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On_interpolating periodic quintic spline functions

with equally spaced nodes

by

F. Schurer

1. let C denote the Banach space (with supremum norm) of all real-valued,
continuous, periodic functions with period 1. To each division of\ the
interval [0,1] into n subintervals {0 = X, <X <...<x <X = 1},
there corresponds an n-dimensional subspace S(xo,x1 ,...,xn) in C whose
members are the periodic quintic spline functions with nodes X5 Thus,

s € S(xo,x1,...,xn) if and only if

1) s €c*[0,1] and s8)(0) = s)(1), (3 = 0,1,2,3,4);
2) 8 reduces to a polynomial of degree at most five on each subinterval

[xi-1’xi]'

Throughout the paper we assume that the nodes are uniformly distributed
on [0,1], i.e. x; = i/m (i = 0,1,...,n). We begin by proving two theorems
which strengthen some results communicated in [2]. Then an exact expression
is given for the norm of the interpolating periodic quintic spline operator,
The last part of the paper contains estimates (which are best possible or
nearly so) for the difference of the function f to be approximated and the
associated spline in terms of the modulus of continuity of f. The contents
of these sections (6 and 7) should be compared with reference [3], where
similar results for the interpolating periodic cubic splines are derived by ;

an analogous method.

2. It is known ([1], p. 135; [2]) that to each £ € C there corresponds a
uniquely determined element s € S(xo,xi,...,xn) with the interpolating

property, s(xi) = f(xi) for i = 1,...,n. If we write

fl = f(xl) ’ 3‘-1 = s'(xi) !, ii = S"(Xi) 4 ﬁl = S"'(Xi) ’

then using Hermite interpolation the quintic spline function s can be given
explicitly in the following form on the interval [xi_1,xi]:

(1) s(x) = fi_1Ai(x)+fi Bi(x) *7‘1—1 Ci(x) +11Di(x) +'1ii_1Ei(x) +E'iFi(x) .



Here Ai(x), ceooFy (x) are certain quintic polynomials. If we denote these
polyncmials by A(t),...,F(t) when [xi_1 ,xi] is replaced by [0,1], we have

(2) At) = 3(1-2) (~2t3 +42 +4t+2) , B({) = A(1-t)
(3)  c(s) = —ztmt)z‘(-zt? +t+4) , D(x) =-c(1-t),
(4) E(t) = t (1-t)* (2t - 3) , F(t) =-EB(1-%).

The expressions for Ai(x),...,Fi (x) are now obtained by setting t=n(x- X, ),

mltiplying Ci(x), Di(x) by n~! ana Ei(x), Fi(x) by a3,

On [xi_1,xi] we have Ai(x),Bi(x),Ci(x),Fi(x) = 0, whereas Di(x),Ei(x) <0

on this interval, Moreover,

(5) A+ B (x) -
6)  0y(x) - Dy(x) = (x-x,_ )(1-nlx-x,_)) <7 ,

M) - B - 1—15 (x=x;_)*{1-n(x-x_ )} < %3 :

As a consequence of the fact that s € ¢*[0,1] and s'(i)(o) = s(i)(‘l),

(i = 0,1,2,3,4), the parameters 3:1, B; snd W, have to satisfy some particu-
lar relations for i = 1,2,...,n, which were derived in [2]. Assuming that
all indices which occur are interpreted modulo n, we have

(8) A _, * 26, +‘66Ai * 26A,,, + ANy = 5n(fi_'2+10fi+1 - 10f, | -fi_2) ,

- — - - - _ 2
(9) Wy, * 260, + 660, + 260, +T, . =20n (fi+2 +of, -6, +2f, +fi_2)

— — — — 3
(10) m_, * 26mi_1 + 66mi + 26:711+1 +E L, = 60n (fi+2-2fi+1 +2fi_1-fi_2) R

= 252 _ cAlo = =
(1) B = gn(f;,, -2+, )+ n(" 1= M) * Tom (Bypq =Ty _,) -

Due to the fact that the matrix associated with the two systems of equations
(8) and (10) is diagonally dominant, it follows by a stendard procedure
(cf. [2]) that

(12)  wex|X | <2n or51/0)
1

(13) mgx]ﬁi[ < 20m® w(f31/n) .



If si(x) € S(xo,x1,...,xn) denotes the i~-th cardinal spline - this function

is defined by the equation el(xj) = 6:5 for i,J = 1,2,...,0n -, then in terms

of these functions we have

1

(1)  s=Lf= 5 £(x)e'(x) .
T ist

Accordingly, the norm of the interpolating periodic quintic spline operator

I, = sup{lL £l « £ € ¢, lel = 1}

is given by

(15) Ll =13 [l

1=1

3. We will now prove two theorems, which improve similar results given in
[2] (ef. [2], theorems 3 and 4).
Theorem 1

ILet £ belong to C and let s be the interpolating periodic quintic

spline function associated with f. Then
ls-£0 <2 25 o(£51/n)

Proof
Let x be an arbitrary point of [0,1] and assume x € [x,  ,%;]. Using
(1) and (5) we get

s(x)~£(x)= (fi—1 ~f(x) )Ai(x) + (fi—f(x) )B-i(x) +7Li_1Ci(x) +XiDi(x) +'ﬁi_1Ei(x) +ﬁiFi

We recall that on the interval [xi_1,xi] the functions Ai(x), Bi(x), Ci(x)
and Fi(x.) are nomnegative, while D, (x), Ei(x) < 0 there. Consequently one

has

ls(x).;f(x)l < w(f£31/n) + mz.xﬁjl(ci(x)-Di(x)) +m§.xlﬁjl(Fi(x)-Ei(x)) .

