

Strategic farsighted learning in competitive multi-agent games

Citation for published version (APA):
t Hoen, P. J., Bohté, S. M., & Poutré, la, J. A. (2006). Strategic farsighted learning in competitive multi-agent
games. In G. Brewka, S. Coradeschi, & A. Perini (Eds.), ECAI 2006, 17th European Conference on Artificial
Intelligence, August 29 - September 1, 2006, Riva del Garda, Italy, Including Prestigious Applications of
Intelligent Systems (PAIS 2006), Proceedings (pp. 536-540). IOS Press.

Document status and date:
Published: 01/01/2006

Document Version:
Accepted manuscript including changes made at the peer-review stage

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://research.tue.nl/en/publications/4f72144c-13dd-4dad-a140-07e53e7c0df1

Strategic Foresighted Learning in Competitive
Multi-Agent Games

P.J. ’t Hoen and S.M. Bohte and and J.A. La Poutré1

Abstract. We describe a generalized Q-learning type algorithm for
reinforcement learning in competitive multi-agent games. We make
the observation that in a competitive setting with adaptive agents an
agent’s actions will (likely) result in changes in the opponents poli-
cies. In addition to accounting for the estimated policies of the op-
ponents, our algorithm also adjusts these future opponent policies by
incorporating estimates of how the opponents change their policy as a
reaction to ones own actions. We present results showing that agents
that learn with this algorithm can successfully achieve high reward in
competitive multi-agent games where myopic self-interested behav-
ior conflicts with the long term individual interests of the players. We
show that this approach successfully scales for multi-agent games of
various sizes, in particular to the social dilemma type problems: from
the small iterated Prisoner’s Dilemma, to larger settings akin to Hard-
ing’s Tragedy of the Commons. Thus, our multi-agent reinforcement
algorithm is foresighted enough to correctly anticipate future rewards
in the important problem class of social dilemmas, without having to
resort to negotiation-like protocols or precoded strategies.

1 Introduction
More and more opportunities are arising where smart software agents
can perform useful tasks for their owners. With these agents repre-
senting individual stakeholders, they will naturally strive to act such
as to maximize the extracted utility for the stakeholder.

It is well known however that in many cases, greedy, selfish behav-
ior by individual agents may harm the reward gained by a collective
of agents as a whole, and importantly, ultimately decrease the pay-
off of the individual agents. This class of problems is known as ‘so-
cial dilemmas’, with the classic iterated Prisoner’s Dilemma [15] be-
ing an example in the smallest – two player – setting, and Harding’s
Tragedy of the Commons [6] embodying the same problem instanti-
ated with many players. In both cases the most valuable immediate
action that a selfish agent can take lowers the value extracted by all
agents collectively. The selfish agent however reaps a higher imme-
diate reward. When all agents take this immediately most rewarding
action, the resulting collective joint action has an individual payoff
that is (much) worse for each individual agent than some other joint
actions. Thus, in repeated play of these games, myopic selfish behav-
ior leads for all individuals to (very) poor outcomes. The challenge
is to design adaptive algorithms for individual agents that are smart
and foresighted enough to allow them to quickly learn how to ex-
tract the most individual utility in repeated play of these deceptive
competitive multi-agent games.

Recent work in Multi-Agent Reinforcement Learning (MARL)
has proposed a number of extensions from the single agent setting to
1 CWI, The Netherlands Centre for Mathematics and Computer Science,

email: hoen@cwi.nl,sbohte@cwi.nl,hlp@cwi.nl

the competitive multi-agent domain (see [3, 10, 13] for an overview).
State-of-the-art MARL algorithms improve on single-agent RL ap-
proaches by incorporating models of the current opponent agents’
behavior. This allows an agent to model the current “environment”
including opponents, against which it has to optimize its own behav-
ior by playing a best-response. Unfortunately, this approach encour-
ages detrimental outcomes for social-dilemma type games.

