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On interpolating periodic quintic spline functions

with equallY spaced nodes

by

F. Schurer

1. Let C denote the Banach space (with supremum norm) of all real-valued,

continuous, periodic functions with period 1. To each division of the

interval [0,1] into n subintervals {O = x < x <... < x 1 < x = 1},o 1 n- 11
there corresponds an n-dimensional subspace Sex ,x , ••• ,x ) in C whoseo 1 n
members are the periodic quintic spline functions with nodes Xi' Thus,

s E S(xO'x".",~) if and only if

1) s E C4 [O,1] and 8(i)(0) = s(i)(1), (i = 0,1,2,3,4);

2) s reduces to a po1;ynomia1 of degree at most five on each subinterval

[x. ,x.].
~-1 ~

Throughout the paper we assume that the nodes are uniformly distributed

on [0,1], Le. Xi = i/n (i = 0,1, ••• ,n). We begin by proving two theorems

which strengthen some results communicated in [2]. Then an exact expression

is given for the norm of the interpolating periodio quintic spline operator.

The last part of the paper contains estimates (whioh are best possible or

nearly so) for the difference of the function f to be approximated and the

associated spline in terms of the modulus of continuity of f. The contents

of these sections (6 and 1) should be compared with reference [3], where

similar results for the interpolating periodic cubio splines are derived by

an ana1ogouB method.

2. It is known ([1], p. 135; [2J) that to each f E C there corresponds a

uniquely determined element s E S(x
O
'x

"

••• ,xn ) with the interpolating

property, s(x.) = f(x.) for i = 1, ••• ,n. If we write
1. 1.

f. = f (x. ), ~. = s' (x. ), ii. = s" (x. ), iii. = S III (x.) ,
1. 1. 1. 1. 1. 11.· 1.

then using Hermite interpolation the quintio spline function s can be given

explicitly in the following form on the interval [x. ,x.]:
1-1 1

(1 ) s (x) = f. 1 A. (x) +£1 B. (x) + i. C1 (x) +ii D. (x) +iiii 1 E. (x) +m. F. (x) •
1- 1. 1 1-1 1. - 11. 1
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Here Ai(x), ••• ,Fi(x) are certain quintic polynomials. If we denote these

polynomials by A(t), ••• ,F(t) when [x
i
_

1
,xi ] is replaced by [0,1], we have

C(t) = i t (1 ... t )
2

( - 2t2
+ t +4)

E (t) = 4~ t
2

(1 - t / (2t - 3)

, D(t) = - C(1-t) ,

F(t) = - E(1-t) •

The expressions for A. (x), ••• ,F. (x) are now obtained by setting t =n(x - x. 1)'
1 1. 1-

multiplying C. (x), D. (x) by n- 1 and E. (x), F. (x) by n-3
•

1 1 1 1

On [x. 1 ,x.] we have A. (x),Bi(x),C. (x),F. (x) > 0, whereas D. (x),E. (x) EO; 0
1- 1 1 1 1 1 1

on this interval. Moreover,

(6 )

A. (x) + B. (x) = 1 ,
1 1

C.(x) - D.(x) = (x-x. 1)(1-n(x-x. 1» E;~ ,
1 1 1- 1- ~~

F
1
.(x) - E.(x) = 12n1 (x-x. )2{1_n(x_x. 1)}2 EO; 1 3

1 1-1 1- 192n

As a consequence of the fact that s € C4 [0,1] and 8(i)(0) = s(i)(1),

(i = 0,1,2,3,4), the parameters I., j!. and m. have to satisfy some particu-
:1. 1 :1.

lar relations for i = 1,2, •.. ,n, which were derived in [2]. Assuming that

all indices which occur are interpreted modulo n, we have

Due to the fact that the matrix associated with the·two systems of equations

(8) and (10) is diagonally dominant, it follows by a standard procedu:re

(of. [2J) that

( 12) 1- I 2.l~x \ EO; 6 n w(f;1/n) ,
1

maxIm. I '!5iO 2On3 w(f; 1/n) •
. 1

:1.
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If Si(X) € S(x
O

,x1, ••• ,xn ) denotes the i-th cardinal spline - this function

is defined by the equation si(x.) = b~ for i,j = 1,2, ••• ,n -, then in terms
J J

of these functions we have

(14)
n .

B == L f = I: f(X.)S1(X) •
n . i=1 1

Accordingly, the norm of tne interpolating periodic quintic spline operator

If L II = sup{II L f II : f E c, IIf II = 1}n n

is given by

n .
= II I: Is

1
(x)11I

i=1

3. We will now prove two theorems, which improve similar results given in

[2J (cf. [2J, theorems 3 and 4).

Theorem 1

Let f belong to C and let s be the interpolating periodic quintic

spline function associated with f. Then

lis - fll ~ 2 is w(f;1/n) •

Proof

Let x be an arbitrary point of [0,1] and assume x € [x. ,x.]. Using
J.-1 1.

(1) and (5) we get

s (x) .. f (x) = (f. 1-f(x»A. (x) + (f. -f(x) )B. (x) +I. 1C. (x) +r.D. (x) +iii. 1Ei(x) +iii.F.
1- 1 1 ). 1- 1 1 1 1- J. 1

We recall that on the interval Ex. ,x.] the functions A.(x), :B. (x), C. (x)
J.-1 1 1 1 1

and F. (x) are nonnegative, while D. (x), E. (x) EO; 0 there. Consequently one
1 . ). ).

has

Is(x)-f(x)1 ~ w(f;1/n) +maxl'X.I(C.(x)-D.(x» +maxliii.I(F.(x)-E.(x» •
j J). ). j J). ).

