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Recently, several laboratory experiments on vortex dynamics and quasi-two-dimensional turbulence
have been performed in thin~stratified! fluid layers. Commonly, it is tacitly assumed that vertical
motions, giving rise to a three-dimensional character of the flow, are inhibited by the limited vertical
dimension. However, shallow water flows, which are vertically bounded by a no-slip bottom and a
free surface, necessarily possess a three-dimensional structure due to the shear in the vertical
direction. This shear may lead to significant secondary circulations. In this paper, the
three-dimensional~3D! structure and the decay properties of vortices in shallow layers of fluid, both
homogeneous and stratified, have been studied in detail by 3D direct numerical simulations. The
quasi-two-dimensionality of these flows is an important issue if one is interested in a comparison of
experiments of this type with purely two-dimensional theoretical models. The influence of several
flow parameters, like the depth of the fluid and the Reynolds number, has been investigated. In
general, it can be concluded that the flow loses its two-dimensional character for larger fluid depth
and larger Reynolds number. Furthermore, it is possible to construct a regime diagram that allows
the assessment of the parameter regime, where the flow can be considered as
quasi-two-dimensional. It is found that the presence of secondary circulations within a planar vortex
flow results in a deformation of the radial profile of axial vorticity. In the limiting case of
quasi-two-dimensional flow, the vorticity profiles can be scaled according to a simple diffusion
model. In a two-layer stratified system, the decay is reduced and three-dimensional motions are
significantly inhibited compared to the corresponding flows in a homogeneous layer. ©2001
American Institute of Physics.@DOI: 10.1063/1.1374936#
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I. INTRODUCTION

The dynamical properties of quasi-two-dimension
~hereafter referred to as Q2D! vortex structures are relevan
in the field of geophysical fluid dynamics. Vortices are abu
dant in nature; well-known geophysical examples are hi
and low-pressure cells in the atmosphere and, for insta
Gulf Stream rings and Meddies in the Atlantic Ocean.
order to gain more insight in geophysical flows, vortex d
namics, and two-dimensional turbulence, a large numbe
numerical studies as well as numerous laboratory exp
ments have been carried out.

Within the context of geophysical fluid dynamics an
two-dimensional turbulence, several types of laboratory
periments have been performed. Depending on the spe
phenomena of interest, experiments have been carried o
rotating fluids,1,2 in stratified environments,3–5 or in rotating-
stratified systems.6 As for large-scale geophysical flows, th
actions of the Coriolis and buoyancy forces tend to tw
dimensionalize the flows in these cases. Research on
dimensional turbulence has also been performed in M
1931070-6631/2001/13(7)/1932/14/$18.00
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experiments, where the presence of a homogeneous mag
field confines the flow to two dimensions. In that case,
action of the Lorentz force is equivalent to the role of t
Coriolis force in a rotating system. An example of such
experiment is discussed by Sommeria.7

A flow could also be considered as two-dimensional i
significant geometrical confinement is imposed. It is th
assumed that the limited vertical dimension will confine t
flow to an almost planar one. This argument allows one
study Q2D flows by performing experiments in thin layers
fluid, e.g., experiments in soap films. Several of these stu
have been reported in the literature.8–10 Besides the experi-
ments on soap films, it is also possible to study Q2D flows
a thin layer of fluid inside a container, for example, the e
periments on vortex interactions performed by Antono
et al.11 and the experiments on freely decaying Q2D turb
lence by Tabelinget al.12 In the latter experiment, but also i
several other studies of this type, the flow is forced elect
magnetically. Other examples are the experiments on the
teraction of allocated vortices performed by Danilovet al.13

and the experimental study of Q2D shear flows by Dolzh
2 © 2001 American Institute of Physics
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skii et al.14,15 In the experimental studies on thin-layer flow
of this type, usually a single layer of fluid is used. Recen
in the experiments of Paret and Tabeling,16 a system of salt-
stratified fluid layers was used. The stable two-layer stra
cation provides an additional mechanism for tw
dimensionalization by inhibiting vertical motions.

In every natural flow situation and in every type of lab
ratory experiment on Q2D flows, three-dimensional effe
play an additional role. In a confined rotating system, o
encounters the influence of Ekman and Stewartson boun
layers, whereas in a stratified fluid, the presence of inte
waves and vertical diffusion mainly account for thre
dimensionality. In soap film experiments, the influence
thickness fluctuations and air drag is still an open questi

In Paretet al.17 it was shown that, for the flow param
eters used in their experiments, a stratified thin layer c
figuration can be considered as two dimensional. Suppor
evidence was provided by laboratory experiments, altho
these experiments did not allow full 3D flow measuremen
A numerical study concerning Q2D issues in thin-layer e
periments was performed by Ju¨ttner et al.,18 but in this case
no information was obtained about the full three-dimensio
structure of the flow field either.

In this paper, we will focus on a numerical and theor
ical analysis of the complete three-dimensional structure
decay properties of such vortex flows. The decay proper
are of interest since not only lateral diffusion will play a rol
but also vertical diffusion~like in stratified fluids!, which is
absent in purely 2D flows. Usually, the effect of vertic
diffusion in shallow fluid layers is modeled by adding a li
ear friction term to the two-dimensional Navier–Stok
equation. A similar linear term, of course with different fri
tion coefficients, is used to model the decay in case of
man damping in a rotating fluid or the damping by the Ha
mann layer in the case of MHD experiments. Note that
these two cases there appears to be a difference with sha
water flows, since for rotating fluids and MHD flows, th
linear external friction is asymptotically exact under certa
conditions, as was discussed by Dolzhanskii.19 As yet, it is
not completely clear whether this approximation is valid
general for shallow water flows. It is worthwhile to note th
it was shown by Dolzhanskiiet al.14,15 that the 2D hydrody-
namic equation with Rayleigh friction correctly describes t
stability of shear flows in thin layers of homogeneous flu

The analysis is carried out by performing 3D direct n
merical simulations of axisymmetric monopolar vortices
shallow fluid layers. Only decaying vortices will be studie
here; the more complex problem of forced vortical flow
~e.g., flows driven continuously by electromagnetic forcin!
will be discussed in a future study. Two cases will be co
sidered: the case of a vortex in a homogeneous layer of fl
of depthH and the case of a two-layer stratified system,
used in the experiments of Paretet al.16 In both cases, the
layers are bounded by a no-slip bottom and a stress-free
per surface. The no-slip condition at the bottom implies
shear in the vertical direction. Although the shear itself lea
to a three-dimensional structure of the vortex, it will al
set up a secondary circulation. A similar recirculation c
be observed where an Ekman boundary layer is present
Downloaded 18 Jan 2010 to 131.155.151.96. Redistribution subject to AI
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no-slip bottom in a rotating system and, for instance,
‘‘Einstein’s tea leaves experiment.’’ Depending on the flo
parameters, the most important being the depthH of the fluid
and the Reynolds number Re, this circulation will vary
strength and its influence will be more or less pronounc
Hence, it is expected that the vortex can be considered
being quasi-two-dimensional only under certain circu
stances, which are yet undetermined. Therefore, a reg
diagram should be constructed to assess the paramete
gime where the quasi-two-dimensionality of such flows
valid. The quasi-two-dimensionality of such flows is an im
portant issue if one wishes to compare experiments of
type with purely two-dimensional theoretical models, or w
Q2D models where the bottom friction has been para
etrized. Besides this specific motivation, the problem is
interesting one in itself.