From this we obta;in the result of theorem 1 by & simple calculation using
inequalities (6), (7), (12) and (13). ®

Theorem 2
A uniform uwpper bound for the norm of the interpolating periodic
quintic spline operator L , as defined in (14), is given by



sl <33 -

Proof
As we already noted in (15), the norm of the quintic spline operator is

n .
equal to the Chebyshev norm of the function Z Isl(x)l. Select £ such that
i=1

n o, n
I 2 |s*(x)[ll = = [s*(¢)|, and let £ ve a continuous function of norm 1

i=1 4 =1
which satisfies the equations f, = sgn s7(£) and is linear in each interval
[xi_1,xi]. Then "Ln" = HIth = |lgll. To determine an upper bound for HLnH it

is sufficient to consider the spline function s on [xi_1,xi]. In view of (1)

we have on this interval
s(x) = fi_1Ai(x) + fiBi(x) + ki_1Ci(x) + AiDi(x) +-mi_1Ei(x) +-miFi(x) R

whence

[5Gl < hel(ay () +B, (x)) + max|R | (0, (x) - D, (x)) + max|y | (8, () -2, () <

J J
1 [
<2l + 2 o(gs1h) 7+ 200° w(g;1/n) ekl + 22 u(t31/n)

Here we have made use of the formulae (5), (6), (7), (12) and (13). Theorem
2 now follows by observing that w(f;1/n) < 2,

4. In view of formulee (14), (15), it will be obvious that knowledge about
the cardinal spline functions would be useful. Proceeding in a similaxr way
as when investigating the interpolating periodic cubic splines (cf. [3]),
the ultimate aim of this paper is to derive an exact expression for the norm
of yn (nl= 1,2,3,... ). Moreover, an improved version of theorem 1 will be
deduced. .

The information about the cardinal spline functions which is needed to
arrive at these results is given mostly in the form of lemmas and asser-
tions. Because the calcﬁlations which are involved to prove these statements
are often quite long and tedious, most of the details of their proofs will be
omitted.

The purpose of the first two lemmas is to show how in an appropriate

L L
case the computation of the numbers (s™) (xj) and (s%) (xj) is connected
with a particular solution of a difference equation of order four. If n = 2%

H (A1}
orn = Z+1, we put A= (sk) (xi) and m, = (sk) (xi). Since the functions



s* are periodic and the nodes are equally spaced, we have s (x) = sk(x-xi_k).
Thus it is only necessary to compute one cardinal quintic spline function,

and we choose sk. Then
iy! k! _ okt _
(S ) (xJ) = (S ) (xj-xi-k) - (S ) (x‘]-i“‘k) - )\J-l"”k °
Consequently, on the interval [xj_1,xj] we get

(s1(x) = 63:-1 h(x) + E);Bj(x) + (si)'(xj_1 )e5(x) +

"

+

(61) (xp)nyx) + (1) Gy, By () + (81) " ()P 5(x) =

(16) 3
5l
j..

(A0 + 6§Bj(x) + A cy(x) + A D, (x) +

Jeitke1 J-i+k

L +-mj_i+k_1Ej(x) + mj-ikoj(x)'

In order to compute sk(x), we first have to rewrite equations (8) and (10)

in their appropriate form. We get

k sk k k
(W)g4+%ﬁﬂ+%ﬁ+%gﬂ+gﬂ=Sﬂgﬁ+wﬁﬁ-ﬂmﬂ-%ﬁ), -
~ 3.k k k k
(18) my_, +26m;_ +66m, +26m, , +m = 60n°(d; =20, +2b; -0 ).
lemma 1
Iet n = 2k (k=1,2,oo-) and let {9_1,p0,p1,ooo,pkﬁ} =
= {a_1==-a1,ao = O,a1,...,ak+1} be a non~trivial solution of the difference
equation
(19) Pisg ~ 26Pi + 6691_1 - 26Pi_2 TPy s = 0, (i=2,3,...,k),

which satisfies the end condition

(20) 100y = Py = Py =0
If we put
k+i+1 -1 . '
}\i = (-1) »5nak 8; (1=0,1,000,k-1)
(21)
A (2=X,k+1,...,%) ,

then {Ao,k1,...,A2k} is the solution of (17).



When dealing with the third derivatives m, of the cardinal spline sk,

condition (20) has to be replaced by
(22) 280, = Py_y " Pryq =0

= {a% =_g*.a*=0,a* * : -
Let the set {p_1,po,p1,...,pk+1} {a_1 a¥, o O,a1,...,ak+1} be a non

trivial solution of (19), which satisfies relation (22). If we define

K+i-+ -1 .
(-1) 60n3ak* e, (1=0,1,...,k=1) ,

i

m.
1

(23)

m (i=k,k+1,...,%) ,

177 Bk 2

then (23) is the solution of system (18).

Lemma 2

et n = %k+1 (k=1,2,...) and let {p_2,p_1,po,p1,...,pk+1} =
= {b_2 =D yb_, =b sb b seseyby
ference equation (19) for i=1,2,...,k, which satisfies (20). Then

{AO,A1,...,A2k} with

} be a non-trivial solution of the dif-

(=) 5 -ty

i K By v (1=0,1,000,k-1) ,

A
(24)

A-- )\ (i=k’k+1,.'oo,2k)

i 7 T2k-i ?

is the solution of (17).
Assume now that {p_z,p_1,po,p1,...,pk+1}= {p*, =%, b*, =bg,bg,bf,...,b;;+1}
is & non-trivial solution of (19) for i=1,2,...,k, which has property (22).
Then
m, = (-1)KHH 6on® B b% ,  (i=0,1,...,k-1) ,
(25)

m., = - m

; ke ? (i=k,k+1,...,2k)

solves the set of equations (18).

t

Proof

There axre a.pba.rently four different cases to be considered, all of
which can be dea.ft with in a similar way. Therefore we only prove the first
part of lemma 1.\_;
Ifi=12,...,k-3, then using (21) we have



Ajp v 260, + 66N + 260 H+A L =

it

}=0-

k+i-1 -1
(=1) 5n &y {ai_2 - 26,  +66a, -26a,  ta,

I

k k X k
§n(5i+2 #1085, -105;_ -8, ) .

All indices of the parameter A have to be taken modulo n (= 2k). As a con-

)\ °

. this gives rise to the definition

sequence of (21), Ay = Apy =

a = -8 ,
-1 1

In case i = k-2 and noting that }‘k = 0, we have

;\1(_4 + 26)\1{_3 +66}‘k-2 + 26}‘1{-—1 A = -On a.; (ak-4 - 26a.k_3 + 66a.K_2 - 26a.k_1) =

_ -1 _ _ k k k k
= -5na (- ) = 5n = 5n(s +10, =10, -8 ).

