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ABSTRACT 
 
In 1883 Johannes von Kries published the theory of waterhammer in a study of blood flow in 
arteries. He derived the “Joukowsky formula” before Joukowsky (1898) and Frizell (1898) did. 
He considered skin friction in unsteady laminar flow and thus derived formulas for wave 
attenuation and line pack. The theory was confirmed by experimental results obtained in rubber 
hoses. In 1892 he published the first textbook describing “classical” waterhammer. It presents 
formulas for phase-velocity and damping that are frequency-dependent because of skin friction, 
and in this sense it is the first contribution to the – these days popular – subject of unsteady 
friction. 
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INTRODUCTION 
 
Background 
 
The authors have a shared interest in the history of waterhammer. They have read many old 
papers in English, French, German, Italian and even Russian. Some of these papers are jewels 
and probably not known to the (younger) members of the waterhammer community. In their 
previous historical investigations they came across the name Kries, e.g. in the extensive reviews 
by Boulanger (1913, pp. 51, 53), Lambossy (1951, pp. 152, 153, 159, 161), and Stecki and Davis 
(1986, p. 228), without paying further attention to it. 
 
Another shared interest of the authors is the study of unsteady friction. Tracing back the literature 
in this area, one ends up with Witzig (1914). Witzig presented two-dimensional solutions for 
oscillatory laminar flow in tubes with flexible walls. He predicted the annular effect later 
observed by – and named after – Richardson (1928), Richardson and Tyler (1929). Witzig also 
presented a one-dimensional wave propagation model with viscous axial dispersion, which he 
compared with a model by Kries (1892) in which Kries included the much more important 
laminar skin friction term. This brought us to Kries (1892), an excellent book. In the preface, 
Kries mentions that it is largely based on a paper presented at the 53rd Meeting of German 
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Scientists and Medical Doctors held in 1883. In our efforts to get hold of this paper, we found 
that this had been the 56th meeting. Finally, the paper was found at an oceanographic institute in 
the Netherlands, in a bound volume, still sealed in its never-opened box. 
 
The missing reference Kries (1883) was there and we were impressed by the quality of its 
contents. It has never been referred to, as far as we know, except by Kries himself in his book. 
The waterhammer community is totally ignorant: for example, none of the reviews and textbooks 
listed at the end of this paper refers to Kries’ 1883 paper. 
 
The “Joukowsky equation” for waterhammer 
 
The fundamental equation in waterhammer theory relates pressure changes, ∆P, to velocity 
changes, ∆V, according to 
 
             (1) P cρ∆ = ∆V
 
where ρ is the fluid mass density and c is the sonic speed (celerity). Korteweg’s (1878) formula 
defines c for fluid contained in cylindrical pipes of circular cross-section. Relation (1) is 
commonly known as the “Joukowsky equation”, but it is sometimes referred to as either the 
“Joukowsky-Frizell” or “Allievi” equation. Its first explicit statement in the context of 
waterhammer is usually attributed to Joukowsky (1898). Frizell (1898) also derived equation (1), 
but his contribution was criticised and not accepted by his American contemporaries. One of 
them “saw no reason why this coincidence (with the velocity of sound)” should reassure Frizell 
regarding the validity of his results (Wood 1970). Allievi (1902), unaware of the achievements by 
Frizell and Joukowsky, also derived equation (1). 
 
Anderson (2000) notes that Rankine (1870) had already derived equation (1) in a context more 
general than waterhammer (see our Appendix). Kries (1883, p. 74) also mentions the existence of 
relation (1) in the theory of shock waves, without a particular reference, but at the same time he 
states that it had not been validated by experiments, something he would do. 
 