We observe that an important aspect of competitive multi-agent
games is largely ignored in MARL algorithms: the policy that max-
imizes payoff will typically depend on the changing actions of ad-
versaries. Importantly, the adaptations of adversaries are likely to be
reactions to ones own actions. Strategic reasoning about the expected
adaptations of the adversaries can be paramount when an agent is
repeatedly interacting with the same opponents, and earlier actions
influence the future behavior of these adapting adversaries. As noted
above, ignoring the consequences of ones actions on the development
of the opponent policies can lead to detrimental outcomes, especially
for settings with a social dilemma at its core.

In general, social dilemmas can be modeled by the generalized n-
player iterated Prisoner’s Dilemma, or nIPD [15]. In the nIPD game,
every agent has a unilateral incentive to defect. However, if all agents
follow this policy, then the individual reward received is lower than
if all agents cooperated.

The two-player Prisoner’s Dilemma (iPD) is illustrative in that in
repeated play the optimal policy differs from playing the myopic best
response, and it can be profitable to have a good estimation of the op-
ponents’ reactions to ones own play. In a single game, two compet-
ing agents can each choose from actions ‘Cooperate’ or ‘Defect’ (C
or D), and the maximum joint payoff is achieved when both agents
choose to Cooperate. However, an individual agent obtains a larger
payoff by playing Defect, provided that the other agent plays Coop-
erate. From a game-theoretic perspective, playing {D, D}, the joint
action with the lowest joint and individual payoff, is the dominant
strategy and a Nash-Equilibrium in the single shot game.

In iterated play of the Prisoner’s Dilemma game, there is no longer
a clear dominant strategy, as both agents can achieve a higher ag-
gregated and individual reward by cooperating and playing the joint
action {C, C}, provided each agent has some strategic incentive to
rarely unilaterally defect.

It is important to realize that this strategic incentive in Prisoner’s
Dilemma type games can consist of the predictable counter-moves of
opponents: an intelligent adaptive adversary will react to ones own
actions. The question thus becomes: which moves should one play
to maximize the individual reward given the dependent adaptive be-
havior of the adversary? How will the opponents react to selfish or
cooperative actions and what are good moves to play?

Strategies developed by people like Tit-For-Tat for iPD [1] enforce

cooperative play with (smart-enough) adversaries by predictably
“punishing” a defecting opponent. Defecting as a strategy is discour-
aged by the likely negative future reaction of the opponent (see also
the Folk Theorem discussed in Section 2). For larger and/or less pre-
dictable games, such fixed strategies may not exist (or may be hard
to determine). It may however still be beneficial for an agent to rea-
son about the impact of its actions on the aggregated behavior of the
other agents, and how this will affect the possible rewards that can
be gained in future play.

We argue that current state-of-the-art MARL algorithms (reviewed
in for example [13]) do not incorporate a sufficient notion of the
longer term impact of their actions on the dynamics of the environ-
ment. This environment includes other adaptive agents that react to
moves of their opponents as well. For example, current MARL algo-
rithms that play the two-player iPD will universally converge to the
worst possible outcome of {D, D} when an agent plays against an
opponent that uses the same MARL algorithm (self-play) [3].

The one exception we are aware of is the M-Qubed algorithm [3],
which successfully learns to play {C, C} in self play for the two-
player iPD. M-Qubed adaptively switches between playing a best-
response strategy and the fixed precoded strategy of playing one ac-
tion consistently. The problem with using such precoded strategies is
that they can be exploited [14], and in general such an approach can
be expected to be unsuitable for more complex multi-agent games.

In fact, we are not aware of any state-of-the-art MARL algorithms
that scale well to larger, n-player IPD games. Myopic best-response
type strategies become woefully inadequate, and no current MARL
algorithm has sufficient foresightedness to detect how it’s own be-
havior changes future payoffs due to other agents’ adaptive behavior.

