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Recently, several laboratory experiments on vortex dynamics and quasi-two-dimensional turbulence
have been performed in thigstratified fluid layers. Commonly, it is tacitly assumed that vertical
motions, giving rise to a three-dimensional character of the flow, are inhibited by the limited vertical
dimension. However, shallow water flows, which are vertically bounded by a no-slip bottom and a
free surface, necessarily possess a three-dimensional structure due to the shear in the vertical
direction. This shear may lead to significant secondary circulations. In this paper, the
three-dimensiondl3D) structure and the decay properties of vortices in shallow layers of fluid, both
homogeneous and stratified, have been studied in detail by 3D direct numerical simulations. The
quasi-two-dimensionality of these flows is an important issue if one is interested in a comparison of
experiments of this type with purely two-dimensional theoretical models. The influence of several
flow parameters, like the depth of the fluid and the Reynolds number, has been investigated. In
general, it can be concluded that the flow loses its two-dimensional character for larger fluid depth
and larger Reynolds number. Furthermore, it is possible to construct a regime diagram that allows
the assessment of the parameter regime, where the flow can be considered as
quasi-two-dimensional. It is found that the presence of secondary circulations within a planar vortex
flow results in a deformation of the radial profile of axial vorticity. In the limiting case of
quasi-two-dimensional flow, the vorticity profiles can be scaled according to a simple diffusion
model. In a two-layer stratified system, the decay is reduced and three-dimensional motions are
significantly inhibited compared to the corresponding flows in a homogeneous laye200®
American Institute of Physics[DOI: 10.1063/1.1374936

I. INTRODUCTION experiments, where the presence of a homogeneous magnetic
field confines the flow to two dimensions. In that case, the
The dynamical properties of quasi-two-dimensionalaction of the Lorentz force is equivalent to the role of the
(hereafter referred to as Q2Dortex structures are relevant Coriolis force in a rotating system. An example of such an
in the field of geophysical fluid dynamics. Vortices are abun-experiment is discussed by SommeFia.
dant in nature; well-known geophysical examples are high- A flow could also be considered as two-dimensional if a
and low-pressure cells in the atmosphere and, for instancsijgnificant geometrical confinement is imposed. It is then
Gulf Stream rings and Meddies in the Atlantic Ocean. Inassumed that the limited vertical dimension will confine the
order to gain more insight in geophysical flows, vortex dy-flow to an almost planar one. This argument allows one to
namics, and two-dimensional turbulence, a large number astudy Q2D flows by performing experiments in thin layers of
numerical studies as well as numerous laboratory experifluid, e.g., experiments in soap films. Several of these studies
ments have been carried out. have been reported in the literatré® Besides the experi-
Within the context of geophysical fluid dynamics and ments on soap films, it is also possible to study Q2D flows in
two-dimensional turbulence, several types of laboratory exa thin layer of fluid inside a container, for example, the ex-
periments have been performed. Depending on the specifigeriments on vortex interactions performed by Antonova
phenomena of interest, experiments have been carried out &t al!! and the experiments on freely decaying Q2D turbu-
rotating fluids2in stratified environment$;®or in rotating-  lence by Tabelingt al? In the latter experiment, but also in
stratified system&As for large-scale geophysical flows, the several other studies of this type, the flow is forced electro-
actions of the Coriolis and buoyancy forces tend to two-magnetically. Other examples are the experiments on the in-
dimensionalize the flows in these cases. Research on twderaction of allocated vortices performed by Daniktval*®
dimensional turbulence has also been performed in MHDand the experimental study of Q2D shear flows by Dolzhan-
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skii et al*®In the experimental studies on thin-layer flows no-slip bottom in a rotating system and, for instance, in
of this type, usually a single layer of fluid is used. Recently, “Einstein’s tea leaves experiment.” Depending on the flow
in the experiments of Paret and Tabeliig system of salt- parameters, the most important being the déptif the fluid
stratified fluid layers was used. The stable two-layer stratifiand the Reynolds number Re, this circulation will vary in
cation provides an additional mechanism for two-strength and its influence will be more or less pronounced.
dimensionalization by inhibiting vertical motions. Hence, it is expected that the vortex can be considered as
In every natural flow situation and in every type of labo- being quasi-two-dimensional only under certain circum-
ratory experiment on Q2D flows, three-dimensional effectsstances, which are yet undetermined. Therefore, a regime
play an additional role. In a confined rotating system, oneliagram should be constructed to assess the parameter re-
encounters the influence of Ekman and Stewartson boundagime where the quasi-two-dimensionality of such flows is
layers, whereas in a stratified fluid, the presence of internaralid. The gquasi-two-dimensionality of such flows is an im-
waves and vertical diffusion mainly account for three-portant issue if one wishes to compare experiments of this
dimensionality. In soap film experiments, the influence oftype with purely two-dimensional theoretical models, or with
thickness fluctuations and air drag is still an open questionQ2D models where the bottom friction has been param-
In Paretet all” it was shown that, for the flow param- etrized. Besides this specific motivation, the problem is an
eters used in their experiments, a stratified thin layer coninteresting one in itself.
figuration can be considered as two dimensional. Supporting The rest of this paper is organized as follows: in Sec. Il,
evidence was provided by laboratory experiments, although relatively simple, diffusion-based model will be derived to
these experiments did not allow full 3D flow measurementsdescribe the decay and vertical structure of vortices in shal-
A numerical study concerning Q2D issues in thin-layer ex-low fluid layers. In Sec. Ill, we will briefly discuss the nu-
periments was performed by tfer et al,* but in this case merical simulation method and some other numerical issues.
no information was obtained about the full three-dimensionaln Sec. IV we present numerical simulations of vortices in a
structure of the flow field either. homogeneous layer of fluid for several different fluid depths
In this paper, we will focus on a numerical and theoret-and Reynolds numbers. The three-dimensional structure will
ical analysis of the complete three-dimensional structure andie analyzed and the decay of the vortices will be compared
decay properties of such vortex flows. The decay propertiewith the model of Sec. II. In Sec. V, some additional simu-
are of interest since not only lateral diffusion will play a role, lations are discussed concerning vortices in a two-layer
but also vertical diffusior(like in stratified fluid$, which is  stratified system. Finally, some conclusions are summarized
absent in purely 2D flows. Usually, the effect of vertical in Sec. VI.
diffusion in shallow fluid layers is modeled by adding a lin-
ear friction term to the two-dimensional Navier—Stokes
e_quation._A similqr linear term, of course with _different fric- II. AN ANALYTICAL MODEL OF A MONOPOLAR
tion coefficients, is used to model the decay in case of EkyorTEX IN A SHALLOW FLUID LAYER
man damping in a rotating fluid or the damping by the Hart-
mann layer in the case of MHD experiments. Note that in  Consider a circular monopolar vortex in a shallow layer
these two cases there appears to be a difference with shalloef fluid, i.e., the vertical dimensioil is smaller than the
water flows, since for rotating fluids and MHD flows, the horizontal length scald., where the domain is vertically
linear external friction is asymptotically exact under certainbounded by a no-slip bottom and a free surface. It is conve-
conditions, as was discussed by DolzhankkiAs yet, it is  nient to describe such a flow in a cylindrical coordinate sys-
not completely clear whether this approximation is valid intem (r,0,z) with corresponding velocitiesv( ,v4,v,). To-
general for shallow water flows. It is worthwhile to note that gether with axisymmetry, it is assumed that there is no
it was shown by Dolzhanskit al**°that the 2D hydrody- vertical motion, i.e.,v,=0. Continuity implies that in this
namic equation with Rayleigh friction correctly describes thecase alsov,=0. We are thus left with a quasi-two-
stability of shear flows in thin layers of homogeneous fluid. dimensional purely azimuthal vortex flow. In terms of the
The analysis is carried out by performing 3D direct nu- Navier—Stokes equation in cylindrical coordinates this leads
merical simulations of axisymmetric monopolar vortices into the following partial differential equation for the azi-
shallow fluid layers. Only decaying vortices will be studied muthal velocityv ,(r,z,t):
here; the more complex problem of forced vortical flows
(e.g., flows driven continuously by electromagnetic forging v, [1 P (