Assume now that i = k-1. In view of (21) and (20) one gets

)‘k-s + 26>\k_2 + 66)\1(_1 + 26)‘1( + )‘k »

on 51;1(81(—3 - 26a,_, +66a,_, - a‘k—1) =

k k
k~2 E’k—a) :

k k
51:1(5k+1 +103, - 108

=on a;(26ak-a.k+1 'ak-1) = 50n

For the case i = k we have

}‘k-z + 26}\k__1 + 66>\k + 26}\]“_1 + Ak_l_g

Taking into account the symmetry-relation of formalas (21), the.cases

- 10%

k k k
K+ k=1 "6k—2) *

k
0 = 5n(2>k+2 + 100

i=k+1,...,%k can be dealt with in an analysis which is vthe same as the

one just given. N

As a consequence of lemmas 1 and 2, it becomes necessary to solve the
fourth-order difference equation (19) with end conditions (20) and (22)
respectively, in order to get explicit expressions for the first and third
quintic spline derivatives at the nodes., It is obvious that for the deter-
mination of )‘i in case n = Z the ratio of a; and &y is the only important

= = o 1
§ 1, a, in

case n = Zk and b0 =1, b1 = (§ in case n = 2k +1, when dealing with the

thing. Without any restriction one can therefore assume a

first derivatives, The numbers Basbygeeesly and b2,b3,...,bk+1 then can be
calculated successively from recurrence relation (19); the quantities a and
B are determined by means of (20). In the same way we put e* = 1, a¥ = o*
when n = 2k and bz)" =1, b*: = B* in case n = Zk +1; after generating




a§,...,a§+1 and b;,..,,b§+1, the unknown numbers a* and p* follow from con-
dition (22). We remark that the values of «, B, o*, B* are dependent on k
and have to be determined each time anew. To fix ideas, let us write down

the first elements of the number sequence a ,8, ,8,5..¢ o We get

(26) a,=0, a =1, a =q, a3=26a—65, a4=610a-1664, a_ =14170a - 38975, ... .

Because the difference equation (19) is homogeneous, we can form two number
sequences {p§1)}, {p§2)} (1=0,1,...) out of (26), which are again solutions
of (19). Moreover, using (26), condition (20) gives rise to another sequence,
which can be split up in two sequences, all of which are solutions of (19).
For all these éequences there can be written down an explicit formula, which
makes it possible to determine the value of a for each fixed number k. The
other three sequences {bo’b1’°"}’ {ag,aT,...}, {bg,b?,...} can be treated
in a gimilar way. When dealing with the first derivatives Ai of the cardinal
spline function sk, a simple calculation gives the following results.

In case n = 2k (k=1,2,...) we have

{0, 0, 1, 26, 610, 14170, ...} ,

@ o) =0,1,..0)

(28) {p§2>} (i=0,1,...) = {0, 1, 0, -65, ~1664, ~38975, ++.} ,

(20) {168 = p{1) (Y (et o, ) = (-1, <10, ~195, -4436, ~102725,...}
(30) {16p1£2)-p1(:_2—pl£iz} (k=1,2,...) = {16, 64, 624, 12416, 283250,,..} .

If n=2+1 (k=1,2,...), then

(31) {p§3)} (i=0,1,...) = {0, 1, 25, 584, 13560, 314665, ...} ,
(32) {pf‘)} (i=0,1,...) = {1, 0, ~40, -1015, ~23751, ~551576, ...} ,
(33) (1600302003 0030} (2 1,2,..0) = {9, 185, -4241, 98289, ...} ,

{39, 375, 7551, 172575, ...} .

(34) {1608 o801} (kny2,.0)

We recall that in case of the third derivatives m, condition (20) has
to be replaced by (22). As a consequence of this, the sequences (29), (30),
(33) and (34) are transformed as follows.




If n =2 (k=1,2,...), then

35) {2l ol ()} (xmn,2,000) = {1, 2, 117, 2884, 67315,...)
(36)  {280)=p2) o)} (k=1,2,...) = {28, 64, -156, -T552, -184420,...}

In case n = 2k+1 (k=1,2,...) we get

(37) {28p1£3) (3) (3)} (k=1,2',...)={3,115,2767,64431,...};

" Pxt TP
(4)_ (4)__ (4)} = = -1 -4629, =11 }
(38) {280, ' ~py ] -ppid} (k=1,2,..0) = {39, -105, -4629, -112437, ...} .

In order to give explicit formulae for the sequences (27), (28), ¢4s,
(38), we need the general solution of the difference equation (19). This

turns out to be

i -i ~1
+ C + +
> %o 0322 C4Z1 ’

il

i
(39) Py = G2

where

(40) -z, = 3(13+105 -\}270 + 26Y105) = 0.04309... ,
(41) z, = #(13- {105 -\270 - 26105) = 0.43057.... .

For each of the sequences (27), (28), (31), (32), the constants

C1 ,...,0'4 have to be determined from the initial elements of these sequences.

This can be done by means of generating functions in the following way. Put

(42) G'(Z) = & ng)zi ’ (j=1,2’3’4) ’
J i=o

j(_‘]) satisfy the difference equation (19). An elementary
calculation shows that

where the numbexrs p

(43) G.(z) (pgj)_%pgj)*66p§j)'26pc§j))zs+(92(j)-26p1(j)+66p§j))22+(p$j)_26p§j)jz+p(
3T | i

2t - 262° +662° - 262 + 1

If we put
(P(z) = 2t - 2623 + 6622 - 26z + 1,
Q(z) = z(zz-262F+1) ,

{ 2
R(z) = - 2" +2 ,

S(z) = - z° + 262° - 262 + 1,



- 10 -

and apply (43) to the sequences (27), (28), (31), (32), then we get the

following results:

((1) (1) (1), (1))

1

(68),082),602),6(2)) = (0,1,0,-65) = 6, (=) = &
(6$3,0030,0(2) 0(3)y _ (0,1,25,584) = 6, (2) = %8—} .
(954)5954)’954)7924)) = (1109‘409"1015) = G4(z) = % .

The polynomial P(z) can be written in the form

(2-2,)(z-3,)(z-23,)(2-2,) »

2
= (090,1926) =’G1(Z) = Pzzzj ’

where z and z, are given by (40), (41) and z, = z:, z, = 2:1. A computa~-
tion shows that
z,_ = 2.320-. y

23.200. &

(]
]

z2 <23 <%z <23
1 2 3 4’

and the root z, of P(z) = 0 is highly dominant over the other ones. This
fact will be of importance in subsequent estimations.