In this paper, we make a number of important contributions: first,
we refine the foresighted StrOPM MARL framework developed in
[14]. This StrOPM framework builds on multi-agent Q-leaning type
ideas and includes the crucial element of estimating ones oppo-
nents’ reactions into the forward reward estimations. The StrOPM
algorithm in [14] successfully solves two-player two-action ma-
trix games, including the two-player iPD. Here, we generalize the
StrOPM framework such that it can be applied to games with more
than two players. We develop an instantiation of this refined and gen-
eralized framework that is capable of scaling to larger size nIPD
games. To deal with nIPD games, we additionally develop a gen-
eralized description of aggregate opponent policies, which we use
to circumvent the state-space explosion by enabling a description of
the nIPD problem in a much reduced, linear state space. We show
that this approach successfully scales the StrOPM framework for the
nIPD, and our StrOPM algorithm is shown to achieve a high degree
of cooperation (and thus reward) even for the 9-player IPD, which
was the maximum feasible game-size that ran within reasonable time.
We thus argue that our generalization of the StrOPM framework is
foresighted enough to correctly anticipate future rewards in the im-
portant problem class of social dilemmas, without having to resort to
negotiation-like protocols or precoded strategies.

This result is of particular importance, as the generalized n-player
iterated Prisoners Dilemma (nIPD) is a matrix game of particular
interest, as noted [6]. Although the familiar 2-player iPD is a spe-
cial case of the nIPD, it has been argued , that the nIPD is ‘qualita-
tively different’ from 2 player iPD, and that ‘... certain strategies that
work well for individuals in the [2-player] iPD fail in large groups”
[2, 4, 5]. Even more than the 2-player iPD, the nIPD game is also
notoriously hard for existing MARL approaches. Thus, we believe
the successful generalization of the StrOPM framework to the nIPD
matrix game is an important step forward for MARL algorithms.

2 Agents and Matrix games
We define the assumptions and terminology for multi-agent Rein-
forcement Learning in iterated play of matrix games. We refer to
[2] for some well-known terms from Game Theory (GT) such as a
Nash Equilibrium (NE), a dominant strategy, pareto optimal or
deficient strategies, and best-response.

Let S denote the set of states in the game and let Ai denote the
set of actions that agent/player i may select in each state s ∈ S. Let
a = (a1, a2, . . . , an), where ai ∈ Ai be a joint action for n agents,
and let A = A1 × · · · × An be the set of possible joint actions.

A strategy (or policy) for agent i is a probability distribution πi(·)
over its actions set Ai. Let πi(S) denote a strategy over all states
s ∈ S and let πi(s) (or πi) denote a strategy in a single state s.
The generalized strategy is a mixed strategy, and lists for each state
the probability of selecting each available action. A joint strategy
played by n agents is denoted by π = (πi, . . . , πn). Let a−i and
π−i refer to the joint action and strategy of all agents except agent i.

We consider matrix games, where the payoff for each agent is
defined by a set of matrices R = {R1, . . . , Rn}. Let R(π) =
(R1(π), . . . , Rn(π)) be a vector of expected payoffs when the joint
strategy π is played. Also, let Ri(πi, π−i) be the expected payoff for
agent i when it plays strategy πi and the other agents play π−i. Let

Ri(

»

ai

a−i

–

) be the payoff for agent i playing action ai while the other

agents play action a−i.
A stage game is a single iteration of a matrix game, and a re-

peated game is the indefinite repetition of the stage game between
the same agents. While matrix games do not have state, agents can
encode the previous w joint actions taken by the agents as state in-
formation, as for example illustrated in [12].

In this work, we assume that an agent can observe its own pay-
offs as well as the actions taken by all agents in each stage game,
but only after the fact. All agents concurrently choose their actions.
Adaptation of the agents’ policy, i.e. learning as a result of observed
opponent behavior, only takes effect in the next stage game. Repeated
games are modeled as a series of stage games with the same oppo-
nent(s). Each agent then aims to maximize its reward from iterated
play of the same matrix game.