will be discussed in a future study. Two cases will be con- —=y

ot ’ @)

(91)6 Uy r?zvg
r_ —_——
ar

. : . rar 2" 97
sidered: the case of a vortex in a homogeneous layer of fluid

of depthH and the case of a two-layer stratified system, as
used in the experiments of Paretall® In both cases, the with v the kinematic viscosity.

layers are bounded by a no-slip bottom and a stress-free up- Apart from this diffusion equation far,, two additional

per surface. The no-slip condition at the bottom implies arelations, the so-called cyclostrophic and hydrostatic bal-

shear in the vertical direction. Although the shear itself leadsinces, can be derived from tlmeand z component of the

to a three-dimensional structure of the vortex, it will also Navier—Stokes equation. These balances will be discussed in
set up a secondary circulation. A similar recirculation canthe last part of this section. As a first step, the diffusion

be observed where an Ekman boundary layer is present ateguation will be solved.
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A. Solution of the diffusion equation

ﬁer,tzma Ji(pr)exp — vp?t)dp, 7
The diffusion equation fow, is a linear equation that "y fo (P)Ja(priexp—vpt)dp @)

can be solved by a separation of variables, i.e., by assuming ] ) ] o . .

that the azimuthal velocity , can be written aw o(r,zt) in which a(p) is Qetermmgd by the |_n|t|al cond|tlon. Being
=R(r)Z(2)T(t). A similar problem for the decay of vortices °N€ of the possible solutions, a shleldeq Gaussian vortex,
in a linearly stratified fluid has been solved recently by Beck-Which turned out to be a useful model in several related
erset al,® and thus some mathematical aspects of the floWPrévious studies, is taken to solve the problem. Here, a
analysis will not be discussed in full detail here. A separatiorphielded vortex is chosen for the following reason. Vortex
of variables obviously leads to three equations: one for thdnes inside a fluid have to form closed loops or end at a free

temporal parfT(t), another one for the axial paf(z), and, syrface, but Fhey cam_ﬂot end at_a no-slip bott_cﬁm)rtex
finally, one for the radial paR(r) of the solution. The sub- lines are defined as lines at which at any point the local

stitution of v ,(r,z,t) =R(r)Z(2) T(t) into (1) yields the fol- vorticit){ vector is d_irect.ed tangent_ially, in analogy with
lowing three equations for the temporal, axial, and radial parftr€@mlines.In our situation, they will end at the free sur-
of the problem, respectively: face, which means that a patch of smgle—sgned yort|C|ty is
always accompanied by an annulus of oppositely signed vor-
dT(t) 5 ticity. In fact, it is not possible to create a single vortex
dt v(p=+Ha9)T(L), 2) structure, consisting of a patch of single-signed vorticity. In-
deed, in the thin-layer experiment performed by Paireau

d’z(z) 25 g O al,? in which a single vortex subjected to a shear flow
dZ a°Z(2), ®) was studied, this vortex appeared to be shielded. It is reason-
) able to assume a Gaussian profile, since this corresponds to a
d°R(r) 1dR(r) 1 o, self-similar solution of the two-dimensional diffusion equa-
7t - —R(r)=—p°R(r), 4 : & :
dr rdr r tion. It was shown by Kloosterziel that any appropriate

axisymmetric distribution of vorticity with zero net circula-
ion eventually evolves toward this particular profile. The
)ﬁme-dependent velocity profile of this vortex has the follow-
ing form:

with p? andq? the separation constants or eigenvalues of th
equations. The solution of the temporal equation can be e
pressed in terms of exponential functions exp(’t) and
exp(—vp?t). Whenp? andq? are real, both terms lead to a
damping of the velocity field, where the first one is obviously - aof r
associated with the axial part of the solution, while the sec- R(r.t)= 2(r2+4vt)2eXF< T2t
. . 0 0

ond one is related to the radial part of the problem.

Together with the no-slip boundary condition at the bot-For this specific profilea(p), as used in7), is given by
tom (v4l,-0=0), the solution of the axial-temporal part a(p) = saop? exp(—p%3). The corresponding profile of
Z(z,t) of the problem can be formulated in terms of a seriesaxial vorticity w,(r,t), the vorticity being defined a®,
of sine solutions with corresponding exponential dampings,= (1/r)(d/dr)(rv ), is given by

r2
exF{ r§+4vt

The eigenvalues of the solution can be found by applying théNote that the equations have been solved in a dimensional
stress free boundary condition at the upper surfacéorm. The quantitiesa, andrg in (9) determine the initial

(9 4192),_4=0) and are given by?=(2n+1)272/4H?,  amplitude(given bya,/rj) and radius of the vortex.

which represents a discrete spectrum of eigenvalues. It will It can easily be verified that this vortex is isolated, i.e., it
be assumed that only the first mode=(0) of the series is has zero net circulationI(=27[5rw,dr=0). It follows
important in the time evolution, since the decay times of thethat the decay associated with the radial part of the solution,
higher-order modes, which are given by=1/vq?, are leads to a decay of the vortex amplitude asay/(r§
much smaller. As a consequence, any appropriate verticat 4vt)?> and an increase of its radius a&s-(rj+4wvt)Y2
profile of an initial distribution ofv ,(r,z) will soon evolve  This part of the decay represents ordinary two-dimensional