From this we obtain the result of theorem 1 by a simple calculation using

inequalities (6), (7), (12) and (13)••

Theorem 2

A uniform upper bound for the norm of the interpolating periodic

quintic spline operator L , as defined in (14), is given byn
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Proof

As we already noted in (15), the norm of the quintio spline operator is

n. n.
1/ ~ IsJ.(x)III = ~ Is1(~)I, and let f be a oontinuous funotion of norm 1
i=1 i=1

whioh satisfies the equations f. = sgn si(~) and is linear in each interval
1

[x. ,x.]. Then ilL II = ilL fll = 11611. To determine an upper bound for ilL II itJ.-1 J. n n n
is sufficient to consider the spline function s on Ex. 1'x.]. In view of (1)

J.- J.

n .
equal to the Chebyshev norm of the function ~ IsJ.(x) /. Select ~ suoh that

i=1

we have on this interval

sex) =f. 1A.(x) +f.B.(x) +X. 1C,(x) +1.D.(x) + iii. 1E.(x) +m.F.(x) ,
J. - J. 1 J. J.- J. J. J. J.- J. J. J.

whenoe

Is (x) I ~ IIf II (A . (x) +B . (x» + maxIX.I (C . (x) - D. (x» + maxIiii. 1(F . (x) - E . (x» ~J. ). . J 1 ). . J). ).
J J

~ IIfl/ + ~ n w(f; 1/n) 4~ + 2On
3

w(f; 1/n) 19~3 = 1 + ti w(.f; 1/n) •

Here we have made use of the formulae (5), (6), (7), (12) and (13). Theorem

2 now follows by observing that w(f; 1/n) ~ 2••

4. In view of formulae (14), (15), it will be obvious that knowledge about

the oardinal spline functions would be useful. Prooeeding in a similar way

as when investigating the interpolating periodio cubio splines (of. [3]),

the ultimate aim of this paper;is to derive an exact expression for the norm

of Ln (n = 1,2,3, ••• ). Moreover, an improved version of theorem 1 will be

deduoed.

The information about the cardinal spline functions which is needed to

arrive at these results is given mostly in the form of lemmas and asser

tions. Because the caloulations whioh are involved to prove these statements

are often quite long and tedious, most of the details of their proofs will be

omitted.

The purpose of the first two lemmas is to show how in an appropriate
. , . '"

case the computation of the numbers (sJ.) (x.) and (S1) (x.) is oonneoted
J J

with a particular solution of a differenoe equation of order four. If n = 2k
k) I k III ( )or n = 2k + 1, we put A. = (s (x.) and m. ." (s) x.. Since the functionsJ. ).). ).
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. i k
sJ. are periodic and the nodes are. equally spaced, we have s (x) "" s (x - x. k).J.-
Thus it is only necessary to compute one cardinal quintic spline function,

and we choose sk. Then

i I( k I k I(
(s) x.) "" (8) (x.-x. k) = (8) x. '-LlJ "" A

J
'_J.'-Ll••J J J.- J-J.~ ~

Consequently; on the interval [x. 1,x.] we get
J- J

si(x) "" o~ 1A.(x) +b~B.(x) + (si)'(x. 1)C.(x) +
J- J J J J- J

( 16)

"" b~ A.(x) + b~B.(x) + A. '+k 1 C.(x) + A. "+kD.(x) +
J-1 J J J J-J. - J J-J. J

+ m. ',1. E.(x) + m. '+kF.(x) •
J-J.~-1 J J-J. J

In order to compute sk(x), we first have to rewrite equations (8) and (10)

in their appropriate form. We get

Lemma 1

Let n = 2k (ke: 1,2, ••• ) and let {P-1,PO,P1, ••• ,Pk+1} =
= {a =-a,a "" O,a , ••• ,a. + } be a non-trivial solution of the difference

-1 1 ° 1 K 1
equation

which satisfies the end condition

(CD )

If we put

(21 )

16p - p - p = a •k k-1 k+1

_ ( 1)k+i+1 5 -1
- - n~ a i '

"" - A .,2k-J.

(i =0, 1 , •• .,k-1) ,

(.i = k,k + 1, .... ,2k) ,
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k
When dealing with the third derivatives m. of the cardinal spline s ,

1.

condition (20) has to be replaced by

let the set {p ,p ,P1, ••. ,Pk+} = {a* =-a*,a*=0,a*, ••• ,a.*+1} be a non--1 0 1 -1 1 0 1 1C
trivial solution of (19), which satisfies relation (22). If we define

(i = 0, 1, ••• , k-1) ,

(i=k,k+1, ••• ,2k)

then (23) is the solution of system (18).

lemma 2

let n = 2k+1 (k=1,2, •.. ) and let {P-2,P-1,PO,P1, ••• ,Pk+1} =

= {b-2 = b 1 ' b-1 = bo ' bo ' b 1 , ••• , bk +
1

} be a non-trivial solution of the dif

ference equation (19) for i = 1,2, ••• ,k, which satisfies (20). Then

{AO,A
1

, ••• ,A2k} with

(24)
(i=0,1, ••• ,k-1) ,

(i = k,k +1 , ••• , 2.k)

is the solution of (17).

Assume now that {P-2,P-1,PO,P1,.",Pk+1}= {b~2 =b~,b~1 =b~,b~,b~,.•• ,b~+1}
is a non-trivial solution of (19) for i=1,2, ••• ,k, which has property (22).

Then

{

mi = (-1 )k+i+1 6an3 b~-1bi '

m. = - m2k . ,
1. -1.

solves the set of equations (18).

Proof

(i = 0, 1 , ••• , k-1) ,

(i = k,k +1, ••• ,2k)

There are apparently four different cases to be considered, all of

which can be dea~t with in a similar way. Therefore we onljY prove the first

part of lemma 1.:

If i = 1,2, ••. ,k-3, then using (21) we have
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( )k+i-1 -1{ 66 6 }-1 5n a. a . - 26a. + a. - 2 a...... + a . .JJ'l = 0 ::::
K 1-2 1-1 1 1'1 1.'

k k k k
:::: 5n (b . +2 + 10b . + - 1Ob . - b. ).
,,1 J. 1 1-1 1-2

All indices of the parameter A. have to be taken modulo n (:::: 2k). As a con-

sequence of (21), A. :::: A. k :::: - A ; this gives rise to the definition-1 2 -1 1
a :::: - a •-11
In case i :::: k - 2 and noting that ~ :::: 0, we have

>-- + 26>-- + 66>-- + 26>-- + >-- :::: - 5n a..- 1(a. - 26a.. + 6N:L - 26a.. ) =.'k-4 'k-3 'k-2 'k-1'k K K-4 K-3 -~-2 K-1

Assume now that i :::: k - 1. In view of (21) and (20) one gets

-\-3 + 26-\_2 + 66-\_1 + 26\: + \:+1 :::: 5n a.;1 (~-3 - 26~_2 + 66~_1 - ~-1) =

-1 ( ) ( k k k k):::: 5n ~ 26~ - ~+1 - ~-1 :::: 50n :::: 5n 0k+1 + 100k - 10bk_2 - bk_3