The rest of this paper is organized as follows: in Sec.
a relatively simple, diffusion-based model will be derived
describe the decay and vertical structure of vortices in s
low fluid layers. In Sec. III, we will briefly discuss the nu
merical simulation method and some other numerical issu
In Sec. IV we present numerical simulations of vortices in
homogeneous layer of fluid for several different fluid dep
and Reynolds numbers. The three-dimensional structure
be analyzed and the decay of the vortices will be compa
with the model of Sec. II. In Sec. V, some additional sim
lations are discussed concerning vortices in a two-la
stratified system. Finally, some conclusions are summar
in Sec. VI.

II. AN ANALYTICAL MODEL OF A MONOPOLAR
VORTEX IN A SHALLOW FLUID LAYER

Consider a circular monopolar vortex in a shallow lay
of fluid, i.e., the vertical dimensionH is smaller than the
horizontal length scaleL, where the domain is vertically
bounded by a no-slip bottom and a free surface. It is con
nient to describe such a flow in a cylindrical coordinate s
tem ~r ,u,z! with corresponding velocities (v r ,vu ,vz). To-
gether with axisymmetry, it is assumed that there is
vertical motion, i.e.,vz50. Continuity implies that in this
case alsov r50. We are thus left with a quasi-two
dimensional purely azimuthal vortex flow. In terms of th
Navier–Stokes equation in cylindrical coordinates this lea
to the following partial differential equation for the az
muthal velocityvu(r ,z,t):

]vu

]t
5nF1

r

]

]r S r
]vu

]r D2
vu

r 2 1
]2vu

]z2 G , ~1!

with n the kinematic viscosity.
Apart from this diffusion equation forvu , two additional

relations, the so-called cyclostrophic and hydrostatic b
ances, can be derived from ther and z component of the
Navier–Stokes equation. These balances will be discusse
the last part of this section. As a first step, the diffusi
equation will be solved.
P license or copyright; see http://pof.aip.org/pof/copyright.jsp
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A. Solution of the diffusion equation

The diffusion equation forvu is a linear equation tha
can be solved by a separation of variables, i.e., by assum
that the azimuthal velocityvu can be written asvu(r ,z,t)
5R(r )Z(z)T(t). A similar problem for the decay of vortice
in a linearly stratified fluid has been solved recently by Be
ers et al.,3 and thus some mathematical aspects of the fl
analysis will not be discussed in full detail here. A separat
of variables obviously leads to three equations: one for
temporal partT(t), another one for the axial partZ(z), and,
finally, one for the radial partR(r ) of the solution. The sub-
stitution of vu(r ,z,t)5R(r )Z(z)T(t) into ~1! yields the fol-
lowing three equations for the temporal, axial, and radial p
of the problem, respectively:

dT~ t !

dt
52n~p21q2!T~ t !, ~2!

d2Z~z!

dz2 52q2Z~z!, ~3!

d2R~r !

dr2 1
1

r

dR~r !

dr
2

1

r 2 R~r !52p2R~r !, ~4!

with p2 andq2 the separation constants or eigenvalues of
equations. The solution of the temporal equation can be
pressed in terms of exponential functions exp(2nq2t) and
exp(2np2t). Whenp2 and q2 are real, both terms lead to
damping of the velocity field, where the first one is obvious
associated with the axial part of the solution, while the s
ond one is related to the radial part of the problem.

Together with the no-slip boundary condition at the b
tom (vuuz5050), the solution of the axial–temporal pa
Ẑ(z,t) of the problem can be formulated in terms of a ser
of sine solutions with corresponding exponential dampin

Ẑ~z,t !5 (
n50

`

cn sin~qnz!exp~2nqn
2t !. ~5!

The eigenvalues of the solution can be found by applying
stress free boundary condition at the upper surf
(]vu /]zuz5H50) and are given byqn

25(2n11)2p2/4H2,
which represents a discrete spectrum of eigenvalues. It
be assumed that only the first mode (n50) of the series is
important in the time evolution, since the decay times of
higher-order modes, which are given bytn51/nqn

2, are
much smaller. As a consequence, any appropriate ver
profile of an initial distribution ofvu(r ,z) will soon evolve
toward the following solution:

Z~z!5sinS pz

2H D , ~6!

which is a Poiseuille-like profile in the axial direction. Th
damping associated with the shear is then a single expo
tial term exp(2p2nt/4H2). Note that we have takenc051,
which can be done without loss of generality.

The general solution of the radial–temporal partR̂(r ,t)
of the problem can be expressed in terms of Bessel functi
and is given by3
Downloaded 18 Jan 2010 to 131.155.151.96. Redistribution subject to AI
ng

-
w
n
e

rt

e
x-

-

-

s
,

e
e

ill

e

al

n-

s,

R̂~r ,t !5E
0

`

a~p!J1~pr !exp~2np2t !dp, ~7!

in which a(p) is determined by the initial condition. Bein
one of the possible solutions, a shielded Gaussian vor
which turned out to be a useful model in several rela
previous studies, is taken to solve the problem. Here
shielded vortex is chosen for the following reason. Vort
lines inside a fluid have to form closed loops or end at a f
surface, but they cannot end at a no-slip bottom.~Vortex
lines are defined as lines at which at any point the lo
vorticity vector is directed tangentially, in analogy wit
streamlines.! In our situation, they will end at the free su
face, which means that a patch of single-signed vorticity
always accompanied by an annulus of oppositely signed
ticity. In fact, it is not possible to create a single vorte
structure, consisting of a patch of single-signed vorticity.
deed, in the thin-layer experiment performed by Paire
et al.,20 in which a single vortex subjected to a shear flo
was studied, this vortex appeared to be shielded. It is rea
able to assume a Gaussian profile, since this corresponds
self-similar solution of the two-dimensional diffusion equ
tion. It was shown by Kloosterziel21 that any appropriate
axisymmetric distribution of vorticity with zero net circula
tion eventually evolves toward this particular profile. Th
time-dependent velocity profile of this vortex has the follo
ing form:

R̂~r ,t !5
a0r

2~r 0
214nt !2 expS 2

r 2

r 0
214nt D . ~8!

For this specific profile,a(p), as used in~7!, is given by
a(p)5 1

8a0p2 exp(21
4p

2r0
2). The corresponding profile o

axial vorticity vz(r ,t), the vorticity being defined asvz

5(1/r )(]/]r )(rvu), is given by

vz~r ,t !5
a0

~r 0
214nt !2 S 12

r 2

r 0
214nt DexpS 2

r 2

r 0
214nt D . ~9!

Note that the equations have been solved in a dimensi
form. The quantitiesa0 and r 0 in ~9! determine the initial
amplitude~given bya0 /r 0

2! and radius of the vortex.
It can easily be verified that this vortex is isolated, i.e.

has zero net circulation (G52p*0
`rvzdr50). It follows

that the decay associated with the radial part of the solut
leads to a decay of the vortex amplitude asâ;a0 /(r 0

2

14nt)2 and an increase of its radius asr̂;(r 0
214nt)1/2.