2

. (8

)]

- 2
R . Ao r
Z(z,t)=n§:0 Cp, Sin(qnz)exp( — vg2t). (5)  wur,t)= (2t an)? ( 1- =

toward the following solution: lateral diffusion. Combining the solutions for the axial—
, temporal parZ(z,t) and radial-temporal paR(r,t) yields
v .
— the full solution of the problem:
Z(2) sm<2H), (6)
hich i iseuille-lik file in th ial directi h t)= 2! r2 in—z N
which is a Poiseuille-like profile in the axial direction. The vy(r,z,t)= Wex m smﬁexp( ),

damping associated with the shear is then a single exponen-

tial term expt 7 1t/4H?). Note that we have takecy,=1,

which can be done without loss of generality. with X = w2v/4H?, sometimes referred to as the external fric-
The general solution of the radial-temporal pa(t,t) tion parameter. In terms of the 3D vorticity vectar, this

of the problem can be expressed in terms of Bessel functionfipw field can be described completely by two of its compo-

and is given by nents,w=(w,,0,w,), or

(10
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vy 1a(rvy) there(v,=0 andv,=0) reduce the radial and axial compo-
o=\~ -0 — ] (1D nent of the Navier—Stokes equation to the following rela-
tions:
It follows that the radial componend, of the vorticity is U% 1 dp
associated with the vertical sheaw ,/9z, while the axial ST oar (13
componentw, is related to radial gradients in the azimuthal
velocity field. The azimuthal component of the vorticiby, 1dp
=dv,/9z— dv,/r=0 sincev,=0 andv,=0. —;Ezg, (14

It can easily be verified that for the solution given by
(10), the 3D diffusion operatopVgD can be rewritten in the respectively. The two equations express that the flow should
following form: »V3,=1V3,—\. Since the two decay be both in cyclostrophi¢13) and hydrostatiq14) balance.
mechanisms, lateral diffusion and additional exponential deConsidering these cyclostrophic and hydrostatic balances
cay due to vertical diffusion, are now effectively separated, itnore carefully, it can be understood that necessarily a sec-
is possible to define two different Reynolds numbers in thisondary circulation in ther(,z) plane should exist. Due to the
problem: the ordinary Reynolds number=Re’w/v, which is  no-slip condition forv , atz=0, the radial pressure gradient
associated with lateral diffusion, and a Reynolds numbeforce —(1/p)(dp/dr) is no longer balanced by the centrifu-
Re,, which is associated with the exponential damping duegal force near the bottom, according (t83). Hence, a flow
to vertical diffusion, which is given by Rew/\. The quan- toward the axis of the vortex is set up there, leading to a
tities w and L represent typical values for the vorticity and recirculation in the K,z) plane. This results in a nonzerg
horizontal length scale in the flow, respectivdly terms of ~ andv, and thus to nonzero azimuthal vorticidy, .
the solution as given bg10), the equations of motion can be The presence of secondary circulations is inconsistent
made nondimensional by the values pf and a,.] The  With the diffusion model, in which it was assumed that
three-dimensional Navier—Stokes equation for this problem=0 andv,=0. The inconsistency suggests that the assump-
using the assumptions made above, could be simplified to thiéons made in the diffusion model should be slightly relaxed
following two-dimensional form: tov,, v,<v,. The recirculation can then be seen as a rela-
tively small perturbation of the basic state, as described by
EY, 1 (10). An important issue that remains to be investigated is
s H(vV)v=—Vp+ —eVZV— o Vs (12 the parameter regime in which this condition is fulfilled.
From Eq.(13) it also follows that a swirling flow 4

. . - results in a deformation of the free surface. In several situa-
wherev is the 2D velocity vector. The bottom friction has .. . .
tions, such a deformation can be observed in the form of a

now been parametrized by an additional linear term in the,.

. . - : . . dimple, where a vortex tube connects to a free surface. Com-
2D Navier—Stokes equation. The friction associated with th|so. : - :

. : : . ... Dbining Eq. (13 and p(r,z)=pg[h(r)—2z], resulting from
term, which obviously results in a nonselective dissipation . .
. . (14) with h(r) a functional form for the shape of the free
(with respect to the scales of the flpvis often referred to as .
M . P surface, relates the deformation of the free surface to the
Rayleigh friction.” Note that for extremely shallow water azimuthal velocity field b

flows (H<L) the decay is completely governed by vertical Y y
diffusion. In that case Re<Re, which means that the third 1 , dh
term on the right-hand sidd 1/Rg)v] in (12) will dominate gr ar (19
the second ong(1/RelV4]. Note that the formulation of the
Navier—Stokes equation as {f2) can be used more gener- Itis thus possible to derive an expression for the evolution of
ally for shallow water flows. As was mentioned in the Intro- the shape of the free surface in time. Using the velocity
duction, it is also a commonly used parametrization in studprofile given by(10) and integrating15) over the total fluid
ies of Q2D turbulent flows in shallow fluid layet$2®In that ~ depthH yields the following approximation fon(r,t):

case, it could be expected that the behavior and the decay aZ exp(— 2\1) or2

properties of very small scalgso thatH~L) are not de- h(r,t)=H— 0 > 5€ ;{_ > ) (16)
scribed correctly, which could be a drawback of this formu- 329(rg+4vt) rot+4nt

lation. This point will be discussed in Sec. IV. The solution describes a dimple that slowly broadens in time,

To summarize: Equatiofl0) describes the time evolu- 44 decays due to the two damping mechanisms, as dis-
tion of the velocity field of a shielded vortex in a thin layer .,ssed in the previous part of this section. For typical flow
of fluid with a Poiseuille-like vertical profile. The solution conditions, the deformation of the free surface will be very
has an essentially three-dimensioatrtical structure, but weak, since its amplitude is given @g/32g. It will there-
can be considered as quasi-two-dimensional since bpth tqre pe left out of consideration in the rest of the paper. To
=0 andv,=0. summarize most of the aspects of the vortex discussed so far,
Fig. 1 presents a schematic picture of the complete three-
dimensional structure of the flow field, including the second-
ary circulation.