There is a parallel between Joukowsky (1847-1921) and Kries (1853-1928). Both are famous 
because of their work in other fields: Joukowsky in aerodynamics and Kries in physiology. (E.g., 
neither Tokaty (1971) or Strizhevsky (1957) mention Joukowsky’s work on waterhammer, which 
was only a small part of his scientific contributions.) Both their investigations of waterhammer 
impress in clarity and maturity in theory and in experiment. The fast event of waterhammer was 
difficult to capture in their day. Joukowsky measured in long steel pipes with large wave speeds, 
Kries in short rubber hoses with small wave speeds, both systems having relatively large L/c 
times (L is the length of the tube). 
 
The question is: why is equation (1) not the “Kries equation”? That Kries’ paper was on blood 
flow may not be an excuse, because much of the well known – also to the waterhammer 
community (e.g. Jouguet 1914) – 19th century work was also on blood flow, starting with 
Young’s obscure paper dated 1808, where the described phenomenon was the same: one-
dimensional linear wave propagation. It has probably more to do with dissemination. 
Joukowsky’s paper (presented in 1898, published in Russian in 1899, published in German in 
1900) has been (partly) translated into English by Simin (1904) and (partly) into French by 
Goupil (1907). Furthermore, the standard work telling the History of Hydraulics by Rouse and 
Ince (1957) declares Joukowsky as the founder of the waterhammer discipline. Kries’ work on 
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blood flow has never been translated. Our synopsis in English herein should put this right. 
 
The analogy with longitudinal waves in solid bars has not been noticed by the early investigators 
of waterhammer. Young (1807, pp. 135, 144) already found the solid-bar equivalent of Eq (1) 
(with pressure replaced by axial stress). Bergeron (1950; 1961, pp. 194-233) is probably the first 
to apply – the other way around – waterhammer theory to the axial vibration of solid bars. 
 
Outline 
 
Historical papers highlighting one (or two) scientists are interesting but not yet commonplace in 
our community. Examples are known to the authors: Joukowsky portrayed by Strizhevsky 
(1957), Gariel (and waterhammer research prior to 1914) reviewed by Réméniéras (1961), 
Ménabréa translated by Anderson (1976), Michaud commemorated by Betâmio de Almeida 
(1979), Allievi commemorated by Franke (1992) and Ceccarelli (1999), and Schnyder and Jaeger 
celebrated by Hager (2001). This paper on Johannes von Kries is a further such contribution. 
Four sections describe his life, his work on blood flow, his 1883 paper and his 1892 book. 
 

 
 

Fig. 1   Johannes von Kries (1853-1928) 
 
 
HIS LIFE 
 
Johannes von Kries (Fig. 1) died 75 years ago – on 30 December 1928 – at the age of 75. His life 
and his scientific achievements have been extensively described in dissertations by Lorenz (1996) 
and Oser (1983). The philosophical side of Kries is brought to the attention of the public in a 
paper by – his successor in Freiburg – Hoffmann (1957). Kries’ view of his own work can be 
found in Grote (1925). Kries was one of the big names of the late 19th / early 20th centuries. He 
contributed to the areas of physiology, psychology, philosophy, mathematics and law. He is best 
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known for his physiological work, in particular for his studies of the sense of vision. The sense of 
hearing, nerves and muscle mechanics, haemodynamics, the theory of probability, and more, are 
subjects in his 121 publications. 
 
In 1869 – at the age of sixteen – he started studies of medicine at the University of Halle 
(under Richard von Volkmann) and at Leipzig and Zurich, finishing as a Doctor of Medicine 
(at Leipzig) in 1875. After one year of military service, he became a voluntary (i.e. unpaid) 
“postdoc” at the Institute of Physics of the University of Berlin (under Hermann von 
Helmholtz) (1876-1877). It is possibly only coincidence, but Helmholtz had interests in both 
acoustics and haemodynamics and was credited by both Korteweg (1878) and Joukowsky 
(1898) with first suggesting that the disturbance wave speed in pipes is influenced by both 
fluid and pipe wall elasticities. In 1877 he became assistant to Carl Ludwig at Leipzig; 1878 
“Habilitation” in physiology; 1878-1880 private lecturer at Leipzig; 1880 associate professor 
of physiology at Freiburg im Breisgau (in succession to Otto Funke); 1882 professor of 
physiology and director of the physiological institute; retirement in 1924. Kries was co-
founder of the Zeitschrift für Psychologie with Ebbinghaus and one of its first editors. He 
received the German order Pour le mérite (1918), and three honorary doctorates. 
 