This part of the decay represents ordinary two-dimensio
lateral diffusion. Combining the solutions for the axia
temporal partẐ(z,t) and radial–temporal partR̂(r ,t) yields
the full solution of the problem:

vu~r ,z,t !5
a0r

2~r 0
214nt !2 expS 2

r 2

r 0
214nt D sin

pz

2H
exp~2lt !,

~10!

with l5p2n/4H2, sometimes referred to as the external fr
tion parameter. In terms of the 3D vorticity vectorv, this
flow field can be described completely by two of its comp
nents,v5(v r ,0,vz), or
P license or copyright; see http://pof.aip.org/pof/copyright.jsp
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v5S 2
]vu

]z
,0,

1

r

]~rvu!

]r D . ~11!

It follows that the radial componentv r of the vorticity is
associated with the vertical shear]vu /]z, while the axial
componentvz is related to radial gradients in the azimuth
velocity field. The azimuthal component of the vorticityvu

5]v r /]z2]vz /]r 50 sincev r50 andvz50.
It can easily be verified that for the solution given b

~10!, the 3D diffusion operatorn¹3D
2 can be rewritten in the

following form: n¹3D
2 5n¹2D

2 2l. Since the two decay
mechanisms, lateral diffusion and additional exponential
cay due to vertical diffusion, are now effectively separated
is possible to define two different Reynolds numbers in t
problem: the ordinary Reynolds number Re5L2v/n, which is
associated with lateral diffusion, and a Reynolds num
Rel , which is associated with the exponential damping d
to vertical diffusion, which is given by Rel5v/l. The quan-
tities v and L represent typical values for the vorticity an
horizontal length scale in the flow, respectively.@In terms of
the solution as given by~10!, the equations of motion can b
made nondimensional by the values ofr 0 and a0 .# The
three-dimensional Navier–Stokes equation for this proble
using the assumptions made above, could be simplified to
following two-dimensional form:

]v

]t
1~v"“ !v52“p1

1

Re
¹2v2

1

Rel
v, ~12!

wherev is the 2D velocity vector. The bottom friction ha
now been parametrized by an additional linear term in
2D Navier–Stokes equation. The friction associated with t
term, which obviously results in a nonselective dissipat
~with respect to the scales of the flow!, is often referred to as
‘‘Rayleigh friction.’’ Note that for extremely shallow wate
flows (H!L) the decay is completely governed by vertic
diffusion. In that case Rel!Re, which means that the thir
term on the right-hand side@(1/Rel)v# in ~12! will dominate
the second one@(1/Re)¹2v#. Note that the formulation of the
Navier–Stokes equation as in~12! can be used more gene
ally for shallow water flows. As was mentioned in the Intr
duction, it is also a commonly used parametrization in st
ies of Q2D turbulent flows in shallow fluid layers.12,13In that
case, it could be expected that the behavior and the de
properties of very small scales~so thatH;L! are not de-
scribed correctly, which could be a drawback of this form
lation. This point will be discussed in Sec. IV.

To summarize: Equation~10! describes the time evolu
tion of the velocity field of a shielded vortex in a thin lay
of fluid with a Poiseuille-like vertical profile. The solutio
has an essentially three-dimensional~vertical! structure, but
can be considered as quasi-two-dimensional since bothv r

50 andvz50.

B. The hydrostatic and cyclostrophic balance,
evolution of the free surface

In the previous part of this section, the diffusion equ
tion for vu has been solved. The assumptions that were m
Downloaded 18 Jan 2010 to 131.155.151.96. Redistribution subject to AI
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nent of the Navier–Stokes equation to the following re
tions:

2
vu

2

r
52

1

r

]p

]r
, ~13!

2
1

r

]p

]z
5g, ~14!

respectively. The two equations express that the flow sho
be both in cyclostrophic~13! and hydrostatic~14! balance.
Considering these cyclostrophic and hydrostatic balan
more carefully, it can be understood that necessarily a s
ondary circulation in the (r ,z) plane should exist. Due to th
no-slip condition forvu at z50, the radial pressure gradien
force 2(1/r)(]p/]r ) is no longer balanced by the centrifu
gal force near the bottom, according to~13!. Hence, a flow
toward the axis of the vortex is set up there, leading to
recirculation in the (r ,z) plane. This results in a nonzerov r

andvz and thus to nonzero azimuthal vorticityvu .
The presence of secondary circulations is inconsis

with the diffusion model, in which it was assumed thatv r

50 andvz50. The inconsistency suggests that the assum
tions made in the diffusion model should be slightly relax
to v r , vz!vu . The recirculation can then be seen as a re
tively small perturbation of the basic state, as described
~10!. An important issue that remains to be investigated
the parameter regime in which this condition is fulfilled.

From Eq. ~13! it also follows that a swirling flowvu

results in a deformation of the free surface. In several sit
tions, such a deformation can be observed in the form o
dimple, where a vortex tube connects to a free surface. C
bining Eq. ~13! and p(r ,z)5rg@h(r )2z#, resulting from
~14! with h(r ) a functional form for the shape of the fre
surface, relates the deformation of the free surface to
azimuthal velocity field by

1

gr
vu

25
]h

]r
. ~15!

It is thus possible to derive an expression for the evolution
the shape of the free surface in time. Using the veloc
profile given by~10! and integrating~15! over the total fluid
depthH yields the following approximation forh(r ,t):

h~r ,t !5H2
a0

2 exp~22lt !

32g~r 0
214nt !3 expS 2

2r 2

r 0
214nt D . ~16!

The solution describes a dimple that slowly broadens in tim
and decays due to the two damping mechanisms, as
cussed in the previous part of this section. For typical fl
conditions, the deformation of the free surface will be ve
weak, since its amplitude is given bya0

2/32g. It will there-
fore be left out of consideration in the rest of the paper.
summarize most of the aspects of the vortex discussed so
Fig. 1 presents a schematic picture of the complete th
dimensional structure of the flow field, including the secon
ary circulation.

It is the purpose of the numerical simulations that a
presented in the next sections to determine whether the
P license or copyright; see http://pof.aip.org/pof/copyright.jsp
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1936 Phys. Fluids, Vol. 13, No. 7, July 2001 Satijn et al.
ondary circulation, as discussed above, is substantial or
In case that it is large, the Q2D approximation (v r ,vz!vu)
no longer holds and the parametrization of the friction as
~12! is no longer valid. The influence of the secondary c
culations on the evolution of the vortex will also be di
cussed in more detail.

III. NUMERICAL METHOD

The numerical simulations described in this paper h
been performed using a finite difference code in cylindri
coordinates. One of the advantages of this code is the po
bility of solving the equations of motion for axisymmetr
problems, i.e., the equations are solved in the (r ,z) plane.
The computational effort is thus significantly reduced, sin
a two-dimensional numerical problem is solved instead o
fully three-dimensional one.

The equations of motion are solved by using a fractio
step method, as described by Verzicco and Orlandi.22 The
velocities (v r ,vu ,vz), the pressurep, and the salinityS are
discretized on a staggered grid.~Flows in a homogeneou
layer as well as flows in a stratified system will be studie!
The pressure and salinity are defined at the centers of
grid cells, whereas the components of the velocity are
fined at the centers of the cell boundaries that are perp
dicular to the respective velocity components.

