface methods in CAGD," Computer Aided Geometrie
Design. vol. 1, pp. 1-60, 1984.

J.E. Bresenham, "Algorithms for Computer Control of a Digital
Plotter," IBM Systems Journal, vol. 4, pp. 25-30, 1965.

van den Brink and Timmennans, Discrete bilinear blending (revisited),
1990. Intemal report, Eindhoven University ofTeclmology

Courant, Richard and Jolm, Fritz,lntroduction to calculus and analysis,
Springer, Berlin, 1989.

Ge raid Farin, ''Curvature Continuity and Otfsets for Piecewise Conics,"
ACM Transactions on Graphics, vol. 8, no. 2, pp. 89-99, April1989.

James D. Foley, Andries van Dam, Steven K. Feiner, and John F.
Hughes, Computer Graphics: Princlples and Practice, The systems pro­
gramming series, Addison-Wesley, 1990. 2nd edition

Herhert Freeman, "On the Encoding of Arbitrary Geometrie
Configurations," /RE Transactions on Electronic Computers, pp. 260-
268, June 1961.

H. Freeman, "Teclmiques for the digital computer analysis of chain­
encoded arbitrary plane curves," in Proceedings of the National Elec­
tronics Conference, vol. 17, pp. 421-432, Chicago, 1961.

Herhert Freeman, "A scheme for the efficient encoding of graphical data
for communication and infonnation processing," in Advance in Elec­
tronics,proceedings ofthe 16th electronles congres, pp. 340-348, Rome,
24-27 March 1969.

Herhert Freeman, "Computer Processing of Line-Drawing Images,"
Computing Surveys, vol. 6, pp. 57-97, March 1974.

Marloes van Lierop, Digitisation Functions in Computer Graphics, Ein­
dhoven, 1987. Ph.D. Thesis, Eindhoven University ofTechnology

C.A. van der Maas, C.W.A.M. van Overveld, and H.M.M. van de Weter­
ing, An integer algorithmfor rendering Bezler curves, 1990. Submitted
for pubHeation in CAD

121

122

Mor85

Nie91

Ove90

Ove91

Pos89

Rud76

Sal96

Wu82

Relerences

Michael E. Mortenson, Geometrie Modeling, Jolm Wiley & Sons, New
York,l985.

A.I. Niessen, Consecutive weaving on a transputer network, 1991. mas­
ter thesis, Eindhoven University ofTeclmology

C.W.A.M. van Overveld, "Discrete bilinear blending and its application
in rendering curved surfaces,'' Computer Aided Design, vol 22, no. 6,
pp. 332-343, August 1990.

C.W.A.M. van Overveld, Analysis of the pret system, Februari 1991.
Internat Report. Eindhoven University ofTeclmology

K.C. Posch and W.D. Fellner, "The Circle-Brush Algorithm," ACM
Transactions on Graphics, vol 8, no. 1, pp. 1-24, January 1989.

Walter Rudin, Principles of mathematica/ analysis, Mathematical series,·
Mc0raw-Hill,l976.

Salmon, G, A Treatise on Conic Sections, Longmans, Green, & Co.,
London, 1896. lOth edition

Li-De Wu, "On the Chain Code of a Line," IEEE Transactions on Pat­
tern Analysis and Machine /ntelligence, vol. PAMI-4, no. 3, pp. 347-
353, May 1982.

