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Chapter 1

Introduction

As a general introduction, this chapter describes the relevance of the work, the connection with

existing work, and its potential with respect to future applications. First, we discuss what prop-

erties simulation software for device design should ideally have. By indicating the opportunities

for further improvement in present electromagnetic design techniques, we substantiate how the

modeling technique that we demonstrate may contribute in this matter. Subsequently, we provide

a historical context that describes the underlying techniques. Next, the scope of our method is

illustrated through a list of features. Finally, we outline the organization of the thesis.

1.1 Towards a modular design approach

Nowadays, businesses are facing an ever stronger competition in an expanding global market.

Consequently, products have to be developed and improved more rapidly to meet the demand

of the consumers. On the other hand, products become more complex and involve more so-

phisticated and expensive production processes. The incentive to reduce lead time and product

costs calls for ongoing improvements in product development time. Before the introduction of

the computer, product specifications were attained through an iterative process in product man-

ufacturing. Each subsequent iteration involved further product optimization and tuning through

feedback from measurements on prototypes. Because this often required several prototypes to

be made before specifications were satisfied, product development tended to be slow. The pro-

totype was preceded by a design stage, which usually amounted to making predictions based on
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extracted models, possibly supported by small but indicative experiments. Such an approach is

at present considered as too costly and time-consuming for product development.

The advance of computers has led to a shift of product optimization from the production stage

to the preceding design stage. Via numerical methods, the behavior of the final product can be

predicted in a real-life environment. As a result, less prototypes have to be constructed before

the final product can be manufactured. To minimize product variation, the fault tolerances of

the manufacturing process may be accounted for in the design stage through a sensitivity analy-

sis. The optimization and sensitivity analysis call for repeated simulation steps, which in case

of stringent product specifications or large complex products can be time-consuming. Conse-

quently, the design stage has become a decisive factor in the overall product development time.

According to Moore’s law [1], the number of transistors on integrated circuits doubles every 18

months. Ever since the introduction of the computer, Moore’s law represented a rough mea-

sure of computer processing power. Present developments in integrated circuits tend to focus

on parallel processing, e.g., grid computing and multi-core processors, or on Hyper-Threading

technologyTM, rather than the increase of CPU speed. Most single-computer applications for

electromagnetic simulations are not fully taking advantage of parallel-processing technologies.

In particular, large complex products often need to be simulated in one go to account for the

interaction between all its parts. Such common simulation approaches are thus not necessarily

well suited for parallel processing. Although parallel processing can often be introduced in the

implementation, it may come at the cost of efficiency. In electromagnetics, a new modeling

technique that inherently lends itself to parallel processing would be a most welcome asset.

Device design involves tuning of certain product properties, referred to as the design parame-

ters. The design parameters that require tuning are first identified from the product specifications

and the design draft. Depending on the complexity and size of the product, there may be a

large number of design parameters. Commercial simulation software packages that are available

nowadays, at best come with a straightforward optimization shell, i.e., optimum parameter val-

ues are determined through parameter sweeps. Intuitively, more parameter evaluations lead to a

better analysis of the design. Each set of parameter values that is considered usually requires a

full recomputation of the entire device, which may be time-consuming. Clearly, the overall com-

putation burden to consider all parameter variations with such brute-force optimization methods

will soon become an obstacle in view of the stringent constraints on the development time of

products. Hence, either the simulation time for each parameter value or the optimization strategy

has to be improved to prevent the product design from becoming too costly.
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One should also consider that the composition of an initial design draft is normally realized via

a top-down approach, whereas the device constituents are mostly developed via a bottom-up ap-

proach. The design draft is then systematically subdivided into definite blocks of a tree diagram.

This systematic design approach is preferably followed in the actual device design as well, such

that blocks may be designed and optimized separately. At each stage, the performance of the

composite device is then evaluated by combining the known properties of its already optimized

constituents rather than by a full recomputation of the complete structure. Unfortunately, present

simulation software is not in line with this desired systematic design approach, since a minor

structure modification often requires repeating a full simulation of the entire product. Intuitively,

the re-evaluation of the entire structure for a minor local modification seems excessive.

In network theory, simulation methods exist that are consistent with the preferred systematic

design approach described above. In particular, in electrical networks the physical properties

of a circuit element that contribute to its electric behavior are captured in terms of the rela-

tion between voltages and currents at input and output ports. A network is readily extended

by combining the corresponding circuit(s), i.e., by accounting for the electric interaction at the

ports. This is referred to as diakoptics [2]. As regards optimization in network theory, the linked

circuit elements are first converted into a simple equivalent network defined at the ports of the

element that is optimized, thereby attaining maximum efficiency for repeated component modifi-

cations. Accordingly, via the modular approach associated with network theory, circuit elements

are reusable and can be tuned efficiently.

In a full electromagnetic device design, there are at present no tools available that are in line

with the desired systematic design approach. Most electromagnetic simulation methods are still

brute-force solvers, for which each minor structure modification requires a full recomputation.

Moreover, in commercial software packages, optimization is based on straightforward parameter

sweeps, if available at all. The only way in which structure parts are reused in software to date

is in structures that are fully periodic along a predefined direction. Large finite arrays are then

initially treated as infinite arrays to exploit reusability, while effective finiteness is reintroduced

through analytic approximations [3, 4].

The schematic design approach in network theory could be applied in an electromagnetic sense

through the introduction of a modular electromagnetic modeling technique. The challenge is to

define appropriate input and output ports in combination with a method that determines the field

interaction between different elements. We have developed a new electromagnetic modeling

procedure that allows a modular design approach, called linear embedding via Green’s opera-
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tors (LEGO). The definition of the ports is based on equivalence principles. In particular, the

electromagnetic field response of scattering objects that are enclosed by a scattering domain is

described in terms of equivalent boundary current distributions. Through an extension of a di-

akoptics method, referred to as embedding [5,6], we account for the electromagnetic interaction

between separate domains to arrive at a full electromagnetic characterization of the combined do-

main. In turn, the composite domain can be repeatedly reused to form larger composite domains,

which illustrates the modular building approach.

Via our modular approach, the electromagnetic structure design process could be made to mimic

present circuit design. Ideally, structure modifications then amount to combining appropriate

electromagnetic building blocks in a design diagram. Such electromagnetic blocks are prede-

fined at an earlier stage and are provided through large databases, similar to circuit and compo-

nent libraries in netwerk theory. These databases contain the elementary structure constituents.

The design stage is then limited to the proper combination of blocks, thereby attaining maxi-

mum efficiency. The results of each intermediate combination step may be appended to existing

databases and reused at will. Attention can thus be focussed on the critical design parameters

in localized blocks. This approach facilitates an interactive design process and provides insight

into the behavior of the separate structure parts, as the field responses may be visualized at any

stage within a building sequence. Since the memory size and data transfer rate of data storage

devices such as hard disks have improved significantly over the last decade, managing large data-

bases that are stored on disk has become feasible. Clearly, the modular approach is inherently

suitable for parallel processing. This modular electromagnetic technique corresponds with the

desired schematic design approach, since products can be conveniently subdivided into elemen-

tary blocks that are designed separately and combined at a later stage.

The modular electromagnetic approach that we propose also facilitates structure optimization.

Owing to the modular concept, a full recomputation of the entire structure is already avoided

since only the block that encloses the structure modifications is to be recomputed, while the elec-

tromagnetic interaction with the unchanged blocks is determined through embedding. Electro-

magnetic optimization often implies local structure variations within a small designated domain.

Analogous to netwerk theory, the field response of the fixed large structure can be described in

terms of an equivalent surrounding environment defined at the boundary (ports) of the designated

domain. Because the boundary of the designated domain is significantly smaller than that of the

large structure, subsequent structure modifications within the designated domain can be carried

out with great efficiency.
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Other techniques are available to speed up optimization. For instance, “reduced-order-modeling”

[7], amounts to a simplified model using a decomposition into dominant and subdominant eigen-

states. In “marching on in anything” [8, 9], the results of simulations for previous parameter

values are combined to generate an initial estimate so as to accelerate iterative solution methods.

With these techniques, either the accuracy of the model is compromised, or the full complexity of

the entire structure has still to be accounted for. Because repeated simulations of the entire struc-

ture for each new parameter value dominate the overall computation time, most improvement

can be attained there. This is provided by our modular approach.

1.2 Historical context

In this section, we provide a historical overview of electromagnetic methods that form a basis

for the modulair electromagnetic procedure that we propose. Here, we follow the introduction

of [10], except that we leave out the review of electromagnetic bandgap structures.

The field scattered in an inhomogeneous region with electromagnetic contrast may be consid-

ered as being generated by secondary contrast sources inside, or on the boundary of that region.

Invoking Huygens’ principle [11], we may consider the scattered field outside a contour (or

surface in the 3-D case) surrounding the inhomogeneous region, as having been generated by

an equivalent source distribution on that contour (surface). Mathematically, this is referred to

as an equivalence principle. The equivalent source distribution is not unique. Love’s equiva-

lence principle [12] is based on both electric and magnetic equivalent current sources, whereas

Schelkunoff’s equivalence principle [13] involves either electric or magnetic equivalent current

sources. From the perspective of an observer outside the contour surrounding the inhomoge-

neous region, that region may be fully characterized electromagnetically through the scattering

response via the equivalent source distributions that effectively constitute a multi-port system

(albeit a continuous one).

The decomposition of large systems into interacting multi-port subsystems is called diakop-

tics [2]. Having been used in early days for problems in structural mechanics and electric net-

works, diakoptics has later been combined with the method of moments for the analysis of wire

antennas [14,15], and for planar microwave circuits [16]. For these problems, the definition of the

ports comes naturally. Diakoptics has been applied to field problems in quantum mechanics and

electromagnetics through the introduction of a non-local admittance operator that provides the
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boundary conditions for a variational field problem in a confined region of space [17–20]. This

method is referred to by the generic term embedding. More recently, diakoptics has been used for

supplying boundary conditions for the Finite-Difference Time-Domain technique, which resulted

in the so-called Green’s Function Method [21,22]. Embedding has been proposed in inverse scat-

tering [5, 6] as an alternative to de-embedding, which, like deconvolution, is not stable per se.

We have developed a specific variety of the Huygens-Schelkunoff principle based diakoptics, re-

ferred to as linear embedding via Green’s operators (LEGO). A first 2D theoretical derivation of

the embedding stage of LEGO using Schelkunoff’s equivalence principle has been given in [23],

which presents an extension of embedding applied to surrounding scattering domains used in

inverse profiling [8] towards adjacent domains. This extension has provided a starting point for

the work that is presented in this thesis. In addition, for the full 3D implementation of LEGO,

we have continued the work of [24].

Several domain decomposition methods similar to diakoptics have been presented in the last

decade to reduce the computational burden associated with electromagnetically large scattering

configurations,e.g., a network representation of the domains by means of an equivalent circuit

extraction procedure [25]. Further, by using entire domain functions via synthetic basis functions

(SBF) that sample the solution space [26], a strong reduction of memory usage can be attained.

Alternatively, via the characteristic basis function method (CBFM) [27] the scattering object can

be partitioned into distinct domains which can be described by a set of basis functions that are

characteristic for the individual domains. Most recently, a domain decomposition method has

been presented that applies a domain characterization that is similar to that of LEGO [28].

1.3 General idea and features of LEGO

As illustrated in Figure 1.1, we start by sketching the general idea of linear embedding via

Green’s operators (LEGO). The abbreviation “LEGO” reflects the modular building principle

of the method that is common to the well-known LEGOTM bricks. In the first step we identify

and construct the elementary building blocks. A building block involves a scattering domain that

encloses one or more scattering objects. In Figure 1.1, a hexagonal shape has been selected for

the scattering domain of an elementary building block. To combine a block with other ones or

itself in an electromagnetic sense, a full electromagnetic characterization of its scattering prop-

erties is required. A conventional scattering operator relates the scattered fields to fields that are

incident on the boundary. Our scattering operator is a Green’s operator, since it relates equivalent
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sources that would produce the scattered field exterior to the domain to the equivalent sources

that would produce the incident field inside the domain.

1 2 3

Figure 1.1: Building large structures through a sequence of domain combinations. Dotted lines

indicate removed common boundary parts.

In the second step in Figure 1.1, we combine two elementary blocks. Via embedding, we first

determine the electromagnetic interaction between the adjacent elementary building blocks in

terms of their scattering operators. Embedding is regarded as a linear process since the medium

properties of the environment and hence the associated scattering operators are considered lin-

ear. The LEGO approach is completed upon composing the scattering operator of the combined

domain. To this end, the scattering operators of the individual blocks are merged via their known

electromagnetic interaction. Common boundary parts are removed in this process. In turn, the

composite block can be combined with itself, indicated by the third step in Figure 1.1, or with a

different block.

To provide an impression of the potential applications of the LEGO procedure, we list the fea-

tures of LEGO below.

• The scattering domain of a LEGO building block may be of arbitrary shape.

• The scatterer(s) that are enclosed by the scattering domain may be of arbitrary shape.

• The scattering operator that electromagnetically characterizes a scattering domain encom-

passes the scattered field for all possible excitations.

• Scattering operators of separate building blocks can be merged to create larger ones.

• Owing to the modular approach of LEGO, it is in line with the preferred systematic ap-

proach of a design process.

• With LEGO it is not required to identify all elementary blocks a priori, i.e., new blocks

can be constructed on the fly through an interactive design process.
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• Common boundary parts are removed when scattering domains are combined. In this way,

subsequent LEGO steps become more efficient.

• Via repeated application of the LEGO approach, it is possible to handle large finite struc-

tures, e.g., antenna arrays, frequency selective surfaces or meta-materials. Especially for

blocks that enclose scattering objects with high refractive indices.

• Databases can be constructed and managed which provide libraries of electromagnetic

blocks that have been predefined at an earlier stage. The design stage is then limited to the

proper combination of blocks in a schematic approach. Each combination of blocks may

be appended to existing databases.

• LEGO blocks are reusable. Hence, we can take full advantage of the reusability of structure

parts, no matter how insignificant the scale of repetition is. In Figure 1.1 is visible how the

reusability of the elementary block is used in the building sequence of LEGO.

• Since various LEGO blocks can be constructed via independent building sequences, LEGO

is inherently suitable for parallel processing technologies of modern computers.

• Owing to the modular approach of LEGO, design modifications can be performed without

the need for repeated full simulations of the entire structure. Instead, only those blocks

that are modified have to be recombined with the other one(s).

• Since device design often involves tuning local structure properties, the optimization stage

of LEGO can be accelerated considerably. Namely, restricting the embedding steps in

the design stage to a designated domain that is small compared to the large structure that

requires tuning, subsequent embedding steps for parameter sweeps become very efficient.

• Scattering objects may continue beyond domain boundaries. Because of this, the shape of

the scattering object(s) pose no restrictions on the choice of the enclosing domain shape.

• LEGO is a flexible method. On the one hand, any fundamental solution to Maxwells

equations for the enclosed interior domain may be employed to construct the scattering

operators of the elementary building blocks. On the other hand, the LEGO approach can

be integrated within existing software design packages. In particular the optimization step

of LEGO.

• Within the LEGO procedure, the band diagram of EBG structures can be determined via

the scattering operator of a unit cell. The unit cell may contain inhomogeneous or perfectly

conducting objects that may be continuous across the cell boundary.
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• Since the frequency is kept fixed in the LEGO procedure, it automatically applies to dis-

persive and lossy media.

1.4 Example of a design application

Below, we present an example of a design application involving electromagnetic bandgap struc-

tures (EBG). The design has been realized via a commercial full 3D general purpose finite-

element method, viz., Ansoft HFFSTM. Afterwards, we review the design approach and indicate

how the design process could have benefited from the LEGO approach. As an example, we de-

sign a transition between a standard-size rectangular waveguide with perfectly conducting walls,

and a linear-defect dielectric EBG-waveguide with a full 3D bandgap, centered at about 250GHz

in the mm-wave regime. In addition, bends and power splitters connected to this transition have

been tuned.1 We expect that these are to be basic components for devices in future integrated

technologies based on EBG’s. The woodpile EBG structure [29], which yields a full 3D bandgap,

is employed as a basis. An illustration of the woodpile structure is given in Figure 1.2a. It con-

sists of stacked layers of rectangular silicon bars with a relative permittivity of εr = 11.7.

Standard�

Reduced�

a/2 a

c

d

(a) (b) (c)

Reduced

Standard

Figure 1.2: The woodpile structure (a) with a = 471μm, d = 146μm and c = 576μm for a

bandgap of 20% and a center frequency of 250GHz. The top (b) and side-view (c) of the two-

step transition of standard-size metallic waveguide into EBG-waveguide. The removed bar is the

dashed one. The dark and light gray regions indicate metal and silicon, respectively.

An EBG waveguide inside a woodpile structure can be realized by removing a single bar in

the desired direction of propagation. To interface a waveguide in EBG technology with one

implemented in conventional waveguide technology, an efficient tapered transition is necessary

to avoid large insertion loss at the junction due to a mode mismatch between both waveguides.

1This work has been carried out for the European Space Agency StarTiger initiative (http://www.startiger.org).
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Integration of a dielectric waveguide in the EBG via tapering is a commonly used approach in

the optical regime to avoid unwanted radiation into the surroundings [30, 31]. The design of a

practical connection between a metallic and an EBG waveguide is more challenging.

In Figure 1.2, we show the final two-step transition by which a TE01 mode of a standard-size

metallic waveguide can be coupled to an EBG waveguide. By trial and error, we have determined

the position at which the EBG must be terminated so as to provide the best mode-match between

the EBG-waveguide mode and the TE01 mode. In Figure 1.3, the electric field is depicted for a

standard-size rectangular waveguide that couples, using the two-step transition of Figure 1.2, at

both ends of an EBG waveguide that is 7.5 periods long. The transmission efficiency is 97.9%

with an insertion loss of the transitions that is less than 1%. The remaining losses are due to

radiation emanating from the woodpile.

(a) (b)

Figure 1.3: The electric field for a cross section at the center of the EBG-waveguide parallel to

the top (a) and side (b) view of Figure 1.2b and Figure 1.2c, respectively. The transition into

standard-size metallic waveguide are employed at both EBG-waveguide ends. White regions

indicate a high field amplitude.

Bends and splitters can be created in the woodpile structure by partial removal of bars at right

angles, allocated one layer above or below each other, as illustrated in Figure 1.4a. The overshoot

distances, (Δb and Δs) of the two removed crossing bars are utilized to create a localized cavity

that provides the necessary coupling between both layers [32]. In Figure 1.4, we have shown the

electric field for an EBG bend and a power splitter-branch. The use of the two-step transition

yields 96.6% transmission.

The design of the EBG-technology components has been successful. However, the design process

has been very slow because at every step in the brute-force optimization stage based on parame-

ter sweeps, the field simulation had to be repeated for the entire 3D structure. With a mesh
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Δb

Δb

Δs

(a) (b) (c)

Figure 1.4: An overview of the removed bars for a power splitter and two bends in an EBG-

waveguide (a). The grey-colored bar represents a layer up or down. The electric field is shown

for a cross section at the black- (b) and grey-colored (c) bar(s), with transitions into metallic

waveguides. White regions indicate a high field amplitude.

consisting of about 2.105 tetrahedra, which is modest by today’s standards, such an optimization

approach required several hours for each set of parameter values.

If the LEGO approach had been applied, the first step in the design would be the construction of

the elementary building block(s). A convenient choice would be a single unit cell of the wood-

pile EBG. Next, we would compose the large basis EBG structure through repeated embedding

steps. LEGO would take advantage of the reusability of the elementary blocks. By building a

large database, each block combination can be conveniently reused at a later point. Common

boundaries are removed when blocks are merged. In this way, consecutive combinations become

more efficient. In combination with the reusability of blocks, the computational complexity of

LEGO may be competitive with that of the direct solver. Further, each block is defined in terms

of scattering operators, which encompasses the field response for all possible excitation. In par-

ticular, if we select a small designated domain in which we allow for structural variations, its

boundary and hence the associated scattering operator that describes the response of the fixed

environment would be small as well. Thus, the fine tuning of the bend, splitter and two-step tran-

sition would become very efficient in the optimization stage of the LEGO procedure. At present,

the LEGO software is a research code, which lacks a user-friendly I/O interface and a versatile

mesh generator, which is why we have not attempted to process the structures described above

using the LEGO approach.
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1.5 Outline of the thesis

In the LEGO approach, equivalence principles are used to formulate scattering problems in terms

of equivalent source distributions, which, when used in source-type integral representations, pro-

duce the incident or scattered field in certain subdomains in space. In Chapter 2, we present the

basic theory in which those integral representations are formulated. In particular, after deriving

the general field integral representation in terms of the well-known Stratton-Chu formulas, we

discuss Love’s and Schelkunoff’s equivalence principles (LEP and SEP), and define the equiva-

lent boundary current distributions associated with the equivalent field states. In Chapter 3, these

equivalent states are applied to formulate boundary integral equations by which the scattered

field response of perfectly conducting and dielectric objects may be determined. These integral

equations may also be employed to construct the elementary LEGO building blocks. Since the

tangential scattered field on the object boundary is unknown, the method of moments procedure

is employed to determine the equivalent currents. This solution strategy may also be used to

compute the unknown equivalent currents on the scattering domain boundary for LEGO.

In Chapter 4, the principle of LEGO is introduced in terms of a transparent operator formalism.

The general definition of the pertaining operators applies to both LEP and SEP. The LEGO

approach is extended to optimize large structures efficiently within small designated domains.

After the discretization of the operators, we assess the computational complexity of the LEGO

approach, which is compared with direct solution methods. Further, a hybrid variety of LEGO is

discussed by which other electromagnetic solution methods may be incorporated.

In Chapters 5 and 7, we discretize and investigate the integral equations for the scattering from

perfectly conducting and dielectric objects for the 2D and 3D cases, respectively. The solvability

and the order of convergence of the numerical approximation for the scattered fields are inves-

tigated. Several ideas are proposed to improve the results. The insight that is gained may be

utilized in the LEGO approach to attain maximum performance through an optimal choice of the

equivalence principle, the domain shape, the mesh density, the quadrature rule and the test and

expansion functions.

In Chapter 6, we illustrate the LEGO approach numerically for examples involving electromag-

netic bandgap structures. The wide applicability as a design tool for large finite structures is

demonstrated and the optimization stage of LEGO is used to design EBG power and mode split-

ters. The accuracy of LEGO based on SEP and LEP is investigated, in combination with the
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suppression of interior resonances. More general aspects are treated as well, e.g., the depen-

dence on the building sequence, the choice of domain shape and the loss of accuracy due to the

accumulation of errors associated with a sequence of embedding steps. Further, we consider

scattering objects that are continuous beyond domain boundaries. As an additional application

of LEGO specific to EBG structures, we determine the band structure of EBG materials. The

LEGO approach is demonstrated for a full 3D scattering configuration at the end of Chapter 7.

Finally, in Chapter 8, the main conclusions are drawn of the work that is reported in this thesis

and recommendations are given for further development and applications of the LEGO method.
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Chapter 2

General Field Representations

In the LEGO approach, equivalence principles are used to formulate scattering problems in terms

of equivalent source distributions, which, when used in source-type integral representations, pro-

duce the incident or scattered field in certain subdomains in space. In this chapter, we present the

basic theory by which those integral representations may be formulated. In particular, after de-

riving the general field integral representation in terms of the well-known Stratton-Chu formulas,

we discuss Love’s and Schelkunoff’s equivalence principle and define the equivalent boundary

current distributions associated with the equivalent field states.

2.1 Introduction

In Section 2.2, the Maxwell’s equations, which describe the electromagnetic field, are introduced

in the time domain. By enforcing causality of the field, appropriate boundary conditions ensure

uniqueness of the field. The general medium properties are set out and, subsequently, Maxwell’s

equations are considered in the Laplace-transform domain. For the construction of the LEGO

scheme it is convenient to introduce notional magnetic sources and currents in Maxwell’s equa-

tions, which is described in Section 2.3. Boundary conditions for the tangential and normal field

components across an interface between two media are presented in Section 2.4. The bound-

ary conditions account for the presence of surface currents. Although Sections 2.2- 2.4 describe

basic electromagnetics that can be found in most textbooks and may be skipped, we prefer to

include these sections for the sake of completeness and the organization of the thesis.
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Next, in Section 2.5 we introduce the Lorentz reciprocity theorem which lays the foundation for

the mathematical formulation of Huygens’ principle and reciprocal systems. The dyadic Green’s

function of a homogeneous medium is defined in Section 2.6 to formulate an integral representa-

tion for the field that is generated by a point source. In Section 2.7, we derive general field repre-

sentations for a bounded domain, leading to Huygens’ principle and Oseen’s extinction theorem.

The corresponding integral representation are expressed in terms of the familiar Stratton-Chu

formulas. Subsequently, the pertaining equivalent currents are defined in Section 2.8. Further,

we present the particular equivalent states by which the field may be partitioned. Finally, we

explore the differences between the equivalence principles.

2.2 Maxwell’s equations

The electromagnetic field is governed by Maxwell’s equations. Together with the constitutive re-

lations these equations describe the coupled behavior of the electric and magnetic field strengths

in space and time. Assuming that appropriate boundary conditions are provided for domains

with a boundary, uniqueness is guaranteed by enforcing causality conditions. The macroscopic

Maxwell equations in the time-domain constitute a hyperbolic system of partial differential equa-

tions, given by [33],

∇ × H = ∂tD + J , (2.1a)

−∇ × E = ∂tB, (2.1b)

where∇ is the gradient operator and ∂t denotes differentiation with respect to t. Here, Eq. (2.1a)

is referred to as the Ampère-Maxwell law, and Eq. (2.1b) as the Faraday-Henri law. The script

font indicates a time-domain representation. The field quantities in Maxwell’s equations are set

in boldface to emphasize their vectorial nature and represent,

E(r, t) electric field strength [Vm−1],

H(r, t) magnetic field strength [Am−1],

D(r, t) electric flux density [Asm−2],

B(r, t) magnetic flux density [Vsm−2],

J (r, t) volume source density of electric current [Am−2].

Note thatJ includes the impressed and induced electric current distributions. AlthoughMaxwell’s

equations are independent of the applied coordinate system, right-handed orthogonal coordi-

nate systems are applied. In case of a Cartesian reference frame, the position vector reads
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r = xx̂ + yŷ + zẑ, where the hat denotes a unit-length vector. Maxwell’s equations are supple-

mented with the continuity equation, also referred to as the local form of the charge conservation

law,

∇ · J + ∂t�e = 0, (2.2)

which relates electric charge and current densities with �e being an electric-charge density [Asm−3].

Upon taking the divergence of Maxwell’s equations and using the continuity equation, we arrive

at the so-called compatibility relations,

∇ · ∂tB = 0, (2.3a)

∇ · ∂tD = ∂t�e. (2.3b)

To meet the requirements for uniqueness, the causality condition has to be satisfied, which states

that the electromagnetic field is causally related to the action of sources and hence should vanish

prior to the instant, say, t = t0 = 0, at which the sources are switched on. Furthermore, the media

considered in this thesis are assumed to be linear, passive and time-invariant. To exploit these

properties a Laplace transformation with respect to time is performed. The one-sided Laplace

transformation is defined as

F (r, s) =

∞∫
0

F(r, t)e−st dt, (2.4)

with s = β + jω, where ω ≥ 0 is the angular frequency. Further, j is the imaginary unit,

j2 = −1. An italic font indicates the Laplace-transform vectors. Causality of the field is taken

into account by requiring that all causal field quantities are analytic functions of s in the right

half (0 ≤ β < ∞) of the complex s-plane. The corresponding inverse Laplace transformation is

given by the Bromwich inversion integral,

F(r, t) =
1

2πj

β+j∞∫
β−j∞

F (r, s)est ds. (2.5)

Usually we select β = 0, and define the frequency f [Hz] as f = ω/2π. From Eq. (2.5) we

infer that time-harmonic fields have an ejwt time dependence. The continuity equation in the

Laplace-transform domain is given by

∇ · J + s�e = 0, (2.6)

and the compatibility relations read

∇ · B = 0, (2.7a)

∇ · (sD + J) = 0. (2.7b)
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Thus far, the system of partial differential equations is incomplete since the constitutive relations

describing the field-matter interaction have not yet been specified. We assume that the media are

isotropic, locally reacting, and non-chiral, i.e., linear, such that we have the constitutive relations

B = μH , (2.8a)

D = εE. (2.8b)

The scalars ε and μ represent the complex permittivity [AsV−1m−2] and permeability [VsA−1m−2]

of the medium. These scalars depend on r in case of inhomogeneous media and may be cast in

the following form

ε =ε0εr +
σe
s
, (2.9a)

μ =μ0μr, (2.9b)

in which σe is the scalar electric conductivity [AV−1m−1], with εr, μr and σe real and posi-

tive. Note that D now incorporates the electric conducting current. Accordingly, henceforth all

currents are assumed to be primary sources. The quantities μ0 and ε0 represent the free space

permeability and permittivity. By definition, μ0 = 4π10−7VsA−1m−2, while ε0 follows from

the speed of light in free space, c0[m/s], according to
√
μ0ε0 = c−1

0 . Furthermore, εr and μr
are dimensionless and represent the relative permittivity and permeability of the correspond-

ing medium. Hence, for a dielectric, possibly conducting medium, Maxwell’s equations in the

Laplace-transform domain reduce to,

∇ × H = sεE + J , (2.10a)

−∇ × E = sμH . (2.10b)

2.3 Duality principle

At present, no magnetic sources have been found in nature. For this reason Maxwell’s equa-

tions contain only electric sources and currents. However, in the construction of computational

schemes it is often convenient to use the concept of fictitious magnetic currents and charges. In

the extended formulation, Maxwell’s equations take the more symmetric form

∇ × H = sεE + J , (2.11a)

−∇ × E = sμH + M . (2.11b)
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whereM [Vm−2] represents a magnetic volume source which now may incorporate the magnetic

conduction current, through the permeability of the medium, i.e., μ = μ0μr + σm/s, where

σm[VA−1m−1] represents the fictitious magnetic conductivity of the medium. The corresponding

compatibility relations read

∇ · (sD + J) = 0, (2.12a)

∇ · (sB + M ) = 0. (2.12b)

Note that these currents are now primary sources.

According to the duality principle the electric and magnetic fields are interrelated for linear

isotropic media via the following set of formal substitutions:

D′ = −B, B′ = D,

E′ = −H , H ′ = E,

J ′ = −M , M ′ = J ,

ε′ = μ,

μ′ = ε.
(2.13)

The primed field {E′,H ′} also satisfies Maxwell’s equations and is referred to as the dual of the
original field {E,H}. The same word is also used for sources and media. Save for a change in
sign, the dual of the dual of a field corresponds to the field itself. Although other dual relations

are possible, we prefer the dual sets above, since the medium parameters have the same sign.

The introduced fictitious magnetic charges and currents will be useful not only when duality is

invoked to generate new classes of solutions to Maxwell’s equations, but also for computational

applications, and especially for those involving equivalence principles.

2.4 Boundary conditions

In Section 2.2 uniqueness was achieved by imposing the condition that the electromagnetic field

must be causally related to the action of sources. In addition to imposing causality, we must

also specify the behavior of the electromagnetic fields across a smooth interface ∂D between

two media with different electromagnetic properties. Across an interface the field is not continu-

ously differentiable in the sense of ordinary functions, which implies that the partial differential

equations (2.11) cease to hold. Across such an interface certain field components are related via

boundary conditions, while others are left free to jump. These boundary conditions are derived

from the (global) integral form of Maxwell’s equations via Gauss’ theorem.
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For a surface ∂D of a closed bounded medium (volume) D, with a unique tangent plane that
is piecewise smooth in every point and a vector A which is continuously differentiable, Gauss’

theorem states that ∫
D

(∇ · A) dV =

∮
∂D

n̂ · A dA, (2.14)

while for a scalar f , the generalized Gauss’ theorem reads∫
D

(∇f) dV =

∮
∂D

n̂f dA, (2.15)

where dA denotes the differential area element, and n̂ represents the unit-length normal vector

on the surface ∂D oriented outwards. Upon substituting B × A for A in Eq. (2.14), where B is

independent of position, we obtain with the relation ∇ · (B × A) = −B · ∇ × A and cyclic

rotation, ∫
D

(∇ × A) dV =

∮
∂D

n̂ × A dA (2.16)

where the dot-multiplication by B on both sides is left out as B is an arbitrary vector that is

independent of position.

n̂

S

D1

D2

Figure 2.1: Stationary boundary surface ∂D between two adjacent domains.

Now consider a piecewise smooth stationary interface ∂D that separates two electromagnetically

penetrable regions 1 and 2, as depicted in Figure 2.1, where the normal n̂ points into region 1. At

this interface, a primary impressed distribution of surface currents JS ,MS is taken into account.

By assuming a pillbox volume across ∂D, integration of the macroscopic Maxwell’s equations
(2.11) over the volume, application of Eq. (2.16), and subsequent shrinking the pillbox volume

in the limit towards the boundary interface yields the boundary conditions for the tangential field

across the interface

n̂ × (H1 − H2) = JS, (2.17a)

−n̂ × (E1 − E2) = MS. (2.17b)
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Application of a similar approach to the compatibility equations (2.12), in combination with

Gauss’ theorem, leads to the boundary conditions for the field components normal to the inter-

face [33, 34],

sn̂ · (μ1H1 − μ2H2) = −∇S · MS, (2.18a)

sn̂ · (ε1E1 − ε2E2) = −∇S · JS. (2.18b)

Here, the subscript S implies that only the components tangential to the the interface ∂D are

taken into account (surface divergence). Observe that the duality principle holds for both sets

of boundary conditions. A dual field configuration should therefore be supplemented with the

dual boundary conditions. Because the compatibility relations in Eq. (2.12) follow from the

Maxwell’s equations, the necessary and sufficient boundary conditions are the jump conditions

(continuity for source free interfaces) for the tangential field, Eq. (2.17).

In case medium 2 is a perfect electric conductor, the conductivity, and thereby also the (complex)

permittivity becomes infinite. Because the field must always remain finite, medium 2 cannot sus-

tain a non-identically vanishing electric field in its interior while the boundary condition for the

tangential electric field is maintained. Therefore, the necessary and sufficient boundary condition

is that the tangential electric field is zero on the boundary,

n̂ × E1 = 0, (2.19)

while the induced surface current is then given by

n̂ × H1 = JS. (2.20)

The dual counterparts constitute the boundary conditions for a (fictitious) perfect magnetic con-

ductor,

n̂ × H1 = 0 and E1 × n̂ = MS. (2.21)

When the medium extends to infinity, i.e., free-space, uniqueness is preserved by imposing

causality conditions on Maxwell’s equations such that the field generated by a source is radi-

ating or decaying towards infinity. Suppose that the source of excitation is positioned at the

origin, the Silver-Müller radiation conditions [35] read

lim
r→∞

r [r̂ × H + ZE] = 0,

lim
r→∞

r [Zr̂ × E − H ] = 0,
(2.22)

where r̂ is the unit-length vector in the radial direction, and Z =
√
μ/ε the impedance of the

medium.
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2.5 The Lorentz reciprocity theorem

With the aid of the reciprocity theorem we can establish the correlation between the field and

source distributions of two initially unrelated states “a”and “b”within a closed domain D, i.e., it
relates the field response at one source due to a second source to the field response at the second

source due to the first source. We shall restrict our treatment of reciprocity to cases in which we

have one and the same isotropic material medium occupying the domain D for both states. We

will follow the treatment of [36]. Reciprocity will be used to obtain field representations that

describe the field within a domain in terms of the field components tangential to its outer bound-

ary. This lays the foundation of Huygens’ principle which enables the construction of scattering

operators of separate scattering domains via the equivalence principle which encompasses the

underlying idea of the embedding approach. For applications involving non-reciprocal media, a

hybrid form of LEGO will be presented in Section 4.9.

∂D

D
n̂

∂Da

Da

Ja, M a

n̂a

∂Db

Db

J b, M b

n̂b

Figure 2.2: The Lorentz reciprocity theorem applied to a domain D with boundary ∂D. The
source distributions that generate the fields for two possible states “a”and “b”are inside the source

domains Da and Db, respectively.

Let us introduce the reciprocity theorem by means of the configuration illustrated in Figure 2.2.

Consider a set of sources Ja andM a distributed in somemanner inside a linear isotropic medium

D with constitutive parameters ε and μ. The fields Ea, Ha produced by the currents Ja, M a

constitute state “a” of the system under consideration. If these sources and replaced with a

different set of sources J b and M b that are in general unrelated to Ja, M a, but placed in the

same medium and boundary geometry, we have the fields Eb, Hb that constitute a state “b”.

Note that both source domains Da and Db may (paritally) coincide. Obviously, both states are
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governed by Maxwell’s equations,

∇ × Ha,b = sεEa,b + Ja,b, (2.23a)

−∇ × Ea,b = sμHa,b + M a,b. (2.23b)

Further, Ea,b and Ha,b must satisfy (the same) appropriate boundary and radiation conditions

relevant to the domain D. Although both states do not exist simultaneously in the domain being
considered, their field and source distributions will be interrelated in a mathematical sense. To

this end, we take the dot product ofHb with Eq. (2.23b) for state “a” and of Ea with Eq. (2.23a)

for state “b”, and we subtract the resulting equations,

Hb · ∇ × Ea − Ea · ∇ × Hb = ∇ · (Ea × Hb
)

= −sμHa · Hb − sεEa · Eb − M a · Hb − J b · Ea,
(2.24)

where the vector identity ∇ · (A × B) = B · ∇ × A − A · ∇ × B has been used. A second,

dual, relation is readily obtained by interchanging the subscripts a and b,

∇ · (Eb × Ha
)

= −sμHb · Ha − sεEb · Ea − M b · Ha − Ja · Eb, (2.25)

By subtracting Eq. (2.25) from (2.24) the local (differential) form of Lorentz reciprocity theorem

is obtained. Upon integrating over the domainD bounded by the closed surface ∂D, we arrive at∫
D

∇ · [Ea × Hb − Eb × Ha
]

dV =

∫
D

Eb · Ja − Hb · M a dV −
∫
D

Ea · J b − Ha · M b dV.

(2.26)

Finally, after applying Gauss’ divergence theorem, Eq. (2.14), we arrive at the global form of

Lorentz reciprocity theorem,∮
∂D

[
Ea × Hb − Eb × Ha

] · n̂ dA = 〈b, a〉 − 〈a, b〉 (2.27)

where the two terms on the right-hand side of the equation are defined as

〈a, b〉 ≡
∫
Db

Ea · J b − Ha · M b dV,

〈b, a〉 ≡
∫
Da

Eb · Ja − Hb · M a dV.

(2.28)

The quantity 〈a, b〉 is called the reaction introduced by Rumsey [37] and may roughly be inter-
preted as a measure of how well the fields of state “a” are correlated with the sources of state “b”.
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In Eq. (2.28) we have replaced the domain of integration D by Db and Da respectively, which is

allowed since both source domains Db and Da are completely enclosed by D. It is important to
point out that the global form of the reciprocity theorem holds for domains involving piecewise

smooth surfaces only, due to the application of Gauss’ theorem.

As a final remark, we will highlight reciprocal systems [34, Section 4.10.2]. This concept is

frequently called upon throughout the remainder of this thesis. A “system” within ∂D is said to

be reciprocal if the closed surface integral becomes zero, i.e.,∮
∂D

[
Ea × Hb − Eb × Ha

] · n̂ dA = 0. (2.29)

In that case both states impose equal reaction on each another, i.e.,

〈a, b〉 = 〈b, a〉 . (2.30)

This condition for reciprocity is called the reaction theorem.

When the domain exterior to D is a perfect electric conductor, the tangential electric field n̂×E

is zero on ∂D. Via cyclic rotation of the inner and outer product in the integrand in Eq. (2.29), it is
clear that the boundary integral vanishes and that the system is reciprocal. A similar remark holds

for a perfect magnetic conductor. Otherwise, when the domainD covers all sources, its boundary

∂D can be extended to infinity without loss of generality. In that case the radiation conditions in

Eq. (2.22) hold. Since r̂ → n̂ on ∂D, the system that results upon letting ∂D expand to infinity

is also reciprocal. Both type of reciprocal systems are relevant for the equivalence principles that

will be introduced in Section 2.8.

2.6 Electromagnetic dyadic Green’s functions

Since electromagnetic fields are vector fields, the corresponding general wave equation is a vector

wave equation. Hence, we will consider the general, time harmonic form of the vector wave

equation first for an electric current distribution only. The field response from a magnetic current

distribution is readily obtained by duality afterwards. The corresponding medium is considered

homogeneous, i.e., we shall assume that both ε and μ are independent of position. Upon taking

the curl of Eq. (2.10b) and eliminating H using Eq. (2.10a) of Maxwell’s equations, we obtain

∇ × ∇ × E + γ2E = −sμJ , (2.31)
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for an impressed source distribution J . The introduced propagation coefficient γ [m−1] reads

γ ≡ s
√
με. (2.32)

With the vector identity, ∇ × ∇ × A = ∇[∇ · A] −∇2A for the electric field, we have[∇2 − γ2
]
E = ∇[∇ · E] + sμJ . (2.33)

where the operator ∇2 is the Laplacian, such that ∇f of a scalar function f(r) stands for ∇ ·
(∇f). From the compatibility equation (2.12a), and the constitutive relation, Eq. (2.8b), the

equation for the electric field reduces to

[∇2 − γ2]E = sμ

[
¯̄I − 1

γ2
∇∇

]
· J = −fS (2.34)

with ¯̄I being the dyad identity operator, where the double bar indicates a dyadic operator. The

dyads that we consider may be represented by 3 × 3 matrices which map vectors on to other

vectors. In index notation, the i-th cartesian component of the dot product of a dyad and a

vector, ¯̄A · B, is
∑3

j=1
¯̄AijBj . Equation (2.34) yields a modified vector Helmholtz equation

with a source function fS . Actually, a modified Helmholtz equation is the Laplace-transform of

a scalar wave equation. Nevertheless, henceforth we shall loosely refer to it as the scalar wave

equation. In a cartesian coordinate system, Eq. (2.34) can be decomposed into three scalar wave

equations. Because of this, the well-known Green’s function for the scalar wave equation can

be used to derive the dyadic Green’s function for the vector wave equation. The scalar Green’s

function for an unbounded homogeneous medium, given by

G(r, r′) =
e−γ|r−r′|

4π|r − r′| (2.35)

is the point source solution of the scalar wave equation,

[∇2 − γ2]G(r, r′) = −δ(r − r′), (2.36)

In turn, the solution due to an arbitrary source distribution follows from the superposition prin-

ciple, which states that a general source may be described as a linear superposition of point

sources. Accordingly, the source distribution fS in Eq. (2.34) may be cast in the following form

fS(r) =

∫
D

fS(r
′)δ(r − r′) dV ′. (2.37)

Because G(r, r′) is the point source solution of Eq. (2.36), the solution for the electric field in a

cartesian reference system follows the superposition

E = −sμ
∫
D

G(r, r′)
[
¯̄I − 1

γ2
∇′∇′

]
· J(r′) dV ′, (2.38)



26 General Field Representations

where the source domain D encloses the support of the current source distribution J such that

J = 0 on ∂D. Now, let us assume that r is located outside the source domain. Using the vector
identity f∇g = ∇(gf)− g∇f , the generalized Gauss’ theorem, Eq. (2.15), and the fact that the

current vanishes on the boundary ∂D of D, we infer∫
D

G(r, r′)∇′ [∇′ · J(r′)] dV ′ = −
∫
D

[∇′ · J(r′)] ∇′G(r, r′) dV ′. (2.39)

Application of the identity f∇ · A = ∇ · (fA) − A · ∇f to the Cartesian components of the

right-hand side of Eq. (2.39), and Gauss’ theorem, Eq. (2.14), leads to

−
∫
D

[∇′ · J(r′)] ∇′G(r, r′) dV ′ =

∫
D

∇′∇′G(r, r′) · J(r′) dV ′. (2.40)

Thus, we have diverted the ∇′∇′ term to the scalar Green’s function. Accordingly, the electric

field may be cast in the following form

E = −sμ
∫
D

¯̄G(r, r′) · J(r′) dV ′, (2.41)

where we have introduced the dyadic Green’s function ¯̄G. Upon applying the symmetry of the

Green’s function, ∇G(r, r′) = −∇′G(r, r′), the dyadic Green’s function is found to be

¯̄G(r, r′) =

[
¯̄I − 1

γ2
∇∇

]
G(r, r′). (2.42)

For example, the matrix elementGxy of the dyadic Green’s function represents the x-component

of the dyadic Green’s function at r due to a point source located at r′ and oriented in the ŷ-

direction. Upon substituting the expression for the electric field, Eq. (2.41), back in Maxwell’s

equations, the magnetic field due to an electric current distribution is found in terms of the dyadic

Green’s function as well. In turn, the field response due to a magnetic current distribution is

obtained through the duality principle. Finally, by superposition, the field at some point r outside

the source domain as a result of an arbitrary composite source distribution inside a domain D
follows from

E = −sμ
∫
D

¯̄G(r, r′) · J(r′) dV ′ −
∫
D

∇ × ¯̄G(r, r′) · M (r′) dV ′,

H = −sε
∫
D

¯̄G(r, r′) · M (r′) dV ′ +
∫
D

∇ × ¯̄G(r, r′) · J(r′) dV ′.
(2.43)

Now, let us consider the case in which the point r where the fieldsE,H are observed, lies inside

the source region D. Then, the distance between source and observation |r − r′| can become
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zero. If this happens, the scalar G(r, r′) becomes singular, and with the ∇∇ term operating on

G(r, r′) in the dyadic Green’s function, the integral over the source region is divergent as the

kernel becomes hypersingular. As a remedy, the integral should be treated as a principal value

integral integrated over a specific exclusion domain. To avoid otherwise non-existing surface-

charges on the surface of the excluded domain, the dyadic Green’s function, Eq. (2.42) is then

augmented with a second term which depends only on the shape of the excluded domain [38].

If modified accordingly, the dyadic Green’s function is valid throughout for the determination

of the field due to volume sources. Since the remainder of this thesis only deals with surface

sources, source-free domains, or observation points outside the source region, we shall omit

further details regarding this matter.

2.7 Huygens’ principle and extinction theorem

In the previous section the dyadic Green’s function has been introduced, and a field representation

has been formulated for the fields at any point in an unbounded domain generated by a volume

source distribution. If we are only interested in the field within a certain source-free subdomain,

the field incident on that subdomain would suffice to separate that domain from its surrounding

environment. Similar to the treatment in [34], we will start from the reciprocity theorem, from

which we derive the more general field representations for a closed domain inside a configuration

where the exterior impressed tangential field on the boundary will account for the interior field

contribution.

The reciprocity theorem applied to the domain D depicted in Figure 2.2 is used as a starting

point. For state “a” some arbitrary volume source distribution Ja,M a is chosen which is entirely

contained inside D and not on its boundary ∂D. From now on, the superscript of the fields in

state “a” will be dropped as well. For the source distribution of state “b”, only an electric point

source is selected which is located at rb and directed in b̂. Accordingly, we have

State “a”

{
Ja = J

M a = M
, State “b”

{
J b = b̂δ(r − rb)

M b = 0
, (2.44)

where δ(r − rb) represents the three-dimensional unit impulse at the point r = rb. Upon sub-

stituting the source distribution of these states in the general global form of Lorentz reciprocity
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theorem, Eq. (2.27), we have

χD(rb)b̂ · E(rb) =

∫
D

Eb · J − Hb · M dV −
∮
∂D

[
E × Hb − Eb × H

] · n̂ dA, (2.45)

where the function χD is the characteristic function associated with a domain D with a smooth

boundary ∂D, i.e.,

χD(r) =

⎧⎪⎨
⎪⎩

1, for r ∈ D,
1/2, for r ∈ ∂D,
0, otherwise.

(2.46)

The characteristic function originates from the integration of a delta function over D where the

domain D̄ denotes the complementary domain ofD. If the electric point source is located exactly
on ∂D, a semispherical surface is excluded and integrated separately in the limit where the radius
approaches zero. For piecewise smooth boundaries, we indeed obtain χD(r) = 1

2
for r ∈ ∂D.

For a general boundary shape, χD(r) = (1 − Ω/2π) for r ∈ ∂D with Ω being the subtended

solid angle as explained in [39].

After cyclic rotation of the dot and cross products in the integrand of the boundary integral in

Eq. (2.45), we obtain

χD(rb)b̂ · E(rb) =

∫
D

Eb · J − Hb · M dV −
∮
∂D

Eb · (n̂ × H) − Hb · (E × n̂) dA. (2.47)

Note that the electric field of state “a”, observed at the source point rb of the electric point source

excitation of state “b”, is related to the magnetic and electric field response of that point source.

Observe that the orientation of the point source b̂ is yet undefined and may be arbitrary. To

extract the observation, we employ the dyadic Green’s functions of which the cartesian compo-

nents describe the field solutions of a point source oriented along the three axes {x̂, ŷ, ẑ} of the
cartesian coordinate system. Owing to the superposition principle, the radiated field of the point

source in the b̂ direction follows from the dot product of the dyadic Green’s function with b̂, i.e.,

Eb = ¯̄G
EJ

(r, rb) · b̂
Hb = ¯̄G

HJ
(r, rb) · b̂

(2.48)

These two Green’s functions provide the electric and magnetic field response due to an electric

point source at rb. Likewise, for a magnetic point source, M b = b̂δ(r − rb), we obtain similar

expressions, though the dyadic’s, ¯̄G
EM

and ¯̄G
HM

, are used for the electric, respectively, mag-

netic field. Note that superscripts respectively indicate what type of field is produced by what

type of point source.
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Next, let us consider the states associated with two electric-current point sourcesJa = âδ(r−ra)

and J b = b̂δ(r − rb) with M a = M b = 0, and let ∂D → ∞ in a homogeneous domain. The

corresponding system is reciprocal and the reaction theorem, Eq. (2.30), leads to the so-called

source reciprocity,

b̂ · ¯̄G
EJ

(rb, ra) · â = â · ¯̄G
EJ

(ra, rb) · b̂. (2.49)

Upon employing the identity, â · ¯̄G · b̂ = b̂ · ¯̄GT· â, where the superscript T denotes transposition,

we arrive at
¯̄G
EJ

(r, rb) =
[
¯̄G
EJ

(rb, r)
]T

. (2.50)

Via a similar procedure with a magnetic instead of an electric current source for one of the two

states, we obtain
¯̄G
HJ

(r, rb) = −
[
¯̄G
EM

(rb, r)
]T

. (2.51)

Now, let us return to the original states “a” and “b”, defined in Eq. (2.44). The expressions in

Eq. (2.48) for the field response from an electric point source may be rewritten using the relations

obtained above, which results in

Eb = b̂ · ¯̄G
EJ

(rb, r),

Hb = −b̂ · ¯̄G
EM

(rb, r).
(2.52)

Upon substituting Eq. (2.52) in Eq. (2.47), and replacing {rb, r} by {r, r′}, we obtain the fol-
lowing general expression for the electric field,

χD(r)E(r) =

∫
D

¯̄G
EJ

(r, r′) · J(r′) + ¯̄G
EM

(r, r′) · M (r′) dV ′

−
∮
∂D

¯̄G
EJ

(r, r′) · [n̂ × H(r′)] + ¯̄G
EM

(r, r′) · [E(r′) × n̂] dA′.
(2.53)

Note that the original dot product with b̂ has been left out, which is allowed as it occurred every

term and b̂ is independent of position and arbitrary. By taking a magnetic instead of an electric

point source for state “b”, the magnetic field counterpart follows from a similar procedure as

χD(r)H(r) =

∫
D

¯̄G
HJ

(r, r′) · J(r′) + ¯̄G
HM

(r, r′) · M (r′) dV

−
∮
∂D

¯̄G
HJ

(r, r′) · [n̂ × H(r′)] + ¯̄G
HM

(r, r′) · [E(r′) × n̂] dA.

(2.54)

If no sources are present in the complementary domain D̄, the surface ∂D may be extended to

infinity without loss of generality, and the contribution from the resulting boundary integral at
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infinity vanishes owing to the radiation conditions. Upon comparing Eqs. (2.53) and (2.54) with

the formulated field expressions in Eq. (2.43) it is clear that

{
¯̄G
EJ

= −sμ ¯̄G,
¯̄G
HJ

= ∇ × ¯̄G,
and

{
¯̄G
EM

= −∇ × ¯̄G,
¯̄G
HM

= −sε ¯̄G.
(2.55)

These representations can be generalized to be valid everywhere if the volume integrals are eval-

uated in the sense of principle value integrals in the source region, as discussed at the end of

Section 2.6.

Another interesting property of the obtained general field representations is Oseen’s extinction

theorem [40], which provides the foundation for the so-called null-field method. It states that

in the complementary domain D̄ the fields generated by the volume sources J , M and the

contribution from the tangential fields at the boundary ∂D combine to produce a null field. In

other words, the field generated by the volume sources is canceled out by the contribution from

the boundary.

Equations (2.53) and (2.54) also provide for r ∈ D̄ the mathematical formulation of Huygens’

principle, which states that the field at a point of observation generated by some source distribu-

tion is equal to the field generated by equivalent surface sources defined in terms of the tangential

field components on the boundary of a domain that encloses this source distribution in some arbi-

trary fashion. This volume vis-a-vis boundary source field representation equivalence paves the

way towards the partitioning of field configurations into separate domains that are interconnected

by their tangential field distributions on the boundaries.

Because the field calculations in the remainder of this thesis mainly rely on boundary integral

equations and representations via Huygens’ principle, we should elaborate on the corresponding

boundary integral further. The curl of the dyadic Green’s function defined in Eq. (2.42), can be

simplified according to

∇ × ¯̄G(r, r′) = ∇ ×
[̄̄
IG(r, r′)

]
= ∇G(r, r′) × ¯̄I, (2.56)

because the curl of a gradient is zero. Using Eqs. (2.42), (2.55) and (2.56) in the general field
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representation associated with a source-free interior domain D, we obtain

χDE =

∮
∂D

sμ

[
¯̄I − 1

γ2
∇∇

]
G(r, r′) · [n̂ × H(r′)] + ∇G(r, r′) × [E(r′) × n̂] dA′,

χDH =

∮
∂D

sε

[
¯̄I − 1

γ2
∇∇

]
G(r, r′) · [E(r′) × n̂] − ∇G(r, r′) × [n̂ × H(r′)] dA′.

(2.57)

One of the gradients in the field components involving the ∇∇ term operating on G(r, r′) can

be avoided by considering the normal field components instead of the tangential ones, viz., via

the symmetry property ∇G(r, r′) = −∇′G(r, r′) and the cyclic rotation of the dot and cross

product, we obtain

∮
∂D

∇∇G(r, r′) · [n̂ × H(r′)] dA′ = −∇
∮
∂D

n̂ · [H(r′) × ∇′G(r, r′)] dA′

= −∇
∮
∂D

G(r, r′)n̂ · [∇′ × H(r′)] dA′
(2.58)

after applying the vector identity A × ∇f = f∇ × A − ∇ × (fA), where the term that

results form the last term on the right-hand side of the vector identity vanished under the surface

integration because according to Gauss’ theorem (2.14), it is equivalent to the volume integral

of the divergence of a curl. The subsequent substitution of the source-free Maxwell equation

(2.10b), together with∇×∇×E = −γ2E for J = 0 from Eq. (4.10), leads to the observation

that the relation∮
∂D

∇∇G(r, r′) · [n̂ × H(r′)] dA′ =
1

sμ
∇
∮
∂D

n̂ · [∇′ × ∇′ × E(r′)] dA′

=
γ2

sμ

∮
∂D

[n̂ · E(r′)] ∇′G(r, r′) dA′,
(2.59)

holds on ∂D. With this simplification, we arrive at

χDE =sμ

∮
∂D

[n̂ × H(r′)]G(r, r′) dA′ −
∮
∂D

[n̂ · E(r′)] ∇′G(r, r′) dA′

+

∮
∂D

[E(r′) × n̂] × ∇′G(r, r′) dA′,
(2.60)
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and, again by duality,

χDH =sε

∮
∂D

[E(r′) × n̂]G(r, r′) dA′ −
∮
∂D

[n̂ · H(r′)] ∇′G(r, r′) dA′

−
∮
∂D

[n̂ × H(r′)] × ∇′G(r, r′) dA′,
(2.61)

which are the familiar Stratton-Chu formulas [41] for the electric and magnetic fields. Because

we assumed a source-free domainD, the domain integrals that account for the volume sources in
Eqs. (2.53) and (2.54), have been omitted. Therefore, the Stratton-Chu formulas provide a math-

ematical implementation of Huygens’ principle as they reproduce the field in D due to some

externally impressed source distribution. Following the line of argument in [36, Section 4.2],

and the proof in [42, p. 471-2], we infer that it is not necessary to consider the boundary integrals

in the principle value sense when ∂D is a smooth boundary. Therefore, the occurring surface

integrals are merely ones with removable singularities. Note that, apart from the tangential com-

ponents of the fields, also the normal field components are involved. It is shown below that from

the boundary conditions it turns out that we only require the tangential field components. For the

application to scattering problems we refer to Chapter 3.

2.8 Love’s and Schelkunoff’s equivalence principles

Above, general field integral representations have been formulated in terms of dyadic Green’s

functions, and the boundary integrals have been recognized as the well-known Stratton-Chu for-

mulas. Invoking Huygens’ principle, the field inside a boundary ∂D enclosing a domain D, may
be considered as being generated by an equivalent source distribution on that boundary, thereby

separating that domain from its environment in an electromagnetic sense. This is referred to as

an equivalence principle. The associated equivalent source distribution is not unique. To this

end, we introduce two distinct equivalence principles, viz. Love’s equivalence principle (LEP),

and Schelkunoff’s equivalence principle (SEP). Below, we aim to represent a field distribution

within a domain due to the action of some external sources in terms of such equivalent bound-

ary sources. We will follow the treatment of [43]. Further, we shall investigate the differences

between both concepts, especially concerning multiply connected domains.

Before we can introduce an equivalent state, we should first define the corresponding original

state. For LEP, we have the original state depicted in Figure 2.3a. A certain domainD is chosen,
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∂D

D

Ein, H in

Ein, H in n̂

(a)

zero field

∂D

D

J in
S , M in

S

Ein, H in n̂

(b)

zero field

∂D

D

−J in
S , −M in

S

Ein, H in

n̂

(c)

Figure 2.3: The field inside a domainD, due to external sources (a). Love’s equivalence principle
applied to the so-called interior equivalent state (b), and Oseen’s extinction principle for the

exterior equivalent state (c).

with on its outer boundary ∂D a unit-normal vector n̂ oriented outwards. The boundary shape

may be arbitrary, as long as it is smooth. The surrounding complementary domain D̄ may involve

a complicated (inhomogeneous) scattering environment and source distribution. Domain D, is
considered to be source-free and homogeneous for the moment. In the LEGO concept however,

D may also hold arbitrary scattering objects. The electric and magnetic field distributions under

considerationEin,H in denote the fields generated in the surrounding environment. Accordingly,

the superscript “in” indicates that this field signifies an incident field with respect to D. For
now, we assume that the tangential field components along the boundary ∂D are known. These

tangential fields are associated with an impressed source distribution in the equivalent states. The

corresponding boundary current distributions, also called equivalent currents, are J in
S and M in

S .

The subscript “S” is added to emphasize that we deal with surface sources.

Huygens’ principle states that the equivalent boundary currents reproduce the field within the

domainD, generated by all the sources (primary or scattering) in D̄, i.e., the incident field. Also,
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in D̄ these currents yield no field contribution on account of Oseen’s extinction theorem, which

also indicates that the exterior medium properties may be changed without affecting the fields

in D. Because the original interior fields are maintained, we define this field distribution as the
interior equivalent state of LEP, illustrated in Figure 2.3b.

Due to the linearity of Maxwell’s equations, the opposite equivalent currents produce the negative

incident fields in D. In the presence of the original impressed incident fields Ein, H in from the

surrounding environment, these fields combine to produce a zero field in D. This is referred to
as the exterior equivalent state of LEP since the original exterior fields are maintained, which is

shown in Figure 2.3c, where the minus sign then originates from the fixed outward orientation

of the normal n̂. This state is covered by Oseen’s theorem applied to D̄. Consequently, with the
same currents J in

S , M
in
S , we can in D either reproduce a field or cancel that same field. Note that

the composite state by superposition of the interior and exterior equivalent state again provides

the source-free original state.

The equivalent currents J in
S , M

in
S follow directly from the incident fields Ein, H in on ∂D upon

applying appropriate boundary conditions. In particular, the boundary conditions for the tan-

gential field, Eq. (2.17), applied to the interface ∂D in Figure 2.3b, imply that [41, p. 464-8],

J in
S = −n̂ × H in, (2.62a)

M in
S = −Ein × n̂, (2.62b)

for a zero field in D̄. Note that the sign convention for the currents has been chosen such that
it facilitates the formulation of LEGO. Likewise, from the boundary conditions for the field

component normal to the surface, Eq. (2.18), with a zero field in D̄, we have

n̂ · Ein =
1

sε
∇S · J in

S ,

n̂ · H in =
1

sμ
∇S · M in

S .
(2.63)

For Eq. (2.63) to be valid, the boundary currents must be continuously differentiable everywhere

on ∂D. Nevertheless, its use has the advantage that the double gradient on the scalar Green’s
function is avoided by means of Eq. (2.59). On that account, the boundary integral in the Stratton-

Chu formulation may be regarded in the sense of ordinary functions with removable singularities.