To determine the unknown coefficients C,,...,C, in formls (39) when
dealing with the sequences (27), (28), (31), (32), we proceed as follows.

We can write successively

c, c, c, c, 2
G (z) = + + + y C, =57 ,
1 zZ-2, z =2, z2- 2, z2-2z, jg P Zj
0,2 .9, )
%) =Tt et 0 G TR
2 z-2, Z-3, z~ 2, z=12, j P Zj |
(44) (3=1,2,3,4.
D, D, D, D, R(z.)
G:«J(Z)'—'z--z tZ-z Tz-2. Tz-z Dj=P'\z. '
1 2 3 4 J
( D¥ D3 D* Df: s(z.)
¢ (z) = + + + y D=1 .
| 4 z2-2z,  z-32, 2-32, 2-%2 Jj 2



Now we have for instance

2 2
! 1 1 22 2 2
2
) + .‘.> .

(]

G, (2)

-Cz-1(1
33

+—Z-+<
2
3

-1 -

2
Zz> + ooo) - C Z-1 <1 +;§-+(;—
3 44 4

Z

In view of this and (42), (39), there hold the following explicit formulae
for the elements of the sequences (27), (28), (31), (32), respectively:

(45) ol = - (a7 < gy (5) T -0 (2,)7
(6) of*) = - ox(a) T - ox(z,) T - o3(a,)H
@) ) e (5 - b (a,)
@8)  of*) = -z ) - ma(a,) N - ma(a,)

)7

¢, (z

el \=i=1
C4(z4)

~i=1
- 3,(z,)

]

(i=0,1,2,..

* -d=1
DX (z4 ) .

In this set of formulae the coefficients Cj,...,DS (3i=1,2,3,4) are

given by (44). Moreover, because z, ~ 540z, and z,

~ 522, it is obvious that

already for rather small values of i the first term in each of the formulae

(45)y...,(48) is by far the largest one, and the contribution of the last two

terms is very small.

Now we are ready to state lemma 3.

Lemma 3

The first and third derivatives A; and m (i=0,1,s00,k-1; k=1,2,...)
of the cardinal quintic spline function sK are given by the following for-

milae:

>
!

= (_1 )k+1+1
_ (-1)k+i+1

= (_‘1 )k+i+1

(_1 )k"f’i'H

Sna';“a'i 4

-1

é0n° a¥” a*.‘ ,

3. =t
60n” b¥

i ’

(n=2k, k=1,2,...) ,

(n=2+1,

k=1,2,.0.) ,

(n=2k, k=1,2,...) ,

(n=2k+1,

t
k=1,2,...) ’



- 12 -

where
19) - &, =p") (169£2) Pi 3 Pé+)) (2)
i P4 (- 16p(1) (1)+p(1)) ’
k 1 k+1
(50) b, = o3 (16p( +) Pi ) p£+)) (4) |
o (16p(3) (? 9181))
2) (2) (2) (1=0,1,400,k=1)
(1) el T o the) )
e (-28p(1)-+p(1) (1)) '
k P+
(52) b = p(3) (28p§4) pﬁ ? péj}) oy
| N N O e
Proof

The first part of the lemma is a partial restatement of the contents of
lemmas 1 and 2. Without lack of generality we only examine formula (49). It
gives an expression for a, (i=0,1,...,k-1), where {ai} is given by (26). We
recall that the sequence (26) was split up into two sequences (27) and (28),
the elements of which we denoted by p§1) and pga). An explicit formula for
them is given in (45) and (46). Finally, the quantity « has to be determined

from (20); in our terminology we have

() () _o(2)

o = pk 1 pk+1 .
16p<1) 00

This proves (49); the other expressions are derived in quite a similar way. H

5. Using lemmas 1, 2, 3 and formula (16) all cardinal spline functions can
be completely determined. But the expressions with which we have to deal
with are not so tractable. Indeed, the set of formulse (21), (23), (24),
(25), (44), (45), (46),-(47), (48), (49), (50), (51), (52) are all needed to
describe the behaviour of the cardinal splines, In this section we give ad-
ditional information about the first and third derivatives.of the spline sk.
The assertions are based upon the contents of lemma 3 and can be proved by
elementary, yet tedious, calculations. These calculations are too lengthy to

be given here.
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We first state the relations between the coefficients Cj’ Cﬁ, Dj’ Dg,
which are used for the proof of assertions 3, 4, 5 and which we will need

again in the sequel.

If we write
= O%0 _ = D¥D - *
cp = 010~ C G, 4y, =D¥D,- D07,

and use similar abbreviations for other expressions of this kind, then we

have

Assertion 1

(53) 1210, < 0, Cisa %23~ 0, C132C34 >0,

(54) dip0dy53 <05 d,, =dy, =0, d;,0d4,>0.

Assertion 2

(55) °12-°24Zf =9 °13’°34zf =0 °12+°13z: =0, ¢, +°34z: =0,
(56) d,,%4,,2,=0,4,,+d,,2, =0, 4,,-d4,,3, =0, 4, -d,,2, =0,

where z_ and z, are given by (40), (41), respectively.

Proof
The results of these two assertions can be verified by simple calcula-

tions based upon formula (44). W

The form of the expressions for Ai and m, (1=0,1,4..,k-1), as stated
in lemmas 1, 2, 3, suggest that the first and third derivatives of the
cardinal spline function sk alternate in sign. This indeed is true, as

follows from

Assertion 3

Let k be an arbitrary, but fixed, positive integer. Then

(57) ai’bi> o, (i=1’2,-"9k) ’
(58) a§9b;> o, (i=1,2,...,k-1) ,
(59) a,b¥ <0,

where a ., b,, a}f, b¥ are given by (49), (50), (51), (52).
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In order to verify that a, > O, (i=1,2,...,k), k being a fixed positive

integer, & brief examination indicates that it is sufficient to show that

(2) (2)
. +1 .
(1)~ (1) ]('1) ’ (1"‘"‘293,“-)’
i+
) o) o) g () () o)
(11) fa 1+> ”‘ TR (iagp5,...)
T Tl
_p(z),
this in view of the fact that both sequences —;%Ty (i==2,3,...) and
6of2)_p(2) _o(2) & or
( ) l-) %T; (i=1,2,...) have the same limit, viz. -] = 13-1765.
16p +ps Piat

Inequality (i) can be established by using assertion 1. Its proof rests

heavily upon the fac

between the numbers

t that there is a considerable difference in magnitude

Zy Zyy Z and, moreover, that ¢, < O,

' 4

4 12

3!