In the previous part of this section, the diffusion equa- It is the purpose of the numerical simulations that are
tion for v 4 has been solved. The assumptions that were maderesented in the next sections to determine whether the sec-

B. The hydrostatic and cyclostrophic balance,
evolution of the free surface
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run with 256 grid points. Another check has been performed
on the assumption that the flow remains axisymmetric during
the computation: it was found that a fully three-dimensional
simulation(with 128 grid point9 yielded the same results as
the corresponding axisymmetric computation and revealed
that the flow indeed remained axisymmetric. Note that all
these checks have been performed for the highest Reynolds
number that we useRe=2000. The cylindrical computa-
tional domain is bounded by a no-slip bottom and stress-free
upper and lateral walls. It has been checked by runs with a
larger domain in the radial sense that the finiteness of the
domain in the radial direction did not affect the results.
FIG. 1. Schematic picture of the three-dimensional structure of a vortex in a For the simulations in a stratified fluid, which will be
shallow fluid layer. discussed in Sec. V, the equations of motion are solved in the
Boussinesq approximation. The Boussinesq approximation
ondary circulation, as discussed above, is substantial or ndflPlies that the pressurp and fluid densityp can be ex-
In case that it is large, the Q2D approximatian (v,<v) panded around a basic state, describegpppndpo, as
no anger holds and _the parz_ametrization of the friction as_ in P=potp’, p=potp’ . (17
(12) is no longer valid. The influence of the secondary cir-
culations on the evolution of the vortex will also be dis-
cussed in more detail.

If the perturbationsp’ and p’ around the basic state are
small, we may assume that the density perturbation is only
important in the gravitational term of the Navier—Stokes
equation. The equations of motion that have to be solved
then take the following form:

The numerical simulations described in this paper have v 1 1
been performed using a finite difference code in cylindrical —+(v-V)v=—Vp'— —p’'e,+ — V2, (18
. . , .ot Fre Re
coordinates. One of the advantages of this code is the possi-
bility of solving the equations of motion for axisymmetric DS 1,
problems, i.e., the equations are solved in theg) plane. Dt ScRe’ > (19
The computational effort is thus significantly reduced, since
a two-dimensional numerical problem is solved instead of aVith S the salinity ande, the unit vector in thez direction.
fully three-dimensional one. The quantityp’ is the density perturbation. It will be as-
The equations of motion are solved by using a fractionapumed that the densifyis linearly proportional to the salin-
step method, as described by Verzicco and Orlahdihe ity as p=aS. Three nondimensional parameters have been
velocities @I’ aUa:Uz)y the pressurg, and the Sa”nitﬁ are introduced |n(18) and (19) the Froude number FI’, the Rey'
discretized on a staggered gritElows in a homogeneous noIQs number Re, and the Schmidt number Sc, which are
layer as well as flows in a stratified system will be studied. defined as
The pressure and salinity are defined at the centers of the \/m L2 v
grid cells, whereas the components of the velocity are de- Fr= , e=——, Sc—, (20)
fined at the centers of the cell boundaries that are perpen- 9ap v K
dicular to the respective velocity components. respectively. The quantities andL represent typical values
Solving the equations of motion in a cylindrical coordi- for the vorticity and horizontal length scales in the flgw,a
nate system gives rise to a singularity for 0. Since the typical value for the densityAp is a typical density differ-
radial velocityv, is the only one that is evaluated at the axis,ence, andc is the diffusivity of the stratifying agent. A more
singularity problems can be avoided by introducing the vecprecise definition ofw andL will be given in the next sec-
tor w=(rv,,vy,v,) instead ofv. The equations of motion tion.
for w are then discretized in time; the viscous term is calcu-  In our simulations, the density perturbation from the ba-
lated implicitly by using a Crank—Nicolson technique, while sic state will not exceed 10%. It is assumed that for this
the nonlinear and buoyancy terms are calculated explicitiwalue the Boussinesq approximation can be applied
using a third-order Runge—Kutta scheme. This leads to auccessfully?®
second-order accuracy for the time advancement. A more

detailed description of the numerical scheme can be found in NUMERICAL SIMULATIONS OF VORTICES IN A

H 2
Verzicco and Orland . _HOMOGENEOUS LAYER OF FLUID
All the runs presented here are performed using 128 grid

points in both the and thez direction. The grid convergence The numerical simulations that are presented in this sec-
has been checked by performing simulations with doubldion will provide data that allows us to analyze the quasi-
resolution (256) and half resolution (63. It was found that  two-dimensionality of vortices in shallow fluid layers. The
the flow is well resolved when 128yrid points are used and parameters that will be varied are the fluid depth(or,

the results of the computation seem indistinguishable from a&quivalently R¢) and the ordinary Reynolds number Re. At

IIl. NUMERICAL METHOD
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FIG. 2. Results of a numerical simulation with aspect rat#0.20 and Re-500. Shown aréa) the time evolution of the kinetic energy of the secondary flow,
(b) time evolution of the vorticity profiles,(r) at the free surfaceg) the decay of the peak vorticity, at three different levels, where the line represents
(23), (d) contours ofw, (contour spacing\w,=0.02), (e) contours ofw, (contour spacing\ w,=0.10, and(f) velocity vectors in ther(,z) plane.

the end of this section, a regime diagram will be presenteshondimensionalize time and space. In most of the simula-
1

that shows in which region of the (Re Bearameter space tions presented her@,=1 andL=1 so that Re-»™".
a flow can be considered as Q2D. The assumption made in the diffusion model, neglecting

First, the dynamics and the 3D structure of a vortex willthe higher-order modes of the axial-temporal solutiby
be analyzed in more detail for one specific case and we wilhas been checked here for several situations. For low values
discuss a way to characterize gquasi-two-dimensionality in @f the fluid depthH, it was found that for other vertical
guantitative fashion. Then, the effects of variation of thevelocity profiles, but still satisfying the boundary conditions,
fluid depthH (or Rg) and the variation of the Reynolds a rapid relaxation toward the solution given k§) is ob-
number Re will be described separately. Finally, the obtainederved. We may thus conclude that it is reasonable to use a
regime diagram will be presented. sine-like vertical profile for the initial condition.
As an initial condition, a purely azimuthal flow field is
taken, with a shielded Gaussian vorticity distribution and aA. Dynamics and 3D structure of vortex flows:
vertical profile that is sine-like, as described by the diffusionCharacterization of quasi-two-dimensionality
model in Sec. II. The complete initial condition is given by Figure 2 presents the results for a simulation of a vortex
Eq. (10) with ag=1 andro=1 for t=0, with aspect ratiqu=0.20. The height-to-width aspect ratio is
defined asu=H/d, whered=2L. It is introduced only to
(21 provide a quick picture of the ratio of the vertical and hori-
zontal dimensions of the vortex. Note that the aspect ratio is
In the first set of simulations presented below, the Reynold§0t @ New nondlmer)zslonal parameter. It depends on Re and
number was Re 500, which is a typical value for several of R& as u~(Re /Re)”. _ _ _ _
the laboratory experiments that have been reported in litera- 1 n€ first quantity that will be considered is the magni-
ture. The Reynolds number is defined here {ﬁ%p/u tude of the kinetic energy of the gecondary flow. For each
The typical value for the vorticity is the initial peak vorticity cOMPonent of the velocity; , wherei =(r,6,2) denotes the
w, at the axis (=0). As a typical horizontal length scale, specific component, the kinetic energy is defined as
the radiusL, where the vorticity profile changes sign, is MR
taker_n. The quantltl_eao andr,, which determine the initial EkiZZWf j —p(Z)viZ(I’,Z)I’drdZ, (22)
amplitude and radius of the vortex (a0), are thus used to ' 0Jo2