Upon substituting Eq. (2.63), together with the definitions of the surface currents, Eq. (2.62), in
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the Stratton-Chu formulas, Eqs. (2.60) and (2.61), we have

χDEin = − sμ

∮
∂D

J in
S (r′)G(r, r′) dA′ +

1

sε
∇
∮
∂D

[∇′
S · J in

S (r′)
]
G(r, r′) dA′

−
∮
∂D

M in
S (r′) × ∇′G(r, r′) dA′,

(2.64)

and by duality for the magnetic field,

χDH in = − sε

∮
∂D

M in
S (r′)G(r, r′) dA′ +

1

sμ
∇
∮
∂D

[∇′
S · M in

S (r′)
]
G(r, r′) dA′

+

∮
∂D

J in
S (r′) × ∇′G(r, r′) dA′,

(2.65)

with the function χD(r) as defined in Eq. (2.46). Recall that the currents J in
S ,M

in
S are considered

to be known source quantities, as the fieldsEin, H in are known. Addition of the incident field to

the opposite of Eqs. (2.64) and (2.65) gives the exterior equivalent state depicted in Figure 2.3c.

Note that J in
S , M

in
S depend on the tangential field components only.

In contrast with LEP, which principle is based on both electric and magnetic equivalent currents,

Schelkunoff [13] showed that it suffices to use either electric or magnetic currents. This is

referred to as Schelkunoff’s equivalence principle (SEP). The use of only one type of equivalent

current may lead to strong computational advantages in a numerical implementation. In [44,

p. 35-36] it is proven that a single prescribed tangential field component already yields a unique

solution, except for lossless media at (physical) resonant mode solutions of the domain which

may occur at discrete frequencies. This matter will be addressed later on in Section 3.4. However,

note that LEP does not suffer from spurious interior resonances and as such is more robust than

SEP, at the costs of both electric and magnetic currents.

Schelkunoff’s equivalence principle can be deduced in a manner similar to LEP. However, sup-

pose we would like to represent the incident electromagnetic fieldsEin, H in in the same domain

D by only one equivalent current distribution, say JS , we must perform an intermediate step. Let

us start by regarding the fields in the interior of D in Figure 2.4a, as the desired interior equiva-

lent state of SEP. As stated above, we would like the fields to be generated by an electric current

distribution JS only. As the intermediate step, we replace the medium in D of the original state

in Figure 2.3a, with a perfect electric conductor (PEC), or at least a perfectly conducting sheet at

its boundary ∂D to arrive at the original state of SEP shown in Figure 2.4b.
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PEC

zero field

∂D

D

J ind
S

Ein, H in

Esc, H sc

n̂

(b)

∂D

D

JS

−Esc, −H sc

Ein, H in
n̂

(a)

zero field

∂D

D

−JS = J ind
S

Ein, H in

Esc, H sc

n̂

(c)

Figure 2.4: Schelkunoff’s equivalence principle applied to the interior equivalent state (a). The

original (intermediate) state with a PEC (b), and the exterior equivalent state of SEP (c).

Inside a PEC the electromagnetic field must vanish identically. If a field is incident on a PEC,

an electric surface current will be induced J ind
S on the boundary of that conductor, such that

the joint field contribution of the incident field and the field generated by the induced current

(scattered field) will cancel inside the domain occupied by the PEC in the absence of the PEC.

This covers the exterior equivalent state associated with SEP as depicted in Figure 2.4c. Hence,

the opposite of J ind
S is the desired equivalent electric boundary current distribution JS . The

presence of a PEC in the original state of SEP gives rise to the scattered fields Esc, Hsc in D̄,
which is also generated by J ind

S . The field in D̄ for the interior equivalent state, Figure 2.4a, is

therefore not zero as with LEP, since JS produces in addition to the desired incident field in D,
also the negative scattered field from the PEC in D̄. A similar (dual) approach is also possible

with only a magnetic equivalent currentMS , via a perfect magnetic conductor (PMC). Note that

we have omitted the subscript “in” to avoid confusion with the equivalent surface currents for

LEP defined in Eq. (2.62).

However, an important difference between both equivalence principles should be emphasized

as it poses a significant implication for the LEGO approach. As we mentioned, a side effect
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emerges from the restriction to either electric or magnetic equivalent currents in Schelkunoff’s

approach, i.e., the remaining equivalent current produces a non-zero field in the complementary

domain. Although this seems insignificant at a first glance, since we are mainly interested in

the interior domain, where the single equivalent current does indeed produce the proper desired

field, it bears a consequence when multiply connected domains are considered. The underlying

reasons and associated implications will be addressed in Section 4.5.
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Chapter 3

Boundary integral equations

The partitioning of fields through equivalent states involving either Love’s or Schelkunoff’s

equivalence principle has been explained in Chapter 2. These are the fundamental principles

in the construction of the elementary LEGO building blocks. In this chapter, the equivalent

states are applied to formulate boundary integral equations, by which the scattered field response

of perfectly conducting and dielectric objects may be determined. Since the tangential scattered

field on the domain boundary is unknown, the method of moments (MoM) procedure is em-

ployed to determine the equivalent currents. This solution strategy may also be used to compute

the unknown equivalent currents for LEGO. In addition, the boundary integral equations that are

formulated in this chapter can also be employed to construct the elementary scattering operators

for LEGO.

3.1 Introduction

In Section 3.2, general boundary integrals equations are formulated for the scattering from a

dielectric object via a proper combination of equivalent states of the interior and exterior field

problems. In Section 3.3, we consider the scattering from perfectly conducting objects, which

results in the electric and magnetic field integral equations on which Schelkunoff’s equivalence

principle is based. We demonstrate in Section 3.4 that these integral equations suffer from inte-

rior resonances that are not associated with physical modes. We will discuss several methods to

ensure uniqueness, among which the formulation of a combined field integral equation. In the
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formulation of boundary integral equations, there are many linear combinations possible to re-

duce the interior and exterior integral equations into a coupled pair of equations. In Section 3.5,

we discuss the well-known PMCHW formulation and the less familiar Müller formulation. To

solve the unknown equivalent currents from an integral equation, the method of moments (MoM)

procedure is employed in Section 3.6. The solvability of the integral equations as regards their

well-posedness is discussed in Section 3.7. There, we also derive general constraints for the test

and expansion function used in the MoM procedure. To this end, we provide a brief overview of

the mapping properties of the pertaining integral operators. A more detailed account for 2D and

3D configurations are given in Chapters 5 and 7, respectively.

3.2 General boundary integral formulations

With the aid of equivalence principles, integral representations have been formulated in Chap-

ter 2 that express the field distribution within a source-free homogeneous domain in terms of

equivalent current sources on its boundary. So far, these currents followed directly from tangen-

tial incident field components that are assumed to be known on the boundary of that domain. In

this chapter, we assume that the domain contains scattering objects with homogeneous medium

properties. The same methodology will be applied to describe the corresponding scattered field

in the exterior of the domain. However, unlike the incident field, the tangential scattered field on

the boundary of the domain is not known a priori. As such, the associated equivalent currents

are left to be determined. To this end, we employ boundary integral equations. Below, general

boundary integrals equations are formulated via a proper combination of equivalent states that

are related to the respective interior and exterior field problems.

To describe the electromagnetic scattering from an arbitrarily shaped smooth object due to a cer-

tain incident field generated by an externally impressed source distribution, let us consider the

general scattering configuration depicted in Figure 3.1a. For simplicity we shall discuss a single

scatterer. The generalization to a collection of scatterers of different shape and medium proper-

ties is straightforward. The medium interior and exterior to the scattering object that occupies the

domain D enclosed by the boundary ∂D are both considered to be homogeneous and isotropic,

albeit that any of the constitutive parameters may be discontinuous across ∂D. Accordingly, we
consider {εv, μv}, with v = 1, 2, where the subscript v = 1 indicates the exterior medium, and

v = 2 the interior medium. The fields that are present in the respective media, and also the

equivalent currents that radiate into the respective media carry the same subscript. Lossy media
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Figure 3.1: The subdivision of a general electromagnetic scattering phenomenon for a penetrable

dielectric object (a) into two auxiliary equivalent configurations. The equivalent currents in the

interior equivalent state (b) account for the field penetrated in D. The currents in the exterior
equivalent state (c) generate the field that annihilates the impressed incident field in D and also

reproduces the corresponding exterior scattered field in D̄. The exterior equivalent state can be
decomposed into two states in which only the scattered (d) and incident (e) fields are present.
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are readily accounted for, by allowing εv and μv to be complex. The presence of an externally

impressed source distribution is captured in terms of the field
{
Ein

1 ,H
in
1

}
, which is incident on

D, i.e., this would be the field in the absence of the scattering object.

With the aid of Love’s equivalence principle (LEP), the general scattering problem depicted in

Figure 3.1a can be subdivided into two simplified auxiliary field problems, describing interior

and exterior equivalent states. In the interior equivalent state indicated in Figure 3.1b, the inte-

rior fields {E2,H2} in D are generated in a homogeneous medium with {ε, μ} = {ε2, μ2} by
the equivalent current distribution {J2,M 2} in the absence of the incident field. Note that the
sources {J2,M 2} generate no field in D̄. On the other hand, in the exterior equivalent state
shown in Figure 3.1c, a homogeneous medium with {ε, μ} = {ε1, μ1} is considered. The op-
posite of the equivalent currents {J1,M 1} annihilate the incident field,

{
Ein

1 ,H
in
1

}
within D,

and also generate the scattered fields Esc
1 and Hsc

1 within D̄. On account of the equivalence and
superposition principles, this exterior equivalent state may be further subdivided into a part that

cancels the incident fields through
{
J in

1 ,M
in
1

}
, depicted in Figure 3.1e, and a part that generates

the scattered field through {J sc
1 ,M

sc
1 }, shown in Figure 3.1d. Throughout this chapter we deal

with surface current distributions only, therefore the subscript S has been omitted to maintain a

concise notation.

The simplified interior and exterior equivalent states are ideally suited to determine the appro-

priate fields in the respective media by means of integral representations, since the associated

equivalent current distribution are considered in an unbounded homogeneous medium. That is,

because the equivalent currents {J2,M 2} of the interior equivalent state in Figure 3.1b generate
a zero field in D̄, the exterior medium properties may be changed into {ε1, μ1}, without any
consequences to the fields in D. Likewise, for the exterior equivalent state in Figure 3.1c, the
interior medium properties may be changed into {ε2, μ2}, as the equivalent currents {J1,M 1}
yield a zero field in D. Hence, the states in Figure 3.1a and Figure 3.1b are indeed equivalent to
the original field state in Figure 3.1 with regard to the domains D and D̄, respectively.

The interior and exterior equivalent states described here, are similar to those in Figure 2.3, where

LEP was introduced. Thus, the same definitions, Eq. (2.62), hold for the equivalent currents in

terms of the tangential fields along the boundary ∂D, albeit that different sub- and superscripts
are used, depending on the medium and field of interest. Further, upon crossing ∂D, the tan-
gential electric and magnetic field are both continuous in the original scattering problem shown

in Figure 3.1a, as there are no genuine boundary sources involved. Hence, boundary conditions

of the continuity type for the tangential field components, Eq. (2.17), apply, and they relate the
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interior and the exterior equivalent states. Together with the definition of the equivalent currents

in terms of the tangential field, as in Eq. (2.62), it directly follows that

J1 = J2, and M 1 = M 2. (3.1)

Given this, the composite configuration of Figure 3.1b, combined with Figure 3.1c, indeed yields

the source-free original configuration in Figure 3.1a.

Now that the general scattering problem has been decomposed into equivalent states by means

of LEP, the integral representations for the respective media are formulated. Let us start with

the subproblem shown in Figure 3.1e, where
{
J in

1 ,M
in
1

}
annihilate the incident field. These

currents have also been introduced in the description of LEP, as depicted in Figure 2.3b. The

associated integral representations are thus governed by the Stratton -Chu expressions given in

Eqs. (2.64-2.65).

Since J sc
1 and M sc

1 in Figure 3.1d reproduce an exterior field, the corresponding integral repre-

sentations follow from the application of the reciprocity theorem on the complementary domain

D̄. Further, in view of the observation that the contribution of the boundary ∂D∞ at infinity van-

ishes on account of the radiation condition, Eq. (2.22), only the boundary integral on ∂D with

{J sc
1 ,M

sc
1 } remains. Although the boundary integral should actually be supplemented with a

volume integral over the impressed volume sources in D̄, their contribution is captured in terms
of the known tangential incident field components

{
Ein,H in

}
on ∂D. Hence, only the boundary

integral on ∂D with {J sc
1 ,M

sc
1 } remains. Therefore, the equivalent exterior state is dual to the

interior equivalent state in Figure 2.3b, except that the outward normal n̂, should actually be

pointing inwards here. However, for the sake of consistency, we only consider normals that point

outwards. Accordingly, the negative of {J sc
1 ,M

sc
1 } generate the scattered fieldsEsc

1 andHsc
1 . In

view of the integral representations in Eqs. (2.64-2.65), the scattered electric field thus follows

from

χD̄Esc
1 =sμ1

∮
∂D

J sc
1 (r′)G1(r, r

′) dA′ − 1

sε1

∇
∮
∂D

[∇′
S · J sc

1 (r′)]G1(r, r
′) dA′

+

∮
∂D

M sc
1 (r′) × ∇′G1(r, r

′) dA′,
(3.2)
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and the magnetic field reads

χD̄Hsc
1 =sε1

∮
∂D

M sc
1 (r′)G1(r, r

′) dA′ − 1

sμ1

∇
∮
∂D

[∇′
S · M sc

1 (r′)]G1(r, r
′) dA′

−
∮
∂D

J sc
1 (r′) × ∇′G1(r, r

′) dA′.
(3.3)

With reference to Eq. (2.46), the characteristic function of the complementary domain is given by

χD̄(r) = {1, 1/2, 0} for r ∈ {D̄, ∂D,D}. As mentioned above, the exterior equivalent state in
Figure 3.1c follows from a superposition of the equivalent state associated with the exterior scat-

tered field in Figure 3.1d, and the incident field in Figure 3.1e. Hence, {E1,H1} and {J1,M 1}
represent total fields, and total equivalent currents, i.e.,

{
E1 = Ein

1 + Esc
1 ,

H1 = H in
1 + Hsc

1 ,

{
M 1 = M in

1 + M sc
1 ,

J1 = J in
1 + J sc

1 .
(3.4)

By subtracting the integral representations in Eqs. (2.64-2.65) for the incident field from the

ones for the scattered field, Eqs. (3.2-3.3), both field distributions are expressed in terms of the

same total equivalent currents {J1,M 1}, associated with the exterior state in Figure 3.1c. For
the electric field, we obtain{

Esc
1 ,

1

2

[
Esc

1 − Ein
1

]
,−Ein

1

}
= sμ1

∮
∂D

J1(r
′)G1(r, r

′) dA′

− 1

sε1

∇
∮
∂D

[∇′
S · J1(r

′)]G1(r, r
′) dA′ +

∮
∂D

M 1(r
′) × ∇′G1(r, r

′) dA′,
(3.5)

for r ∈ {D̄, ∂D,D}, and for the magnetic field,
{

Hsc
1 ,

1

2

[
Hsc

1 − H in
1

]
,−H in

1

}
= sε1

∮
∂D

M 1(r
′)G1(r, r

′) dA′

− 1

sμ1

∇
∮
∂D

[∇′
S · M 1(r

′)]G1(r, r
′) dA′ −

∮
∂D

J1(r
′) × ∇′G1(r, r

′) dA′,
(3.6)

for r ∈ {D̄, ∂D,D}. These equations describe the field generated by the equivalent sources only,
i.e., in the absence of the incident field. Referring to Section 2.8, it is clear that the equivalent

current JS in Schelkunoff’s equivalence principle (SEP) which gives rise to
{
Ein,H in

}
inside

D is, unlike the J in
S of LEP, indeed related to a total field.
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Next, we define the linear boundary integral operators,

Lv(r)XS ≡ γv

∮
∂D

XS(r
′)Gv(r, r

′) dA′ − 1

γv
∇
∮
∂D

[∇′
S · XS(r

′)]Gv(r, r
′) dA′, (3.7a)

Kv(r)XS ≡
∮
∂D

XS(r
′) × ∇′Gv(r, r

′) dA′, (3.7b)

which act on a boundary current XS defined on ∂D. The subscript v ∈ {1, 2} refers to the
index of the constitutive parameters εv, μv. The first integral on the left-hand side of Eq. (3.7a)

is commonly known as a vector potential, and the second integral as a scalar potential. More

specifically, they are magnetic vector- and electric scalar potentials if XS is an electric current,

and electric vector- and magnetic scalar potentials if XS is a magnetic current. It should be

kept in mind though, that the derivation of the scalar potential in Chapter 2 was subject to the

continuous differentiability of XS on ∂D.

To arrive at concise expressions that describe the total fields anywhere in the exterior equivalent

configuration of Figure 3.1c, we add the incident field to both sides of Eqs. (3.5-3.6) and use the

introduced L and K operators, which results in

χD̄ E1 = Ein
1 + Z1 L1 J1 + K1 M 1, (3.8a)

χD̄ H1 = H in
1 + Y1 L1 M 1 − K1 J1, (3.8b)

where Y1 =
√
ε1/μ1 represents the admittance of medium 1, and χD̄ has been defined below

Eq. (3.3). Similar integral representations can be obtained for the interior equivalent state de-

picted in Figure 3.1b, where {J2,M 2} are considered in an empty homogeneous medium, 2,
and reproduce the penetrated fields,E2 andH2 inD, which are total fields, sinceD is presumed

source-free. This equivalent state is consistent with the interior equivalent state in Figure 2.3b.

Therefore, the integral representations in Eqs. (2.64-2.65) are also applicable here, albeit with

fields {E2,H2} and currents {J2,M 2}. In terms of the operators L and K, we have

−χD E2 = Z2 L2 J2 + K2 M 2, (3.9a)

−χD H2 = Y2 L2 M 2 − K2 J2. (3.9b)

Upon comparing Eqs. (3.8) and (3.9), we observe that an impressed source distribution in D is

readily accounted for, by appending its field contribution to the right-hand side of the equation.

Once the related equivalent currents are obtained, the fields in the original scattering problem

depicted in Figure 3.1a are described by the above two sets of integral representations.



46 Boundary integral equations

To determine the yet unknown equivalent currents, the integral representations are evaluated on

the boundary ∂D. Upon applying the counterpart of Eq. (2.62) for the equivalent currents J1 and

M 1, to the total fields E1 and H1 in Eq. (3.8), we obtain the integral equations associated with

the exterior equivalent state,

−n̂ × Ein
1 = n̂ × [Z1 L1 J1 + K1 M 1] − M 1

2
, (3.10a)

−n̂ × H in
1 = n̂ × [Y1 L1 M 1 − K1 J1] +

J1

2
, (3.10b)

with r ∈ ∂D. In a similar manner, from Eq. (3.9) we arrive at the integral equations,

0 = n̂ × [Z2 L2 J2 + K2 M 2] +
M 2

2
, (3.11a)

0 = n̂ × [Y2 L2 M 2 − K2 J2] − J2

2
, (3.11b)

for r ∈ ∂D, associated with the interior equivalent state. Observe that the signs of the last term
on the right-hand side of Eqs. (3.10-3.11), which we henceforth denote as an identity operator,

Iv ≡ Xv/2 for i = {1, 2}, are opposite with respect to K. This originates from the fact that

Eq. (3.10) describes an exterior, and Eq. (3.11) an interior field formulation, while at the same

time, the outward pointing normal is unchanged. In general, the same sign is used for n̂×K and

I when n̂ points outwards. Note that, without imposing the equality of the currents, Eq. (3.1), the

integral equations associated with the exterior Eq. (3.10) and the interior fields, Eq. (3.11), would

not be coupled. Hence, considered separately, any solution will not uniquely describe the fields

in the composite scattering configuration, until appropriate boundary conditions for the interface

∂D have been imposed that relate the interior to the exterior fields. For dielectric objects the

equations can be combined in several ways; this will be described in Section 3.5.

3.3 Integral equations for perfectly conducting objects

In the limiting case of the electric conductivity σe;2, and the complex permittivity ε2 for the

general scattering problem depicted in Figure 3.1a going to infinity, D becomes electrically im-

penetrable, i.e., a perfect electric conductor (PEC), in which {E2,H2} are both zero. There-
fore, only the exterior equivalent configuration in Figure 3.1c needs to be considered. From the

boundary condition for a PEC, Eq. (2.19), and the definition of the equivalent magnetic current,

Eq. (2.62b), we readily obtain

n̂ × E1 = M 1 = 0. (3.12)
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Now, LEP has reduced to SEP as only J1 remains. Also for a PEC, the subdivision of the

general scattering problem into separate equivalent states, as depicted in Figure 3.1 for dielectric

objects, is no longer required. Instead, for a PEC the situation reduces to the original and exterior

equivalent state illustrated in Figure 2.4b, respectively, Figure 2.4c, of SEP upon defining J ≡
J1. From the definition of equivalent currents, Eq. (2.62), we thus infer that

n̂ × H1 = J ind
S = −J . (3.13)

Although the PEC is absent in the exterior equivalent state depicted in Figure 2.4c, its response is

accounted for by the induced current J ind
S . As such, the corresponding total electric and magnetic

fields are determined from J through the integral representations in Eq. (3.8) upon substituting

J1 = J and M 1 = 0. In turn, via the integral equations (3.10) on ∂D, J can be solved.

Accordingly, with Eq. (3.10a) we arrive at the Electric Field Integral Equation (EFIE),

−n̂ × Ein
1 = Z1 n̂ × [L1 J ] , (3.14)

while with Eq. (3.10b), we have theMagnetic Field Integral Equation (MFIE),

n̂ × H in
1 = n̂ × [K1 J ] − J

2
. (3.15)

Equation (3.14) is a Fredholm integral equation of the first kind, as the unknown current J ap-

pears only under the integral sign, whereas Eq. (3.15) is a Fredholm integral equation of the

second kind as J also appears outside the integral. Note that an integral equation of the second

kind is generally less sensitive to the type of discretization, as will be discussed in 3.7. Observe

also that the integral equation associated with the scattering from a Perfect Magnetic Conduc-

tor (PMC), which is magnetically impenetrable, readily follows from the above via the duality

principle discussed in Section 2.3.

3.4 Interior resonances

Despite the fact that appropriate boundary conditions have been applied, the EFIE and MFIE

(and thus also SEP) may not always yield unique solutions. If, for example, there is a nonzero

solution (E = 0) to the homogeneous modified vector Helmholtz equation

∇ × ∇ × E1 = −γ2E1, (3.16)

while at the same time the boundary condition in Eq. (3.12) is satisfied for r ∈ ∂D, the solution
of the EFIE is not unique, and a spurious resonance associated with a corresponding surface
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current J res
S exists. Unlike the exterior problem, with a PEC in D and a homogeneous lossless

medium in D̄, the interior problem, with a PEC in D̄ and a homogeneous lossless medium in D
does possess such nontrivial solutions at discrete values of ω. These are just the resonant cavity

modes of D. Although there is no direct physical relationship between the exterior and interior
problems, they are mathematically related by sharing a common integral equation. In [44, p. 35-

36] it is proven that non-uniqueness only occurs at such resonant (cavity) modes for lossless

media.

A similar non-uniqueness is associated with the MFIE, i.e., the source-free Helmholtz equation

for the magnetic field is given by

∇ × ∇ × H1 = −γ2H1. (3.17)

Because the fields inside a perfect conductor vanishes, we have just inside D,

n̂ × H1 = 0. (3.18)

Observe that Eqs. (3.16) and (3.12) are mathematically of the same form as Eqs. 3.17 and 3.18

and therefore share the same resonant conditions. Thus, the resonance conditions where the

MFIE is not unique correspond with those of the EFIE [24, 45]. Note that is not the case for 2D

configurations where fields are separated into different polarizations, i.e., the EFIE and MFIE

represent a Dirichlet and Neuman problem.

In contrast with the MFIE, a resonant current J res
S of the EFIE for a PEC theoretically yields no

contribution to the field in D̄. This readily follows from the reciprocity theorem, i.e., according

to Section 2.5, only the EFIE yields a reciprocal system in D for the interior resonant mode,

because the MFIE satisfies Eq. (3.18) instead of (3.12). Only for a reciprocal system we have, in

the absence of magnetic sources,∫
D

Ea · J b dV =

∫
D

Eb · Ja dV, (3.19)

which follows from the reaction theorem. If Ja is chosen to be a surface current tangential to

∂D, the right-hand side is zero as for the EFIE the tangential components of Eb must be zero

on ∂D, independent of J b. This can only be true if Ea, and thus also Ha is zero everywhere.

Accordingly, the field produced by J res
S is indeed equal to zero in D̄ for the EFIE.

Unless losses are introduced, additional constraints on the field are required [46] to ensure unique

solutions. For instance, via a dual (parallel) boundary [47], or the boundary condition for the field
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component normal to ∂D [45], or by forcing consistency on the boundary of a relative small do-

main inside D [48] via the null-field method [49], or by identifying the associated eigencurrent

via a Singular Value Decomposition (SVD) and subsequently remove its contribution from the

numerical solution [50]. However, the most commonly used remedy to avoid interior resonances

is the Combined Field Integral Equation (CFIE) [51], which represents a scaled linear combina-

tion of the MFIE and EFIE method,

CFIE = Y1αEFIE+ (1 − α)MFIE (3.20)

The admittance Y1 is included to give the EFIE, like the MFIE, the dimension of the electric

current. The parameter α can be varied between 0 and 1 to have a pure MFIE or EFIE, or a

combination of both. In [51] it is proven that the CFIE is free of interior resonances if 0 < α < 1,

even at frequencies where the EFIE and MFIE both fail to produce a unique solution.

3.5 Boundary integral equations for dielectric objects

For a (lossy) dielectric object the incident field penetrates the scattering object, as ε2, μ2 have

finite values. Hence, both the interior and the exterior equivalent states depicted in Figure 3.1

must be taken into account. Upon crossing ∂D, the tangential electric and magnetic field are both
continuous as there are no genuine boundary sources involved in the original scattering problem

shown in Figure 3.1a. Hence, boundary conditions of the continuity type for the tangential

field components, Eq. (2.17), apply, and they relate the interior to the exterior equivalent state.

Together with the definition of the equivalent currents in terms of the tangential field, as in

Eq. (2.62), it directly follows that

J1 = J2, and M 1 = M 2. (3.21)

Henceforth, the subscript of the current is omitted. Given this, the composite configuration of

Figure 3.1b combined with Figure 3.1c, indeed yields the source-free original configuration in

Figure 3.1a. Equations (3.10) and (3.11) now form a set of four integral equations in the two

unknowns J and M . Usually one would like to have the same number of equations as the

number of unknowns. The original four equations can be reduced to a coupled pair of equations

by taking linear combinations. Because many pairs of linear combinations are possible, there

are also many boundary integral equation formulations for the scattering problem. For instance,

the addition of the electric field equations (3.10a) and (3.11a), respectively, the magnetic field
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equations (3.10b) and (3.11b), gives

−n̂ × Ein
1 = n̂ × [(Z1 L1 + Z2 L2) J + (K1 + K2) M ] ,

−n̂ × H in
1 = n̂ × [(Y1 L1 + Y2 L2) M − (K1 + K2) J ] .

(3.22)

This set of integral equations is widely used for the scattering by dielectric bodies and is called

the Poggio, Miller, Chang, Harrington, Wu formulation (PMCHW) [39, Chapter 4]. Observe that

Eq. (3.22) has reduced to a coupled pair of integral equations of the first kind as the last terms on

the right side in Eqs. (3.10) and (3.11) cancel.

Another, but less popular choice of combination constants gives rise to the formulation proposed

byMüller [52]. That is, upon subtracting ε2/ε1 times Eq. (3.11a) from Eq. (3.10a) for the electric,

and μ2/μ1 times Eq. (3.11b) from Eq. (3.10b) for the magnetic field integral equation, we obtain

−n̂ × Ein
1 = n̂ ×

[(
Z1 L1 − ε2

ε1

Z2 L2

)
J +

(
K1 − ε2

ε1

K2

)
M

]
− ε1 + ε2

2ε1

M ,

−n̂ × H in
1 = n̂ ×

[(
Y1 L1 − μ2

μ1

Y2 L2

)
M −

(
K1 − μ2

μ1

K2

)
J

]
+
μ1 + μ2

2μ1

J .

(3.23)

In [53] it is proven that the PMCHW, as well as the Müller formulation, yield unique solutions.

Unlike the PMCHW equations, this choice of combination yields a coupled set of integral equa-

tions of the second kind. Further, if the dielectric contrast of the interior and exterior medium

vanishes, the Müller formulation reduces to the trivial solution. Regarding the terms within the

square brackets in Eq. (3.23), the singularity is known to be less dominant than the corresponding

singularity in Eq. (3.22) due to cancellations. Finally, the low-frequency breakdown problem is

naturally avoided without the need for loop-tree or loop-star basis functions [54, 55]. Despite

these advantages, the main reason why the Müller formulation has not become popular is that,

when the equations are solved using a similar testing procedure as has been known to yield accu-

rate solutions with the PMCHW formulation, the solution is unstable [56]. However, as we will

demonstrate in Section 7.5, this can be attributed to a poor choice of testing functions.

3.6 Method of moments and projection methods

Now that the boundary conditions have been discussed, the integral equations can be applied

to a scattering problem. The corresponding equivalent boundary currents uniquely describe the

scattered field. With respect to the numerical implementation, a general framework is given by
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theMethod of Moments (MoM) procedure [57, p. 5-9] for the reduction of the integral equations

into a linear system of algebraic equations. The MoM procedure is based on projection methods.

This section describes the basic idea of the MoM and its application to determine the equivalent

surface currents numerically.

The integral equations under consideration can all be cast in the form,

Ax = b (3.24)

with a linear operator A, the equivalent electric and/or magnetic currents as the unknown solution

x, and an excitation or forcing function b, that accounts for the incident field on ∂D. The operator
A performs a mapping from a normed space, say,X to a normed space Y . HereX is the domain

of A. The range of A,R (A), is contained in Y .

In the MoM approach two successive projections are applied, viz., the projection QN which

projectsX onto the subspaceXN , spanned by anN -dimensional set of expansion functions, and

the projection PN which projects R (A) onto the subspace YN . These subspaces represent an

approximation and should become dense in the original spaces in the limitN → ∞. The projec-

tion PN is constructed by using a normed space WN dual to YN , such that both normed spaces

are equipped with a nondegenerate bilinear form denoted by the duality product 〈WN , YN〉. The
projection operator PN is then defined by

PNy =
N∑
k=1

〈wk, y〉 yk. (3.25)

where {w1, . . . , wN} is the set of test functions that form a basis inWN dual to {y1, . . . , yN}. As
a basic property of projection operators, PN must be idempotent, i.e., a projection of a projection

is the projection itself. Thus, the property PN(PNy) = PNy should be satisfied. This follows
immediately if the the dual systemWN is chosen such that

〈wk, y�〉 = δk,� (3.26)

holds, where δk,� is the Kronecker symbol. The projection operator QN for the unknown equiv-

alent currents u, is expressed in a similar way

QNx =
N∑
�=1

α�x�, (3.27)

although here we have used the fact that the duality product of x with its dual space represents

the set of unknown current amplitudes {α�} of the expansion functions {x�} which form a basis
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of the subspaceXN . Accordingly, the strong form of the integral equation, Eq. (3.24), for which

the equality sign holds at each point on ∂D, is replaced with the approximate system
PNAQNx = PNb. (3.28)

Thus, the integral equation, Eq. (3.24), has been reduced to an equation in a (weighted) average

sense. The subsequent substitution of the representations of QN and PN yields
N∑
k=1

(
N∑
�=1

〈wk,Ax�〉α�
)
yk =

N∑
k=1

〈wk, b〉 yk, (3.29)

Hence, the current amplitudes α� can be determined from the linear system of equations
N∑
�=1

〈wk,Ax�〉α� = 〈wk, b〉 , k = 1, . . . , N, (3.30)

provided that the square matrix 〈wk,Ax�〉, often referred to as the MoM or impedance matrix,

has full rank, which essentially imposes a first restriction on the choice of test functions wk and

expansion functions x�, i.e., the expansion functions should be linearly independent. Otherwise,

the above matrix would not be invertible and yields, as we will see later on, a non-unique system,

even though the original equation (3.24) may be well-posed. A poor choice for wk and x� could

thus destroy the uniqueness of the integral equation, by allowing a non-trivial solution to the

homogeneous system of equation to exist, which is commonly referred to as a spurious mode.

Upon refining the discretization, we expect that the approximation being made converges to the

exact solution. This is guaranteed if the projection converges, such that apart from invertibility,

point-wise convergence ensues, i.e., A−1
N PNAx → x when N → ∞, holds for all x ∈ X [58,

p. 185]. In general, the convergence of a projection PN is expected only if its subspace XN is

ultimately dense in X , i.e., if for all x ∈ X ,

inf
xN∈XN

‖x− xN‖ → 0 for N → ∞. (3.31)

Consequently, if the chosen type of expansion function x� is ultimately dense inX , then a further

increase of the dimension of XN andWN would lead to a more accurate approximation.

The first step in the MoM is the expansion of the unknown equivalent boundary currents into a

truncated series of expansion functions via the projection QN ,

QJ
NJS(r) =

N∑
n=1

Jnf
J
n(r), (3.32a)

QM
N MS(r) = Z1

N∑
n=1

Mnf
M
n (r), (3.32b)
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where Jn andMn are the unknown current amplitudes that are determined by the MoM approach.

The superscript of fn indicates whether the expansion function of the electric or magnetic current

is concerned. Further, fJ,M
n are tangential to ∂D, since we deal with boundary currents. Note

that the expansion ofMS has been scaled with the wave impedance Z1, such that the discretized

currents fJ
n and fM

n have the same dimension, and are of the same order of magnitude, which

reduces the condition number of the MoM-matrix.

To arrive at a set of linear algebraic equations, the integral equations are tested via the projection

PN , as defined in Eq. (3.30). Yet, an cross product with n̂ is involved with the fields (and

integral operators). To avoid this, and instead apply a test function fm directly on these fields,

the property, n̂×(n̂×A) = −Atan is utilized, whereA represents a field vector and the subscript

in A|tan indicates the components tangential to ∂D only. Accordingly, since the duality product

〈., .〉 on ∂D reads

〈A,B〉 =

∫
∂D

A · B dA, (3.33)

testing with n̂ × fm gives,

〈n̂ × fm, n̂ × A〉 = 〈fm,A〉 , (3.34)

under the assumption that fm is tangential to ∂D. Following the line of argument in the ex-
pansion of MS , either the electric or magnetic field equation should be scaled such that both

equations carry the same dimension. Although the usual approach is to multiply the magnetic

field with Z1, we prefer to scale the electric field with Y1 instead, as it leads to a more sym-

metric concise form for both the Müller and PMCHW formulations. Therefore, Y1n̂ × fE
m and

n̂ × fH
m are used as testing functions for the electric and magnetic field integral equations, re-

spectively. From the expansion in Eq. (3.32), together with Eq. (3.34), the discrete counterparts

of the integral equations (3.22) associated with the PMCHW formulation read

N∑
n=1

〈
fE
m, Jn (L1 + Y1Z2L2) fJ

n +Mn (K1 + K2) fM
n + Y1E

in
1

〉
= 0, (3.35a)

N∑
n=1

〈
fH
m,Mn (L1 + Z1Y2L2) fM

n − Jn (K1 + K2) fJ
n + H in

1

〉
= 0, (3.35b)
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form = 1, . . . , N . Likewise, for the Müller formulation, Eq. (3.23), we obtain

N∑
n=1

〈
fE
m, Jn

(
L1 − γ2

γ1

L2

)
fJ
n +Mn

(
K1 − ε2

ε1

K2

)
fM
n +Mn

ε1 + ε2

2ε1

n̂ × fM
n + Y1E

in
1

〉
= 0,

(3.36a)
N∑
n=1

〈
fH
m,Mn

(
L1 − γ2

γ1

L2

)
fM
n − Jn

(
K1 − μ2

μ1

K2

)
fJ
n − Jn

μ1 + μ2

2μ1

n̂ × fJ
n + H in

1

〉
= 0,

(3.36b)

for m = 1, . . . , N . The two resulting coupled systems of equations may also be understood as

residuals that are weighted to zero at all points on the boundary of the scatterer with respect to

the testing functions, fE,H
m .

If the applied test and expansion functions originate from the same set of functions, this proce-

dure is in electromagnetic literature widely known as Galerkin’s method [59, p. 212] and [60].

This approach is beneficial in the discretization of a symmetric operator like L, because it may

preserve the symmetry in the discretized version as well, which saves the numerical determi-

nation of (nearly) half of the operator. On that account, expanding with fn, while testing with

n̂ × fm given that {fm} = {fn} also complies with the Galerkin approach.

Considering arbitrarily shaped domains poses severe demands on the flexibility of the test and

expansion functions. Due to a lack of flexibility and ease of implementation of entire-domain ba-

sis functions, they are not very well suited for our application, and local expansion functions are

selected instead. Thereby, we accept the disadvantage that their use requires considerably more

computational effort than properly chosen entire-domain functions, as more test and expansion

functions are required for a good approximation.

In the formulation of the integral representations it was assumed that, for the scalar potential, the

boundary currents are continuously differentiable on ∂D, Eq. (2.63). However, this requirement
is too stringent in the construction of a numerical scheme. Yet, through the definition of the

solution space of the associated current, it is possible to weaken the constraint of continuous dif-

ferentiability for the surface divergence to a reduced differentiability of a generalized function.

In particular, this procedure involves Cauchy sequences generated by functions that are contin-

uously differentiable in the solution space of the boundary current. In this manner, piecewise

differentiable functions are permitted for the expansion of the boundary current that is subject to

the surface divergence.
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3.7 Mapping properties of the boundary integral operators

In this section the solvability of the integral equations is discussed in terms of the well-posedness

of the integral equations, which depends on the mapping properties of the operators L and K. The

aim is to present a brief overview of the mapping properties, and to deduce general constraints

for the associated test and expansion functions. More specialized restrictions for 2D and 3D

configurations follow in Chapters 5 and 7, respectively. Further, the analysis of the MFIE is

somewhat different from that of the EFIE, because the MFIE also contains an additive multiple

of the identity operator I.

On physical grounds, the stored and dissipated power must remain finite within a bounded do-

main with sufficiently smooth boundary. From the complex power balance it can then be shown

that the vector space L2 on this bounded domain of square integrable functions in C
3 is therefore

an appropriate function space for the description of the electromagnetic field. Upon defining the

inner product,

(f, g) =

∫
D

f · g∗ dA, (3.37)

where g∗ is the adjoint of g, the vector space L2 is complete under the norm ‖f‖ =
√

(f, f) and

hence represents a Hilbert space. This includes the cases involving infinitely thin sheets, such as

a PEC thin plate, where the finite-energy holds on the volume surrounding the sharp edge.

The solvability of an integral equation like Eq. (3.24), is subject to the well-posedness of the

problem. The problem is well-posed if the inverse operator A−1 exists and is bounded. Bound-

edness of A−1 implies that there exists a positive number C such that ‖A−1y‖X ≤ C‖y‖Y for all
y ∈ Y . If existence and uniqueness of the solution is proven, then A−1 exists. In addition, if A−1

is a bounded operator, it can be shown that A−1 is also continuous. Continuity of A−1 ensures

that the solution x depends continuously on the excitation function f , i.e., small errors in b only

cause limited errors in x. Otherwise, the solution could become unstable. If either existence,

uniqueness or continuity is not achieved, the problem is ill-posed. In that case, it becomes ex-

tremely difficult to obtain an approximate solution. Yet, notice that these three properties are not

inherently independent.

The mapping properties of the MFIE, symbolically written as I+K, on a smooth boundary can be

derived from the Riesz and Fredholm theory [61, Chapter 1]. The underlying observation is that
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R (K) is a compact subset1, as long as the boundary is smooth. Then, the Riesz theory states that

the existence and boundedness of the inverse operator is guaranteed if uniqueness can be proven.

In case uniqueness fails to hold, an additional condition on the excitation is required to ensure

existence of the solution. As K is compact2, and therefore bounded, it has an adjoint operator K∗,

such that 〈Kx, b〉 = 〈x,K∗b〉. Given this, the additional condition in case uniqueness fails to hold
amounts to an orthogonality relation between the null space of K∗, indicated by N (K∗), and the

excitation function b. Further, if b is smooth on the boundary ∂D, then the solution of the integral
equation is also smooth on ∂D. In that case, a numerical scheme with smooth basis functions
will exhibit more rapid convergence compared to schemes with non-smooth basis functions.

If ∂D is not smooth, e.g., it contains corners or edges, then the mapping properties of the MFIE

change drastically. In that case, the operator K loses its compactness property in the neighbor-

hood of the corners or edges. Several techniques have been proposed to analyze such cases, e.g.,

a Banach contraction argument [58, p. 76-79], and an alternative way of showing that the range

is closed [63]. In most cases, the invertibility of this operator is considered on L2(∂D), which

allows for the elegance of the Hilbert-space framework and the natural way of computing inner

products to be exploited. In that case, the Galerkin method gives rise to a converging and stable

numerical solution, provided that the set of expansion functions is ultimately dense in L2(∂D).

Consequently, in the L2(∂D) framework, continuity of the testing and expansion functions is not

required in any direction. For example, expansion by piecewise-constant functions is allowed.

In all cases of the EFIE, for both smooth and non-smooth boundaries, the general idea is to split

the operator L in a bounded coercive3 part, denoted by B, and a compact part C. Then, the Lax-

Milgram theorem [58, p. 201] is invoked to show that B has a bounded inverse. Consequently,

the operator can be written as L = B(I + B−1C), where the operator combination B−1C is again

compact. Hence, the bounded invertibility of L is established if (I+B−1C) has a bounded inverse.

However, the latter operator falls within the framework of the Riesz theory, in which uniqueness

automatically implies existence and boundedness of the solution. The main difficulty of this

approach is the introduction of a framework in which the coerciveness of B holds. At present, the

most complete results have been obtained on the so-called fractional-order Sobolev spaces [64,

p. 96-99], denoted by H�(∂D) for −1 <  < 1. Further deduction of the well-posedness for the

1A subset M of X is compact if every sequence inM has a convergent subsequence whose limit is in M [62, p. 77].
2A linear operator A with domain X and range Y is called compact if and only if for each bounded subsequence

xn in X the sequence Axn contains a convergent subsequence in Y [58, p. 18].
3A linear operator A is coercive if there exists a positive constant C such that �{(Ax, x)} ≥ C‖x‖2 for all

x ∈ X [58, p. 201].
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EFIE is treated separately with respect to 2D (Section 5.3) and 3D (Section 7.2) configurations.

In the construction of a numerical scheme, mainly two properties of the scheme are of interest:

order of convergence of the numerical approximation and the conditioning of the linear system.

In general, the order of convergence of the numerical approximation (equivalent current) is deter-

mined by two issues: the smoothness of the exact solution and the smoothness of the expansion

functions, which includes the smoothness of the parametrization of the (approximated) bound-

ary. The second issue is also known as the interpolation error. Combined, this is known as Cea’s

lemma [58, p. 186]. Further, the smoothness of the exact solution is determined by the smooth-

ness of the exact boundary, the smoothness of the excitation function and the mapping properties

of the integral operator. It should be noted that smooth expansion functions do not improve the

convergence compared to non-smooth expansion functions if the exact solution or the approx-

imated boundary is non-smooth. The testing functions only play a marginal role at this point.

Their impact is limited to the stability of the numerical scheme, which determines whether or not

the scheme will converge, but they do not influence the order of the convergence. However, Cea’s

lemma does imply that the testing functions could have an impact on the magnitude of the error

in the approximation. On the other hand, the testing function does play a role with respect to the

field that the approximate equivalent current generates. For instance, in [60], it is demonstrated

that, for a smooth exact boundary, the error in the far field is equally dependent on the test and

expansion functions, i.e., similar accuracy was obtained if the combined order of the basis and

testing functions are comparable.
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Chapter 4

Linear embedding via Green’s operators

In the following, we have develop a specific variety of the Huygens-principle based diakoptics,

referred to as linear embedding via Green’s operators (LEGO). The Green’s operators part indi-

cates that these operators lead to integral representations with kernels that contain the Green’s

function of a background medium. Further, embedding via Green’s operators is considered linear

since the medium properties of the environment and hence the associated integral operators are

considered linear. In addition, the resulting abbreviation “LEGO” reflects the modular building

principle of the electromagnetic method that is common to the well-known LEGOTM bricks. Via

embedding, we determine the electromagnetic interaction between elementary building blocks

that is required to merge these blocks in an electromagnetic sense. In the introduction, Sec-

tion 1.3, we have emphasized the LEGO approach as a modular electromagnetic design tool. In

this chapter we present the theoretical background, the discretization, and an assessment of the

computational complexity of the LEGO approach.

4.1 Introduction

The construction of the elementary building blocks for LEGO is described in Section 4.2. This

is realized through a so-called scattering operator that is associated with equivalent states for

the incident and scattered fields. The corresponding field representations are described in terms

of propagator operators. In Section 4.3, we describe the embedding part of LEGO in its most

general form via a compact operator formalism. Through embedding, the electromagnetic in-
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teraction between two adjacent scattering domains is determined in terms of equivalent-current

scattering operators of the individual domains. Green’s operators are introduced and are dis-

cretized in Section 4.4. The resulting matrix form is expressed in terms of the discretized inte-

gral operators that are used to determine the scattered field for conducting and dielectric objects

in Sections 5.3 and 7.2 for 2D and 3D implementations, respectively. In addition, an alterna-

tive discretization inherent to Love’s equivalence principle (LEP) is proposed, which avoids the

use of inverse propagator (MoM) matrices and amounts to a scheme that is more efficient than

the ordinary implementation of LEP. The LEGO approach is completed in Section 4.5, where a

combined scattering matrix is composed. Common boundary parts are removed in the combined

scattering matrix. Repeated application of the embedding procedure allows for the construction

of scattering matrices for large composite domains. Further, we specialize to either SEP or LEP,

and eliminate computational redundancies in the corresponding computational schemes.

In Section 4.6 we determine the memory requirements and computational costs of the LEGO

approach for both SEP and LEP. Special attention is given to domains that are closely packed.

After a discussion of the associated computational schemes, the computational costs of a single

embedding step of SEP and LEP are compared.

Although the modular building principle of LEGO already improves the efficiency of structure

optimization in comparison with direct solvers, since a full recomputation of the entire structure

is avoided, further improvement can be attained. Namely, since structure optimization usually

amounts to local structure modifications, we restrict future embedding steps to a designated

domain, which become fast. This optimization stage of LEGO is described in Section 4.7, and

an indication of the additional gain in efficiency is provided. Furthermore, the reusability of

previously treated composite scattering domains is a unique feature of LEGO. This matter is

investigated in Section 4.8, where we perform a comparative assessment between LEGO and a

direct solver.

Finally, the LEGO approach is extended towards a hybrid variety in Section 4.9. The hybridiza-

tion of LEGO applies in two ways. First, alternative electromagnetic solution methods can be

used for the construction of the elementary scattering domains. Second, the LEGO approach can

be incorporated into existing software design packages. In particular, the optimization stage in

LEGO, presented in Section 4.7, can be employed as an additional design tool.
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4.2 The scattering operator

This section describes the construction of the elementary building blocks for LEGO. To assemble

such blocks in an electromagnetic sense, a full electromagnetic characterization of the individual

building blocks is required in advance. This is realized through so-called scattering operators.

The scattering operator produces the scattered field pertaining to an incident field in terms of

equivalent currents. The equivalent currents are associated with either an interior or exterior

equivalent state. Below, we formulate the scattering operator via these equivalent states. For

transparency, the associated integral representations are generalized to an operator formalism

that applies to both SEP and LEP.

We prefer to treat the LEGO concept in the most general form possible. To this end, we do not

restrict ourselves to a particular equivalence principle, because the general idea behind LEGO

largely applies in a similar fashion to both Love’s equivalence principle (LEP) and Schelkunoff’s

equivalence principle (SEP). Therefore, where possible, a generalized form of the fields and

equivalent currents is used. The fields and currents are henceforth represented by

F (r) =

[
E(r)

H(r)

]
and Q(r) =

[
M(r)

J(r)

]
, (4.1)

respectively. The boundary currents are considered in a 3D imbedding, i.e., J and M are

spanned by three vector components, albeit that the component normal to the boundary is zero. If

SEP is employed instead of LEP,Q comprises either an electric or a magnetic equivalent current,

and consequently only has three components.

Let us begin with the construction of an elementary LEGO building block. Such a building block

has a simply connected bounded domain, containing one or more objects with electromagnetic

contrast in a homogeneous background. We want to determine the scattered fields for all possible

excitations, on or outside the boundary of the domain. Thus, we capture the complete electro-

magnetic characterization of the scattering domain in a scattering operator. Inside the scattering

domain, any field incident on it may be considered as excited by an equivalent current source dis-

tribution on the boundary of the domain. In turn, the scattering operator produces an equivalent

current distribution that represents the corresponding scattered field in the exterior domain. The

scattering operator thus relates the incident to the scattered equivalent electric current sources.

Hence, the interaction between adjacent scattering domains will be established by relating equiv-

alent currents on the boundaries of the domains that generate incident and scattered fields.
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To illustrate the scattering operator, we consider the scattering problem depicted in Figure 4.1,

involving a scattering domain D1 bounded by the boundary ∂D1. The scattering object and

observation boundary may be chosen arbitrarily, as long as the scatterers are enclosed by the

boundary. The domain exterior to D1, denoted by D̄1, contains the source distribution that pro-

duces an arbitrary incident field. Incident plane waves are included implicitly, as being generated

by sources at infinity. Throughout, we reserve the symbol F in for the impressed incident field in

the background medium.

Scattering
Object 1

D1

∂D1

S11

Qin
1 Qsc

1F sc

F in

Figure 4.1: Scattering by an object in a homogeneous environment using the scattering operator.

To compose the scattering operator ofD1, the interior and exterior field problems are partitioned

by application of an equivalence principle along ∂D1 for both domains. In this approach, equiv-

alent current distributions, Qin
1 = Qin(r) and Qsc

1 = Qsc(r) for r on ∂D1, are defined that

reproduce the original interior incident and exterior scattered fields, respectively. Note that the

superscripts for the sources only indicate what type of field they generate. By coincidence for

LEP the currents Qin
1 and Qsc

1 happen to follow directly from the incident and scattered fields.

For SEP this is not the case (see Section 2.8).

The partitioning of fields depicted in Figure 4.2 is the key step in the construction of the el-

ementary LEGO building blocks. The field is partitioned into associated interior and exterior

equivalent states illustrated in Figure 4.2b and Figure 4.2c, respectively. Combined, these equiv-

alent states describe the scattering problem depicted in Figure 4.1. The medium properties in

the hatched regions are those of the background medium. In these regions the fields generated

by the equivalent currents are of no importance and hence they have been omitted. The equiv-

alent states shown in Figure 4.2 describe both LEP and SEP, since Love’s and Schelkunoff’s

equivalence principle differ only in the hatched regions, i.e., LEP yields a zero field, whereas
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Scattering
object 1

F in

F sc

Do

∂Do

Scattering
object 1

D1

∂D1

F in

F sc
Qin

1

D̄1

∂D1

F sc

F in

Qsc
1

n̂

(a)

(b) (c)

Figure 4.2: The partitioning of the field (a) into two equivalent states via a repeated application of

an equivalence principle. The equivalent currentQin
1 produces F in inD1 (b), whileQsc

1 produces

F sc in D̄1 (c).

SEP yields a nonzero field, as explained in Section 2.8. Although this difference is irrelevant at

present, it is important in the composition of scattering operators, treated in Section 4.5.

Because Qin
1 generates F in in D1, it is indicated by the dash-dotted lines just inside ∂D1. Like-

wise, since Qsc
1 produces the scattered field in D̄1, it is indicated by the dash-dotted line just

outside D1. The field constituents generated by the equivalent currents are depicted in Fig-

ure 4.1. The incident field for r ∈ D̄1 and the scattered field response of the enclosed object(s)

for r ∈ D1 are considered known. The current Qin
1 directly follows from the applied incident

field. Because the incident field may be arbitrary, we are interested in the scattering operator that

relates Qsc
1 to Qin

1 . The current Qsc
1 in Figure 4.1 is indicated by a dotted line since it follows

from the field generated by Qin
1 .
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Next, we introduce a field propagator that operates on the equivalent currents, and is valid to both

LEP and SEP. This leads to a general field representation in the entire configuration. Let us start

with the representations for the scattered and incident fields in the LEP framework. Subsequently,

we shall generalize to the field propagator in operator form. In terms of the integral operators

Lv and Kv with medium index v as defined in Eq. (3.7), the representation for the incident field

reads

χD1
Ein = −Zv Lv;1 J in

1 − Kv;1 M in
1 , (4.2a)

χD1
H in = −Yv Lv;1 M in

1 + Kv;1 J in
1 , (4.2b)

with the characteristic function defined as χD(r) = {1, 1/2, 0} for r ∈ {D, ∂D, D̄}. An addi-
tional subscript has been added to L and K to indicate the boundary on which the associated

equivalent current is defined. Since the properties of the background medium are the same

throughout, the medium index v is omitted in the subscript of the fields and currents. Appro-

priate boundary conditions have been discussed in Section 2.8, yielding the definitions of the

equivalent currents as in Eq. (2.62). To arrive at an expression for the incident field in D and on

its boundary, we add χD̄1
Ein and χD̄1

H in to the left and right-hand side of Eqs. (4.2a) and (4.2b),

respectively. By restricting to a representation that is valid in D1 ∪ ∂D1, we have

Ein = −Zv Lv;1 J in
1 − Kv;1 M in

1 + χD̄1
Ein, (4.3a)

H in = −Yv Lv;1 M in
1 + Kv;1 J in

1 + χD̄1
H in. (4.3b)

The field representation for the exterior scattered field is dual to that of the interior incident field.

Instead, we shall assume that the normal n̂i to any domain Di points outwards. Accordingly,

the equivalent state of LEP as depicted in Figure 3.1d corresponds to the one involving Qsc
1 in

Figure 4.2.

Next, for r ∈ ∂Di we express the incident field on the right-hand side of Eq. (4.3) in equivalent

currents. For that reason, the field is split up in its normal and tangential components via F =

n̂ (n̂ · F ) − n̂ × (n̂ × F ). In turn, with the relations in Eqs. (2.62) and (2.63) obtained through

appropriate boundary conditions applied to the equivalent states of LEP, the incident field, F in
1 =

F in(r) for r ∈ ∂D1, is expressed in terms of equivalent currents,

Ein
1 = n̂1

∇S · J in
1

sεv
− n̂1 × M in

1 , (4.4a)

H in
1 = n̂1

∇S · M in
1

sμv
+ n̂1 × J in

1 , (4.4b)
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Likewise, from the equivalent state for the exterior scattered field, Figure 3.1d, and corresponding

boundary conditions, it follows that Eq. (4.4) also applies to the scattered field and currents for

r ∈ ∂D1.

To keep the principle of LEGO lucid, we define a propagation operator, P, which relates the field

quantities to the action of the sources via F = PQ. The definition of P follows from Eqs. (4.3)

and (4.4), and reads

P =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Pi(r) = σDi

⎡
⎣ Zv Lv;i(r) Kv;i(r)

−Kv;i(r) Yv Lv;i(r)

⎤
⎦ , for r ∈ Di,

Pii =

⎡
⎢⎢⎣
σDi Zv Lv;ii +

1

2sεv
n̂i∇S· σDiKv;ii −

1

2
n̂i×

−σDiKv;ii +
1

2
n̂i× σDi Yv Lv;ii +

1

2sμv
n̂i∇S·

⎤
⎥⎥⎦, for r ∈ ∂Di.

(4.5)

The subscript of the propagator refers to the boundary, ∂Di, on which Qi is defined. An extra

subscript has been added to Pi(r) for points of observation on ∂Di, i.e., Pii = Pi(r) for r ∈
∂Di. The same comment applies to the integral operators L and K. The symbol σDi = ±1

selects the interior or exterior field representation. The positive sign applies to an exterior field

representation, and the negative sign to an interior field representation. For the equivalent states

depicted in Figure 4.2, σD1
= 1 for Qsc

1 and σD1
= −1 for Qin

1 . For embedding purposes, we

shall use Pi to produce the field for r ∈ Di. In case we want to determine the equivalent currents

due to an incident field, we apply Pii. Hence, the field in Di and on ∂Di follows from

{
F (r) = Pi(r)Qi, for r ∈ Di,

F i = PiiQi, for r ∈ ∂Di.
(4.6)

The introduced notation is used for transparency. Note that in case of LEP, Pi in principle suffices

since the equivalent currents directly follow from the field components tangential to ∂Di. Via a

similar derivation of the propagation operator for the SEP framework, it is found that, depending

on whether SEP is based on the magnetic or electric equivalent currents, Eq. (4.6) holds, by

setting either the electric or the magnetic equivalent currents to zero in Eq. (4.5).

With the introduction of the propagation operator in Eq. (4.5), the total field, F (r), in the entire

scattering configuration depicted in Figure 4.1 follows from the equivalent current distributions
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on ∂D1 and the incident field via

F (r) =

⎧⎪⎪⎨
⎪⎪⎩

P1Q
in
1 +

∫
∂D1

F sc(r, r′) Qin(r′) dA′, r ∈ D1,

F in + P1 Qsc
1 , r ∈ D̄1.

(4.7)

Note that the initial equivalent state in Figure 4.2b, whereQin
1 generates in a homogeneous back-

ground medium the appropriate interior incident field, remains applicable to a complete incident

field, i.e., with the inclusion of multiple scattering effects with other domains. Likewise, in Fig-

ure 4.2c, Qsc will generate the complete exterior scattered field of several combined scattering

domains in a homogeneous background medium.

Now that we have arrived at a concise representation of the field in the entire configuration, we

shall demonstrate how to obtain Qin
1 , and the scattering operator that gives the corresponding

Qsc
1 . The current Qin

1 follows from the field evaluated at r ∈ ∂D1. The representation for the

incident field in Eq. (4.2) poses an integral equation for r ∈ ∂D1, which is written as

P11 Qin
1 = F in

1 . (4.8)

Because this equation describes a linear problem, we may formally introduce the inverse propa-

gator of Eq. (4.5) such that

Qin
1 = P−1

11 F in
1 , (4.9)

provided that the corresponding homogeneous equation has only the trivial solution. Although

the equivalent current distribution Qsc
1 that reproduces the exterior scattered field may be ob-

tained directly from the scattered field for a specific incident field via a single integral equation,

we prefer using the scattering operator, S11, instead to encompass the scattered field for all pos-

sible excitations. The scattering operator is defined through

Qsc
1 = S11 Qin

1 =

∫
∂D1

S11(r, r
′) Qin(r′) dA′. (4.10)

In contrast with P11, the kernel of the scattering operator involves S11(r, r
′) instead of the free-

space Green’s function. To determine the kernel S11(r, r
′), let us consider a source at r′, which

generates a field that impinges upon the scattering object(s) in D1, giving rise to a scattered field

F sc. We regard F sc in D̄1 as if it were generated by secondary contrast sources in a homoge-

neous background medium. The kernel of the scattering operator follows from a similar integral

equation as in Eq. (4.9),

S11(r, r
′) = P−1

11 F sc
11, (4.11)
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where the field F sc
11 = F sc(r, r′) in the kernel of the inverse propagator is the scattered field at r

on ∂D1 for a source at r′ on ∂D1. The field F sc
11 can be determined using conventional methods,

e.g., a domain integral equation with second order accuracy [65], or a boundary integral equation

(BIE) for dielectric objects [66].

In this thesis arbitrarily shaped scattering objects are considered with homogeneous, possibly

lossy or perfectly conducting medium properties. Boundary integral equations are therefore

ideally suited to determine the corresponding scattered field. Chapter 3 contains a survey on

the choice of integral formulation with corresponding discretization. Let Xo(r) represent an

appropriate integral operator for the scattering object in question. Because Xo is a linear operator,

the scattered field F sc
11 in the kernel of the scattering operator may formally be written as

F sc
11 = P1o X−1

oo Po1. (4.12)

The propagator Po1 produces on ∂Do the field due to a source distribution on ∂D1. From the

incident field on ∂Do, X−1
oo produces an equivalent current, Qsc

o , which generates the scattered

field outside Do due to sources on ∂D1. In turn, the propagation operator P1o generates the

scattered field on ∂D1. To solve the scattered field numerically for all source positions on ∂D1,

a “marching on in source position”scheme [9] may be utilized as a predictor-corrector method

to reduce computation times considerably. Such computational considerations of LEGO are

discussed in more detail in Section 4.6. Note that the combination X−1
oo Po1 can be reused in the

determination of the total field in the entire configuration via Eq. (4.7).