Verification of the second part of formula (57) can be done in exactly the

same way., Formulae (58) and (59) may be proved in the same fashion. For
instance, in case b¥ > 0, (i=1,2,...,k-1) and b¥ < 0, one has to establish
that

(4) (4)

P
(iii) (3) ?’3‘:1; (i=1,2,3’ooo) ’
Pi+1

o )
) ONRONN O R O I O NN ) NI

Pi "= Pic1 ~Pip 8054 ~ Py Pitz '

( ) (4) (4) (4) (4)
( ) Spi 1 1+pl+1 (i=2 3 )
v ) < TG0 nolk p3aeee) -

Pi-s Pi " 7P "Pim

To prove these three

formation about the xoots 20y 2,9 2y I,

1. We omit the detai

inequalities we have to use the already mentioned in-
of P(z) = O and (54) of assertion

ls. ®
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The nex“t sssertion states that the absolute values of the first and
third derivatives }‘i and m (i=0,1,...,k~1) are.decreasing if we move from
the node X, to the left. There is only one exception to this rule and this
occurs for the third derivative in case n = 5; indeed, |mol > |m1 |, as can
be verified by a simple calculation. Moreover, Ao =m, = 0 in case n is

even; this follows from lemma 3+

Asgertion 4

let n be an arbitrary-but fixed positive integer and put n = 2k when n

is even, respectively n = 2k +1 when n is odd., Then

|)\0[ < |A1| <ol < l}‘k-1l

|m0|<|m1|<...<|mk_‘1| , m#5).

Proof
In case n is small, say n < 6, the asserted inequalities can be veri-
fied by calculating the values of }‘i and m, by using lemma 3 or directly
from equations (17), (18). The establishment of the remaining values of n
involves quite large formulae; we only give a sketch of the proof. Starting
out with the expressions for the }‘i and m, as given in lemma 3, the calcula-
tions make use of assertions 1 and 2. Moreover, we exploit the fact that
z, <3z, < z, < z, and use some more additional information about these

1
numbers. We omit all further details. B

Now define o . = o, o = }\0 + )&1 + v + )\i for i = 0,1,...,k and in

the same way m_ =0, n, =m +m ... tmy (1=0,1,...,k). Using asser-

tions 3 and 4, it follows by mathematical induction that |o,| < [A,, |
(i=0,1,...,k-2) and {ni[ < |mi+1[ (i=0,1,...,k-2; n#5). Moreover,

sgn o, = sgn()\i-!-oi_1) =sgn A, = (-1)k+1+i for i € {0,1,...,k-1}. Also we

have sgn ™= (-1)k+l, i=0,...,k-1;3 n #£5,

Assertion 5

If n # 3, then
(60) |ok| <n, o
(61) Inkl <4n? . |
Proof

As a consequence of the remarks preceding assertion 5 we have

T T
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It is thus sufficient to prove that for all values of n % 3
(63) lw,_, | <4an” ;

it can be verified by a separate calculation that inequalities (60), (61) do
not hold in case n = 3, No further details of the proof will be given here.
Just as when dealing with assertion 4, the whole analysis is rather tedious.
The calculations involved are based upon lemma 3, the formulase (53), (54),
(55), (56) of assertions 1 and 2 and some information about the roots z;

(i = 1,2,3,4) of the polynomial P(z). H

We end this section by proving a result about the magnitude of the

second cardinal spline derivatives p. (1=0,1,0..,k).

Assertion 6
If By denotes the second derivative of the cardinal spline function sk
at the node x,, then |p | > [p,|, (1 # k).

Proof
In view of (9) we have

k

L 3 2,4k k k k
“ifa + 26 o+ 66p, +26p, C+p = 20m (bi+2-+261+1-6bi-+251_1-+b. 2) .

Q=

Denote fhe right-hand sidé of this equation by R? and assume that

mgxluil = |ps'. Then we get
i

.

| 2 _k 2, k
66|p | = |2n” B - 0, _, - 260, ., - 26u_,. - Moyl < 207 [R| + 54 0

Thus |, | S%nleg . Because Rli‘ = O when i # k-2,k~1,k,k+1,k+2, it

follows that

m?»xll-‘ii = max{lp'k_als!Mk_J"Pklv|Pk+1!’h‘k*2|} .
1

Now take into account formula (11). Using assertions 3, 4 and inequalities
(62), (63), it is for our purpose sufficient to observe that Iukj_> 3n° and
lpil < g-na (i ¥ k). These inequalities also hold in case n = 3., This proves

the assertion. #
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Remark. Taking into account the contents of agssertions 3% and 4, it is a

consequence of formula (11) that the second derivatives of the cardinal

spline function sk also alternate in sign, with in particular o < 0.

6. In this section we will first deduce some expressions for the norm of
the interpolating periodic quintic spline operator, which involve the values
of the various cardinal spline derivatives at the nodes. Then an intricate

- formula will be derived by which it is possible to compute the exact value
of ”Qnﬂ for each positive integer n. A few conclusions will be drawn from
this formula (theorem 4). We close this section by giving some numerical

results.

Lemma 4

If the numbers ki and m, (i=0,1,...,n) are defined as in lemma 3, then
the norm of the interpolating periodic quintic spline ope:ator Ln is given

by

1 n
(64) L il =1+~ 8 AL £ |m,
an g Il 192n° i=1| i
Proof

In view of (15) we know that the norm of Ln is equal to the Chebyshev
n ' noo
norm of the function 2 |s |. Select x so that Izl = = |s (x)| and select
i=1

i=
j such that x, < x< Xye By equation (16) we have

J=1
nd
B! |s™(x)| =
i=t
Dod i '
='§ lbj_1Aj(x)-+5ij(x)-+Aj_i+k 10 (x)-fAJ e J(x)-bmJ 44 1E (x) + W55k J(x)|