r . . [ T2Z
vg(r,z)zzexp(—r )sin oI
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whereH represents the total fluid depth aRdhe radius of since the secondary flow transports low-amplitude axial vor-
the computational domain. For the simulations discussed iticity, which is located near the bottom and near the axis,
this sectionp(z) = p is constant. In the next section we will upward.
discuss the evolution of vortex flows in a two-layer stratified In order to give a complete picture of the 3D structure
system, where will depend on the axial coordinate inside the vortex, contour plots af, andw, , which provide

We will discuss the time evolution of the valuesBf useful additional information about the secondary flow, are
andE , with respect to the value of the kinetic energy of thegiven for t=5 in Figs. 2d) and Ze), respectively. Here,
azimuthal main flowE, ,. Hereafter, these ratios will be solid lines represent contours of negative vorticity and
referred to as), =E,  /E pandq,=E ,/Ey 4, respectively. dashed lines contours of positive vorticity. The velocity field
In Fig. 2(a), these quantities are plotted as a function of time.att=5 in the (,z) plane, which is closely related with the
At t=0, the kinetic energieg, ,=0 andE, ,=0, according azimuthal vorticityw,, is shown in Fig. ). It is observed
to the initial condition. It is then observed that these energieshat one large recirculation cell is present inside the vortex.
first grow in time, indicating that a secondary circulation is The flow of the recirculation is directed toward the axis near
set up inside the vortex. Afterward, due to the overall decayhe bottom, upward near the axis, and away from the axis
of the vortex structure, the secondary circulation will alsonear the free surface. Note that the largest velocity vectors in
weaken in time. The maximum values of the quantitigs the (r,z) plane are usually located near the axis. From these
andq, are reached at=5. data, it can also be concluded that the influence of the sec-

One of the effects of the recirculation is clearly observedondary circulation should be significant, sineg is of the
in Fig. 2(b), where the radial profile of axial vorticity,(r) same order of magnitude as, .
at the free surface is shown for three different tinfes0, Based on the results of the simulation wiik-0.20, two
t=5, andt=10). It can be seen that the vorticity profile criteria will be introduced for characterizing the quasi-two-
deforms as time proceeds: the core of the vortex seems @imensionality in a quantitative fashion. The first one is re-
relax toward a state of solid-body rotation. This deformation lated to the kinetic energielS, , and Ey , of the secondary
caused by a 3D redistribution of axial vorticity, can only be flow, compared to the kinetic energy of the azimuthal flow
a consequence of the recirculation in thezj plane. In case field E ,. It will be assumed that the flow behaves Q2D if
of a Q2D flow, as described by the model in Sec. II, no
deformation of the profile would occur and the vorticity pro- Ey (1) Ey (1)
files could be scaled in time. 9 (=g" © <001, q(t)=¢~ 0

Another way to examine 3D effects on the evolution of k.0 k0
the vortex is to monitor the peak vorticity,(t), which is
located at the axisr(=0). Initially, the peak vorticity corre-
sponds to the maximum axial vorticity,= 1. The results of
the computation are shown in Fig(c?, where the peak vor-
ticity is plotted as a function of time at three different levels

<0.01, (29

stating that the values &, , andE, , should not exceed 1%
of the value ofE, ,. In other words, the secondary motion in
the (r,z) plane should be at least two orders of magnitude
smaller than the azimuthal flow in terms of the kinetic ener-
inside the vortex, beingp=H (free surfack h=H/2, and gies. This criterion seems rqther strict; it was found, how-
ever, that a value of the kinetic energy of the secondary flow

h= H/4_' Atthe free surfaceh(=H), the initial peak \(ort|C|ty that measures 1% of the kinetic energy of the azimuthal flow,
wp|t=0—1, and subsequently decreases with height with a

sine-like dependence until,=0 at the bottom, which is the ;?;e‘:r%o?gj tr?l moar:ilm:go:/;;e; (:Tf];h?m\ﬂgcgﬁ:ﬁg? I;ﬁan
boundary condition for the axial vorticity at the bottom. If ghly onto 9

the flow were Q2D, the decay would be uniform with respectthe maximum inv,,. In the first simulation witfy.=0.20, the

to the vertical positiore in the fluid column: rescaling the criterion (24) is clearly not satisfied, since the maximum

vorticity profiles with singz/2H) would yield the same de- Va'uﬁhzfggfé%gizﬂ)ea;ﬁifm Zr?ézfrgziﬁe':ll(?ﬁezt?c):].ener o
cay behavior. The solid line in Fig.(@ represents the ex- ' gy

. he secondary flow, is directly associated with the complete
pected decay of the peak vorticity at the free surface accord; : o . :
: A T D flow field. The second criterion that will be used is re-
ing to the diffusion model, which is given by

lated to the shape of the vorticity profile at the free surface
[see Fig. Pb)]. Since experimental velocity and vorticity
fields are usually evaluated at the free surface, it is important
exp(—At) . .
(23 to measure the effect of the secondary circulation there. We
will measure this by evaluating the enstrophyat the free
surface, which is here defined as

©p(0= T 72

For the case withk=0.20, it can be seen that the actual R
decay ofw, at the free surface differs significantly from the 7= wa?da=27rf w2rdr, (25)
prediction based on the model, and besides that, it is ob- A 0
served that the decay is not uniformarnthe peak vorticity at
the free surface even decreases below the value of the pealhere A represents the area of the free surface Rnthe
vorticity ath=H/2 for 4<t<12. The enhanced decay of the radius of the computational domain. The second criterion
peak vorticity at the free surface, and also the deformation o$tates that the flow can be considered as Q2D if the @tio
the vorticity profile, is caused by the secondary circulationwhich is defined as
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fg[w;(r ",0)— wi(r',t)]?rdr vorticities at levelH/2 andH/4 have become larger than the
= TRW72(r Oyrdr , (26)  vorticity at the free surface, which is strongly reduced during
0Tz A the initial stage of the evolution.
N Decreasing the fluid depth, so that the aspect ratio of the
does not exceed 0.10. The quantity(r’,t) represents the vortex reduces tqu=0.10 [shown in Fig. 8)] or x=0.05

rescaled vorticity profile with respect to its amplitude and shown in Fi shows a combpletelv different scenario
radius. The deformation of the vorticity profile is thus Char'[ObviV(;/uslly tlhgé \%)Igjes ovathe kine?ic en)(/argIE;s andE, 10:
1 T ,Z1

acterized by comparing the shape of a rescaled profile at tim&ivided byE are now much smaller than in the previous
t with the initial condition, which also serves as a weight kg

function. The flow will now be considered Q2D if both con- iazs e; I(:)Oo"%;o'v\llg"i ?L?Xlzgrggimse m;(iitzi?cgzgsitres
ditions (24) and (26) are fulfilled. pag p=

o the case wiu-0.20, s tiscussed sove, s i 10,0095 T e on e vt ot e vority o
terion is not satisfied either, sind@=0.97. Note that the i 9 y P