2.1 The n-player iterated Prisoner’s Dilemma
In the nIPD game, each player has a choice of two operations: ei-
ther cooperate (C) with the other player or defect (D). A matrix
game can be classified as a nIPD game if it has the following three
properties: 1) Each player can choose between playing cooperation
(C) and defection (D); 2) The D option is dominant for each player,
i.e. each has a better payoff choosing D than C no matter how many
of the other players choose C; 3) The dominant D strategies inter-
sect in a deficient equilibrium. In particular, the outcome if all play-
ers choose their non-dominant C-strategies is preferable from every
player’s point of view to the one in which everyone chooses D, but no
one is motivated to deviate unilaterally from D. The natural outcome
of agents playing myopic Best-Response in nIPD is Defection by all
agents, which is stable (a NE) but obviously Pareto-deficient.

The nIPD payoff matrix is shown in Table 1; Ci denotes the reward
for cooperating with i cooperators and Di the reward for defecting
with i cooperators and n− i− 1 other defectors. The following con-
ditions hold for the respective payoffs are [15]: (1) Di > Ci for
0 ≤ i ≤ n − 1; (2) Di+1 > Di and Ci+1 > Ci for 0 ≤ i < n − 1;
(3) Ci >

(Di+Ci−1)

2
for 0 ≤ i ≤ n − 1 (the payoff matrix is sym-

metric for each player).

Number of cooperators among the other n-1 players
0 1 2 n− 1

player A C
D

C0 C1 C2 . . . Cn−1

D0 D1 D2 . . . Dn−1

Table 1. Structured payoffs for the (symmetrical) n-player PD

Most multi-agent learning algorithms to date have focused on an
individual agent learning a (myopic) Best Response to the current
strategies of the other agents. Play between such agents using this ap-
proach often converges, and has as a goal to converge, to a one-shot
NE. However, a famous result from game theory (the folk theorem)
suggests that the goal of reaching a one-shot NE may be inappropri-
ate in repeated games.

The folk theorem implies that, in many games, there exists NEs for
repeated games, repeated Nash-Equilibria (rNEs), that yield higher
individual payoffs to all agents than do one-shot NEs, i.e. the rNE
Pareto dominates the NE. Hence, in repeated games, a successful set
of agents should learn to play profitable rNEs. However, since many
repeated games have an infinite number of rNEs, the folk theorem
does little to indicate which one the agents should play. [8] present
an algorithm for computing rNEs that satisfies a set of desiderata, but
how to learn these strategy online is unknown. Additionally, an agent
may have preferences between rNEs and play one above the other, if
allowed by its opponents.

3 The StrOPM Framework
Here, we refine the StrOPM framework of [14] and generalize it to
apply to games with more than two players. In the StrOPM frame-
work, an agent applies reinforcement learning to a state-based policy
as described in Algorithm 1. At each epoch of learning, the agent
adapts its policy along the gradient of increasing reward. The gradi-
ent of reward is calculated including the expected changing behav-
ior of the opponent, as a reaction of the agent’s own actions. The
StrOPM algorithm tracks the changes in observed opponent policy,
on a state by state basis, over time. It is assumed that these changes
in the opponent behavior, at least in part, reflect reaction to actions
chosen by the StrOPM algorithm . mThe policy of the StrOPM is
then optimized with expected future reactions taken into account.

We describe the StrOPM algorithm from the perspectives of an
agent i and its opponents, agents −i, we use this notation with sub-
scripts to indicate policy, states, action, etc . . . of the two types of
agents. E.g., ai and a−i are actions of agents i and −i respectively.
States. The set of states that an agent i can visit, Si, fulfills the
unichain assumption [11]: One set of “recurrent” class of states.
Starting from any state in the class, the probability of visiting all
the states in the class is 1. We introduce a transition function
T : Si × Ai × A−i → Si to return the next state of agent i upon
playing a (joint) action from the current state.