= [hy () +2 €4 (x) +h D) +m B (x) #m, ()] +
+ ]Bj(x) +}‘k—1 Cj(x) +)\ij(3¢:) +mk_1 Ed(x) +mij(x)|

k-1 n v

+(Z + > | C.(x) +A, D.(x) +m, B, (x)+m, F,(x)
i=t 1=k+2 Mo J + =1 i |

By assertion 3 the coefficients Ai alternate in sign as the index i runs

through the sets {0,1,...,k-1} and {k+1,...,n}. Assertion 3 also estab-

lishes the alternation of the parameters my when i runs through these sets.
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Furthermore, Ak =m = 0o, Ak ] > 0, m . <0 and Ak+1 <0, Wyyq > 0. These

facts together with the properties of the functions A, (x),..., J.(x) (viz.
formlae (2), (3), (4) and (5)), imply that

MS

l tax)] =1+ {Cj(x)-])j(x)}ig1l)\il + {Fj(x)-Ej(x)}i§1|mi|

i

n .
. i : . L
Since x was chosen to meke I |s”| a maximum, it is apparent from formu-
' i=1 ’

lae (6) and (7) that we mst take x = %(x;+x;_,). Then C,(x) -D(x) and
Fj(x)-Ej(x) both attain their maximal value. In view of (6), (7) we obtain

Z(ml,

I 2 s ||l =1 + 2
|s*] Z I ]+ i)

i=1
which is equivalent to the lemma. M

The next lemma gives an expression for "Ln" in which the first and

k are involved. It will be used in

second cardinal spline derivatives of s
the sequel to find an upper and a lower bound for HLnH, in which only the

first derivatives Ai are present.

Lemma 5
let pj denote the second derivative of the cardinal spline function sk

at the node x.,. Then we have the following formulae for the norm of the

J

interpolating periodic quintic spline operator:

n by

(65)  Iml =1 +1—65;i§1|ai| gl (n=2x+1) ,
n (e * e ])

(66) Wil =1+3% = |A .|+-”—K-—lz-°-|— . (n=2x) .
i=1 3&1

Proof

We give only an outline of the proof. If we express the cardinal spline

function si on the interval [x ,x ] in terms of the first and second de-

=1

rivatives of the cardinal function sk, then we have (cf. [2])

(67) si(x) = 81 A*<x>+a B (x) + A,

Smd e 1C*(x)+)\

Jl*‘kJ

*(x) +

T ORI TOR
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Here A%(x),. ,F’;(x) are quintic polynomials, the formilae of which are
given in [2], In fact, we have: if A*(t),...,F*(t) denote these polynomials
when the interval [xj_1,xj] is replaced by [0,1], then

A*(t) = (1-4)3(6t2+35+1) , B*(t) = A*(1-¢t) ,
o*(t) = 5(1-4)3(1+38)  , D*(t) = - c*(1-1) ,
E*(t) =&t2 (1-1t)3 , F*(t) =E*(1-%) .

The expressions for A*J?(x),... ,F’;(x) are obtained by setting t = n(x- x,j-1)’

mltiplying C*S(x), D*s(x) by o~ and E*S(x), F‘S(x) by n”2.
One easily computes that

(é8) o4 (x) - D‘g(x) s%

and

2

% < 1
(69) E¥(x) + ?§(X) st

The way in which the numbers }‘i and m, alternate, together with the proper-
ties of the polynomials Aj(x)"“’Fj (x), completely determine the shape of
the cardinal spline functions. Between two adjacent nodes the cardinal
functions do not have zeros and the sign of the function changes when a node

is pegsed. Moreover, sk >0 on (xk-1’xk+1) and this function is symmetric

n
with respect to X, If we evaluate the sum 2 Isl(x)l on [xj_1,xj] using
i=1

(67), then we obtain as a consequence of these remarks that

|a1(x)|

1

nMs

1+ (0400 - 230) [y + EA00+ By 5 (mm )

1

and

|8 (x) |

1

M

1 1+ (050~ 3)) B ||+ @500 +F5 Gy Do)+ (am2

n

In view of lemma 4 we know that the maximum value of I |s'(x)| is attained
i=1

when x = %(xj_1 +xj). However, in formulase (68) and (69) equality holds for

this choice of x. This establishes the identities (65), (66) of lemma 5. ®

Lemmas 4 and 5 imply the following simple corollary.
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Corollary
n n
2 2
1 + n z [Ai] < "yn“ <1+7& = IAil .
1=1 1=1
Proof

The left-hand side inequality is an immediate consequence of lemma 4.
The upper bound for Ulhﬂ follows from lemma 5, assertion 6 and taking into
account that p <0, H ‘

We will now state & formula which enables us to compute the exact value
of Nynﬂ; however, the expression of lemma 4, together with lemma 3, is much
better suited for numerical purposes. Because of the intricateness of the
expression involved we have to introduce & number of abbreviations. If the
numbers C, ,...,D% and z , z, are defined as in (44), respectively (40),
(41), then we put

~k~1 k+1

C1z1 -+~C4z1 = ufe) ,
~k~1 k+1 _

0222 + 03z2 = v(c) ,
~k

C.z., +Cz =),

c.z¥ +0.z =) .

Corresponding expressions are denoted similarly, for instance

- =k-1
*
D222

k+1

"'k -—
z, =v(a*), Dz +D, 2, =T(d) .

+ D*
D3 1

If additionally we set

-1 -2
1- 162" + 2 a(z1)

-1 -2
1 - 2821 + 2z, B(z1) s

it

then the theorem takes the following form.

Theorem 3
Assume n = 2 (k=1,2,...). If the nodes X, (i=0,1,...yn) are equally
spaced on the interval [0,1], then the norm of the interpolating periodic

quintic spline operator Ln is given by
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(70) L -1 =
_5 ()W (e) - U(e W(c*) 5 V(c* W(c) - V(e W(c*)
2 (o) (@(e) +7(e))-U(eM) (o) +v(e))  © V(e)(@(o*) +F(eH)-V(e*)(ule) +v(c))

where '.

U(c) = z1u(c)oc(z1) + zzv(c)ot(za)',

V(e) = z,u(e)p(z,) + z,v(c)p(z,)

1= zk 1= zk
= u(c L)+ %(c 23 .
W(e) = §( >(Z1_1) ( )<32-1>

The norm of the operator Ln in case n = 2k +1 is given by the same formula
if it is adjusted in the following way: the arguments of u,v,u, v, U, V, W, i.e.

cy ¢*, have to be replaced everywhere by d, d*, respectively.