) . . : value atr=0 (not shown, reveals that the profile does not
time evolution ofQ will not be discussed here. In most of the def ianificantly foru—0.10 and b led al ¢
cases, the deformation of the vorticity profile is irreversible eform significantly foru=0.10 and can be scaled aimos

andQ increases in time. The value @ will be calculated at per_fect_ly fpr '”“:0'(_)5' Th_|5 's an indication that the f'°.W
t=5, which will be assumed to give a reasonable represer{-ﬂamtams its two-dimensional character and secondary circu-

tation for the complete flow evolution. No additional criteria atlé)ns are much_V\(/)egI;gr.f In q_ugnlt(ljtatlv;]a_ tﬁ rms, thehlvalue of
will be formulated concerning,, w,, or the evolution of Q decreases tQ=0. or u=9. 10, WhICh 1S Toughly an

w,, since this would not reveal any new information which order of magnitude smaller than in the caseusf0.20. For
is essentially different from the criteria that have already~~0-05 itis further reduced t@=0.0043. According to our

been formulated. criteria, the flows can thus be considered as Q2D in these
cases. The decrease of the aspect ratia=®.05 leads to a
B. Variation of the fluid depth decay scenario that almost perfectly fits with the diffusion

] ] model, as can be concluded from Figc)3 For ©=0.10, the
In the set of simulations presented below the vortex asgitfusion model would be a good approximation. However,

pect ratio will be varied in order to determine the effect of;; some experimental situation, where one wishes to study
the fluid depth on the 3D structure and the decay propertieﬁ1e evolution of flows for a reasonable amount of time, a

of the flow. WhileL was kept constant, five different fluid g ation like for=0.05 is not preferable, since the damp-
depthsH were taken, resulting in aspect ratio values Ofing is too large.

©=0.50, 0.20, 0.15, 0.10, and 0.05. The corresponding val-
ues of Re are given by Rg=203, 32.5, 18.2, 8.1, and 2.0
respectively. The value of Res thus systematically de-
creased for fixedordinary Reynolds number Re. The influ- In the simulations discussed above, the influence of the
ence of Re will be discussed in the next part of this sectionfluid depthH (or, equivalently, Rg on the evolution of the
The case withu=0.20 has already been discussed aboveYortex flow has become clear for a fixed value of the Rey-
The magnitude of the kinetic energy of the secondary flownolds number Re. In general, it can be concluded that the
the evolution of the vorticity profiles at the free surface andflow loses its Q2D character for larger fluid depths. The in-
the decay of the peak vorticities will now be shown for threefluence of the Reynolds number Re, associated with lateral
other aspect ratios. These data should be compared to ti§éffusion, on the 2D character of the flow has not been dis-
case ofu=0.20, which has been discussed in the previou§ussed yet. For all the five fluid depths, the Reynolds number
part of this section. has been varied in the range ¥2Be<2000. In Fig. 4, a
Increasing the aspect ratio {©=0.50 has a dramatic typical set of two simulations is presented to illustrate its
effect on the evolution of the vortex, as can be concludedasic effect. These runs should be compared to the simula-
from the results presented in Fig@® At t=10, the values tion with 4=0.20 and Re-500, as discussed in the first part
of g, andq, have reached a magnitude ©fl5% and~5%, Of this section. Two cases will be studied: the evolution of
respectively. It follows that in this case, as in the previousthe flow with a lower Reynolds numbgRe=125, shown in
case withu=0.20, it is clearly not justified to consider the Fig. 4@] and a higher Reynolds numbgRe=2000, shown
flow as being Q2D. The profound effect of the intense secin Fig. 4(b)]. The Reynolds number was changed here by
ondary circulation can be observed in the evolution of themultiplying the radiug of the vortex by a factor of and 2,
vorticity profile at the free surface and the decay of the peakespectively. The aspect ratios are then givemuby0.40 and
vorticities, as shown in Fig.(d). The strong deformation of ©=0.10, respectively. The value of Rés, of course, not
the vorticity profile results in a maximum axial vorticity, affected by the adjustment of the horizontal scale of the flow.
which is no longer located at the center of the vortex, but isNote that it is not useful to change the kinematic viscosity
instead shifted outward. This shift is a direct consequence oivhile keeping the dimensions of the vortex constant. This
the outward advection of axial vorticity at the free surfacewould results in an effectively different fluid depth, since the
due to the secondary circulation. The quanflymeasures damping parametex includes the viscosity.
Q=1.63 in this case, which is substantially larger than in the  Considering the kinetic energy of the secondary flow,
case ofu=0.20. It is also shown that the peak vorticities do the evolution of the vorticity profile at the free surface, and
not show any uniform decay at all. In fact,tat5 the peak the decay of the peak vorticities, it can be concluded that

' C. Variation of the Reynolds number
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FIG. 3. Numerical simulations in a homogeneous layer of fluid with=B@0. Shown are the time evolution of the kinetic energy of the secondary flow, the
time evolution of the vorticity profiles,(r) at the free surface and the decay of the peak vortigjhat three different levels, where the lines repre<2s},

for (@) ©=0.50, (b) ©=0.10, and(c) x=0.05.