Policies. For a state s ∈ Si, πi(s) is the state-based policy of agent
i, and π−i(s) is the estimate of the opponent −i policies when agent i

is in state s. The opponent policy is estimated online using Exponen-
tial Moving Average (EMA). The estimate of π−i(s) after observing
action a−i is adjusted according, for action ai:

π−i,t+1(s)(a−i) = (1 − αEMA1)π−i,t(s)(a−i) + αEMA1. (1)

After this update, the policy π−i,t+1(s) is normalized to retain
π−i(s) as a probability distribution.

We introduce policy update actions. A policy update action
puai(s) dictates whether the likelihood of an action ai should be in-

creased for state s. Additionally, we introduce the null policy update
action puanull(s) to indicate that the policy should not be changed.

Let πi(s)
puai be the policy achieved by applying the policy update

action puai(s) to π(s)i. The policy π(s)i of agent i given puai(s)
not equal to the null action is updated according to:

πi,t+1(s)
puai = (1 − αLEARN)πi,t(s)(ai) + αLEARN , (2)

where αLEARN is the learning rate. The probabilities πi(s)(·) for
actions aj 6= ai are then normalized to retain πi(s) as a probability
distribution.

We wish to select policy update action puai(s)
∗ in (2) that max-

imizes a measure of expected future payoff of the changed policy.
Below, we explain how to compute this.

We introduce ξ(π−i(s), ai) to estimate the impact of an agent i

playing an action ai on the development of the policies π−i(s) of
the opponent. This function predicts the change in policy of the op-
ponents upon playing action ai; i.e.

π−i,t+1(s) = ξ(π−i,t(s), ai). (3)

As a first implementation of this function, we take the approach
that the changes in the opponent policy are, at least in part, caused
by an agent’s own actions. Our StrOPM implementation estimates
the change in policy as a continuation of the change in policy from
estimation of the opponent policy N epochs in the past, i.e. how
was the opponent policy at time t − N? This is done for each

state: for state s reached after playing action joint action
»

ai

a−i

–

and

T (s′, ai, a−i) = s transitions from the current state s′ to s, the
change in policy for this new state is estimated as a linear extrap-
olation of the change in the estimated opponent policy:

ξ(π−i,t(s), ai) =
π−i,t(s) − π−i,t−N (s)

N
+ π−i,t(s), (4)

where we limit ξ to [0, 1]. As states can encode a history of play, we
judge how an opponent changes its behavior based on our choice of
actions.

Thus estimating the change in opponent policies, the question be-
comes how to compute the value of proposed policy updates. Here,
we make use of the unichain assumption that says we only need to
consider loops starting from and returning to the current state to com-
pute this value. The algorithm then updates the policy for the possible
loops to increase the expected average reward.

From a state s0, a single loop L(s0) is defined as:

L(s0) = s0,

»

ai,0

a−i,0

–

, s1,

»

ai,1

a−i,1

–

, s2, . . . , s(n−1),

»

ai,(n−1)

a−i,(n−1)

–

, s0,

(5)
for a sequence of joint moves for agent i starting in s0, going through
s1, s2, . . . to sn and ending again in s0. Each next state reached

is through a joint move; T (sj ,

»

ai,j

a−i,j

–

) = sj+1. All intermediate

states reached in the loop are unique, and not equal to s0. For brevity,
we denote the j − th state sj in the sequence by L(s0)

j , the j − th

action pair
»

ai,j

a−i,j

–

by L(s0)j , and L(s0)j+ and L(s0)j− the com-

ponents of the j − th action pair: ai,j and a−i,j . The length of the
sequence L(s0), |L(s0)|, is equal to n; the number of joint actions
played before the considered state is reached again.