Finally, a comment should be made regarding the choice of boundary shape in a design process

using LEGO. Because of the freedom regarding the choice of the shape of D1, an appropri-

ate choice requires some foresight with respect to the eventual scattering configuration being

constructed. The choice of a suitable domain shape mainly involves the ease of evaluating the

scattered field of the enclosed scattering object(s) and the possibility of reusing the scattering

domain at a later stage in a sequence of LEGO steps. For instance, in a 2D configuration involv-

ing several circular cylinders, starting domains enclosing only a single cylinder poses an ideal

choice as there is a high degree of reusability, while analytical solutions are available for the field

scattered by a single cylinder.
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4.3 Embedding in operator form

In this section we describe the embedding part of the LEGO concept in its most general form. In

addition to the scatter(s) inD1, a second scattering domainD2 with boundary ∂D2 is introduced,

close enough that the multiple scattering effects between both scattering domains may not be

neglected. The embedding procedure accounts for this interaction. It provides the multiple scat-

tering in terms of the scattering operators of the individual domains that have been characterized

at an earlier stage. To accomplish this, the domain D2 is considered as a part of the environment

of D1 and vice versa.

In principle, the equivalent currents that generate the scattered fields exterior to the respective

domains are still valid. However, the field scattered by one object is part of the incident field of

the other. We will describe the resulting multiple scattering in terms of a feedback loop involving

a modified, “complete” current Qcp. By replacing Qin with Qcp, the complete field in domain

D1 follows immediately from Eq. (4.7). The combined exterior scattered fields are obtained by

application of the scattering operators of both domains via Eq. (4.10). To convert the incident-

field currentsQin, associated with the single scattering domains in absence of the others, into the

desired complete current distributions Qcp, four Q operators are introduced,[
Qcp

1

Qcp
2

]
=

[
Q11 Q12

Q21 Q22

][
Qin

1

Qin
2

]
. (4.13)

Again, from left to right, the subscripts in the operator Q respectively denote the boundaries on

which the observation and source distributions are located. For example,Q12 yields an equivalent

current distribution on ∂D1 for the complete field in D1 due to the field incident on D2, in the

absence of scattering objects in D1. Once the four Q operators have been determined, the entire

field problem has effectively been solved.

To find expressions for the Q operators, we introduce two current-transfer operators. In Fig-

ure 4.3, the action of the transfer operator T21 is depicted. It produces an equivalent current

distribution on ∂D2 for the field in D2 for each possible current distribution on ∂D1. The con-

struction of the transfer operator T21 involves two steps. First, the current on ∂D1 generates a

field that is propagated to ∂D2, via the propagation operator P21. Second, the equivalent current

distribution that would produce the corresponding field in D2 is obtained by applying the inverse

propagator P−1
22 on ∂D2. This results in

T21 = P−1
22 P21,

T12 = P−1
11 P12.

(4.14)



4.3 Embedding in operator form 69

D1

∂D1

D2

∂D2

T21

Figure 4.3: The current-transfer operator T21 transfers current distributions that radiate into D̄1

from the first onto the second boundary and subsequently produce the same field in D2.

Note that P−1
22 = P−1

11 for boundaries with identical shape and corresponding field representation

(interior or exterior), while P21 follows from P12 by exchanging source and observation boundary

(reciprocity). Also, when both boundaries coincide, the transfer operators reduce to identity

operators.

Scattering
object 1

D1

∂D1

Qin
1

Q11 S11

Scattering
object 2

D2

∂D2

Q21 S22

T21

T12

Figure 4.4: The Q11 and Q21 operators for an incident currentQ
in
1 that include the direct incident

field and the occurring multiple scattering represented by the loop.

In Figure 4.4, we have sketched the part of the multiple-scattering process that corresponds

to an incident field on ∂D1, only. In this case, D2 is considered as the environment of D1.

As illustrated in Figure 4.4, Q11 is obtained from Q21 through scattering in domain D2, with

scattering operator S22, and a subsequent transfer of the resulting equivalent current distributions
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to the first boundary via T12. However, this does not represent the complete field incident on

D1 as the current distribution Qin
1 also produces a direct contribution in D1, which is accounted

for by an additional unit-amplitude identity operator I11. The resulting expression for Q11 thus

becomes,

Q11 = I11 + T12 S22 Q21. (4.15)

Similarly,Q21 is obtained fromQ11 through scattering via S11, and a transfer of the corresponding

equivalent currents to ∂D2 via T21. Hence, we obtain

Q21 = T21 S11 Q11. (4.16)

For the incident current Qin
2 , D1 is considered as the environment of D2. By duality, the Q22

and Q12 operators are readily obtained by swapping the indices 1 and 2, thereby exchanging

source and observation boundary. Combining Eqs. (4.15) and (4.16), together with their dual

counterparts, yields the following matrix equation[
Q11 Q12

Q21 Q22

]
=

[
0 T12 S22

T21 S11 0

][
Q11 Q12

Q21 Q22

]
+

[
I11 0

0 I22

]
, (4.17)

where the last matrix on the right-hand side accounts for the contribution of the incident field in

the absence of scatterers in D1 and D2. Next, let us define the reflection operators R11 and R22.

For D1,

R11 = T12 S22 T21, (4.18)

produces equivalent currents on ∂D1 that represent the scattered field from D2 in D1 due to

currents on ∂D1. For clarity, the action of the reflection operator R11 is visualized in Figure 4.5.

Note that R11 constitutes the Green’s operator that characterizes the environment of D1 in terms

of equivalent currents. Likewise, we have

R22 = T21 S11 T12. (4.19)

Now, we may express the solution of Eq. (4.17) in terms of scattering and reflection operators

according to[
Q11 Q12

Q21 Q22

]
=

[
(I11 − R11 S11)

−1 0

0 (I22 − R22 S22)
−1

][
I11 T12 S22

T21 S11 I22

]
. (4.20)

The two terms R11 S11 and R22 S22 both describe the closed loop as depicted in Figure 4.4. The

last matrix on the right-hand side contains the incident field contribution of Eq. (4.17). In par-

ticular, T12 S22 provides the contribution of the incident field on D1 in the absence of scatterers
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in D1, whereas T21 S11 provides the contribution of the incident field on D2 in the absence of

scatterers in D2. Further, we may expand (I − R S)−1 in terms of a Neumann series according to

(I − R S)−1 =
∞∑
n=0

(RS)n, (4.21)

from which the multiple scattering behavior is apparent.

Scattering
object 1

D1

∂D1

Scattering
object 2

D2

∂D2

S22

T21

T12

Figure 4.5: The reflection operator R11 characterizes the electromagnetic environment of D1.

Upon reviewing Eq. (4.20), one might think that both embedding operators, (I11 − R11 S11) and

(I22 − R22 S22) have to be evaluated to obtain the four Q operators. This is not the case, since the

complete incident field in D1, provided by Q11 and Q12, is obtained via the embedding operator,

(I11 − R11 S11), in Eq. (4.20). Subsequently, the complete incident field in D2, provided by Q22

and Q21, follows from Q11 and Q12 upon applying Eq. (4.17). This may be illustrated through

the relation,

T21 S11 (I11 − R11 S11) = (I22 − R22 S22) T21 S11, (4.22)

which follows from

T21 S11 R11 = R22 S22 T21, (4.23)

and is a direct consequence of the definitions for the reflection operators in Eqs. (4.18) and (4.19).

Now that the four Q operators have been determined, the equivalent currents that account for

the complete field incident on the scattering domains, Qcp
1 and Qcp

2 , follow from Eq. (4.13).

Upon replacing Qin
i with Qcp

i , the complete total field in domain Di follows immediately from
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Eq. (4.7). The total field in the entire configuration then reads

F =

⎧⎪⎪⎨
⎪⎪⎩

Pi Q
cp
i +

∫
∂Di

F sc(r, r′) Qcp(r′) dA′, r ∈ Di,

F in + P1 Qsc
1 + P2 Qsc

2 , r ∈ D̄1 ∩ D̄2.

(4.24)

Notice that at present the complete exterior scattered field still requires the scattering operators

of the individual domains as

Qsc
i = SiiQ

cp
i , for i = 1, 2, (4.25)

analogous to Eq. (4.10).

Up to this point, the source distribution that generates the arbitrary incident field is initially

considered to be outside the scattering domains. Let us briefly elaborate how a source inside a

scattering domain may be included in the embedding process. As an example, let domain D1

enclose both a scattering object and a source positioned at rS ∈ D1. This merely gives rise

to an additional field, represented by the equivalent current Qad
1 on ∂D1. This additional field,

F (r, rS), is the linear combination of the field generated by the point source and the associated

scattered field of the object(s) contained in D1. Unlike Qin
1 , Q

ad
1 comprises a field representation

in the exterior domain, D̄1. Therefore, regarding the multiple scattering represented by a closed

loop in Figure 4.4, the contribution of Qad
1 enters into the loop at a different point, viz., just

after S11. The LEGO procedure applies to exterior incident fields only, and thus to equivalent

currents involving an interior incident field representation. However, because the additional field

F (r, rS) remains an exterior incident field with respect toD2,Q
ad
1 is transferred to ∂D2. Hence,

T21Q
ad
1 should be added to the existing Qin

2 .

Upon completing the embedding process, the corresponding additional multiple scattering caused

by the point source is accounted for by the complete currents Qcp
1 and Qcp

2 . The representation

for the total complete field in D2, Eq. (4.24) remains unchanged, whereas for D1 the additional

incident field F (r, rS) is to be included. Exterior to D1 and D2, this additional field is included

via P1 Qad
1 (r). Because a source distribution within a scattering domain simply adds to the Qin

of the other scattering domain(s), its contribution can be included after the embedding process,

thus allowing for arbitrary source distributions within the scattering domains. Finally, the general

definition of the propagation operator enables an arbitrary mutual orientation of the source and

observation boundaries involving the transfer operators, e.g., one domain may enclose the other

domain. Thus, the LEGO procedure readily applies to configurations with multiple scattering

between a scattering domain and an arbitrary surrounding scattering environment.



4.4 Discretization 73

4.4 Discretization

This section describes the discretization of the general embedding procedure, so far presented

in operator form. Because the operators involved in the embedding process rely on propagation

and scattering operators only, we restrict ourselves to the discretization of these propagators.

We discuss a discretization based on LEP only. The discretization regarding SEP is treated by

analogy afterwards. The discretized propagation operators are composed from the discretized

integral operators in the MoM matrices for the scattering of conducting and dielectric objects

to be discussed in Sections 5.3 and 7.2 for 2D and 3D implementations, respectively. Finally,

a different definition of the transfer operators will be introduced that is applicable to LEP only.

With this alternative definition, the use of an inverse propagator may be omitted which leads to

computational advantages.

At first glance, it may seem adequate to evaluate the integral operators at discrete points on the

boundaries of scattering domains. However, such a direct approach is problematic when source

and observation boundaries (partially) overlap, as the kernel of the integral operators is singular

for source and observation points that coincide. Moreover, overlapping source and observation

boundaries occur intrinsically in the embedding procedure via the use of the propagators P11 and

P22 in the definition of the transfer operators, given by Eq. (4.14).

To mitigate the singular field behavior on the boundary, the field propagators are considered in

a weighted average sense similar to the MoM method discussed in Section 3.6. Therefore, the

fields are tested and the currents are expanded through appropriate test and expansion functions,

respectively. Throughout, we apply a Galerkin weak formulation. The expansion of an equiv-

alent boundary current implies an approximation of that current by a finite set of fixed known

expansion functions in combination with appropriate current amplitudes. In view of Eq. (4.1),

the discretization of a boundary current, say Q1, leads to a vector Q1, with elements that are

magnetic and electric current amplitudes. Likewise, upon testing a field F 1 on ∂D1, we obtain

a vector F1, the elements of which are the duality product of the test functions with the electric

and magnetic fields, henceforth referred to as field amplitudes. Accordingly, after discretization

we have the vectors

F1 =

[
E1

H1

]
and Q1 =

[
M1

J1

]
. (4.26)

The typewriter font indicates a matrix form representation. Likewise, the field produced by a

propagation operator with a double boundary index is tested on the boundary of a domain. After
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discretization, the propagator, say P21, has become a MoM matrix, P21. The matrix represen-

tation of a propagator P21 that operates on a current Q1, amounts to the matrix-vector product,

P21Q1. Likewise, a transfer operator T21 leads to the transfer matrix T21, and follows from the

matrix product P−1
22 P21. For clarity, an interpretation of the discretized operators is given by

P21 =

[
EM

21 EJ
21

HM
21 HJ

21

]
and T21 =

[
MM

21 MJ
21

JM
21 JJ

21

]
. (4.27)

Both matrices operate on current amplitudes related to ∂D1, such as Q1 in Eq. (4.26). The

superscript indicates whether the field or equivalent current on ∂D2 is generated by an electric

or magnetic current on ∂D1. The size of the vectors and matrices follows implicitly from the

number of unknowns on the boundaries indicated by the corresponding subscripts.

The discretization of the propagator operator only is sufficient to perform the embedding numeri-

cally, since the transfer matrix, say T21, follows from the matrix product P−1
22 P21. By expanding

and testing the propagator P1 for r ∈ ∂D2, defined in Eq. (4.5), the propagation matrix P21 reads

P21 =

[
σD1

KEMv;21 − IEM21 σD1
Zv L

EJ
v;21

σD1
Yv L

HM
v;21 −σD1

KHJv;21 + IHJ21

]
(4.28)

For identical source and observation boundaries, the submatrices on the upper and lower right

correspond with the conventional EFIE and MFIE MoM matrices for the scattering from a PEC.

For 2D configurations, the four submatrices of P21 follow from the discretized integral operators

to be discussed in Section 5.3, with piecewise constant, �(ρ), or piecewise linear, ∧(ρ), test and

expansion functions to be defined in Eq. 5.15. For 3D configurations, we consider expansion

by RWG-functions, ∧n(r). The testing function comprises a linear combination of ∧m and

∨m = n̂×∧m as will be explained in Chapter 7. The resulting propagation matrix is composed

in accordance with the discretization process in Section 7.2. For instance, testing with ∧m leads

to constituents {Lv,Kv,Iv} that in Chapter 7 are defined as {L∧
v ,K

∧
v ,I

∨
v }. Observe that the

impedance scaling introduced in Section 3.6, applied to the field and currents to improve the

condition number, has been omitted for brevity.

Next, let us consider the cases where the propagation operator is applied as a field representation

to reproduce a field. This is the case for propagation operators P with a single boundary index,

as in Eq. (4.5). Because the definition of the operator Pi ceases to hold for observation points

on the boundary ∂Di where the equivalent current is defined, the field representation may not be

used exactly on the boundary. In principle, the resulting field should show no singular behavior

as the actual sources that generate this field in the original configuration are located elsewhere.
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For the evaluation of the field on ∂Di it suffices to slightly move the observation point r ∈ ∂Di

away from the boundary into the domain where Qi represents its associated field. Once the

current amplitudes are determined, the pertaining field for r ∈ ∂Di follows by the substitution of

the current expansion into the field representation in Eq. (4.5),

F = Pi Qi = σDi

Ni∑
n=1

[
KEM
v;i Zv LEJv;i

Yv LHMv;i −KHJ
v;i

][
Mn;i f

M
n;i

Jn;i f
J
n;i

]
. (4.29)

The current expansion functions of the electric and magnetic current on ∂Di are denoted as f J
n;i

and fM
n;i, respectively. The field representation in Eq. (4.29) is defined in accordance with the

2D and 3D ones to be discussed in Eqs. (5.53) and (7.32), respectively. Although an observation

point may be very close to the boundary, proper handling of the singular integrand parts by

analytical means avoids large quadrature errors in the evaluation of the expansion integrals.

An implementation based on SEP readily follows from that of LEP by setting either the electric

or the magnetic current to zero. The submatrices which have vanishing currents in their super-

scripts are omitted. By further omitting the submatrices related to an electric or magnetic field in

Eq. (4.28), one obtains an MFIE or EFIE, respectively. Conversely, via a linear combination as in

Eq. (3.20), both integral equations may be combined to form a CFIE. The remaining matrices are

four times smaller than with LEP in case the same number of unknowns is applied to the single

equivalent current with SEP and the two individual equivalent currents of LEP. This observation

appears to indicate that LEGO based on LEP is less memory efficient and more time-consuming

as with SEP. However, this observation is not certain a priori as the use of two equivalent currents

with LEP may lead to better results than the use of a single current in SEP. A more appropriate

computational comparison between both equivalence principles should therefore be related to

the accuracy of the obtained fields. Such a comparison is performed in Section 6.5.

Next, let us consider Eqs. (4.10–4.12) which describe the scattering operator S11 of domain

D1 that contains a homogeneous scatterer with boundary ∂Do. After substituting the transfer

operator T1o = P−1
11 P1o, and discretization by appropriate test and expansion functions, the

construction of the scattering matrix S11 involves the matrix multiplications

S11 = T1oX
−1
oo Po1. (4.30)

The matrix Xoo represents the MoM matrix of the enclosed scattering objects. The propagator

matrix Po1 produces the tested field amplitudes on ∂Do due to current distributions on ∂D1.

In turn, the combination X−1
oo Po1, produces the current amplitudes of the equivalent current on

∂Do that reproduces the scattered field of Do. These current amplitudes are transferred to the
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boundary of the scattering domain by the matrix multiplication with T1o. Hence, similar to a

transfer matrix, the elements of our scattering matrix are current amplitudes, i.e., we consider

the scattering operator in the bases spanned by the current expansion and test functions. The

elements of a vector column of S11 are thus the current amplitudes of an equivalent current on

∂D1 that reproduces the exterior scattered field response from the objects in D1 due to a single

current expansion function on ∂D1. Although the MoM matrix Xoo may be related to dielectric

and/or perfectly conducting scattering objects, both LEP and SEP are suitable for the construction

of the scattering matrix. Of course, the test function used in Po1 and the expansion function used

in P1o (concealed in T1o) should be in accordance with the discretization of Xoo.

The formulation and discretization of the transfer operator given above generally applies to both

LEP and SEP. A different way of discretization is possible for LEP, in which an inverse propaga-

tor matrix becomes superfluous. To explain this, let us recapitulate the definition of the equivalent

electric and magnetic boundary currents given by Eq. (2.62),

M = n̂ × E, (4.31a)

J = −n̂ × H . (4.31b)

Whether this definition applies to an incident or scattered field will be indicated through the su-

perscript of the fields and currents. These relations are only true for LEP. With SEP, the fields

in Eq. (4.31) are not directly related to the fields represented by the currents. This discrepancy

between SEP and LEP has been explained explained in Sections 2.8 and 3.2. Superscripts as-

signed to the equivalent currents of SEP, merely imply that they produce the relevant field in the

domain of interest. The difficulty in the determination of the current amplitudes from the field

amplitudes required for SEP is thus avoided with LEP.

To elucidate the approach of the alternative discretization of LEP, test and expansion functions

should be applied in Eq. (4.31). In Section 5.3, functions fE
m and fH

m will be introduced to test

the electric and magnetic fields, respectively. In particular, we employ〈
n̂ × fE

m,M
〉

=
〈
fE
m,E

〉
, (4.32a)

− 〈
n̂ × fH

m,J
〉

=
〈
fH
m,H

〉
. (4.32b)

Thus, testing the field with fm implies testing of the currents with n̂ × fm. By substitution of

the expansion of the currents without impedance scaling in Eq. (4.32), we have

− 〈
fE
m, n̂ × fM

n

〉
Mn =

〈
fE
m,E

〉
, (4.33a)〈

fH
m, n̂ × fJ

n

〉
Jn =

〈
fH
m,H

〉
. (4.33b)
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where fM
n and fJ

n are the expansion functions for the magnetic and electric equivalents, respec-

tively. The current amplitudes Jn and Mn have been extracted from the duality products. With

reference to our general definition of current and field amplitudes in Eq. (4.26), they are related

through the use of an inverse Gram matrix via

Q1 = G−1
11 F1 ⇔

[
M1

J1

]
=

[
GEM11 0

0 GHJ11

]−1 [
E1

H1

]
. (4.34)

Again, the superscripts in Eq. (4.34) indicate the index of the boundary under consideration. The

matrix size implicitly follows from the number of unknowns used for the indicated boundaries.

By comparing Eqs. (4.10) and (4.34), the use of Gram matrices for embedding via LEP amounts

to the substitution of an inverse propagator by an inverse Gram matrix. The elements of the two

submatrices of G11 are given by

GEM11;mn =
〈
fE
m, n̂ × fM

n

〉
, (4.35a)

GHJ11;mn = − 〈
fH
m, n̂ × fJ

n

〉
. (4.35b)

Hence, the Gram matrix readily follows from the discretized counterpart of the identity operator

in n̂ × I. Invertibility of the Gram matrix is required to obtain the current amplitudes from the

field amplitudes. The Gram matrix is invertible if it has full rank, i.e., the duality product must

be non-degenerate, and the elements of each of the sets of test and expansion functions must

be independent. Note that the condition number of the Gram matrix poses a measure of the

well-posedness of the problem and therefore the stability of the solution.

Throughout, the same type of expansion function is applied for the electric and magnetic currents.

A similar remark can be made regarding the test function of the electric and magnetic fields.

Therefore, GEM11 follows directly from GHJ11 and vice versa. In fact, for 2D implementations,

GEM11 = GHJ11 = 2IEM , as can be observed from Eq. (5.41). For 3D implementations with RWG

test and expansion functions, we have GEM11 = −GHJ11 = 2I∨, with ∨ = n̂ × ∧, and I∨ to

be given in Eq. (7.27). Note that fm itself may consist of a linear combination of ∧m and ∨m.

As outlined in Section 4.6, the use of the inverse Gram matrix instead of the inverse propagator

matrix has some appealing advantages regarding memory requirements and computational costs.

4.5 Composition of scattering operators

With the embedding concept presented in Section 4.3, the interaction between two scattering ob-

jects is accounted for. Although the complete interior and exterior total field can be constructed
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with the Q-operators, the procedure still relies on the availability of the incident field currents

Qin
1 andQin

2 and the scattering operators S11 and S22 of the individual subdomains. To compose a

new scattering operator of the combined domain, which may in turn interact with other domains,

the LEGO procedure will be completed below. Common domain boundaries, if present, are re-

moved in this process. Further, the complete interior fields of an arbitrary selection of previously

combined domains can be updated and reconstructed for successive embedding steps. Finally,

we investigate what computational redundancies occur, upon specializing to either LEP or SEP.

To combine separate scattering operators, we first consider the ultimate composite scattering

problem in Figure 4.6, in relation to the one in Figure 4.7 that is obtained after the embedding

step in Section 4.3. Clearly, Figure 4.6 illustrates an overview of the final configuration. The

two starting scattering domains D1 and D2 considered in the embedding step may be connected,

i.e., they may have a common boundary, ∂DC = ∂D1 ∩ ∂D2. The composite scattering operator

of the combined domain D3 = D1 ∪ D2, given by S33, is defined only on the outer boundary,

∂D3 = ∂D1 ∪ ∂D2 \ ∂DC. The current Q
in
3 on ∂D3 produces the impressed incident field in D3.

The pertaining current Qsc
3 that reproduces the scattered field of the composite configuration is

obtained via S33, i.e., including the electromagnetic interaction of the enclosed scattering objects.

Hence, the common contour ∂DC, indicated by a dashed line has been removed, in the sense

that currents are only defined on the outer boundary ∂D3. The ultimate scattering problem in

Figure 4.6 is in principle identical to the elementary one described in Figure 4.1, (except for the

particular scattering objects of course). In turn, D3 may be embedded with other domains in the

same way.

The scattering configuration depicted in Figure 4.7 is obtained upon completing the embedding

steps described in Section 4.3. Although the electromagnetic interaction between both domains

is accounted for, the fields are still represented by equivalent currentsQin
i andQsc

i defined on the

individual boundaries. Namely, the exterior scattered field follows from the combined contribu-

tion of the currents Qsc
1 and Qsc

2 which are obtained via the scattering operators of the individual

domains. Likewise, the complete incident fields produced by Qcp
1 and Qcp

2 are related to the Qin
1

and Qin
2 of the separate domains. In other words, the embedding steps do not yet distinguish

between configurations with or without connected domains. Therefore, current constituents on

possible common boundaries remain to be removed.

To arrive at the composite scattering configuration depicted in Figure 4.6, we start from the situa-

tion depicted in Figure 4.7. The four Q operators that account for the electromagnetic interaction

between D1 and D2 are associated with the currents Qin
1 and Qin

2 for the incident field in the
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Scattering
object 1

D3
∂DC

Scattering
object 2

∂D3

S33

Qin
3 Qsc

3

Figure 4.6: The ultimate composite configuration where separate domains have been combined

into a single scattering domain. The combined operator S33 is defined only on the outer contour

∂D3 of D3 = D1 ∪ D2. The dashed line indicates the removed common contour ∂DC.

Scattering
Object 1

D1

∂D1

S11

Qcp
1 Qsc

1

Scattering
Object 2

D2

∂D2

S22

Qcp
2 Qsc

2

Figure 4.7: The scattering configuration after the embedding step. The currents Qcp
1 and Qcp

2

reproduce the complete incident field in D1 and D2, respectively. Combined, the currents Qsc
1

and Qsc
2 produce the complete exterior scattered field.
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individual domains. Therefore, the next step involves the transfer ofQin
3 from the boundary ∂D3

to the separate boundaries ∂D1 and ∂D2. These current transfers are realized via the transfer

operators T13 and T23, which follow from a similar definition as Eq. (4.14). Accordingly, we

have [
Q13

Q23

]
=

[
Q11 Q12

Q21 Q22

][
T13

T23

]
. (4.36)

The operators Q13 and Q23 act on the current Q
in
3 of the combined domain.

With these intermediate results it remains possible to describe the complete interior fields of a

subdomain of interest, say Di, in terms of an current on the outer boundary only, i.e.,

Qcp
i = Qi3 Qin

3 , (4.37)

in conformity with Eq. (4.13). The operator Qi3, henceforth referred to as interior field operator,

transforms Qin
3 on the outer boundary directly into a Qcp

i on the boundary of subdomain Di. In a

subsequent embedding step, each Qi3 can be updated independently to account for the presence

of additional domains. By recursion, the embedding of a previously combined domain D3 with

another domain, which changes the outer boundary into, say ∂D4, yields

Qi4 = Qi3 Q34, (4.38)

which replaces Qi3 for the new composite structure, i.e., the boundary index ∂D3 changes into

∂D4 in Eq. (4.37). Via Qi4 and the known initial scattered field response of the objects contained

in an initial subdomainDi, the complete interior field inDi follows. With a following embedding

step, Qi4 may in turn be updated in the same way. The freedom to choose for which of the

subdomains Di the complete interior field is preserved (and updated) or not, is an additional

appealing feature of the LEGO procedure.

The following step towards a composite scattering operator is the determination of the scattering

response to Qcp
1 and Qcp

2 via the scattering operators of the individual domains, as illustrated

in Figure 4.7. Finally, the resulting Qsc
1 and Qsc

2 are transferred to the outer boundary ∂D3

via similar transfer operators as applied in Eq. (4.36). As such, the scattering operator of the

composite configuration follows from the superposition

S33 = T31 S11 Q13 + T32 S22 Q23 (4.39)

Substitution of Eq. (4.36) into Eq. (4.39) yields the full definition of S33 in terms of S11, S22 and

the Q operators obtained in the embedding step. This definition applies to both LEP and SEP,
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and accounts for both connected and unconnected (multiply connected) domains. With reference

to Eq. (4.24), the resulting total field in the entire configuration is given by

F =

⎧⎪⎪⎨
⎪⎪⎩

Pi Q
cp
i +

∫
∂Di

F sc(r, r′) Qcp(r′) dA′, r ∈ Di,

F in + P3 Qsc
3 , r ∈ D̄3.

(4.40)

The operator combinations in Eqs. (4.36) and (4.39) become matrix multiplications after dis-

cretization. The composition of a combined scattering operator may therefore appear as a time-

consuming process. In addition, the steps above are in principle also required if a combined

scattering operator is composed from domains that are not connected although this is not nec-

essarily the case. In particular for LEP, Qin
3 follows from a mere superposition of Qin

1 and Qin
2 ,

whereas for SEP the situation is more complicated. Nonetheless, there are many computational

redundancies concealed in the construction of the transfer operator that has been applied. The

redundancies regarding LEP differ from those of SEP. By eliminating the redundancies as ex-

plained below, much computational effort can be saved.

Let us start by considering scattering domains that are not connected. In that case there is no

common boundary, and the outer boundary is given by ∂D3 = ∂D1 ∪ ∂D2. A transfer operator

which involves ∂D3 may then be subdivided into parts on ∂D1 and ∂D2. After discretization,

the transfer matrix T13 that transfers Q
in
3 on ∂D3 into Qin

1 on ∂D1 may be written as

T13 =
[
T11 T12

]
=
[
I11 T12

]
, (4.41)

where I11 represents the identity matrix. Hence, the current amplitudes of Qin
3 located on ∂D1

directly add to Qin
1 . We emphasize that T12 in Eq. (4.41) transfers only currents that generate a

field in the exterior of D2, and contribute to the field in D1.

At this point, we need to make a distinction between LEP and SEP. Recall that in the complement

of the domain where the equivalent currents of LEP reproduce a field, the same currents produce

a zero field owing to Oseen’s extinction theorem. Hence, T12 vanishes, which implyies that

for LEP
[
TT

13 T
T
23

]T
in Eq. (4.36) reduces to the identity matrix in the absence of common

boundaries. In other words, there is a one-to-one relation between the current amplitudes of Qin
3

and those of Qin
1 and Qin

2 . In contrast with LEP, we have already demonstrated that an equivalent

current of SEP generates a nonzero field in its complementary domain. Therefore, the part of Qin
3

located on ∂D2 does contribute to the incident field in D1 via T12. Hence, we may not simply

omit T13 and T23 with SEP.
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In the next step towards the description of the composite configuration in Figure 4.6, Qsc
1 and Qsc

2

are transferred to ∂D3 via T31 and T32, respectively. In the absence of common boundaries T31

and T32 reduce to the corresponding parts of identity matrices on account of the superposition

principle. Note that this is the case for both LEP and SEP. Accordingly, if ∂D3 = ∂D1 ∪ ∂D2,

S33 =

[
S11 0

0 S22

][
Q11 Q12

Q21 Q22

]
, (4.42)

for LEP.

The transfer matrices, T13 and T23 in Eq. (4.36) may be applied alternatively in case of SEP such

that Eq. (4.42) is valid for both equivalence principles in the absence of common boundaries. To

achieve this, the general embedding process is completed to accommodate for SEP by adding

the transfer operator T21 that follows from Eq. (4.41) to the expression for Q21 in Eq. (4.16). By

duality, the expression of the four Q operators in Eq. (4.17) becomes[
Q11 Q12

Q21 Q22

]
=

[
0 T12 S22

T21 S11 0

][
Q11 Q12

Q21 Q22

]
+

[
I11 T12

T21 I22

]
. (4.43)

The solution is expressed in terms of scattering and reflection operators[
Q11 Q12

Q21 Q22

]
=

[
(I11 − R11 S11)

−1 0

0 (I22 − R22 S22)
−1

][
I11 + R11 T12 (I22 + S22)

T21 (I11 + S11) I22 + R22

]
,

(4.44)

similar to Eq. (4.20). With this completed definition of the fourQ operators, Eq. (4.42) also holds

for SEP. Although the completed Q operators in Eq. (4.44) apply only in the absence of common

boundaries, they may result in a more efficient embedding scheme with SEP. Note that LEP is

impervious to the changes made.

In case D1 and D2 have common boundary parts, none of the transfer operators may be omitted.

Nevertheless, there are still redundancies concealed in transfer matrices for both LEP and SEP.

Some caution would be required near the junction of the common boundary ∂DC and the outer

boundary ∂D3, if the support of certain test and expansion functions crosses the junction. This

is the case for the piecewise linear functions. A junction amounts to the start and end points

of a common contour in a 2D configuration, or the boundary of a common surface in a 3D

configuration. In Figure 4.8, we have illustrated the discretization of the composite configuration

introduced in Figure 4.6. The boundaries D1, D2 and D3 are subdivided with respect to test or

expansion functions on the junction and the common boundary through a lowered subscript. For

instance, the lowered subscript of ∂D31
indicates test or expansion functions on ∂D3 that are also
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entirely on ∂D1. As such, ∂D31
= ∂D13

. The test and expansion functions on D1, D2 and D3

whose support crosses the junction(s) are denoted as the junction test and expansion functions,

∂D1⊥ , ∂D2⊥ and ∂D3⊥ , respectively. The junction test and expansion functions are indicated

with black triangles in Figure 4.8.

f e d

D1

∂D12∂D13

∂D31

c b
a

D2

∂D21 ∂D23

∂D32

Figure 4.8: Discretization by means of piecewise linear test and expansion functions. The junc-

tion test and expansion functions ∂D1⊥ , ∂D2⊥ and ∂D3⊥ , are indicated by black triangles on

∂D1, ∂D2 and ∂D3, respectively.

There are two methods (I and II) to remove computational redundancies in the transfer operator.

Both methods provide efficiency improvements to all transfer operators in the presence of a com-

mon boundary, and thus also to T12 and T21 used in the general embedding step in Section 4.3.

The redundancies occur for part of identity matrices concealed in the transfer matrix. Identifying

these matrices not only reduces the computational complexity of associated matrix multiplica-

tions, but also leads to a reduction of the number of elements of the propagator matrices that

would still have to be determined. Depending on the size of the source and observation bound-

aries of a transfer operator in relation to their common boundary part(s), either method I or II

is favorable. This will be explained later on. Further, method I applies to both LEP and SEP,

whereas method II applies to LEP only.
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To elucidate both methods, let us first consider the case of a multiply connected domain in the

absence of a common boundary, i.e., ∂D3 = ∂D1 ∪ ∂D2, and restrict ourselves to LEP. The

transfer of the current amplitudes from ∂D3 = ∂D1 ∪ ∂D2 to ∂D1 and ∂D2 is described by the

transfer matrix Ti3 for i = 1, 2. An overview of the action of the transfer matrices, T13 and T23

for the multiply connected domain ∂D3 is illustrated in Figure 4.9. We can apply one of three

alternative approaches to realize the transfer of currents via Ti3.

D1

∂D1

T13

D2

∂D2

T23

Figure 4.9: The matrices, T13 and T23 for the multiply connected domain ∂D3 = ∂D1 ∪ ∂D2.

Firstly, one may compute the fields on ∂D1 and ∂D2 as generated by the equivalent sources

on ∂D3. Owing to Oseen’s extinction theorem, the equivalent boundary currents on the closed

boundary parts ∂Di for i = 1, 2 of the boundary ∂D3 produce a vanishing field exterior to Di.

The field on ∂Di may subsequently be converted into equivalent currents by applying an inverse

propagator matrix P−1
ii , i.e.,

Qi = P−1
ii Pi3Q3, for i = 1, 2. (4.45)

Alternatively, one may employ the definition of the equivalent currents in terms of the fields,

given by Eq. (4.31), to extract the current amplitudes from the field amplitudes. Accounting for

the testing procedure in the weak formulation, this amounts to applying an inverse Gram matrix,

G−1
ii , i.e.,

Qi = G−1
ii Pi3Q3, for i = 1, 2. (4.46)

Note that Gii is a local operator, whereas Pii and Pi3 are global ones. Nevertheless, for physical
incident fields, Gii and Pii have the same effect. If no discretization errors were incurred, these
approaches would be equivalent. Moreover, it would amount to a simple act of copying Q3 onto

its constituents parts, i.e.,

Qi = Ii3Q3, for i = 1, 2. (4.47)
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Hence, we have

Ti3 = P−1
ii Pi3, or Ti3 = G−1

ii Pi3, or Ti3 = Ii3, for i = 1, 2. (4.48)

Clearly, the simple act of copying source amplitudes not only saves computing time, it is an

exact procedure, which can be repeated indefinitely. However, it is only feasible if ∂D1 and ∂D2

are not connected. Observe that P−1
ii Pi3 = Ii3, whereas G

−1
ii Pi3 = Ii3. Hence, if one uses

P−1
ii Pi3 = Ii3, further discretization errors are avoided.

Next, let us investigate what happens if ∂D1 and ∂D2 have a common boundary. In this case, the

currents on the open ∂D1 part of ∂D3 do produce a field on ∂D2 and vice versa. As an example

of method I, let us consider the transfer matrix T13. Firstly, we use an inverse propagator matrix,

Eq. (4.48). By subdivision of the source boundary ∂D3 into the boundary constituents indicated

in Figure 4.8, we obtain

T13 = P−1
11 P13 = P−1

11

[
P131

P132,⊥

]
=
[
I131

P−1
11 P132,⊥

]
, (4.49)

where we have used the property P131
= P113

. Note that here the identity matrix directly

follows from the propagator matrix multiplications. An element of I131
does not vanish only if

an expansion function on ∂D1 coincides with one on ∂D3, which implies that,

I131
=

[
I1331

I12,⊥31

]
=

[
I1331

0

]
. (4.50)

As a result, the current amplitudes on ∂D31
are directly copied to the ones on ∂D13

. In method I,

we only have to determine the field on ∂D1 that is generated by the sources on ∂D32,⊥ , viz.,

P132,⊥ in Eq. (4.49). The action of T13 via method I is illustrated in the top-left figure of Fig-

ure 4.10. The dashed line indicates the boundary part where current amplitudes are directly

copied from ∂D3 to ∂D1, while the source and observation boundary parts of P132,⊥ are denoted

by the dash-dotted and dotted lines, respectively. Hence, via Huygens’ principle, we have trans-

ferred (removed) sources by applying the equivalence principle for the fields due to individual

sources. Other transfer matrices are treated in the same way.

Secondly, we consider method I in case an inverse Gram matrix is employed for Ti3, as in
Eq. (4.48), which applies to LEP only. Again, Huygens’ principle is employed in the same way

to transfer sources, while the current amplitudes on ∂D31
are copied to ∂D13

,

T13 = G−1
11 P13 = G−1

11

[
P131

P132,⊥

]
Huygens−→ T13 =

[
I131

G−1
11 P132,⊥

]
. (4.51)
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D2D1

T31

Method I

D2D1

T31

Method II

D2D1

T13

Method I

D2D1

T13

Method II

Figure 4.10: The difference between method I and II for the transfer matrices T13 and T31 in

the top and bottom figures, respectively. The dashed line denotes the current amplitudes of the

source boundary that are directly copied to the ones on the observation boundary. The dash-

dotted and dotted lines represent the source and observation boundary parts, respectively, of the

field propagator matrices P13 (top) and P31 (bottom) that remain to be determined. Method I is

based on Huygens’ principle, whereas method II is based on Oseen’s extinction principle.

By copying sources directly via I131
, we have avoided an unnecessary discretization step. With

reference to Eq. (4.49), we note that this is only the case if an inverse Gram matrix is applied.

Next, method II relies on the definition of the equivalent currents in Eq. (4.31), and therefore

applies only to LEP based on Gram matrices. In contrast with method I, we now subdivide the

observation boundary ∂D1 for T13 according to

T13 = G−1
11 P13 = G−1

11

[
P133

P12,⊥3

]
. (4.52)

The field amplitudes that P133 produces on ∂D13
can be extracted directly from the current

amplitudes Q3 on which T13 operates. The extraction of these field amplitudes is based on
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Oseen’s extinction theorem. Namely, although the current Q3 may contribute to the field in D1,

it yields a zero field exterior to D3. Through Q1 = T13Q3, the current Q1 shall produce that

same field in D1, but also yields a zero field exterior to D3. From the definition of the equivalent

currents in Eq. (4.31), which is based on the zero field assumption in the complementary domain,

in principle, the currentsQ1 andQ3 are the same for ∂D1∩∂D3. However, the pertaining current

amplitudes Q3 and Q1 differ for ∂D1 ∩ ∂D3, since G−1
33 and G−1

11 differ (see also Eq. (4.34)).

Nonetheless, the field amplitudes F3 and F1 remain the same for the boundary part ∂D13
, i.e.,

F13
= F31

. Thus, instead of obtaining these field amplitudes via F13
= P133Q3, we may

alternatively extract the field amplitudes, F13
= G133Q3. In this way, we avoid an unnecessary

discretization step. Accordingly, upon applying this relation to Eq. (4.52), we have

Oseen−→ T13 = G−1
11

[
G313

P12,⊥3

]
= G−1

113
G313 + G−1

112,⊥ P12,⊥3. (4.53)

The matrix product G−1
113
G313 contains the block identity matrix in which we are interested.

Thus, we also directly copy the current amplitudes from ∂D31
to ∂D13

, albeit that the remaining

part, Q12,⊥ , is obtained by reproducing F12,⊥ through the propagator matrix P12,⊥3. Hence,

in method II, we transfer a current by first determining the pertaining field on the observation

boundary from which the transferred current follows, similar to Eq. (4.46). In the top right figure

of Figure 4.10, the direct transfer of current amplitudes, in combination with the action of P12,⊥3

is visualized.

To extract the identity matrix from Eq. (4.53), via ∂D31
= ∂D13

, we decompose the source

boundary of G313 into its constituents,

G−1
113
G313 = G−1

113

[
G1331

G133⊥ 0
]
, (4.54)

in which we have used G1332
= 0. Let us continue the analysis by comparing the column vectors

of G1331
with those of G131

, since G−1
11 G131

= I131
. For the 2D case with the ∧∧ discretization

illustrated in Figure 4.8, each expansion function ∧β ∈ ∂D31
, indicated by ∂D3β

, corresponds to

a column vector G13β
. For ∧β ∈ ∂D31

, the column vector G13β
contains three nonzero elements

such that G−1
11 G13β

is a column vector I13β
of the identity matrix I131

. For instance, with

reference to Figure 4.8, ∧c yields a nonzero duality product with {∧d,∧e,∧f}. In case all three
nonzero elements of G13β

for ∧β ∈ ∂D31
are also element of the vector column part G133β

, then

G−1
113
G133β

= I13β
, otherwise G−1

113
G133β

yields a dense vector. In view of Figure 4.8, this is

the case for ∧β = ∧b, since ∧b only yields a nonzero duality product with {∧d,∧e} ∈ ∂D31
.

Generalizing this observation, we infer

G−1
113
G133β

= I13β
, for 〈∧β,∧⊥〉 = 0 ∀ ∧β∈ ∂D31

, ∧⊥∈ ∂D3⊥ . (4.55)
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Accordingly, besides an identity matrix, G−1
113
G133 in Eq. (4.54) also produces two dense matrix

columns, per junction, i.e., for G133⊥ and G133β
with 〈∧β,∧⊥〉 = 0. Both vectors G133⊥ and

G133β
have altogether three nonzero elements. For the junction on the top in Figure 4.8, these

are the duality products 〈∧a,∧d〉, 〈∧b,∧d〉 and 〈∧b,∧e〉.

A fundamental difference between methods I and II is that in method I the observation boundary

remains a closed boundary throughout, whereas in method II the source boundary remains a

closed boundary throughout. Recall that for SEP only method I applies, whereas for LEP we

may choose between methods I and II. Because the computational efficiency is subject to the

size of the source and observation boundary of a transfer operator in relation to their common

boundary part, either method I or II is more efficient. To gain insight into the appropriate choice

of method, the distinctions and similarities between method I and II are illustrated in Figure 4.10.

The dashed line denotes the current amplitudes of the source boundary that directly add to the

ones on the observation boundary. The respective dotted and dash-dotted lines represent the

source and observation boundary parts of the field propagator that remains to be determined.

Observe that the propagator parts in methods I and II are reciprocal, i.e., upon exchanging the

source and observation boundary parts, method I for T13 corresponds to method II for T31 and

vice versa. Hence, if method I is more efficient with P12,⊥3 for T13, method II is more efficient

with P312,⊥ for T31. As a consequence of mixing methods I and II as indicated, the propagator

matricesP12,⊥3 andP312,⊥ are interrelated through source reciprocity. The computational cost in

the construction of the transfer matrix is primarily determined by the remaining matrix product,

and thereby the size of the propagator matrix. For instance, let us neglect the junction elements

for simplicity, and set N1, N2 and NC as the unknowns on ∂D1, ∂D2 and ∂DC, respectively. If

N1 < N2, we deduce from Figure 4.10 that method II is more efficient for T13 if NC < N2/2,

and method I is more efficient for T23 if NC < N1/2. However, this may differ depending

on the matrices that are multiplied by the transfer matrix, especially since the transfer matrix

becomes a full matrix in method II, whereas it becomes partially an identity matrix in method I.

These considerations are taken into account in Section 4.6, where we give an assessment of the

computational costs of LEGO.

It is much easier to handle a common boundary if the support of the applied test and expansion

functions does not cross junctions, e.g., discretization with piecewise constant functions. We

have applied this approach in [10]. In that case there are no junction elements because of which

there is a one-to-one relation between all current amplitudes of expansion functions on a shared

boundary for both methods. Since the interaction between neighboring functions disappears, the
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Gram matrix is diagonal, and hence its inverse is also diagonal. The transfer matrix T13 still

follows from the constituents I11 and T12 as in Eq. (4.41) by simply omitting the source contri-

butions on ∂DC as ∂DC = ∂D12
= ∂D21

. Via the alternative definition of the four Q operators

in Eqs. (4.43) and (4.44), T13 and T23 are accounted for implicitly. The interior field operators

Q13 and Q23 thus readily follow from these four Q operators. However, there remain equivalent

currents on ∂DC that contribute to the scattered field in D̄3 and should still be transferred to the

outer boundary via T31 and T32. Via method I, T31 is decomposed into the nonzero constituents

I3113
and T3C. With a similar decomposition of T32, Eq. (4.39) reduces to

S33 =

[
S131Q13

S232Q23

]
+ T3C

[
SC1Q13 SC2Q23

]
. (4.56)

Hence, only the currents amplitudes on the common boundary have to be transferred to the outer

boundary, if the discretization involves piecewise constant functions only.

4.6 Memory requirements and computational costs

There are two aspects related to the memory requirements of LEGO. On the one hand we have the

storage demand of the scattering and (if required) interior field matrices. Conversely, we have the

memory required as a workspace for the LEGO process. Both aspects will be treated separately.

Most importantly, the computational costs of a single LEGO step will be determined. As such,

the starting scattering matrices S11 and S22 are considered known a priori. These matrices

have either been constructed in advance or followed from a previous embedding step. Since

there are many schemes possible as regards the various matrix multiplications involved with

embedding, the schemes that are suggested in this section represent in our view the most efficient

ones as regards the computational costs and the workspace that is involved. For a comparison

between embedding based on SEP and LEP, a computational scheme that is specialized to either

equivalence principle will be considered. Via these schemes, this section explicitly describes

the difference in computational costs of LEP versus SEP with embedding. However, a true

measure should incorporate the corresponding accuracy of the resulting fields. To complete the

comparison, we refer to Section 6.5. Finally, we will comment on the possible use of iterative

solvers.

First, we discuss some general issues regarding memory and computational efficiency of the

LEGO procedure. The overall computational costs and memory requirements of embedding are
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primarily determined by the associated matrix operations and matrix sizes, respectively. For the

optimum performance with respect to accuracy, field propagators should therefore reproduce the

pertaining fields as accurately as possible given the number of unknowns. However, the accuracy

that is achieved depends on the chosen set of test and expansion functions in relation to the map-

ping properties of the integral operators L and K + n̂× I that are linked to the propagator matrix

P. Hence, the quadrature error may play an important role in this matter. These considerations
are to be addressed in Chapters 5 and 7.

Further, it may appear that various propagator matrices have to be determined in an embedding

step, and the filling process of the propagator matrices may become a substantial part of the

overall computational effort. This is particulary relevant since we aim for maximum accuracy,

and hence a small quadrature error. Fortunately, these propagators are reusable. In fact, for

LEGO based on LEP with Gram matrices, the construction of P12 suffices since P21 follows

from P12 by exchanging source and observation boundary (source reciprocity). The remaining

propagator matrices, which are related to the outer boundary ∂D3, follow implicitly. Clearly,

these relations rely on the applied discretization, e.g., source reciprocity is not exact for schemes

that are not based on Galerkin test and expansion functions. Source reciprocity also applies to

SEP if the propagators are based on the EFIE. This is no longer the case if the propagators are

based on the MFIE (or the CFIE for that matter). Further, P11 and P22 are required as well.

Although the propagator matrices of LEP are four times larger than those of SEP, the associated

filling process may be as efficient. This will be demonstrated in Section 5.3.

The LEGO procedure based on LEP is most efficient via inverse Gram matrices than via inverse

propagator matrices. The computational complexity of, say, G11 is one fourth that of P11. More-

over, the Gram matrix is a real symmetric matrix and therefore two times smaller than a complex

one. Hence, in comparison with P11, G11 saves a factor of 8 in storage costs, and a factor of 64 in

computational costs for the inverse. Even in relation to SEP, the use of a Gram matrix saves a fac-

tor of two in storage costs, and a factor of eight in computational costs of the inverse. Moreover,

since the inverse Gram matrix contains only two submatrices, a subsequent matrix multiplication

saves half the computational costs in comparison with a full inverse propagator matrix. Further,

the Gram matrix is a circulant system in 2D configurations, which reduces the complexity of

the inverse Gram matrix to (N2/8) logN [67, Section 10.1.1]. For 3D configurations the Gram

matrix is symmetric and sparse. For simplicity, in determining the inverse, we shall assume a real

symmetric Gram matrix for the evaluation of the computational costs of the scheme. Note that

if the chosen set of test and expansion functions satisfies the duality product 〈fm,fn〉 = 0 for

m = n, the Gram matrix is diagonal, and the only inverse that is left in the embedding scheme
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with LEP is that of the embedding matrix. As regards the filling process, P11 is O(N2), while

G11 is O(N). Besides that, G11 is computed analytically, whereas P11 involves quadrature rules

which increases the overall filling time. Accordingly, we infer that LEP is favorable with regard

to the construction of the propagator matrices.

To assess the overall storage demand, we consider a large domainDL withNL unknowns (source

positions) on its outer boundary ∂DL. DL contains NT previously combined subdomains Di

with an average number of unknowns Ni on ∂Di. Let us assume here that the interior field

operators of all subdomains are stored. The associated required amount of storage is N2
L for the

SLL operator, and NiNTNL for the QiL operators. Note that the size of the combined structure

varies substantially with respect to the shape of the outer boundary.

As we would like to relate the memory requirements to the size of the obtained structure, we will

provide upper and lower limits for NL in terms of the number of previously combined domains

NT and the corresponding average number of unknowns Ni on Di. In the worst case, when none

of the subdomains have boundaries in common, i.e., NL = NiNT, the size of the operators, SLL

and QiL, are proportional to N2
i NT. In the best case, when all subdomains are closely packed

together, we have NL = NiN
(ν−1)/ν
T where ν denotes the dimension of the scattering problem,

and the storage size of the operators reduces to N2
i N

2(ν−1)/ν
T for SLL and N2

i N
1+(ν−1)/ν
T for QiL.

Of course, the size of QiL reduces if only the complete interior field of specific subdomains is

retained. Note that the memory requirements with embedding based on LEP are in general four

times larger.

In case the interior field operators are preserved for a large number of previously combined do-

mains, these operators yield a more substantial demand to the memory requirements. However,

the interior field operators are addressed only once in an embedding step. As such, in the con-

struction of large scattering domains, these operators are best stored on disk.

To gain more insight into the computational costs of the overall LEGO concept, we examine the

matrix operations associated with a single embedding step and evaluate the computational cost

of each operation. For a comparison between embedding based on SEP and LEP, both compu-

tational schemes are considered. Junction elements are neglected in the analysis for simplicity.

Accordingly, N1, N2 and NC are set as the unknowns on ∂D1, ∂D2 and ∂DC, respectively. As

such, for the outer boundary we have N3 = N1 +N2 − 2NC. Accordingly, in Tables 4.1 and 4.2

the operational costs of the computational schemes of LEGO are presented for SEP and LEP,

respectively. We have introduced the (partial) reflection matrices R12 and R21 to minimize the
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number of matrix multiplications. Checkmarks indicate if a matrix operation is required for the

case with common boundary (NC = 0) or without (NC = 0), or both. Throughout we assume for

simplicity that the complexity of the inverse of aN×N matrix isN3. Further, we have restricted

to the computational costs of the matrix operations as these dominate the overall computational

costs. Because LEP involves both electric and magnetic currents, a discretization as fine as the

one for the single equivalent current in SEP generally implies double matrix sizes and matrix

multiplications that are eight times less efficient.

In Section 4.3 we have demonstrated that it suffices to determine the embedding matrix [I−RS]

for either D1 or D2. When N1 < N2, it is more efficient to use the embedding matrix associated

with domain D1. In both computational schemes we assume that N1 ≤ N2. Otherwise, the

boundary indices are simply swapped. Further, the computational scheme based on LEP involves

Gram matrices, which saves a factor of 64 in determining the inverse in comparison with a

propagator matrix, and a factor of two in the pertaining matrix multiplications. Despite that,

most matrix multiplication of LEP are eight times less efficient as with SEP, because LEP has

both electric and magnetic equivalent currents and therefore twice the number of unknowns of

SEP. As regards the memory requirements for the workspace of the embedding process, a total

of 3(N1 + N2)
2 proves to be adequate for the proposed scheme with SEP. For the scheme with

LEP, the workspace is four times larger. Note that the workspace includes the storage demand

of the starting scattering matrices S11 and S22, but also that of the resulting composite scattering

matrix S33.

In the absence of a common boundary the differences in matrix operations for LEP and SEP have

been discussed in Section 4.5. The general embedding procedure as presented in Section 4.3. is

then sufficient with LEP, in the sense that the transfer matrices involving ∂D3 may be omitted.

Conversely, T13 and T23 have to be taken into account with SEP. In principle, the matrix opera-

tions starting from T13 through S23 in Table 4.1 thus apply if there are no common boundaries.

As an alternative, the embedding step has been extended in Eqs. (4.43) and (4.44) to accom-

modate SEP. These definitions have been used in the embedding with SEP, since that turns out

to be more efficient than via T13 and T23. Notice that the procedure for a single embedding

step is more complex in case of a common boundary. However, as has been explained above,

subsequent combinations involving the composite domain require the removal of the common

boundary.

The matrix multiplications related to the transfer matrices contain redundancies if the source

and observation boundary of the transfer matrix have common parts. In Section 4.5, two meth-
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NC

= 0 = 0 matrix operation O(. . . )

� � P−1
11 ,P

−1
22 N3

1 , N
3
2

� � R12 = T12S22 = P−1
11 P12S22 N1(N2 −NC)(N1 +N2)

� � R21 = T21S11 = P−1
22 P21S11 N2(N1 −NC)(N1 +N2)

� � [I11 − R11S11]
−1 = [I11 − R12R21]

−1 N2
1 (N1 +N2)

� R11 = R12T21 N2
1N2

� Q11 = [I11 − R11S11]
−1[I11 + R11] N3

1

� Q12 = [I11 − R11S11]
−1[T12 + R12] N2

1N2

� Q21 = T21 + R21Q11 N2
1N2

� Q22 = I22 + R21Q12 N1N
2
2

� S33 =

[
S11 0

0 S22

][
Q11 Q12

Q21 Q22

]
(N2

1 +N2
2 )(N1 +N2)

� T13 = P−1
11 P13 N2

1 (N2 −NC)

� T23 = P−1
22 P23 N2

2 (N1 −NC)

� R12T23 N1N2(N1 −NC)

� Q13 = [I11 − R11S11]
−1[T13 + R12T23] N2

1N3

� Q23 = R21Q13 + T13 N1N2N3

� S13 = S11Q13 N2
1N3

� S23 = S22Q13 N2
2N3

� P−1
33 N3

3

� T31S13 = P−1
33 P31S13 2N2

3NC

� T32S23 = P−1
33 P32S23 2N2

3NC

� S33 = T31S13 + T32S23 −

Table 4.1: The computational scheme of LEGO based on SEP with the complexity of each matrix

operation for N1 ≤ N2. The checkmarks indicate whether a matrix operation is required for the

case with (NC = 0) or without (NC = 0) common boundary (or both). All transfer matrices are

constructed via method I.
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NC

= 0 = 0 matrix operation O(. . . ) Meth.

� � G−1
11 ,G

−1
22 N3

1/8, N
3
2/8

� � R12 = T12S22 = G−1
11 P12S22 4N2(N1 −NC)(N1 + 2N2) II

� � R21 = T21S11 = G−1
22 P21S11 4N2(N1 −NC)(2N1 +N2) I

� � [I11 − R11S11]
−1 = [I11 − R12R21]

−1 8N2
1 (N1 +N2)

� Q11 = [I11 − R11S11]
−1 −

� Q12 = Q11R12 8N2
1N2

� Q21 = R21Q11 8N2
1N2

� Q22 = I22 + R21Q12 8N1N
2
2

� S33 =

[
S11 0

0 S22

][
Q11 Q12

Q21 Q22

]
8(N2

1 +N2
2 )(N1 +N2)

� T13 = G−1
11 P13 4N1N3NC II

� T23 = G−1
22 P23 4N2

2 (N1 −NC) I

� R12T23 8N1N2(N1 −NC)

� Q13 = [I11 − R11S11]
−1[T13 + R12T23] 8N2

1N3

� Q23 = R21Q13 + T13 8N1N2N3

� S13 = S11Q13 8N2
1N3

� S23 = S22Q13 8N2
2N3

� G−1
33 N3

3/8

� T31S13 = G−1
33 P31S13 12N2

3NC I

� T32S23 = G−1
33 P32S23 12N2

3NC I

� S33 = T31S13 + T32S23 −

Table 4.2: The computational scheme of LEGO based on LEP with the complexity of each matrix

operation for N1 ≤ N2. The checkmarks indicate whether a matrix operation is required for the

case with (NC = 0) or without (NC = 0) common boundary (or both). The method used to

construct the transfer matrices are indicated.
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ods (I and II) have been presented to avoid these redundancies. The improvement in computa-

tional efficiency of each method varies, depending on the boundary sizes and the matrices that

are multiplied with the transfer matrix. The most efficient methods for LEP are indicated in Ta-

ble 4.2. With SEP, only method I can be used. The same considerations apply as in the case of

Figure 4.10. The methods that are indicated in Table 4.2 for N1 < N2 are the most efficient ones

if NC ≤ N1, i.e., if ∂D2 does not enclose ∂D1 or vice versa. For T23, method I is most efficient,

because T23 contains a part of an identity matrix, which reduces the costs in evaluating R12T23.

Notice that the computational costs of the other transfer matrices involving ∂D3 vanish naturally

in case NC = 0. Likewise, if ∂D1 ⊂ ∂D2 such that NC = N1, the transfer matrices T12 and T21

become trivial with LEP.

Further improvement of the presented computational schemes may be achieved. For instance,

upon examining the embedding matrix [I − RS], we have ‖RS‖ < 1 and limp→∞(RS)p = 0.

With these conditions the inverse of the embedding matrix may also be obtained through a Neu-

mann Series (special form of Jacobi iterations [67, Section 4.7]). This reduces the computational

cost of the inverse embedding matrix to order pN2. Or alternatively, via successive overrelax-

ation [68].

The presented schemes only describe the construction of the composite scattering matrix that

produces the exterior field. The interior field directly follows through the interior field matrices

Q13 and Q23 via Eqs. (4.37) and (4.40) with D1 and D2 as elementary domains. Otherwise, if D1

and D2 contain NT ;1 and NT ;2 previously combined subdomains, respectively, with an average

number of unknowns Ni on ∂Di, then the interior field matrices Qi1 and Qi2 have to be updated
according to Eq. (4.38) to obtain Qi3 for the subdomains of interest. The computational costs for
updating the interior field matrices of all subdomains are N3Ni(N1NT ;1 + N2NT ;2). From the

assessment of the overall storage demand we may deduce that for closely packed subdomains,

NiN
(ν−1)/ν
T ≈ N3 with NT = NT ;1 + NT ;2. Accordingly, if NT ;1 ≈ NT ;2, the computational

costs to update all interior field matrices are approximately N3
3 (N1 + N2)/2Ni and N

5/2
3 (N1 +

N2)/2
√
Ni for ν = 2 (2D) and ν = 3 (3D), respectively. In that case, the update process will

eventually dominate the embedding step if (N1+N2) � 2Ni. In the worst case, when none of the

subdomains share boundaries, NiNT = N3, and the update process takes about N
2
3 (N1 +N2)/2

evaluations. In the selection of domain boundaries one aims for closely packed subdomains.

Nonetheless, in most practical design applications, one is usually primarily interested in the

scattering matrix and possibly also the field in some previously combined subdomains of interest.

The approximate computational costs of the update process for small values ofNT then becomes

N3(N1+N2)Ni/2. In a sequence of embedding steps,Ni � min[N1, N2], so that the contribution
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of the update process to the overall computational costs remains small.

Let us now perform an explicit comparison between the overall computational cost of the embed-

ding scheme of SEP and LEP in Tables 4.1 and 4.2, respectively. Due to the use of both electric

and magnetic currents, LEP initially may seem eight times less efficient than SEP. However,

LEP becomes more efficient through the use of Gram matrices. Moreover, two methods to avoid

computational redundancies apply to LEP, while only one applies to SEP. The difference in com-

putational costs may vary depending on the common boundary size ∂DC and the ratio N2/N1.