decreasing the Reynolds number two-dimensionalizes thgies. A clear lateral expansion is also observed since lateral
flow, while for an increase of the Reynolds number the flowdiffusion plays an important role in the evolution.
loses its Q2D character. For R&25, the maximum value of Note that it is quite surprising that an effective increase
g, roughly measures 0.03, while for R2000 it increases up of the aspect ratiqu of the vortex leads to a more two-
to 0.05. The deformation of the vorticity profile is also sig- dimensional character of the flow. Apparently, the aspect ra-
nificantly reduced for Re125, compared to the case of Re tio itself is not an essential parameter for the evolution of the
=2000. In terms of the quantit®, the result is that for flow. Remarkably, the flow seems to be governed by Re and
Re=125, Q is reduced toQ=0.44 while for Re=2000 its Re, separately. The physical explanation for this phenom-
value measure®=1.19. The decay of the peak vorticities enon is most likely that for higher Reynolds number, and
appears to be more uniform in the case of=R&5. thus for alower aspect ratio, the nonlinear advective term in
In Sec. Il, it was mentioned that the dynamics of verythe Navier—Stokes equation becomes more and more impor-
small scales are probably not well described by the diffusiortant. In other words, the dynamical effect of changing the
model due to 3D effects. In order to study this in more detailReynolds number is apparently more important than the cor-
a simulation has been performed with a very sradlo that responding geometrical effect.
Re=1. The aspect ratio is then given y=5.0. The results The effect of variation of Reand Re separately has
are presented in Fig. 5, where the time evolution of the kitbecome clear from the simulations discussed above. As men-
netic energy and the evolution of the rescaled vorticity protioned before, several additional simulations have been per-
file is shown. It is observed this small-scale vortex behavesormed in order to construct a regime diagram for flows in a
essentially Q2D, according to the values of the kinetic enershallow layer of fluid. This diagram concerns the quasi-two-
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the vorticity profilew,(r) at the free surface, and the decay of the peak vortisjfyat three different levels, where the lines repreg@s}, for (a) Re=125
(#=0.40 and(b) Re=2000(©=0.10.

dimensionality, using the criteria that we have defined, as &. NUMERICAL SIMULATIONS OF VORTICES IN A

function of Re and Rg The additional simulations will not STRATIFIED FLUID

be discussed in detail here. The diagram is shown in Fig. 6.

The simulated flows that are indicated by-a should be Basically, the simulations discussed in this section are
considered 3D, while the simulations indicated byxaep-  performed using the same parameters (Rg,Red initial
resent a quasi-2D flow, according to our criteria. The dashegondition as in the runs presented in the previous section.
line represents an estimation of the borderline between Q2@he difference with the runs of the previous section is that
and 3D flows, and was determined by using the results of thistead of a homogeneous fluid layer now a two-layer strati-
simulations. Below the dashed line, the flow can thus bdied system is taken. We will thus construct a similar regime
considered as Q2D, above the line it should be considerediagram for vortex flows in a stratified fluid and make a
3D. A clear region can thus be distinguished in the (Rg,Re comparison with the case of a single layer. The density dif-
parameter space, where the flow can be considered as Q2fgrence in the two layers is 10%, corresponding to a Froude
according to our criteria. number of F=1.0. In the initial condition, the density is

0.0001 Y
Ek,rz T zr ;
Eke

FIG. 5. Evolution of a small-scale vor-
tex structure. Shown aré) the time
evolution of the kinetic energy of the
secondary flow andb) the evolution
of the vorticity profilew,(r) [rescaled
with w,(0)] at the free surface.
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50 - . diagram will be presented. Finally, we will briefly analyze
Rey 1 some experiments that have been reported in the literature
within the context of our results.

A. Dynamics and 3D structure of a vortex in a

. ‘ + + . stratified fluid
The first simulation that is presented here should be
25 1 i compared to the first one in the previous section. The aspect
ratio of the vortex equalg=0.20. When this simulation is
+ + + + + compared to the corresponding run in a homogeneous layer

-------------- of fluid, some remarkable differences are found. The results
""""" of the calculation are presented in Fig. 7. First, the values of

x x x >< * the kinetic energies of the secondary flew, andE, ,, with
respect toE, 4 [shown in Fig. Ta)], are approximately a
o LS * N ) . factor of 4 smaller than in the case of a homogeneous layer
0 1000 2000 of fluid. This obviously corresponds to a much weaker sec-
Re — ondary circulation. The deformation of the radial vorticity

FIG. 6. Regime diagram for flows in a single shallow layer of fluid as aprOﬁIe at the free surface is almost absent here, as can be

function of Re and Re Below the dashed line, the flow can be considered Observed in Fig. (). From Fig. 7c), where the time evolu-

as Q2D; above the line it should be considered 3D. tion of the peak vorticities is shown, it can be concluded that
the decay is also significantly reduced. It can be seen that the
decay for longer time scale$>8) approaches the decay as

adjusted from its value in the lower layer to its value in theexpecte.d *?y the diffusion model. Accordmg to the formu-
upper layer in a vertical region that spans 10% of the tota|ated criterion in terms of the enstrophy, this case could be

fluid depth. Due to diffusion of the stratifying agent the gra-considered as Q2D, in contiast to the case of a single layer.
dients in the step-like density profil(z) will gradually be ~ 1he quantityQ measuresQ=0.044, which is very small
smeared out. The Schmidt number in all cases isp, compared to the value @=0.97 for the case of a homoge-
which is representative for the case that the stratifying agerfl€CUS layer. However, the value gf shows a slight excess

is salt (NaCl solution, which is commonly used in labora- ©f the 0.01 norm for £t<3. This means that the flow in
tory experiments. On the time scales of the simulations disthiS case behaves on the verge of quasi-two-dimensionality.

cussed here (@t<20), the two-layer system is nearly un- The rgcirgulation pattern is remarkably different, which
affected. On longer time scales, the density profile wouldS Shown in Figs. @) and 7e) by contours ofw, andw, and
evolve toward an almost linear ofip(z)~z]. Note that the in Fig. 7(f) by velocity vectors in ther(z) plane fort=5.
density gradient at the bottom and free surface equa|g1$tead of one large recirculation cell, now a multiple-cell
dplaz=0 for all times, owing to the no-flux condition for Structure of counter-rotating circulations is observed. Note
passive scalar at the upper and lower boundaries. that this pattern is not stationary in time. The alternating
Note that the vertical structure and the decay propertiespward and downward motions near the interface are be-
of vortices in a two-layer stratified system can be approxilieved to be associated with internal waves. Although the
mated by the model of a vortex in a single layer of fluid, asPattern is more complex than for the homogeneous case, it is
presented in Sec. II. A difference arises in the value of thédlso much weaker and, as a consequence, its influence on the
kinematic viscosityr in the upper and lower layer, which behavior of the flow is less pronounced.
depends on the densify As a consequence, the boundary It is an important question why the decay is reduced
condition at the interface yields vyp,(du,/dz)|,  significantly in the upper layer. In the system we discuss
=v,p,(dUyldz)|,, SO that a slight kink is expected in the here, there are several mechanisms to establish this. The
vertical velocity profile at the rather sharp interface that hagnain reason for the reduced decay is that the flow in the
been used. Anotheidynamical difference that arises is the upper layer is effectively shielded from the lower layer due
following: from the cyclostrophic and hydrostatic balances,to the stratification. The secondary circulation is therefore
it can be understood that, apart from a small deformation omuch weaker, which prevents the advection of low-
the free surface, the density interface will be deflected upamplitude axial vorticity from the lower layer to the upper
ward in the core of the vortex. The reason for this is a lowedayer. Another mechanism, which is less important, is the
pressure in the upper layer due to the higher values of théollowing: by using different densities, the kinematic viscos-
azimuthal velocity there. ity of the upper layer changes. As a consequence, the diffu-
The remaining part of this section is organized in a simi-sion in lateral and vertical sense acts at different time scales.
lar way as the previous one. First, the dynamics and 30Bincer~p 1, the kinematic viscosity decreases for increas-
structure of a vortex in a two-layer stratified fluid is dis- ing density. Since the density difference is only 10%, it is
cussed for one specific situatign=0.20, as in the case of a expected that this effect is very weak.
single layeJ. Then, the variation of the fluid depth and the A third mechanism could be related to the deformation
Reynolds number will be discussed and the obtained regimef the density interface. An amount of potential energy is
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FIG. 7. Results of a numerical simulation in a stratified fluid with-0.20 and Re-500. Shown arda) the time evolution of the kinetic energy of the
secondary flow(b) time evolution of the vorticity profiles,(r) at the free surfacdg) decay of the peak vorticities,, at three different levels, where the line
represent$23), (d) contours ofw, (contour-spacing\ w,=0.02, (e) contours ofw, (contour spacing\ w,=0.10, and(f) velocity vectors in ther(,z) plane.