Let Bag(s,n) = {L(s)| |L(s)| ≤ n}, i.e. Bag(s,n) are all the
loops starting in state s with length of at most n . The probability of
a particular loop L(s) occurring, denoted by Pr(L(s)) is:

Pr(L(s)) =
Y

0≤j<|L|

Pr(L(s)j+|πi,j(L(s)j)) (6)

×Pr(L(s)j−|π−i,j(L(s)j)),

where L(s)j and L(s)j are the respective elements in the loop as
defined above, πi,j and π−i,j are the respective policies at time j,
evolving according to Equation (3), and Pr(·) denotes the probabil-
ity of a specific transition along the sequence given the respective
policies π(s).

The expected reward over the possible loops can then be expressed
as the weighted expected value of individual loops:

E(Bag(s,n)) =
X

L(s)∈Bag(s,n)

Pr(L(s)) × E(L(s)), (7)

where E(L(s)) is the expected average reward for each joint action
of a loop starting in state s:

E(L(s)) =

P

0≤j<|L(s)| V (L(s)j)

|L(s)|
, (8)

where V (L(s)j) denotes the estimated value of the j−th joint action
in the loop, L(s)j , to agent i.

The values Vi : Ai × A−i → < learns the value of a joint action

to agent i; Vi(

»

ai

a−i

–

) learns Ri(

»

ai

a−i

–

). The function Vi is updated

using EMA similar to Equation 1.

Strategic Updating. Let the opponent changes in policy be esti-
mated by ξ(π−i(s), ai), we can then compute the policy update with
highest expected payoff:

puai(s)
∗ = max

i
E(Bag(s,n))ξ

puai(s)
, (9)

where E(Bag(s,n))ξ

puai(s)
denotes the expected average reward for

the possible loops of at most length n, starting in state s, after ef-
fecting policy update action puai(s) and taking ξ(π−i(s), ai) as the
estimated opponent adaptation. Our StrOPM algorithm thus obtained
is outlined in Algorithm 1.

4 Experiments
We demonstrate StrOPM for nIPD games of different sizes: from the
standard two-player iPD to nIPD games with up to nine players.

For the two-player iPD, the payoff matrix is shown in Figure 1a,
inset. We let each agent encode as states the last joint action played;
{C, C}, {C, D} {D, C}, {D, D}.

This type of state representation, along with the detailed model-
ing of each individual opponent policy, cannot be scaled indiscrimi-
nately for an increasing number of agents (for n players the number
of states per joint action scales as 2n−1). We observe however that
for nIPD with more than two players, we can reduce the state space
representation: even though the opponent payoff contributions C−i

and D−i in Table 1 can be different for individual opponents j ∈ −i,
their contribution to the reward gradient is summed, and each agent
playing this game only experiences this summed gradient.

Thus, we can choose a simpler state representation where we
model the behavior of the aggregated opponents. We choose policy
update actions using the estimates of the aggregated opponent behav-
ior, and determine the reward gradient through the expected global
change in behaviors of the opponents as follows: For each agent, we
encode as states the number of other agents that have cooperated in

Algorithm 1 StrOPM
1: Initialize πi(s), π−i(s) for all s ∈ Si and V

for all all joint actions. Set the initial
state.

2: Do in each epoch sequentially for each
agent i in state s:

3: loop
4: calculate the highest valued puai(s)

∗

using E(Bag(s,n))ξ

puai(s)
as value for the

individual policy update actions.
5: Update policy πi(s) using the highest

valued policy update puai(s)
∗ action.

6: Play action ai ∈ Ai based on the chosen
policy update action puai(s)

∗. StrOPM
plays action ai for chosen policy update
action puai(s) = pua(s)∗ if pua∗ is not the
null policy update action. Otherwise
choose the action according to πi(s).

7: Receive reward Ri(
ˆ

aia−i

˜

) for the joint
action determined by agents −i.

8: Update the estimate of the reward for the
joint action V (

ˆ

aia−i

˜

) and the opponent
policy π−i.

9: set the current state to T (s,

»

ai

a−i

–

).