Accordingly, in Figure 4.11 we have compared the total computational cost of the embedding

scheme of LEP in relation to that of SEP as a function of the common boundary size for various

domain sizes. As remarked above, we restrict ourselves to the case N1 ≤ N2. For N1 > N2, the

boundary indices ∂D1 and ∂D2 may be swapped in the embedding schemes. The discontinuous

derivatives at NC/N1 = 0.5 are caused by the transition from method I to method II for T31

and T32 in LEP. The largest difference in computational costs is a factor of five, which occurs if

N1 = N2 = 2NC. With an increasing imbalance between the number of unknowns N1 and N2,

the computational costs of LEP decrease compared to SEP, irrespective of the common boundary

size. In the limit N2 �N1, we have #LEP/#SEP= 2.75. The common boundary case, NC = 0,

of the embedding scheme has been applied, otherwise, we have #LEP/#SEP= 5.2 for the non-

common boundary case. Hence, instead of a factor of eight, the embedding scheme based on

LEP with Gram matrices is at most about five times less efficient than SEP. By contrast, if the

transfer matrices in LEP are also determined with inverse propagator matrices rather than inverse

Gram matrices, the computational difference between SEP and LEP is exactly a factor eight for

NC = 0. Note that there then remains a factor of four difference in memory requirements of

both schemes.

Iterative solvers may yield an improvement in the computational costs regarding the construction

of the transfer and elementary scattering matrices if there is a significant imbalance between the

number of unknowns of the source and observation boundaries. As an example, let us consider

the transfer matrix T21 = P−1
22 P21 with N1 and N2 unknowns on the source and observation

boundaries, respectively. In the absence of common boundary parts, the corresponding computa-

tional costs for an implementation based on SEP areN3
2 +N1N

2
2 , withN

3
2 from the inverse of the

propagator and N1N
2
2 from the subsequent matrix product. Alternatively, by means of iterative

solvers the computational costs for T21 are N
2
2N1Nav, with Nav the required average number of

matrix-vector products (N2
2 ) forN1 current sources. With this, iterative solvers are more efficient

than a direct inverse ifNav< 1 +N2/N1. A “marching on in source position”scheme [9] may be

utilized as a predictor-corrector method to reduce Nav considerably.
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Figure 4.11: The difference in computational costs of the embedding scheme based on LEP

(Gram matrices) and SEP as a function of the common boundary size for various domain sizes.

In case the boundaries have a segment in common, the balance may shift towards iterative solvers.

For instance, T21 becomes
[
I212

P−1
22 P213,⊥

]
upon applying method I to the common boundary

parts. Since the number of unknowns on ∂D13,⊥ is approximately N1 −NC, the use of iterative

solvers becomes more beneficial for T21 with increasing common boundary part NC, i.e., if

Nav< 1 + N2/(N1 − NC). For large values of NC, iterative methods may also be preferred for

T13 (Nav < 1 + N1/(N2 − NC)) and T23 (Nav < 1 + N2/(N1 − NC)). Note that a decreasing

NC favors iterative methods for T31 and T32 (Nav < 1 + N3/NC). The use of iterative solvers

may also lead to a reduction of the computational costs for the construction of the elementary

scattering matrices. For instance, in case the scattered field of the objects Do contained inside

the scattering domainD1 is constructed via boundary integral equations, iterative solvers may be

applied to T1o and X
−1
oo Po1 for S11 in Eq. (4.30).

However, it remains very difficult to estimate the break-even point in advance, as it varies with

Nav, which in turn depends on the well-posedness of the system and thereby on the shape of

the source and observation boundary, on their mutual orientation, and also on the discretization.

Further, upon examining the computational schemes of the embedding process in Tables 4.1

and 4.2, it turns out that iterative solvers cannot compete with a direct inverse regarding the

inverse embedding matrix [I − RS]−1. Finally, upon comparing methods I and II, it is clear

that the removal of computational redundancies in the transfer matrix may only be beneficial for

iterative solvers through method I.
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4.7 Local structure optimization and modification

The theory presented above can be used repeatedly to obtain operators that describe the complete

interior and exterior field behavior for large finite structures. Local structure variations can

be studied for optimization purposes by repeated embedding of such a large structure with a

sequence of feasible inhomogeneous local domains.

Because the environment operators encompass all possible excitations, the computation time and

the required storage demand will grow considerably for large structures, especially if the interior

field of all subdomains is retained. However, both computation time and storage demands can

be reduced significantly if the embedding of subsequent domains is restricted to a designated

domain, DD, of interest. Let us elaborate on this via an example illustrated in Figure 4.12. Here,

a large scattering domain DL obtained by repeated application of the embedding procedure is

shown. The dotted lines indicate the common boundaries of the subdomains Di;L that have

been removed at preceding embedding stages. Let us select a designated domain, DD, which is

relatively small compared to DL, and may even be multiply connected. Further, let us stipulate

that the outer boundary ∂DD of DD encloses both the source that excites the incident field,

and the domains DE that are yet to be embedded. This restriction allows us to convert the large

scattering operator SLL into a reduced scattering operator SDD on ∂DD, where SDD reproduces the

scattered field ofDL inDD due to equivalent current distributions on ∂DD. Thus we would avoid

the time-consuming direct embedding of DE with DL, which has a large outer boundary ∂DL,

by considering the interaction between ∂DD and ∂DL across ∂DD instead, thus significantly

reducing computational costs. The initial composition of DL through repeated embedding is the

most expensive step, while the subsequent embedding with a designated domain is very cheap,

thus facilitating local structure optimization.

To obtain SDD, we invoke the transfer operators, TDL and TLD,

SDD = TDL SLL TLD, (4.57)

which transfers the interaction from the large outer boundary ∂DL to the significantly smaller

boundary ∂DD. If ND denotes the number of unknowns on ∂DD, the complexity of further

embedding in DD reduces by a factor (ND/NL)2. Because DD covers an interior embedding

approach with respect to DE, SDD corresponds to the reflection operator for the exterior configu-

ration in Eq. (4.18). The embedding procedure presented in the previous sections remains valid

throughout. After the embedding of DE with D̄D, the complete currents, Q
cp
E for DE andQcp

D for

D̄D, include the interaction between DE and DL. They are readily obtained through Eq. (4.37),
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∂DL

∂DE
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Figure 4.12: The designated domainDD for subsequent excitation variation and frequent embed-

ding of a domain DE with a large scattering domain DL.

from the incident currents Qin
D̄ and Qin

E due to a source distribution in DD ∩ D̄E that generates

an incident field F in. Introducing ∂D3 = ∂DD ∪ ∂DE, we find that the total field in DD follows

from (cf. Eq. (B.10))

F =

⎧⎪⎪⎨
⎪⎪⎩

PE Qcp
E +

∫
∂DE

F sc(r, r′) Qcp(r′) dA′, r ∈ DE,

F in + P3 Qsc
3 , r ∈ DD \ DE.

(4.58)

Note that SDD is only required for the embedding and the reconstruction of the complete field in

DD.

The exterior field inDB and the interior field ofDL can be obtained with relatively low additional

costs once the ideal structure is obtained. Because incident currentsQin
D are only present on ∂DD,

the (large) interior field operator QiL, and the scattering operator SLL of DL can be reduced by a

factor of ND/NL through application of the transfer operator, TLD, according to

QiD = QiL TLD,

SLD = SLL TLD,
(4.59)

in which QiD and SLD produce the respective complete interior and exterior fields in DL and

D̄D∪D̄L due to an incident currentQ
in
D . Note that, ifDD is completely enclosed byDL, i.e., ∂DD

is a subboundary of ∂DL, then the transfer operators TLD and TDL reduce to identity operators.

The complete incident current Qcp
i for each subdomain Di;L (e.g. the sixteen cells within ∂DL in
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Figure 4.12) and the scattered current Qsc
L are constructed from the complete current Qcp

D ,

Qcp
i = QiD Qcp

D ,

Qsc
L = SLD Qcp

D .
(4.60)

The corresponding total field in D̄D is subsequently obtained from a relation similar to Eq. (4.58),

F =

⎧⎪⎪⎨
⎪⎪⎩

Pi Q
cp
i +

∫
∂Di;L

F sc(r, r′) Qcp(r′) dA′, r ∈ Di;L,

PD Qcp
D + PL Qsc

L , r ∈ DB.

(4.61)

If a subdomain is frequently reused, which is very common for EBG-structures, F sc and Pi can

be reused, which accelerates the final field computations considerably.

4.8 Embedding versus direct approach

At a first glance, the performance of LEGO may seem inferior to a direct solution method due

to the various matrix operations involved in the embedding process. However, an honest com-

parison should be based on the actual result that is obtained. We shall focus on the construction

of the scattering matrix SLL of a large composite domain. For other types of problems, a hybrid

scheme as discussed in the next section may be more appropriate. In case scattering domains

are closely packed, a sequence of embedding steps may be more efficient as common boundary

parts are removed in each stage. In this section, we perform a comparative assessment between

embedding and a direct solution method.

As a direct solution method, we consider boundary integral equations. In principle, the choice

between a boundary integral equation and embedding primarily depends on the ratio between the

number of unknowns No for the boundary ∂Do of the scattering objects Do, and the number of

unknowns Ni for the enclosing boundary ∂Di of the scattering domain Di. Let us assume that

No and Ni are chosen such that the associated integral representations reproduce the pertaining

field with roughly the same accuracy. Despite that the boundary ∂Di of the scattering domain

Di encloses the scattering objects Do, No may be larger than Ni, even if the boundary ∂Do is

smaller than ∂Di. This may be the case if the refractive index of Do is substantially larger than

that of the background medium used in the embedding process, or if the boundary geometry of

∂Do is less smooth in comparison with ∂Di. Note that in problems that do not involve close
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packing the boundary ∂Di may conveniently be chosen to be smooth. Moreover, if Do involves

dielectric objects in boundary integral equations, both electric and magnetic equivalent currents

are used, while either one of them suffices with embedding based on SEP.

For now, let us assume No = Ni with a square domain shape Di, and consider the best case

regarding embedding, i.e., all NT subdomains are closely packed. If one wants to compute the

full scattering matrixSLL by means of a direct solution method, the computational complexity of

determining the associated inverse MoMmatrix is (NTNi)
3. Suppose we like to construct a large

finite array of scattering domains with identical elements. In embedding, we first electromagnet-

ically characterize a single element as the elementary scattering domain and repeatedly combine

that domain with itself. Thus, after n successive embedding steps, the obtained structure con-

tains NT = 2n elements. Common boundaries are removed in each embedding step. In this way,

with each following embedding step the outer domain boundaries of the successive composite

scattering matrices become smaller in relation to the corresponding structure size NTNi in the

direct solution method, which may favor the embedding approach.

In Figure 4.13, we have illustrated the total computational costs of successive embedding steps

versus those of the direct boundary integral solver as a function of the number of elements NT

of the complete structure with SEP for 2D and 3D closely packed structures. Square elementary

scattering domains have been employed. For the computational costs of each embedding step,

the complexity of the matrix operations in Tables 4.1 has been used. The total costs of embedding

at each stage include that of prior embedding steps. The difference in convergence rate is due

to fact that NC/N1 for each embedding step is smaller for the 3D case. The complexity of the

direct solver varies asO(N3) with respect to the number of array elementsNT , whereas for both

embedding based on SEP we have O(N1.5) and O(N2) for the 2D and 3D case, respectively.

Hence, if No = Ni, embedding based on SEP may be more efficient than a direct solver after

two and three embedding steps for the 2D and 3D case, respectively.

The LEGO approach may also be more efficient than a direct boundary integral solver in con-

junction with ordinary iterative methods, viz., although the corresponding complexity of the

direct solver will reduce to O((NiNT )2Nav) with Nav the number of matrix vector products,

it remains an O(N2) process. The multi-level fast-multipole methods are faster as they only

require about O(NavNiNT log(NiNT )) operations for problems involving a single source and

O(NavN
2
i N

2
T log(NiNT )) for the scattering matrix SLL. However, the intermediate results in the

LEGO procedure may be very useful if stored in a library. Further it is possible to incorporate

the multi-level fast-multipole ideas into the LEGO procedure for additional acceleration. Fur-
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ther, as discussed in Section 4.6, iterative solvers may also accelerate the embedding process.

For an elementary domain with a square boundary, the common boundary size alternates be-

tween NC = N1/4 and NC = N1/3 in the 2D case for successive embedding steps due to the

square boundary shape. For the 3D case, the common boundary size changes as, NC = N1/6,

NC = N1/5 andNC = N1/4. These variations resulted in small ripples in the embedding curves

that become weaker as the number of subdomains increases. With reference to Section 4.6, in-

stead of a factor of 5, LEP is only a factor of 4.7 and 4.4 less efficient than SEP because for the

2D and 3D case, respectively, NC < Ni/2.

IfNo = Ni, the curve of the direct solver shifts upwards due to the multiplication by the constant

factor of (No/Ni)
3. For instance, withNC = N1/4 in the 2D case, one embedding step with SEP

or LEP is more efficient than a direct approach if (No/Ni) > 2.6 or (No/Ni) > 12, respectively.

For the non-common boundary case, these factors are 2.1 and 11 for SEP and LEP, respectively.
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Figure 4.13: The computational costs (normalized withN3
i ) of the direct boundary integral solver

and of the embedding based on SEP 2D and SEP 3D versus the number elements NT .

Next, let us compare the required memory costs of the embedding and direct approach. Since an

embedding step involves several matrix multiplications, we consider the complete workspace that

is required. In accordance with Section 4.6, the size of the workspace for SEP is 3(N1+N2)
2. For

LEP the size is four times larger. The workspace includes the starting and composite scattering

operator(s). Although this is considerably larger than the storage demand of a MoM matrix

of the scattering objects Do enclosed by D1 and D2, the removal of common boundaries in
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an embedding step reduces the memory requirement for following steps. In Figure 4.14 the

memory costs of successive embedding steps versus those of the direct boundary integral solver

are illustrated as a function of the number of elementsNT of the complete structure. The memory

costs of embedding increase with O(N), and O(N1.3) for the 2D and 3D case, respectively,

whereas those of the direct solver increase with O(N2). Similar to Figure 4.13, the curve of the

direct solver shifts upwards if No = Ni, due to multiplication by the constant factor (No/Ni)
3.

However, because the complete workspace of the embedding process is considered rather than for

the composite scattering only, the break-even point shifts slightly in favor of the direct approach.
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Figure 4.14: The memory requirements (normalized with N2
i ) of the direct boundary integral

solver and of the embedding based on SEP 2D and SEP 3D versus the number elements NT .

As a final remark we comment on the additional memory and computational costs in case the

interior field operators of all previously combined subdomains are updated and stored. Since we

consider a closely packed structure, this update process becomes dominant, as has been argued

in Section 4.6. By taking the update process into account, the computational and memory costs

for the 2D case increase toO(N1.8) andO(N1.4), respectively. For the 3D the computational and

memory costs increase toO(N2.2) andO(N1.6) Compared with Figure 4.13 and Figure 4.14, the

magnitude of the costs with two subdomains remains unchanged, as there is no update process

involved with the first embedding step.
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4.9 Extension to hybrid methods

So far, all field calculations are based on boundary integral equations. This includes the construc-

tion of the scattering matrices for the elementary building blocks. In this section, we discuss the

extension of LEGO towards a hybrid variety. The hybridization of LEGO applies in two ways.

First, various electromagnetic solution methods may be incorporated in the LEGO approach. In

particular, the scattering matrix of an elementary scattering domain will be constructed via the

dyadic Green’s function of the enclosed medium that can be obtained by various techniques, e.g.,

a finite-element method, or a domain integro-differential equation, and it allows for acceleration

techniques employed in the multi-level fast-multipole algorithm. The availability of alterna-

tive electromagnetic solution methods entails that inhomogeneous scatters may be considered as

well. Further, owing to the freedom to choose the electromagnetic solver that is best suited for

the computation of the pertaining scattered field, the flexibility of the LEGO method increases.

Second, the LEGO approach can be integrated with existing software design packages. In partic-

ular, the optimization step of LEGO presented in Section 4.7, which is ideal for rapid structure

optimization for design purposes, can be employed as an additional design tool.

Let us discuss a hybrid method for the determination of the elementary scattering matrices.

In general, the scattering matrix follows from the discretization of the scattering operator in

Eq. (4.10) after the substitution of Eq. (4.11),

S11 = P−1
11 F

sc
11. (4.62)

With reference to the discretization step in Section 4.4, the field matrix Fsc
11 describes the scat-

tered field response of the objects in D1 in terms of field and current amplitudes, obtained using

test and expansion functions on ∂D1, respectively. In accordance with Eq. (4.27), Fsc
11 follows

from the constituents

Fsc
11 =

[
EM

11 EJ
11

HM
11 HJ

11

]sc

. (4.63)

In Section 4.2, Eq. (4.12) has been applied to obtain Fsc
11 via boundary integral equations, which

led to Eq. (4.30) for the scattering matrix S11. The elements of the submatrices of Fsc
11, may be

obtained alternatively through a more general approach. Via a test and expansion procedure, the

electric field submatrices in Eq. (4.63) may be written as[
EM

11

EJ
11

]
mn

=

〈
fE
m(r),

∫
∂D1

[
¯̄G
EM

1 (r, r′) · fM
n (r′)

¯̄G
EJ

1 (r, r′) · fJ
n(r

′)

]
dA′

〉
∂D1

. (4.64)
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The dyadic Green’s functions ¯̄G1 provide the scattered field response of the medium enclosed by

∂D1 and are defined according the definitions in Section 2.7. The magnetic field amplitudes fol-

low by duality. The unknown dyadic Green’s functions for {r, r′} ∈ ∂D1 may be determined by

other electromagnetic solvers. More specifically, for each electric and magnetic surface current

expansion function, the electric and magnetic field has to be determined for all test functions.

Recall that to obtain the complete field in D1 after a sequence of embedding step, the initial

scattered field F sc
1 (r) for r ∈ D1 is required. This field readily follows from the right-hand side

of Eq. (4.64) upon omitting the test procedure.

Next, a hybrid variety is presented for the local structure optimization and modification of large

domains as introduced in Section 4.7. In principle, the construction of a scattering matrix SLL of

a large domainDL prior to the optimization step can alternatively be obtained through Eqs. (4.62–

4.64). However, the subsequent reduction of SLL to a SDD for optimization purposes in a rel-

atively small designated domain DD can be performed in a more direct and efficient approach.

Namely, SDD may be constructed directly. This principle is illustrated in Figure 4.15. The

configuration corresponds with that of Figure 4.4 in the general embedding step where D2 is

adjacent to D1, even though D1 completely encloses D2 here. Hence, the embedding process

applies throughout, albeit that the incident field is generated by sources in D̄1 ∩ D̄2.

With reference to the original optimization step presented in Figure 4.7, the designated domain

DD corresponds with D̄1, while the domain DE used for repeated embedding steps is associated

with D2. The reduced scattering matrix SDD that produces in DD the scattered field of the large

scattering domain DL thus corresponds with S11. Hence, the construction of SDD can be deter-

mined directly in combination with alternative electromagnetic solvers. In fact, the optimization

step may be included as an additional tool into existing simulation packages.
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Figure 4.15: The domain D1 completely encloses D2. The source distribution that generates the

impressed incident field is located in D̄1 ∩ D̄2.



Chapter 5

2D scattering objects

In this chapter, the integral equations for the scattering from two-dimensional (2D) objects are in-

vestigated. In Section 4.4, the fundamental propagator operator of the LEGO approach has been

discretized. This was based on the discretized integral operators discussed in detail below. The

insight that is gained through the investigation of the integral equations for perfectly conducting

and dielectric objects has been used in the LEGO approach to attain maximum performance,

through an optimal choice of the equivalence principle, the domain shape, the mesh density, the

quadrature rule and the test and expansion functions. Furthermore, the integral equations can

also be employed to construct the elementary scattering operators in the LEGO approach.

5.1 Introduction

For 2D configurations, the distribution of matter and sources is uniform in a certain direction.

In Section 5.2, this invariance is exploited to simplify a 2D scattering problem by subdividing

Maxwell’s equations into transverse electric (TE) and transverse magnetic (TM) subsystems.

Next, we specialize the mapping properties of the integral operators to the 2D case and derive

the restrictions on the choice of test and expansion function in Section 5.3. Subsequently, by

discretizing the electric and magnetic field equations on a flat-facetted mesh we model the scat-

tering from electric and magnetic perfect conductors for the TM case. The pertaining discretized

integral operators are then used to discretize the PMCHW and the Müller boundary integral for-

mulations. Besides the well-known impedance scaling for the fields and currents, we propose an
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additional scaling for Müller’s equation to reduce the condition number of the associated MoM

matrix. To minimize computational costs, we aim at maximum efficiency in the computation of

the MoM-matrix elements. The parts of the test and/or expansion integrals that become singular

when the source and observation points coincide are integrated analytically in Section 5.4. This

amounts to double integrals for the MoM-matrix elements. For the self term, we apply analytic

solutions for the double integrals in terms of Bessel function series constituents.

In Section 5.5, we investigate the solvability and the order of convergence of the numerical ap-

proximation for the special case of scattering from perfect electric conductors. In particular, we

consider the dependence on the object shape, the applied mesh density and the interior reso-

nance effect in combination with a CFIE formulation. Furthermore, we consider the impact of

domain scaling for smooth object boundaries that have been approximated with a flat-facetted

mesh. In Section 5.6, we introduce regularization of the identity operator in the MFIE to improve

the effective smoothness of the test and expansion functions. The EFIE and MFIE for the TE

case are discussed in Section 5.7, by considering the dual problem of the scattering from a per-

fect magnetic conductor for the TM case. Finally, we extend the analysis to dielectric scatterers

in Section 5.8. In addition to the PMCHW and Müller formulations, an alternative boundary

integral equation is proposed that has unique mapping properties regarding the order of conver-

gence. Further, we investigate the dependence on the refractive index and the improvement of

the solvability of Müller’s formulation owing to the proposed additional scaling.

5.2 TE/TM decomposition

In a homogeneous, isotropic medium the electromagnetic fields can be expressed in terms of

two scalar functions, weighted by the sources. This follows immediately from a decomposition

of the fields, i.e., each field vector can be decomposed into a component along a certain pre-

defined constant direction, and a component transverse to this direction. Depending on the spatial

distribution of sources, it is possible that only one of these components remains, while the other

one is zero everywhere.

A configuration is regarded as a two-dimensional (2D) configuration, if the distribution of matter

and sources is uniform (invariant) in a certain direction, referred to as the longitudinal direction.

A 2D scattering object is therefore automatically cylindrical in this direction. The derivation of

the corresponding scattered-field distribution can be made much simpler by taking this particular
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geometrical property into consideration from the outset. For 2D configurations, it is common

to let the z-axis point in the longitudinal direction. In turn, normal to this direction, we define

the so-called transverse plane, as a plane for which z is arbitrary but fixed. Accordingly, we

decompose the vector quantities into their transverse and longitudinal components as{
E = Et + Ezẑ,

H = H t +Hzẑ,
and

{
M = M t +Mzẑ,

J = J t + Jzẑ,
(5.1)

for the fields and sources, respectively. The vector-subscript, t, is used to indicate that the ori-

entation is parallel to the transverse plane. The associated position vector is also decomposed,

viz., r = ρ + zẑ, with ρ = xx̂ + yŷ being the position vector in the transverse plane. The

corresponding decomposition of the∇-operator reads, ∇ = ∇t + ∂zẑ, where∇t = ∂xx̂+ ∂yŷ.

A subsequent restriction to fields that are invariant in the z-direction is accounted for by setting

∂z ≡ 0, and hence ∇ → ∇t.

An important consequence of Maxwells equations is that the transverse fields and sources may

then be written entirely in terms of the longitudinal fields and sources, and vice versa. Namely,

with the simplifications above, Maxwell’s equations (2.11), may be subdivided into the parts

∇t × H t = sεEzẑ + Jzẑ, (5.2a)

−∇t × (Ezẑ) = sμH t + M t, (5.2b)

and,

∇t × (Hzẑ) = sεEt + J t, (5.3a)

−∇t × Et = sμHzẑ +Mzẑ. (5.3b)

Eqs. (5.2) and (5.3) constitute independent coupled systems of partial differential equations that

may be solved separately. The first system, Eq. (5.2), describes the Transverse Magnetic (TM)

case, since the magnetic field contains only transverse components, whereas the latter system,

Eq. (5.3), describes the Transverse Electric (TE) case, since the electric field contains only trans-

verse components. The composite case readily follows from a linear combination of the two.

Note that with the inclusion of magnetic sources, by duality, the TE case readily follows from

the TM case and vice versa.

The 3D integral representation, Eq. (2.43), which describes the fields in space generated by a

volume source density is also applicable for the 2D case, although the volume integrals reduce

to surface integrals with line, instead of point source distributions. The corresponding dyadic
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Green’s function, Eq. (2.42), becomes

¯̄Gv(ρ,ρ
′) ≡

[
¯̄I − 1

γ2
v

∇t∇t

]
Gv(ρ,ρ

′), (5.4)

with medium index v, andGv(ρ,ρ
′) being the scalar 2D Green’s function which is the line source

solution of the modified scalar Helmholtz equation,

[∇2
t − γ2

v

]
Gv(ρ,ρ

′) = −δ(ρ − ρ′). (5.5)

and satisfies the radiation conditions (2.22). The scalar Green’s function is given by

Gv(ρ,ρ
′) =

1

2π
K0 (γv|ρ − ρ′|) . (5.6)

Here, K0(z) represents the zeroth-order modified bessel function of the second kind with com-

plex argument z (see also Appendix B.1).

C

D ν̂

τ̂

y

z x

Figure 5.1: The vector orientation of a 2D configuration uniform in the ẑ-direction. The unit

vectors ν̂ and τ̂ are respectively, directed, normally and tangentially in a counter-clockwise

fashion to the boundary contour C of D.

The initially three-dimensional integral operators L and K, Eq. (3.7), are easily transformed into

their 2D counterparts. Regarding the arbitrarily shaped scattering object depicted in Figure 3.1,

the 2D versions of L and K involve a cylinder with an arbitrary cross-section. The boundary

∂D restricted to the transverse plane collapses into a boundary contour C with an outward unit

normal vector ν̂. Further, we introduce the unit vector, τ̂ , also situated in the transverse plane,

but tangential to C and oriented CCW such that ẑ = ν̂ × τ̂ , for ρ ∈ C. Similar definitions as
in Eq. (2.62) are utilized for the equivalent boundary currents tangential to C. After carrying out
the outer products with ν̂, the definition of the equivalent currents, Eq. (2.62), for the TM case

are

Jz = −Hτ , (5.7a)

Mτ = −Ez, (5.7b)
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for ρ ∈ C. Hence, the boundary integral operators, Eq. (3.7), operating on an electric equivalent
current read

Lv(ρ)J = γvẑ

∫
C

Jz(ρ
′)Gv(ρ,ρ

′) d′, (5.8a)

Kv(ρ)J =

∫
C

[Jz(ρ
′)ẑ] × ∇′

tGv(ρ,ρ
′) d′, (5.8b)

where γv represents the propagation coefficient for medium index v defined in Eq. (4.11). The

operator L consists of a vector potential constituent only, because the (transverse) divergence of

Jzẑ in the scalar potential is zero. For the magnetic equivalent current, we have

Lv(ρ)M = γv

∫
C

Mτ (ρ
′)τ̂ ′Gv(ρ,ρ

′) d′ − 1

γv
∇t

∫
C

[∂τ ′Mτ (ρ
′)]Gv(ρ,ρ

′) d′, (5.9a)

Kv(ρ)M =

∫
C

[
Mτ (ρ

′)τ̂ ′]× ∇′
tGv(ρ,ρ

′) d′, (5.9b)

where the divergence ofMτ τ̂ in the scalar potential has reduced to a spatial derivative ∂τ . Upon

recalling that magnetic sources are fictitious and are only introduced for the construction of com-

putational schemes, the original TM and TE case involve only Jz and Jτ sources, respectively.

Since their magnetic source counterparts follow by duality, we point out that the mapping prop-

erties of the integral operators involving Mτ (TM case) thus fully correspond with Jτ of the

original TE case.

5.3 Discretization

In the original TM case, the operator L contains only the vector potential because the divergence

of Jzẑ in the scalar potential is zero. Regarding the mapping properties of L, the general case

has been handled by Costabel [69]. It was shown that if L is considered as a mapping from

H−1/2(∂D) to H1/2(∂D), then the general strategy for the EFIE, outlined in Section 3.7, holds,

and the coercive part B can be associated with Green’s function in the static case. The advantage

of this framework is twofold. First, H−1/2(∂D) can be associated with the trace of functions

that represent locally finite energy on a domain and therefore the finite-energy assumption that

is required for uniqueness [70, Chapter 9] is automatically satisfied. By the trace of a function or

distribution, defined on a domain, we mean the restriction of the function to the boundary of that
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domain. Second, H1/2(∂D) can be identified as the dual space of H−1/2(∂D) if the L2(∂D)-

inner product is extended to 〈H−1/2(∂D), H1/2(∂D)〉. As a result, the Galerkin method, with
testing and expansion functions that belong toH−1/2(∂D), can be applied on the computationally

straightforward L2(∂D)-inner product. Since L2(∂D) is a subspace of H−1/2(∂D), there are, in

analogy with the MFIE case, no continuity restrictions for the testing and expansion functions.

With respect to the original TE case, the situation is somewhat more complex, as spatial deriv-

atives act on the vector potential, which amount to a nonzero scalar potential. The most elegant

framework is obtained by considering the mixed-potential formulation. In that case, all dif-

ferential operators are tangential with respect to the boundary and a symmetric form between

expansion and testing space is obtained. Since the part with the scalar potential contains a tan-

gential derivative that acts on the current density and a tangential derivative that acts on the scalar

potential, the function space for the current density, that corresponds to an electromagnetic field

with locally finite energy on a domain, corresponds toH1/2(∂D). The function spaceH1/2(∂D)

is extremely close to the space of continuous functions [71, p. 45]. Therefore, the testing and

expansion functions could just be considered continuous in any practical case. The coercive part

is also slightly more involved compared to the TM case. For all functions in H1/2(∂D) that are

orthogonal to the constant-current distribution, the singular static Green’s function part of the

scalar potential acts as the coercive part of the operator, while the remaining terms are compact.

This indicates that the case of a constant-current distribution should be considered separately, to

show that the integral operator is invertible. For the constant-current distribution, the part of the

scalar potential is absent and only the vector potential remains. The invertibility of this part now

follows directly from the TM case. This constant-current distribution amounts to instabilities in

the time-domain [72, Sec. 3.2.3].

Before suitable test and expansion functions are introduced, we first discretize the boundary. In

Figure 5.2, a fragment of a discretized boundary is shown with a piecewise flat facetted dis-

cretization consisting of connecting edge elements, Γn. The edge number n ascends in the di-

rection τ̂ , oriented counter clockwise (CCW) along the contour C, which describes the boundary
∂D in the transverse plane. Let the coordinate vector of the first node associated with element

n be denoted as ρ1
n, and the second as ρ2

n. For the corresponding edge length, Ln, we have

Ln = |ρ2
n − ρ1

n|. Further, ρcn represents the position vector of the center of the edge, such that,
ρcn = (ρ1

n + ρ2
n)/2. The orientation of each edge element Γn is specified by the unit-amplitude

vectors, τ̂ n, and ν̂n, that are tangential and normal to Γn, respectively. Note that these vectors

are fixed for ρ ∈ Γn, and that ẑ = ν̂n × τ̂ n.
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Figure 5.2: The discretization of a contour C with a flat facetted mesh in terms of connecting

edge elements, Γn (expansion), ascending in a CCW fashion with ξ ∈ [−1, 1]. For the edges

related to the test functions (subscriptm), η is used instead of ξ.

As asserted in Section 3.6, if the original boundary is smooth, our discretized flat facetted bound-

ary, referred to as the mesh, will pose a mere approximation. In that case, we choose to let the

start and end points of the edges, ρ1,2
n , coincide with the smooth boundary. Although the mesh

will converge to the actual boundary upon subsequent refinement, this discrepancy may affect,

especially for a coarse mesh, the approximation of the equivalent currents and thereby also the

associated scattered fields.

In 2D, an edge element can be directly associated with a specific test or expansion function.

Therefore, to distinguish between the edges associated with the test and expansion function, we

apply the same subscript {m,n} to the edge elements. Henceforth, Γm and Γn are referred to as

the observation and the source edge, respectively. The position vector ρ ∈ C is parameterized

in terms of a position vector ρm,n on the edge Γm,n as illustrated on the right in Figure 5.2.

Accordingly, the observation ρm and source ρn positions on the respective, test and expansion

edges are decomposed in terms of the fixed vectors ρc and τ̂ ,

ρn =ρcn + ξdnτ̂ n, (5.10a)

ρm =ρcm + ηdmτ̂m, (5.10b)

with the normalized local coordinates {η, ξ} ∈ [−1, 1], and the length di defined as half the

edge length, di ≡ Li/2 for i = {m,n}. Keep in mind that although {η, ξ} are associated with
the test and expansion function, respectively, they each involve a single edge element. For the

transformation of the corresponding test and expansion integrals to this local coordinate system,
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we have, ∫
Γm

∫
Γn

g(ρ,ρ′) d′ d = dmdn

1∫
−1

1∫
−1

g(ρm,ρn) dξ dη. (5.11)

Note that, although a range [0, 1] is commonly used for normalized coordinates, our choice is

more suitable for the general analysis presented in Section 5.4 and Appendix A, in view of the

fact that ξ and η are symmetric functions with respect to the center of an edge element.

We discuss the discretization process for the TM case only, since the TE case readily follows by

duality, as both electric and magnetic equivalent currents are considered. The first discretization

step involves the expansion of the equivalent currents. For this purpose, we employ the 2D-

version of the general expansion given by Eq. (3.32), with fJ
n and Z1f

M
n . Since J = Jzẑ and

M = Mτ τ̂ for the TM case, the expansion functions are scalars,

fJ
n(ρ) =fJn (ρ)ẑ, (5.12a)

fM
n (ρ) =fMn (ρ)τ̂ . (5.12b)

In view of Eqs. (5.8) and (5.9), we have, fJn ∼ Jz, and fMn ∼Mτ .

Since the second discretization step implies a testing procedure, we take, similar to Eq. (3.35),

Y1ν̂ × fE
m and ν̂ × fH

m for the respective electric and magnetic integral equations. Under the

assumption that fm contains components tangential to ∂D only, we may write

〈ν̂ × fm, ν̂ × A〉 = 〈fm,A〉 . (5.13)

Thus, fm acts directly on the components of the associated field vector A tangential to ∂D.
Since the electric field is oriented in the ẑ direction, and the magnetic field is parallel to the

transverse plane, proper testing demands that the direction of the corresponding test function is

consistent with the single non-vanishing TM field component tangential to ∂D. Accordingly, we
have,

fE
m(ρ) =fEm(ρ)ẑ, (5.14a)

fH
m(ρ) =fHm (ρ)τ̂ . (5.14b)

Hence, in 2D both the test and expansion functions reduce to scalar functions.

Subsequently, for the scalar expansion functions, fJ,Mn , we consider, fn(ρ) = {∧n,�n}(ρ),

where ∧n is a piecewise linear function and �n is a piecewise constant one, referred to as triangle
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and pulse expansion functions, respectively. An illustration of both expansion functions is given

in Figure 5.3. The same functions also apply for the scalar test functions fE,Hm upon replacing the

subscript “n” with “m”. It is clear that �n is directly associated with the edge Γn. However, ∧n
stretches out over two edges. In our approach, we choose Γ+

n ≡ Γn, such that ∧n and ∧n+1 are

both nonzero on Γn. In this manner, the triangles lag behind with respect to the edge elements,

i.e., ∧n has next to Γn also a contribution on Γn−1. Accordingly, the pulse and triangle expansion

functions on a source edge are in local coordinates defined as

�n =

{
1, for ρ ∈ Γn,

0, elsewhere,
∧n =

⎧⎨
⎩

1

2
(1 ∓ ξ) , for ρ ∈ Γ±

n ,

0, elsewhere,
(5.15)

with ξ ∈ [−1, 1].

DC

�n�n+1 �n−1

Γn−1Γn+1
Γn

DC

∧n+1 ∧n

Γ+
n Γ−

n

Figure 5.3: The expansion function, fn (solid), on the boundary C, with on the left the pulse, �n,
and on the right the triangle, ∧n. The neighboring expansion functions are dotted.

To obtain expressions for the various combinations of operators and test/expansion functions, we

start with the EFIE concerning the scattering from a PEC, as described in Section 3.3. Accord-

ingly, upon testing the EFIE, Eq. (3.14), with Y1ν̂×fE
m, expanding J with fJ

n, and subsequently

applying Eq. (5.13), we arrive at

N∑
n=1

〈
fE
m, L1 fJ

n

〉
Jn = −Y1

〈
fE
m,E

in
1

〉
, (5.16)

for ρ ∈ C, andm = 1, . . . , N . This system of linear algebraic equations can also be conveniently

written in matrix form as

LEJ1 J = −Y1E
in
1 . (5.17)

We have obtained an approximation for L, in the sense that L follows from a projection of L onto

a subspace of R (L) spanned by the testing functions fm via the duality product. Since L also

operates on an expanded current distribution, LEJ1 , represents a matrix, called the MoM-matrix.
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The typewriter font indicates the matrix form representation. Amatrix element,LEJ1;mn, represents

the combination of substituting the mth test and nth expansion functions in Eq. (5.17). The

superscript “EJ” indicates that L1 is tested in an electric field integral equation with an equivalent

electric current. Similarly, the excitation vector, Ein
1 , follows from testing the incident electric

field component that is tangential to ∂D. In addition, J is a column vector, whose components

Jn, are the unknown electric current coefficients Jn, which follow from a duality product, albeit

with expansion functions. Finally, the remaining subscript “1” in Eq. (5.17) signifies the used

medium index.

In view of Eq. (5.8a), L involves only the vector potential as the divergence involved with the

scalar potential is zero. Upon substituting Eqs. (5.12a) and (5.14a), for the respective expansion

and test functions, the following expression is obtained for

LEJv;mn =
〈
fE
m, Lv fJ

n

〉
= γv

∫
Cm

fEm(ρ)

∫
Cn

fJn (ρ′)Gv(ρ,ρ
′) d′ d (5.18)

for a general medium index v. If triangle test and expansion is applied, we obtain

LEJv;mn = γv

∫
Γ±
m

∧m(ρ)

∫
Γ±
n

∧n(ρ′)Gv(ρ,ρ
′) d′ d (5.19)

Since the triangle functions stretch out over two edges, four separate integrals have to be eval-

uated for each combination of test and expansion function. Since the 2D Green’s function in-

volves a bessel function, the computation time required for the evaluation of the double integral,

is mainly dominated by the successive determination of the Green’s function. However, for a

given edge pair, four test and expansion triangle combinations yield a contribution to the MoM-

matrix, implying that for fixed quadrature rules source and observation points can be reused for

the evaluation of the Green’s function. Therefore, these contributions are best determined si-

multaneously. Hence, the filling of the MoM-matrix is more efficient if we focus on pairs of

edges, rather than pairs of triangles. In particular, each triangle is subdivided into two parts that

correspond with a single edge element, as shown in Figure 5.4. Accordingly, ∧+
n and ∧−

n signify

the respective portions of ∧n+1 and ∧n on edge Γn, such that

∧±
m =

1

2
(1 ± η), and ∧±

n =
1

2
(1 ± ξ), (5.20)

for ρ ∈ Γm,n and ξ ∈ [−1, 1]. Note that the subscript of ∧±
n refers to an edge element, while

the subscript of ∧n refers to the expansion function fJn . As such, the MoM-matrix may be

constructed out of the following constituents

LEJ ;pq
v;mn = γv

∫
Γm

∧pm(ρ)

∫
Γn

∧qn(ρ′)Gv(ρ,ρ
′) d′ d, (5.21)
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ξ

∧+
n ∧−

n

Γnη

∧+
m ∧−

m

Γm

Figure 5.4: To accelerate the filling of the MoM-matrix, the test (left) and expansion (right)

triangles are subdivided into the parts associated with a single edge element.

for {p, q} = {±,±}. Accordingly, each triangle test and expansion pair is decomposed into four
separate contributions, viz.,

{∧m,∧n} =
{∧−

m,∧−
n

}
+
{∧−

m,∧+
n−1

}
+
{∧+

m−1,∧−
n

}
+
{∧+

m−1,∧+
n−1

}
. (5.22)

With the definition of the 2D Green’s function, Eq (5.6), each element is conveniently written in

local coordinates by means of Eq. (5.11),

LEJ ;pq
v;mn = γv

dmdn
2π

1∫
−1

1∫
−1

∧pm ∧qn K0(γvD) dξ dη, (5.23)

with the length D = |ρm − ρn|. Recall that for an efficient numerical evaluation of the dou-
ble integral in Eq. (5.23), the four different integrands with respect to, {p, q}, are determined
simultaneously. Further, observe that due to the application of Galerkin test and expansion, i.e.,

fEm = fJn , the MoM-matrix is symmetric, i.e.,

LEJ ;pq
v;mn = LEJ ;qp

v;nm . (5.24)

As a consequence, the computation of the upper (or lower) part of the MoM-matrix (including

the diagonal) is sufficient.

For the case with Γm = Γn henceforth referred to as the self term, the modified Bessel function

K0 is replaced by its series expansion. In Appendix A.3, analytical solutions are provided for

the entire double integral of Eq. (5.24) in terms of its series constituents. The presented results

are applicable for all test and expansion combinations involving piecewise continuous and linear

parts. It is also demonstrated that no more than 15 terms are required for any practical case.

Hence, the numerical evaluation of Eq. (5.24) is only necessary for the lower or upper part of

the MoM-matrix. Note that usually integration rules are utilized that are applicable to integrands
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involving a singular behavior at the endpoint [73]. Since our method avoids time-consuming

evaluation of the Bessel functions, it is more efficient.

The MFIE associated with a PEC, Eq. (3.15), involves the same electric equivalent current, J ,

and thus also the expansion, fJ
n, while the testing of the magnetic field involves, ν̂ × fH

m. We

thus need to evaluate

N∑
n=1

〈
fH
m,K1 fJ

n +
ν̂ × fJ

n

2

〉
Jn =

〈
fH
m,H

in
1

〉
, (5.25)

for ρ ∈ C, andm = 1, . . . , N . The corresponding MoM-matrix equation for the MFIE reads

[
KHJ1 + IHJ

]
J = Hin

1 . (5.26)

The matrix contains two parts, viz., the tested K and ν̂ × I operators. The superscript “HJ” in-

dicates an equivalent electric current in a magnetic-field integral equation. The excitation vector,

Hin
1 , follows from testing the incident magnetic field that are tangential to ∂D. Via Eqs. (5.12a)

and (5.14b), the contribution of K for each combination of test and expansion function, follows

from

KHJv;mn =
〈
fH
m,Kvf

J
n

〉
=

∫
Cm

fHm (ρ)τ̂ ·
∫
Cn

[
fJn (ρ′)ẑ

]× ∇′
tGv(ρ,ρ

′) d′ d

=

∫
Cm

fHm (ρ)

∫
Cn

fJn (ρ′) [ν̂ · ∇′
tGv(ρ,ρ

′)] d′ d.
(5.27)

With ∂zK0(z) = −K1(z), the gradient of the 2D Green’s function, Eq. (5.6), can be written as

∇′
tGv(ρ,ρ

′) = − γv
2π

ρ − ρ′

|ρ − ρ′|K1 (γv|ρ − ρ′|) . (5.28)

Further, we introduce the unit-amplitude direction vector, D̂ = (ρm − ρn)/D, with D = |ρm −
ρn|, to maintain a concise notation for Eq. (5.27) in local coordinates. Again, upon considering
pairs of edges instead of pairs of test and expansion functions, we may conveniently construct

the MoM-matrix via the elements

KHJ ;pq
v;mn = −γv dmdn

2π

1∫
−1

1∫
−1

∧pm ∧qn ν̂m · D̂K1(γvD) dξ dη. (5.29)

Notice that, due to the inner product involving ν̂m, the symmetry with respect to test and expan-

sion is lost. Although this implies that we have to evaluate Eq. (5.29) for all matrix elements, the
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same reduction as in the case of Eq. (5.23) can be achieved as regards the computational costs.

We will elaborate this further where the operator K involved with a PMC is treated. Further,

Eq. (5.29) yields no contribution, if the test and expansion edge are each other’s extension, as in

that case, ν̂m · D̂ = 0. Hence, the self term for K is zero.

As regards the tested identity operator, ν̂ × I, we have

IHJmn =
1

2

〈
fH
m, ν̂ × fJ

n

〉
= −

∫
Cm

fHm (ρ)fJn (ρ)

2
d. (5.30)

Since fJn and f
H
m are both functions of bounded support, their product only differs from zero for

identical edges, Γ±
m = Γ±

n . Triangle test and expansion reads

IHJ ;pq
mn = −dm

2

1∫
−1

∧pm ∧qn dη = −dm

⎧⎪⎨
⎪⎩

1
3
, for m = n, p = q,

1
6
, for m = n, p = q,

0, for m = n.

(5.31)

Note that I is apart from the exclusion of the two matrix elements I1N and IN1, a diagonally

dominant tri-diagonal matrix, which is circulant for uniform edge elements. With respect to pulse

test and expansion, the integral in Eq. (5.31) yields a nonzero contribution for the diagonal only,

viz., −dm for Γm = Γn.

Based on the discussed mapping properties applicable to the above EFIE and MFIE, there are no

continuity restrictions for the test and expansion functions, since the electromagnetic scattering

from a PEC satisfies the TM description (Jz only). On that account, the triangle functions in the

resulting expressions for the matrix elements, Eqs. (5.23) and (5.30), may simply be replaced by

pulse functions.

The scattering from a PMC involves only a tangential equivalent magnetic current component

Mτ , as Hτ is zero on C. Therefore we apply the expansion Z1f
M
n and use Eq. (5.14b). In turn,

the associated MFIE is obtained by duality from the EFIE, Eq. (3.14). Testing with ν̂ × fH
m,

gives via Eq. (5.13),
N∑
n=1

〈
fH
m, L1 fM

n

〉
Mn = − 〈

fH
m,H

in
1

〉
. (5.32)

In matrix notation, this is written as

LHM1 M = −Hin
1 , (5.33)

similar to Eq. (5.11). Nevertheless, LHM1 involves a magnetic field and current. In addition, M
consists of the amplitudes Mn of the equivalent magnetic current. Next, the test and expansion
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functions are expressed in terms of their scalar counterparts, Eq. (5.14b) and Eq. (5.12b), respec-

tively. In conjunction with Eq. (5.8a), the divergence in the scalar potential is nonzero for Mτ .

Because the mapping properties of Eq. (5.33) satisfy the TE description, only piecewise-linear

test and expansion function are applicable. With triangle test and expansion, the matrix elements

are obtained from

LHMv;mn =
〈
fH
m, Lvf

M
n

〉
= γv

∫
Γ±
m

∧m(ρ)

∫
Γ±
n

[
τ̂ · τ̂ ′] ∧n (ρ′)Gv(ρ,ρ

′) d′ d

− 1

γv

∫
Γ±
m

∧m(ρ) ∂τ

∫
Γ±
n

[∂τ ′ ∧n (ρ′)]Gv(ρ,ρ
′) d′ d.

(5.34)

The gradient of the scalar potential has been reduced to a partial derivative ∂τ , which in turn

can be diverted to the test function, i.e., via integration by parts for the test integral involving

the scalar potential, the boundary terms do not contribute since ∧m is piecewise continuous and

vanishes at its endpoints. For a scalar function Φ(ρ), this implies the property,∫
Γ±
m

∧m(ρ)∂τΦ(ρ) d = −
∫

Γ±
m

[∂τ ∧m (ρ)] Φ(ρ) d. (5.35)

Furthermore, the partial derivative of ∧n in local coordinates reads
dn∂τ ∧±

n (ρ) = ∂ξ∧±
n = ±1

2
�n . (5.36)

When we consider edges rather than triangles, we have, analogously to Eq. (5.23)

LHM ;pq
v;mn = [τ̂m · τ̂ n] γv dmdn

2π

1∫
−1

1∫
−1

∧pm ∧qnK0(γvD) dξ dη+
pq

γv8π

1∫
−1

1∫
−1

K0(γvD) dξ dη (5.37)

for {p, q} ∈ {±,±}. Observe that the first double integral on the right-hand side is the same
as the one in Eq. (5.23) for LEJ ;pq

v;mn . In addition, from the definition of the triangle function in

Eq. (5.20), we recall that, ∧+
n +∧−

n = ∧+
m +∧−

m = 1
2
. Accordingly, the second double integral in

Eq. (5.38) can be written in terms of LEJ ;pq
v;mn as well. Hence, we obtain

LHM ;pq
v;mn = [τ̂m · τ̂ n]LEJ ;pq

v;mn +
pq

γ2
vdmdn

∑
k,�=±

LEJ ;k�
v;mn . (5.38)

It should be noted that LHM ;pq
v;mn = LHM ;qp

v;mn .

By duality, the EFIE for a PMC follows from the MFIE for a PEC, Eq. (3.15). Upon expanding

with Z1f
M
n and testing with Y1ν̂ × fE

m, and using Eq. (5.13), we arrive at
N∑
n=1

〈
fE
m,K1 fM

n +
ν̂ × fM

n

2

〉
Mn = −Y1

〈
fE
m,E

in
1

〉
, (5.39)
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for ρ ∈ C, andm = 1, . . . , N . In matrix notation, this is written as,[
KEM1 + IEM

]
M = −Y1E

in
1 , (5.40)

which is similar to Eq. (5.26), albeit that KEM1 involves an electric-field integral equation with

a magnetic current. The tested identity operator has, apart from a minus sign, the same matrix

elements as in Eq. (5.30), i.e.,

IEMmn =
1

2

〈
fE
m, ν̂ × fM

n

〉
= −IHJmn. (5.41)

Via Eqs. (5.12b) and (5.14a), the matrix elements of KEMv are given by

KEMv;mn =
〈
fE
m,Kv fM

n

〉
= −

∫
Cm

fEm(ρ)

∫
Cn

fMn (ρ′)ν̂ ′ · ∇′
tGv(ρ,ρ

′) d′ d, (5.42)

which is analogous to Eq. (5.29). In local coordinates we have

KEM ;pq
v;mn = γv

dmdn
2π

1∫
−1

1∫
−1

∧pm ∧qn ν̂n · D̂K1(γvD) dξ dη. (5.43)

Upon comparing Eq. (5.43) with Eq. (5.29), we establish the relation,

KEM ;pq
v;mn = KHJ ;qp

v;nm ⇒ KEMv =
[
KHJv

]T
. (5.44)

In conclusion, we mention that upon using Galerkin test and expansion, it is sufficient and also

efficient to only evaluate the upper (or lower) part of the matrices, LEJv , KHJv , and KEMv simul-

taneously by numerical integration rules based on pairs of edges. The remaining MoM-matrix

parts immediately follow from the relations, Eqs. (5.38) and (5.44), derived above. No impedance

scaling has been required to match the dimensions regarding the one-to-one relations between

the MoM-matrices, since the equivalent magnetic current and the EFIE have been scaled with Z1

and Y1, respectively. By duality, the resulting matrices are readily applicable for the TE case.

Let us now consider the excitation vector. Observe that the integral equations with the magnetic

and electric equivalent currents involve the same two excitation vectors. The corresponding

vector components read

Ein
1;m =

〈
fE
m,E

in
1

〉
=

∫
Cm

fEm(ρ)Ein
z;1(ρ) d, (5.45a)

Hin
1;m =

〈
fH
m,H

in
1

〉
=

∫
Cm

fHm (ρ)H in
τ ;1(ρ) d. (5.45b)
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For the TM case, the tested incident field may be considered as being generated by a super-

position of electric line sources in the longitudinal direction and magnetic line sources in the

transverse plane. This includes plane waves, which may be treated as being generated by a prop-

erly normalized source at infinity. We separately handle the field generated by a single electric

and magnetic line source, respectively.

In turn, the field due to an arbitrary source distribution readily follows from an appropriate

weighted combination of multiple line sources. In particular, the 2D version of the field inte-

gral representation, Eq. (2.43), with the 2D dyadic Green’s function, Eq. (5.4) applies. Upon

considering the electric line source, J(ρ′) = ẑδ(ρ′ − ρS), we obtain for the remaining electric

and magnetic field component tangential to ∂D,

Ein
z;1 = −sμ1G1(ρ,ρS), (5.46a)

H in
τ ;1 = τ̂ · ∇t × [G1(ρ,ρS)ẑ] = −ν̂ · ∇tG1(ρ,ρS). (5.46b)

Likewise, for a magnetic line source,M (ρ′) = α̂δ(ρ′−ρS), pointing in the direction, α̂, parallel

to the transverse plane, we obtain,

Ein
z;1 = −ẑ · ∇t × [G1(ρ,ρS)α̂] = (ẑ × α̂) · ∇tG1(ρ,ρS), (5.47a)

H in
τ ;1 = −sε1

[
(τ̂ · α̂) − 1

γ2
1

∂τ∂α

]
G1(ρ,ρS). (5.47b)

By means of Eq. (5.35), the partial derivative ∂τ may be diverted to the triangle testing function.

If tested with a pulse function �m instead of ∧m, integration by parts involves the edge endpoints
only. Below, it will be made clear that this poses a problem for source positions near C. Further
elaboration of the test integrals in Eq. (5.45), carried out by means of Eqs. (5.11) and (5.28), is

straightforward and will be omitted.

The MoM matrices and excitation vectors for the electric and magnetic perfect conductor deter-

mined above can also be used for the composition of the MoM-matrix equations associated with

the scattering from a dielectric object. Upon identifying these terms in the PMCHW formulation,

Eq. (3.35), the corresponding matrix equation is found to be

[
LEJ1 + Y1 Z2L

EJ
2 KEM1 + KEM2

−KHJ1 − KHJ2 LHM1 + Z1 Y2L
HM
2

][
J
M

]
=−

[
Y1Ein

1

Hin
1

]
. (5.48)
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In turn, the matrix equation in Müller’s formulation, Eq. (3.36), is given by⎡
⎢⎣ LEJ1 − γ2

γ1

LEJ2 KEM1 − ε2

ε1

KEM2 +
ε1 + ε2

ε1

IEM

−KHJ1 +
μ2

μ1

KHJ2 − μ1 + μ2

μ1

IHJ LHM1 − γ2

γ1

LHM2

⎤
⎥⎦
[
J

M

]
=−

[
Y1Ein

1

Hin
1

]
.

(5.49)

In view of the remarks made above regarding efficiency, the computational costs involved in the

construction of the PMCHW and Müller MoM-matrix is twice that of constructing a CFIE (or an

EFIE) for a perfect conductor since. This is due to the fact that both interior and exterior medium

indices are required.

Observe that, for the integral equations presented so far, the scaling of the magnetic current ex-

pansion and the testing function for the electric field equation has led to MoM matrices in which

all elements have the same dimension. The elements are also in the same range of magnitude,

which is beneficial for the condition number of the resulting MoM-matrix. However, further im-

provement may be achieved with respect to the Müller MoM-matrix in Eq. (5.49). In particular,

the constituents of the upper-right and lower-right submatrices of the MoM-matrix in Eq. (5.49)

that contain IEM and IHJ = −IEM , respectively, are the diagonally dominant parts of those
submatrices. As the difference between εr;2 and μr;2 increases, the imbalance between the per-

taining elements grows. Therefore, these matrix parts do not seem to match ver well. Obviously,

this not the case with the PMCHW MoM-matrix, as the identity operators of the interior and

exterior medium cancel each other.

To mitigate the imbalance we propose an additional scaling, with the aim to improve the condi-

tion number of Müller’s MoM-matrix. Since the submatrices with L seem to match, the scaling

should only affect the submatrices with K. Accordingly, we introduce the scaling factors

ςε ≡
√
ε1 + ε2

ε1

, and ςμ ≡
√
μ1 + μ2

μ1

. (5.50)

Multiplying the electric and magnetic field equation by ςμ and ςε, respectively, and substituting

the relations

J′
n = ςμJn, and M′

n = ςεMn, (5.51)

into the current expansion, Eq. (3.32), the additional scaling leads to the scaled equation⎡
⎢⎢⎣

LEJ1 − γ2

γ1

LEJ2

ςμ
ςε

(
KEM1 − ε2

ε1

KEM2

)
+ ςμςεIEM

− ςε
ςμ

(
KHJ1 − μ2

μ1

KHJ2

)
− ςμςεIHJ LHM1 − γ2

γ1

LHM2

⎤
⎥⎥⎦
[
J′

M′

]
=−

[
ςμY1Ein

1

ςεHin
1

]
.

(5.52)
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In this equation, the diagonally dominant matrices have the same amplitude.

Once the current amplitudes Jn and/orMn have been determined, the corresponding electric and

magnetic field distributions follow from the integral representations presented in Section 3.2. For

instance, the exterior scattered fields for the dielectric object follow from Eqs. (3.5) and (3.6).

Substituting the applied current expansion, Eq. (3.32), back in the integral representations, results

in expressions for the scattered TM fields

ẑEsc
z =

N∑
n=1

[
JnL1f

J
n +MnK1f

M
n

]
Z1, (5.53a)

Hsc
t =

N∑
n=1

[
MnL1f

M
n − JnK1f

J
n

]
, (5.53b)

for ρ ∈ D̄. In view of the interior field representation, Eq. (3.9), changing the medium index

of Lv and Kv into v = 2 in Eq. (5.53), and adding a minus sign as we deal with an interior

equivalent state, produces the total interior fields, ρ ∈ D. Further, omitting either the magnetic
or electric equivalent current parts readily reduces Eq. (5.53) to the representations associated

with the scattered field from the PEC, respectively, PMC.

The application of Eq. (5.12) with triangle expansion for both the electric and magnetic equiva-

lent currents gives

Esc
z =

N∑
n=1

⎡
⎢⎣Jnγ1

∫
Γ±
n

∧n(ρ′)G1(ρ,ρ
′) d′ −Mn

∫
Γ±
n

∧n(ρ′)ν̂ ′ · ∇′
tG1(ρ,ρ

′) d′

⎤
⎥⎦Z1, (5.54a)

Hsc
t =

N∑
n=1

⎡
⎢⎣Mn

⎧⎪⎨
⎪⎩γ1

∫
Γ±
n

τ̂ ′ ∧n (ρ′)G1(ρ,ρ
′) d′ +

1

γ1

∫
Γ±
n

[∂τ ′ ∧n (ρ′)] ∇′
tG1(ρ,ρ

′) d′

⎫⎪⎬
⎪⎭

−Jn
∫
Γ±
n

∧n(ρ′)ẑ × ∇′
tG1(ρ,ρ

′) d′

⎤
⎥⎦ , (5.54b)

for ρ ∈ D̄. Again, by considering pairs of edges rather than triangles, the resulting equations in
local coordinates are obtained via a similar analysis as applied in the construction of the various
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MoM matrices:

Esc
z =

sμ1

2π

N∑
n=1

dn

1∫
−1

∑
q=±

∧qn
[
JqnK0(γ1D) +M q

nν̂n · D̂K1(γ1D)
]

dξ, (5.55a)

Hsc
t =

γ1

2π

N∑
n=1

dn

1∫
−1

∑
q=±

[
M q

n

{
∧qnK0(γ1D)τ̂ n − q

2γ1dn
D̂K1(γ1D)

}

+Jqn ∧qn ẑ × D̂K1(γ1D)
]

dξ, (5.55b)

where Jqn andM
q
n are the current amplitudes associated with the triangle (part) ∧qn. Note that the

substitution of Eq. (5.51) in Eq. (5.55) would be required for the proposed additional scaling of

Müller’s equations.

5.4 Integration of the singular integrand parts

In the formulation of the MoM-matrix equation, the integrand of the test and expansion integrals

become singular when the source and observation points coincide. This is due to the singularity

entrenched in the Green’s function. Such singularities need to be treated analytically while the

remaining regularized integrals involving non-singular integrands are treated numerically. This

section mainly describes how the pertaining analytical solutions are obtained. For the MoM-

matrix elements this involves the evaluation of double integrals. Single integrals also occur: the

incident field in the (tested) excitation function generated by an electric or a magnetic line source

becomes singular when the source position approaches the boundary where this field is tested.

Also, the integral representations that reproduce the fields represented by an (expanded) equiv-

alent current distribution involve integrands that become singular when the field is determined

on the boundary on which these currents are defined. Below, we mainly focus on the underlying

idea of our approach, while the resulting solutions for the (double) integrals are presented in Ap-

pendix A.1. Only the singularities related to the TM case are handled. By duality, our approach

also applies to the TE case since we consider both electric and magnetic contrast sources and

fields.

Let us first explain how the integrals are decomposed into a regular and a singular integrand

part. Suppose we have a function Ψ(ρ,ρ′) that represents a (scalar) integrand which is singular

at ρ = ρ′. Even if ρ does not lie on the integration contour but merely in its vicinity, straight-

forward integration remains problematic. For this reason, a singular integrand part, Ψsing(ρ,ρ
′),
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is subtracted first, such that we are left with an integral involving an integrand with a regular

(non-singular) behavior only, and a separate integral involving Ψsing(ρ,ρ
′) only. Accordingly,

we have ∫
C

Ψ(ρ,ρ′) d′ =

∫
C

[Ψ(ρ,ρ′) − Ψsing(ρ,ρ
′)] d′ +

∫
C

Ψsing(ρ,ρ
′) d′. (5.56)

The first integral on the right-hand side is regular, and thus amenable to numerical integration.