For the case i = k we have

Taking into account the symmetry-relation of formula (21), the-cases

i :::: k + 1, ••• ,2k can be dealt with in an analysis which is the same as the

one just given. •

As a consequence of lemmas 1 and 2, it becomes necessary to solve the

fourth-order difference equation (19) with end conditions (20) and (22)

respectively, in order to get explicit expressions for the first and third

quintic spline derivatives at the nodes. It is obvious that for the deter

mination of A. in case n :::: 2k the ratio of a. and a. is the only important), ), K
thing. Without any restriction one can therefore assume a 1 :::: 1, a

2
= ex in

case n :::: 2k. and bo :::: 1, b 1 :::: ~ in case n :::: 2k. + 1, when dea~ing with the

first derivatives. The numbers a3,a4' ••• '~+1 and b2 ,b 3 , ••• ,bk+1 then can be

calculated successively from recurrence relation (19); the quantities ex and

~ are determined by means of (20). In the same way we put a~ :::: 1, a~ :::: ex*

when n :::: 2k and b~ :::: 1, b~ :::: ~* in case n :::: 2k + 1; after generating
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a~, ••• ,~+, and b~, ••• ,bk+1' the unknown numbers a* and ~* follow from con

dition (22). We remark that the values of a, ~, a*, ~ are dependent on k

and have to be determined each time anew. To fix ideas, let us write down

the first elements of the number sequence ao ,a, ,a
2

' • •• • We get

(26) a =0, a =1, a =a, a =26a-65, a =610a-1664, a =14170a-38975, ••••o 1 234 5

Because the difference equation (19) is homogeneous, we can form two number

sequences {p~1)}, {p~2)} (i=0,1, •.• ) out of (26), which are again solutions
~ ~

of (19). Moreover, using (26), condition (20) gives rise to another sequence,

which can be split up in two sequences, all of which are solutions of (19).

For all these s.equences there can be written down an explicit formula, which

makes it possible to determine the value of a for each fixed number k. The

other three sequences {b ,b , ••• }, {a*,a*, ••• }, {b*,b*, ••• } can be treatedo , 0 , 0 1

in a similar way. When dealing with the first derivatives A.. of the cardinal
~

spline function sk, a simple calculation gives the follOWing reSults.

In case n = 2k (k = 1 , 2, ••• ) we have

(28)

{p ~ , )} (i =0, 1, •.• ) = {0, 0, 1, 26, 610, 141 70, ••• }
~

{pi2
)} (i = 0, 1, ••• ) = {O, 1, 0, -65, -1664, -38975, ••• } ,

{-1, -10, -195, -4436, -102725, ••• }

If n = 2k +1 (k = 1, 2, ••• ), then

{p~3)} (i=0,1, ••• ) = {O, 1, 25,584,13560,314665, ••• }

{p~4)} (i=0,1, ••• ) = {1, 0, -40, -1015, -23751, -551576, •.• } ,
~

We recall that in case of the third derivatives m. condition (20) has
~

to be replaced by (22). As a consequence of this, the sequences (29), (30),

(33) and (34) are transformed as follows.
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If n = 2k (k = 1, 2, ••• ), then

(35) {28p~')_~~~_~:~} (k=1,2, ••• ) = {-1, 2,117,2884, 67315, ••• } ,

. (36) {28P~2 ) - P~:: -p~~1} (k = 1,2, ••• ) = {28, 64, -156, -1552, -184420, ••• } •

In case n = 2k + 1 (k = 1,2, ••• ) we get

(3 ) {28 (4 ) - ( 4 ) - ( 4 ) } ( ) { 1 62 11 3 }8 Pk Pk-1 Pk+1 k= 1,2, ••• = 39, - 05, -4 9, - 24 1, ••• •

In order to give explicit formulae for the sequences (21), (28), ••• ,

(38), we need the general solution of the difference equation (19). This

turns out to be

where

(40) z, = ri(13+~105-~210+26{f05) = 0.04309· .• ,

(41) z2 = ri(13- ~105-V270- 26~105) = 0.43057....

For each of the sequences (27), (28), (31), (32), the constants

C
"

••• ,C
4

have to be determined from the initial elements of these sequences.

This can be done by means of generating functions in the following way. Put

where the numbers p~j) satisfy the difference equation (19). An elementary
J.

calculation shows that

If we put

P(z) = z4 - 26z3 + 66l - 26z + 1 ,

Q(z) = z(l-26z+1)

R(z) = - l +z ,

( )
3· 2S z = - z + 26z - 26z + 1 ,



- 10 -

and apply (43) to the sequences (27), (28) , (:31) , (32), then we get the

following results:

Z2
= (0,0,1,26) ~ G,(z) = p\zy '

(0,1,0,-65) ~ G2 (z) = ~~~~ ,

= (0,1,25,584) ~ G3 (z) = ~f:~ ,

The polynomial p(z) can be written in the form

where z and z are given by (40), (41) and z = z-, ,
1 2 :3 2

tion shows that

Z3 = 2.32••• ,

Z4 = 23.2••••

Thus

-1z = Z • A oomputa-
4 ,

and the root z of P(z) =° is highly dominant over the other ones. This4 .
fact will be of importance in subsequent estimations.

To determine the unknown coefficients C
1
"",C4 in formula (39) when

dealing with the sequenoes (27), (28), (31), (32), we proceed as follows.

We can write successively

C C C
G (z) = _'.:.-- + ---:2...... + 3

, Z - z1 Z - z2 Z - z3

C
+ 4

Z- Z
4

2z.
CJ'=~. pi (Zj)

R(z. )
Dj = pTrtJ ,

J

C* C* C* C*
G

2
(z) = -.;..'- + -.;2:.- + ~3=-- + 4

Z - z, Z - Z2 Z - Z3 z - Z4

D
1

Z - z1

,
Q(Z .)