10: end loop

the last epoch; i.e. for n players there are n − 1 states that capture
whether 0, 1, to n − 1 other agents cooperated in the last epoch. For
each state s, separately for action C and D, each agent maintains
an estimate of aggregate opponent policy π−i(s). The function ξ in
Equation (4) then effectively captures the likelihood of either i) stay-
ing in the same state, ii) going to a state with more cooperators, or iii)
moving to a state with less cooperators as a consequence of playing
either action.

The function V learns the payoff Table 1. As for the two agent
case, πi(s) encodes for each state the probability of agent i playing
C in that state. A learning rate of 0.01 was used for all the EMA
equations of Section 3. The StrOPM algorithm looks back N = 10
epochs in Equation 4. Additionally, an agent using StrOPM had a
ε = 0.01 probability of taking an exploration move in each epoch to
ensure all states are sufficiently sampled in play.
StrOPM in the 2-player iPD. We present results of the StrOPM
algorithm for self-play in the two-player iPD (Figure 1a, solid line),
and for more myopic agents in self-play (Figure 1a, dashed line). The
myopic agents used a restricted version of StrOPM, MOPM, that was
constructed by using StrOPM and setting ξ to ξ(π−i, ai) = π−i (i.e.,
the agent assumes that its adversaries do not adapt in response to its
own actions). MOPM thus mimics the best-response type strategies
most state-of-the-art MARL algorithms employ.

As can be seen in Figure 1a, the StrOPM learner in self-play con-
verges to playing the (optimal) Cooperate-Cooperate ({C, C}) strat-
egy with reward 0.35 (solid line). The full cooperation equilibrium is
reached as the StrOPM learner estimates that unilaterally defecting
leads to states where more and more defection is expected. Addition-
ally, the full cooperation state is expected to lead to more cooper-
ation. In contrast, agents using MOPM in self-play quickly “learn”
that cooperation is risky and move to full defection (dashed line).

A closer study of the state-based policy of the StrOPM players
reveals that the agents in self-play exhibit a learned Tit-For-Tat strat-

Figure 1. a) Inset: payoff matrix for a two player iPD game. Graph: average payoff for two StrOPM agents and two MOPM agents playing the iPD. b)
Cooperation, as % of all agents cooperating, for 3 to 9 players in nIPD using StrOPM.

egy [1]. The Tit-For-Tat algorithm plays C until the opponent de-
fects upon which a D is played followed by again C until the next
defection to encourage cooperation. With states encoded as outlined
above, the policy is to play C in state {C, C} , play D from state
{C, D} , and C from {D, D} . The StrOPM agents learn this strat-
egy and play C to cooperate and reach a good equilibrium, except for
occasional exploratory moves. At the same time the StrOPM players
also evolve a “threat” state where defection is retaliated in order to
guard against exploitation by the opponent. Note that StrOPM also
learns to play optimally in less difficult 2-player matrix games, like
chicken, rock-paper-scissors, and matching pennies (not shown).

StrOPM playing niPD. The real challenge for playing strategic
games like nIPD, is to successfully learn to cooperate with many
players. In Figure 1b, we show results for three and more agents
playing the nIPD. The x-axis shows the number of epochs learned,
while the y-axis shows the average number of cooperators. For three
agents, the StrOPM algorithm learns full cooperation. For four up
to nine agents, the nIPD is no longer solved in full. The agents as a
collective learn to cooperate approximately 70% of the time. Nine-
player IPD was the maximum game-size for which we found it fea-
sible to still compute the loops as defined in Equation 5 for the Bags
used in the algorithm.

In Figure 1b, bottom line, we show nIPD results for agents using
myopic MOPM described above for three agents, to model agents
that do not reflect on the impact of their actions; this short-sighted ex-
ploitation of the gradient leads to full defection of the agents. This il-
lustrates that as for the two player iPD, classic MARL algorithms that
ignore the impact of ones own actions on other agents will, for each
state, increase the probability of playing defect, leading to the well
know Tragedy of the Commons: universal defection of all agents.