The integral of the remaining singular integrand part is treated analytically below. An integral

that involves only a singular integrand like Ψsing, is henceforth referred to as a singular integral.

The singular behavior of the integrals involved in the MoM originate from the scalar Green’s

function, Eq. (5.6), and its spatial derivatives, Eq. (5.28). The associated singularity thus follows

from the small-argument behavior of the zeroth and first-order modified Bessel function of the

second kind

K0(z) = − ln
(z

2

)
− γE + O(z), and K1(z) =

1

z
+ O(z), (5.57)

with γE being Euler’s constant. Accordingly, in the analysis of 2D structures, the integrands of

the various integrals are of the following types

Ψ(ρ,ρ′) ∝
{
K0(γ|ρ − ρ′|),
α̂ · ∇′

tK0(γ|ρ − ρ′|),
⇒ Ψsing(ρ,ρ

′) ∝

⎧⎪⎨
⎪⎩

− ln(|ρ − ρ′|),

−α̂ · (ρ − ρ′)
|ρ − ρ′|2 ,

(5.58)

with α̂ oriented tangential or normal to the test or expansion edge. Notice that the term γ/2 is

omitted from the argument of the logarithm, as it can be absorbed into the regular integral. To

arrive at the complete integrand of the singular integrals the test and expansion function have to

be included.

In the present analysis it is assumed that the edges, on which the test and expansion functions are

evaluated, have no points in common, except for the start and end points. With respect to the self

term, i.e., when both edges coincide (Γm = Γn), an exact solution is provided in Appendix A.3

for the integration of the singular, as well as the regular part up to a desired order of accuracy. In

the singular integrands, we use the property

ln (|ρm − ρn|) =
1

2
ln
(|ρm − ρn|2

)
. (5.59)

As a consequence, the distance |ρm − ρn| appears only in the form |ρm − ρn|2, i.e., we have
eliminated any square roots. The distance vector from the observation point ρm to the source
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point ρn for a test and expansion edge pair may be written in terms of the local area coordinates

{η, ξ} ∈ [−1, 1] (cf. Eq. (5.10)) as

ρm − ρn = ρcm − ρcn + ηdmτ̂m − ξdnτ̂ n. (5.60)

with the length di defined as half the edge length, di ≡ Li/2 for i = {m,n}. Accordingly,
|ρm − ρn|2 may be expressed in terms of inner products of vectors normal and tangential to the
edges Γm and Γn, i.e.,

|ρm − ρn|2 = d2
R + 2ηdm (ρcm − ρcn) · τ̂m − 2ξdn (ρcm − ρcn) · τ̂ n

+ (ηdm)2 + (ξdn)
2 − 2ηξdmdn (τ̂m · τ̂ n) ,

(5.61)

with dR ≡ |ρcm − ρcn| and η and ξ as the only two varying parameters. Further simplification is
achieved upon considering Figure 5.5, where the mutual orientation of a certain test and expan-

sion edge pair for the non-self term is accounted for by the fixed angles ψm, ψn and φ.

ψn

Ln

τ̂ n

ν̂n

τ̂ n

ν̂n

ρcm − ρcn

φ

ψm

Lm

τ̂m ν̂m

ρcm

ρcn

Figure 5.5: A pair of edges on which the test and expansion are evaluated, indicated by the

subscripts m and n, respectively. The orientation of the unit-vectors, ν̂ and τ̂ , is defined in

Figure 5.2, and is accounted for by the angles ψm, ψn, and φ.

These angles are introduced to replace the remaining inner products by trigonometric functions.

Note that, since we deal with arbitrarily shaped scattering objects, the mutual orientation of the

edge pair is assumed arbitrary. The angles ψi are defined such that the inner products

τ̂ i · (ρcm − ρcn) = dR cos(ψi),

ν̂i · (ρcm − ρcn) = dR sin(ψi),
(5.62)
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hold for ψi ∈ [0, 2π] with i = {m,n}. Thus, ψi is the angle between edge i and the vector
between the edge centers. The angle φ,

φ = ψn − ψm, (5.63)

is defined through

ν̂m · ν̂n = τ̂m · τ̂ n = cos(φ),

ν̂m · τ̂ n = ν̂n · τ̂m = sin(φ).
(5.64)

Thus, φ is the angle between edge m and n. From Eqs. (5.62) and (5.64), we observe that

Eq. (5.61) reduces to

|ρm − ρn|2 = d2
R + 2ηdRdm cos(ψm) − 2ξdRdn cos(ψn)

+ (ηdm)2 + (ξdn)
2 − 2ηξdmdn cos(φ).

(5.65)

In this way, |ρm − ρn|2 is completely expressed in the two varying parameters, η and ξ, involving
constant angles as the orientation of each edge pair is fixed. This is further simplified upon

introducing the complex constants,

q0 ≡ dR
dn

ejψn and q1 ≡ dm
dn

ejφ. (5.66)

Expansion of the trigonometric functions in terms of exponential ones, and subsequent identifi-

cation of q0 and q1, leads to

|ρm − ρn|2 = d2
n (ξ − ηq1 − q0) (ξ − ηq∗1 − q∗0) . (5.67)

Because Eq. (5.67) is a product of a function and its complex conjugate, the logarithmic term

becomes real-valued:

ln (|ρm − ρn|) =
1

2
ln
[
d2
n (ξ − ηq1 − q0) (ξ − ηq∗1 − q∗0)

]
=�{ln [dn (ξ − ηq1 − q0)]} ,

(5.68)

where � indicates the real part of the expression. Let f(η, ξ) denote the product of the test and

expansion function in local coordinates. For the test and expansion functions considered in this

thesis, we have a linear combination of the terms

f(η, ξ) ∼ {1, ξ, η, ηξ} . (5.69)
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The singular integrals will be treated for each term separately. The solution for a specific choice

of test and expansion function follows directly from a proper linear combination. The logarithmic

singularity in the operator L may via the transformation, Eq. (5.11), be written as

1∫
−1

1∫
−1

f(η, ξ) ln (|ρm − ρn|) dξ dη = �
⎧⎨
⎩

1∫
−1

1∫
−1

f(η, ξ) ln [dn (ξ − ηq1 − q0)] dξ dη

⎫⎬
⎭ , (5.70)

and is required for both LEJ , Eq. (5.23), and LHM , Eq. (5.38). Solving the singular integrals
within the braces is a straightforward procedure. The resulting expressions are given in Appen-

dix A.1 for the four cases in Eq. (5.69). The logarithm is a multiply-valued function: we consider

the standard branch with a branch cut in the complex plane, placed at (−∞, 0]. The integration

area may cross the branch cut, but will not contain the branch point. In Appendix A.2, the con-

ditions for integration across the branch cut are determined, and a simple remedy is presented,

which amounts to a rotation of the branch cut in the complex plane. It is shown that this comes

down to taking the opposite of q0 and q1. As a consequence some terms in f(η, ξ) will change in

sign as well.

With respect to the singular parts related to KEM , Eq. (5.43), the distance appears in the denom-
inator. The remaining inner product in the numerator may be expressed in terms of q0 and q1 as

well, according to

ν̂n · (ρm − ρn) = ν̂n · (ρcm − ρcn) + ηdm(ν̂n · τ̂m) = dR sin(ψn) + ηdm sin(φ)

= − jdn
2

[ηq1 + q0 − (ηq∗1 + q∗0)] .
(5.71)

The singular integral can be further simplified,

1∫
−1

1∫
−1

f(η, ξ)
ν̂n · (ρm − ρn)

|ρm − ρn|2
dξ dη = − j

2dn

1∫
−1

1∫
−1

f(η, ξ)
ηq1 + q0 − (ηq∗1 + q∗0)

(ξ − ηq1 − q0) (ξ − ηq∗1 − q∗0)
dξ dη

=
1

dn
�
⎧⎨
⎩

1∫
−1

1∫
−1

f(η, ξ)
1

ξ − ηq1 − q0
dξ dη

⎫⎬
⎭ ,

(5.72)

where � indicates the imaginary part of the expression. An analytic expression for the integral

inside the braces is presented in Appendix A.1. The integrand of the outer integral involving η

contains a logarithm which, like Eq. (5.70), may result into integration across its branch cut. The

singular integrand of Eq. (5.72) is also encountered in the representation for KHJ , Eq. (5.29), but



130 2D scattering objects

with ν̂m instead of ν̂n. For the numerator, we have (cf. Figure 5.5)

ν̂m · (ρm − ρn) =ν̂m · (ρcm − ρcn) − ξdn(ν̂m · τ̂ n) = dR sin(ψm) + ξdn sin(φ)

= − jd2
n

2dm
[q1 (ξ − q∗0) − q∗1 (ξ − q0)] .

(5.73)

Accordingly, the corresponding singular integral reads,

1∫
−1

1∫
−1

f(η, ξ)
ν̂m · (ρm − ρn)

|ρm − ρn|2
dξ dη = − j

2dm

1∫
−1

1∫
−1

f(η, ξ)
q1 (ξ − q∗0) − q∗1 (ξ − q0)

(ξ − ηq1 − q0) (ξ − ηq∗1 − q∗0)
dξ dη

=
1

dm
�
⎧⎨
⎩

1∫
−1

1∫
−1

f(η, ξ)
q1

ξ − ηq1 − q0
dξ dη

⎫⎬
⎭ .

(5.74)

Apart from a factor q1, the integral inside the braces directly follows from the one in Eq. (5.72).

If the singular integrals, Eqs. (5.72) and (5.74) involved an inner product with τ̂ instead of ν̂, a

careful analysis indicates that the resulting expressions are the same, but instead of the imaginary,

the real part is taken. This gives the equivalence relation

{ν̂i,�,�} ↔ {τ̂ i,�,�} , (5.75)

for i = {m,n}. The above relation will be used in the evaluation of the singular single integrals
required in the field representation and the forcing function later on.

The integral representations that produce the field generated by the equivalent currents, Eq. (5.55),

comprise single integrals. The kernels of the integrals exhibit a singular behavior when the ob-

servation point is located close to the boundary on which these currents are defined. We may still

refer to Figure 5.5 for the definition of the parameters, as the analytical solutions of the singu-

lar integrals can be expressed in terms of the ones in Eqs. (5.70) and (5.72), upon applying the

midpoint rule to the test integral. In that case, the test integral reduces to a single evaluation at

the edge center, ρcm. In local coordinates, this amounts to the multiplication of f(η, ξ) by δ(η).

Accordingly, Eqs. (5.70) and (5.72), would reduce to the so-called midpoint solutions

1∫
−1

f(ξ) ln (|ρcm − ρn|) dξ = �
⎧⎨
⎩

1∫
−1

f(ξ) ln [dn (ξ − q0)] dξ

⎫⎬
⎭ , (5.76a)

1∫
−1

f(ξ)
ν̂n · (ρcm − ρn)

|ρcm − ρn|2
dξ =

1

dn
�
⎧⎨
⎩

1∫
−1

f(ξ)
1

ξ − q0
dξ

⎫⎬
⎭ . (5.76b)
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Expressions for the integrals inside the braces are given by Eq. (A.9) in Appendix A.1.

The midpoint solutions cover the singular integrals that occur in the field representation Eq. (5.55),

by setting the observation point ρ to ρ = ρcm. In that case, the singular integrals of Eq. (5.76)

directly apply to the electric field representation, Eq. (5.55a). The magnetic field is first de-

composed into its components along ν̂n and τ̂ n. In view of the magnetic field representation,

Eq. (5.55a), the singular integral Eq. (5.76a) then applies to the vector potential. As regards the

scalar potential and the integral operator K, Eq. (5.76b) is required, together with its counterpart,

viz., τ̂ n instead of ν̂n, which readily follows by using the equivalence in Eq. (5.75). Hence, for

each edge Γn, a single evaluation of the two singular integrals inside the braces in Eq. (5.76) is

sufficient for the field representation of both the electric and magnetic field.

As regards the excitation function, the kernel of the test integral becomes singular for a line

source that approaches the boundary contour. Again, consider Figure 5.5. The position of the

line source, ρS , is set here to ρS = ρcn. Since there is no expansion function, the constants q0 and

q1 are superfluous as ψn and φ are obsolete. Only the angle ψm remains, for which we introduce

the constant q3,

q3 ≡ dR
dm

ejψm . (5.77)

In the singular integrand occurring in the excitation function, the following terms occur

|ρm − ρS|2 = d2
R + 2ηdRdm cos(ψm) + (ηdm)2 = d2

m (η + q3) (η + q∗3) , (5.78a)

ν̂m · (ρm − ρS) = dR sin(ψm) = −jdm
2

[q3 − q∗3] . (5.78b)

The corresponding singular integrals read

1∫
−1

f(η) ln (|ρm − ρS|) dη = �
⎧⎨
⎩

1∫
−1

f(η) ln [dm (η + q3)] dη

⎫⎬
⎭ , (5.79a)

1∫
−1

f(η)
ν̂m · (ρm − ρS)

|ρm − ρS|2
dη = − 1

dm
�
⎧⎨
⎩

1∫
−1

f(η)
1

η + q3
dη

⎫⎬
⎭ . (5.79b)

Upon comparing Eq. (5.79) with Eq. (5.76), it is clear that the integrals inside the braces are

equal when q0 is replaced with −q3 and ξ with η. This relation may also be deduced using the
reciprocity theorem.

For an electric line source, the singular integrals in Eq. (5.79) both apply to the electric and

magnetic field parts in the excitation function, Eq. (5.46). Regarding the excitation function given
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by Eq. (5.47), i.e., an incident field generated by a magnetic line source oriented in a direction

α̂, the analytic solutions to the associated singular integrals are related to those of Eq. (5.79)

by setting α̂ = ν̂m. By doing so, both singular integrals in Eq. (5.79) apply to the magnetic

field part in Eq. (5.47b). For the electric field part, Eq. (5.47a), the counterpart of Eq. (5.79b) is

required, i.e., with τ̂m instead of ν̂m, which readily follows from the equivalence Eq. (5.75).

5.5 Perfect electric conductors

In the remaining sections, the solvability and the order of convergence of the numerical approx-

imation obtained with the MoM approach is investigated. Initially, this involves the unknown

equivalent current. Ultimately, we are interested in the accuracy of the corresponding (scattered)

field that is generated by this approximate equivalent current. The accuracy that can be achieved

depends on the applied discretization and the mapping properties of the involved integral opera-

tor. Based on the findings that follow, we will be able to make proper choices in the 2D numerical

implementation of the LEGO approach later on.

ρS

Cex
o

C in
o

λo

0.9λo

ρS

Cex
o

C in
o

0.9λo

λo/4

Figure 5.6: The three cylindrical scattering object shapes, viz., a circular one (left, dashed),

a hexagonal one (right, dotted) and a cross shaped one (right, dash-dotted). The contours of

observation are Cin
o and Cex

o , and the position of the impressed line source excitation is ρS .

Before we start with the actual analysis of the discretized integral equations, let us first elucidate

the framework in which the analysis is carried out by means of the basis configuration depicted

in Figure 5.6. The dependence on the smoothness of the exact boundary of the scattering object
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is investigated by considering three different cross-sectional shapes of the cylinder, viz., a circle

(dashed), a hexagon (dotted) and a cross (dash-dotted). Their maximum electromagnetic size is

chosen in the order of a wavelength, viz., 0.9λo. For this particular choice, none of the three

shapes gives rise to interior resonances. Note that their electromagnetic size is also comparable

with the operating frequency range in the EBG applications discussed in Chapter 6.

Since we are primarily interested in the fields generated by the equivalent currents, rather than

the currents itself, the accuracy of the associated scattered fields is the decisive measure, despite

that the error in the currents remains the underlying cause. Therefore, an observation contour,

Co, is employed, on which the scattered fields are evaluated, as illustrated in Figure 5.6. For

a perfect electric conductor (PEC) this amounts to the rectangular exterior contour, Cex
o , with

dimensions λo × λo, and positioned centered around the scattering object. The interior contour,

Cin
o , with dimensions, λo/4 × λo/4, is not relevant for a PEC. For dielectric objects both Cin

o and

Cex
o are considered in Section 5.8. As an error criterion for the numerically obtained scattered

field components, Enum
z and Hnum

τ , tangential to Co, we employ a normalized error, defined as,

norm. err. =

√√√√√√√√√

∫
Co

|Eref
z − Enum

z |2 + Z2
0 |Href

τ −Hnum
τ |2 d

∫
Co

|Eref
z |2 + Z2

0 |Href
τ |2 d

(5.80)

based on a reference solution,
{
Eref
z , Href

τ

}
. For the circle, the reference solution for the scat-

tered fields follows from the analytical expressions determined in Appendix B.1. In this section

we shall discuss the mapping properties of the integral operators L and K. The chosen set of

expansion functions turn out to be ultimately dense in the domain of L and K, which implies

that the convergence of the method for successive refinement of the discretization. The reference

solutions for the hexagon and cross shape have been calculated using N = 6000. The integral

along the observation contour Co in Eq. (5.80) is evaluated at discrete points with 100 points per

side. Further, for an assessment of the accuracy of the resulting equivalent currents, the same

error criterion is applied, upon substituting {Hτ , Ez} by {Jz,Mτ} with Co = C. As excitation, a
unit-amplitude electric line source Jz is placed at ρS , the bottom right corner of Cex

o . It generates

the known incident fields, Ein
z and H in

τ used in the excitation vector. Because the observation

contour and the line source are situated 0.1λ to 0.3λ away from the scattering object, near-field

effects are included in the error.

The accuracy by which the test and expansion integrals in the MoM method are determined

plays a vital role in the overall performance. This so-called quadrature error will be considered
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separately. The double integrals that remain after subtracting the singular parts are determined

by adaptive quadrature rules, where the required relative accuracy is set to 10−2. The analytical

solutions provided in Section 5.4 are used for the extracted singular double integrals. For the self

term, we refer to Appendix A.3.

A similar approach is applied to the single test integral as regards the excitation vector, since we

are mainly interested in the error in the scattered field in relation with the MoM approach, and

not in the error in the field generated by the approximate equivalent current, given by Eq. (5.53).

Hence, the single expansion integral in the field representation is determined very accurately.

Therefore, to guarantee a certain minimum error, the single expansion integrals are evaluated

with adaptive quadrature rules (10−2). For observation contours positioned close to the boundary

of the scattering object, the singular behavior of the field is again accounted for by analytical

solutions. In this way, the error attributed to the numerical evaluation of all the involved test and

expansion integrals is negligible. The remaining error in the equivalent current, and thereby the

scattered field, may thus be attributed to the mapping properties of the integral operators L or K,

the applied discretization, and the smoothness of the exact boundary.

Discretization of the EFIE and MFIE results in the MoM-matrix equations (5.17) and (5.26). In

view of Sections 3.7 and 5.3, triangle or pulse functions are suited for the expansion of Jz for

the TM case. Accordingly, as Galerkin test and expansion functions, we take the pulse �� and

the triangle ∧∧ combinations. As a non-Galerkin example, we consider a delta-pulse test and

expansion combination, ↑�, with delta testing at the edge center, i.e., fm(ρ) =↑m= δ(ρ − ρcm).

Throughout, we employ a uniform mesh.

The resulting matrix equation is, in most cases, solved for one or only a few excitation vectors. In

such a case, an iterative solver like the Conjugate Gradient (CG) method is an efficient tool [74].

As these are approximate solvers, the required accuracy is expressed in terms of the remaining

residual and is set in advance. Here, we shall employ an LU factorization or SVD decomposition

for the MoM-matrix, because we want to avoid additional errors due to the CG procedure in our

investigation of the discretization errors.

First we consider the convergence rate of the equivalent current Jz associated with the circle in

the basis scattering configuration depicted in Figure 5.6. In Figure 5.7, the normalized error in

Jz is shown as a function of the mesh density in terms of the number of points per wavelength.

The approximate current improves upon continuous refinement of the discretization. This is an

indication that the expansion functions are indeed ultimately dense in the domain of the L and
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K operators. Since the exact boundary of the circle is smooth, the convergence rate is subject

to the smoothness of the parametrization and the expansion function. For the EFIE and MFIE,

the order of convergence is linear and quadratic for pulse and triangle expansions, respectively.

According to Cea’s lemma [58, p. 186], the convergence rate is independent of the smoothness of

the testing function (Section 3.7). This is confirmed by the fact that the errors associated with ��
and ↑� test and expansion are commensurate. Nevertheless, the testing function may influence

the overall magnitude of the error in the approximation, as observed with pulse expansion for

the MFIE. Note also that the results for the operators L (EFIE) and K (MFIE) are comparable for

corresponding expansion functions. Further, we remark that with � expansion, the error in the

current at the edge centers also converges quadratically as opposed to the weighted error over the

pulse (which converges linearly).
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Figure 5.7: The error in the equivalent current, Jz, versus the mesh density, points/λo, for the

circle. On the left the EFIE, and on the right the MFIE results.

Next, in Figure 5.8, the amplitude of the equivalent current |Jz| along the contour, C, of the
PEC is depicted for the circle (dashed) and the cross (solid). For compactness, the currents of

the circle and cross are shown in the same figures. The direction of the source position with

respect to the center of the scattering object, φS , is indicated explicitly. The current behaves

smoothly for the circle. Therefore, piecewise linear and piecewise constant expansion functions

provide a convenient approximation of the current. However, |Jz| exhibits a singular behavior
with respect to the cross due to the non-smoothness arising at the corners of the boundary. The

vertical lines indicate the positions of the outward (dotted) and inward (dash-dotted) oriented

corners of the cross. The behavior of the current near the corners is described by the edge

condition [36, Section 3.8.2], which is based on the fact that the stored energy in any finite
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volume of space must remain finite. Accordingly, for a wedge with an exterior angle ψ, the

current behaves as Jz(ρ) ∼ ρ
π
ψ
−1, for the TM case, where ρ is the distance away from the

wedge [34, Section 4.11.7]. For the inward and outward corners, we have, Jz ∼ ρ and Jz ∼ ρ−
1
3 ,

respectively. For a uniform mesh, the overall error in the approximation is primarily dominated

by the error contribution from the corners. This may affect the apparent order of convergence,

both for the current and the resulting scattered field [75].
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Figure 5.8: The equivalent current, |Jz|, along the boundary C. The position that corresponds
with the direction of the line source, φS , is highlighted. The vertical lines indicate the location

of the outward (dotted) and inward (dash-dotted) corners.

Let us now focus on the order of convergence with respect to the scattered fields generated by the

approximate equivalent current Jz via the integral representations in Eq. (5.55). In Figure 5.9, the

normalized error in the scattered field at the observation contour Cex
o , as depicted in Figure 5.6,

is shown as a function of the mesh density, with from top to bottom, the circle, the hexagon,

and the cross, respectively. The figures on the left and the right are obtained via EFIE and an

MFIE, respectively. For the circle with ∧∧ test and expansion functions, the scattered field has

similar to the current quadratic convergence. For the EFIE, the same performance for the circle

is obtained with the ↑� and �� combinations. Despite the smoother behavior of a triangle, the

order of convergence for ∧∧ is limited by the non-smoothness of the approximate boundary, i.e.,

the application of a flat-facetted mesh instead of a curved mesh [75]. For the MFIE, the scattered

field for both ∧∧ and �� discretizations, yields quadratic convergence. The magnitude of the

error for �� discretization is four times larger as that for the ∧∧ discretization. The convergence

for ↑ � discretization is of the same magnitude and linear order as the error observed in the

current Jz.
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Figure 5.9: The error in the field versus the mesh density, points/λo, for the EFIE (left) and

MFIE (right). In the top, middle and bottom figures, we have the circle, the hexagon and the

cross, respectively.
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For the hexagon and cross, the order of convergence is somewhat less in comparison with the

circle. This reduction is caused by the non-smoothness of the exact boundary. A possible expla-

nation is the error at the corners determines the overall error due to the singular behavior in the

equivalent current, as observed in Figure 5.8. For the stable part (above 50 points/λo), the EFIE

reaches for all three test and expansion combinations a convergence of about O(N−1.5) for the

hexagon, andO(N−1.4) for the cross. The same rates are obtained with �� and ∧∧ for the MFIE,
yet, ↑�, leads to O(N−0.75) for the hexagon and O(N−0.7) for the cross. Hence, in comparison

with the circle, we infer that the reduction in the order of convergence may be attributed to the

degree of non-smoothness arising in the exact boundary. Moreover, this reduction is largely in-

sensitive to the choice of test and expansion functions. Besides the order of convergence, also

the magnitude of the error increases with an increasing non-smoothness, e.g., at 30 points/λo the

magnitude of the error with the hexagon is approximately 4 to 5 times less than with the cross

for all three test and expansion combinations. Note that this loss of performance may be recov-

ered through the application of graded meshes [76, Section 8.3.1], instead of uniform ones, i.e.,

by letting the mesh become more dense near the corners, with a gradation that is subject to the

degree of non-smoothness.

Notice that, despite the better order of convergence for the circle, the magnitude of the error

involving ∧∧ starts at a much smaller value for the hexagon. At a first glance, this may seem

contradictory, since the exact boundary of the hexagon is not smooth. However, unlike the circle,

the approximate and exact boundary do coincide for the hexagon. This is also the underlying rea-

son why the order of convergence of the hexagon and cross exceed that of the circle in the range

from 10 to 20 points/λo, i.e., where the overall error is not yet dominated by the contribution

from the corners.

For applications where LEGO will be used, the domains are often electromagnetically large.

To avoid unwanted interior resonances inherent to the EFIE and the MFIE, as described in Sec-

tion 3.4, the CFIEmay be employed. From Figure 5.9 it follows that only for the∧∧ combination,
the magnitude of the error in the field calculated using the EFIE and MFIE are commensurate for

all three object shapes. For ��, this observation is based on a comparison of the magnitude of
the error, as the EFIE solution is always a factor of about 4 better than the MFIE solution, while

for ↑ � the order of convergence is different for the EFIE and MFIE. These observation have

immediate consequences for the choice of the combination constant α in the application of the

CFIE, given by Eq. (3.20). That is, the combination constant α in Eq. (3.20) is usually set around

α = 0.2, such that the CFIE has roughly the same condition number as the MFIE. For �� this

leads to a reduced accuracy compared with the EFIE, and for ↑ � also a reduced convergence.
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The choice of ∧∧ test and expansion yields the best performance for all cases if integrals are

computed with sufficient accuracy, i.e., with an error less than one percent.

Finally, we point out that upon gradually increasing the size of the observation contour Cex
o , from

λo to 10λo, the magnitude of the error in the scattered field from the circle varies no more than

12%. This includes the dependence on the position of the line source, which remained at the

bottom right corner of the varying observation contour. This relative independence of the error

on the source and observation point is primarily due to the application of adaptive quadrature

rules in the excitation vector and the field representations.

∂De

∂Di

re ri

10
−6

10
−5

10
−4

10
−3

 

 

EFIE
MFIE

radius

no
rm
.
er
r.

ri reD∂D

Figure 5.10: On the left the flat-facetted mesh of the circle for the inner, ri, and outer closure, re.

On the right the normalized error in the scattered field as a function of the radius for the EFIE

and MFIE involving ∧∧. The scaling radii with matching boundary length ∂D and matching

area of the domain D are indicated.

In the discretization of a smooth boundary via a flat-facetted mesh, the discretized approximate

boundary only coincides with the exact smooth boundary at discrete points. In that case, the

start and end node of each elementary edge are usually chosen to coincide with the exact smooth

boundary. This methodology generally leads to a discretized boundary that is shorter than the

actual boundary ∂D. As illustrated for a single edge segment in Figure 5.10, application of

this common discretization process to the circle (hatched), the boundary of the resulting mesh

describes an inner closure ∂Di of ∂D. This mesh probably provides the worst results when the
midpoint rule is applied to evaluate the test and expansion integrals, i.e., all sample points are

taken furthest away from the exact boundary. In that case, the outer closure ∂De with the radius

re at the edge nodes seems to be a more suitable discretization, since all edge centers would

coincide with ∂D. However, the analytically determined singular-integral contributions take the
entire edge into account, as will higher order quadrature rules.
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Hence, the question arises whether the use of a different mesh size could lead to a reduction of

the error. Intuitively, the optimal choice of the radius r at the edge nodes is most likely situated

somewhere between the inner and outer closure, i.e., ri < r < re. To determine the optimal

radius of the circle, the normalized error in the scattered field at Cex
o as a function of the radius

for the EFIE and MFIE formulation, involving ∧∧ test and expansion, is illustrated on the right

in Figure 5.10. We have indicated the radius at which the area of the approximate domain is

equal to the actual area of the circle by D and the radius at which the length of the boundary is

equal to the actual circumference of the circle by ∂D. It appears that scaling the radius, and thus
the mesh size, such that the areas of the meshed and exact circle correspond (domain scaling),

significantly reduces the error in the scattered field. Regarding the equivalent current Jz, which

is not shown here, only a marginal reduction of the error was obtained, yet the optimum also

occurred with domain scaling. Note that with pulse expansion, the impact of scaling on the error

in the current proved to be negligible.
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Figure 5.11: The normalized error in the field versus the mesh density in points/λo, for the

domain-scaled circle with on the left the EFIE and on the right the MFIE results.

The convergence behavior of the normalized error in the scattered field for scattering by a circle

with domain scaling is depicted in Figure 5.11 for the EFIE and theMFIE. In comparison with the

results for the unscaled circle, as presented in the top row of Figure 5.9, the order of convergence

involving ∧∧ has increased one order, yielding, cubic convergence, for both, the EFIE and the

MFIE. In the �� case, the EFIE order of convergence increases, whereas the MFIE results are

virtually the same for the scaled and unscaled circle. Regarding ↑ �, there is no improvement
in the convergence rates, only the magnitude of the error has reduced with a factor 5 for the

EFIE. It may seem peculiar that in comparison with ∧∧, �� leads to an increase in the order of
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convergence for the EFIE only. The underlying reason for this is elucidated in Section 5.6, where

we propose a regularization for the MFIE kernel.
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Figure 5.12: The condition number versus the number of unknowns, points/λo, for the circle,

hexagon, and cross with ∧∧ discretization. On the left the EFIE and on the right the MFIE.

Next, we investigate the sensitivity of the MoM-matrix equations to small errors in relation to the

condition number of the MoM-matrix. In Figure 5.12, the condition number is shown as a func-

tion of the mesh density for the circle, the hexagon, and the cross, with ∧∧ test and expansion.

For the EFIE, the condition number increases linearly, while for the MFIE the condition number

is constant. The reason for the well-conditioned MoM-matrix of the MFIE, is that the MFIE is

an integral equation of the second kind, while the EFIE is an integral equation of the first kind, as

has been explained in Section 3.3. Despite the corners in the boundary of the cross and hexagon,

no significant increase in the condition number with respect to the circle is observed for both, the

MFIE and the EFIE.

Further, Figure 5.13 shows the dependence of the condition number on the test and expansion

function combination. In particular we have considered the condition number with the ↑�, ��,
and ∧∧ combinations for the cross. With reference to ∧∧, the magnitude of the condition number
for the EFIE is a factor of 2.5 for ��, and 3.5 for ↑ �. Comparing the EFIE results with those

of the hexagon and the circle (not shown here) shows approximately the same factors occur. In

conclusion, looking at both Figure 5.12 and Figure 5.13, we infer that the order of the condition

number depends only on the mapping properties of the operator under consideration. Further

application of a different combination of test and expansion functions has a negligible impact

on the condition number for the MFIE, while magnitudes differ for the EFIE. Moreover, the
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Figure 5.13: The condition number versus the number of unknowns, points/λo, for the cross with

↑�, ��, and ∧∧ test and expansion. On the left the EFIE and on the right the MFIE.

condition number seems to be largely insensitive to the corners of the exact boundary. Finally,

the condition number of the EFIE MoM-matrix is primarily determined by the singular part,

when the regular part was omitted the same behavior of the condition number was observed.

For the cases considered so far, all test and expansion integrals for the MoM-matrix, the exci-

tation vector, and the field representation, have been determined with adaptive quadrature rules,

to a maximum error of one percent in the evaluation of these integrals. Next, let us investigate

the loss in accuracy due to more elementary quadrature rules. We aim at obtaining an estimate

for the optimum balance between the efficiency of filling the MoM-matrix, versus the obtained

accuracy. Accordingly, to assess the worst loss of accuracy, we consider the lowest order quadra-

ture, i.e., the midpoint rule, as it involves only a single sampling point per edge. Beware though,

that this affects the regular integrand contributions only, i.e., the singular integrand contributions

of the various test and expansion integrals are accounted for analytically. Further, the self terms

(overlapping edges) for both, the EFIE and MFIE are still calculated accurately.

In Figure 5.14, the results of the ∧∧ discretization for the three object shapes in Figure 5.9 are

repeated with the midpoint rule. The order of convergence of the error for the circle remains

quadratic, while the magnitude increased by a factor of two to three. Yet, due to the high sym-

metry of the circle, error cancellation may occur [77], which makes this result inconclusive.

However, we point out that the additional order of convergence gained with domain scaling is

lost with the application of the midpoint rule. With respect to the hexagon and the cross, the
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Figure 5.14: The normalized error versus the number of unknowns, points/λo, for the circle,

hexagon, and cross with ∧∧ discretization involving the midpoint rule. On the left the EFIE and

on the right the MFIE.

order of convergence has even improved, i.e., O(N−1.7) for the hexagon and O(N−1.6) for the

cross. This improvement is attributed to the decreasing error in the evaluation of the integrals

by the midpoint rule, as the integrand becomes more smooth when the mesh is refined. It is

clear that with further mesh refinements, the convergence rates will gradually decrease towards

the ones obtained with the adaptive quadrature rules, depicted in Figure 5.9. Despite that, in

the shown mesh range the magnitude of the errors are larger than the corresponding errors for

the adaptive quadrature. For example, to arrive at the accuracy obtained with 25 points/λo via

adaptive integrals, the mesh of the hexagon and cross should be about three to four times denser

for the case with the midpoint rule. Further, applying adaptive quadrature rules to the excitation

vector and scattered field representation only did not lead to significant changes in the results.

If instead only the MoM is applied with adaptive quadrature rules, similar results follow. This

observation indicates that the overall accuracy is bounded by the integrals determined with the

most elementary quadrature rule.

We also employed the midpoint rule to the test and expansion integrals of the ↑ � and �� dis-

cretizations for the EFIE and MFIE (not shown here). In comparison with the results in Fig-

ure 5.9, obtained via adaptive quadratures, the additional error in the scattered field proved to

be negligible for all three object shapes. As such, the performance involving ↑ and � functions

is primarily determined by the contributions from the singular integral part and the self term,

which are obtained by analytical means, i.e., a single sample point per edge suffices for the reg-
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ular integral part. In fact, apart from the analytical contributions, ↑� and �� test and expansion

functions are effectively equivalent for the midpoint rule on a uniform mesh. Hence, the superior

performance of �� over ↑� may be solely attributed to the analytical evaluation of the singular

(double) integral parts. This observation applies to the test integral in the MoM-matrix only.

Applying the midpoint rule to the regular part of the test integral in the excitation function only

leads to a minor increase in the magnitude of the error for about ten points per wavelength.

Let us now consider the frequency dependence of the integral equations and the suppression of

the interior resonance modes by means of the CFIE. For the combination constant of the CFIE,

we set α = 0.5. The position of the line source and the dimensions of the scattering object, as

assumed in the configuration depicted in Figure 5.6, are unchanged, i.e., λo is fixed, and only the

operating frequency λ of the line source is varied. As the construction of a reference solution

for the hexagon and the cross for each successive frequency is rather time-consuming, only the

circle is considered for which as analytical solutions are available. The frequency dependence

will be expressed in terms of the electromagnetic size of the circle, kr. Here, r denotes the

radius of the (unscaled) circle, and k the wavenumber, with k = 2π/λ. Note that kr is the

length of the circular contour relative to the wavelength λ. For the initial configuration we have

kr = kor = 0.9π, for which we take 34 points/λo (96 unknowns).
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Figure 5.15: The normalized error in the scattered field from the circle as a function of the

frequency in terms of kr with ∧∧ discretization. On the left the domain scaled circle and on the

right the unscaled circle. The number of unknown is fixed to 96.

The normalized error in the scattered field of a circle is depicted in Figure 5.15, as a function of

kr. As observed in Figure 5.9, the EFIE and MFIE results for the unscaled circle are commen-
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surate for ∧∧ test and expansion functions. It is clear that the MFIE results show relatively large

error spikes at discrete frequencies. At these frequencies, the MFIE suffers from the interior

resonance effect. For a circle the EFIE and MFIE interior resonances occur at zeros of the Bessel

function Jn(kr) and its derivative J ′
n(kr), respectively, for n ∈ N . Despite that this may also

imply that an EFIE and MFIE resonance may occur at the same frequency, e.g., at kr = 3.8317,

the CFIE remains free of interior resonances. Apart from the CFIE, the EFIE results tend to be

free of resonances as well, because an interior resonant electric boundary current yields a zero

field contribution outside the circle, as has been elucidated in Section 3.4 with the aid of the

reciprocity theorem and the boundary conditions of the PEC.

Because kr is inversely proportional to the number of points per wavelength, intuitively, the

error for the EFIE and MFIE in Figure 5.15, should decrease cubic and quadratic for the scaled

and unscaled circle, respectively. However, these convergence rates are not achieved here, as the

approximate boundary does not converge towards the exact boundary as kr decreases because the

same mesh size is applied. As such, the deviation between the approximate and exact boundary

is constant, gradually becoming the limiting factor for the order of convergence. This is also the

reason why the error eventually saturates.
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Figure 5.16: As a function of kr, the normalized error in Jz (left), and the condition number of

the MoM-matrix (right), for the unscaled circle with ∧∧ discretization.

On the left in Figure 5.16, the normalized error in the equivalent current Jz as a function of kr

is presented. The saturation observed in the field error also occurs for the current. The EFIE

and MFIE both suffer from resonant spikes in Jz, which are indeed suppressed by using the

CFIE. On the right in Figure 5.16, the corresponding behavior of the condition number of the
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MoM-matrix is illustrated. The MoM-matrices of the EFIE and MFIE are ill-conditioned at the

interior resonances as the solution to both integral equations are not uniquely determined at these

discrete frequencies. Near these frequencies, it becomes increasingly difficult to solve the MoM-

matrix equation. Unlike the current and field convergence, no saturation occurs for the condition

number, as it only depends on the relative mesh size, viz., points/λo. Apart from the resonant

spikes, the condition number of the CFIE involves a similar stable behavior as the MFIE and

does not increase the EFIE linear line. Note that upon applying the midpoint rule to the unscaled

circle, the narrow resonant spikes in the current will broaden for both the EFIE and MFIE.

Finally, enlarging the electromagnetical size of the scattering object, kr, raises the density of

resonant frequencies, so that it becomes increasingly difficult to avoid them by shifting the oper-

ating frequency. Moreover, the exact resonance frequencies slightly deviate from the theoretical

ones depending upon the applied mesh density. This comment is also valid for the cross and

hexagon, where the exact and approximate boundaries do coincide. Hence for electromagnet-

ically large objects, the application of the CFIE becomes essential. Although this implies the

construction of both the EFIE and MFIE matrix elements, the additional computational costs are

relatively small, as has been demonstrated in Section 5.3. On the other hand, since the CFIE is

better conditioned at and near a resonance frequency, computing the equivalent current with an

iterative solver is most efficient with the CFIE, as less iterations are required.

5.6 Regularization

Despite the fact that the scattered field improves upon increasing the smoothness of the test and

expansion functions, one would expect a better order of convergence from the MFIE, especially

since the MFIE kernel is continuous, whereas the EFIE kernel is singular. In [78] it is claimed

that the reason for this poor convergence is that, although the identity operator associated with

the MFIE is trivial to discretize, it behaves as an integral operator with a highly singular kernel in

determination of the solution error, which causes the unexpected low convergence rates. Davis

and Warnick proposed a regularization for the identity operator resulting in high-order conver-

gence with a low-order discretization. Improvements in the convergence rate up to three orders

were achieved even with ↑� discretization. Despite the fact that these results were obtained for

scatterers involving smooth boundaries that were discretized via a curved mesh, the proposed

regularization may also yield improvements with our flat-facetted mesh.
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Let us first explain the numerical implementation and the properties of the reported regulariza-

tion. The error in the scattered field can be expressed as a spectral error [79]. The discretization

of the identity operator leads to a sinc function as regards the spectral error [78]. The proposed

regularization of the identity operator, I, implies the application of a filter, F . As regards the
spectral error, if the filter F comprises a sinc function, it filters out the high-frequency content

that is associated with the test and expansion functions, to improve their effective smoothness.

Smoother test and expansion functions yield a stronger convergence of the scattered field error.

The filter F is given by

F(ρ,ρ′) =
1

C

sin π
L
(τ − τ ′)

sin π
C

(τ − τ ′)
ej

π
C

(τ−τ ′), (5.81)

irrespective of the applied test and expansion combinations. Here, C indicates the total perimeter

length of the contour C of the scattering object, and τ is the arc length measured from an arbitrary

point on C. With L being the edge length, the filter involves a sinc function with height 1/L, and

width 2L, which is made periodic with respect to the contour C. In the case of a nonuniform
mesh, L is taken as the mean element width. For the MFIE involving a PEC, Eq. (5.25), this

filter implies the following modification to the identity operator,

IHJmn =
1

2

〈
fH
m(ρ), ν̂ ×

∫
Cn

fJ
n(ρ

′)F(ρ,ρ′) d′
〉
, (5.82)

in the corresponding matrix equation (5.26). As an implementation note we mention that the

smallest error is achieved if the test and expansion integrals of IHJ and KHJ are evaluated using
the same quadrature rule in which case the leading error term of the quadrature errors cancel in

the final solution.

The normalized error in the scattered field resulting from applying this regularization to theMFIE

involving�� test and expansion functions is shown in Figure 5.17 for the circle and the cross. For
convenience, the results of the nonregularized version have been repeated. With regularization,

the order of convergence improves from quadratic to cubic for the domain-scaled circle only. In

the case of the cross and the unscaled circle, the improvement still leads to a significant reduction

in error magnitude. Hence, if the exact boundary is not smooth, the error is primarily determined

by the inaccuracy in the approximation of the singular behavior of the current at the corners,

irrespective of the smoothness of the applied test and expansion functions. It is noted that in all

cases that we have considered, the regularization did not affect the condition number.

Furthermore, saturation of the error occurs for the unscaled circle above 100 points/λo. This

effect is less pronounced for the scaled circle. Upon increasing the required accuracy of the
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Figure 5.17: Regularization (reg.) of the MFIE with �� discretization. The normalized error in

the field versus the number of unknowns, points/λo. On the left the domain scaled circle and on

the right the unscaled circle and the cross.

adaptive integrals from 10−2 to 10−4, the saturation disappears and the slope of the convergence

rate becomes constant again. The underlying reason is that, with an increasing mesh density, the

contribution of KHJ is relatively small compared to that of the regularized IHJ , Eq. (5.82). Note
also that, with the inclusion of the filter F , the integrand behaves more erratically, which implies
that more sampling points have to be taken to achieve the same accuracy as without the filter.

Low-order quadrature rules like the midpoint rule should in that case be avoided for the expan-

sion integral; otherwise the filtering function is lost due to an insufficient number of sampling

points. With regularization, the performance of the MFIE with �� discretization improved for

the domain-scaled circle towards that of ∧∧ discretization. It is noted that the regularization does

not improve the results for the hexagon and cross shape. Finally, with regularization applied to

the ∧∧ combination, no improvement was observed. Hence, ∧∧ without regularization remains

the preferred choice for discretizations involving a flat-facetted mesh.

5.7 Perfect magnetic conductors

In this section we investigate the accuracy of the error in the scattered field as a function of the

applied discretization, for the solution of the integral equations that satisfy the TE-description

(Section 5.2). To this end, let us consider the electromagnetic scattering from a PMC involving
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a magnetic current distribution, Mτ . In the TE case related to the PMC, the same incident field

can be employed for the excitation vector as has been applied before, i.e., the incident field

generated by an electric line source at the bottom right corner of the observation contour Cex
o .

Thus, deviations attributed to a different incident field distribution are avoided. Furthermore,

when considering problems involving a dielectric object in the TM case, the MoM matrices

related to the PMC (and PEC) may directly be employed. Again, the basis configuration of

Figure 5.6 is considered, with the same object shapes. The EFIE and MFIE matrix equations for

a PMC are given by Eqs. (5.40) and (5.33), respectively. In contrast with the PEC, the MFIE

now involves L, while the EFIE involves K. Also, the scalar potential yields a nonvanishing

contribution for the TE case. In our mixed-potential formulation, the differential operators are

diverted to the test and expansion functions. Hence, only (piecewise) continuous functions are

allowed. Accordingly, we restrict the analysis to the∧∧ test and expansion function combination.

Before we proceed with the error in the scattered field, we first consider the behavior of the

magnetic equivalent current, Mτ , in its dependence on the smoothness of the boundary. In Fig-

ure 5.18, the amplitude of the equivalent current |Mτ | along the contour C of the circle (dashed)
and the cross (solid) is depicted. For compactness, the currents of the circle and cross are shown

in the same figures. The vertical lines indicate the positions of the outward (dotted) and inward

(dash-dotted) oriented corners of the cross. The direction of the source position with respect to

the center of the scattering object, φS , is indicated. The current behaves smoothly for the circle.

Therefore, ∧∧ discretization provides a convenient approximation of the current.

In contrast with the electric equivalent current Jz associated with a PEC, |Mτ | remains finite
for the cross as well. From the edge conditions for a wedge with an exterior angle ψ, we have

that the current behaves as Mτ (ρ) ∼ b0 + b1ρ
π
ψ for the TE case, where ρ is the distance away

from the wedge with b0 and b1 being constants that depend on the form of the incident field [34,

Section 4.11.7]. Hence, for the behavior of Mτ at the inward and outward corners, we have,

Mτ ∼ b0+b1ρ
2 andMτ ∼ b0+b1ρ

2
3 , respectively, as can be observed in Figure 5.18. Accordingly,

for the TE case, expansion by piecewise linear functions provides an appropriate approximation

of the current for non-smooth object shapes as well.

Let us now focus on the order of convergence of the scattered fields generated by the approximate

equivalent currentMτ , via the integral representations, Eq. (5.55). In Figure 5.19 the normalized

error in the field as a function of the sampling density is shown for the unscaled circle, the

hexagon and the cross. The magnitude and the order of convergence of the EFIE and MFIE are

comparable. Likewise, in view of the scattering from a PEC with ∧∧ discretization in Figure 5.9,
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Figure 5.18: The equivalent current, |Mτ |, along the boundary C. The position that corresponds
with the direction of the line source, φS , is highlighted. The vertical lines indicate the location

of the outward (dotted) and inward (dash-dotted) corners.

we observe that approximately the same convergence rates are obtained for the PEC and PMC.

The more smooth behavior of theMτ (PMC) in comparison with Jz (PEC), for the hexagon and

cross, does not lead to an improvement in the error. Hence, the order of convergence is bounded

by the non-smoothness of the geometry only. This statement is corroborated by the observation

made in Section 5.5 that the order of convergence is largely insensitive to the chosen set of test

and expansion functions. Finally, applying domain scaling to the circle leads to an improvement

of the convergence rate of the error for both the EFIE and MFIE by one order, as with the PEC.

Because |Mτ | remains finite for scatterers involving non-smooth contours, a well-converged ref-
erence solution can be constructed for the hexagon and cross to investigate the order of conver-

gence of the error inMτ . In this manner we may relate the reduction in convergence observed in

the scattered field with the hexagon and cross to a similar reduction in the generating equivalent

current. In Figure 5.20, the normalized error inMτ is shown as a function of the sampling density

for a circle, hexagon, and cross. With respect to the circle, the same convergence rate, quadratic,

and magnitude is obtained as with the scattering from a PEC, depicted in Figure 5.7. On the other

hand, for both the EFIE and MFIE, the order of convergence concerning the hexagon and cross

has reduced to, respectively,O(N−1.25) andO(N−1.19). These convergence rates are roughly the

square root of those associated with the corresponding field behavior. This minor deviation in the

field convergence may be assigned to the subsequent application of the integral representation

that produces the fields generated by the equivalent currentMτ .
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Figure 5.19: The normalized error in the field versus the sampling density for a circle, hexagon,

and cross. On the left the EFIE (KEM ), and on the right the MFIE (LHM ) results.
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Figure 5.20: The normalized error in Mτ versus the number sampling density for a circle,

hexagon, and cross. On the left the EFIE (KEM ), and on the right the MFIE (LHM ) results.
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Next, we investigate the sensitivity of the EFIE andMFIE matrix equations related to small errors

by considering the condition number versus the mesh density in Figure 5.21. As the EFIE now

represents an integral equation of the second kind, while the MFIE represents an integral of the

first kind, the condition number of the EFIE is constant, while for the MFIE it increases linearly.

In comparison with the PEC, the magnitude of the condition number for the MFIE (LHM ) is
about five times lower than for the EFIE (LEJ ), while for the hexagon and cross this is a factor
of eight. This improvement may be attributed to the fact that the scalar potential does not vanish

for the TE case. Finally, the dependence of KEM (EFIE, PMC) on the non-smoothness of the

boundary seems stronger than for KHJ (MFIE, PEC) in Figure 5.12.
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Figure 5.21: The condition number versus the sampling density for a circle, hexagon, and cross.

On the left the EFIE (KEM ), and on the right the MFIE (LHM ) results.

5.8 Dielectric objects

General boundary integral equations for the electromagnetic scattering by dielectric objects have

been formulated in Section 3.2. This led to two pairs of integral equations, each related to either

the interior, or the exterior equivalent state. Both pairs are coupled via boundary conditions.

Together the integral equations comprise an overdetermined system of equations. To arrive at a

single pair of equations, two possible linear combinations were considered in Section 3.5, viz.,

the PMCHW and the Müller’s formulation. Below, we investigate the solvability and the order

of convergence of the discretized version of both formulations. The difference in performance

will be elucidated and related to the chosen combination of the two original pairs of integral
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equations. Afterwards, an extension is made by means of a different integral formulation with

unique mapping properties. Further, the improvement of the solvability of Müller’s formulation

owing to the proposed additional scaling will be investigated.

In Section 5.3, we briefly stated that the singular behavior associated with the combination of

L-operators involving Müller’s formulation is less dominant than that of PMCHW. In addition, it

was remarked that the low-frequency breakdown is naturally avoided with Müller’s formulation.

These two properties are inherently related. To elucidate this further, let us recall the definition

of the integral operator, L, for the 2D case,

Lv(ρ)X = γv

∫
C

X(ρ′)Gv(ρ,ρ
′) d′ − 1

γv
∇t

∫
C

[∇′
t · X(ρ′)]Gv(ρ,ρ

′) d′, (5.83)

where γv being the propagation coefficient and v the medium index. The first term on the right-

hand side of Eq. (5.83) denotes the mildly singular vector potential, and the second term the

hypersingular scalar potential. The mildly singular behavior may be attributed to the cancellation

of the dominant singularities pertaining to the interior and exterior media in the scalar potential.

Namely, with the aid of Eq. (5.28), we have

∇t [G1(ρ,ρ
′) −G2(ρ,ρ

′)] =
1

2π

ρ − ρ′

|ρ − ρ′| [γ1K1(γ1|ρ − ρ′|) − γ2K1(γ2|ρ − ρ′|)] . (5.84)

In turn, upon considering the small argument behavior of the first-order Bessel function,

K1(z) ∼ 1

z
+ O(z ln(z)), (5.85)

it is clear that the contributions of the singular integrand parts of the interior and exterior medium

indeed cancel each other in Eq. (5.28). From the definition of the L-operator, Eq. (5.83), the

hypersingular behavior in the scalar potential of the combinations, L1− γ2
γ1
L2, arising in Müller’s

MoM-matrix, Eq. (5.49), vanishes. Note that this cancellation fully stems from the selected

combination of the original two sets of integral equations, irrespective of the applied scaling,

which only serves the ease of the numerical implementation.

Taking into account that the propagation coefficient, γv, is proportional to the frequency, ω, via

Eq. (4.11) and the Laplace transformation, we now consider the low-frequency breakdown. This

breakdown originates from the decoupling of the electric and magnetic fields at zero frequency.

In a numerical sense, the breakdown is associated with the operator L, i.e., in Eq. (5.83), the

frequency dependence of the vector potential isO(ω), whereas the scalar potential isO(ω−1). In

addition, from Eq. (3.7b), it readily follows that the operator K is O(ω0). In short, as ω goes to



154 2D scattering objects

zero, the vector potential becomes dominant at low frequencies, which results into an unbalanced

system of equations, as the contribution from the scalar potential and the operator K are lost. As

a consequence the currents cannot be accurately determined from their divergences, and the

system becomes numerically unstable, i.e., ill-conditioned. The same phenomenon occurs with

subsequent mesh refinements, since the wavelength then also becomes large with respect to the

mesh elements. However, since the singular behavior has been removed from Eq. (5.84), it yields

O(ω2). Accordingly, in Müller’s formulation, the remaining part of the combination of scalar

potentials has the same frequency dependence as the combination of vector potentials, i.e.,O(ω).

In this respect, the low-frequency breakdown is naturally avoided in Müller’s formulation.

Before we proceed, let us first introduce an additional integral formulation combination which

emphasizes different aspects of the mapping properties of L and K. In contrast with the PMCHW

formulation, the straightforward subtraction of the electric field equations (3.10a) and (3.11a),

and the magnetic field equations (3.10b) and (3.11b), yields the following matrix equation re-

spectively,[
LEJ1 − Y1 Z2L

EJ
2 KEM1 − KEM2 + 2IEM

−KHJ1 + KHJ2 − 2IHJ LHM1 − Z1 Y2L
HM
2

][
J
M

]
=−

[
Y1Ein

1

Hin
1

]
. (5.86)

This alternative Müller formulation, in which the singularity of the operator K instead of that of

the operator L vanishes throughout, is henceforth referred to as Mül-K formulation. The original

Müller formulation is therefore denoted as Mül-L. Since we apply Galerkin test and expansion

in a mixed-order potential formulation, the gradient of the scalar potential is diverted to the test

function. Accordingly, in case of an ε-contrast, the kernel of the combined scalar potential of

LHM1 −Z1Y2LHM2 in Eq. (5.86) yieldsG1(ρ,ρ
′)−G2(ρ,ρ

′). With the small-argument behavior,

K0(z) ∼ ln(z), it is easily deduced that the singular behavior of the scalar potential of LHM

vanishes. In addition, because the scalar potential of LEJ naturally vanishes for the TM case,

the Mül-K formulation has in the absence of an μ-contrast also the singularity cancellation in the

scalar potential that is inherent to the Mül-L formulation.

In the following analysis of the boundary integral equations, we consider the same configuration

as in the case of the perfect conductor, i.e., the one depicted in Figure 5.6. The contour boundary

shapes are also considered for the scattering dielectric object. Because this includes an interior

(index 2) and exterior medium (index 1), we set λ1 = λo to fix the electromagnetic size of the

scattering object with respect to the observation contour Co. The previously defined error norm,

Eq. (5.80), is employed as a measure for the accuracy of the obtained scattered field by means of

a normalized error. Since we have a non-vanishing interior field, the interior observation contour
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Cin
o is used as well to incorporate the scattered field inside the scattering object in the evaluation.

As such, we have, Co = Cin
o ∪ Cex

o , where the same number of sampling points will be taken

on Cin
o and Cex

o (100 points on each side). By including an inner contour, we avoid a one-sided

focus on the scattered fields exterior to the scatterers. If only the contribution from the exterior

field contribution is accounted for, a possibly complex interior field distribution, e.g., an interior

resonance mode, would not be registered. Throughout, the exterior domain is free space, i.e.,

ε1 = ε0 and μ1 = μ0. Further, the same electric line source as in Section 5.5 that is located

at the bottom-right corner of the observation contour Cex
o is employed as the impressed source

distribution that generates the incident field in the forcing function.

As a measure of solvability, and thus the well-posedness of the problem (Section 3.7), the behav-

ior of the condition number is investigated. Unless mentioned otherwise, the additional scaling in

the Mül-L formulation, as proposed in Section 5.3, is applied to minimize the condition number

of the MoM-matrix. Because both formulations involve a non-zero scalar potential, expansion

by a piecewise-differentiable function is mandatory. Further, we prefer the mixed-order potential

formulation. Only piecewise-linear functions in a Galerkin approach are employed, viz., ∧∧ test

and expansion. Again, to consider the quadrature error separately, adaptive quadrature rules are

applied for the test- and/or expansion integrals (with a relative accuracy of 10−2), along with

analytical expressions for the corresponding singular integrand parts.

Since the accuracy of the resulting scattered field is also subject to the dielectric contrast, let us

first consider the normalized error in the scattered field and the condition number of the corre-

sponding MoM matrix as a function of the medium properties by means of the refractive index,

nv, defined as nv = c0
√
μvεv with medium index v ∈ {1, 2}. The results for the domain-scaled

circle are depicted in Figure 5.22. On the left and right we show the normalized error and the

condition number versus the refractive index of the scattering object, n2, for the Mül-L (solid)

and PMCHW (dashed) formulations, respectively. The exterior medium properties remain un-

changed, i.e., n1 = 1. In the top, middle, and bottom figures, we have, μr;2 = 1, εr;2 = 1, and

n2 = μr;2 = εr;2, respectively. The number of mesh elements is N = 96, which amounts to 34

points/λ1.

In the first place, we observe the spikes arising in the curves of both the condition number and

the normalized error. From a careful examination of the figure, it turns out that where the spikes

in the condition number of the Mül-L formulation surpass the seemingly smooth magnitude for

PMCHW, the condition number for PMCHW also exhibits such a spike of the same magnitude.

With reference to the frequency behavior for the scattering of a PEC in Section 5.5, these spikes
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Figure 5.22: Demonstration of the dependence on the refractive index n2 of a (domain-scaled)

circle of the Mül-L and PMCHW formulations, on the left the normalized error in the field, and

on the right the condition number. In the top, middle, and bottom figures we have, μr;2 = 1,

εr;2 = 1, and n2 = μr;2 = εr;2, respectively.
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also represent interior resonant modes. However, now these interior resonances are physical

modes, rather than spurious solutions due to a mathematical non-uniqueness, since the Mül-L

and PMCHW formulations are proven to be free of such interior resonances [53]. Because these

so-called cavity modes are associated with a pole close to the imaginary axis in the complex

plane [Section 2.6.2] [72], the condition number increases considerably. It is clear that the num-

ber of cavity modes rises with an increasing contrast as the electromagnetic size of the interior

medium becomes larger.

As an example, we compare the field distributions in the presence and absence of a cavity mode.

In Figure 5.23 the total electric field is shown on a logarithmic 50 dB scale, where white areas

indicate a high field amplitude. We consider an ε-contrast only, with on the left ε2;r = 79.1 for

which the condition number is small and on the right ε2;r = 77.6 for which the condition number

large. The observation contours, Cin
o and Cex

o , and the impressed electric line source position are

highlighted. In the ε2;r = 77.6 case, a cavity mode is excited. In particular, the field pattern

comprises a whispering gallery mode as the field propagates along the interior of the circular

contour. Note that whispering gallery modes that arise for smaller dielectric contrasts propagate

closer to the boundary. Apart from the higher intensity of the interior field, the cavity mode field

varies rapidly along the boundary C of the circle. In turn, because there is a one-to-one corre-

spondence between the tangential field components on C and the equivalent currents, in a sense,
the effective number of points per wavelength is larger in case of the non-cavity mode. That is,

the fluctuation of the field along the circular contour, and thereby the effective refractive index

resembles more the exterior rather than the interior medium properties. Combined, this clarifies

the larger error (spikes) in the field for the cavity modes in Figure 5.22. Besides that, this also

elucidates the occurring saturation in the magnitude of the error away from cavity modes as the

exterior medium properties remain unchanged. On the other hand, as the effective refractive

index resembles more the interior medium properties in case of a cavity mode, it is reasonable

to expect that the magnitude of the spikes thus increases for larger dielectric contrasts. Despite

that the interior domain may involve a cavity mode, the normalized error evaluated at the sep-

arate interior and exterior observation contours has the same order of magnitude. Observe that

although weak field variations occur along C for the non-cavity mode on the left in Figure 5.23,
strong field variations do arise inside the circle. In such a case, boundary integral formulations

are especially accurate, as the unknown boundary currents show hardly any variation.