Cj=~
J

(j=1,2,3,(

D* D* D~ n:
G

4
(z) = _,~ + _2_ + __ +

Z - z1 z - Z2 Z - Z3 Z - Z4

sCz.)
D~ = ~PI •J P1tz ..:J

J
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Now we have for instance

In view of this and (42), (39), there hold the following explicit formulae

for the elements of the sequences (21), (28), (31), (32), respectively:

(45) (1) _ c ( )-i-1 _ C ( )-i-1 ( )-i-1 ( )-i-1p. - - z - C z - C z
~ 1 1 2 Z2 3 3 4 4

,

(46)
(2 )

= - C*( r i - 1 _ c*( )-i-1 _ 0*( )-i-1 _ c*(Z )-i-1
Pi 1 Z1 2 Z2 3 Z3 4 4

,

(3) = _ D ( )-i-1
(i=O,1,2, ••

(41) ( )-i-1 ( )-i-1 _ D (z )-i-1
Pi 1 Z1 - D2 Z2 - D Z ,3 3 4 4

(48) (4) _ D*( )-i-1 _ D*( )-i-1 _ D*(Z )-i-1 _ D*(z )-i';"1p. - - z 2 Z2~ 1 1 3 3 4 4

In this set of fonnulae the coefficients C., ••• ,~ (j = 1,2,3,4) are
J J

given by (44). Moreover, because z '" 540z and Z '" 5z2, it is obvious that
413

already for rather small values of i the first term in each of the formulae

(45), ••• ,(48) is by far the largest one, and the contribution of the last two

terms is very small.

Now we are ready to state lemma 3.

Lemma. 3

The first and third derivatives A. and m. (i=O,1, ••• ,k-1; k=1,2, ••• )
~ ~

of the cardinal quintic spline function sk are given by the following for-

mulae :

( 1)k+i+1 k ... -1 ( 1)Ai = - .P~ ~ ai' n = 2k, k = ,2, • • • ,

\.; = (_1)k+i+1 l:::.... b
k
- 1b.; (2k 1 k 1 2 )

I\.... .p~... n = +, =" •••

m.; = (..1.:1 )k+1 +1 6On3 a.*-1 a*.; ( k k 1 2 )... .K... n=2, =, ,•. ~ ,

mi
= ('-1 )k+1+1 6O.n3 b

k
*-1 b*.; (2k 1 k 1 2 I )... n= +, =, ,... ,
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where

(52)

(i=O,1, ••• ,k-1)

Proof

The first part of the lemma is a partial restatement of the contents of

lemmas 1 and 2. Without lack of generality we only examine formula (49). It

gives an expression for a. (i=O,1, .•• ,k-1), where {a.} is given by (26). We
~ . ~

recall that the sequence (26) was split up into two sequences (27) and (28),

the elements of which we denoted by p ~1) and p ~2). An explicit formula for
~ ~

them is given in (45) and (46). Finally, the quantity a has to b6 determined

from (20); in our terminology we have

This proves (49); the other expressions are derived in quite a similar way. •

5. Using lemmas 1,2,3 and formula (16) all cardinal spline functions can

be completely determined. But the expressions with which we have to deal

with are not so tractable. Indeed, the set of formulae (21), (23), (24),
(25), (44), (45), (46),··(47-), (48), (49), (50), (51), (52) are all needed to

describe the behaviour of the cardinal splines. In this section we give ad

ditional information about the first and third derivativesiof the spline sk.

The assertions are based upon the contents of le~a 3 and can be proved by

elementary, yet tedious, calculations. These calculations are too lengthy to

be given here.
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We first state the relations between the coefficients C., ~, D., ~,
J J J J

which are used for the proof of assertions ,;, 4, 5 and which we will need

again in the sequel.

If we write

C ::: c*c - C C* ,
12 1 2 1 2

and use similar abbreviations for other expressions of this kind, then we

have

Assertion 1

Assertion 2

where Z1 and z2 are given by (40), (41), respectively.

Proof

The results of these two assertions can be verified by simple calcula

tions based upon formula (44). •

The form of the expressions for A. and m. (i::: 0, 1, ••• ,k-1), as stated
~ ~

in lemmas 1, 2, 3, suggest that the first and third derivatives of the

cardinal spline function sk alternate in sign. This indeed is true, as

follows from

Assertion 3

let k be an arbitrary, but fixed, positive integer. Then

(51) a.,b.>O, (i::: 1,2, ••• ,k) ,
J. J.

(58 ) at, b! > ° , (i ::: 1,2, ••• , k-1) ,

(59 ) ~,bk < °,
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Proof

In order to verily that a. > 0, (i = 1,2, ••• ,k), k being a fixed positive
~

integer, a brief examination indicates that it is sufficient to show that

(i) (i=2,3, ••• ) ,

(ii) (i = 2,3)0 •• )

this in view of the fact thet both sequences {-:i:;1(i - 2.3.... ) and

{

16p~
2

) - P~:? -p~~?1 . . .. . I~
(1) (1) (1) (J.=1,2, ••• ) have the same hmJ.t, vu. C = 13-V105.

-1 6p . + p. 1 + P. -'-1 1
J. J.- J..,.-

Inequality (i) can be established by using assertion 1. Its proof rests

heavily upon the fact that there is a oonsiderable differenoe in magnitude

between the numbers z,' z2' z3' z4 and, moreover, that 0'2 < o.
Verifioation of the seoond part of formula (51) oan be done in exactly the

same way. Formulae (58) and (59) may be proved in the same fashion. For

instanoe, in oase b! > O,(i =1,2, ••• ,k-1) and b~ < 0, one has to establish

that

(i=1,2,3, ••. ) ,

(iv)

(v)

(i=2,3, ••• ) ,

(i=2,3, ••• ) •

To prove these three inequalities we have to use the already mentioned in

formation about the roots z,' z , z , z of p(z) = 0 and (54) of assertion
2 3 4 .

1. We omit the details. •
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The next assertion states that the absolute values of the first and

third derivatives A. and m. (i=0,1, ••• ,k-1) are. decreasing if we move from
J. J.

the node JeIc to the left. There is only one exception to this rule and this

occurs for the third derivative in case n = 5; indeed, 1m I > 1m I, as cano 1
be verified by a simple calculation. Moreover, A

o
= m

o
= 0 in case n is

even; this follows from lemma 3.