Proof

This can be given by using the contents of lemma 3, together with the
formulae (45), (46), (47), (48),and (64) of lemma 4. We have to delete all
further details because the calculations involved are much too lengthy to Le

reproduced here. ®

The next theorem is proved by direct calculations based upon theorem 3;

the upper bound given here for || Lnll is best possible.

Theorem 4

The norms lanll are ordered as follows:

2
(z1 +32, - 132122 +(Z1Z2) )

= 1.8161...
8 (1-2)(1-2,)(1-22) ’

1) Nl < Il <jfill<... <1+

2
(z1 +z,-132,2, +(2,2,)")

.. . 4 2 _

1) ALl <l <inll<... <1+ CETRICErR e BRULCREE
143) 0T,0 = 0Ll IS = 0o, Iy Wl = T fyeee -

Proof

The proof that the sequences {HL2 H,”L4|l,...} and {“Lan’“Ls lyo..} axe
increasing can be based upon (70), using assertions 1 and 2. By a careful
examination of formula (70) the best possible upper bound for L I is then
obtained. Statement iii) can be derived from (70) by meking use of asser-

tions 1 and 2; all further details have to be omitted. M
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We remark that similar results hold for the norm of the interpolating
periodic cubic spline operator, the nodes being equally spaced (cf. theorem
2 in 3]).

In the following table we have collected some numerical results., The
values of "Ih" (n=2,3,...,11) were obtained by applying formula (64) of
lemma 4, together with lemma 3. They clearly show that already for small
values of n the norm of Iﬁ is very close to the upper bound 1.8161... .

Table 1
I, = 1 I Il = 1 2= 1.625
N, i = 4 ';—ls)%=‘1'4101“‘ Il = j,—gg= 1.7784. ..
ILll =12 =1.625 R 1.8001...
o, i = 1 22 = 1.7302.... Iu, I = 1 22822 = 1.81...
L, =1 122 = 1.7784... I, 1= 1 3233428833 - 1.5158...

7. We recall that theorem 1 of the third section gives an error estimate
for the difference between the function f and the corresponding interpola-
ting spline function in terms of the modulus of continuity of f with argu-
ment 1/n. Once we know the values of the first and third derivatives of the
function sk, this information can be used to improve theorem 1. This is the
purpose of this section. First we need a few preliminary lemmes, If from now

on we denote the function Aj(x) by 4, etc. then one has

Lemme 6

let n = 2k, respectively n = 2k +1. If the numbers 0., ™ are defined
as on p. 15, then
k-1

k
Z {logD+oy  O4mFony E|} + 2 {[o ; Doy, Ctmy Ftm ,Bl} -
i=0 i=t

k~1 v k1
= (¢c-D) 2 [N + (F-B) 2 |nmy]
i=o0 i=0
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Proof
We recall (p. 15) that sen o, = (1) (1-0,1,...,k1) and
sgn m, = (- 1)k+1 (1=0,1,...,k=1; n7(5) Furthermore it was established that
C,F >O and D,E <O on [xj_1,xj] As a consequence we have
:agn(cvi].)+o:.L_1 C) = sgn o, , and sgn(niF +n E) = sgn n.. The sum on the
left side in the statement of the lemma therefore is
k-1 ,
i}io{loiD+oi_1C+niF+ni_1El +|qu+ol D+n E+1t Fl}

k-1 K41+
z (=1) {-0;D=0;  C-m;F-m_ E+o,C+o, DHmE+n_F}

i=0 1-1
k+i+ et k-
e (D) T (o @) 7 (1) (e ) =
i=0 i=o0
k-1 k-1
= (C-D) = |7\[+(F E)2 [m] .
i=o i=o
ki H
In the last step of this deduction we used that sgn A, = (-1) and
sen m, = (= 1) o The case n = 5 can be verified by a dlrect calculation of

the sums involved. This completely proves the lemma. W

Lemma 7 ’
On the interval [xJ 1,:‘:J.] the functions A-ok(C +D)-nk(E +F) and

B +ok(C +D) +nk(E +F) are nomnegative.

Proof
Put J = A-ok(C +D)-n.k(E +F). Then B+ck(C +D)+nk(E +F) = 1-7J, If we

put x =x. . +6n"' (0<6 < 1), then it follows from (3), (4) that

J=1
(11) 0+D=£r—le(1-e)(1 +6)(6-2)(0-1),
A1 2 2
(72) E+F =, ——0 (1-6)(2e-1) .
:\‘24:1
Because 0, > 0 and m, <0 (n # 5), it is easy to verify that for 3—< 0 <1

k
we have J > O. we w:.ll also show that J< 1 when 0 € ['5,1] We note that the
function A is mbnotone decreaging on [x 1,:cJ] with A = % when 6 = 4, More-
over, by a weakened version of assertlon 5 we have |0 | < 2n, ln | < 24n3.

It is therefore sufficient to establish that




- 8(1-0)(1+06)(6=~2)(20-1) + 6°(1-0)%(20-1) <% ,

which is an elementary calculation.
The case n = 5 can be handled separately, thus lemma 7 is proved when
0 € [%4,1]. Similar considerations hold in case 0 < 0 <+4. W

Jemma 8
Let n be an arbitrary but fixed positive integer. Moreover, let

x=x,_ +8with0<3< (20)7". If p denotes the smallest integer satis-

fying p = (nd)~', then for n # 3 we have

(p-1)[B+0, (C+D) +m (E+F)| + |A-0 (C+D)-m (B +§')| <2- (np)?

If 8 = (2n)~', the bound can e lowered to 1.

Proof ;
In view of (5) and lemma 7, the left-hand side of the asserted inequa-
lity is
=1+ (p-2){B +ok(C +D) +m (E +7)} .

If we insert the expressioms for B, C+D and E +F from equations (2), (71),

(72) into this identity and abbreviate nd by 6 in the next formula we

obtain
: o n
I=1+ (1>-2){95 -g-e‘ +g- 6 +;k- (- +g~ o* -g o° +o) +;4-kj (26° - 56* +46° - 6° )1
n - |

If we make use of the inequalities for Ops T (n;é 3) as stated in assertion

5, then after some elementary estimations there follows

I<1+(p-2)d(1+md) .