In a comparison of the condition numbers of both formulations in Figure 5.22, we notice that

with the Mül-L formulation, the behavior of the condition number is strongly related to the be-

havior of the error in the field. Hence, a change in the condition number of the MoM-matrix
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Figure 5.23: The total electric field |Ez| from a circle for μ2;r = 1 on a logarithmic 50 dB scale

with on the left ε2;r = 79.1 for a low condition number and on the right ε2;r = 77.6 for a high

condition number. The cross indicates the location of the radiating electric line source. The

dashed lines are the circle and observation contours. White areas indicate a high field amplitude.

of the Mül-L formulation implies a similar change in the resulting accuracy of the field. Since

the singular parts of the scalar potential related to the interior and exterior media cancel each

other, the condition number with the Mül-L formulation is primarily determined by the operator

K. The condition number of the PMCHW MoM-matrix is initially inversely proportional to μ2.

This property stems from the mapping properties of the L operators, i.e., for a small contrast, the

(fixed) mesh is relatively more dense, in which case L plays a more dominant role with respect

to K. The dependence on μ only is raised by the asymmetry in the 2D integral equations, i.e., the

vanishing scalar potential in LEJ . With an increasing contrast, and thus a decreasing mesh den-

sity, the contribution of the K operators becomes dominant, and the condition number eventually

stabilizes just as is the case of the Mül-L formulation, albeit at a different magnitude due to the

different linear combinations of K1 and K2. Recall that in Section 5.5 the resonance spikes in

the frequency behavior of the mapping properties involving K and L appear to be much broader

for K (MFIE) than L (EFIE), as observed in Figure 5.16 for the PEC. This distinction is also

encountered here, as either the properties of K or L dominate the condition number. When the

dielectric contrast vanishes, the condition number of the MoM-matrix for the Mül-L formulation

diminishes significantly. In that case the Mül-L formulation yields the trivial solution, i.e., the

definition of the equivalent currents, Eq. (2.62), as only the contribution of the identity operator

remains. This observation is not obvious for PMCHW, as the operators LEJ and LHM are not

diagonal [53]. For the hexagon and cross shapes, similar curves are obtained for the condition
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number, albeit that the magnitude where the error saturates deviates, i.e., it depends on the non-

smoothness of the boundary, as has been observed for the individual KHJ and KEM matrices in

Figure 5.12 and 5.21, respectively.

As regards the error in the resulting scattered field, for a refractive index, n2 < 4, the accuracy

obtained with the Mül-L formulation exceeds that obtained with PMCHW, i.e., unlike PMCHW,

the overall error with Mül-L decays with a decreasing contrast. For larger values of n2, the

performance of both integral formulations is comparable. However, for the unscaled circle, the

(not shown) normalized error obtained with PMCHW is commensurable with that of Mül-L over

the entire range, while the overall error curve is also two orders of magnitude higher. This

is consistent with the case of the perfect conductor, where the error for the unscaled circle is

primarily determined by the geometrical error, i.e., the approximate boundary.

For the scattering from a dielectric object involving a non-smooth boundary, in particular the

hexagon and cross shape depicted in Figure 5.6, the equivalent current may exhibit a discontin-

uous, and even a singular behavior at the corners. This abrupt current behavior may affect the

order of convergence of the equivalent current and thereby also that of the corresponding scat-

tered field. Let us first study the behavior of the equivalent currents. In Figure 5.24, the amplitude

of the equivalent electric, |Jz| (left), and magnetic, |Mτ | (right), current along the contour of the
dielectric object are depicted for the cross (solid) and circle (dashed), with in the top and bottom

figures an ε and μ-contrast, respectively. For compactness, the currents of the circle and cross

are shown in the same figures. The direction of the source position, ρS , with respect to the center

of the scattering object, φS , is indicated. The vertical lines indicate the positions of the outward

(dotted) and inward (dash-dotted) oriented corners of the cross, respectively. As observed for

the perfect conductors, both the electric and magnetic currents exhibit a smooth behavior for the

circle, so that ∧-expansion provides a convenient approximation of the currents.

With regard to the hexagon and cross, the field behavior near a dielectric wedge is somewhat

more complex than that of a perfect conductor a detailed description is outside the scope of this

thesis. Nonetheless, we will treat the effect of a non-smoothness arising in the boundary due to

the presence of corners up to a certain extent, i.e., in relation to the order of convergence of the

resulting equivalent current and the scattered field. For a more thorough insight into the field

behavior near dielectric wedges, we refer to [80, 81]. Field components normal to a dielectric

wedge may become infinite, whereas parallel components remain finite. From the definition

of the equivalent currents, Eq. (5.7), it immediately follows that Mτ remains continuous across

corners as it is related to Ez, while Jz may exhibit a discontinuous and/or a singular behavior
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Figure 5.24: On the left and right, respectively, the amplitudes of the equivalent current, |Jz|,
and |Mτ | along the boundary C for the circle and cross. In the top and bottom figures, εr;2 = 16

and μr;2 = 1, and εr;2 = 1 and μr;2 = 16, respectively. The position that corresponds with

the direction of the line source, φS , is indicated. The vertical lines indicate the location of the

outward (dotted) and inward (dash-dotted) corners.
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at a corner. More specifically, in the absence of a μ-contrast, the transverse magnetic field is

continuous, and the field components normal to the contour remain finite. Accordingly, Jz has

no singular behavior, but may become discontinuous at the corners. On the other hand, in the

case of a μ-contrast, Jz may also become singular at the corners. However, this is entirely

subject to the angle of the corner and the dielectric contrast [81]. The above properties are also

encountered in Figure 5.24, viz., at the corners of the cross, Mτ remains continuous, while Jz
becomes discontinuous and involves a singular behavior at the inward corners in the case of a

μ-contrast.

The applied piecewise linear function, ∧, which is continuous across adjoining edges, provides a
poor approximation for the discontinuities that arise in the electric equivalent current. As a con-

sequence, the approximate electric current exhibits an oscillating behavior near the discontinuous

and singular behavior of |Jz| in terms of small ripples that decay exponentially away from the

discontinuity. This effect is strongly related to Gibbs’ phenomenon. Since the equivalent cur-

rents in Figure 5.24 are obtained using more than 200 points per wavelength, these ripples have

become narrow (up- and downward) spikes at the corners.

Next, let us investigate the impact of a non-smooth boundary on the convergence of the equivalent

current. Since there are no analytical solutions available for the cross and hexagon shape, a well-

converged solution is applied as a reference solution. However, the reference solution itself poses

a poor approximation of Jz at the corners as Jz becomes discontinuous and singular. As such,

application of the error norm, Eq. (5.80), will lead to improper results for Jz. Therefore, only

the convergence rate of Mτ is considered. In Figure 5.25 the order of convergence of Mτ is

shown for the (domain) scaled circle (solid), hexagon (dashed) and cross (dash-dotted) contour

shapes. On the left, an ε-contrast with εr;2 = 16, and on the right an μ-contrast with μr;2 = 16.

These results are generated with the PMCHW formulation. Those of the Mül-L formulation are

virtually the same.

For the circle, Mτ converges quadratically. This is also the case for Jz. The indicated range

is chosen such that upon expressing the mesh density in terms of the exterior medium, λ1 =

λo, the range corresponds with that of the results for the perfect conductors. This allows for

a direct comparison. The error for the circle is virtually the same as the one obtained for the

perfect conductors, depicted in Figure 5.7 and 5.20 for the PEC and PMC, respectively. Since

the operating frequency is away from cavity modes for the selected dielectric contrasts, this

similarity confirms the statement that the relative mesh density is more related to the exterior

medium properties for non-cavity modes. Just as was the case for the perfect conductors, the
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Figure 5.25: The normalized error inMτ versus the number of unknowns, points/λ2 for the PM-

CHW formulation involving the scaled circle (solid), hexagon (dashed) and cross (dash-dotted).

On the left, εr;2 = 16 and μr;2 = 1, and on the right, εr;2 = 1 and μr;2 = 16.

domain scaling of the circle leads to an improvement in the magnitude only, as the order of

convergence is bounded by the smoothness of the expansion function. Recall that the gain in

accuracy of the equivalent current seems to be negligible for the perfect conductors. For the

dielectric object, however, a more substantial improvement of about one order of magnitude is

obtained.

For the hexagon and cross shapes involving an ε-contrast, Mτ converges quadratically as well.

In contrast with the results for the PMC in Section 5.7, the non-smoothness in the boundary

results in a shift in magnitude only. Apparently, the discontinuous behavior of Jz does not affect

the convergence of Mτ . On the other hand, the error convergence rates for both the hexagon

and cross reduce to O(N−1.3) for a μ-contrast. Although Jz may now also become singular

across corners, this may seem strange at first glance, as Mτ remains, like for the ε-contrast,

continuous across corners. However, the derivative of Jz, in terms of the surface divergence

of Mτ , may become singular, i.e., upon considering the boundary conditions for the normal

field components, Eq. (2.18), the singular behavior of Jz, associated with the normal magnetic

field component, reappears in the scalar potential with Mτ via its surface divergence. Up to 5

points/λ2,Mτ still converges quadratically. In this region, the overall error is not yet governed by

the contribution from the singular current behavior at the corners. Regarding the cross, quadratic

convergence is even exceeded at first as the mesh density is critically too coarse with respect to

the interior medium and the boundary geometry.
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Now, we consider the order of convergence of the scattered field on the observation contour, Co,

obtained with the Mül-L, the PMCHW, and the Mül-K formulations. Accordingly, in Figure 5.26

the normalized error of the scattered field as a function of the number of unknowns, points/λ2,

due to the scattering from the hexagon (left) and the cross (right). In the top, middle, and bottom

figures, we have εr;2 = 16 with μr;2 = 1, μr;2 = 16 with εr;2 = 1, and μr;2 = εr;2 = 4, respec-

tively. The results for the unscaled circle have been omitted as the pertaining error is primarily

determined by the geometrical error of the approximate boundary rather than the mapping prop-

erties of the integral formulation itself. More specifically, considering fields instead of currents

only leads to a minor improvement. The extension to the domain-scaled circle will be treated

later on. The obtained convergence rates for the cross and hexagon are not as steady as the ones

observed with the perfect conductors, because of the various combinations of integral operators

that are dominant at different mesh densities. In general, the results for the hexagon shape are

better than those for the cross. This may be attributed to the more severe non-smoothness of the

cross, but also partly to the fact that the operating frequency is closer to a cavity mode. Since

the order of convergence appeared to be independent of the object shape for the separate inte-

gral operators involving the perfect conductors, the variations in the convergence may solely be

accounted to the mapping properties of the integral operators and the specific combinations of

integral operators. For the PMCHW formulation, the convergence eventually becomes quadratic

with further mesh refinement, irrespective of the object shape and dielectric contrast. The PM-

CHW formulation is then dominated by the contribution from the L operators, as observed in the

investigation of the dependence on the refractive index in Figure 5.22.

For the ε-contrast (top row), the convergence for all three formulations is initially cubic, albeit

that after a certain mesh density the convergence declines for further mesh refinements for the

Mül-L and PMCHW formulation, eventually deteriorating to quadratic convergence. Only the

Mül-K formulation retains cubic convergence. This improved convergence may be elucidated

by considering the results for the equivalent current Jz. The corresponding surface divergence

of Mτ is discontinuous across corners, while Mτ remains continuous. Accordingly, only with

the Mül-K formulation, the singularities of the interior and exterior integral operator parts that

produce these discontinuities cancel each other. In particular, this is the case for KHJ , the vector
potential of LEJ , and the scalar potential of LHM . Together, these cancellations supply the

improvement of one order in the convergence with the Mül-K formulation. The kernels of the

integral operators containing the discontinuity of Jz are more smooth due to the cancellation of

their singular parts. This improved smoothness allows for a less strict differentiability of the

currents, and thus increases the solution space, which leads to the increased convergence rate.

With regard to the Mül-L formulation, the singularities of the vector potential of LEJ do not
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Figure 5.26: The normalized error versus the number of unknowns, points/λ2, for the hexagon

(left) and cross (right) shape. In the top, middle, and bottom figures, we have εr;2 = 16 with

μr;2 = 1, μr;2 = 16 with εr;2 = 1, and μr;2 = εr;2 = 4, respectively.
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cancel each other, which gives rise to the observed drop in the convergence rate. Since none of

these cancellations occur in the PMCHW formulation, its convergence is affected even stronger.

Yet, the initial cubic convergence with PMCHW may be attributed to the fact that the overall

error in the equivalent currents is not yet dominated by the contribution from the discontinuities

at the corners. Since the K operators appear to control the behavior of the PMCHW formulation,

the initial cubic convergence may also be attributed to a less prominent role of the singularity

cancellation in the kernel of KHJ , since otherwise the convergence would remain quadratic.

With respect to the μ-contrast shown in the second row of Figure 5.26, both the order of conver-

gence and the magnitude of the error in the scattered field obtained with the three formulations

is comparable. Apart from a shift in magnitude, the results obtained with the hexagon and cross

shapes are clearly similar. Now that Jz and the surface divergence ofMτ may also become sin-

gular across corners, the error convergence rate even drops to O(N−1.6). Nevertheless, like the

PMCHW formulation, the Mül-L and the Mül-K eventually yield quadratic convergence for fur-

ther mesh refinement. Note that the Mül-K formulation is more closely related to the PMCHW

formulation as there is no cancellation of the singularity associated with the scalar potential of

LHM for a μ-contrast. Since the required operator combination differs for a cancellation of the

singularities involving KHJ and the scalar potential of LHM , it is unfortunately not possible to
construct an integral formulation for a μ-contrast that has the same singularity cancellations as

the Mül-K formulation for the ε-contrast. Again, a strong convergence (quartic) is observed for

a coarse discretization, where the overall error is then not yet determined by the contributions

from the corners. Note that similar plots are expected for the TE case, since the results of the ε

and μ-contrast are interchangeable.

Finally, for a combined ε- and μ-contrast, treated in the bottom row of Figure 5.26, the integral

formulations involve the composite properties of the separate ε and μ-contrasts. For instance, the

Mül-K formulation yields cubic error convergence up to about 10 points/λ2, which is associated

with the properties of an ε-contrast. With more sampling points per wavelength, the order of

convergence is bounded by the behavior of the inferior performance involving the μ-contrast.

To demonstrate the impact of domain scaling of the dielectric circle on the order of convergence

of the scattered field, we consider the normalized error of the scattered field for an ε-contrast in

Figure 5.27. Similar to a perfect conductor, both the PMCHW and the original Mül-L formula-

tion improve by one order, which yields cubic convergence. The proposed Mül-K formulation

even yields quartic convergence, viz., one order is gained by the domain scaling, and one order

by the cancellation of the singularities involving the operator parts with a discontinuous kernel
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associated with a Jz discontinuity at corners. In this case, we refer to the corners created by the

application of a flat-facetted, rather than a curved mesh.
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Figure 5.27: The normalized error of the field versus the number of unknowns in points/λ2 for

the circle with and without domain scaling for εr;2 = 16 and μr;2 = 1.

Next, let us consider the solvability of the integral formulations in terms of the condition number

of the MoM-matrix subject to the mesh density. On that account, in Figure 5.28 the condition

number for the Mül-L (left) and PMCHW (right) formulations is shown for the circle, hexagon

and cross shapes with εr;2 = μr;2 = 4. The solvability of the Mül-L formulation appears to be

independent of the applied mesh density, which makes it ideal for the use of iterative solvers

involving dense meshes. This observation also corrobates that the low-frequency breakdown is

indeed naturally avoided with the Mül-L formulation. Moreover, the magnitude of the condition

number, determined by the K operators, increases with an increasing non-smoothness of the

boundary.

With regard to the PMCHW formulation, the condition number is virtually the same for all three

boundary shapes and increases quadratically once the mesh density exceeds 10 points/λ2; this

behavior may be attributed to the L operators. Note that this is one order larger than for the MoM-

matrices based on a single L operator involving the scattering from perfect conductors. Since

the condition number for the PMCHW formulation is inversely proportional to μ, the condition

number for an ε or μ-contrast only, are four times larger or smaller for the same refractive index,

respectively. In the range where the condition numbers for the object shapes are different, the

condition number is determined by the K operators, and is more or less insensitive to the applied

mesh density. Again, the magnitude thus depends on the non-smoothness of the boundary shape

at hand. With reference to the dependence of the condition number on the medium properties
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Figure 5.28: The condition number as a function of the number of unknowns in points/λ2 for

the scattering from the circle, hexagon and cross with εr;2 = μr;2 = 4. On the left and right the

Mül-L and PMCHW formulations.

of the scatterer object, depicted in Figure 5.22, we observed that the condition number resulting

from a K operator depends on the interior field distribution. Spikes in the condition number

occurred at cavity modes. In conclusion, the point where L start to determine the condition

number depends primarily on the the smoothness of the boundary, and the presence of cavity

modes. In case of a cavity mode, or a less smooth boundary, L becomes dominant at more points

per wavelength.

The condition number for the Mül-K formulation is independent of the applied mesh density for

objects with an ε-contrast only. The condition number is then of the same order of magnitude as

with Mül-L. With regard to objects with a μ-contrast only, the condition number of Mül-K yields

a behaves similarly as that of PMCHW. In relation with the results above, we may infer that

the choice of the combination of integral operators has a negligible influence on the equivalent

currents, but it may improve the solvability of the resulting integral formulation and/or the order

of convergence of the corresponding scattered fields.

Up to this point, for the presented condition numbers for Müller’s formulation (Mül-L) we have

applied the additional scaling suggested in Section 5.3. To determine the improvement gained

over conventional scaling, we consider the condition numbers of the MoM-matrix in Tab. 5.1 for

the three object shapes involving conventional, Eq. (5.49), and additional scaling, Eq. (5.52). A

sufficiently dense mesh has been applied such that the shown values represent a converged (sta-

ble) condition number with respect to further mesh refinements. In case the impedances of the
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interior and exterior medium match, there is no improvement in the condition number as the ad-

ditional scaling vanishes, because both scalars, ςε and ςμ defined in Eq. (5.50) then have the same

magnitude, and the additionally scaled matrix elements involve a multiplication by ςε/ςμ or ςμ/ςε
only. In that case, the MoM-matrix is already optimally scaled with conventional scaling. In case

of only an ε or μ contrast, the improvement varies between a factor of three to four. Moreover,

as the dielectric contrast increases, a stronger reduction is observed in the condition number with

additional scaling, while for a vanishing contrast the effect of this scaling diminishes naturally.

In particular, if we omit the additional scaling and reconsider the dependence of the condition

number on the dielectric contrast in Figure 5.22, this leads to an increase of the condition number

by one order, i.e., proportional to μ2 and ε2 for a μ- and ε-contrast, respectively. The observed

saturation of the condition number for large dielectric contrasts is then lost. If the reduced con-

dition number remains relatively large, this may indicate the presence of a cavity mode. As it

happens, the operating frequency is near such a cavity-mode frequency for the cross shape for

all three cases. Otherwise, the presented condition numbers would have been be closer to those

of the hexagon.

circle hexagon cross

medium par. conv. add. conv. add. conv. add.

εr;2 = 16, μr;2 = 1 111 27 106 30 698 215

εr;2 = 1, μr;2 = 16 52 18 72 21 328 144

εr;2 = μr;2 = 4 39 39 107 107 229 229

Table 5.1: The (stable) condition number of the Mül-L MoM-matrix involving conventional

(conv.) and additional (add.) scaling for different object shapes and medium parameters.

In our examination of Figure 5.22, we investigated the dependence on the refractive index n2 of

the scattered field from the domain scaled circle. Because the Mül-L formulation approaches the

trivial solution for a vanishing dielectric contrast, it produced better results for small contrasts

than the PMCHW formulation. However, it is uncertain whether a better performance can also

be achieved for objects involving non-smooth boundaries. Consequently, we consider the nor-

malized error in the scattered field from a cross, depicted in Figure 5.29 for the Mül-L, PMCHW

and Mül-K formulations, with an ε-contrast on the left and a μ-contrast on the right. The applied

number of mesh elements is N = 96, which amounts to 26 points/λ1. At each sample point we

used a mesh which is four times more dense as a reference solution. In comparison with the

results for the circle as depicted in Figure 5.22, we observe a similar trend, albeit that for the

cross shape the overall magnitude is larger and the improvement of Mül-L over PMCHW for
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small contrasts seems less pronounced. Both effects may be attributed to the non-smoothness of

the boundary. Hence, the advantage of the Mül-L formulation for small contrasts is more distinct

for the scattering from objects with a smooth boundary. Observe that the reduced gain in per-

formance may also be partly attributed to a more dense mesh, i.e., although we also have taken

N = 96 for the circle, which amounted to 34 points/λ1, the effect of doubling the mesh density

is that the difference between the Mül-L and PMCHW formulation increases with approximately

a factor of two. Notice also that the Mül-K and Mül-L results match for small contrasts. This is

not strange as the Mül-K formulation also converges towards the trivial solution for a vanishing

contrast.
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Figure 5.29: The normalized error in the field as a function of the refractive index n2 of a cross

with the Mül-L, the PMCHW, and the the Mül-K formulation. On the left and right, μr;2 = 1 and

εr;2 = 1, respectively.

Next, we would like to obtain a lower bound for the convergence rate and an estimation of the

minimum mesh density required to guarantee a certain accuracy of the scattered field irrespec-

tive of the chosen integral formulation, the presence of cavity modes, and the type of dielectric

contrast. In Figure 5.30, the order of convergence is shown for the Mül-L, the PMCHW, and

the the Mül-K formulation involving the cross shape. On the left we have shown an ε-contrast

(εr;2 = 18) and on the right a μ-contrast (μr;2 = 16.6). For these medium parameters and oper-

ating frequency, the cross has a cavity mode. In accordance with Figure 5.29, the presence of a

cavity mode adversely affects the convergence and hence provides a lower bound for the over-

all performance. Most importantly we note that for successive mesh refinements the Mül-L and

PMCHW formulations yield a comparable performance, dropping to quadratic convergence for

both the ε- and μ-contrasts. This is also the case with Mül-K involving the μ-contrast. However,
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irrespective of the influence of the cavity mode, the convergence remains cubic for the ε-contrast

due to the cancellation of all operator terms. The difference of one order in the convergence

rate between Mül-K and Mül-L may solely be attributed to the singularity cancellation of the

vector potential of LEJ in Mül-K. Hence, if the singular terms of not all of the integral oper-
ators involving a discontinuous kernel cancel, the cancellation of those singularities only leads

to a partial improvement, as the convergence is eventually dominated by the presence of the

remaining one(s).
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Figure 5.30: The normalized error in the field as a function of the number of unknowns in

points/λ2 for the Mül-L, the PMCHW, and the the Mül-K formulation for the cross involving a

cavity mode. On the left, μr;2 = 1, and εr;2 = 18, and on the right, μr;2 = 16.6, and εr;2 = 1.

The sudden strong decline in the convergence of the PMCHW formulation for the ε-contrast cor-

responds to the point where the L operators start to determine the condition number as displayed

in Figure 5.28. Before that point, quartic convergence is observed. Since the field fluctuations

along the boundary are stronger in case of a cavity mode, the error contribution from the discon-

tinuity of the current at the corners becomes dominant at a relatively denser mesh size, which

prolongs the range of quartic convergence. Because a μ-contrast implies a discontinuous as well

as a singular current behavior at the corners, quartic convergence is never attained. For the μ-

contrast, the Mül-L formulation produces better results than the other two formulations across a

definite range. This may be attributed to the cancellation of the singularity involving the scalar

potential of LHM , as this only occurs with the traditional Mül-L formulation for the μ-contrast.
Nevertheless, at least 20 points/λ2 are required to guarantee 1% accuracy for the scattered field,

while the overall convergence is quadratic. Note that in relation to Figure 5.26, the required

mesh density may be less stringent for objects involving smoother boundaries.
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Figure 5.31: The normalized error in the field as a function of the number of unknowns in

points/λ2 for the Mül-L, the PMCHW, and the the Mül-K formulation for the cross with the

midpoint rule applied to the test and expansion integrals. On the left, μr;2 = 1, and εr;2 = 16,

and on the right, μr;2 = 16, and εr;2 = 1.

To investigate the impact of the quadrature error on the integral formulations, we employ the

coarse midpoint rule for the test and expansion integral involving the MoM-matrix and the exci-

tation vector. Analytical solutions remain being used for the singular-kernel parts, as well as the

self term. The integral representation that produces the scattered field from the resulting equiva-

lent current is still determined by means of adaptive integrals. In Figure 5.31, the midpoint rule

is applied to the Mül-L, the PMCHW, and the the Mül-K formulations for the scattering from

the cross. All three formulations yield quadratic convergence, since the quadrature error is the

limiting factor. The same reduction in the convergence is observed for the domain-scaled circle.

To allow a comparison with previous results, the same axes as in Figure 5.26 have been used.

Consequently, instead of 6 points/λ2 for 1% accuracy with adaptive quadrature rules, we need

at least 40 points/λ2 with the midpoint rule to obtain the same accuracy. Because the singular

operator parts, for which analytical solutions are used, play a dominant role in the PMCHW, that

formulation produces slightly better results.
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Chapter 6

Demonstration of LEGO with EBG

structures

The principle of linear embedding via Green’s operators (LEGO) has been introduced in terms

of a transparent operator formalism in Chapter 4. The general definition of the pertaining oper-

ators applies to both Schelkunoff’s and Love’s equivalence principles (SEP and LEP). We have

extended the LEGO approach to optimize large structures efficiently. After the discretization of

the operators, we have provided an efficient numerical scheme of LEGO specialized to either

SEP or LEP and have compared the computational costs with direct solvers. At this stage, a

practical demonstration of the LEGO approach remains. We shall concentrate on the validation,

the possible applications and the accuracy of the method.

In this chapter, we apply the LEGO approach to model electromagnetic bandgap (EBG) struc-

tures [82]. The strong field interactions that occur between the unit cells of EBG structures render

such applications ideal to validate and demonstrate the potential of the LEGO approach. In ad-

dition, for EBG structures the elementary blocks are often reusable, which makes LEGO very

efficient as a modeling technique. The results are of interest for further research on application

of EBG structures.
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6.1 Introduction

The first numerical validation of the LEGO concept is presented in Section 6.2, where two el-

ementary building blocks with a common boundary part are combined via a straightforward

low-order discretization. Next, the wide applicability of LEGO as a design tool for large finite

structures is demonstrated in Section 6.3. In particular, we consider the normalized radiation

pattern of sources placed above large finite EBG structures of various sizes. We also consider

an EBG waveguide example. We will point out the implicit advantages of a scattering oper-

ator in combination with the modular approach of LEGO. Further, in LEGO we comment on

the computational costs and the efficiency by which interior fields can be reproduced. To illus-

trate local structure optimization features of LEGO, the method is applied to two EBG examples

in Section 6.4. In particular, the optimization is employed for local tuning of the transmission

properties at the Y-junction of a power splitter and a mode splitter in EBG waveguide technology.

In Section 6.5, the accuracy of the scattered field that can be attained with the LEGO approach

is quantified in terms of the mesh density on the boundary of a composite scattering domain. In

particular, we compare SEP with LEP and evaluate the different discretization approaches, but

also the use of an inverse propagator versus an inverse Gram matrix. The consequences of the

direct transfer of equivalent currents for transfer operators with common boundary parts is con-

sidered. More general aspects are treated as well, e.g., the dependence on the building sequence,

the choice of domain shape and the loss of accuracy due to the accumulation of errors associ-

ated with a sequence of embedding steps. Further, we investigate whether the CFIE sufficiently

suppresses the interior resonance effect that affects SEP for LEGO. Where possible, results are

compared with the results from of integral equations for 2D perfectly conducting or dielectric

objects in Chapter 5.

Often 2D EBG materials consist of circular cylinders. So far, we have employed analytic so-

lutions for the scattering of a single cylinder required for the construction of the elementary

scattering operators. In Section 6.6, the scattering object that is enclosed by the elementary scat-

tering domain is not a canonical one. There, a boundary integral equation will be applied. In

addition, we will consider scattering objects that are continuous across domain boundaries. In

Section 6.7, we use LEGO to determine the band structure of EBG materials. For the solution

of the associated eigenvalue problem, two alternative algorithms, with unique advantages over

existing methods, will be introduced.
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In Section 4.2 we have illustrated that a scattering object, but also the enclosing domain, may be

of arbitrary shape. To establish a framework for the analysis of LEGO for 2D EBG structures,

the shape of an elementary scattering domain is restricted to the three shown in Figure 6.1, viz.,

a hexagonal, a rectangular or a rhombic shape. Further, the coordinate system depicted on the

right in Figure 6.1 is employed throughout. The z-axis points in the longitudinal direction.

x

zy

(a) hexagonal (b) rectangular (c) rhombic

Figure 6.1: Three different shapes for the elementary scattering domains that are chosen to

demonstrate the LEGO approach in the field of 2D EBG structures. On the right-hand side

the coordinate system is depicted that will be used throughout this chapter.

6.2 Numerical validation

To test the numerical behavior of the embedding approach, let us consider two hexagonal unit

cells of a 2D triangular EBG with periodicity a, consisting of circular air cylinders inside a

dielectric background with relative permittivity εr = 11.4. To let an EBG structure consisting of

such cylinders operate within the full bandgap for both polarizations, the frequency is normalized

such that fa/c = 0.48, and the radius of the cylinders is set to r/a = 0.475. For reference, we

employ the PMCHW boundary integral equation with 1250 unknowns on each cylinder boundary

for both the equivalent electric and magnetic surface currents (∧∧-discretization cf. Section 5.3).
The corresponding total electric-field strength is shown on the left in Figure 6.2. An electric line

source (TM polarization), marked by a small dot, generates the incident field.

We first consider embedding based on Schelkunoff’s equivalence principle (SEP). The domain

shapes of the two scattering domains have been chosen to be hexagonal, as illustrated in Fig-

ure 6.1a. For EBG structures with cylinders closely packed in a triangular array, the cylinders can

not be contained in periodic rectangular or rhombic scattering domains as depicted in Figure 6.1,

and hence hexagonal contour shapes are appropriate. To distinguish between the performance
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of the LEGO and the numerical approach for the evaluation of the scattered fields inside the

domains, we have employed analytical solutions for the fields scattered by a single cylinder, as

described in Appendix B.1. In this way, additional errors that originate from the construction of

the initial scattering operator of the individual scattering domains are avoided. Upon completing

the embedding scheme, the total field in the entire configuration follows from Eq. (4.40), i.e., the

composite scattering operator directly accounts for the exterior scattered field, while the interior

field operators transform the field response of a single cylinder into the complete interior field of

each hexagonal subdomain. A delta test function and a piecewise constant expansion function

are used to illustrate that a straightforward low-order ↑ �-discretization already provides good
results. Moreover, the regular part of the expansion integrals is evaluated using the lowest-order

quadrature rule, i.e., the midpoint rule.
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Figure 6.2: The magnitude of the electric field on a logarithmic scale (dB) for the scattering from

two circular cylinders with the PMCHW method (left) versus the embedding approach (right).

The dot marks the position of the electric line source.

On the right in Figure 6.2 we have shown the electric field computed with the LEGO approach.

The hexagonal domain contours are shown. The equivalent electric current distributions on the

boundaries of the scattering domains are discretized using 40 points per wavelength. The com-

mon boundary has been removed in the combined scattering operator of the composite structure.

Both plots are scaled in dB to capture possible deviations at different amplitude scales. There

is hardly any visual difference between the field plots, which indicates that the LEGO approach

performs well. In particular, the field across the domain boundaries remains continuous. For a

quantification of the error in the field, we refer to Section 6.5.
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6.3 The construction of large scattering operators

Below we illustrate the wide applicability of the embedding approach as a design tool for large

finite EBG structures. Each EBG structure that is considered follows from one elementary do-

main through successive combinations and duplications along properly chosen translation vec-

tors. Common boundaries are removed in this process. In only a few steps, structures are ob-

tained that are already large, i.e., after n embedding steps the composite structure may consist of

up to 2n elementary domains.

In this section we restrict ourselves to unit cells containing circular cylinders. A single unit cell of

an EBG structure is chosen as the elementary scattering domain. Again, the scattering operator

of the elementary domain is computed analytically, avoiding computational errors. Once the

scattering operator of the combined domains and the interior field operator of the subdomains of

interest are determined through successive embedding steps, the field response of the composite

structure may be investigated in its dependence on the excitation, since the incident field may

be arbitrary. To demonstrate the use of LEGO for antenna applications, we have placed electric

line sources above finite 2D EBG structures of various widths to characterize the effect of the

EBG size and the source location on the radiation patterns. Here, EBG structures act as a support

structure for the antenna and enhance its radiation pattern.

We define the normalized radiation pattern, ℘(φ), as the power radiated per unit angle φ by an

electric line source in the presence of a scatterer, normalized to the power radiated per unit an-

gle by that electric line source in the absence of the scatterer. In Appendix C.2, the normalized

radiation pattern resulting from LEGO with SEP is presented in closed form. An EBG with a

triangular arrangement of dielectric cylinders (εr = 11.4) in air is employed as a basis. The

cylinders are circular with radius r = 0.15a and periodicity a. This corresponding EBG meta-

material exhibits a large TM gap around fa/c = 0.45. The line source position is varied only

along the y-direction in between the two cylinders in the middle of the EBG structure (see Fig-

ure 6.5). Here, the rhombic computational domains illustrated in Figure 6.1c are used. We use

�� discretization, with 12 unknown current amplitudes along each edge, which amounts to 27

points per wavelength.

Since EBG structures are constructed that are relatively large in terms of the wavelength, a com-

bined field integral equation (CFIE) is applied to suppress unwanted interior resonances. For

now, the midpoint rule is used to evaluate the regular parts of the test and expansion integrals. In
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Section 5.5 it is established that for �� test and expansion functions, the EFIE is superior to the

MFIE as regards the accuracy of the pertaining scattered field. Hence, the EFIE should only be

supplemented with the MFIE to suppress unwanted interior resonances. Accordingly, the com-

bination constant α in the CFIE formulation (Eq. (3.20)) is set to α = 0.99 to favor the EFIE.

For α = 0.2, the condition number of the MoM matrix would be much better. For α = 0.99,

the condition number is still sufficiently low for the use of the LU-factorization for the inverse

propagators. A robust way of avoiding interior resonances problems in the LEGO approach with

SEP is investigated in Section 6.5.2.

Simulations have indicated no further improvement in the forward direction of the normalized

radiation pattern, ℘(0), for EBG layers of more than four periods thick. Hence, a thickness of four

periods is maintained throughout and only the width of the EBG structure is varied. The locations

of the line source above the EBG structure, at which ℘(0) has a maximum or a minimum, turn

out to be independent of the width. Therefore, we may select a set of fixed locations where the

local maxima occur, and consider the envelope of these maxima.

On the left in Figure 6.3, we show the ℘(0) with its envelope for an EBG structure of 16 peri-

ods wide. The dotted and dash-dotted vertical lines represent the locations where the forward

direction has a maximum and minimum, respectively. The first maximum appears at 0.22λ and

reoccurs every λ/2. The minima are offset by λ/4 with respect to the maxima. On the right

in Figure 6.3, we have shown the envelope of ℘(0) versus the position of the line source above

the top of the structure. The variations in the envelope of ℘(0) increase for higher source posi-

tions and smaller EBG structures, i.e., the source ‘sees’ more the edges for smaller structures.

Hence, the variations in the envelope may be attributed to the edge effect at the sides of the EBG

structure. For increasing width and fixed height, ℘(0) appears to converge to about 6 dB, except

very close to the EBG due to near-field effects. Accordingly, the EBG structure almost acts as a

perfectly conducting reflector.

In Figure 6.4, ℘(φ) is depicted for the local maximum and minimum in the forward direction for

the source positions that are closest to the EBG structure with 8 and 32 periods width. At the

minimum the beam is split in two. The back- and sideward radiation does not substantially differ

between a maximum and minimum. Increasing the width of the EBG structure reduces both the

backward and sideward radiation. It should be pointed out that the plots are not symmetric due to

the asymmetric nature of the finite size EBG structures under consideration (see also Figure 6.5

and Figure 6.6). For the 32 periods width, this edge effect virtually vanishes.
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Figure 6.3: The forward normalized radiation pattern, ℘(0), versus the normalized distance ZS/λ

of an electric line source above an EBG structure similar to the one in Figure 6.5 (four periods

thick). On the left, ℘(0) and its envelope are shown for an EBG structure that is 16 periods wide.

The dotted and dashed vertical lines indicate line source positions with local maxima and minima

in ℘(0), respectively. On the right, the envelope of ℘(0) for several EBG widths.
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Figure 6.4: The normalized radiation pattern, ℘(φ), with a maximum (left) and minimum (right)

in the forward direction as a function of φ for a line source above an EBG structure of 8 (dashed),

respectively 32 (solid) periods wide and 4 periods thick.



180 Demonstration of LEGO with EBG structures

In Figure 6.5 the total electric field is shown for the first line-source position above an EBG struc-

ture (32× 4) that produces a local minimum in ℘(0). Since the radius of the circular cylinders is

considerably here smaller than in Section 6.2, the rhombic shape is used for the elementary scat-

tering domain. For the figure at the top, we have used the midpoint quadrature rule. The dotted

lines in the composite scattering domain indicate the common contours that have been removed

in the embedding sequence. Accordingly, the combined scattering operator is defined only on the

outer (solid) contour. At the bottom the field plot is produced using adaptive quadrature rules for

the regular integral parts, with a relative accuracy set to 10−2. The location of the source position

above the EBG has been marked. Both plots are scaled in dB to facilitate a continuity check of

the field across the domain contours.

We observe that for strong field amplitudes above the EBG, there is hardly any visual differ-

ence between the two figures. On the other hand, at the back of the EBG structure, both field

plots clearly differ. These deviations may be attributed to the low-order midpoint quadrature rule

used for the figure at the top. The relative poor midpoint accuracy leads to field discontinuities

across the domain boundaries at the back of the EBG. However, it should be noted that the cor-

responding field amplitudes are at least 40dB lower than in the main beam. The increasing loss

of symmetry upon approaching the left or right sides of the EBG structure is due to the local

asymmetry of the EBG structure. With the adaptive quadrature rules at the bottom, the asymme-

tries are more confined to the corners of the EBG structure. This observation may indicate that

the additional asymmetry in the upper figure stems from the asymmetric building sequence in

the embedding scheme. The impact of the choice of building sequence and the accumulation of

errors will be further investigated in Section 6.5.3.

To validate the results, the simulations have been repeated using the rectangular elementary scat-

tering domain illustrated in Figure 6.1b. The results agree very well. The maximum deviation of

℘(0) is 0.1 dB, which amounts to a mere deviation of 1%. This maximum deviation occurs for

the largest structure (256 cylinders), probably due to the accumulation of errors accumulated in

the successive embedding steps.

In Figure 6.6 the magnitude of the electric field is depicted for the first maximum in ℘(0), sim-

ulated using rectangular elementary cells in Figure 6.1b. Adaptive quadratures have been used

in the LEGO approach to generate this plot. Refining the mesh density or changing the domain

shapes hardly results in any visible improvement in the logarithmic field plot, which may serve

as an endorsement for using adaptive quadrature rules. We observe that the field distributions for

maximum and minimum of ℘(0) are fairly similar at the back of the EBG structure. Some small
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Figure 6.5: The magnitude of the electric field on a logarithmic scale (dB) generated by an

electric line source above an EBG (32 × 4 periods). The position of the line source is such that

a local minimum is produced in ℘(0). Rhombic scattering domains have been used. The dotted

lines indicate removed common boundaries. For the top and the bottom, the midpoint rule and

an adaptive quadrature rule have been used, respectively.
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field discontinuities remain at the left and right edges of the EBG structure, especially at the

inward corners of the outer boundary. Similar discontinuities remained at the inward corners of

the rhombic domain shape at the bottom in Figure 6.5. This may be due to the sharp edges in the

domain boundary, although these discontinuities may also be attributed to the interior resonance

effect inherent to SEP (see Section 6.5.2).
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Figure 6.6: The magnitude of the electric field on a logarithmic scale (dB) generated by an

electric line source above an EBG (32 × 4 periods). The position of the line source is such that

a local maximum is produced for ℘(0). Rectangular scattering domains have been used. The

dotted lines indicate removed common boundaries.

The low computational advantages of the LEGO approach have been explained in Section 4.8.

However, the amount of computational improvement over a direct solver may vary subject to the

choice of domain shape. For instance, throughout the sequence of embedding steps, the size of

the outer boundary is significantly larger for the rhombic domain shape than for the rectangular

domain shape.

Furthermore, we would like to comment on the efficiency of the LEGO approach for the gener-

ation of the field plots in comparison with conventional direct solvers. With a boundary integral

equation as a direct solver, the field from the current distributions at the boundary interfaces of

all circular cylinders is computed for each point where the field is required. In case a high resolu-

tion is desired, this step may become rather time-consuming. In contrast, in the LEGO approach,

the field within the composite structure is obtained instantly. More specifically, from the interior
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field operators Qi3, where C3 denotes the outer contour, we obtain an equivalent current Q
cp
i for

each individual subdomain Di. These currents transform the known scattered field of the single

circular cylinder inside a subdomain into the proper complete field. The fast computation of the

interior field originates from the negligible computation time of the scattered field from a circular

cylinder (analytically) inside such a small subdomain in combination with the reusability of that

field in all subdomains. Despite that the field exterior to the composite structure is computed in

the same way as with the boundary integral, the ratio of the length of the outer contour of the

combined scattering domain and the circumferences of all circular cylinders may be considerably

smaller than one. In this particular example with small cylinders, the pertaining ratio already is

about 0.6, implying that in comparison, the exterior field is obtained 1.667 times faster via the

LEGO approach.

As an additional example we consider the EBG waveguide shown in Figure 6.7. Because the

propagation and field confinement within an EBG waveguide primarily relies on strong field

interactions between nearby scatterers, this is another good example to demonstrate the LEGO

concept. Again, we consider a triangular array of dielectric circular cylinders with r/a = 0.15

and εr = 11.4, embedded in air with fa/c = 0.45. Also, SEP(��)-discretization is used, with a
CFIE combination constant α = 0.99. A mere seven embedding steps were required to obtain the

field in the EBG structure depicted in Figure 6.7. The field in the EBGwaveguide is excited by an

electric line source at a position (marked) that is aligned with the waveguide axis. The waveguide

mode is nearly symmetric with respect to the waveguide axis and has an almost constant peak

amplitude, which indicates that the complex field interactions are properly accounted for by the

LEGO approach.

In the absence of proper tapers, there are strong impedance mismatches at the transitions between

the waveguide ends and the surrounding free-space. Further, the EBG structure seems to bend

the field around the structure. To improve the mode confinement even further, we could simply

reuse the obtained structure and add a row of unit cells on the top and bottom of the EBG

structure. For more complicated configurations, however, repeated optimization steps of the

structure may be required in a design process. This can already be achieved directly through

successive embedding of small domains with the large scattering operator. However, with an

additional step in the LEGO scheme, optimization processes can become significantly faster.

This will be demonstrated in Section 6.4.1.

Finally, we wish to point out that a certain building sequence produced strong field deviations.

With a slight shift in the operating frequency or a change in building sequence this problem
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Figure 6.7: The real part of the electric field in an EBG-waveguide with circular dielectric cylin-

ders in air. The position of the generating electric line source is marked by a cross. A hexagonal

shape is chosen for the elementary scattering domain. The dotted lines indicate common bound-

aries that have been removed in the embedding process.

can be solved. This seems to indicate an interior-resonance problem, even though a CFIE was

employed. This matter will be discussed further in Section 6.5.2. For Figure 6.7, a building

sequence has been selected by which this particular problem is avoided.

6.4 Local structure optimization

In Section 6.3, the composition of large scattering domains through successive embedding steps

and the convenient use of the pertaining scattering and interior field operators have been demon-

strated for two possible EBG applications. Because the field operators encompass all possible

excitations, the computation time and the required storage demand will grow considerably for

large structures, especially when the interior field operators of all subdomains are stored. How-

ever, both computation time and storage demands can be reduced significantly if the embedding

of subsequent domains is restricted to a designated domain of interest. This so-called optimiza-

tion stage has been described in Section 4.7 and is considered to be ideal to tune/optimize large

structures locally for design purposes. In addition, with the hybrid variety of LEGO introduced

in Section 4.9, the optimization stage may be integrated into existing design packages as an ad-

ditional tool. To demonstrate this optimization stage of LEGO, we present two design examples
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below. First, the scattering operator of the large composite scattering domain of interest is deter-

mined via a sequence of embedding steps. Subsequently, critical design parameters are tuned in

the optimization stage of LEGO.

6.4.1 EBG power splitter

First, we apply the embedding approach by considering a power splitter for a single-mode linear-

defect waveguide inside a large, finite EBG structure. The actual structure is superimposed

on the field plots in Figure 6.8 and Figure 6.9. A triangular arrangement of dielectric circular

cylinders (εr = 11.56) in air is employed here as a basis. The corresponding periodic EBG

structure exhibits a large TM (with respect to ẑ) bandgap about fa/c = 0.407 for r/a = 0.175.

Within the rectangular supporting structure of 17 by 17 cylinders, three linear defect waveguides

are created by omitting rows of cylinders. The waveguides are joined at a Y-junction through a

cavity consisting of a cylinder of arbitrary radius and permittivity surrounded by regular EBG

cylinders. In our example, the cavity is tuned to attain high transmission across the junction, as

suggested in [83] for bends.

Due to the relatively small cylinder radius, in comparison with the ones in Figure 6.2, the shape

of the computational domain is not restricted to a hexagonal one. To test the influence of the

chosen computational domain, we employ the rhombic shape illustrated in Figure 6.1 aligned

with the x-direction, as indicated in Figure 6.8. Schelkunoff’s equivalence principle is employed

in the embedding approach with��-discretization and 18 unknowns on each edge of the rhombic
domain. The EBG structure itself is symmetric with respect to the yz-plane. However, the

computational domains are not symmetric, and hence, all asymmetries which occur in the results

for a symmetric excitation can be attributed to the embedding approach.

In contrast with popular simulation packages, by which the optimum operating frequency can be

determined for a given structure, we are able to optimize the structure for a given operating fre-

quency. In particular, we apply embedding to analyze the effect of different cavity configurations

at the Y-junction of the power splitter.

The first stage towards structure optimization is the composition of the scattering operator, SLL,

of the large domain DL through repeated application of embedding for reusable scattering do-

mains, starting from a single scattering cylinder. The final outer contour CL for which SLL is

defined is indicated by solid lines in Figure 6.8. The dotted lines inDL indicate common contour
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Figure 6.8: The real part of the electric field of the hexapole mode with high transmission at

εr = 28 and r/a = 0.3767. The contour CL of the large domain DL has been highlighted, where

the dotted lines indicate removed common contour parts.
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Figure 6.9: The magnitude of the electric field in Figure 6.8 on a logarithmic scale (dB). The

contour CD of the designated domain DD has been highlighted, and the location of the radiating

electric line source has been marked by a cross.
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parts that have been removed at preceding embedding stages in the composition of DL. Because

DL is constructed from single unit cells containing circular cylinders, the initial scattering oper-

ator may still be computed analytically. Although the first stage is very time-consuming, in the

order of hours, it is performed only once. This, in contrast with the repeated full recomputations

of the entire structure for each set of parameter values that is common to direct solution methods.

In the initial step of the optimization stage, we assign a relatively small designated domain DD,

which contains the source and the region where the structure may be varied, as well as the

domains where the field values are to be optimized. In the current configuration, this includes the

cells containing the defect cylinder inside the cavity, the source in the left waveguide branch, and

cells in each of the two branches where the transmitted power is monitored. The corresponding

contour CD is indicated by solid lines in Figure 6.9. On CD, the reduced scattering operator, SDD,

which describes the scattering response of the large environment of the small domain DD, is

obtained from SLL through Eq. (4.57).

The subsequent optimization stage involves the repeated application of embedding for a variable

r/a and εr of the defect cylinder with the large domain DL. Here, the unit cell that contains the

defect cylinder inside the cavity is taken as the embedding domainDE. Because each embedding

step involves the scattering operator SDD, instead of SLL, such an embedding step takes relatively

little time, in the order of seconds.

In Figure 6.10, the resonant modes of the cavity are shown as a function of the filling ratio

r/a and the relative permittivity εr of the defect cylinder. These modes represent local maxima

and minima in the power transmitted through the cavity, indicated by solid and dashed lines,

respectively. An electric line source that produces the incident field is positioned in the left

waveguide branch in the horizontal symmetry plane of the power splitter. Hence, only even

cavity modes are excited with respect to the symmetry plane. The first monopole mode is not

shown, because it occurs for a (nearly) unloaded cavity. The application of scattering operators

also allows us to vary the source position for each cavity configuration in Figure 6.10 without

additional costs. Since the optimum remains fairly stable throughout, we have chosen to fix the

source position.

In Figure 6.11, we have presented a measure of the transmission in terms of the normal compo-

nent Poynting vector at the center of the upper waveguide branch at εr = 28. With the exception

of the first monopole, the local maxima and minima transmission regions appear to be very nar-

row. The corresponding electric field distributions of the resonant states inside the cavity are
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Figure 6.10: The resonant cavity modes as a function of εr and the radius of the defect cylinder.

Solid and dashed lines denote local maxima and minima in the transmitted power, respectively.

o : monopole, + : dipole, � : quadrupole, and * : hexapole.
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Figure 6.11: The Poynting vector normal to the cross section of the upper waveguide branch as

a function of the defect cylinder radius r/a for εr = 28 excited by an electric line source of 1A.

The markers indicate the cavity modes of Figure 6.10.
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shown in Figure 6.12. Each maximum, at a dipole or hexapole mode, appears to have an asym-

metric counterpart nearby that produces a minimum. This is caused by the asymmetry of the

cavity with waveguide branches in the vertical plane (the xz-plane in Figure 6.1 with respect to

the center of the cavity) due to the attached waveguide branches. This phenomenon would not be

observed if the cavity was placed in an otherwise perfect crystal, which is a common assumption

in the analysis of these structures. As a consequence, the vertical asymmetric modes reoccur at

nearly the same cavity configuration.
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Figure 6.12: From left to right and top to bottom the real part of the electric field of each of the

resonant cavity modes indicated in Figure 6.11, at εr = 28 for increasing r/a with the connected

waveguide branches included.

The total electric field in the entire structure for the hexapole mode with a local maximum is

depicted in Figure 6.8. Despite the vertical asymmetry of the chosen computational domains

and building sequence, the obtained field distribution turns out to be completely symmetric.

To capture possible deviations at different amplitudes, the same field distribution is shown in

Figure 6.9 on a logarithmic 90-dB scale. The symmetry of the field at lower amplitudes deeper

within the supporting EBG remains intact. At the right-hand side of the structure some minor

anomalies are just visible, but given the amplitude scale and the modest discretization, the results

may be considered very accurate.
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6.4.2 EBG mode splitter

Now that we have demonstrated the optimization stage of large scattering domains on the basis of

an EBG power splitter, let us consider a more complicated example with potentially interesting

applications. In particular, we employ the LEGO approach to construct and tune an EBG mode

splitter. As the point of departure, we will consider the simple design of the power splitter in

Section 6.4.1. A straightforward extension towards a mode splitter is readily achieved if the

input waveguide supports both polarizations and the output waveguides supports either the TE

or TM polarization. The optimization stage of the LEGO approach is ideally suited to tune

the transition at the waveguide junction with respect to maximum transmission. This will be

demonstrated below.

To design a mode splitter, the basic EBG structure should support a full bandgap, i.e., an over-

lapping bandgap for both polarizations. Therefore, we employ a triangular arrangement of air

holes in a dielectric material with relative permittivity εr = 11.4 and filling ratio r/a = 0.45

with radius r and periodicity a. The corresponding EBG structure exhibits a full bandgap for

normalized frequencies of about 0.41 ≤ fa/c ≤ 0.45. Similar to the design of the power splitter

in Section 6.4.1, we consider three EBG waveguides that are joined at a Y-junction. The ac-

tual structure is superimposed on the field plots in Figure 6.13. Each linear defect waveguide is

created by changing the radii of a row of cylinders. The modes that the waveguide can support

depend on the defect radius that is selected. In particular, for a defect radius r/a = 0.33, the in-

put waveguide supports modes of both polarizations in the bandgap. Within the frequency region

of about 0.430 ≤ fa/c ≤ 0.434, one output waveguide with a defect radius r/a = 0.2365 sup-

ports only TE modes (with respect to ẑ). For a defect radius of r/a = 0.1925, the other output

waveguide supports only TM modes (with respect to ẑ) in this frequency region. Consequently,

the normalized frequency is set to fa/c = 0.432. These parameters have been taken from [84].

To tune the transmission at the Y-junction, we apply embedding based on SEP(��). The singular
part of the test and expansion integrals is computed analytically, whereas the midpoint quadrature

rule is used for the regular part. Further, to construct the elementary scattering domains, analytic

expressions are employed to describe the scattering by a single circular cylinder. Due to the

large filling ratio of the unit cell of the basis EBG structure, only the hexagonal domain shown in

Figure 6.1a can be used. The mesh density is 18 points per edge, which amounts to 21 points per

wavelength. Note that the implementation of LEGO based on either SEP or LEP for the TE-case

readily follows by duality. In fact, this can be achieved by starting from a configuration in which

εr and μr are interchanged.
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The first stage towards structure optimization is the composition of the scattering operator, SLL,

of the large domain DL through repeated application of embedding for reusable scattering do-

mains, starting from a single scattering cylinder. This step is time-consuming, but it is performed

only once. The final outer contour CL for which SLL is determined is indicated by solid lines

in the lower figure of Figure 6.13. Common boundary parts have been removed at preceding

embedding stages in the composition of DL.

In the initial step of the optimization stage, we assign a relatively small designated domain DD,

which contains the source and the region where the structure may be varied, as well as the

domains where the field values are to be optimized. In the current configuration, this includes

the cells containing the defect cylinder at the Y-junction, the line source in the lower waveguide

branch, and a cell at each end of the other two branches where the transmitted power is monitored.

The corresponding contour CD is indicated by solid lines in the upper figure of Figure 6.13. On

CD, the reduced scattering operator, SDD, which describes the scattering response of the large

environment of the small domain DD, is obtained from SLL through Eq. (4.57).

The subsequent optimization stage involves the repeated application of embedding for a variable

filling ratio r/a of the defect cylinder with the large domain DL. Here, the unit cell that contains

the defect cylinder inside at the Y-junction is taken as the embedding domain DE. Because each

embedding step involves the scattering operator SDD, instead of SLL, such an embedding step

takes very little time. More specifically, the filling ratio is varied for 0 ≤ r/a < 0.5 in 500

steps. Because the maximum transmission for each radius may require a different excitation,

the transmission is evaluated for 150 source positions for each radius. The computation time

associated with each radius is in the order of a few seconds. Since the introduction of a cavity

at the waveguide junctions to improve the transmission for the power splitter in Section 6.4.1

has shown that frequency bands of operation are narrow, the cavity is omitted here to investigate

whether the transmission band broadens.

The results of the optimization stage are shown in Figure 6.14. The transmitted power in the left

(TM) and right (TE) waveguide branches is plotted as a function of the defect cylinder radius r/a

in terms of the Poynting vector at the center of and normal to the cross section of the waveguides.

On the left an electric line source of strength 1 A is used to generate a TM wave and on the

right a notional magnetic line source of 1 V is used to generate a TE wave. For each value of

r/a, the source position is chosen such that maximum depolarization occurs. This causes the

discontinuities in the curves. The strongest mode depolarization occurs for r/a = 0. Around

r/a = 0.22 there is also a local optimum for both polarizations, however, with significantly less
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Figure 6.13: On the top, the TM-case with the electric field Ez generated by an electric line

source. The boundary of the designated domain is indicated. In the bottom figure, the TE-case

with the magnetic field Hz generated by a magnetic line source. The boundary of the large

scattering domain is indicated. The position of the line sources has been marked. The left and

right branch are associated with only a TM- and TE-mode, respectively. At the junction, r/a = 0.
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transmitted power. For these cases, the introduction of a resonance cavity might have facilitated

in a better mode transition at the Y-junction with respect to the transmission.
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Figure 6.14: The Poynting vector normal to the cross section of the left (TM) and right (TE)

waveguide branches as a function of the defect cylinder radius r/a. On the left an electric line

source of strength 1 A generates a TM wave, and on the right a notional magnetic line source of

strength 1 V generates a TE wave. For each value of r/a, the source position is chosen such that

maximum depolarization occurs.

In Figure 6.13, the field plots of the mode splitter are shown for a filling factor r/a = 0. On

the top, the TM case is presented with an electric field E = Ezẑ generated by an electric line

source. In the bottom figure, the TE-case is depicted with a magnetic field H = Hzẑ generated

by a magnetic line source. The position of the line sources has been marked. The field plots

demonstrate the functionality of the EBG mode splitter. The TE-bandgap is much broader than

the TM-bandgap [85, p. 125], which results in a stronger confinement for the TE mode. The

stronger confinement amounts to a narrower field distribution of the TE mode. In addition, the

suppression of TE modes in the TM waveguide and vice versa is weaker than the confinement

from the surrounding basis EBG structure. Inspecting the waveguide modes reveals that there is

a strong mode mismatch at the transition of each waveguide branch with the background medium

similar to the waveguide mode in Figure 6.7. These mode mismatches reduce the performance

of the splitter and hampered the optimization of the waveguide-junction. Hence, a first step in

the design of integrated technology through EBG-waveguides would be the design of a transition

into conventional technologies. The ability to position the feed inside an air cylinder of the input

waveguide may be an advantage in this matter.
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6.5 Numerical Comparison

Now that the principles underlying the LEGO approach have been explained and demonstrated,

let us quantify the accuracy with which the scattered field can be obtained. The accuracy is con-

sidered in terms of the mesh density in the discretization of the domain boundaries. In addition

to the magnitude of the accuracy, the rate of improvement with subsequent mesh refinement is

of interest. The accuracy of the scattered field is investigated for 2D configurations. In partic-

ular, the framework of the analysis is relevant to EBG applications. For details concerning the

implementation of LEGO for 3D scattering configurations, we refer to Section 7.6.

There are various aspects that may affect the accuracy of the LEGO approach. For instance, there

is the choice of equivalence principle, i.e., either Love’s or Schelkunoff’s equivalence principle.

Moreover, LEP can be employed either with inverse propagator or inverse Gram matrices. The

choice of the test and expansion functions is evaluated by considering both piecewise constant

and piecewise linear functions. If common boundary parts occur in the embedding process,

current amplitudes may be transferred directly, for which two methods have been introduced in

Section 4.5. More general aspects are considered as well, e.g., the dependence on the building

sequence and the choice of domain shape, but also the error accumulation associated with a

sequence of embedding steps. Finally, we investigate whether a degradation of the accuracy

due to the interior resonance effect, which may occur if a combination of SEP and the EFIE is

employed, can be avoided with embedding by application of the CFIE.

6.5.1 Love’s versus Schelkunoff’s equivalence principle

Below, the application of Love’s and Schelkunoff’s equivalence principle in the LEGO approach

is investigated with respect to the scattered field for 2D EBG applications. For now, we restrict

ourselves to the dependence on the choice of discretization, the mesh density and the shape of the

scattering domains. Other properties follow in later sections. Further, the use of Gram matrices

is compared with conventional inverse propagators. In addition, the direct transfer of current

amplitudes is investigated. Finally, we consider the dependence of the various implementations

of LEGO on the quadrature error. Where possible, the results are related to those of the integral

equations used for the scattering from perfectly conducting and dielectric objects in Sections 5.5

and 5.8, respectively.
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Before we proceed with the actual comparison between embedding based on SEP and LEP, let

us first elucidate the framework in which the analysis is carried out. In particular we employ

the basis configuration depicted in Figure 6.15. Four dielectric circular cylinders in a triangular

array with periodicity a are considered. The filling ratio is r/a = 0.175 with radius r. The

relative permittivity of the circular cylinders is εr = 11.56. The operating frequency is set to

fa/c = 0.4, which corresponds with the center frequency of the bandgap in case of an infinite

array. To investigate the dependence on the chosen scattering domain shape, the results from the

use of a hexagonal and rhombic shape for the elementary scattering domains will be compared.

The composite structures shown in the figure can be constructed in two embedding steps, i.e.,

after first embedding two elementary scattering domains, the pertaining combined domain is

used as the elementary ones in the second embedding step. Wherever appropriate, the building

sequence is indicated by the dashed line. In this way, both for the hexagon and rhombic domain

shapes, both embedding steps involve common boundaries.

ρS

Co

ρS

Co

(a) hexagonal (b) rhombic

Figure 6.15: The composite scattering configuration used to evaluate the LEGO approach with

hexagonal and rhombic elementary scattering domains. Dotted lines represent common bound-

aries that are removed in the embedding process. An electric line source at ρS generates the

incident field. The pertaining scattered field is evaluated on the observation contour Co. The

dashed line indicates the building sequence.

To evaluate the performance of the LEGO approach, analytical solutions are employed for the

fields scattered by a single circular cylinder that are used to construct the elementary scattering

domains. Further, the scattered fields are evaluated on an observation contour, Co, as indicated in

Figure 6.15. Each side of the observation contour is positioned one period away from the center

of the closest cylinder and has 250 sampling points. An electric line source (TM polarization)

at ρS in between the top two cylinders generates the incident field. The normalized error least
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squares defined by Eq. (5.80) is employed as an error criterion for the scattered field components

tangential to Co. As a reference solution, the PMCHW integral formulation for multiple dielectric

objects is employed, with a total of 8000 unknowns in the expansion of the electric and magnetic

equivalent currents. With reference to Figure 5.27, the corresponding mesh density amounts to a

normalized error of about 10−8 in the range O(N−8).

For LEGO based on SEP with only electric equivalent currents we consider both ��- and ∧∧-
discretization. A CFIE with combination constant α, as defined in Eq. (3.20), is employed to

calculate the field propagators for the transfer operators. Recall that α = 0 and α = 1 amounts to

pure MFIE and EFIE implementations, respectively. With ��-discretization, the scattered field
obtained using the EFIE proved to be superior to that using the MFIE. By following the same

line of argument as in Section 6.3, the combination constant for ��-discretization is therefore
set to α = 0.99. In contrast, the accuracy of the scattered fields obtained using the EFIE and

MFIE via ∧∧-discretization were found to be commensurate. Accordingly, we set α = 0.5 for

∧∧-discretization. For LEGO based on LEP, we restrict ourselves to ∧∧-discretization for both
the electric and magnetic equivalent currents. Unless mentioned otherwise, the regular parts of

the test and expansion integrals will be determined via adaptive quadrature rules with a relative

error of 10−2.