Assertion 4
Let n be an arbi-trsxy"but f'ixed positive integer and put n = 2k when n

is even, respectively n = 2k + 1 when n is odd. 'lhen

IAI<IAI<···<IA-1o 1 ·1c-1

and

(n r5) •

Proof

In case n is small, say n ~ 6, the asserted inequalitie~ can be veri

fied by calculating the values of A. and m. by using lemma 3 or directly
J. J.

from equations (17), (18). The establishment of the remaining values of n

involves quite large formulae; we only give a sketch of the proof. Starting

out with the expressions for the A. and m. as given in lemma 3, the calcula-
J. J.

tions make use of assertions 1 and 2. Moreover, we exploit the fact that

z < z < z < z and use some more additional information about these
1 234

numbers. We omit all further details. •

Now define 0 = 0, 0. = A + A + •.. + A. for i = 0,1, ••• ,k and in
-1 J. 0 1 J.

the same way 1t = 0, 1t. = m +m + •.• +m. (i=O,1, ••• ,k). Using asser-
-1 J. 0 1 J.

tions 3 and 4, it follows by mathematical induction that 10i l < IAi +1 I
(i=0,1, ••• ,k-2) and lnil < Im

i
+11 (i=0,1, •.• ,k-2; nr5). Moreover,

sgn 0. = Sgn(A. +0. ) = sgn A. = (_1)k+1+i for i € {0,1, ••• ,k-1}. Also we
J. J. J.-1 J.

k+ihave sgn 1t
i

= (-1) , i = 0, •.• ,k-1; n I 5.

Assertion 5
Ifn r 3, then

(60) lOki <n

(61 ) 17T:k I
3< 4n •

Proof

As a consequence of the remarks preceding assertion 5 we have
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Ok = °k_1 == \:-1 + °k_2 == \:-1 - IOk_2 1 < \:-1 '

~ == '\-1 == ~-1 + '\-2 == ~-1 + I~_21 > tn.k-1 •

It is thus sufficient to prove that for all values of n f 3

(62)1-\:_1 1 < n ,

(63) 1tn.k_1 1 <4n
3

it can be verified by a separate calculation that inequa.lities (60), (61) do

not hold in case n == 3. No further details of the proof will be given here.

Just as when dealing with assertion 4, the whole analysis is rather tedious.

The oalculations involved are based upon lemma 3, the formulae (53), (54),

(55), (56) of assertions 1 and 2 and some information about the roots zi

(i = 1,2,3,4) of the polynomial p(z). S

We end this section by proving a result about the magnitude of the

seoond cardinal spline derivatives lJ.. (i=O,1, ••• ,k).
J.

Assertion 6

If Ili denotes the second derivative of the oardinal spline function sk

at the node xi' then llJ.kl > I~il, (i f k).

Proof

In view of (9) we have

~ + 2t:... 1 + 6611. + 26lJ..+·1· + II - 2On2(b~ +2b~ - 6b~ +2o~ +b~ ).i-2 vt"J._ 1"':1. :1. l"'i+2 - 1+2 1+1 J. 1-1 J.-2

Denote the right-hand side of this equation by It and assume that
1

maxll-L·1 == III I. Then we get
i 1 S

Thus I~ 1<23 n
2 lRk l. Because R~ = 0 when i f k-2,k-1,k,k+1,k+2, it

S s 1
follows that

Now take into account formula (11). Using assertions 3, 4 and inequalities

(62), (63), it is for our purpose sufficient to observe that I~I.> 3n
2

and

llli/ < ~n2 (i I k). These inequalities also hold in oase n == 3. This proves

the assertion. •
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Remark Taking into account the contents of assertions 3 and 4, it is a

consequence of formula (11) that the second derivatives of the cardinal

spline function sk also alternate in sign, with in particular l1<. < 0.

6. In this section we will first deduce some expressions for the norm of

the interpolating periodic quintic spline operator, which involve the values

of the various cardinal spline derivatives at the nodes. Then an intricate

formula will be derived by which it is possible to compute the exact value

of ilL II for each positive integer n. A few conclusions will be drawn from
n

this formula (theorem 4). We close this section by giving some numerical

results.

Lenuna 4

If the numbers A.. and m. (i =0, 1, ••• ,n) are defined as in lemma 3, then
. 1 1

the norm of the interpolating periodic quintic spline opeiator L is given
n

by
1 n 1 n

= 1 +4- I: IA·I + E Im·1
n i=1 1 192n3 i=1 J.

Proof

In view of (15) we know that the norm of L is equal to the Chebyshev
n

n ,
norm of the function E Is1.l. Select x so that ilL /I =

. n
1=1

j such that x. 1 ~ x E:; x .• By equation (16) we have
J- J

n
E Isi(x)1 =

i=1

n .
E IsJ.(x)1 and select

i=1

n, ,
= E Ib~ A.(X)+b 1

j Bj (x)+A j '+1<: C.(X)+A .. ~.D.(x)+m. '-'.1. E.(x)+m. 'Ll.F .(x)1
i=1 J-1 J -1 -1 J J-1-n\, J J-1TA-1 J J-1TA J

= IA/X)+AkCj(x)+~+1Dj(x)+I\:Ej(x)+'\:+1Fj(x)1 +

+ IBj(x) +~-1 a/x) +~Dj(X) +1\:-1 E/x) +~Fj(x)1 +

(
k-1 n)

+ E + E I>.. C,(x)+A.D.(x)+m. E.(x)+miF.(x)!.
i=1 i=k-t2 ''"i.-1 J 1 J J.-1 J J

By assertion 3 the coefficients A. alternate in sign as the index i runs
1

through the sets {O,1, •• "k-1} and {k+1, •.• ,n}. Assertion 3 also estab-

lishes the alternation of the parameters m
i

when i runs through these sets.
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Furthermore, \: = I!1c = 0, \:-1 > 0, !l1c-1 < °and \.+1 < 0, ~+1 > 0. These
facts together with the properties of the functions A.(x), ••• ,F.(x) (viz.