Solving the equations of motion in a cylindrical coord
nate system gives rise to a singularity forr 50. Since the
radial velocityv r is the only one that is evaluated at the ax
singularity problems can be avoided by introducing the v
tor w5(rv r ,vu ,vz) instead ofv. The equations of motion
for w are then discretized in time; the viscous term is cal
lated implicitly by using a Crank–Nicolson technique, wh
the nonlinear and buoyancy terms are calculated explic
using a third-order Runge–Kutta scheme. This leads t
second-order accuracy for the time advancement. A m
detailed description of the numerical scheme can be foun
Verzicco and Orlandi.22

All the runs presented here are performed using 128
points in both ther and thez direction. The grid convergenc
has been checked by performing simulations with dou
resolution (2562) and half resolution (642). It was found that
the flow is well resolved when 1282 grid points are used an
the results of the computation seem indistinguishable fro

FIG. 1. Schematic picture of the three-dimensional structure of a vortex
shallow fluid layer.
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run with 2562 grid points. Another check has been perform
on the assumption that the flow remains axisymmetric dur
the computation: it was found that a fully three-dimension
simulation~with 1283 grid points! yielded the same results a
the corresponding axisymmetric computation and revea
that the flow indeed remained axisymmetric. Note that
these checks have been performed for the highest Reyn
number that we used~Re52000!. The cylindrical computa-
tional domain is bounded by a no-slip bottom and stress-
upper and lateral walls. It has been checked by runs wit
larger domain in the radial sense that the finiteness of
domain in the radial direction did not affect the results.

For the simulations in a stratified fluid, which will b
discussed in Sec. V, the equations of motion are solved in
Boussinesq approximation. The Boussinesq approxima
implies that the pressurep and fluid densityr can be ex-
panded around a basic state, described byp0 andr0 , as

p5p01p8, r5r01r8. ~17!

If the perturbationsp8 and r8 around the basic state ar
small, we may assume that the density perturbation is o
important in the gravitational term of the Navier–Stok
equation. The equations of motion that have to be sol
then take the following form:

]v

]t
1~v"“ !v52“p82

1

Fr2
r8ez1

1

Re
¹2v, ~18!

DS

Dt
5

1

Sc Re
¹2S, ~19!

with S the salinity andez the unit vector in thez direction.
The quantityr8 is the density perturbation. It will be as
sumed that the densityr is linearly proportional to the salin
ity as r5aS. Three nondimensional parameters have be
introduced in~18! and~19!: the Froude number Fr, the Rey
nolds number Re, and the Schmidt number Sc, which
defined as

Fr5Av2Lr0

gDr
, Re5

L2v

n
, Sc5

n

k
, ~20!

respectively. The quantitiesv andL represent typical values
for the vorticity and horizontal length scales in the flow,r0 a
typical value for the density,Dr is a typical density differ-
ence, andk is the diffusivity of the stratifying agent. A more
precise definition ofv and L will be given in the next sec-
tion.

In our simulations, the density perturbation from the b
sic state will not exceed 10%. It is assumed that for t
value the Boussinesq approximation can be app
successfully.23

IV. NUMERICAL SIMULATIONS OF VORTICES IN A
HOMOGENEOUS LAYER OF FLUID

The numerical simulations that are presented in this s
tion will provide data that allows us to analyze the qua
two-dimensionality of vortices in shallow fluid layers. Th
parameters that will be varied are the fluid depthH ~or,
equivalently Rel! and the ordinary Reynolds number Re. A

a
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FIG. 2. Results of a numerical simulation with aspect ratiom50.20 and Re5500. Shown are~a! the time evolution of the kinetic energy of the secondary flo
~b! time evolution of the vorticity profilevz(r ) at the free surface,~c! the decay of the peak vorticityvp at three different levels, where the line represen
~23!, ~d! contours ofvu ~contour spacingDvu50.02!, ~e! contours ofv r ~contour spacingDv r50.10!, and~f! velocity vectors in the (r ,z) plane.
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the end of this section, a regime diagram will be presen
that shows in which region of the (Re,Rel) parameter space
a flow can be considered as Q2D.

First, the dynamics and the 3D structure of a vortex w
be analyzed in more detail for one specific case and we
discuss a way to characterize quasi-two-dimensionality i
quantitative fashion. Then, the effects of variation of t
fluid depth H ~or Rel! and the variation of the Reynold
number Re will be described separately. Finally, the obtai
regime diagram will be presented.

As an initial condition, a purely azimuthal flow field i
taken, with a shielded Gaussian vorticity distribution and
vertical profile that is sine-like, as described by the diffusi
model in Sec. II. The complete initial condition is given b
Eq. ~10! with a051 andr 051 for t50,

vu~r ,z!5
r

2
exp~2r 2!sinS pz

2H D . ~21!

In the first set of simulations presented below, the Reyno
number was Re5500, which is a typical value for several o
the laboratory experiments that have been reported in lit
ture. The Reynolds number is defined here as Re5L2vp /n.
The typical value for the vorticity is the initial peak vorticit
vp at the axis (r 50). As a typical horizontal length scale
the radiusL, where the vorticity profile changes sign,
taken. The quantitiesa0 and r 0 , which determine the initial
amplitude and radius of the vortex in~10!, are thus used to
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nondimensionalize time and space. In most of the simu
tions presented herevp51 andL51 so that Re5n21.

The assumption made in the diffusion model, neglect
the higher-order modes of the axial–temporal solution~5!,
has been checked here for several situations. For low va
of the fluid depthH, it was found that for other vertica
velocity profiles, but still satisfying the boundary condition
a rapid relaxation toward the solution given by~6! is ob-
served. We may thus conclude that it is reasonable to u
sine-like vertical profile for the initial condition.

A. Dynamics and 3D structure of vortex flows:
Characterization of quasi-two-dimensionality

Figure 2 presents the results for a simulation of a vor
with aspect ratiom50.20. The height-to-width aspect ratio
defined asm5H/d, whered52L. It is introduced only to
provide a quick picture of the ratio of the vertical and ho
zontal dimensions of the vortex. Note that the aspect rati
not a new nondimensional parameter. It depends on Re
Rel asm;(Rel /Re)1/2.

The first quantity that will be considered is the magn
tude of the kinetic energy of the secondary flow. For ea
component of the velocityv i , wherei 5(r ,u,z) denotes the
specific component, the kinetic energy is defined as

Ek,i52pE
0

HE
0

R 1

2
r~z!v i

2~r ,z!rdrdz, ~22!
P license or copyright; see http://pof.aip.org/pof/copyright.jsp



d
ll
ed

he
e

e

ie
is

ca
so

e

e
s
on
be

no
o-

o

ls

h

If
ec

-
-
or

a
e
o

pe
e

n
on

or-
is,

re

re

nd
ld
e

ex.
ar
xis
s in
ese
ec-

o-
re-

w
if

in
de
er-
w-
ow
w,

n

m

f
ete
e-
ce

y
tant
We

ion

1938 Phys. Fluids, Vol. 13, No. 7, July 2001 Satijn et al.
whereH represents the total fluid depth andR the radius of
the computational domain. For the simulations discusse
this sectionr(z)5r is constant. In the next section we wi
discuss the evolution of vortex flows in a two-layer stratifi
system, wherer will depend on the axial coordinatez.