 
HIS WORK ON BLOOD FLOW 
 
Kries’ first publication on haemodynamics appeared in 1878. It described and theorised the 
manometer measurement of the average blood pressure. In 1883 his memorable paper 
summarised in the next section saw daylight. Two papers in 1887(ab) presented an improvement 
of existing techniques to measure the pulse in human bodies. The measuring device is sketched in 
Fig. 2. A person’s forearm (or foot) is to be enclosed in a narrow container filled with air (or 
petrol vapour for better results). The in- and out-flow of blood to the forearm makes its volume 
change. Air, thus driven in and out of the container, feeds the flame. The time-varying flow in the 
arteries typically let a 3 cm flame increase to 4 to 10 cm height. The flow variations were directly 
related to pressure variations via equation (1), already derived in 1883. In this way Kries obtained 
nice photographic records (novelty) of the pulse, which he called “tachograms”. A third paper in 
1887(c) recognised the fact that in laminar pipe flow the maximum velocity (at the central axis) is 
twice the average velocity. To verify this theoretical result, Kries carried out accurate tests with 
water and with milk. The experiment involved the measurement of length and volume, but not of 
time. The issue was of importance in estimating blood circulation times in arterial systems. All 
his previous work on blood flow was incorporated in his book (1892) to be described later. His 
last published contribution on the human pulse is dated 1911. 
 
 

 
 

Fig 2   ”Flammentachometer” (flame velocity meter), (Kries 1887a, Figure 3). 
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HIS 1883 PAPER 
 
The paper has four sections and an introduction. 
 
In the introduction Kries describes the state of knowledge of the pulse in 1883. Much 
experimental data exists, but a proper theoretical background is missing. He is aware of previous 
work by Young (1808), Weber (1866), Résal (1876), Korteweg (1878), and others, but he feels 
that all these studies are not of much interest to physiologists because they focus just on one 
aspect: a theoretical value for the wave propagation speed. Kries wants to go beyond that. He 
mentions the equivalence of incompressible fluid in an elastic tube (pulse) and compressible fluid 
in a rigid tube (waterhammer). His one-dimensional model for linear wave propagation can 
describe both. 
 
The first part of Section I presents the basic theory of waterhammer including the “Joukowsky 
formula” on page 74. Kries makes the right assumptions: uniform pressure in radial direction, 
cross-sectional averages of velocities, hoop stress proportional to pressure, negligible influence of 
convective terms, Moens-Korteweg wave propagation speed (noting that there might be a 
dependency on pressure in flexible rubber hoses). The continuity equation and the equation of 
motion are combined into the second-order wave equation, which has D’Alembert travelling-
wave solutions for pressure and velocity. The derivation of the pressure-velocity relation (1) 
follows then from basic principles. As already noted in our introduction, Kries stated that an 
analogue of this relation was already known – but not validated (too difficult) – in the theory of 
sound waves (in air). 
 
The second part of Section I describes the experimental validation. A constant-head reservoir 
supplied water to a 4 to 5 m long, thin-walled, rubber hose of 5 mm diameter. The steady mass 
flow was measured. Rapid valve-closure caused the pressure rise, measured with a spring-
manometer, shown in Fig. 3. The valve closed at time “s” (in Fig. 3) and the reflection from the 
reservoir arrived at time “r” (in Fig. 3). The value of the wave speed, c, was estimated from the 
reflection time 2L/c. Measured pressure rises (in mmHg) for three different flow rates were: 31.1, 
50.0 and 72.0; the corresponding values according to equation (1) were: 29.9, 47.6 and 71.6. 
Experiments in a tube with a more rigid wall gave values: ∆P = 69.0 mmHg and ρc∆V = 70.0 
mmHg. Happy with this validation, Kries considered periodic velocity-excitation of an infinitely 
long tube (no reflections), giving the classical square wave in Fig. 4. 