stored when the interface is lifted in the first time units. Afterthis effect is much more dramatic in case of a homogeneous
the interface has risen to its maximum height, the interfacéayer. This can be concluded from the maximum valueg, of
relaxes to its original position. The potential energy, whichand g,, the evolution of the vorticity profiles at the free
has been stored in this way, will be released if the interfacgurface and the decay of the peak vorticities, as shown in
relaxes to its undisturbed position. This is accompanied byrig. §a). An interesting feature of flows in a stratified sys-
stretching of the vortex column above the interface and comtem is revealed by the decay of the kinetic energies. It is
pression of the vortex beneath the interface. Initially, whenobserved that the values gf andq, decrease with a wave-
the interface rises, the vortex column above the interface ifike disturbance. These disturbances are most likely caused
compressed whereas the vortex beneath the interface I the excitation of internal waves, whose presence is appar-
stretched. In Fig. (€), it is indeed observedfor 0<t<4)  ently more pronounced for larger fluid depths.
that the peak vorticity at the free surface shows an enhanced Dpecreasing of the fluid depth also in this case leads to a
decay, while forh=H/4 the decay of the peak vorticity is more Q2D character of the flow. In Fig(i8, the results are
slightly reduced. For £t<<7, it can be seen that the decay at shown for a simulation withs=0.10, which can be consid-
the free surface is reduced, while it is slightly enhanced folgred as Q2D. For=0.05 (not shown, the decay again per-
h=H/4. However, a separate calculation of the kinetic entectly fits the diffusion model. Note that in both cases no
ergy in the upper and lower layénot shown reveals only a |arge differences are found with the case of a single layer.
slight asymmetry in the decay of these layers. Apparentlyrhe calculated values a® are Q=0.022 for x=0.10 and
this mechanism is not important in terms of the kinetic en-Q=0.0035 forx=0.05.
ergy. A substantial part of the available potential energy is  The Reynolds number has also been varied for the simu-
most likely transferred into kinetic energy by the excitation|ations presented in this section. As in the case of a single
of internal waves. layer, the range of variation was 12Re<2000. Here, it
o . was also observed that decreasing the Reynolds number two-
B. Variation of the fluid depth and the Reynolds dimensionalizes the flow, while for increasing Reynolds
number number, the flow loses its Q2D character. The runs for dif-

When the total fluid depth is varied in the stratified caseferent Re, which allow us to construct a similar regime dia-

the same phenomena are observed as in the case of a hongwam as for the case of a single layer of fluid, will not be
geneous layer. Increasing the aspect ratigt00.50 results  discussed in detail here. The diagram is shown in Fig. 9. The
in a loss of two-dimensionality of the flow field, although dividing line has been determined in the same way as for the
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FIG. 8. Numerical simulations in a stratified fluid with RB00. Shown are the time evolution of the kinetic energy of the secondary flow, the time evolution
of the vorticity profilew,(r) at the free surface and decay of the peak vortieityat three different levels, where the lines repre28}, for (@) ©=0.50 and

(b) ©=0.10.

homogeneous case. Below the dashed line, the flow can be Flows in shallow layers of fluid are commonly assumed
considered as Q2D, above the line it should be consideretb behave Q2D. We have formulated and tested criteria for
3D. It can be seen that the parameter regime where the flothe quasi-two-dimensionality of such flows. An analysis of
can be considered Q2D is larger than in the case of a singline Q2D character of some thin-layer experiments that have
layer. Especially for lower values of the Reynolds numberbeen carried out by several authgesg., Antonovaet al,'*

the range of fluid depths where the flow behaves Q2D isTabelinget al,*? and Pareet al®) is thus worthwhile. To

much bigger.
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make a comparison between these experiments and our
simulations, the absolute values of the fluid depth and a typi-
cal value for the peak vorticity, or some typical value for the
velocity and length scale, has to be known for proper scaling
of the flows. Unfortunately, none of the authors mentioned
above provide all these values, so it is not possible to draw
conclusions about the quasi-two-dimensionality of these ex-
periments. It is thus unclear whether 3D effects in laboratory
experiments are small enough to ensure the validity of the
quasi-2D approximation. Our method for determining the
quasi-two-dimensionality could be applied in future studies.

VI. CONCLUSIONS AND DISCUSSION

Laboratory experiments aimed at studying the dynamics
of vortices and two-dimensional turbulence have been per-
formed in shallow layers of fluid. The geometrical confine-
ment is then a commonly used argument for the flow to
behave in a quasi-two-dimensional fashion. When these ex-
periments are performed inside a container, a no-slip bound-
ary condition applies to the bottom of the tank and a stress-

FIG. 9. Regime diagram for flows in a two-layer stratified fluid. Below the .. .
dashed line, the flow can be considered as Q2D; above the line it should bfé:ee condition at the free surface. The no-slip boundary

considered 3D.

condition implies a vertical shear, which leads to secondary
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circulations within the planar vortices. In this paper, thesections—the presence of recirculations, a loss of two-
three-dimensional structure and the decay properties of vodimensionality for larger fluid depths, and larger Reynolds
tices in such a system of shallow fluid layers have been studaumber—will not change significantly in the case of a forced
ied numerically. system.
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