We will discuss the time evolution of the values ofEk,r

andEk,z with respect to the value of the kinetic energy of t
azimuthal main flowEk,u . Hereafter, these ratios will b
referred to asqr5Ek,r /Ek,u andqz5Ek,z /Ek,u , respectively.
In Fig. 2~a!, these quantities are plotted as a function of tim
At t50, the kinetic energiesEk,r50 andEk,z50, according
to the initial condition. It is then observed that these energ
first grow in time, indicating that a secondary circulation
set up inside the vortex. Afterward, due to the overall de
of the vortex structure, the secondary circulation will al
weaken in time. The maximum values of the quantitiesqr

andqz are reached att.5.
One of the effects of the recirculation is clearly observ

in Fig. 2~b!, where the radial profile of axial vorticityvz(r )
at the free surface is shown for three different times~t50,
t55, and t510!. It can be seen that the vorticity profil
deforms as time proceeds: the core of the vortex seem
relax toward a state of solid-body rotation. This deformati
caused by a 3D redistribution of axial vorticity, can only
a consequence of the recirculation in the (r ,z) plane. In case
of a Q2D flow, as described by the model in Sec. II,
deformation of the profile would occur and the vorticity pr
files could be scaled in time.

Another way to examine 3D effects on the evolution
the vortex is to monitor the peak vorticityvp(t), which is
located at the axis (r 50). Initially, the peak vorticity corre-
sponds to the maximum axial vorticityvz51. The results of
the computation are shown in Fig. 2~c!, where the peak vor-
ticity is plotted as a function of time at three different leve
inside the vortex, beingh5H ~free surface!, h5H/2, and
h5H/4. At the free surface (h5H), the initial peak vorticity
vpu t5051, and subsequently decreases with height wit
sine-like dependence untilvp50 at the bottom, which is the
boundary condition for the axial vorticity at the bottom.
the flow were Q2D, the decay would be uniform with resp
to the vertical positionz in the fluid column: rescaling the
vorticity profiles with sin(pz/2H) would yield the same de
cay behavior. The solid line in Fig. 2~c! represents the ex
pected decay of the peak vorticity at the free surface acc
ing to the diffusion model, which is given by

vp~ t !5
exp~2lt !

~114nt !2 . ~23!

For the case withm50.20, it can be seen that the actu
decay ofvp at the free surface differs significantly from th
prediction based on the model, and besides that, it is
served that the decay is not uniform inz: the peak vorticity at
the free surface even decreases below the value of the
vorticity at h5H/2 for 4,t,12. The enhanced decay of th
peak vorticity at the free surface, and also the deformatio
the vorticity profile, is caused by the secondary circulati
Downloaded 18 Jan 2010 to 131.155.151.96. Redistribution subject to AI
in

.

s

y

d

to
,

f

a

t

d-

l

b-

ak

of
,

since the secondary flow transports low-amplitude axial v
ticity, which is located near the bottom and near the ax
upward.

In order to give a complete picture of the 3D structu
inside the vortex, contour plots ofvu andv r , which provide
useful additional information about the secondary flow, a
given for t55 in Figs. 2~d! and 2~e!, respectively. Here,
solid lines represent contours of negative vorticity a
dashed lines contours of positive vorticity. The velocity fie
at t55 in the (r ,z) plane, which is closely related with th
azimuthal vorticityvu , is shown in Fig. 2~f!. It is observed
that one large recirculation cell is present inside the vort
The flow of the recirculation is directed toward the axis ne
the bottom, upward near the axis, and away from the a
near the free surface. Note that the largest velocity vector
the (r ,z) plane are usually located near the axis. From th
data, it can also be concluded that the influence of the s
ondary circulation should be significant, sincevu is of the
same order of magnitude asvz .

Based on the results of the simulation withm50.20, two
criteria will be introduced for characterizing the quasi-tw
dimensionality in a quantitative fashion. The first one is
lated to the kinetic energiesEk,r and Ek,z of the secondary
flow, compared to the kinetic energy of the azimuthal flo
field Ek,u . It will be assumed that the flow behaves Q2D

qr~ t !5
Ek,r~ t !

Ek,u~ t !
<0.01, qz~ t !5

Ek,z~ t !

Ek,u~ t !
<0.01, ~24!

stating that the values ofEk,r andEk,z should not exceed 1%
of the value ofEk,u . In other words, the secondary motion
the (r ,z) plane should be at least two orders of magnitu
smaller than the azimuthal flow in terms of the kinetic en
gies. This criterion seems rather strict; it was found, ho
ever, that a value of the kinetic energy of the secondary fl
that measures 1% of the kinetic energy of the azimuthal flo
corresponds to maximum values of the velocitiesv r andvz

that are roughly onlyone order of magnitude smaller tha
the maximum invu . In the first simulation withm50.20, the
criterion ~24! is clearly not satisfied, since the maximu
value ofqr almost measuresqr50.05 @see Fig. 2~a!#.

The condition~24!, which concerns the kinetic energy o
the secondary flow, is directly associated with the compl
3D flow field. The second criterion that will be used is r
lated to the shape of the vorticity profile at the free surfa
@see Fig. 2~b!#. Since experimental velocity and vorticit
fields are usually evaluated at the free surface, it is impor
to measure the effect of the secondary circulation there.
will measure this by evaluating the enstrophyZ at the free
surface, which is here defined as

Z5EE
A
vz

2da52pE
0

R

vz
2rdr , ~25!

where A represents the area of the free surface andR the
radius of the computational domain. The second criter
states that the flow can be considered as Q2D if the ratioQ,
which is defined as
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Q5
*0

R@vz8~r 8,0!2vz8~r 8,t !#2rdr

*0
Rvz8

2~r 8,0!rdr
, ~26!

does not exceed 0.10. The quantityvz8(r 8,t) represents the
rescaled vorticity profile with respect to its amplitude a
radius. The deformation of the vorticity profile is thus cha
acterized by comparing the shape of a rescaled profile at
t with the initial condition, which also serves as a weig
function. The flow will now be considered Q2D if both con
ditions ~24! and ~26! are fulfilled.

For the case withm50.20, as discussed above, this c
terion is not satisfied either, sinceQ50.97. Note that the
time evolution ofQ will not be discussed here. In most of th
cases, the deformation of the vorticity profile is irreversib
andQ increases in time. The value ofQ will be calculated at
t55, which will be assumed to give a reasonable repres
tation for the complete flow evolution. No additional criter
will be formulated concerningvu , v r , or the evolution of
vp , since this would not reveal any new information whi
is essentially different from the criteria that have alrea
been formulated.