Index 8-neighbour 10
octant 22
offset curve 100
P(n) 10
P(c) 15

lel 14 p(c,l) 14

LxJ. r xl,fxl 12 8-path 10

® 14 primitive function 40

#c(C, i,j) 15 region 95

(discrete) normal vector 102 rev(c) 14

add8 39 simultaneous weave operator 82

affine invariant 8 Sf 49

basic vector 13 smooth chain 47

bresh8 23,25 span 96

bre$h4 27 subc1ass 49

C4,Cs 13 subc1ass for e-curves 72

eanonieal chain 88 symmetrical 58

canonical weave curves 88 n-tangent 34

center curve 99
type of a curve 108

control chain 35 v(i), v; 13

CE 73,84 w,. 79

8-chain 13 W(po. P1o pz,f, g) 44

complete set 49 W(Sf,Sg) 49

concatenation of ebains 14 w-curve 44

8-connected set lO
weave operator 35

continuous curve 7 winding number for incidences 95

cw 56
winding number for points 94

1>,. 39
DC(p,c) 15
D4,Ds 9
discrete curve 11
dir(C,j) 92
distribution tunetion 39
e-curve 72
e-curve, nth-order 84
end(c) 15
fill 107
incidence 92
lnpol 107
length of a ehain 14
lengthen 71
limit of a sequence of ebains 51
multiplicative 58

123

Am Gronde der Moldau wandem die Steine
Es liegen drei Kaiser begrallen in Prag
Das Grosse bleibt gross nicht,
Und klein nicht das Kleine.
Die Nacht bat zwölf Stunden dann lcmrunt schon der Tag
Dann kommt schon der Tag.

Bertold Brecht, Das Lied vonder Moldau I Happy End (1929)

1. Algoriunen voor bet genereren van w-curven op een regelmatig rooster zijn
onafhankelijk van de connectedness van dat rooster.

(dit proefschrift- paragraaf3.6.2)

2. De continue varianten van w-curven zijn affien invariante curven.

(dit proefschrift ~ paragraaf 3.5)

3. Het gebruik van een canonieke chain als representant van een klasse discrete
curven biedt een flexibel alternatief voor bet implementeren van een curve­
discretisatie algoriune.

(dit proefschrift- paragraaf 4.3)

4. Het in dit proefschrift veelvuldig gebruikte lijnalgoriune van Bresenham is
beter dan "close": bet wordt gekarakteriseerd door de constanten 1{1. en 3/4 in
fomlUles cdO en cdl in (1) in plaats van 1 en 1.

(1) Digitisation junelions in computer graphics, Marloes van Lierop,
Proefschrift Tecbniscbe Universiteit Eindhoven, pagina 12.

5. Door het toevoegen van boolean labels aan de zijden van de opgedeelde
driehoeken is het algoritme in (2) aanzientijk efficiënter te maken.

(2) A consistem algorithm to fiU triangles and trûmgular patches, C.W.A.M.
van Overveld & M.L.P van Lierop, Proceedings of the European Computer
Grapbics Conference and Exhibition. 1986.

6. Voorzover de problemen zoals die bescbreven zijn in (3) ten aanzien van
consistentie van operaties op een geometrisch model van stochastische aard
zijn zullen zij zich in versterkte mate voordoen bij het animeren van zo'n
model

(3) Computational Geometry and Software Engineering: Towards a
Geometrie Computing Environment, A.R. Forrest in Techniques for
Computer Grapbics edited by David F. Rogers and Rae A. Eamshaw.

7. Een mensenmaatschappij gebaseerd op schaarste is inherent hiërarchisch.

8. De cijfers voor het aantal dierslachtingen in Nederland ten behoeve van de
vleesproduktie (in 1988: 6.000 paarden, 455.000 schapen, 1.100.000
runderen. 1.100.000 kalveren, 20.800.000 varkens en daarnaast nog
485.000.000 kilo pluimvee) maken vegetarisme eenvoudig verdedigbaar.

(4) Statistisch Jaarboek 1990, Centraal BureaU voor de Statistiek.

9. Een semantische beschouwing doet velmoeden dat "overheid" en "ovetbead"
etymologisch verwant zijn.

10. De verslaving van de moderne westerse mens aan visuele prikkels heeft
onnodige milieuvervuiling tot gevolg.

11. Het steeds vaker gebruiken van 's' als meervoudsuitgang zal er voor zorgen
dat pils in het ziekenfondspakket opgenomen wordt.

12. Er is geen reden om naast timmem1an woorden als timmervrouw of
timme~mens te bezigen daar man ook mens betekent; het lijkt echter toch
nuttig om ook vrouw in de betekenis van mens te gebruiken.

(5) van Dale, Groot Woordenboek der Nederlandse Taal.