J J
formulae (2), (3), (4) and (5», imply that

n .
~ Is

1
(x)\

i=1

n n
= 1 + {C.(x)-D.(x)} ~ I~I + {F.(x)-E.(x)} ~ 1m. I

J J i=1 J J i=1 1

n .
Since x was chosen to make ~ Is11 a maximum, it is apparent from formu

i=1

lae (6) and (7) that we must take x = i(x. +x. 1)' Then C. (x) - D. (x) and
J J- J J

F.(x)-E.(x) both attain their maximal value. In view of (6), (1) we obtain
J J

n. 1 n 1 n
1I~ls1111=1+4 ~I~l+ ~lm·l,
i=1 n i"1 192n3 i=1 J.

which is equivalent to the lemma. •

The next lemma gives an expression for ilL II in whioh the first andn
seoond oardinal spline derivatives of sk are involved. It will be used in

the sequel to find an upper and a lower bound for IILn", in whioh only the

first derivatives A. are present.
1

lemma 5

let ~. denote the second derivative of the cardinal spline function sk
J

at the node x
j

• Then we have the following formulae for the norm of the

interpolating periodic qUintic spline operator:

(66)

IILn ll- 1 +~i~,I\1 +3~2 •

l n (Ilk + I~o \)
= 1 + 100 ~ IA. I + --=="---~-

i=1 1 32n2

(n =2k + 1) ,

(n = 2k) •

Proof

We give only an outline of the proof. If we express the cardinal spline

function a1 on the interval [x
j
_

1
,X

j
] in terms of the first and seoond de

rivatives of the cardinal funotion sk, then we have (of. [2])

(67) si(x) =0 b~ 1 A*j(x) +b~ B*:(x) +A. 'J..1, 1 ~(x) +;\.. 'J..1,D~(x) +
J- J J J-J.TA- J J-1Tl\. J

+ Il. . -'.-1, 1 Ei!' ( x) + ~. '..L1, F~ (x) •
J-J. -rn.- J J-1 T.I.\. J
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Here A~(x), ••• ,~(x) are qUintio polynomials, the formulae of whioh are
J J

given in [2]. In fact, we have: if A*(t), ••• ,F*(t) denote these polynomials

when the interval [x. ,x.] is replaced by [0,1], then
J-1 J

A*(t) = (1-t)3(6t 2 +3t+1)

C*(t) = t(1_t)3(1 +3t)

B*(t) = A*(1-t)

D*(t) = - C*(1- t)

F* ( t) = E* (1 - t)

The expressions for A~(x),... ,F~(x) are obtained by setting t = n(x - x. 1)'
J J J-

multiplying ~(x), ~(x) by n-1 and Ei':(x), ~(x) by n-2
•

J J J J
One easily computes that

(68) Cj(x) - Dj(x) ~~

and

1Eit(x) + Fit (x) ~ - •
J J 32n2

The way in which the numbers A. and m. alternate, together with the proper-
~ ~

ties of the polynomials A. (x), ••• ,F . (x), completely determine the shape of
J J

the cardinal spline functions. Between two adjacent nodes the cardinal

functions do not have zeros and the sign of the function changes when a node

is passed. Moreover, sk > 0 on (~-1 '~+1) and this function is symmetric

n .
with respect to ~. If we evaluate the sum ~ Is~(x)l on [x._ 1,x.] using

i=1 J J

(61), then we obtain as a consequence of these remarks that

n . n
E Is~(x)1 = 1 + (C~(x)-~(x» E IA.\ + (EiI:(x)+~j(x»'1t, (n=2k+1):

i=1 J J i=1 3. J

and
n .
E Is3.(x) I =

i=1

n
1+(~(~)-Dit(x» E IA.I+(E~(x)+~(x»)(u.+llLol), (n=2k

J J .. 1 1 J J 'KJ.=

n .
In view of lemma 4 we know that the maximum value of L: IsJ.(x) I is attained

i=1

when x = ol( X. 1 + x .). However, in formulae (68) and (69) equality holds for
J- J

this choice of x. This establishes the identities (65), (66) of lemma 5. •

Lemmas 4 and 5 imply the follOWing simple corollary.
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Corollary

Proof

The left-hand side inequality is an immediate consequence of lemma 4.
The upper bound for IlL II follows from lemma 5, assertion 6 and taking into

n
account that !1c < o. •

We will now state a formula which enables us to compute the exact value

of II Ln II; however, the express ion of lemma 4, together with lemma 3, is much

better suited for numerical purposes. Because of the intricateness of the

expression involved we have to introduce a number of abbreviations. If the

numbers C
"

••• ,D: and z,' z2 are defined as in (44), respectively (40),
(4 1), then we put

-k-1 + C k+1 ()C1 z, 4 Z, = U C ,

C -k-1 + C k+1 = V (0) ,
2 Z2 3 Z2

C z-k + C z u-(c )
1 1 4 1 = ,

Corresponding expressions are denoted similarly, for instance

D*Z-k-1 + D* k+1 = v(d*) ,
2 2 3

Z
2

If additionally we set

then the theorem takes the'following form.

Theorem 3

Assume n = 2k (k =1,2, •.• ). If the nodes x. (i =0,1, ••• ,n) are equally
~

spaced on the interval [0,1], then the norm of the interpolating periodic

quintic spline operator L is given by, n
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n
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_ .2 U(c*)W(c) - U(c)W(c*) i V(c*)W(c) - V(c)W(c*)

- 2 U(c )(u(c~) +v(c*-) )-U(c*-)(u(c) +v(c» - 8 V(c )(ii(c*) +y(c*)}-V(c*:)(u(c) +v(c»

where

U(c) = z u (c )0: (z ) + z v (c )0: (z2 )
1 1 2

The norm of the operator L in case n = 2k + 1 is given by the same formula
n

if it is adjusted in the following way: the arguments of u, v, ti, V, U~ V, W, i.e.

c, c*, have to be replaced everywhere by d, d*, respectively.

Proof

This can be given by using the contents of lemma 3, together with the

formulae (45), (46), (47), (48), and (64) of lemma 4. We have to delete all

further details because the calculations involved are much too lengthy to ~~

reproduced here. •

The next theorem is proved by direct calculations based upon theorem 3;
the upper bound given here for II L II is best possible.n