B. Variation of the fluid depth

In the set of simulations presented below the vortex
pect ratio will be varied in order to determine the effect
the fluid depth on the 3D structure and the decay proper
of the flow. WhileL was kept constant, five different flui
depths H were taken, resulting in aspect ratio values
m50.50, 0.20, 0.15, 0.10, and 0.05. The corresponding
ues of Rel are given by Rel5203, 32.5, 18.2, 8.1, and 2.0
respectively. The value of Rel is thus systematically de
creased for fixed~ordinary! Reynolds number Re. The influ
ence of Re will be discussed in the next part of this secti
The case withm50.20 has already been discussed abo
The magnitude of the kinetic energy of the secondary flo
the evolution of the vorticity profiles at the free surface a
the decay of the peak vorticities will now be shown for thr
other aspect ratios. These data should be compared to
case ofm50.20, which has been discussed in the previo
part of this section.

Increasing the aspect ratio tom50.50 has a dramatic
effect on the evolution of the vortex, as can be conclud
from the results presented in Fig. 3~a!. At t510, the values
of qr andqz have reached a magnitude of;15% and;5%,
respectively. It follows that in this case, as in the previo
case withm50.20, it is clearly not justified to consider th
flow as being Q2D. The profound effect of the intense s
ondary circulation can be observed in the evolution of
vorticity profile at the free surface and the decay of the p
vorticities, as shown in Fig. 3~a!. The strong deformation o
the vorticity profile results in a maximum axial vorticity
which is no longer located at the center of the vortex, bu
instead shifted outward. This shift is a direct consequenc
the outward advection of axial vorticity at the free surfa
due to the secondary circulation. The quantityQ measures
Q51.63 in this case, which is substantially larger than in
case ofm50.20. It is also shown that the peak vorticities
not show any uniform decay at all. In fact, att55 the peak
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vorticities at levelH/2 andH/4 have become larger than th
vorticity at the free surface, which is strongly reduced duri
the initial stage of the evolution.

Decreasing the fluid depth, so that the aspect ratio of
vortex reduces tom50.10 @shown in Fig. 3~b!# or m50.05
@shown in Fig. 3~c!# shows a completely different scenari
Obviously, the values of the kinetic energiesEk,r andEk,z ,
divided byEk,u , are now much smaller than in the previou
cases. Form50.10 a maximum value forqr is reached att
.2 of 0.007, while form50.05 this maximum measure
only 0.0005. The effect on the evolution of the vorticity di
tribution is clear: scaling the vorticity profiles with the
value atr 50 ~not shown!, reveals that the profile does no
deform significantly form50.10 and can be scaled almo
perfectly for m50.05. This is an indication that the flow
maintains its two-dimensional character and secondary ci
lations are much weaker. In quantitative terms, the value
Q decreases toQ50.093 form50.10, which is roughly an
order of magnitude smaller than in the case ofm50.20. For
m50.05 it is further reduced toQ50.0043. According to our
criteria, the flows can thus be considered as Q2D in th
cases. The decrease of the aspect ratio tom50.05 leads to a
decay scenario that almost perfectly fits with the diffusi
model, as can be concluded from Fig. 3~c!. For m50.10, the
diffusion model would be a good approximation. Howev
in some experimental situation, where one wishes to st
the evolution of flows for a reasonable amount of time
situation like form50.05 is not preferable, since the dam
ing is too large.

C. Variation of the Reynolds number

In the simulations discussed above, the influence of
fluid depthH ~or, equivalently, Rel! on the evolution of the
vortex flow has become clear for a fixed value of the Re
nolds number Re. In general, it can be concluded that
flow loses its Q2D character for larger fluid depths. The
fluence of the Reynolds number Re, associated with lat
diffusion, on the 2D character of the flow has not been d
cussed yet. For all the five fluid depths, the Reynolds num
has been varied in the range 125<Re<2000. In Fig. 4, a
typical set of two simulations is presented to illustrate
basic effect. These runs should be compared to the sim
tion with m50.20 and Re5500, as discussed in the first pa
of this section. Two cases will be studied: the evolution
the flow with a lower Reynolds number@Re5125, shown in
Fig. 4~a!# and a higher Reynolds number@Re52000, shown
in Fig. 4~b!#. The Reynolds number was changed here
multiplying the radiusL of the vortex by a factor of12 and 2,
respectively. The aspect ratios are then given bym50.40 and
m50.10, respectively. The value of Rel is, of course, not
affected by the adjustment of the horizontal scale of the flo
Note that it is not useful to change the kinematic viscosityn
while keeping the dimensions of the vortex constant. T
would results in an effectively different fluid depth, since t
damping parameterl includes the viscosityn.

Considering the kinetic energy of the secondary flo
the evolution of the vorticity profile at the free surface, a
the decay of the peak vorticities, it can be concluded t
P license or copyright; see http://pof.aip.org/pof/copyright.jsp
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FIG. 3. Numerical simulations in a homogeneous layer of fluid with Re5500. Shown are the time evolution of the kinetic energy of the secondary flow
time evolution of the vorticity profilevz(r ) at the free surface and the decay of the peak vorticityvp at three different levels, where the lines represent~23!,
for ~a! m50.50, ~b! m50.10, and~c! m50.05.
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decreasing the Reynolds number two-dimensionalizes
flow, while for an increase of the Reynolds number the fl
loses its Q2D character. For Re5125, the maximum value o
qr roughly measures 0.03, while for Re52000 it increases up
to 0.05. The deformation of the vorticity profile is also si
nificantly reduced for Re5125, compared to the case of R
52000. In terms of the quantityQ, the result is that for
Re5125, Q is reduced toQ50.44 while for Re52000 its
value measuresQ51.19. The decay of the peak vorticitie
appears to be more uniform in the case of Re5125.

In Sec. II, it was mentioned that the dynamics of ve
small scales are probably not well described by the diffus
model due to 3D effects. In order to study this in more de
a simulation has been performed with a very smallL so that
Re51. The aspect ratio is then given bym55.0. The results
are presented in Fig. 5, where the time evolution of the
netic energy and the evolution of the rescaled vorticity p
file is shown. It is observed this small-scale vortex beha
essentially Q2D, according to the values of the kinetic en
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gies. A clear lateral expansion is also observed since lat
diffusion plays an important role in the evolution.

Note that it is quite surprising that an effective increa
of the aspect ratiom of the vortex leads to a more two
dimensional character of the flow. Apparently, the aspect
tio itself is not an essential parameter for the evolution of
flow. Remarkably, the flow seems to be governed by Re
Rel separately. The physical explanation for this pheno
enon is most likely that for higher Reynolds number, a
thus for alower aspect ratio, the nonlinear advective term
the Navier–Stokes equation becomes more and more im
tant. In other words, the dynamical effect of changing t
Reynolds number is apparently more important than the c
responding geometrical effect.