 
 

 
 

Fig 3   Measured “Joukowsky” pressure in large-diameter hose, 
 (p = pressure, s = closure, r = reflection), (r − s ≈ 0.6 seconds), (Kries 1883, Fig. 8). 
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Fig 4   Pressure and described velocity changes in an infinitely long tube (without friction), 
(p = pressure, v = velocity), (Kries 1883, Fig. 9). 

 
 

The first part of Section II develops theory for waterhammer with linear friction. The friction 
term, added to the equation of motion, is taken proportional to the flow velocity. Kries mentions 
that the constant of proportionality, η, depends on fluid properties and tube diameter, but he does 
not specify its value – for laminar pipe flow given by Hagen (1839) and Poiseuille (1840). It is 
noted that in the same year 1883, Gromeka modelled the same friction term, thus making his 
more advanced equations too difficult to solve. 
 
Kries ends up with the telegrapher’s equation, which he subjects to a harmonic analysis. For 
small friction terms he derives constant values for wave damping and phase velocity (the Moens-
Korteweg wave speed). The friction term causes small differences in phase and amplitude 
between velocity and pressure (note that pressure and velocity are in phase in the frictionless case 
shown in Fig. 4). These differences are not constant, but frequency dependent. The changed, due 
to friction, amplitude of the pressure in the harmonic solution is used to predict line pack. After 
some manipulation, line pack at the valve was estimated from: 
 

 
linepack 1

4

d
d

P
c V

t
η ρ≈            (2) 

 
where according to Hagen-Poiseuille theory η = 8ν/R2 (ν is the kinematic viscosity of the fluid 
and R is the tube radius). However, the present authors are not entirely convinced by Kries’ 
derivation of formula (2). A better explanation, in terms of the initial pressure gradient, and more 
examples are given in his book (1892). It is noted that Joukowsky (1898, Section 11) also 
recognised that line pack is the consequence of an initial (steady-state) pressure gradient and he 
explained this nicely in terms of a step-wise increasing initial pressure (Joukowsky 1898, Fig. 
20). Joukowsky (1898, Fig. 19) observed line pack in steel pipes and he proposed a formula 
similar to equation (2). 
 
The second part of Section II concerns the first observation of line pack and the verification of 
equation (2). Figure 5 shows the result of an experiment in a narrow tube. The line-pack effect 
makes the pressure slowly rise after the valve’s rapid closure at time “s”. For tubes with sufficient 
friction Kries measured line pack values of 18.3, 40.0 and 72.9 mmHg/s. The corresponding 
values calculated from equation (2) were: 19.6, 38.3 and 73.1 mmHg/s. Theoretical results for an 
infinitely long tube, excited by periodic velocity-pulses at one point, are sketched in Fig. 6. 
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Fig 5   Measured “Joukowsky” pressure and line pack in small-diameter hose, 
(p = pressure, s = closure, r = reflection), (r − s ≈ 1.5 seconds), (Kries 1883, Fig. 10). 

 
 

 
 

Fig 6   Pressure and described velocity changes in an infinitely long tube (with friction), 
(p = pressure, v = velocity), (Kries 1883, Fig. 11). 

  
Section III discusses pressure pulse and blood flow in the aorta. Backed up by his experiments, 
Kries states that friction is unimportant in the aorta. The beating heart induces flow velocity 
changes that directly relate to the pressure pulse through equation (1). He also considers the 
longitudinal stretching of the aorta wall, and explains the possibility of a secondary pressure rise, 
shown in Figure 7, because of axial motion of the closed heart-valve. This is one of the first 
examples of fluid-structure interaction (junction coupling). Kries concludes with the remark that 
reflections (from ends that are neither open nor closed) and many other secondary effects exist in 
the vascular system, for which the theoretical background is absent. 
 