Theorem 4
The norms ilL II are ordered as follows:

n

i)

ii)
+ .1.2. (z1 +z2 -13z1z2 +(z1 z)2) =

II L
3 11 < Il L5 " < II L7 " < ... < 1 8 (1- zl)(1- z2)(1- z1 z 2) 1.8161 ••• ,

iii) II L3 11 = II L6 11, IILs " = II L10 1l, II L
7

11 = IIL14I1, ••••

Proof

The proof that the sequences {ilL I/,I/L II, ••• } and {ilL 1I,IlL lip .. } are
2 4 3 5

increasing can be based upon (70), using assertions 1 and 2. By a careful

examination of formula (70) the best possible upper bound for I/L 1/ is thenn
obtained. Statement iii) can be derived from (70) by making use of asser-

tions 1 and 2; all further details have to be omitted. •
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We remark that similar. results hold for the norm of the interpolating

periodic cubic spline operator, the nodes being equally spaced (of. theorem

2 in [3]).
In the following table we have collected some numerical results. The

values of /lL /I (n= 2,3, ••• , 11) were obtained by applying formula (64) ofn .
lemma 4, together with lemma 3. They clearly show that already for small

values of n the norm of L' is very close to the upper bound 1.8161... •
n

Table 1

/lL
2

11 = 1

II .1Q5. -L411 = 1 256 -1.4101 •••

IIL611 = 1 ~= 1.625

IIL811 = 1 182~1156 = 1.7302•••

I/L10 II = 1 ~ ~~ = 1. 7784· • •

IIL311 = 1 ~ = 1.625

/lL5 II = 1 ~ ~g = 1.7784•••

II II 680745 -
~ = 1 841352 - 1.8091 •••

IIL9 11 = 1 1*~~5 = 1.8148...

II II 1988418655 -
L11 = 1 2436972728 - 1.8158•••

7. We recall that theorem 1 of the ~hird section gives an error estimate

for the difference between the function fand the corresponding interpola

ting spline function in terms of the modulus of continuity of f with argu

Im:lnt 1/n. Once we know the values of the first and third derivatives of the

function sk, this information can be used to improve theorem 1. This is the

purpose of this section. First we nee~ a few preliminary lemmas. If from now

on we denote the function Aj(x) by A, etc. then one has

Lemma. 6

Let n = 2k, respectively n = 2k + 1. If the numbers ai' 1ti are defined

as on p. 15, then

~1 k
~ {I a1 D +a . C + 1t. F + 1t. E 11 + ~ {I ak . D +ak . C + 1t. • F + 1t. • E I} =

3.
, =0 3.-1 3. 3.-1 . -3.-1 -1. --.K:-1.-1.K:-1.

1.=1

k-1 k-1
= (C - D).~ I~'t I + (F - E) .I: Imi I •

3.=0 1.=0
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Proof

We recall (p.15) that sgn o. = (_1)k+i+1 (1=0,1, ••. ,k-1) and
k . ~

sgn n. = (-1) +J. (i=0,1, ••• ,k-1; nf5). Furthermore it was established that
J.

C,F ;;as 0 and D,E E; 0 on [x. ,x.]. As a consequence we have
J-1 J

sgn(o. D +0. C) = sgn o. and sgn(n. F +n. E) = sgn n .• The sum on the
J. ~-1 J.-1 1 J.-1 J.

left side in the statement of the lemma therefore is

k-1
I: {lo.D+o. C+n.F+n. EI +Io.c+o. D+n.E+n. FI} =

i=o J. 1-1 J. 1-1 . J. J.-1 J. J.-1

k-1 k+' +1= I: (-1) J. {-o.D-o. C-n.F-n
i

E+o.C+o. D+n.E+1t F}
1=0 J. J.-1 J. -1 J. J.-1 J. J.-1

k-1 k-1
= (C - D) I: Ix.1 + (F - E) I: 1m. I •

1=0 ~ 1=0 J.

In the last step of this deduction we used that sgn X. = (-1 )k+i+1 and
k . J.

sgn m. = (-1) t1.. The case n = 5 can be verified by a direct calculation of
1

the sums involved. This completely proves the lemma. •

Lemma 7

On the interval [x. ,x.J the functions A- 0k( C +D) - n. (E +F) and
J-1 J K

B +ok(C +D) +'1t(E +F) are nonnegative.

Proof

Put J = A - ok(C + D) - '\:(E +F). The~ B +ok(C + D) + '\:(E +F) = 1 - J. If we

put x = x. + 9n-1 (0 < 9 < 1), then it follows from (3), (4) that
J-1

C +D = ~ 9(1-9)(1 +9)(9 - 2)(20 -1) ,

. 1 2 2
E +F =;- a (1 - 9) (28 - 1) •

: 24n3

i

Because Ok > 0 ~d nk < 0 (n " 5), it is easy to verify that for t E; e E; 1

we have J .. O. ~e will aleo show that J E; 1 when a € [t ,11. We note that the

function A is mbnotone decreasing on [x. 1'x.] with A = i when a = t. More-
, J- J

over, by a weakened version of assertion 5 we have lOkI < 2n, Inkl < 24n3
•

It is therefore sufficient to establish that
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- e( 1 - e) (1 + e) (e... 2) (2e- 1) + e2 (1 - e) 2 (2e- 1) ~
~'2 ,

which is an elementary calculation.

The case n = 5 can be handled separately, thus lemma. 7 is proved when

e € [i, 1]. Similar cons iderations hold in case °~ e ~ i . •

lIaJilma8

Let n be an arbitrary but fixed positive integer. Moreover, let

x = x. 1 + 0 with °~ b ~ (2n)-1. If P denotes the smallest integer satis
J-

fying P ~ (nb)-1, then for n r3 we have

(p - 1) IB + Ok (C + D) + '\: (E + F ) I + IA - Ok(C +D) - '\: (E +F) I < 2 - (no)2

If 0 = (2n)-1, the bound can be lowered to 1.

Proof

In view of (5) and lemma 7, the left-hand side of the asserted inequa

lity is

If we insert the expressions for B, C +D and E +F from equations (2), (71),

(72) into this identity· and abbreviate no by e in the next formula we

obtain

If we make use of the inequalities for Ok' 1tk (n/: 3) as stated in assertion

5, then after some elementary estimations there follows

I < 1 +(p-2)nb(1 +nb) •

Since p < 1 + (no)-1 , we have pub < no +1 so that I< 1 + (no +1l-2no(nb +1)=

= 2 - (nb)2. Note that if 0 = (2n)-1 then p =2, I =1, and the bound 2 _ (no)2

can be lowered to 1. This proves the lemma. •

The improvement of theorem 1 now reads as follows.