Let us start by comparing the accuracy of the scattered fields via embedding based on SEP and

LEP. In Figure 6.16 the normalized error in the scattered fields versus the mesh density is shown

for embedding based on LEP and SEP. The results for hexagonal and rhombic shaped elementary

scattering domains are shown on the left and on the right, respectively. For coarse mesh densi-

ties we obtain cubic convergence with ∧∧-discretization for both SEP and LEP. Like with the
EFIE and MFIE in Section 5.5 for the scattering from perfectly conducting objects, the conver-

gence of the scattered field with SEP for ��-discretization, SEP(��), hardly exceeds quadratic
convergence for coarse mesh densities. Further, recall that the convergence rates for perfectly

conducting scatterers decrease with an increasing non-smoothness of the boundary. This de-

pendence also seems to occur with embedding based on SEP, since the convergence rate with

∧∧-discretization, SEP(∧∧), reduces to O(N−1.7) for dense mesh sizes for both the hexagonal

and the rhombic shape. To a lesser extent, this effect also occurs with SEP(��). Similar to
the scattering from dielectric objects in Section 5.8, embedding based on LEP eventually yields

quadratic convergence.

Propagator matrices are used with LEP, indicated by LEP(P). The discretization and computa-
tional scheme of LEP(P) is similar to that of SEP(∧∧), albeit that LEP(P) involves both electric
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Figure 6.16: The normalized error in the scattered field versus the mesh density for embedding

based on LEP and SEP. In case of LEP, propagator matrices are used. The results for hexagonal

and rhombic shapes are shown on the left and on the right figure, respectively.

and magnetic equivalent currents. It is not surprising that results of LEP(P) are more accu-
rate than those of SEP(��), since LEP(P) involves the higher-order ∧∧-discretization. Clearly,
for the mesh densities under consideration, embedding based on SEP(∧∧) seems superior to
LEP(P). Nonetheless, because the convergence of LEP(P) and LEP(G) remains quadratic upon
mesh refinement, the accuracy of the scattered field may eventually even exceed that of SEP(∧∧)
with an estimated O(N−1.7) convergence.

As regards the dependence on the choice of the shape for the elementary scattering domains, the

results obtained with the hexagonal and rhombic domain shapes are comparable for LEP(P) and
SEP(∧∧). The slightly better results for the hexagonal domain shape may be explained from the

fact that the line source position, ρS , and the observation boundary, Co, for a rhombic domain

shape are closer to the boundary of the combined scattering operator. In case of a rectangular do-

main shape, Figure 6.1b, the accuracy of the scattered field obtained with SEP(��) (not shown)
is comparable to that obtained with a rhombic domain shape, which indicates that the signifi-

cantly larger error for the hexagonal domain shape with SEP(��) may be attributed to unwanted
interior resonances. This matter will be further addressed in Section 6.5.2. Ultimately, we may

infer that the accuracy of the scattered field remains largely independent on the choice of the

domain boundary in case that boundary is not smooth.
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Next, for a more consistent comparison between embedding based on SEP and LEP, we consider

LEP with inverse Gram matrices, LEP(G), instead of inverse propagator matrices, LEP(P). In
Figure 6.17, the normalized error in the scattered field is shown as a function of the mesh den-

sity for LEP(G), with on the left and right-hand side the hexagonal and rhombic domain shape,
respectively. For comparison, the results obtained with LEP(P) and SEP(∧∧) in Figure 6.16
have been repeated. Clearly, for the mesh densities under consideration, LEP(P) seems superior
to LEP(G). However, this observation may be slightly misleading at this point since the cur-
rent amplitudes are automatically transferred directly with SEP(∧∧) and LEP(P), but not with
LEP(G). More specifically, the direct transfer of current amplitudes is inherent to the use with in-
verse propagators, since it follows from the definition of the transfer operator. This is not the case

with LEP(G). These properties have been explained in Section 4.5. From a computational point

of view, Section 4.6, LEP(G) is preferred over LEP(P) since the computational costs for LEP(G)
is at most a factor five times higher than that for SEP(∧∧), while for LEP(P) this amounts to a
factor eight throughout.
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Figure 6.17: The normalized error in the scattered field versus the mesh density for embed-

ding based on LEP through inverse Gram matrices and inverse propagator matrices, LEP(G) and
LEP(P), respectively. The results for hexagonal and rhombic shapes are shown on the left and
on the right figure, respectively.

In case of embedding based on LEP via inverse Gram matrices, LEP(G), we have a choice re-
garding the direct transfer of current amplitudes for coinciding source and observation boundary

parts in the transfer operators. In Section 4.5, we proposed two methods for the direct transfer of

current amplitudes. The first method, method I, is based on Huygens principle, i.e., the current

part that is not on the shared boundary is transferred. In the second method, method II, the field
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part that is not on the shared boundary is reproduced first. Afterwards, the associated current

part follows from the definition of the equivalent currents. Both methods yield a considerable

reduction in the computational costs, and may also lead to more accurate results. In Figure 6.18,

the normalized error in the scattered field versus the mesh density is shown for LEP(G). The
implementations with the direct transfer of current amplitudes via method I and II are indicated

by LEP(GI) and LEP(GII), respectively. The results for hexagonal and rhombic shapes are shown

on the left and on the right, respectively. For the hexagonal domain shape, the magnitude of the

error with both LEP(GI) and LEP(GII) is smaller than with LEP(G) for coarse mesh densities.
However, with further mesh refinement, the order of convergence with both transfer methods

becomes linear. The same observation applies to the results for the rhombic scattering domain.
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Figure 6.18: The normalized error in the scattered field versus the mesh density for embedding

based on LEP with the direct transfer of current amplitudes via method I and II. For the shape

of the elementary scattering domains, hexagonal and rhombic ones are employed in the left and

right figure, respectively.

To explain the linear convergence observed in Figure 6.18, let us consider the outer boundary of

the composite configuration in Figure 6.15a with the hexagonal elementary scattering domains.

The reason for the linear convergence is concealed in the definition of the corresponding transfer

matrix. For instance, if the outer boundary contour is denoted by ∂D3, the transfer matrix T33,

with ∂D3 as both the source and observation boundaries, is defined as T33 = G−1
33 P33. Clearly,

if instead of the inverse Gram matrix, G−1
33 , the inverse propagator matrix, P

−1
33 , is employed, T33

reduces to an identity matrix, I33. The direct transfer of current amplitudes in that case explic-

itly follows from the matrix product. The application of method I merely yields a computational

advantage. This applies to embedding based on SEP(��), SEP(∧∧) and LEP(P). With LEP(G),
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the transfer matrix T33 is not an identity matrix and its use actually requires an additional dis-

cretization step. If only a subset of the current amplitudes is transferred directly, these current

amplitudes are not affected by the additional discretization step applied to the other ones. This

discrepancy gives rise to a reduced convergence.

To test our explanation of the linear convergence numerically, the current amplitude vector, Qin
3 ,

which represents the incident field, is repeatedly multiplied by T33. Each multiplication amounts

to an additional discretization step that will lead to a loss of accuracy in the pertaining scattered

field. The decrease in accuracy of the scattered field due to subsequent multiplication of T33

by Qin
3 is shown in Figure 6.19 for several mesh densities. A hexagonal domain shape is em-

ployed. In the left figure, none of the current amplitudes are transferred directly if we apply

the straightforward multiplication Qin
3 by T33 = G−1

33 P33. The relative decrease in accuracy due

to subsequent multiplications by T33 for the mesh densities under consideration is comparable.

On the right, the results of transferring the current amplitudes on half of the boundary directly

with method I are shown, LEP(GI). The transition between direct transfer and straightforward

propagation has been set at two diametrically opposed junctions with a removed common bound-

ary part (See Figure 6.15). The direct transfer of the current amplitudes on half of the boundary

leads to a larger loss of accuracy for denser mesh sizes. Hence, the decrease in accuracy is indeed

caused by the imbalance in accuracy created by the indirect transfer of part of current amplitudes.
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Figure 6.19: The decrease in accuracy due to subsequent multiplication of Qin
3 with T33 for

several mesh densities, points/λ. A hexagonal domain shape is employed. In the right figure the

current amplitudes on half the boundary are directly transferred with method I.
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In the LEGO approach, the boundary transition between direct current transfer and straightfor-

ward propagation occurs at the junctions with the common boundary parts. Since boundary junc-

tions only occur at corners of the scattering domains, the discontinuities in the local boundary

may have an adverse affect on the error from the transition. To investigate this, the transition be-

tween direct transfer and propagation of current elements for common boundary parts is shifted

away from the junction. As an example, in Figure 6.20 the common boundary part, ∂D1 ∩ ∂D3,

for the transfer matrix T31 is shown. The black triangles indicate ∧-expansion functions at the
junction elements. The centers of the ∧-expansion functions to the left of the junction element
on the common boundary are numbered increasingly. Expansion function number one is the first

one to the left of the junction element, of which the current amplitude can be transferred directly

to ∂D3.

6 5 4 3 2 1

D1
∂D1

∂D3

Figure 6.20: The centers of the ∧-expansion functions to the left of the junction element on the
common boundary ∂D1 ∩ ∂D3 for the transfer matrix T31 are indicated by increasing numbers

away from the junction element.

Next, in Figure 6.21 we have presented the normalized error in the scattered field versus the

mesh density for LEP(GII). The current amplitude associated with the i-th expansion function

is the first one that is transferred directly. In this way the transition between direct transfer and

propagation of current elements for common boundary parts has been shifted away from the

junction. Hexagonal and rhombic shapes are employed for the elementary scattering domains on

the left and on the right, respectively. From the figure, we infer that the mesh density at which the

convergence becomes linear may be shifted towards denser meshes by simply not employing the

direct transfer of the current amplitudes that are near a junction element. Hence, the imbalance

in accuracy between directly transferred and propagated current amplitudes is intensified by the

singular behavior of the equivalent currents at the corners (and thus the junctions).

By considering the elements of a column vector of the inverse Grammatrix shown in Figure 6.22,

it is clear that the inverse of the Grammatrix is also bandlimited. This corroborates that if the first

current amplitude, which is transferred directly, is a few elements away from the junction, the

influence of the corner elements becomes negligible. Further, when regions of direct transfer and

propagation overlap slightly, the effective finite bandwidth of the Gram matrix constitutes a taper
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Figure 6.21: The normalized error in the scattered field for embedding based on LEP via Gram

matrices. The current amplitudes are transferred directly via method II, LEP(GII), for increasing

numbers of expansion elements from the boundary junction. The elementary scattering domains

on the left and on the right are hexagonal and rhombic shapes, respectively.

by which the imbalance may be mitigated. Note that in Figure 6.18, the current amplitude of the

second expansion function to the left of the junction element is the first one that was transferred

directly. The attained order of convergence with LEP(GI) and LEP(GII) is significantly better

than the O(N−1.7) convergence for dense mesh densities with SEP(∧∧). However, up to 100
points per wavelength, SEP(∧∧) remains superior.
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Figure 6.22: On the left, the inverse of the circulant Gram matrix. On the right, the elements of

a column vector for forty unknowns.
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For the cases considered so far, all test and expansion integrals for the propagator matrix have

been determined with adaptive quadrature rules, to a maximum error of one percent in the eval-

uation of these integrals. Next, let us investigate the loss in accuracy due to more elementary

quadrature rules. We aim at obtaining an estimate for the optimum balance between the effi-

ciency of constructing the propagator matrices, versus the obtained accuracy. Accordingly, to

assess the worst loss of accuracy, we consider the most simple quadrature, i.e., the midpoint rule,

as it involves only a single sampling point per edge. Beware though, that this affects the regu-

lar integrand contributions only, i.e., the singular integrand contributions of the various test and

expansion integrals are accounted for analytically. Further, the self-contributions (overlapping

edges) are still determined accurately.
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Figure 6.23: The normalized error in the scattered field versus the mesh density for embedding

based on LEP and SEP. Instead of adaptive quadrature rules, the midpoint rule is employed to

compute the regular part of the test and expansion integrals related to the propagator operators. In

case of LEP, Gram matrices are used with the direct transfer of current amplitudes via method II.

For the shape of the elementary scattering domains, hexagonal and rhombic ones are employed

in the left and right figure, respectively.

In Figure 6.23, the results of the LEP(GII), LEP(P), SEP(∧∧) and SEP(��) are repeated with
the midpoint rule. Hexagonal and rhombic shapes are employed for the elementary scattering

domains in the left and right figure, respectively. The impact of the quadrature error is the

strongest for the implementations involving inverse propagator matrices in combination with∧∧-
discretization, i.e., LEP(P) and SEP(∧∧). The best accuracy is obtained with LEP(GII), which

also seems to maintain quadratic convergence for the mesh densities under consideration. This

is not surprising since a Gram matrix is determined analytically, whereas the use of a propagator
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matrix comes with a quadrature error. Hence, the implementation of LEGO with LEP via Gram

matrices is least sensitive to a quadrature error. With reference to the EFIE and MFIE with ��-
discretization in Section 5.5, we noted that the accuracy of the scattered field determined via the

midpoint rule and the adaptive quadrature rule are comparable. However, the magnitude of the

error with the midpoint rule applied to SEP(��) has increased noticeably in comparison with the
corresponding adaptive quadrature results in Figure 6.16. The increased error magnitude may

be attributed to close source and observation boundaries (connecting domains) in the embedding

process.

6.5.2 Interior resonances

In the preceding examples of the LEGO approach based on SEP, it has been assumed that the

interior resonance effect associated with the separate EFIE and MFIE is avoided with a CFIE.

However, in the construction of the large scattering domains in Section 6.3, we encountered

a building sequence that produced strong field deviations for a certain boundary shape. This

seemed to indicate an interior resonance, even though a CFIE was applied. For this reason, we

will investigate below whether the CFIE can properly suppress interior resonances in LEGO.

As a starting point, the basis configuration presented in Figure 6.15 will be employed here. To

ensure that one of the domain boundaries in the sequence of embedding steps is associated with

an interior resonance, the frequency of operation is changed such that the outer boundary in case

of hexagonal elementary domain shapes gives rise to an EFIE resonance. An estimate for the

resonance frequency has been obtained for a particular mesh density with ��-discretization by
monitoring the condition number of the EFIE MoM-matrix in a frequency sweep. Accordingly,

the frequency of operation has been changed to fa/c = 0.416. Note that the estimate resonance

frequency may depend on the mesh density and the choice of discretization. To ensure that the

CFIE has the ability to suppress the EFIE resonance, the combination constant α in the CFIE

formulation, Eq. (3.20), is set to α = 0.5 for both �� and ∧∧ discretizations.

To illustrate the impact of an interior resonance on the accuracy of the scattered field, we refer to

Figure 6.24. On the right, we have presented the normalized error in the scattered field versus the

mesh density for embedding based on SEP(��), and hexagonal elementary scattering domains.
On the left, the results have been presented for a non-resonance case, viz., fa/c = 0.41. The poor

results obtained with SEP(��) for resonance conditions clearly indicates that interior resonances
are not properly suppressed. Note that the maximum error corresponds to the mesh density
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that has been used to determine the resonant conditions. Hence, by a slight variation in the

operating frequency, the error peak may shift. Due to the different discretization, SEP(∧∧) is
not exactly at resonance. In a similar way, the accuracy for SEP(∧∧) will deteriorate when the
frequency of operation is closer to one of its interior resonances. Nevertheless, up to 100 points

per wavelength, the error is at least one order of magnitude larger in comparison with the off-

resonance situation, which renders it slightly less accurate than LEP(P) (cf. Figure 6.17). Hence,
close to resonance condition, the accuracy of the scattered field decreases significantly. Upon

performing the same computations with embedding based on LEP (not shown), the accuracy of

the scattered field at resonance proved to be virtually the same as in the non-resonance case.
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Figure 6.24: The normalized error in the scattered field versus the mesh density with embedding

based on SEP. The elementary scattering domains are hexagonal. On the left and right the off-

resonance (fa/c = 0.41) and resonance (fa/c = 0.416) cases, respectively.

To clarify the persistent interior resonance effect associated with the CFIE, let us consider the

plots of the pertaining total electric field in Figure 6.25 for the resonance case fa/c = 0.416. The

fields have been obtained via embedding based on SEP with ��-discretization and 100 points
per wavelength. The top figure shows the field determined via the rhombic scattering domain

shape. In that case, interior resonances occur at different frequencies. For the bottom figure,

the computation has been repeated for elementary scattering domains with a hexagonal shape.

The outer boundary in the bottom figure is associated with an interior resonance for the EFIE.

Apparently, only the exterior field is affected by the interior resonance since the interior field is

practically the same as the field shown in the top figure. Observe the significant errors at the

corners of the outer contour. In the cases discussed in Figure 6.5 and Figure 6.6, the small errors

at the corners of the boundary have probably been caused by interior resonances.
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Figure 6.25: The magnitude of the electric field on a logarithmic scale (dB) generated by an

electric line source above an EBG (2 × 2 periods). The dotted lines indicate removed common

boundaries and the position of the line source has been marked. In the top and bottom figure,

we deployed rhombic and hexagonal scattering domains, respectively, with embedding based

on SEP via a CFIE with ��-discretization. The outer boundary in the bottom figure allows an

interior resonance for the EFIE.
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We have observed that the interior field is left intact. Hence, the CFIE used as the inverse propa-

gator that produces the incident current amplitudes on the outer boundary does properly suppress

the interior resonances. In other words, an equivalent current that reproduces the interior field

generated by an exterior source distribution is free of interior resonances. This corresponds with

the usual application of the EFIE, viz., the scattering from a PEC. One of the steps in which

the interior resonance problem of the CFIE in the LEGO approach can occur is the final one,

in which common boundaries are removed. In the composition of scattering operators in Sec-

tion 4.5, the removal of common boundaries involves the transfer operators T31 and T32. These

transfer operators produce equivalent currents that reproduce the exterior field generated by an

interior source distribution. In that case, the interior resonance is a physical mode which is not

suppressed by a CFIE, as it is a valid part of the solution. Because T31 and T32 are only used

to construct the composite scattering operator, this explains why the interior field is not affected

by the interior resonance effect. Clearly, if the combined scattering domain is reused in a fol-

lowing embedding step, also the field inside the previously combined domains will be affected

by the interior resonance. Note that interior resonances may also hamper the construction of the

elementary scattering domains. If this is not the case, we emphasize that the interior resonance

effect can only occur if embedding is applied to scattering domains that have common bound-

ary parts. In the absence of a common boundary, T31 and T32 are not used according to the

corresponding computational scheme in Tab. 4.1.

An interior resonance may for some configurations be cunningly avoided in a sequence of SEP

embedding steps by simply changing the building sequence or by modifying the shape of the

elementary scattering domains. However, the density of interior resonances increases with the

operating frequency and the size of the scattering domain, rendering it increasingly more difficult

to avoid interior resonance effects, especially since the effective resonance width associated with

the MFIE is broader in frequency than that of the EFIE. For full 3D scattering configuration the

chance of operating at or near an interior resonance increases even more.

Finally, we have applied a singular value decomposition (SVD) in an attempt to remove the

resonant current parts from the solution. However, this did not solve the problem at hand in the

sense that the cavity mode which corresponds with the resonance current may well be part of the

physical solution. A different strategy proposed in Section 3.4 may turn out to be a better choice,

e.g., via a dual (parallel) boundary or the null-field method. Clearly, the application of LEP is

robust and leads to a more rigorous and elegant solution than the application of SEP.
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6.5.3 Building sequence and accumulation error

Up to this point, the influence on the scattered field error of the mesh density and the choice of

discretization have been investigated. A composite structure may also be constructed in alterna-

tive ways by changing the order of the translation vectors used, e.g., by building in the vertical

direction first and then in the horizontal direction, or in the opposite order. Below, the analysis is

extended by considering the influence of the building sequence. In addition, we investigate the

accumulation error due to repeated embedding steps. These properties are considered for various

domain shapes. Finally, we will obtain an indication of the dependence of the error on the size

of the composite structure under construction.

The building sequence and the accumulation error are investigated by extending the basic config-

uration illustrated in Figure 6.15 to the one shown in Figure 6.26. We have a triangular array of

dielectric circular cylinders in air, with εr = 11.56, filling ratio r/a = 0.175 and normalized fre-

quency fa/c = 0.4. To investigate the accumulation error, the combined domain is constructed

by adding only a single subdomain in each embedding step. A total of 15 embedding steps is

required in this process. Further, the dependence on the building sequence is investigated by

comparing the scattered field obtained with the two different building sequences indicated by the

dashed lines. Analogous to Section 6.5.1, we employ an observation boundary contour, Co, along

which the scattered field has been evaluated in Figure 6.15. Of course, the size of Co is adjusted

for the larger size of the combined scattering domain in Figure 6.26.

ρS

(a) sequence A

ρS

(b) sequence B

Figure 6.26: The combined scattering domain of an array of circular dielectric cylinders (8× 2)

Dotted lines represent common boundaries that are removed in consecutive embedding steps.

The dashed lines indicates the two building sequences that are considered. An electric line source

positioned at ρS generates the incident field.

Let us start by investigating the error accumulation and the building sequence for embedding

based on LEP via Gram matrices, LEP(G). Note that there is no direct transfer of current am-
plitudes associated with LEP(G). In Figure 6.27 the resulting normalized error in the scattered
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field versus the mesh density is presented. The results for hexagonal and rhombic shapes are

shown on the left and on the right, respectively. Further, since all subdomains of the composite

structure are the same, the combined scattering operator can be constructed in four embedding

steps by simply reusing previously combined domains. These results have been included in Fig-

ure 6.27 as a comparison with the extensive building sequences A and B (15 steps) to quantify

the accumulation error. The different ways of constructing the combined scattering operator has

led to a difference in magnitude only, as the order of convergence seems comparable (quadratic).

Clearly, there is a severe loss of accuracy for embedding via the building sequences A and B in

comparison with the most efficient building sequence (4 steps). Hence, the error accumulation is

significant LEP(G). Also the choice of building sequence is important, albeit to a smaller extent
than the error accumulation.
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Figure 6.27: The normalized error in the scattered field versus the mesh density for embedding

based on LEP via Gram matrices, LEP(G). The extensive building sequences A and B (15 steps)

in comparison with the direct one (4 steps). The results for hexagonal and rhombic shapes are

shown on the left and on the right figure, respectively.

Since the building sequences A and B amount to 15 embedding steps, currents are repeatedly

transferred from one boundary to another. Via the direct transfer of current amplitudes, the loss of

accuracy due to the transfer of currents primarily occurs on the source and observation boundary

parts that do not coincide. Thus, for the extensive building sequences at hand, this may lead to a

considerable improvement. To investigate this, the results obtained with LEP(G) in Figure 6.27
have been recomputed in Figure 6.28, with the direct transfer of current amplitudes via method II,

LEP(GII). There is virtually no difference in the accuracy between the building sequences A

and B and the 4-step approach, neither for the hexagonal nor for the rhombic boundary shapes.
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This indicates that with embedding based on LEP(GII), the accumulation error is negligible and

the results are largely independent of the building sequence. Hence, the direct transfer of currents

is important not only in a long sequence of embedding steps to prevent loss of accuracy due to

accumulation, but also for the embedding of large domains. The computational schemes of

LEGO for the cases with and without common boundary differ. For the rhombic domain shape,

there is a common boundary for the first seven embedding steps via building sequence B, but not

for building sequence A. Accordingly, the embedding process is also insensitive to the presence

of a common boundary. From the observations so far, we infer that, in the choice of the building

sequence and the shape of the elementary domains, one can primarily focus on computational

efficiency. Note that with reference to Section 6.5.1 the decrease in the order of convergence for

an increasing mesh density is due to the direct transfer of current amplitudes in combination with

Gram matrices. If current amplitudes near a junction of a common boundary are not transferred

directly, this decrease in convergence rate is avoided.
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Figure 6.28: The normalized error in the scattered field versus the mesh density for embedding

based on LEP via Gram matrices wit the direct transfer of current amplitudes via method II,

LEP(GII). The extensive building sequences A and B (15 steps) in comparison with the direct

one (4 steps). The results for hexagonal and rhombic shapes are shown on the left and on the

right figure, respectively.

Next, let us consider the accumulation error and dependence on the building sequence for em-

bedding based on SEP(∧∧). Note that the direct transfer of current amplitudes is inherent to
SEP(∧∧) owing to the use of P−1 instead of G−1. The pertaining normalized error in the scat-

tered field versus the mesh density is presented in Figure 6.29. There is virtually no difference

in accuracy between the building sequences A and B and the 4-step approach. Hence, also for
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embedding based on SEP(∧∧), it turns out that the error accumulation is negligible and that the
results are largely independent of the building sequence.
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Figure 6.29: The normalized error in the scattered field versus the mesh density for embedding

based on SEP with ∧∧-discretization, SEP(∧∧). The extensive building sequences A and B (15

steps) in comparison with the direct one (4 steps). The results for hexagonal and rhombic shapes

are shown on the left and on the right figure, respectively.

Finally, let us review the results in Figure 6.27 and 6.29 with array size (8 × 2), in comparison

with those in Section 6.5.1 with array size (2 × 2). In case of a dense mesh, the accuracy of

the pertaining scattered fields of both mesh sizes is comparable. In contrast, for a course mesh

density, a noticeably better accuracy is attained with the smaller array. Hence, the embedding for

large composite structures only seems to lead to a reduced accuracy for coarse mesh densities.

6.6 Continuity of objects across adjacent domains

In the results presented so far it was convenient to use circular cylinders as the scattering objects

that are enclosed by the elementary building blocks. Below, we demonstrate that the LEGO

approach is not restricted to scattering objects that are not canonical. These scattering objects

need not even be continuous across the boundary of the elementary scattering domain.

To demonstrate that the boundary, ∂Do, of a scattering object, Do, that is enclosed by a scat-

tering domain may be of arbitrary shape, we consider a cross-shaped dielectric cylinder. The
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corresponding elementary scattering domain D1 is depicted on the left in Figure 6.30. The rel-

ative permittivity of the cross is εr = 16. We evaluate the scattered field along an observation

contour as illustrated in Figure 6.15. However, instead of a triangular array of circular cylinders,

we employ a square array of crosses. The periodicity of the array is a and the arm’s length of the

dielectric cross is d. The operating frequency is set to fa/c = 0.4. To investigate whether the

accuracy may be affected by scattering objects that are continuous across domain boundaries, the

results for two filling ratios will be compared, viz., d/a = 0.95 and d/a = 1. In case d/a = 1,

the four ends of the branches of the cross coincide with the boundary of the enclosing scattering

domain. The mesh of the scattering object and the scattering domain are chosen to be uniform,

and the respective mesh densities with respect to the background medium are the same through-

out. In addition, for d/a = 1, both meshes are identical for the mesh segments that constitute

∂Do ∩ ∂D1.

In Section 4.2, we have constructed the scattering operator using boundary integral equations.

Recall that after the discretization has been performed, we haveS11 = T1oX
−1
oo Po1 (cf. Eq. (4.30)).

Because the scattering object Do is dielectric, the PMCHW formulation is chosen for the corre-

sponding MoM-matrix, Xoo. We determine Xoo in the same way for d/a = 1 and d/a = 0.95.

More specifically, we consider a single cross in a homogeneous background medium for Xoo.

The propagator matrix, Po1, generates the forcing vector associated with the current amplitudes

of the expansion functions on ∂D1. Also for d/a = 1, Po1 involves only the background medium

properties. For the source and observation boundary parts that coincide, ∂Do ∩ ∂D1, the self-

contribution case (overlapping edges) is applied. The transfer matrix, T1o, transfers the current

amplitudes on ∂Do, associated with the scattered field from Do, to the scattering domain bound-

ary ∂D1. Again, T1o involves only the background medium. In addition, for the boundary

segments, ∂Do ∩ ∂D1, the current amplitudes are transferred directly.

As a demonstration of continuity across domain boundaries, we choose LEGO based on LEP

with the application of Gram matrices. In addition, current amplitudes on coinciding boundary

segments are transferred directly via method II, i.e., we use LEP(G II). We emphasize that the

LEGO approach has been implemented with locally coinciding boundaries of the cross and en-

closing square domains, rather than taking an infinitesimally small gap between both boundaries.

On the right in Figure 6.30, the normalized error in the scattered field versus the mesh density

is shown for embedding based on LEP(G II). The filling ratios are d/a = 0.95 and d/a = 1.

As a reference solution, we have employed a well-converged solution obtained using the PM-

CHW boundary integral equation for multiple dielectric objects. The accuracy of the scattered

fields obtained with both filling ratios is comparable. Hence, there is no loss in accuracy asso-
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Figure 6.30: On the left the scattering dielectric object with a cross shape boundary, ∂D, and
size d inside the elementary scattering domain with a square shape boundary ∂D and size a. On

the right, the normalized error in the scattered field versus the mesh density for embedding based

on LEP via Gram matrices with the direct transfer of current amplitudes via method II.

ciated with scattering objects that are continuous across adjacent domains. So, with regard to

accuracy, there are no restrictions as far as the choice of the embedding domains in scattering

configurations is concerned.

As regards the dependence on the scattering object shape, the accuracy attained for the circular-

cylinders case in Section 6.5.1 is significantly better than the accuracy attained with for the cross

shape in Figure 6.30. On the other hand, the accuracy that is achieved with the direct scattering of

a single dielectric cross in Section 5.8 is comparable to the accuracy attained with the embedding

of the four crosses. Hence, the accuracy shown on the right in Figure 6.30 is limited by the

PMCHW boundary integral equation used to construct the elementary scattering operator. In

conclusion, the mesh of the enclosed scattered object should be dense enough to attain sufficient

accuracy. The analysis of integral equations in Chapter 5 provides an indication of the required

mesh density for various object shapes in combination with the appropriate choice of integral

equation. In case the boundaries of the scattering object and the enclosing scattering domain

coincide, while aiming for a similar accuracy of the pertaining scattered fields, the application of

graded meshes may become expedient.

To investigate whether the continuity of scattering objects across domain boundaries affects the

local accuracy near transitions between domain boundaries, let us consider the electric field plot

in Figure 6.31. There, the total field is presented for an incident field generated by an electric line
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Figure 6.31: The magnitude of the electric field on a logarithmic scale (dB) where the incident

field is generated by an electric line source. The position of the line source is marked. The

dotted lines indicate common boundary parts that have been removed in the embedding process.

The filling ratio is d/a = 1. The field response has been determined with embedding based on

LEP(G II).

source. The position of the line source has been marked by a cross. The dotted lines indicate the

common boundary segments that have been removed in the embedding process. The elementary

scattering domain is discretized using 72 unknowns, which amounts to 45 points per wavelength.

The plot is scaled in dB to capture possible deviations at different amplitude scales. The field

seems free of discontinuities across the various domain boundaries. In addition, there is no visual

asymmetry between the left and right-hand side of the field plot although the building sequence

has been asymmetric. These observations corroborate our claim that objects that are continuous

across domain boundaries can be handled within the LEGO approach without significant loss of

error.
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6.7 Band-gap diagrams

In the preceding sections, the LEGO approach has been applied to composite structures consist-

ing of identical building blocks in regular, but finite grids. Further, the accuracy of the pertaining

scattered fields has been investigated. Electromagnetic band-gap structures are periodic struc-

tures that impede wave propagation in any direction in some frequency band. The band structure

associated with EBG materials can be computed via the LEGO approach. In this way, we can

predict the basic material properties of a large finite EBG structure via a single elementary LEGO

block a priori. This band structure is determined via the scattering operator in combination with

Bloch conditions. A possibly composite scattering domain serves as the periodic unit cell for

which the band structure is computed. Since LEGO is a hybrid method, Section 4.9, the medium

interior to the scattering domain may be inhomogeneous. In addition, since the scattering op-

erator is a frequency-domain quantity, dispersive media may be considered as well. Below,

we present two alternative methods for solving the eigenvalue problem that is associated with

the band structure. The theory is explained in terms of the operators introduced in the LEGO

approach, Chapter 4. Afterwards, the method is validated through a comparison with the plane-

wave method for examples involving two-dimensional arrays. Further, we will demonstrate the

diversity of applications by considering unit cells that contain scattering objects which extend

across the boundary of the unit cell. Below we mostly follow our description in [86].

Electromagnetic fields in EBG materials are usually studied by determining the Bloch modes of

the periodic structure. The associated eigenvalue problem may result in a band structure. Sev-

eral algorithms have been proposed to compute the band structure of EBGs, such as the transfer

matrix method [87], the plane-wave expansion method [88], and the order-N method [89]. Typi-

cally, these methods start from Maxwell’s differential equations and involve a discretization pro-

cedure similar to finite-difference or finite-element techniques. In that respect, the plane-wave

expansion method is somewhat different, since the discretization process involves plane-wave

projections instead of a (local) polynomial projection. In all of these cases, the entire volume of

a unit cell is discretized, which amounts to a relatively large number of unknowns, especially in

the 3D case. In addition, the convergence of the plane-wave method decreases for large contrasts

between the background medium and the inclusions or scatterers [90]. Although this drawback

was avoided with the introduction of a hybrid method [91, 92], the method still requires a dis-

cretization of the entire volume of the unit cell.
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In case the materials in the periodic structure are homogeneous, the electromagnetic field can

be expressed entirely in terms of the fields at the material interfaces via an integral represen-

tation. Therefore, a boundary-integral equation seems a logical choice for the reduction of the

computational complexity. However, the pertaining periodic Green’s function depends both on

the Bloch vector in the Brillouin zone and on the radial frequency, which makes the procedure of

finding the Bloch modes rather complicated. In addition, the computation of the periodic Green’s

function itself is almost impossible.

A way out is to employ the scattering operator used for the LEGO approach in Section 4.2. The

boundary of the scattering domain, which may be of arbitrary shape, can be identified with the

boundary of a unit cell. Via the scattering operator, the electromagnetic field may be expressed in

terms of an integral representation that is valid for any fundamental solution to Maxwell’s equa-

tions for the enclosed interior domain. This has been described in Section 4.9. The scattering

operator is independent of the Bloch vector. Consequently, we still have to enforce the boundary

conditions for the exterior domain. Due to the periodicity, the qualifications interior and exterior

have become meaningless. Instead, we formulate the boundary condition on the boundary of

this unit cell in terms of Bloch conditions. By itself, this observation is not new as it has been

used within the context of absorbers for a three-dimensional setup with two-dimensional peri-

odicity [93]. Here, we extend that observation to the case where all boundaries are periodic and

where the Bloch vector is not fixed a priori.

Let us start by explaining how the scattering operator used in the LEGO approach can be em-

ployed for the computation of the band structure of 2D EBG structures. The Bloch conditions

will be enforced at the boundary of the scattering domain. For most EBG structures, it is natural

to choose the elementary domain to coincide with a unit cell of the lattice. For simplicity, we

restrict ourselves to square unit-cell shapes. The analysis is based on the operator formalism in-

troduced in Chapter 4. If a scattering domainD1 is associated with the periodic unit cell, the total

electric and magnetic field at the boundary ∂D1 are represented by F per
1 , where the superscript

indicates the periodicity of the field. Further, we consider embedding based on LEP via Gram

matrices. Thus, the corresponding equivalent current representationQper
1 at ∂D1 amounts to both

electric and magnetic currents. Recall that, after discretization, the elements of the vectors Fper
1

and Qper
1 are the field amplitudes obtained from testing F per

1 and the current amplitudes in the

expansion of Qper
1 , respectively. As has been described in Section 4.4, the equivalent currents

are defined in terms of the field components tangential to the boundary ∂D1, and the current

amplitudes follow from the field amplitudes via the inverse Gram matrix. Accordingly, we have

Qper
1 = G−1

11 F
per
1 . (6.1)
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The current Qper
1 can be decomposed according to

Qper
1 = Qin

1 + Qsc
1 . (6.2)

The equivalent states associated with the currents Qin
1 and Qsc

1 are different. Both states are

depicted in Figure 6.32. On the left, Qin
1 produces the field constituent Fin

1 , incident on D1.

Similarly, on the right, Qsc
1 produces the field constituent Fsc

1 , scattered byD1. The superposition

of both states gives rise to the field that is produced by Qper
1 . The currents Qin

1 and Qsc
1 are related

through the scattering matrix via Qsc
1 = S11Q

in
1 . Since we apply LEP, Q

in
1 and Qsc

1 yield a zero

field in D̄ and D, respectively. This is a consequence of Oseen’s extinction theorem and an

important element of the method described here.

D1

∂D1

zero field

F in

Qin
1

zero field

D̄1

∂D1

F sc

Qsc
1

Figure 6.32: The partitioning of the field configuration into two equivalent states via Love’s

equivalence principle (LEP). Equivalent currents on ∂D1 reproduce the interior and exterior field

in the left and right figure, respectively.

Let us consider Figure 6.33. On the left, Qsc
1 is obtained via the scattering matrix S11 from the

incident field that Qper
1 produces in D1. On the right, Qsc

1 is obtained via the transfer matrix T11

from the scattered field that Qper
1 produces in D̄1. In short, Figure 6.33 describes the relations

Qsc
1 = S11Q

per
1 , (6.3a)

Qsc
1 = T11Q

per
1 . (6.3b)

Note that these relations used here are based on the fact that the equivalent currents Qsc
1 and Qin

1

produce a zero field in D1 and D̄, respectively. This is a unique feature of LEP.
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Scattering
Object 1

D1

∂D1

S11

Qper
1 Qsc

1

Scattering
Object 1

D1

∂D1

T11

Qper
1

Qsc
1

Figure 6.33: On the left-hand side, Qsc
1 is obtained via the scattering matrix S11 from the incident

field that Qper
1 produces in D1. On the right hadn-side, Qsc

1 is obtained via the transfer matrix T11

from the scattered field that Qper
1 produces in D̄1.

Subsequently, by subtracting Eq. (6.3b) from Eq. (6.3a), we enforce consistency, which results

in

[S11 − T11]Qper
1 = 0. (6.4)

Based on the definition of the transfer and scattering matrices in terms of Gram matrices, multi-

plication on the left by the Gram matrix G11, leads to

[Fsc
11 − P11]Q

per
1 = 0. (6.5)

Here, the propagator matrix, P11, is associated with an exterior field representation. Recall that

the matrix Fsc
11 describes the scattered field response of the objects in D1 in terms of field and

current amplitudes for the respective test and expansion functions on ∂D1. The matrix Fsc
11 can

be determined via boundary integral equations and propagator matrices, as in Eq. (4.12), or via

other electromagnetic solvers, as described in Section 4.9. The operator form of the matrix

equation (6.5) has an infinite-dimensional null space, since all electromagnetic fields that are

generated by sources outside D1 belong to this null space. However, in the case of a periodic

structure, we seek particular elements of the null space, i.e., those that satisfy the Bloch condition

onD1. To formulate this condition, we partition the boundary into two sets of partial boundaries.

If the dimension of the periodicity is N = 1, 2, 3, then there are N unit vectors ui and N

corresponding periods pi, such that
∑N

i=1mipiui, mi ∈ Z forms the Bravais lattice with respect

to the unit cellD1. This is shown in the inset of Figure 6.34 for a square array. For the elementary

domainD1, the first set of the partition of boundaries is denoted by V1 = {∂D1;1, . . . , ∂D1;N} and
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the second set is V2 = {∂D1;N+1, . . . , ∂D1;2N}. To arrive at a suitable partition of the boundary
∂D1, we enforce the condition

∀ r∈ ∂D1;i, r + piui ∈ ∂D1;N+i, (6.6)

for all i ∈ {1, . . . , N}. The Bloch condition is then formulated as

∀ r∈ ∂D1;i, F (r) = F (r + piui) exp(−jk · piui), (6.7)

for all i ∈ {1, . . . , N}, where k denotes the Bloch vector in the unit cell of the reciprocal lattice.

Note that the Bloch condition amounts to multiplication by a constant along the entire boundary

∂DN+i, irrespective of its particular shape. Therefore, curved boundaries due to discontinuities

in material properties are readily included. To deal with possible ambiguities on the corners

and/or edges of the partitioning, the set V1 contains only those corners and edges, which connect

at least two partial boundaries that are in V1. The Bloch condition on all other edges and corners,

set V2, can then be uniquely related to the corners and edges that belong to V1.

To arrive at a numerical scheme, we discretize the Bloch condition in Eq. (6.7) at the boundary

of the scattering domain, which results in

Fper
1 = B11̌F

per

1̌
. (6.8)

The diacritical check on the boundary subscript indicates that the field amplitude vector Fper
1

contains only independent field amplitudes. Field amplitudes are considered independent if the

support of the pertaining test function is entirely on the boundary parts contained in set V1. Fur-

ther, the matrix B11̌ enforces the Bloch condition and is a sparse connection matrix that contains

the exponential functions (phases) of Eq. (6.7), similar to the one in [93]. More specifically,

B11̌ generates all field amplitudes on ∂D1 from the independent ones. Since Eq. (6.8) applies

to field amplitudes of test functions, the Bloch conditions are enforced point-wise. Apart from

2D corner or 3D edge elements, this approach is exact. To avoid loss of accuracy due to the

corner/edge elements, we decrease the size of the support of the corner/edge elements such that

their contribution becomes negligible. By substituting Eqs. (6.1) and (6.8) in Eq. (6.5), we obtain

[Fsc
11 − P11]G

−1
11 B11̌F

per

1̌
= 0, (6.9)

which enforces both the extinction theorem and the Bloch condition. To obtain the band struc-

ture, we have to establish the relation between frequencies and Bloch vectors. By inspection of

Eq. (6.9), it may seem more efficient to utilize the periodicity of the current Qper
1 rather than the

field Fper
1 . One might think that for Qper

1 , the formulation, [Fsc
11 − P11]B11̌Q

per

1̌
= 0, would be
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correct. However, this is not the case. With the absence of the inverse Gram matrix, the zero field

conditions inherent in LEP in Figure 6.32 are not enforced, which implies that Eq. (6.3) ceases

to hold.

Let us comment on the numerical scheme by which Eq. (6.9) may be solved for either various

frequencies or for various Bloch vectors. The matrix [Fsc
11 − P11]G

−1
11 is dense, whereas the

Bloch matrix, B11̌ is sparse. Further, the fundamental solutions, and therefore also the dense

matrix, will depend on the radial frequency. Hence, the band structure is most conveniently and

efficiently computed by finding Bloch vectors for a fixed radial frequency, i.e., for each fixed

frequency we look for tangential electromagnetic fields and Bloch vectors for which both the

integral equations on the boundary ∂D1 and the Bloch conditions are satisfied. The additional

advantage is that we can readily refine the boundary mesh for higher frequencies to maintain

a fixed level of accuracy. A disadvantage is that it is more difficult to construct the traditional

band structure, since it is not a priori clear to which particular curve the solution belongs. Also,

tracing (almost) horizontal curves is more difficult.

Depending on the size of the scattering and Bloch matrices, it may be worth considering different

formulations for solving the problem. If the matrices are small, then it seems most logical to

enforce the extinction theorem first, i.e., to determine the null space of the integral-equation

matrix, and then to find elements in the null space that satisfy the Bloch condition. The advantage

of this approach is that the null space is independent of the Bloch condition and therefore the

entire Brillouin zone can be searched efficiently after the null space has been determined. On

the other hand, if the matrices are large, the determination of the null space can be prohibitively

expensive in terms of computation time and memory. In that case it is more practical to enforce

the Bloch condition within the integral equation. The advantage of this approach is that the Bloch

condition reduces the number of unknowns by a factor of two. On the other hand, a non-linear

search procedure is required to find Bloch vectors for which a singular value or eigenvalue zero

is obtained. The repeated computation to find the smallest singular values or eigenvalues for a

large and dense linear system is in that case the most expensive part. In the following examples,

the second algorithm will be employed. In that case, we have an overdetermined system that

may be satisfied for certain Bloch vectors at a fixed frequency. A robust way of solving an

overdetermined system Ax = 0, with systems matrix A and unknown vector x, is to evaluate
the minimum eigenvalue λ ofAHAx = λx and to impose the condition that λ = 0. This amounts

to the minimization problem

λ = min
x

xHAHAx
xHx

, (6.10)
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and imposing that that minimum vanishes.

As a validation of the concept, we have computed the band structures for a two-dimensional

square array of circular dielectric cylinders with εr = 8.9 and filling ratio r/a = 0.2, where a

denotes the period of the array and r the radius of the cylinder. The EBG setups and the paths

in the Brillouin zone are identical to the one in [94, p. 56, Figure 2]. The currents are expanded

with 96 unknowns equally distributed over the four edges of the square boundary. Further, the

fundamental solutions for a circular cylinder embedded in free space were computed analytically

in Appendix B.1. The resulting band structures are shown in Figure 6.34. For comparison, the

results obtained by a plane-wave method have been included. In the expansion, 127× 127 plane

waves have been used. The results are found to be in good agreement.
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Figure 6.34: The band structures for a square array of circular dielectric cylinders with filling

ratio r/a = 0.2 and εr = 8.9 embedded in air. On the left and right the respective TM and TE

bands are shown. The solid lines are the results obtained with the plane-wave method (127×127),

and the dots are the results obtained with the LEGO approach.

In Section 6.6, we have demonstrated that the scattering objects enclosed by the scattering do-

main may be continuous across domain boundaries. As a result, there are no restrictions on the

choice of domain shape as regards the distribution of matter. Consequently, we consider the

continuity of objects across domains in the computation of band structures. As an example, we

have computed the band structure of a square array of dielectric veins in air with εr = 8.9. The

filling ratio is d/a = 0.16 where d is the width of the veins. The configuration is illustrated in

the inset of Figure 6.35. The usual approach to determine the band structure is to consider square

holes inside a dielectricum [95]. In that case the medium properties along the boundary of the
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unit cell are constant. In contrast, here a unit cell is selected such that the dielectric veins cross

the boundary of the cell, similar to the scattering domain shown in Figure 6.30. The fundamental

solution for the scattering of the cross-shaped dielectric object in the unit cell has been computed

with the PMCHW approach, as explained in Section 6.6.
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Figure 6.35: The band structure for a square array of dielectric veins embedded in air with

εr = 8.9 and filling ratio d/a = 0.16 where d is the width of the veins. On the left and right-

hand side the TM and TE bands, respectively. The solid lines are the results obtained with the

plane-wave method (31 × 31), and the dots are the results obtained with the LEGO approach.

The resulting band structure is presented in Figure 6.35. For comparison, the results obtained

by a plane-wave method are included. In the expansion, 31 × 31 plane waves have been used.

The results of the plane-wave method are generally higher in frequency than those of the LEGO

approach. Because the minimization in a plane-wave method applies to a space that is spanned

by a truncated plane-wave expansion, the minimum and thus the frequency will be higher than

the exact one. Clearly, this effect becomes stronger for higher frequencies. Upon increasing the

number of plane waves, the results converge towards the ones obtained with the LEGO approach

(cf. Figure 6.34). Further, observe that some gaps occur in the diagram with the LEGO approach

for large values of fa/c. To avoid this, further fine-tuning is required regarding the parameters

associated with the minimization algorithm that ensues from Eq. 6.10, as these turned out to

dependent on the mesh density.

Finally, let us demonstrate the application to periodic structures involving perfectly conducting

materials. A square array of circular PEC cylinders is considered with filling ratio r/a = 0.187

embedded in air, where a denotes the period of the array and r the radius of the cylinder. The
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Figure 6.36: The TM band structure for a square array of PEC cylinders with filling ratio r/a =

0.187 embedded in air computed with the LEGO approach.

fundamental solutions for a cylinder embedded in free space were computed analytically. The

band structures for the PEC cylinders is shown in Figure 6.36. The results are found to be in

good agreement with the results from the literature [96].
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Chapter 7

3D scattering objects

In this chapter, the integral equations for the scattering from three-dimensional (3D) objects are

investigated and the application of LEGO to full 3D scattering problems is demonstrated. In

Section 4.4, the fundamental propagator operator of the LEGO approach has been discretized.

This was based on the discretized integral operators discussed in detail below. The insight that is

gained through the investigation of the integral equations for perfectly conducting and dielectric

object has been used in the LEGO approach to attain maximum performance, through an optimal

choice of the equivalence principle, the domain shape, the mesh density, the quadrature rule and

the test and expansion functions. Furthermore, the integral equations can also be employed to

construct the elementary scattering operators in the LEGO approach.

7.1 Introduction

From the mapping properties of the integral operators, the restrictions on the the choice of test

and expansion function are determined in Section 7.2. A mesh is generated via a triangulation

of the surface of a scattering object. Throughout, Rao-Wilton-Glisson (RWG) functions are used

to expand the equivalent currents. The Galerkin approach is employed, albeit that also rotated

RWG-functions are considered. To minimize the computational costs of the construction of the

MoMmatrices, and thus the efficiency of the filling process, we aim at maximum efficiency in the

computation of the matrix elements by avoiding redundant integrals and using quadrature rules

that are symmetric with respect to the three vertices of a triangle. In addition, the test and ex-
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pansion integrals are determined in closed form in those cases where the far-field approximation

may be applied. The parts of the test and/or expansion integrals that become singular when the

source and observation point coincide are integrated analytically. There are several approaches

available in literature for the evaluation of integrals involving RWG-functions. In Section 7.3,

we discuss those methods that provide the most efficient and complete expressions.

In Section 7.4, we investigate the influence of the object shape and the mesh density and quality

on the solvability of the MoM-matrix equation and the order of convergence of the accuracy

of the resulting scattered fields for both the EFIE and MFIE formulations. In particular, we

consider plane-wave incidence and point-source excitation. Further, we discuss domain scaling

for a sphere and inspect the combination constant α in the CFIE formulation. We investigate

the solvability and the order of convergence of the numerical approximation of the PMCHW

and Müller formulations for dielectric scattering objects in Section 7.5. The dependence on both

the mesh density and the refractive index is examined. For Müller’s integral formulation, we

consider the use of a specific combination of RWG and rotated RWG functions. Finally, as a

proof of principle, LEGO is demonstrated for a full 3D scattering configuration in Section 7.6.

7.2 Discretization

Let us return to the solvability of 3D integral equations based on the operator L by completing

the evaluation of its mapping properties discussed in Section 3.7. Similar to the original two-

dimensional TE case, the construction of a bounded coercive operator hinges on an appropriate

splitting of the function space. This has to do with the null space of the surface divergence

operator, which consists of surface curls. The Helmholtz decomposition is a useful tool to split

the function space of the surface current density into a subspace that is divergence free and a

subspace that is orthogonal to the divergence-free part. Upon considering the part of the operator

associated with the scalar potential, a static Green’s function can be extracted that acts as the

coercive part for the non-divergence-free part of the function space. Likewise, for the vector

potential of the operator, a static Green’s function can be extracted that acts as the coercive part

for the divergence-free part of the function space. The remaining part of the operator is compact.

See also [97], for smooth open surfaces. For surfaces that are not smooth, investigations are

ongoing [98].
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Next, we consider the restrictions on the choice of the test and expansion functions. To a certain

extent, there is freedom in the choice for the solution spaces of the electric and magnetic current

densities. This freedom originates from the fact that the integral operators can operate on a wide

range of functional spaces. Therefore, it is important to make a suitable choice for the solution

space of the pertaining current densities. For the results to be physically meaningful, the solutions

should correspond to electromagnetic fields with locally finite energy, i.e., the electromagnetic

fields should belong to L2(D). Furthermore, it is desirable to consider Maxwell’s equations on

L2(D) and therefore both the electromagnetic fields and the curl of the electric and magnetic

field should belong to L2(D). In the mixed-potential formulation, the surface divergence acts on

the current density which gives rise to a surface charge density. Hence, it is natural to demand

that both the surface current density and the surface charge density correspond to electromagnetic

fields with locally finite energy. This leads to the definition of the function spaceH−1/2(div, ∂D)

for the surface current density. This space consists of all vectorial functions, that have Cartesian

components and surface divergence belonging to H−1/2(∂D) [99, p. 35], [100].

Since the space H−1/2(div, ∂D) imposes explicit requirements on the surface divergence of the

current densities, the test and expansion functions should have a certain degree of continuity

with respect to the surface divergence. Since the surface divergence is not a uniform derivative

in all spatial directions, the continuity of the test and expansion functions is also not uniform.

A necessary continuity condition for a function f to belong to H−1/2(div, ∂D) is the following.

Let C be a regular closed curve on the boundary ∂D and let ν̂ be a unit vector orthogonal to C
and tangential to the boundary ∂D, then f · ν̂ should be continuous almost everywhere, i.e., f · ν̂
can only be discontinuous at a finite number of discrete points on ∂D. Physically, this condition
implies that line and point charges do not occur in this function-space setting. In the context of

local basis functions, the above requirement implies that the components of the function normal

to the boundary of its support has to be zero. Further, we may deduce from the above that the

expansion function may have a line discontinuity within its support, albeit that the component

normal to that “line” (contour) in ∂D must remain continuous. Further, the expansion functions

should be chosen such that some superposition can approximate the currents reasonably well.

Finally, with respect to the implementation, the choice of expansion functions also depends on

the ease of evaluation of the matrix elements of the MoM-matrix.

An expansion function that meets all these requirements is the well-known Rao-Wilton-Glisson

(RWG) function [101]. The RWG-function spans a pair of adjoining planar triangles Γ±
n , which

cover the areas A±
n and are connected through the nth common edge with base length n, as

illustrated in Figure 7.1. The plus and minus sign designation of the triangles is determined
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by choosing the positive surface current direction to be from Γ+
n to Γ−

n . Here ρ± are the local

position vectors in Γ±
n with respect to the free vertices r±

n of the RWG-function, i.e., ρ± =

±(r − r±
n ) for r ∈ Γ±

n . The RWG-function associated with the nth common edge is defined by

∧n(r) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

n
2A+

n

ρ+
n , r ∈ Γ+

n ,

n
2A−

n

ρ−
n , r ∈ Γ−

n ,

0, otherwise.

(7.1)

The factor n/(2An) normalizes∧n such that the component normal to the common edge has unit

length and is therefore continuous. Further, the component normal to the boundary of its support

is zero. Hence, ∧n is a divergence-conforming basis function that belongs to H−1/2(div, ∂D).

A full description of the RWG-function and further reasons why it is suitable as an expansion

function can be found in [101] and [24, Appendix D.1].

O

ρ+
n ρ−

n

n

r−
n

r
r+
n

Γ+
n

Γ−
n

Figure 7.1: On the left the position vectors associated with the RWG-function fn for the n
th-

common edge with edge length n. On the right the vectorial current behavior on a RWG-function

from Γ+ to Γ−.

In [102], two spatially orthogonal sets of basis functions are used to expand the currents. In

particular, the electric surface current JS was expanded in terms of the RWG-function ∧n, and

the magnetic surface current MS in terms of n̂ × ∧n, which obviously is orthogonal to ∧n.

Although it was claimed that this method yields a more stable solution due to the orthogonality

of the two sets of basis functions, the expansion of the magnetic current in terms of n̂ × ∧n is

incorrect if a solution is sought inH−1/2(div, ∂D). The argument is that, since the RWG-function

∧n is constant and continuous across edges, at the edges of the scattering object, n̂×∧n imposes

continuity ofMS tangential to the boundary ∂D at the edge. This in turn implies that the electric
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field tangential to ∂D, normal to the edge from one patch to another, should be continuous also,

because the electric field is related to the magnetic current by Eq.(2.62b). However, this is not

true if the two patches are not in the same plane. A similar reasoning is applicable for the

expansion of JS with n̂ × ∧n. Hence, n̂ × ∧n is not allowed as a expansion function. This

observation was also made in [103], based on physical grounds. Instead, we shall use the RWG-

function throughout as the expansion function for both the electric and magnetic surface current

densities.

To determine the required properties of the testing functions we have to take into account the

solution space for the current densities and the mapping properties of the integral operators. If

we choose to find solutions inH−1/2(div, ∂D), then the integral operators n̂× L and n̂×K, and

the identity operator I map H−1/2(div, ∂D) onto H−1/2(div, ∂D). As explained before, the test-

ing functions should then belong to the dual space of the range space,H−1/2(div, ∂D). The dual

space ofH−1/2(div, ∂D)may be associated withH−1/2(curl, ∂D) [99, p. 38] if theL2(∂D) inner

product is used to define the duality product. The spaceH−1/2(curl, ∂D) can be characterized in

terms ofH−1/2(div, ∂D), by observing that n̂× I is an invertible mapping fromH−1/2(curl, ∂D)

to H−1/2(div, ∂D) and vice versa. Therefore, any function g ∈ H−1/2(curl, ∂D) can be associ-

ated with a function f ∈ H−1/2(div, ∂D) through g = n̂ × f . Hence, n × g has to satisfy the

condition that ν̂ · (n̂ × g) = g · (ν̂ × n̂) = g · τ̂ is continuous almost everywhere, where ν̂

is the vector orthogonal to a regular closed curve C on ∂D and tangential to ∂D and τ̂ a vector

tangential to C. As such, in terms of RWG-functions, the integral operator n̂ × L is properly

tested with n̂ × ∧n. Recall that there are no continuity restrictions in any direction for the test

and expansion functions applied to the integral operator n̂ × K + I, as argued in Section 3.7.

As a final remark concerning the solvability of the integral equations we emphasize that a further

impediment for a stable numerical approximation of the current density is the circumstance that

the coercive parts of the two terms in the operator L, for the non-divergence-free and divergence-

free part of the function space, have opposite signs. As a consequence, any set of basis and

testing functions that does not take into account the splitting of the function spaces will mix the

two coercive parts and thereby will ultimately destroy the stability of the numerical approxima-

tion. In that case, the condition number of the linear system will blow up for decreasing mesh

sizes, which is known as the low-frequency breakdown effect (Section 5.8). For rooftop and

RWG-functions, the splitting is not accounted for automatically. However by combining sets of

these basis functions into loop-star and loop-tree constructions [54,55,104], the stability may be

resolved.
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Now that suitable test and expansion functions have been chosen, we proceed with the discretiza-

tion of the integral operators. The first step in the discretization process of the surface of an

arbitrarily shaped object is the generation of a mesh. For the RWG-function, this implies a tri-

angulation of the surface. Because triangles are capable of describing any geometrical surface

accurately, they are well suited to approximate the surface of an arbitrarily shaped object. The

resulting triangles are preferably as equilateral and uniform in size as possible, since the relative

mesh density is determined by the largest edge length. Moreover, such uniformity properties

may also improve the solvability of the resulting integral equations [105]. The preferred uniform

size and shape of the triangles make it difficult to construct a mesh generator that can handle

an arbitrary surface shape while providing a good mesh quality. Since the design of a general

mesh generator lies beyond the scope of this thesis, we assume that a (reasonably) good mesh is

available a priori and focus below on the corresponding discretization of the integral equations.

The most commonly supplied mesh format starts with an array containing all vertices of the

mesh, V ertex(v, k), where k ∈ [1, 3] are the indices for the three coordinate components as-

sociated with vertex v. The mesh is complemented with an array of triangles, Triangle(q, j),

where the index j ∈ [1, 3] assigns three vertices v to triangle Γq with area Aq. The orientation

of the normal, n̂, to triangle Γq is determined by ordering the vertices in a counter-clockwise

fashion with respect to n̂. A graphical representation is presented in Figure 7.2 for triangle Γq

with the position vectors rqj associated with the three vertices j ∈ [1, 3] and the outward normal

n̂. Further, j represents the length of edge j opposite to vertex j of Γq.

1

2

3

O

rq1 rq2
rq3

n̂

1

2

3

Figure 7.2: A spatial view of triangle Γq with the normal n̂ and the position vectors of the three

vertices.

The next step concerns the initialization process for the filling of the MoM-matrix, i.e., the as-

signment of each edge and the associated two connecting triangles to a specific RWG function

together with the reference direction of the current normal to that edge. The construction of

one array that relates the edges to the triangles is sufficient to complete the filling process of
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the MoM-matrix, and provides in our view also the most appropriate and efficient approach.

An important topological property of closed surfaces is the Euler-Poincaré characteristic, which

interrelates the number of edges E, vertices V and triangles T , according to

E = V + T − 2 + 2g, (7.2)

where g is the genus of the surface, which may be interpreted as the number of handles attached

to the surface. For the torus, for example, we have g = 1. Further, T is related to E by 3T = 2E.

Since for closed surfaces each triangle is associated with three RWG-functions, it is obvious

that some of the integrals required to determine a matrix element can be reused for other matrix

elements. In fact, each combination of test and expansion integrals associated with a certain test

and expansion triangle pair can be used up to nine times (3 × 3). Accordingly, if one focusses

on pairs of triangles rather than edges, this may lead to a nine-fold increase in efficiency for the

filling of the MoM-matrix, since each combination of triangles is considered only once.

To determine the surface integrals related to the test and expansion function it is convenient to

use a local coordinate system for each individual triangle [106]. Accordingly, we introduce a

new set of normalized area coordinates. The position of a point on the triangle Γq is given by

r =
3∑
i=1

ξir
q
i , where 0 ≤ ξi ≤ 1 with

3∑
i=1

ξi = 1, for r ∈ Γq. (7.3)

Accordingly, only two coordinates are actually independent. The triangle Γq is subdivided into

three subtriangles at r ∈ Γq. The normalized area coordinates are related to the areas of the

subtriangles via

ξi =
Aqi
Aq
. (7.4)

A geometric interpretation can be found in Figure 7.3. Clearly, ξi = 0 at edge i, while ξi = 1 at

vertex i. The surface integral of a function g(r′) across a triangle Γq becomes

∫
Γq

g(r′) dA′ = 2Aq
1∫

ξ2=0

1−ξ2∫
ξ1=0

g(ξ1r
q
1 + ξ2r

q
2 + ξ3r

q
3) dξ1 dξ2, (7.5)

with ξ3 = 1 − ξ1 − ξ2. The factor 2Aq represents the Jacobian.