 
 

Fig 7   Sketch of pressure pulse in stretching aorta (with FSI), (Kries 1883, Fig. 15). 
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Section IV deals with the (im)possibilities of measuring pressure pulse and volume flow in 
peripheral arteries. Theoretically, reflected waves can be distinguished in a signal if pressure and 
velocity are measured at the same location. Such a simultaneous measurement could not be done 
with sufficient reliability in 1883. 
 
 
HIS 1892 BOOK 
 
Kries’ book is well written and a pleasure to read. It is based on his 1883 paper, but the material 
is improved, extended and presented in a more structured way. He uses the theory developed in 
Chapter I to explain the pulse in the remaining chapters. Chapter II considers the form of the 
pulse and the dicrotic wave (secondary pulse), Chapter III deals with the aortic bifurcation, and 
Chapter IV discusses various aspects (gravity, temperature) that affect the pulse. The Appendices 
give the mathematics behind his theory. The book displays many experimental results: 
manometer measurements in rubber hoses and accurate pulse records with the 
“Flammentachometer” (Fig. 2). 
 
The fundamental Chapter I gives the general theory of travelling waves, standing waves, 
attenuation, reflection, forced oscillation, tube breathing and ovalization, etc. The theory is 
applied to rubber hoses and in this respect Kries observed, from careful tests, visco-elastic 
retardation of the wall material. He understood the phenomenon; it explained the fact that Weber 
(1866) measured wave speeds that were 12% larger than the theoretical predictions. The internal 
pressure may influence the wave speed, because it changes the tube diameter and the wall 
properties (like stiffness). The latter is the case for tubes made from intestine membranes. He 
validated equation (1), now through tests with fluid injection instead of valve closure. His 
treatment of wave attenuation due to skin friction is an elaboration of his 1883 work. He finds 
exponential damping of the waveform and, for systems with much friction, waveform distortion 
because of frequency-dependent wave speeds. Slow pressure variations have a low phase velocity 
and low damping; fast pressure variations have a high phase velocity (about the Moens-Korteweg 
wave speed) and high damping. Line pack is correctly explained, but equation (2) is absent in the 
book. Appendix IV, giving formulas for frequency-dependent damping and phase velocity, can 
be seen as the first step in the investigation of unsteady friction. The frequency-dependent phase 
velocity, c(ω), follows from: 

 
2

2 2 2
1 1 1 1

( ) 2c c
η

ω ω

 
= + +

 


           (3) 

where ω is the circular frequency, η = 8ν/R2 and c is the Moens-Korteweg wave speed. His 
theoretical study of reflections from open ends, closed ends, branches, tapered sections and 
abrupt changes of friction were backed up by experimental results. Kries wondered how the 
pulse, travelling from the aorta into the many branches of the arterial system, could occur without 
reflections. As a result he derived the condition for reflection-free branches (boundaries). The 
fundamental waterhammer periods 2L/c and 4L/c appear in his section on travelling and standing 
waves in finite-length tubes. In an explanation of experimental results by Moens (1878) he 
produced the mid-point pressure history shown in Fig. 8, which is typical for waterhammer in a 
single tube. Kries discussed the possible evidence of wall vibration in measured pressure 
histories. First, he considered “hoop” vibration where the wall remains circular. He found that the 
corresponding “ring” period, πD/cwall, was much too small to be measured. Hoop vibration 
changes the size of the cross-sectional area and thus causes axial flow and axial wave propagation 
in fluid and wall. Second, he considered wall vibration changing the form of the cross-sectional 
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area, but preserving its size. Axial interaction is less in this case and the fundamental periods are 
larger. The deformation (flattening) – due to internal hydrostatic pressure – of flexible tubes laid 
on a flat floor was studied theoretically and the associated oscillation was examined in tests with 
bouncing tubes. The period of oscillation of an ovalizing tube was estimated from a formula 
originally derived by Rayleigh for the capillary oscillation of free jets. The theoretical predictions 
were confirmed by experimental results obtained in free-hanging tubes (in Appendix VIII). 
 