Theorem 5

Let f € C and let Lnf be the associated interpolating periodic quintic

spline function, the nodes x. (i =0, 1, ••• ,n) being equally spaced. Then for
1.

n I 3 there holds the error-estimate

!(Lf-f)(x)! ~c w(f;o) ,n n
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where 0 =: minlx- x.1 and ilL II E; c E; 211L :1. If n == 3, then ilL II :s; c ~ 2.04111 II
i J. n n f. 3 3 3

Proof

Let n =21<: or n = 2k + 1 (k r1). let J( be any point, and select j so

that x. E;; x E;; x .• From equation (16), tcsether with the equation A+B == 1,
J-1 J

we obta.i.n

e co (Lf-f)(x)
n

n
== l: f. si (x) - f(x)A - f(x)B =

i=1 1.

= (f. -f(x»A+(f.-f(x»B +
J-1 J

n
+ I: f.{A"l_' ,C+A'+k .D+m'+k 0 ,E+mj+k of}.. J. J OA.-J.- J -J. J-J.-. -J.

J.=1

In order :to simplify the notation we abbreviate f '.l_ • by f. and f(x) by r .JOA.-J. J. X

We also note from lemma 3 that ~ . = - A. • and m. • == - m. • for.k+J. .k-J. K+J. K-J.
i == 0,1, ••• ,k. Furthermore, A == m == 0 when n is even. Henceo 0

n-1
e == (f. 1 - f )A + (f . - f )B + I: f. (Ai C + A. D +m. 1E +m. F)J- x J x . J. -1 J. J.- J.J.==O

k-1 k k-1 tv

== (f . - f )A + (f 0 - f )B + I: 1. A. D + I: f. A. C- I: f k 0 A. D +J-1 X J x . J. J. . J. 1.-1 . 2 -J. 1.J.=O 1.=1 J.=O

k-1 tv k-1 tv k ('oJ k-1 tv k-1 ('oJ

- Ii f k .+
1
A.C+Z f.m.F+Z f.m. E-l: fk.m.F-l: fk·+m.J

i=o 2 -1 1 i==o 1 J. i=1 1. 1.-1 i=o 2 -1. J. i==o 2 -1. 1 1.

Recalling the definitions for Q. and n .., .. we a.wly to (13) the method of par-. J. J.
tial summation. The result is

k-1
e= l: {(f. -7.+ )(<1. D+Q. C·+n.F+n. E)} +. 1. J. 1 J. J.-1 J. J.-1J.=o

+(f.-f ){B+a. (C+D)+n.(E+F)}+(f -f. ){...A+ok (C+D)+1t(E+F)}
J X.K K X J-1 K

Now let 0 = minlx- x.1 == min{x- x. ,x. - xl. If 0 = 0 then x is a node and
i 1. J-1 J

the inequality in question is trivial. We assume therefore that 0 > O. If

w(f;o) = 0, then f is a constant function and L f = f. We assume therefore
n

that w(f; E» > o. Since the inequality of the theorem is homogeneous in f, it
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is sufficient to give the proof for functions f such that w(f;o) = 1. Now

let p denote the smallest integer satisfying p > (no r'. Since each interval

of length 1/n can be subdivided into p intervals of length at most 0, we

l
~ ~ I -1have f. - f. +1 E;; p. Assume now that x - x. 1 = 0 and that x. - x = n - o.
~ ~ J- J

(The analysis of the other case when x. - x = 0, is almost exactly the same.)
J

Then If -f. 1 1 E;; 1 and If.-f I :e=;p-1. Thus
x J- J x

k-1
e.o;;p I: la.D+a. C+1t.F+1t. EI + (p-1)IB+ak (C+D)+1t. (E+F)1 +

'=0 ~ ~-1 1 1-1 . .K:
~-

k
+ I..A+ak(C+D)+~(E+F)1 +p.Il lak_i_1D+ak_iC+~_i_1F+~_iEI ..

1=1

We have analysed the sum on the right in this inequality in lemmas 6 and 8 ..

Using this results we obtain

If we evaluate the functions C- D and F -E at the point x = X. +0, then in
J-1

view of formulae (6), (7) we obtain o(1-no), 1~ 02(1_no)2, respectively..

Also we note from the proof of lemma 4 that

1 k-1 1 k-1
- I: Im·1 = ilL II .. 1 .- 2n I: IA·I •
96n3 i=o 1 n i=o 1

Finally we use the inequality p ... 1 + (nor ' .. Consequently

On account of (76) we may write

k-1
I: / A.I < 2n(1I L II - 1) ..

i""O ~ n

Using this inequality in (77), we obtain eventually

e :e=; (1 +(no)-1 )2nl>(1-no)(IIL 11-1) +2- (no)2
n

and the right-hand s ide can be proved to be smaller than 211 Ln II.
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In the special case that b =- (2n)-1, we have p. 2, and by lemma 8 the

bound 2- (nb)2 can be lowered to 1. Hence in this case & ..; ULna, because of

(75) and (64).
In order to see that c .. ilL /I we construct a particular function f by

<"oJ <"oJ n n <"oJ

s~cifying f k_i =- f k +i+1 "" p for i ... 0,2,4, ••• and f"k_i = f k +i+1 ... 0 for

i =- 1,3,5,... .. Also, we take f .,. p - 1. The function f varies linearly
x

between the specified values, is periodic, and satisfies w(f;b) = 1. In view

of (74) and (75) we obtain for this flUlOtion

{
k-1 k-1 \

e • p (C -D) E IAil+ (F -E) 1:: 1m. I + 1 •
i-o i=o 1

Taking into account fomulae (6), (7) and (76), the above expression for &

k-1
can be evaluated in terms of p, n, b, ilL II and E IAi I. Also we derive from

n i=o
the corollary on page 20 that

k-1
~ 1: IAil> ilL II - 1

i-o n

moreover, pnb > 1.

Using th6se two facts, elementary calculations show that & .. /I Lnll' •

(The example just given is satisfactory when n is odd. It n 1s even, it is

modified by defining fa to be equal to £1.)
Finally, we remark that the statement in theorem 5 about the particular

case n "" 3 has to be dealt with separately. We omit the detailfl. This ends

the proof of thecrem 5. •

CorollarY

If' f € C and L f is the interpolating periodic quintic spline function
n

associated with f, then the estimate

I (L f-f)(x)l< ilL /Iw(f,b)n n

holds for an arbitrary point x suoh that b ... (2n)-1. It is not possible to

introduce a constant factor < 1 on the right-hand side.

Proof

This follows from the proof of theorem 5. •
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