The effect of variation of Rel and Re separately ha
become clear from the simulations discussed above. As m
tioned before, several additional simulations have been
formed in order to construct a regime diagram for flows in
shallow layer of fluid. This diagram concerns the quasi-tw
P license or copyright; see http://pof.aip.org/pof/copyright.jsp
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FIG. 4. Numerical simulations in a homogeneous layer of fluid. Shown are the time evolution of the kinetic energy of the secondary flow, the evo
the vorticity profilevz(r ) at the free surface, and the decay of the peak vorticityvp at three different levels, where the lines represent~23!, for ~a! Re5125
~m50.40! and ~b! Re52000 ~m50.10!.
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dimensionality, using the criteria that we have defined, a
function of Re and Rel . The additional simulations will no
be discussed in detail here. The diagram is shown in Fig
The simulated flows that are indicated by a1 should be
considered 3D, while the simulations indicated by a3 rep-
resent a quasi-2D flow, according to our criteria. The das
line represents an estimation of the borderline between Q
and 3D flows, and was determined by using the results of
simulations. Below the dashed line, the flow can thus
considered as Q2D, above the line it should be conside
3D. A clear region can thus be distinguished in the (Re,Rl)
parameter space, where the flow can be considered as Q
according to our criteria.
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V. NUMERICAL SIMULATIONS OF VORTICES IN A
STRATIFIED FLUID

Basically, the simulations discussed in this section
performed using the same parameters (Re,Rel) and initial
condition as in the runs presented in the previous sect
The difference with the runs of the previous section is t
instead of a homogeneous fluid layer now a two-layer str
fied system is taken. We will thus construct a similar regim
diagram for vortex flows in a stratified fluid and make
comparison with the case of a single layer. The density
ference in the two layers is 10%, corresponding to a Fro
number of Fr51.0. In the initial condition, the density is
FIG. 5. Evolution of a small-scale vor-
tex structure. Shown are~a! the time
evolution of the kinetic energy of the
secondary flow and~b! the evolution
of the vorticity profilevz(r ) @rescaled
with vz(0)# at the free surface.
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adjusted from its value in the lower layer to its value in t
upper layer in a vertical region that spans 10% of the to
fluid depth. Due to diffusion of the stratifying agent the gr
dients in the step-like density profiler(z) will gradually be
smeared out. The Schmidt number in all cases is Sc5700,
which is representative for the case that the stratifying ag
is salt ~NaCl solution!, which is commonly used in labora
tory experiments. On the time scales of the simulations
cussed here (0,t,20), the two-layer system is nearly un
affected. On longer time scales, the density profile wo
evolve toward an almost linear one@r(z);z#. Note that the
density gradient at the bottom and free surface equ
]r/]z50 for all times, owing to the no-flux condition fo
passive scalar at the upper and lower boundaries.

Note that the vertical structure and the decay proper
of vortices in a two-layer stratified system can be appro
mated by the model of a vortex in a single layer of fluid,
presented in Sec. II. A difference arises in the value of
kinematic viscosityn in the upper and lower layer, whic
depends on the densityr. As a consequence, the bounda
condition at the interface yields n1r1(]uu /]z)u1
5n2r2(]uu /]z)u2 , so that a slight kink is expected in th
vertical velocity profile at the rather sharp interface that h
been used. Another~dynamical! difference that arises is th
following: from the cyclostrophic and hydrostatic balance
it can be understood that, apart from a small deformation
the free surface, the density interface will be deflected
ward in the core of the vortex. The reason for this is a low
pressure in the upper layer due to the higher values of
azimuthal velocity there.

The remaining part of this section is organized in a sim
lar way as the previous one. First, the dynamics and
structure of a vortex in a two-layer stratified fluid is di
cussed for one specific situation~m50.20, as in the case of
single layer!. Then, the variation of the fluid depth and th
Reynolds number will be discussed and the obtained reg

FIG. 6. Regime diagram for flows in a single shallow layer of fluid as
function of Re and Rel . Below the dashed line, the flow can be consider
as Q2D; above the line it should be considered 3D.
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diagram will be presented. Finally, we will briefly analyz
some experiments that have been reported in the litera
within the context of our results.

A. Dynamics and 3D structure of a vortex in a
stratified fluid

The first simulation that is presented here should
compared to the first one in the previous section. The as
ratio of the vortex equalsm50.20. When this simulation is
compared to the corresponding run in a homogeneous l
of fluid, some remarkable differences are found. The res
of the calculation are presented in Fig. 7. First, the values
the kinetic energies of the secondary flowEk,r andEk,z , with
respect toEk,u @shown in Fig. 7~a!#, are approximately a
factor of 4 smaller than in the case of a homogeneous la
of fluid. This obviously corresponds to a much weaker s
ondary circulation. The deformation of the radial vortici
profile at the free surface is almost absent here, as ca
observed in Fig. 7~b!. From Fig. 7~c!, where the time evolu-
tion of the peak vorticities is shown, it can be concluded t
the decay is also significantly reduced. It can be seen tha
decay for longer time scales (t.8) approaches the decay a
expected by the diffusion model. According to the form
lated criterion in terms of the enstrophy, this case could
considered as Q2D, in contrast to the case of a single la
The quantityQ measuresQ50.044, which is very small
compared to the value ofQ50.97 for the case of a homoge
neous layer. However, the value ofqr shows a slight exces
of the 0.01 norm for 1,t,3. This means that the flow in
this case behaves on the verge of quasi-two-dimensiona

The recirculation pattern is remarkably different, whic
is shown in Figs. 7~d! and 7~e! by contours ofvu andv r and
in Fig. 7~f! by velocity vectors in the (r ,z) plane for t55.
Instead of one large recirculation cell, now a multiple-c
structure of counter-rotating circulations is observed. N
that this pattern is not stationary in time. The alternati
upward and downward motions near the interface are
lieved to be associated with internal waves. Although
pattern is more complex than for the homogeneous case,
also much weaker and, as a consequence, its influence o
behavior of the flow is less pronounced.

It is an important question why the decay is reduc
significantly in the upper layer. In the system we discu
here, there are several mechanisms to establish this.
main reason for the reduced decay is that the flow in
upper layer is effectively shielded from the lower layer d
to the stratification. The secondary circulation is therefo
much weaker, which prevents the advection of lo
amplitude axial vorticity from the lower layer to the upp
layer. Another mechanism, which is less important, is
following: by using different densities, the kinematic visco
ity of the upper layer changes. As a consequence, the d
sion in lateral and vertical sense acts at different time sca
Sincen;r21, the kinematic viscosity decreases for increa
ing density. Since the density difference is only 10%, it
expected that this effect is very weak.

A third mechanism could be related to the deformati
of the density interface. An amount of potential energy
P license or copyright; see http://pof.aip.org/pof/copyright.jsp
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FIG. 7. Results of a numerical simulation in a stratified fluid withm50.20 and Re5500. Shown are~a! the time evolution of the kinetic energy of th
secondary flow,~b! time evolution of the vorticity profilevz(r ) at the free surface,~c! decay of the peak vorticitiesvp at three different levels, where the lin
represents~23!, ~d! contours ofvu ~contour-spacingDvu50.02!, ~e! contours ofv r ~contour spacingDv r50.10!, and~f! velocity vectors in the (r ,z) plane.
e
ac
ich
ac
b
m
e
e
e

c
s
a
fo
n

tly
n
i

on

se
o

h

ous

e
in

s-
t is
-
sed
par-

o a

-
-
no
er.

mu-
gle

two-
ds
if-

ia-
e
he
the
stored when the interface is lifted in the first time units. Aft
the interface has risen to its maximum height, the interf
relaxes to its original position. The potential energy, wh
has been stored in this way, will be released if the interf
relaxes to its undisturbed position. This is accompanied
stretching of the vortex column above the interface and co
pression of the vortex beneath the interface. Initially, wh
the interface rises, the vortex column above the interfac
compressed whereas the vortex beneath the interfac
stretched. In Fig. 7~c!, it is indeed observed~for 0,t,4!
that the peak vorticity at the free surface shows an enhan
decay, while forh5H/4 the decay of the peak vorticity i
slightly reduced. For 4,t,7, it can be seen that the decay
the free surface is reduced, while it is slightly enhanced
h5H/4. However, a separate calculation of the kinetic e
ergy in the upper and lower layer~not shown! reveals only a
slight asymmetry in the decay of these layers. Apparen
this mechanism is not important in terms of the kinetic e
ergy. A substantial part of the available potential energy
most likely transferred into kinetic energy by the excitati
of internal waves.