 
 

Fig. 8   Sketch of theoretical waterhammer pressure at midpoint of tube (Kries 1892, Fig. 16). 
 
 

CONCLUSIONS 
 
Not only has this historical investigation shown that it is increasingly difficult to be original, 
it has also shown the value of pursuing the references that are available in textbooks and 
review papers. In addition, it demonstrates the importance of being aware of related 
developments in other disciplines. In comparison with physiological flows, engineering 
waterhammer analysts have been relatively slow to (re-)discover the importance in certain 
situations of fluid-structure interaction, unsteady friction and visco-elastic pipe materials, all 
topics addressed by Papers at this Conference. This other, "hidden" literature is important not 
just because it is earlier, but because it may suggest to us apparently novel alternative 
experimental and analytical approaches to investigating these phenomena. Despite his lack of 
historical impact compared with Joukowsky, Allievi and others, Kries has much to offer us 
even now, and was clearly an innovator whose contributions deserve to be recognised by us in 
future.  
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APPENDIX   Rankine (1870) and the “Joukowsky equation” 
 
Rankine opened this paper by writing that: “The object of the present investigation is to 
determine the relations which must exist between the laws of the elasticity of any substance, 
whether gaseous, liquid or solid, and those of the wave-like propagation of a finite 
longitudinal disturbance in that substance.” 
 
He set up a simple model of a wave front of invariable length for a wave of uniform type in a 
uniform prismatic pipe. Continuity across this gives (where m is “the mass of matter through 
which a disturbance is propagated in a unit of time while advancing along a prism of the 
sectional area unity”): 
 
                    (A1) 1 1 2 2( ) (m V c Vρ ρ= − = − )c

)

 
where c is the uniform wave propagation velocity, ρ denotes fluid density and V denotes fluid 
particle velocity, with the velocity change  occurring across the wave front. He 
called this constant quantity m the “mass velocity” of the wave, pointing out in the 
Supplement added to his paper that “the method of investigation in the present paper, by the 
aid of mass-velocity to express the speed of advance of a wave, is new, so far as I know; and 
it seems to me to have great advantages in point of simplicity, enabling results to be 
demonstrated in a very elementary manner”. 

1 2(V V−
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Next, he immediately states that “Then in each unit of time the difference of pressure, 

, impresses on the mass m the acceleration , and consequently, by the 
second law of motion, we have the following value for the difference of pressure”: 

1 2( P P− 1 2(V V−

 
                     (A2) 1 2 2 1( ) ( )P P m V V− = −
 
Now Rankine, with his interests in gas dynamics and shock waves, was considering the case 
with “the velocity of the particles being so great that it is not to be neglected in comparison 
with the velocity of propagation”, but for the case with V << c then the above give simply: 
 
                 (A3) 1 2 1 2 1 1 1 2 1( ) ( ) (1 / ) ( )P P c V V V c c V Vρ ρ− = − − − ≈ − −
 
which is the classic “Joukowsky equation” for this special case likely to occur with liquids 
with negligible density change. Rankine therefore not only predates Joukowsky, but also has 
a more general formulation, though he did not express it in the modern form, but with his 
“mass-velocity” m. 
 
It is interesting to note that, according to Tokaty (1971), Joukowsky delivered a lecture on 
“the speed of sound in fluids” at Moscow University in 1886 and he was certainly familiar 
with the literature of gas dynamics (Strizhevsky 1957). However, he did not refer to Rankine 
in his 1898 paper on waterhammer, even though he seems to have been scrupulous in 
referring to previous European and North American studies, so there is no reason to suppose 
that he had seen this result previously. 
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