Since p < 1+(nd)”', we have pnd < nd +1 so that I < 1+ (nd +1)2 - 2nd(nd +1) =
= 2- (). Note that if & = (2n)”' then p=2, I=1, and the bound 2~ (nd)?
can be lowered to 1, This proves the lemma. B

The improvement of theorem 1 now reads as follows.

Theorem 5
Iet £ € C and let Lnf be the associated interpolating perdiodic quintic

spline function, the nodes x, (i=0,1,...,n) being equally spaced. Then for

n # 3 there holds the error-estimate

i(Lnf-f)(x)[ <c, w(fd) ,
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- 1 - o = < < .
where & = m:inlx xi| and L | sc <2|L ;. If n =3, then ||L3|| c, <2 04||L3"

Proof

letn=2korn=2k+1 (k#1). let % be any point, and select j so
thet x; . <X < x,. From equation (16), tcyether with the equation A+B = 1,
we obtain

€ = (Lnf - £)(x)

]
N MB

fisi (x)-f(x)A-f(x)B =

L}
—~
H

» - £(x))A+ (fj—f(x))B +

n
* F}.
+ E B T T }

In order to simplify the notation we abbreviate f,j ey O Fi and £(x) by £

We also note from lemma 3 that )‘k+i = - Ak-i and s ST My g for
i=0,1,...,k. Furthermore, }‘0 =m = O when n is even. Hence
r n-t1
= - - . . F -
¢ (fj-1 fx)A+(fj fx)B+i§_O f:i.(hi-d C+)‘iD+m1-1E+m1 )
k-1 k k-1
(73) \ =(f, ,-¢ At (E £ )8+ 5;2‘ A D+ z foa_,C-3 T, AD+
i=0 i= i=0
k-1 k=1 k k-1 _, k-1 1
- - mFa & f , ., m,]
L i=o f 2k-i+1 Alc +i§o flm F +1§1 fJ.mz.-1E iio f2k—lm1 1=0 2Kkwi+1 1

Recalling the definitionsfor o, and m, we apply to (73) the method of par-
tial summation. The result is

k-1
e= % {('f"i 1+1)(° D+o, C‘+niF+ni_1E)} +
(74) +(f -£ ){B+q (C+D) +m (E+F)} + (£, - £ ){-A.+o (C+D)+1tk(E +F)}

K
*z (G - fk+i+1)(°k-i-1D*"k—ic”‘k—i-1F+"k-1E)} '

Now let & = min|x-x| = x‘n:in{x-:c._j 1,xj-x}~. If = O then x is a node and
i -

the inequality in question is trivial. We assume therefore that & > 0. If
w(£3;8) = 0, then f is a constant function and Lf=f. We assume therefore

that w(£3;8) > 0. Since the inequality of the theorem is homogeneous in f, it
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is sufficient to give the proof for functions f such that w(f;d) = 1. Now
let p denote the smallest integer satisfying p = (nd)”'. Since each interval
of length 1 /n can i)e subdivided into p intervals of length at most d, we
have l?i‘?iﬂl < p. Assume now that X-X; , = b and that X, =% = n~' -5,
(The analysis of the other case when x.-x = &, is almost exactly the same.)

Then |fx-fj_1| < 1 and |fj—fx| < p-1. Thus
k-1| | B +a, ( (E+F)]
e<p I |o,D+0, C+n.FP+n, E| + (p-1)|B+c, (C+D)+x (E+F)| +
j=o * i-1 i 1 k e v

k
+ | -A +0, (C +D) +.n.k(E +F)| +p ii,lok-i-‘ D+oy s C+m ., F +1r.k_iE| .

We have analysed the sum on the right in this inequality in lemmas 6 and 8.

Using this results we obtain
k-1 k-1 2
(75) esp{(c-n)z lxi] + (F-E) = ]mil‘+ 2-(nd)" .
i=0 i=0
If we evaluate the functions C-D and F~-E at the point x = xj_1 +d, then in

view of formlae (6), (7) we obtain 8(1-nd), -1—15 52 (1 -nd)?, respectively.
Also we note from the proof of lemms 4 that

(76) —— k—1| I =+ k-1l |
7 2 m, = L " - 1 ol 2 A- .
96n3 i i n 2n N i

Finally we use the inequality p < 1+ (nd)”', Consequently

(77)
Ces (1 +(na)“){an262(1-na)2(||Lnu-1)+(5(1—na)-4n52(1-n5)2)_£1|xi| +2-(nd)? .
: i=0

On account of (76) we may write
k—1I |
E A <aalinf-1) .
i=0 * n
Using this inequality in (77), we obtain eventually
e < (1+(nd)™" )23 (1-n3) (L, | - 1) +2 - (mb)?

and the right-hand side can be proved to be smaller than 2|an]|.
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In the special case that & = (2n)~', we have p=2, and by lemma 8 the
bound 2- (nd)? can be lowered to 1. Hence in this case & < L 1, because of

(75) and (64).

In order to see that c, > lanll we construct a particular function f by
specifying T, , = 'f'k+i+1 =pfori=0,24,...and ¥ . =% . =0for
| i=1,35... Also, we take fx = p-1, The function £ varies linearly

between the specified values, is periodic, and satisfies w(f;d) = 1. In view

of (74) and (75) we obtain for this function

k-1 k-1
c = p{(c-'n) Z A+ (@-E) 5 Im.li 1.
i=0 i=o0 T
Taking into account formulae (6), (7) and (7€), the above expression for €

ka1

can be evaluated in terms of p, n, b, IL Il and = |Ai|. Also we derive from
i=0

the corollary on page 20 that

k-1
-gn-igow > Il - 1
moreover, pnd > 1.

Using these two facts, elementary caloulations show that ¢ = ||L l,"Ilj .
(™e example just given is satisfactory when n is odd, If n is even, it is
modified by defining ?o to be equal to ?1.)

Finally, we remark that the statement in theorem 5 about the particular
case n = 3 has to be dealt with separately. We omit the details, This ends
the proof of theorem 5. H

Coxrollary
If £ € C and Lnf is the interpolating periodic quintic spline function

associated with £, then the estimate

| (1f - £) ()l < UL H(t50)
holds for an arbitrary point x such that & = (2n)”', It is not possible to
introduce a constant factor < 1 on the right-hand side.

Proof
This follows from the proof of theorem 5. M
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