B. Variation of the fluid depth and the Reynolds
number

When the total fluid depth is varied in the stratified ca
the same phenomena are observed as in the case of a h
geneous layer. Increasing the aspect ratio tom50.50 results
in a loss of two-dimensionality of the flow field, althoug
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this effect is much more dramatic in case of a homogene
layer. This can be concluded from the maximum values ofqr

and qz , the evolution of the vorticity profiles at the fre
surface and the decay of the peak vorticities, as shown
Fig. 8~a!. An interesting feature of flows in a stratified sy
tem is revealed by the decay of the kinetic energies. I
observed that the values ofqr andqz decrease with a wave
like disturbance. These disturbances are most likely cau
by the excitation of internal waves, whose presence is ap
ently more pronounced for larger fluid depths.

Decreasing of the fluid depth also in this case leads t
more Q2D character of the flow. In Fig. 8~b!, the results are
shown for a simulation withm50.10, which can be consid
ered as Q2D. Form50.05 ~not shown!, the decay again per
fectly fits the diffusion model. Note that in both cases
large differences are found with the case of a single lay
The calculated values ofQ are Q50.022 for m50.10 and
Q50.0035 form50.05.

The Reynolds number has also been varied for the si
lations presented in this section. As in the case of a sin
layer, the range of variation was 125<Re<2000. Here, it
was also observed that decreasing the Reynolds number
dimensionalizes the flow, while for increasing Reynol
number, the flow loses its Q2D character. The runs for d
ferent Re, which allow us to construct a similar regime d
gram as for the case of a single layer of fluid, will not b
discussed in detail here. The diagram is shown in Fig. 9. T
dividing line has been determined in the same way as for
P license or copyright; see http://pof.aip.org/pof/copyright.jsp



ution

1944 Phys. Fluids, Vol. 13, No. 7, July 2001 Satijn et al.
FIG. 8. Numerical simulations in a stratified fluid with Re5500. Shown are the time evolution of the kinetic energy of the secondary flow, the time evol
of the vorticity profilevz(r ) at the free surface and decay of the peak vorticityvp at three different levels, where the lines represent~23!, for ~a! m50.50 and
~b! m50.10.
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homogeneous case. Below the dashed line, the flow ca
considered as Q2D, above the line it should be conside
3D. It can be seen that the parameter regime where the
can be considered Q2D is larger than in the case of a si
layer. Especially for lower values of the Reynolds numb
the range of fluid depths where the flow behaves Q2D
much bigger.

FIG. 9. Regime diagram for flows in a two-layer stratified fluid. Below t
dashed line, the flow can be considered as Q2D; above the line it shou
considered 3D.
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Flows in shallow layers of fluid are commonly assum
to behave Q2D. We have formulated and tested criteria
the quasi-two-dimensionality of such flows. An analysis
the Q2D character of some thin-layer experiments that h
been carried out by several authors~e.g., Antonovaet al.,11

Tabelinget al.,12 and Paretet al.16! is thus worthwhile. To
make a comparison between these experiments and
simulations, the absolute values of the fluid depth and a ty
cal value for the peak vorticity, or some typical value for t
velocity and length scale, has to be known for proper sca
of the flows. Unfortunately, none of the authors mention
above provide all these values, so it is not possible to d
conclusions about the quasi-two-dimensionality of these
periments. It is thus unclear whether 3D effects in laborat
experiments are small enough to ensure the validity of
quasi-2D approximation. Our method for determining t
quasi-two-dimensionality could be applied in future studie

VI. CONCLUSIONS AND DISCUSSION

Laboratory experiments aimed at studying the dynam
of vortices and two-dimensional turbulence have been p
formed in shallow layers of fluid. The geometrical confin
ment is then a commonly used argument for the flow
behave in a quasi-two-dimensional fashion. When these
periments are performed inside a container, a no-slip bou
ary condition applies to the bottom of the tank and a stre
free condition at the free surface. The no-slip bound
condition implies a vertical shear, which leads to second

be
P license or copyright; see http://pof.aip.org/pof/copyright.jsp
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circulations within the planar vortices. In this paper, t
three-dimensional structure and the decay properties of
tices in such a system of shallow fluid layers have been s
ied numerically.

It has been found that for large fluid depths and la
Reynolds number the flow loses its two-dimensional char
ter. Effectively, this means that a significant secondary
culation is present. One of the effects of this recirculation
the deformation of the radial profile of axial vorticity. As
consequence, the decay of the vortices is no longer con
tent with a Q2D diffusion model, which predicts that th
vorticity profiles can be scaled when the flow can be cons
ered as Q2D. For low values of Re and Rel , it has been
found that the decay indeed perfectly fits the diffusi
model. We were able to characterize the quasi-tw
dimensionality in a quantitative fashion by considering t
strength of the recirculations in terms of the kinetic ene
and by characterizing the deformation of the vorticity profi
Furthermore, it is possible to construct a regime diagram
assess the validity of the Q2D approximation in the (Re,Rl)
parameter space. It should be noted that the method
proposed for characterizing quasi-two-dimensionality co
also be applied to vortices in rotating and/or stratified flu
in future studies.

It has also been found that vortices in a two-layer str
fied fluid, compared to flows in a homogeneous layer, ma
tain their two-dimensional character for larger fluid dept
The decay of a vortex in a stratified fluid is also significan
reduced, compared to the case of a single layer. To sum
rize, the numerical simulations in this paper reveal that v
tex structures in shallow layers of fluid can be considered
Q2D only under certain conditions, being a depth that
small enough and a Reynolds number that is not too larg
is worthwhile to note that the height-to-width aspect ratio
a confusing parameter if one considers quasi-tw
dimensionality of shallow water flows: it was found th
flows with a higher aspect ratio behave ‘‘more 2D,’’ if the
fluid depth is the same. In other words, the dynamical eff
of changing the Reynolds number is apparently more imp
tant than the corresponding geometrical effect.

Thus, laboratory experiments of this type can only
compared with~quasi-!two-dimensional models when certa
conditions are fulfilled. With the method presented here
should be possible to analyze several experiments that
been reported in the literature~and that were assumed to b
2D!. However, we were not able to perform such an analy
since not all the necessary parameters were known.

Although we have given a detailed description of t
three-dimensional structure of decaying vortical flows, it
still an open question how the behavior will be modified
the case of forced vortical flows, for instance, in flows th
are continuously forced electromagnetically. It is expect
however, that the basic features discussed in the prece
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sections—the presence of recirculations, a loss of tw
dimensionality for larger fluid depths, and larger Reyno
number—will not change significantly in the case of a forc
system.
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