5 Conclusions
We make a number of contributions in this paper: first, we refine the
StrOPM MARL framework developed in [14], and generalize it so
that is can be applied to matrix games with more than two players.
We show that our implementation of this generalized framework suc-
cessfully scales to larger size nIPD games. To this end, we develop a
generalized description of aggregate opponent policies, which allows
us to circumvent the state-space explosion and enables us to describe
the nIPD problem in a much reduced, linear state space. We show that
using this state-space description, our generalized StrOPM algorithm
allows an agent to learn profitable strategies for long term behavior
in generalized n-player IPD for games with up to nine players. The

successful scaling of the framework is of particular interest because,
as noted earlier, the n-player iterated Prisoners Dilemma is a game
that can represent many important and hard real life problems.

One important novel component of this work is the concept of
learning the aggregate changes in opponents’ policies due to ones
own actions. This is an idea that can in fact be incorporated into
the quickly growing literature on MARL. One can foresee more and
more complex nested opponent models [7] to extract every bit of
reward from complex games like nIPD. Although perfectly learning
about an opponent while at the same time perfectly learning to adjust
oneself is problematic [9], there is still much scope to be “smarter”
than your opponents.

REFERENCES
[1] R. Axelrod, The evolution of cooperation, Basic Books, New York, NY,

1984.
[2] A.M. Colman, Game Theory and Experimental Games, The Study of

Strategic Interaction, volume 4 of International Series in Experimental
Psychology, Pergamon Press, Oxford, 1982.

[3] J. W. Crandall and M. A. Goodrich, ‘Learning to compete, compromise,
and cooperate in repeated general-sum games’, in Proc. 22nd ICML,
(2005).

[4] N. S. Glance and B. A. Huberman, ‘The outbreak of cooperation’, Jour-
nal of Mathematical Sociology, 17(4), 281–302, (1993).

[5] N. S. Glance and B. A. Huberman, ‘Dynamics of social dilemmas’,
Scientific American, 76–81, (1994).

[6] Garrett Hardin, ‘The tragedy of the commons’, Science, 162, 1243–
1248, (1968).

[7] J. Hu and M.P. Wellman, ‘Online learning about other agents in a dy-
namic multiagent system.’, in Proc ACM Conf. on Autonomous Agents,
pp. 239–246, (1998).

[8] Michael L. Littman and Peter Stone, ‘A polynomial-time Nash equilib-
rium algorithm for repeated games’, in Proc. 4th ACM Conf. on Elec-
tronic Commerce, pp. 48–54, (2003).

[9] J. H. Nachbar and W. R. Zame, ‘Non-computable strategies and dis-
counted repeated games’, Economic Theory, 8, 103– 122, (1996).

[10] R. Powers and Y. Shoham, ‘New criteria and a new algorithm for learn-
ing in multi-agent systems’, in NIPS, (2004).

[11] Martin L. Puterman, Markov Decision Process, John Wiley and Sons,
Inc., New York, 1994.

[12] T. Sandholm and R. Crites, ‘Multiagent reinforcement learning in the
iterated prisoner’s dilemma.’, Biosystems, 37, 147–166, (1995).

[13] Yoav Shoham, Robert Powers, and Trond Grenager, ‘Multi-agent re-
inforcement learning: a critical survey’, in AAAI Fall Symposium on
Artificial Multi-Agent Learning, (2004).

[14] P.J. ’t Hoen, S.M. Bohte, and J.A. La Poutré, ‘Learning from induced
changes in opponent (re)actions in multi-agent games’, in AAMAS’06,
(2006). to appear, available as technical rapport SEN-E0513.

[15] Xin Yao and Paul J. Darwen, ‘An experimental study of n-person iter-
ated prisoner’s dilemma games’, in Evo Workshops, pp. 90–108, (1994).