Next, we express an RWG-function in terms of normalized area coordinates. Unlike in the 2D

discretization process in Section 5.3, there is no one-to-one relation between the triangular mesh
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1
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ξ3 = 1
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1
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�1
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n̂

Figure 7.3: The subdivision of triangle Γq into subtriangles for the definition of the normalized

area coordinates for the local coordinate system relevant to Γq.

elements and the reference direction of the normal component of the RWG-function at a par-

ticular edge. Accordingly, we fix the orientation of the RWG-function on each triangle with

respect to its free vertex, and include the corresponding reference direction of the normal com-

ponent separately. Accordingly, we apply the following transformation of the RWG-function to

the local coordinate system

∧n(r
′) = σqj∧q

j , for r′ ∈ Γq, (7.6)

where σqj is the sign accounting for the reference direction of the current component normal to

the nth-common edge (towards or away). A positive sign is selected if Γ+
n = Γq, and a negative

sign if Γ−
n = Γq. The position vector ρj of the local basis of the RWG-function, ∧q

j , is expressed

in terms of the three edge vectors, �j of Γq, shown in Figure 7.3. The edge vectors of Γq are

defined as

�j = rqj−1 − rqj+1, (7.7)

where the subscripts progress modulo 3, i.e., cyclically around the three vertices of a triangular

element. Further we introduce j = |�j|. Accordingly, ∧q
j reads

∧q
j =

j
2Aq

ρj, where ρj = r′ − rqj = ξj+1�j−1 − ξj−1�j+1, (7.8)

for r′ ∈ Γq. As∧q
j is expressed in terms of constant vectors only, the test and expansion integrals

can be reduced to a sum of scalar integrals. The testing function ∧m involving r is expressed in

a similar local coordinate system. However, to distinguish between the local coordinate systems

associated with the test and expansion functions, the area coordinate ξ and the indices {q, j} are
replaced by the area coordinate η and the indices {p, i} in Eqs. (7.6-7.8) for the definition of the
test function.
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Since the formulation of the integral equations for the scattering from perfectly conducting scat-

terers as well as from dielectric ones is the same for the 3D and the 2D case, the matrix equations

in Section 5.3 are also relevant for the 3D case upon redefining the discretized integral opera-

tors, L,K and I. However, the 3D case is fully vectorial, i.e., the two polarizations are coupled.

Therefore, there is no distinction between the integral operators associated with the electric and

magnetic equivalent currents. On that account, the corresponding discretized integral operators

may differ only due to dissimilarities with respect to the test and expansion functions that are

applied. However, as the electric and magnetic surface currents are both expanded by RWG-

functions throughout, only the difference in the test functions is of importance. In contrast with

the superscript for the discretized integral operators, L,K and I in the 2D case, where it indi-

cates that the operator is used in an electric or magnetic field integral equation with an electric

or magnetic current, the superscript in the 3D-case henceforth indicates the chosen test function.

For instance, LEJ changes into L∧ if tested with the RWG-function, ∧m.

Because the integral formulations for dielectric and perfectly conducting objects involve n̂ × L,

the test functions n̂×fm with fm = ∧m are appropriate in the context of the mapping properties

of L. Accordingly, testing L with ∧m, and expanding the associated surface currents with ∧n,

yields

L∧
v;mn =γv

∫
Γ±
m

∫
Γ±
n

∧m(r) · ∧n(r
′)Gv(r, r

′) dA′ dA

− 1

γv

∫
Γ±
m

∧m(r) · ∇S

∫
Γ±
n

[∇′
S · ∧n(r

′)]Gv(r, r
′) dA′ dA.

(7.9)

Since ∧m has only components tangential to ∂D, the volume gradient of the scalar potential has
been reduced to a surface gradient, which can be diverted to the test function via integration by

parts with respect to the test integral. More specifically, for a scalar function Φ(r), we have∫
Γ±
m

∧m(r) · ∇SΦ(r) dA =

∮
Cm

ν̂ · [∧m(r)Φ(r)] d−
∫

Γ±
m

[∇S · ∧m(r)] Φ(r) dA. (7.10)

where Gauss’ theorem, Eq. (2.14), has been applied to arrive at the first term on the right-hand

side. Further, ν̂ is the outward unit vector normal to the outer contour Cm of Γ± and tangential

to Γ±
m. Because ∧m has no component normal to the boundary of its support, only the last term

on the right-hand side of Eq. (7.10) remains. Thus, with the surface divergence of ∧n in local

coordinates,

∇S · ∧q
j =

j
Aq
, (7.11)
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Eq. (7.9) may be written in local coordinates as

L∧;pq
v;ij = σpi σ

q
j

⎡
⎣γv

∫
Γp

∫
Γq

∧p
i · ∧q

jGv(r, r
′) dA′ dA+

ij
γvAiAj

∫
Γp

∫
Γq

Gv(r, r
′) dA′ dA

⎤
⎦ . (7.12)

Note that L∧;pq
v;ij provides a contribution to the matrix element L

∧
mn with test and expansion com-

mon edges that correspond with edges i and j of Γp and Γq, respectively. The used superscript

indicates that the integral operator L is tested with ∧m. By substituting the expressions for ∧p
i

and ∧q
j in Eq. (7.12), the integrals associated with the vector potential, are conveniently written

as ∫
Γp

∫
Γq

∧p
i · ∧q

jGv(r, r
′) dA′ dA =

2∑
k=1

2∑
�=1

�pi−k · �qj−�Ψpq
v;i+k,j+�. (7.13)

The introduced potential constituent Ψpq
v;ij is given by

Ψpq
v;ij =

1∫
η2=0

1−η2∫
η1=0

1∫
ξ2=0

1−ξ2∫
ξ1=0

ηiξj
e−γvR

4πR
dξ1 dξ2 dη1 dη2, (7.14)

with the distance given by

R = |R̂| = |r − r′| = |η1r
p
1 + η2r

p
2 + η3r

p
2 − ξ1r

q
1 − ξ2r

q
2 − ξ3r

q
3|. (7.15)

Upon recalling that the sum of the three area coordinates of ξ and η is unity, Eq. (7.3), the

integrals associated with the scalar potential in Eq. (7.12) become

∫
Γp

∫
Γq

Gv(r, r
′) dA′ dA = 4

3∑
k=1

3∑
�=1

Ψpq
v;k�. (7.16)

The applied combination of test and expansion function satisfies the mixed-order potential for-

mulation. The MoM-matrix, and therefore the potential constituentΨpq
v;ij , is symmetric, i.e.,

Ψpq
v;ij = Ψqp

v;ji. (7.17)

For each triangle pair, Ψpq
ij involves nine integrals. If these integrals are determined separately,

the focus on triangles rather than on edges does not provide computational advantage. However,

the time required to evaluate each integrand is dominated by the determination of the complex

exponentials. Accordingly, to approach an acceleration by a factor of nine, the corresponding

integrals are computed simultaneously. Hence, it is essential that the same sample points are

used for the explicit edges belonging to a triangle pair. For that reason we employ a specific type
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of Gaussian quadrature rules that are fully symmetric with respect to the three vertices of the

triangle as introduced in [107]

2A

1∫
ξ2=0

1−ξ2∫
ξ1=0

f(ξ1, ξ2) dξ1 dξ2 ≈ A
N∑
n=1

wnf(ξ
(n)
1 , ξ

(n)
2 ), (7.18)

where ξ(n)
1 and ξ(n)

2 are the area coordinates of the nth-sampling point andwn is the corresponding

weight. A table ofN -points Gaussian quadrature formulae for the symmetrically placed integra-

tion points is provided in [108]. Note that the quadrature order required for sufficient accuracy

generally depends on the relative distance between source and observation points.

The rotated RWG-functions used as test functions are defined through

∨m(r) = n̂ × ∧m(r). (7.19)

Note that ∧m and ∨m are point-wise orthogonal in a triangle. Although ∨m is not a suitable

testing function for the integral operator L, it is required in the implementation of the 3D LEGO

concept and the discretization of the 3D Müller formulation.

In the construction of the MoM-matrix elementsLpq;∨v;ij , the derivation of the contribution from the

vector potential is performed in a similar manner as for Lpq;∧v;ij and therefore is left out. However,

the ∨m-counterpart of the scalar potential is somewhat different as ∨m contains, unlike ∧m,

components normal to the boundary of its support. There are two ways of treating the scalar

potential. The most common approach involves integration by parts and the application of Gauss’

theorem [109,110], as performed in Eq. (7.10). In contrast with ∧m-testing, the contour integral

of Cm does not vanish. On the other hand, by basic vector analysis, we have

∇S · (n̂ × ∧m) = (∇S × n̂) · ∧m − n̂ · (∇S × ∧m) = 0, (7.20)

as the surface curl of n̂ and∧m both vanish, i.e., the surface curl of ρi is zero. Therefore, the last

term on the right-hand side of the counterpart of Eq. (7.10) involving ∨m now vanishes. Hence,

with ∨m-testing, the scalar potential in Eq. (7.9) may be written in local coordinates as

σpi σ
q
j

j
γvAj

∫
Cp

τ̂ · ∧p
i

∫
Γq

Gv(r, r
′) dA′ d, (7.21)

with τ̂ being the unit vector tangential to Cp oriented in a counterclockwise fashion with respect
to n̂. The line integrals are to be taken over the entire triangle, as the contributions from the
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common edge of Γ+
m and Γ−

m do not cancel out, because the tangential component of ∧m is dis-

continuous across most of the common edge. A disadvantage associated with the transformation

to a contour integral is that additional integrals are required, i.e., the shared sample points used in

the evaluation of the double surface integrals cannot be used for the computation of Eq. (7.21).

Hence, the introduction of a second set of sample points comprises a computational overhead

regarding the filling process of the MoM-matrix.

Alternatively, if the gradient is diverted to the Green’s function [111], the use of a second set

of sample points may be avoided, which is more efficient. However, the singular behavior of

the integrand of the test integral becomes more pronounced, which would normally increase the

quadrature error. Fortunately, analytic solutions for the associated singular integral parts can

be used instead, leaving regular integrals only (see Section 7.3). In this approach the overall

quadrature error remains small, thus retaining the efficiency of using a single set of sampling

points.

Next, let us consider the weak form of the integral operator K using RWG-functions,

K∧
v;mn =

∫
Γ±
m

∧m(r) ·
∫
Γ±
n

∧n(r
′) × ∇′Gv(r, r

′) dA′ dA, (7.22)

where the gradient of Green’s function is given by

∇′Gv(r, r
′) = (r − r′) [1 + γvR]

e−γvR

4πR3
. (7.23)

Since ∧p
i = r − rpi and ∧q

j = r′ − rqj , we may replace ∧q
j by (r′ − r) + (r − rpi ) + (rpi − rqj)

and rewrite Eq. (7.22) in local coordinates as

Kpq;∧v;ij =

∫
Γp

∧p
i ·
⎡
⎣(rpi − rqj

)× ∫
Γq

∇′Gv(r, r
′) dA′

⎤
⎦dA. (7.24)

By substituting the gradient of Green’s function into Eq. (7.24), it is clear that Kpq;∧v;ij is zero in

case triangles Γp and Γq are located in the same plane, or if the free vertices of the test and

expansion functions coincide. Likewise, by testing the integral operator K with ∨m, ∧q
j would

be replaced by (r′ − r) + (r − rqj). Hence, K
pq;∨
v;ij follows from Eq. (7.24) upon replacing {∨, r}

by {∧, rpi }. When ∧n is used as an expansion function, the support of the identity operator is

r ∈ Γ±
n . Subsequent testing with ∧m or ∨m leads to Ipqij = 0, for Γp = Γq. For coinciding test

and expansion triangles, ∧p
i and ∧q

j , we have

∧q
j = ∧p

i + (rpi − rqj), for Γp = Γq. (7.25)
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The integrals are computed analytically and the result for ∧m-testing is given by [24, Appen-

dix F.1]

I∧;pq
ij =

σpi σ
q
j

2

∫
Γp

∧p
i ·∧q

j dA = δp,qσ
p
i σ

q
j

ij
8A

[ |r1|2 + |r2|2 + |r3|2
12

+
3

4
|rc|−(ri + rj) · rc+ ri · rj

]
,

(7.26)

where we have omitted the superscripts {p, q} in the resulting expression, since Γp = Γq. Further,

rc denotes the centroid of the triangle. Likewise, for ∨m-testing, we obtain

I∨;pq
ij =

σpi σ
q
j

2

∫
Γp

(n̂ × ∧p
i ) · ∧q

j dA = δp,qσ
p
i σ

q
j

ij
24A

n̂ · (�i × �j). (7.27)

For diagonal elements, m = n, Eq. (7.27) implies that I∨
mn = 0, since then i = j, and thus

�i×�j = 0. This means that the testing of the identity operator with∨m functions leads to an ill-

conditioned MoM-matrix. Further, the test functions associated with the integral operator K and

the identity operator I are always orthogonal as a direct consequence of the integral formulation,

i.e., as we have K + n̂ × I, testing with ∧m yields K∧ + I∧.

In case L and K are tested with ∧m functions, the forcing vector for the electric field is given by

Ein;∧
v;m =

∫
Γ±
m

∧m(r) · Ein
v (r) dA. (7.28)

A similar expression is obtained for the incident magnetic field or when testing is performed with

∨m functions. Let us consider incident plane waves, represented in spherical coordinates by

Ein
v =

[
Ein
θ θ̂a + Ein

φ φ̂a

]
eγv(r̂a·r). (7.29)

The introduced unit-amplitude vectors represent the usual spherical coordinates, where the cor-

responding coordinates (θa, φa) indicate the angle of propagation of the plane wave, and r̂a

represents the direction of propagation of that wave. The associated magnetic field H in
v readily

follows from Eq. (2.22). The test integral in Eq. (7.28) can be computed analytically for plane-

wave incidence, i.e., upon substitution of Eq. (7.29), the elements of the forcing vector in local

coordinates read

Ein;p;∧
v;i = σpi

[
Ein
θ θ̂a + Ein

φ φ̂a

]
·
∫
Γp

∧p
i e
γv(r̂a·r) dA. (7.30)

The expressions for the remaining integral are presented in Appendix C.1. If the incident field is

generated by some superposition of electric and magnetic point sources, Ein
k (r) and H in

k (r) are

obtained from Eq. (2.43).
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Since there are no continuity constraints on the test function for K + n̂ × I, testing with ∨m

functions is preferred, since using I∨
mn would lead to an ill-conditioned MoM-matrix. How-

ever, proper testing of L requires Galerkin testing and expansion with ∧n functions. Thus, the

appropriate testing functions for the EFIE and MFIE are orthogonal. The corresponding matrix

equations read

− [Z1L
∧
1 ] [J] =

[
Ein;∧

1

]
, and [K∨

1 + I∧] [J] =
[
Hin;∨

1

]
. (7.31)

respectively. Accordingly, due to the difference in test functions, the EFIE and MFIE are con-

sidered as separate equations in a CFIE-approach, which are combined numerically after dis-

cretization. The matrix equations for the PMCHW and the Müller formulation for the 2D-case,

Eq. (5.48) and Eq. (5.49), respectively, may also be used in the 3D-case. In particular, for testing

with ∧m functions, these equations represent the 3D-case upon replacing the superscripts of the

pertaining integral operators, viz., ∧ for L and K, and ∨ for I. Likewise, the superscript ∧ is

used for the forcing vectors.

Once the current amplitudes Jn and/orMn are determined, the corresponding electric and mag-

netic field distribution follow from the integral representations presented in Section 3.2. For

instance, the exterior scattered fields for the dielectric object follow from Eqs. (3.5) and (3.6).

Substituting the current expansion, Eq. (3.32), back into the integral representations leads to the

following representation of the scattered fields

Esc =
N∑
n=1

[Jn L1 ∧n +Mn K1∧n]Z1, (7.32a)

Hsc =
N∑
n=1

[Mn L1 ∧n −Jn K1∧n] , (7.32b)

for r ∈ D̄. Changing the medium index of Lv and Kv into v = 2, and including a minus sign as

we deal with an interior equivalent state, Eqs. (5.53), produce the total interior fields, r ∈ D.

One is often interested to know how the electromagnetic field behaves for an observer far from

the scattering object. Let r = rr̂, where the unit vector r̂ of the spherical coordinate system

indicates the direction of observation. Then, we may write

|r − r′| =

√
r2 − 2rr̂ · r′ + |r′|2 = r − r̂ · r′ + O

(
1

r

)
(7.33)

as r → ∞. In the far field, the vector potential for a surface current XS follows from∫
∂D

XS(r
′)Gv(r, r

′) dA′ =
e−γvr

4πr

∫
∂D

XS(r
′)eγv(r̂·r

′) dA′ =
e−γvr

4πr
Fv(r)XS, (7.34)
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with Fv being the far-field integral operator with medium index v. Upon applying the relation

∇′eγv(r̂·r
′) = γvr̂eγv(r̂·r

′) and Eq. (2.40) to the definition of the integral operators L and K in

Eq. (3.7), we arrive at their far-field counterparts, resulting in the slant stack transform [112]

Lv(r)XS ≈− γv
e−γvr

4πr
r̂ × [r̂ × Fv(r)XS] , (7.35a)

Kv(r)XS ≈− γv
e−γvr

4πr
r̂ × Fv(r)XS. (7.35b)

The scattered far field is obtained by substituting these far-field approximations in Eq. (7.32).

The far-field properties are used to determine the Radar Cross Section later on. Note that the

far-field integral operator F is also identified in the plane-wave incident field, Eq. (7.30). A

closed form solution for FvXS in case XS is expanded by ∧n or ∨m functions is presented in

Appendix C.1.

7.3 Integration of the singular integrand parts

In the construction of the MoM-matrix equation, the integrand of the test and expansion integrals

exhibits a singular behavior when the source and observation point approach each other, due to

the singularity entrenched in Greens function. Such singularities are preferably avoided in the

numerical evaluation of these integrals. An in the 2D-case in Section 5.4, the integrals that are

integrated numerically are preferably reduced to regular integrals. To this end, the singular terms

of Green’s function are subtracted, i.e.,

G(r, r′) = [G(r, r′) −Gsing(r, r
′)] +Gsing(r, r

′). (7.36)

Accordingly, the first term on the right-hand side is used in the numerical integration, while

analytical solutions are sought for the remaining singular integrals. We employ

Gsing(r, r
′) =

1

4πR
+
γ2

8π
R. (7.37)

Although only the first term on the right-hand side of Eq. (7.36) is singular, the last term has

a discontinuous derivative at R = 0 and is therefore not suited for numerical integration by

Gaussian quadrature rules either. However, for the integral parts that do not involve spatial

derivatives operating on Green’s function, substraction of only the first term suffices if Γp and Γq

have no common vertices.
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The analytical integration of the singular integral parts is more complicated for the full-vectorial

3D-case. Only in case of coincident triangles, analytic expressions for the singular term R−1

of the vector and scalar potential of the integral operator L∧;pq
k;ij are available for the combined

expansion and test integrals. These where first presented in [113], yet, we prefer the signifi-

cantly simpler expressions reported in [114]. For the integration of the singular terms of Green’s

function involving only the expansion integral, analytic solutions have been reported in [115]

and [116] for the L and K operators, respectively. However, the most elegant and complete ex-

pressions in terms of recurrence schemes have recently been presented in [110]. The relevant

(singular) integrals are of the form

Kn
1 =

∫
Γq

Rn dA′, Kn
2 =

∫
Γq

∧q
jR

n dA′, and Kn
3 =

∫
Γq

∇Rn dA′, (7.38)

for n = −1, 1, 3, . . .. The notation is based on [117]. For conciseness, the reported expres-

sions are not repeated here. The analytical expressions for the integrals in Eq. (7.38) are used

in the MoM-matrix. Since we also consider source and observation points close to scattering

objects, these expressions are also used in the forcing vector and the integral representations that

reproduce the scattered field, Eqs. (3.5) and (3.6), respectively.

The singular behavior of the integral operator K is more complicated due to the gradient of the

Green’s function in its kernel. In that case, both terms in Eq. (7.37) for ∇Gsing(r, r
′) lead to

singularities in the expansion integral. Although the remaining kernel of the expansion integral

is regular, and can be integrated numerically, the gradient of the first term on the right-hand

side of Eq. (7.37) poses a problem concerning the test integral. More specifically, in case Γp

and Γq have common points and are not in the same plane, the test integral will be singular.

Since K has no self term (Γp = Γq), this only occurs for edge/vertex singularities in case of

connecting edges/vertices of Γp and Γq. For those cases, the gradient of the singular terms

is subdivided into a surface and a normal gradient, and the test integral involving the surface

gradient is transformed into a contour integral by means of Gauss’ theorem. By integrating both

singular parts analytically, the remaining integrand of the contour integral becomes regular again.

This is elaborated in [110], for both, ∧m- and ∨m-function testing.

Let us finally comment on the efficiency aspect related to the evaluation of the singular parts.

Clearly, as Kn
1 and Kn

3 are independent of the expansion function, their evaluation is required

only once for every r ∈ Γp. Although it may seem that the evaluation of Kn
2 is required for all

three expansion functions associated with Γq, this is not the case. That is, according to [110],

Kn
2 consists of two parts, viz., one part independent of ∧q

j , while the other part involves the



7.4 Perfect electric conductors 241

scalar Kn
1 and a vector projection on Γq. Thus, as Kn

1 is independent of ∧q
j , a single evaluation

of the singular integrals is sufficient for the contribution to all nine integrals associated with a

triangle pair. Hence, the separate treatment of the singular and regular integrand parts will not

compromise the gain in efficiency by considering triangles rather than edges.

7.4 Perfect electric conductors

In this section, we consider the individual integral operators, L and K + n̂ × I, that occur in the

EFIE and MFIE formulations for the electromagnetic scattering from perfect conductors. The

solvability of the MoM-matrix equation and the order of convergence of the accuracy of the

resulting scattered fields are investigated, subject to the mesh density and quality. In particu-

lar, the far and near fields are considered for plane-wave incidence and point-source excitation.

Further, the dependence of the condition number and the accuracy of the scattered near field on

the combination constant α in the CFIE formulation is inspected. In addition, the effect of a

simple matrix equation scaling to improve the condition number of the MoM-matrix in case of

non-uniform edge-lengths is investigated. In the LEGO-concept we are primarily interested in

fields generated by equivalent currents, and not in the equivalent currents itself. Therefore, we

are not concerned with the accuracy of the equivalent currents.

Figure 7.4: The sphere, cube and cross shape of the scattering object in consideration.

Before we proceed with the analysis of the EFIE and MFIE, let us first elucidate the 3D frame-

work in which the analysis is carried out by means of the basis mesh shapes depicted in Fig-

ure 7.4. As a point of departure, the dependence on the smoothness of the exact boundary of
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the scattering object is investigated by considering three different object shapes, viz., a sphere, a

cube and a cross. Their maximum electromagnetic size is set to 0.4λ. For this particular choice,

none of the three shapes support interior resonances. To gain a perception of the coarseness of

the various object shapes with respect to their electromagnetic size, the illustrated mesh sizes

amounts to roughly 20 points/λ and are shown with corresponding scale.

To analyze the near-field properties of the scattering objects, the scattered field is evaluated at

discrete points on an observation surface ∂Do. This observation surface encloses a cubical shape

with edge length 0.5λ, where the evaluation points are distributed at the vertices of a scaled

version of the cubical mesh in Figure 7.4. As error criterion for the scattered field, the following

normalized error is employed,

norm. err. =

√√√√√√√√√

∫
∂Do

|Eref − Enum|2 + Z2
0 |Href − Hnum|2 dA

∫
∂Do

|Eref |2 + Z2
0 |Href |2 dA

. (7.39)

In all cases, 100 evaluations points are taken on each face of the observation cube. To investigate

the near-field properties, the incident field is generated by a unit-amplitude electric point source,

positioned at a corner of the observation box. The point source is directed outwards in the radial

direction. Since the observation surface and the point of excitation are situated within 0.05λ

away from the scattering object, the near field is strong at the sampling points on the observa-

tion cube. In case the scattering object is a sphere, analytical solutions are used as the reference

solution in Eq. (7.39). The scattered field from a sphere due to a point-source excitation is eval-

uated in Appendix B.2. For other object shapes, a sufficiently converged solution will be used,

bearing in mind that the applied expansion functions are ultimately dense in the solution space

of the integro-differential operators. With reference to Section 7.2, H−1/2(div, ∂D) represents

the solution space that is associated with a current expansion using RWG functions.

As with the 2D case, attention is focused on the error generated by the mapping properties of the

involved integral operator, the applied discretization, and the smoothness of the exact boundary.

To exclude the quadrature error in the following analysis, the numerical integration of the test and

expansion integrals associated with the MoM-matrix, the forcing vector, and the scattered field

representation, is performed with adaptive quadrature rules, viz., the routine D01PAF of the NAG

Mark 20 library [118], which specifically deals with triangular domains and is an implementation

of the n-point (n = 1, 4, 10, 20, 35, . . .) Gaussian quadrature rule. The involved integral kernels

are regular, because the singular integrals are extracted, as discussed in Section 7.3.
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We now turn our attention to the order of convergence of the scattered fields generated by the

approximate equivalent currents J via the integral representations Eq. (7.32). In Figure 7.5, the

normalized error in the scattered field at the observation surface ∂Do is shown as a function of

the mesh density for the three object shapes depicted in Figure 7.4, with on the left the EFIE, and

on the right the MFIE results. The indicated number of points per wavelength reflects the ratio

between the wavelength and the average edge length. It should be pointed out that the number of

unknowns N increases quadratically with respect to the relative mesh density.

10
1

10
−4

10
−3

10
−2

10
−1

10
0

 

 
SPHERE
CUBE
CROSS

no
rm
.
er
r.

points/λ
10

1
10

−4

10
−3

10
−2

10
−1

10
0

 

 

SPHERE
CUBE
CROSS

no
rm
.
er
r.

points/λ

Figure 7.5: The normalized error as a function of the mesh density for the EFIE (left) and MFIE

(right) for the sphere, cube, and cross.

In contrast with the 2D version, where the order of convergence reduces with an increasing loss

of smoothness in the exact boundary, the EFIE converges quadratically, irrespective of the bound-

ary shape. The stronger non-smoothness of the cross with respect to the cube translates itself into

a decrease in magnitude only. On the other hand, the order of convergence of the MFIE remains

subject to the smoothness of the boundary. In particular, the MFIE converges asO(N−1.9) for the

sphere and O(N−1.2) for the cube and cross. The decrease in convergence is more pronounced

than for the 2D case involving ∧∧-discretization (cf., Figure 5.9). The difference may be at-
tributed to the use of dissimilar types of test- and expansion functions. Namely, although the

3D expansion function ∧n is linear in one direction, it is constant in the other direction, i.e., the

RWG-function is complete to the zeroth order only. According to Cea’s lemma, the equivalent

current therefore converges linearly, albeit that the linear direction of the expansion function ∧n

may improve this lower-bound convergence. The testing of the identity operator emphasizes

the constant direction of the expansion function ∧n. For instance, proper testing of the identity

operator involves the duality product, 〈∧m,∨n〉, where the point-wise orthogonality of ∧m and
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∨n for n = m implies that the direction in which ∨n is constant is the direction in which ∧m

is linear as opposed to the product of both linear directions, as was the case for L. Apart from

that, the loss of smoothness of the approximate boundary of the sphere in relation to the circular

cylinder may play a role here as well. These reasons may have caused the poor results of the

MFIE.

The apparent improved convergence of the EFIE for a dense mesh of the cross and cube is slightly

misleading, as the mesh density approaches that of the applied reference solution. This is not the

case for the MFIE, as the EFIE results have been as a reference solution, because of its superior

performance. Despite the less smooth boundary of the cross, the results with the EFIE are more

accurate than those for the cube, albeit only in magnitude. This is probably due to the fact that

the cube is positioned closer to the electric point source. Moreover, the distance between the

observation cube and the cube itself is 0.05λ, while this is only locally the case for the surface

of the cross. Finally, the error decay rate obtained for the sphere is bounded by the geometrical

error created by the approximate boundary of the sphere.

Next we consider the solvability of the EFIE and MFIE in terms of the condition number of the

MoM-matrix. Accordingly, in Figure 7.6 the condition number as a function of the mesh density

is shown for the EFIE and MFIE. The condition number of the EFIE increases quadratically,

and appears largely insensitive of the boundary shape. For the the MFIE on the other hand, the

condition number is virtually independent of the mesh density, but its magnitude increases with

decreasing boundary smoothness.
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Figure 7.6: The condition number as a function of the mesh density for the EFIE (left) and MFIE

(right) for the sphere, cube, and cross.
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Next, let us consider the impact of the type of discretization on the condition number of the

MoM-matrix and the accuracy of the scattered field, i.e., the size and shape of the triangles. To

this end, the results from three different approaches in the construction of a mesh for a sphere are

compared. In addition, the improvement of domain scaling is considered (otherwise the attain-

able accuracy is bounded by the geometrical error of the approximate boundary). In Figure 7.7,

a graphical illustration of the three considered types of sphere meshes are shown. The one on the

left, denoted as SPHERE1, is obtained by minimizing the sum of squared distances between the

vertices and the vertices in their simplicial stars. An alternative, commonly used way to generate

a mesh for a sphere is the projection of the mesh of a cube onto the surface of the sphere [24].

The resulting type of mesh, indicated as SPHERE2, is depicted on the middle in Figure 7.7.

Finally, one of the earliest and easiest meshes used for a sphere [101] is shown on the right of

Figure 7.7, denoted by SPHERE3. This type of mesh readily follows by splitting up the surface

via equally sized discrete steps along the θ̂- and φ̂-directions.

Figure 7.7: Three different types of meshes for a sphere. On the left, the sum of squared distances

between the vertices and the vertices in their simplicial stars is minimized. In the middle, the

mesh of a cube is projected onto the surface of the sphere. On the right, the straightforward

splitting up of the surface via equally sized discrete steps along the θ̂- and φ̂-directions.

In Figure 7.8 the normalized error as a function of the mesh density is shown for the three mesh

types with the domain scaling proposed in Section 5.5. First of all we observe that, like the 2D

case for the circular cylinder, an improvement of the order of convergence from quadratic to cu-

bic order in case of domain scaling for the EFIE. This feature particulary occurs for SPHERE1,

and to a lesser extent for SPHERE2. However, observe further that the order of convergence

varies and appears to decline with further mesh refinements for SPHERE1 and SPHERE2. This

saturation may be completely attributed to the fact that not all triangles are equilateral and equally

sized. In particular, as the scaling applies to the average triangle shape and size, the relative im-

provement of domain scaling diminishes upon increasing the mesh density as the surface irreg-
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ularity raised by the dissimilar triangles becomes more important than the change in volume by

the (decreasing) scaling factor. Nonetheless, SPHERE1, which contains the nearest to equilateral

equally sized triangles outperforms the other mesh types. Note that the difference in scaling fac-

tor of the three spheres reflects the superiority of SPHERE1 and the saturation of the improved

convergence. More specifically, for a corresponding mesh size, the mesh having the smallest

scaling factor provides the best overall approximation of the surface. Likewise, the saturation in

convergence corresponds with a saturation in scaling factor.
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Figure 7.8: The normalized error as a function of the mesh density for the EFIE (left) and MFIE

(right) for three different kind of sphere meshes.

However, applying domain scaling has not improved the results for the MFIE. If the radius of

the discretized sphere is varied between its inner and outer spherical enclosure, the optimum

scaling of the EFIE occurs indeed with domain scaling, whereas the optimum scaling factor for

the MFIE occurs at a radius larger than the outer closure of the initial mesh, for which we have

no convincing explanation. In comparison with Figure 7.5, domain scaling yields only a minor

improvement in magnitude for the MFIE. The impact of the mesh quality is therefore of minor

importance for the accuracy of the MFIE.

The dependence of the condition numbers of the MoM-matrices on the mesh density is shown

in Figure 7.9. It is clear that the mesh quality also affects the condition number, especially for

SPHERE3, for which the condition number increases with two orders of magnitude for both

the EFIE and MFIE formulation. This may be attributed to the strong dissimilarity between the

triangle shapes and sizes. In particular, comparing the ratio between the largest and smallest edge

length of SPHERE3, we remark that this ratio increases quadratically as the mesh is refined. To
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reduce the increase in condition number of the MoM-matrix due to the non-uniformity in edge

length, we point out a simple additional scaling of the corresponding matrix equation. The

scaling amounts to the division of each row m of the matrix equation by the edge length m.

Applying the proposed scaling to SPHERE3 led to the improved results indicated by SPHERE3*

in Figure 7.9. With reference to Figure 7.6, the scaling decreases the magnitude of the condition

number for the EFIE, while the curve of the condition number for the MFIE flattens.
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Figure 7.9: The condition number as a function of the mesh density for the EFIE (left) and MFIE

(right) involving three different kind of sphere meshes.

Let us further comment on the combination constant α in the CFIE formulation. An α ranging

between 0.2 and 0.8 is commonly referred to as an overall good choice to sufficiently suppress the

interior resonances of the individual EFIE and MFIE. However, little attention has been given

to impact on the accuracy of the scattered field, especially the near field, subject to scatterers

involving smooth and non-smooth boundaries. In addition, it is often claimed that the CFIE

yields a smaller condition number [119]. In view of the poor results of the MFIE with respect

to the EFIE, a similar accuracy as with the EFIE seems improbable with the CFIE. Apart from

that, insufficient accuracy of the test and expansion integrals due to low-order quadrature rules or

improper handling of the singular integrand parts may have influenced earlier reported findings.

For this reason, we determine an optimal choice for the combination constant α of the CFIE. In

Figure 7.10 the normalized error (left) and the condition number of the MoM-matrix of the CFIE

has been plotted as a function of α for the unscaled sphere, the cube and the cross. Recall that

CFIE=MFIE for α = 0 and CFIE=EFIE for α = 1. Hence, the accuracy of the scattered field

produced by the CFIE formulation is clearly inferior to that of the EFIE, irrespective of the value

of α. This is not strange as the order of convergence of the EFIE exceeds that of the MFIE for
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the cube and cross. The difference only increases for a denser mesh. This would also have been

the case if we had applied domain scaling to the sphere. Hence, with respect to performance,

the EFIE should only be used in combination with the MFIE in case interior resonances could

emerge. Even then, the parameter α should be chosen as large as possible, yet small enough such

that the MFIE can still suppress the interior resonances associated with the EFIE.
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Figure 7.10: The normalized error (left) and condition number (right) of the CFIE as a function

of the combination constant α.

Next, let us consider the performance of the integral equations in the far field by determining

the Radar Cross Section. The Radar cross section is a measure of the strength of radar signals

reflected from a target in the direction of the radar receiver. In particular, it is a measure of the

ratio of backscatter power per unit solid angle in the direction of the radar (from the target) to

the power density that is intercepted by the target. In terms of the scattered and incident field,

the RCS, indicated by σ, is defined as

σ(r̂, r̂a) = 4π lim
r→∞

r2 |Esc(r̂, r̂a)|2∣∣Ein(r̂a)
∣∣2 . (7.40)

The factor 4π stems from the definition of the solid angle. Note that the definition in Eq. (7.40)

refers to the scattered field in the far-field region. The special case σ(r̂a, r̂a) is called the mono-

staticRCS. If the RCS is determined for various directions r̂, while the incident field, and thus r̂a,

remains fixed, this is referred to as the bistatic RCS. In case of test and expansion by∧m and∨n,

respectively, the incident and scattered far-field is determined analytically via the expression de-

rived in Appendix C.1. Here, we assume that the incident plane wave propagates in the negative

ẑ-direction, i.e., r̂a = ẑ. The bistatic RCS is normalized with respect to the geometrical cross-

section of the scattering object. For a sphere with a radius a, the geometrical cross section is πa2.
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Further, the RCS is often considered in decibels by the relation σdB(r̂, r̂a) = 10 log10 σ(r̂, r̂a).

Due to the symmetry of the scattering objects at hand and the incident field, only two polar-

izations are of interest, i.e., the planes tangential to the E- and H-plane cross-sections of the

incident plane wave.

Since an RCS may contain zeros, an error criterion like Eq. (7.39) is inadequate as the error

would blow up at the zero crossings. Therefore, we apply the following average error norm for

the bistatic RCS

ErrRCS =

π∫
θ=0

∣∣σref
dB − σnum

dB

∣∣ dθ, (7.41)

which returns the average RCS error in dB of both polarizations. As a reference solution for the

RCS of a sphere, exact solutions also known as the Mie series [120] are available. For the other

scatterers, results obtained with a relatively dense mesh are used as a reference solution.

As an example, consider the RCS plots depicted in Figure 7.11. On the left-hand side, the RCS is

shown for a sphere with ka = 7.6, obtained with the EFIE involving a mere 288 unknowns. The

Mie-series exact solution is plotted for comparison. The relative mesh density of the sphere is

quite coarse, i.e., with 2.5 points per wavelength, the smallest edge-length just satisfies Nyquist

criterion. Nevertheless, the average RCS error is only 0.16dB. Naturally, below the Nyquist

criterion the accuracy rapidly decreases, while with 450 unknowns (3.1 points per wavelength),

the error already drops to 0.07dB. In [24] the same RCS is depicted in Figure 3.6. However,

there the midpoint rule was applied to evaluate the test integral and not all singular integral parts

were computed analytically. Despite that this reduces the evaluation time of a matrix element,

a similar accuracy as achieved in Figure 7.11 is not nearly achieved for 3042 instead of 288

unknowns. Thus, the computation time gained by an efficient (but less accurate) evaluation of

a single matrix element is lost due to the increased matrix size required to obtain an accuracy

similar to the one obtained for small quadrature errors. Hence, by proper handling of the singular

test and expansion integral parts in conjunction with adequate quadrature rules for the remaining

regular parts, the MoM-matrix can be kept relatively small. We emphasize that such a reduction

of the required number of unknowns is highly beneficial for the 3D implementation of the LEGO-

approach demonstrated in Chapter 6, since the computational cost are then governed by the

multiplication of MoM matrices.

On the right of Figure 7.11, the RCS of a cube is shown with kd = 3, where d is the edge length of

the cube. The average relative mesh density is about 7 points per wavelength with 288 unknowns,

which yields an accuracy of less than 0.12dB error. For a comparison, a well-converged reference
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Figure 7.11: The normalized bistatic RCS, σdB, for theE- andH-plane cross-sections of a sphere

with kr = 7.6 (left) and a cube with kd = 3 (right) involving both 288 unknowns.

solution is shown as well. The non-smoothness of a scattering object also increases the error in

the far-field region. A relatively coarse mesh density with the low quadrature error of the adaptive

quadrature rules (10−2) already leads to quite reasonable results. Unfortunately, like the near-

field, the (not shown) far-field results from the MFIE are inferior to those of the EFIE.

Let us now consider the frequency dependence of the integral equations and the suppression of

the interior-resonance modes by means of the CFIE. For the combination constant of the CFIE,

we apply the commonly applied choice, α = 0.2. The frequency dependence of the sphere is

expressed in terms of its electromagnetic size, viz., ka. Accordingly, the average RCS error

and the condition number of the MoM matrix in case of a domain-scaled sphere is depicted in

Figure 7.12, as a function of ka. Observe that, unlike the 2D case involving a single polarization,

the EFIE and MFIE resonances occur at the same discrete frequencies, as argued in Section 3.4.

The interior resonances of a sphere occur at the zeros of the spherical bessel functions jn(kr)

and j′n(kr), for n ∈ N . Despite the coinciding resonance conditions for the EFIE and MFIE,

the CFIE remains free of interior resonances, which can be seen upon inspecting the condition

number and accuracy. Notice that in the region where the mesh is coarse with respect to the

wavelength, around ka = 8 and ka = 9, the resonant current of the EFIE does produce an error

spike in the RCS despite that based on Eq. (3.19) an EFIE resonant current theoretically produces

a zero scattered field. For such coarse meshes, the resonant current generates a nonzero field due

to the geometrical error of the approximate boundary.
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Although the condition number of the CFIE is less than that of the EFIE and MFIE, the accuracy

follows that of the (poor) MFIE results. As such, regarding the accuracy, the EFIE is preferred.

Hence, like the comments on the near-field behavior, the MFIE should only be used in combi-

nation with the EFIE to suppress the interior resonances of the latter as a “regularizer”. Even

then, the parameter α should be chosen as large as possible to maintain a reasonable accuracy.

However, upon enlarging the electromagnetical size of the scattering object, ka, the density of

resonant frequencies increases, so that it becomes increasingly difficult to avoid these interior

resonances. Moreover, the exact resonance frequency of the approximate mesh varies slightly

for different mesh densities. This comment also applies to the cube and cross shapes, where the

exact and approximate boundaries coincide. Hence, the chance of hitting such an interior reso-

nance rapidly increases. Above ka = 6, the condition number is no longer inversely proportional

to O(N2), due to the density of resonances at higher frequencies. For such high frequencies, the

application of the CFIE becomes inevitable. Furthermore, the solvability may become an issue

in case of iterative solvers, in which case the more robust CFIE should also be chosen. With-

out domain scaling of the sphere, the EFIE remains superior to the MFIE, though to a smaller

extent than shown in Figure 7.12, since the accuracy of the EFIE is in that case bounded by the

geometric error of the approximate boundary.
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Figure 7.12: The RCS error (left) and condition number (right) as a function of the frequency in

terms of ka.
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7.5 Dielectric objects

Next, let us investigate the solvability and the order of convergence of the numerical approxi-

mation of the 3D PMCHW and Müller formulations. The differences in comparison to their 2D

counterparts and the properties of the individual EFIE and MFIE integral operators will be eluci-

dated. In addition, we investigate the use of a specific combination of∧m- and∨m-test functions

for Müller’s integral formulation.

In Section 5.8, it has been demonstrated that by using Müller’s formulation the low-frequency

breakdown in the PMCHW formulation is avoided, which yields a stable condition number of

the associated MoM-matrix with respect to mesh density. This is also the case for the 3D version

of Müller’s formulation. In particular, the gradient of the series expansion of the exponential

function in the Green’s function, can be written as

∇ [G1(r, r
′) −G2(r, r

′)] =
1

4π
∇
[ ∞∑
n=0

(−1)n
Rn−1

n!
(γn1 − γn2 )

]

=
1

4π

∞∑
n=2

(−1)n(n− 1)
Rn−3

n!
(γn1 − γn2 ) (r − r′).

(7.42)

The leading term in Eq. (7.42) is constant in space and depends on ω. Hence, in Müller’s for-

mulation the singular terms cancel each other. As a consequence, the low-frequency breakdown

is thereby naturally avoided, since the scalar potential has the same frequency dependence as

the vector potential, viz., they are both O(ω). As a consequence, the condition number of the

MoM-matrix should be largely insensitive to changes in the mesh density.

In the following analysis of the boundary integral equations, the same framework is applied as in

the case of the perfect conductor. In particular, we consider the basis configuration depicted in

Figure 7.4. The surface boundary shapes shown in that figure are also considered for the scatter-

ing dielectric object. Because we now have an interior (index 2) and exterior medium (index 1),

the electromagnetic size of the scattering object is fixed with respect to exterior domain, i.e., the

largest dimension of the objects is set to 0.2λ1. The observation surface is placed 0.05λ1 away

from the scattering objects. Accordingly, the edge length of the observation cube is 0.3λ1 Along

the observation surface, Eq. (7.39), is employed as a measure for the accuracy of the obtained

scattered field by means of a normalized error. In Section 5.8 we have observed that an interior

cavity mode leads to a similar decrease in accuracy of the interior and exterior scattered field

regardless of whether the PMCHW or Müller formulation is used. For simplicity, we restrict

ourselves to the exterior observation cube. Throughout, the medium properties of the exterior
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domain are those of free-space, i.e., ε1 = ε0 and μ1 = μ0. An electric point source located at a

corner of the observation cube and oriented outwards in the radial direction is employed as the

source that generates the incident field. Unless mentioned otherwise, the refractive index of the

interior medium n2 is set to n2 = 4. Finally, the additional matrix-equation scaling for Müller’s

formulation, as proposed in Section 5.3, is used throughout, as the improvement in the condition

number has already been demonstrated in Section 5.8.

Since the accuracy of the scattered field also depends on the dielectric contrast, let us first con-

sider the normalized error in the scattered field and the condition number of the corresponding

MoM-matrix as a function the refractive index. The results for the domain-scaled sphere are

depicted in Figure 7.13. The exterior medium properties remain unchanged, n1 = 1. On the left

we have, μr;2 = 1, and on the right we have εr;2 = 1. The applied number of mesh elements is

N = 288, which implies an average edge length of 0.04λ1 for the exterior medium. Further, in

Figure 7.14, the condition number of the corresponding MoM-matrices is shown as a function

of the refractive index n2. The condition number of the MoM-matrix for an ε-contrast is the

same as for a or μ-contrast, because one follows from the other upon exchanging the diagonal

submatrices and the off-diagonal submatrices, some with a change in sign.
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Figure 7.13: The normalized error as a function of the refractive index n2 of a (scaled) sphere

for the Müller and PMCHW formulation with on the left, μr;2 = 1 and on the right, εr;2 = 1.

Like in the 2D-case, cavity resonant modes arise, albeit not as many since the sphere is chosen

electromagnetically smaller, (0.2λ1), than the 2D circular cylinder, (0.9λ1). We have argued

that at resonance the interior medium properties (larger refractive index) determine the effective

relative mesh density. In the 2D-case, Müller’s formulation proved to be superior to the PMCHW

formulation with respect to solvability and accuracy for small dielectric contrasts. The poor
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Figure 7.14: The condition number as a function of the refractive index n2 of a (scaled) sphere

for the Müller and PMCHW formulation with μr;2 = 1.

results of Müller’s formulation in the 3D case with respect to those of PMCHW’s formulation

are primarily due to the integral operator K + n̂ × I, as has been demonstrated in Section 7.4.

Without domain scaling, the accuracy of both formulations is comparable, since in that case

the geometric error is the limiting factor. Furthermore, observe that the frequencies at which

the resonance modes occur are slightly different depending on which integral equation is used.

The difference may be attributed to the dissimilar mapping properties of the formulations in

conjunction with the irregularities of the approximate boundary surface.

In Section 5.8, we remarked that the condition number of Müller’s MoM-matrix is a measure

for the accuracy of the scattered field and the smoothness of the exact boundary. More specifi-

cally, due to the cancellation of singular integral parts of the scalar potentials of L1 and L2, their

combination is, like the K operator, a compact pertubation of the identity operator. Hence, the

condition number of Müller’s MoM-matrix is primarily determined by K∧ +I∨. However, only

one of the two spikes in the condition number reoccurs in the error of the scattered field in case

of the ε-contrast. The first spike is absent since the associated cavity mode is apparently not

excited by the electric point source oriented along the radial direction. In case of the μ-contrast,

both cavity modes are excited. Hence, the behavior of the condition number is only a measure

for the accuracy of the scattered field if the incident field excites the corresponding cavity modes.

In the LEGO approach, the excitation generally involves superpositions of surface sources, such

that a possible cavity mode will probably be excited. Hence, both the condition number of the

MoM-matrix and the accuracy of the scattered field may be used to locate resonances.
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On the other hand, the condition number of the MoM-matrix associated with the PMCHW for-

mulation is almost constant. Although one intuitively would expect that the condition number

decreases as the relative (interior) mesh density decreases for an increasing refractive index, the

condition number depends on the denser but fixed relative mesh density of the exterior medium.

In the 2D case we have observed an dependence of the condition number of PMCHW’s formula-

tion on the medium parameters. This is no longer true in the 3D case because of the presence of

a scalar potential for both the electric and magnetic equivalent currents. Recall that Müller and

PMCHW are dominated by the respective K and L operators, and that the L-operator contains the

scalar potential. This explains the difference in the behavior of the condition number. However,

for coarse meshes or non-smooth boundaries both formulations are dominated by the K-operator.

Hence, in those cases both formulations show a similar behavior with respect to the condition

number.

Next, we compare the scattered field obtained using the Müller and the PMCHW formulations.

In Figure 7.15 the normalized error in the scattered field is shown as a function of the number

of unknowns due to the scattering from a domain-scaled sphere, a cube, and a cross. On the

left and right, we have shown the Müller and the PMCHW formulation, respectively. On the

top μr;2 = 1, εr;2 = 16, and on the bottom μr;2 = 16, εr;2 = 1. The PMCHW results are more

accurate and have been used as a reference solution. As a result, the improvement in convergence

rate for the PMCHW formulation as the mesh for the cube and cross shapes become denser is

slightly misleading. Because the integral formulations are symmetric with respect to the type of

material contrast (ε versus μ), the resulting difference in convergence and magnitude may solely

be attributed to the dissimilar field distributions, whereas the difference in formulations is related

to the dissimilar mapping properties of the dominant integral operators.

The domain scaling of the sphere yields no improvement in convergence for Müller’s formula-

tion. In Section 7.4, we have observed that the results using the MFIE could not be improved via

domain scaling. The same phenomenon applies to Müller’s formulation, since it primarily de-

pends on the K-operator. Since the integral operator L is dominant in the PMCHW formulation,

the domain scaling leads to an increase in the convergence rate by one order, i.e., from quadratic

to cubic. Again, due to the irregularity in shape and size of the triangles of the approximate

boundary (mesh quality), this improvement is not preserved when the mesh is refined further.

For the PMCHW formulation, the order of convergence depends on the mesh density. The strong

convergence of the scattered field observed with a μ-contrast for the cube, quartic, and cross,

cubic, at the coarser end is caused by the fact that the overall error of the equivalent currents
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Figure 7.15: The normalized error as a function of the mesh density for the PMCHW (left) and

the Müller (right) formulation, with on the top and bottom an ε- and μ-contrast, respectively.

for coarse meshes is not yet dominated by the error generated at the corners where the current

may become discontinuous and singular. Beyond eight points per wavelength, the convergence

is only linear. Although the convergence rate eventually seems to improve with further mesh

refinement, this observation is not obvious as there is also an improvement from the fact that the

PMCHW formulation has been used to generate the reference solution. The magnitude of the

error with Müller’s formulation is significantly larger than with that of PMCHW. On the other

hand, the order of convergence with Müller’s formulation is less sensitive to the mesh density. In

particular, the order of convergence gradually seems to increase towards a quadratic one.

A difference with the 2D case is that the performance of the PMCHW formulation is throughout

superior to that of Müller. This discrepancy may be attributed to the difference in behavior of
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the individual L and K + n̂× I operators, as observed for the 3D EFIE and MFIE in Section 7.4,

respectively. This is not the case for the 2D-counterpart involving the ∧∧-discretization. So,
if the 3D EFIE and MFIE results would presumably have been comparable, the PMCHW and

Müller formulations would yield comparable results for the 3D implementation as well. Hence,

such an equalization of the two integral operators might be achieved using a different choice for

the test and/or expansion function.

Next, we evaluate the condition number of the MoM-matrix associated with the PMCHW and

Müller formulations as a function of the mesh density for the sphere, cube, and cross shape. A

similar behavior is observed with respect to their 2D counterparts or in relation to the individual

integral operators. In particular, the condition number for the PMCHW formulation increases

quadratically. Further, it is hardly affected by the non-smoothness of the boundary. The condition

number for Müller’s formulation is independent of the mesh density. However, it is affected

by the non-smoothness of the boundary and possible cavity modes. Observe that because the

condition number for the cube exceeds that for the cross, even though the accuracy for the cube

is better than for the cross, the frequency of operation must be near a resonance frequency of the

cube.
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Figure 7.16: The condition number as a function of the mesh density for the PMCHW (left) and

the Müller (right) formulation.

In an attempt to bring the accuracy of Müller’s formulation up to par with that of the PMCHW

formulation, we may try a linear combination of the∧m and∨m test functions, as that may prove

to be a better choice than ∨m alone. Namely, since ∧m properly tests the integral operator L,

whereas ∨m improves the condition number of the MoM-matrix, mixing these properties may
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turn out better. To that end, we evaluate the linear combination β ∧m +(1 − β)∨m, as a test

function. The normalized error in the scattered field and the corresponding condition number of

the MoM-matrix as a function of the combination factor β is depicted in Figure 7.17 for an ε-

contrast. The most striking feature is the increased error and condition number around β = 0.9.

Because this feature occurs for all three object shapes at about the same combination factor,

this may indicate a fundamental error in the combined test function, i.e., the vector orientation

of the combined test function may be inadequate to properly test the integral operators and/or

the incident field. The same feature emerges when both test functions are subtracted instead of

added. Despite the poor results around β = 0.9, the error for all three object shapes is reduced

around β = 0.7 with respect to the original β = 0 case, while the low condition number of β = 0

is maintained. Unfortunately, the optimum mixing ratio does depend on the mesh density.
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Figure 7.17: The normalized error (left) and the condition number (right) as a function of the

combination constant for the applied test function in the Müller formulation.

To investigate the dependence of the optimum mixing ratio on the mesh density, we consider

the normalized error in the scattered field from a cube and the condition number of the corre-

sponding MoM-matrix, depicted in Figure 7.18. For an ultimately dense expansion function, the

convergence rate represents a minimum based on Cea’s Lemma. This poor convergence rate is

eventually attained for β = 1. Finally, in case β = 1, the identity operator is poorly tested, pro-

ducing contributions to the off-diagonal elements only. The figure shows that ultimately β = 0

is the optimum choice. In view of the faster rate of convergence for β = 0, a linear combination

of ∧m with ∨m provides no advantages over using ∨m only.
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Figure 7.18: The normalized error in the scattered field of the cube (left) and the condition

number of the MoM-matrix (right) as a function of the mesh density. The Müller formulation is

applied for various combinations of ∧m- and ∨m-test functions.
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Figure 7.19: The normalized bistatic RCS of a sphere with k1r = 6, ε2;r = 16 and 2.8 points/λ2.

Finally, let us consider the bistatic RCS of a dielectric scattering object. In Figure 7.19 the bista-

tic RCS is depicted with k1a = 6. The results are produced with the PMCHW formulation and

compared with the exact solution of the MIE-series. The average RCS error of both polariza-

tions is just about 0.04dB with a modest 2.8 points per wavelength, given the error criterion in

Eq. (7.41). In case of an internal resonance as was the case in Figure 7.13, at leats eight points

per wavelength are required. As with the perfect electric conductors in Section 7.4, an accurate
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MoM-matrix element computation error prevents an unnecessarily dense mesh, yielding opti-

mum performance with respect to computational and memory costs. This is an important issue

in the 3D LEGO approach. The minimum required mesh density for an accurate rendition of the

scattered far-field depends on the smoothness of the scattering surface. Further, the geometric

error caused by the fact that the approximate and exact boundaries do not coincide for smooth

boundaries influences the accuracy as well, especially in case of electromagnetically small scat-

terers.

7.6 Embedding of 3D structures

In Chapter 6, the potential applications and the accuracy of the LEGO approach have been in-

vestigated for 2D cases. In this section, we demonstrate its application for a full 3D scattering

configuration. Further, we consider the degradation of accuracy of the scattered field due to the

use of a scattering operator instead of a direct solver. The results presented in this section are

intended as a proof of principle. For simplicity we restrict ourselves to far-field scattering.

To validate the LEGO approach for 3D scattering configurations, we consider the two homoge-

neous dielectric spheres of radius r depicted on the left in Figure 7.20 with relative permittivity

εr = 20. The spheres are embedded in air with k0r = 1.5. The dielectric contrast and the

frequency of operation are representative for EBG applications. Each sphere is meshed with

192 triangles, which amounts to 288 unknowns. The meshes of the spheres are domain-scaled,

which leads to more accurate results (see Section 7.5). In the LEGO approach, we compose the

scattering operator of the combined spheres starting from the scattering operators of the individ-

ual spheres. Because closed 3D structures are prone to spurious interior resonance modes, we

employ LEP-based embedding. Gram matrices are used to construct the transfer matrices.

All electric and magnetic current distributions are expanded in terms of Rao-Wilton-Glisson

(RWG) functions, indicated by∧n. Further, we restrict ourselves to Galerkin test and expansion.

The size of the matrices involved with embedding is a measure of the computational costs, since

the pertaining matrix multiplications are the decisive factor. To optimize performance, we want to

keep the mesh size as small as possible. Therefore, we aim for maximum accuracy by minimizing

the quadrature error. As such, we employ adaptive quadrature rules for the regular test and

expansion integral parts and closed-form solutions for the singular integral parts. The relative

accuracy of the adaptive quadrature rule is set to 10−2.
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Recall that optimum testing of the integral operators L and K + n̂ × I, are mutually exclusive,

and hence a compromise must be found. In particular, if L which contains the scalar potential is

properly tested regarding the mapping properties of the operator, the same test function will lead

to an ill-conditioned matrix for K + n̂ × I, which may jeopardize the stability of the solution.

Despite the application of the inverse Gram matrix, similar conflicting demands occur regarding

the choice of an appropriate test function for the 3D implementation of the LEGO approach. In

Section 4.4 we have argued that the condition number of the Gram matrix is an indication of

the well-posedness of the problem and therefore the stability of the solution. The elements of

the Gram matrix are given by the duality product 〈fm, n̂ × fn〉, where fm and fn are the test

and expansion functions. In addition, in Section 7.5 we have established that the best accuracy

is attained if L is properly tested, i.e., fm = ∧m. Since fn = ∧n, optimum testing regarding

accuracy amounts to an ill-conditioned Gram matrix, which leads to unstable solutions. As a

compromise, we have applied the linear combination, β∧m+(1−β)∨m, where ∨m = n̂×∧m,

as the test function in the LEGO approach. The combination constant β has been set to β = 0.8,

as it turned out to be an overall good choice.

Figure 7.20: On the left, two dielectric spheres with radius r and relative permittivity εr = 20.

The frequency is such that k0r = 1.5. Each sphere is meshed with 192 triangles (288 unknowns).

On the right, two cubical domains that enclose the two spheres. The cubical domains are meshed

with 192 triangles (288 unknowns). The size of the domains is 2.2r and the distance between

both domains is 0.2r.

First, we construct the scattering operator of a single sphere inside a single cubical scattering

domain illustrated on the right in Figure 7.20 with lattice constant a = 2.2r. The minimum

distance between the boundary of a sphere and the enclosing cube is thus 0.1r. The average

triangle edge length of the mesh of the dielectric sphere correspond to 2.4 and 11 points per

wavelength in the interior and exterior media, respectively. For the cubical scattering domain, we

take a mere 192 triangles, which amounts to an average mesh density of 6.7 points per wavelength
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for the cube. In Section 7.5, we have established that despite such coarse mesh densities, good

accuracy can already be attained for the scattered far-field of dielectric 3D objects.

For the near-field scattering from a single sphere, the analytic expressions determined in Appen-

dix B.2 may be applied. However, to investigate the loss of accuracy associated with the con-

struction of the elementary scattering domains for a more general case, we apply the approach

that accounts for an arbitrarily shaped scattering object. Therefore, we employ the PMCHW

integral equation for the scattering properties of the sphere. The elementary scattering operator

is thus constructed via Eq. (4.30). In short, the incident field is propagated from the cube to the

sphere. The equivalent currents that follow from the PMCHW integral equation are transferred

back to the cube. Note that the PMCHW integral equation is tested with ∧m-functions only.

The scattered far field is evaluated in terms of the bistatic RCS as defined in Eq. (7.40). In Fig-

ure 7.21, the bistatic radar cross-section (RCS), σdB, of a single sphere is shown for the E- and

H-plane. The RCS has been determined via the direct PMCHW approach on the surface of the

sphere (solid) and via the scattering operator on the surface of the cube (dashed). To quantify the

RCS error we have applied the average error norm defined in Eq. (7.41). Via the direct PMCHW

approach, the corresponding average error in the RCS is 0.03dB in comparison with the exact

solution via the Mie series (not shown). To investigate the degradation of the accuracy of the

scattered field due to the cubical scattering domain we compare the RCS plot of the elementary

scattering operator with the PMCHW results, which yields an error of 0.11dB. Hence, the addi-

tional RCS error by considering the scattering operator instead of the direct PMCHW approach

seems small. In view of the coarseness of the mesh, the non-smoothness of the cubical boundary

and the small distance between the boundaries of the cube and sphere, the accuracy attained with

the scattering operator may be regarded as excellent.

Second, the scattering operator of a single sphere is combined with itself in the embedding pro-

cedure to arrive at the scattering operator of the two spheres. The computational scheme as

presented in Table 4.2 has been applied for the embedding procedure. The direct transfer of

current amplitudes is not applicable in this example, as there are no common boundary parts.

The composite configuration is shown in Figure 7.20 with the original spheres (left) and the

pertaining scattering domains (right). To illustrate the coarseness of the applied mesh sizes, the

actual meshes are shown to scale. The distance between the two cells is 0.2r, which is about half

the average edge length of a triangle. The high refractive index of the spheres in combination

with the small distance between them guarantee strong field interactions between the scattering

domains, for which the LEGO approach is well suited.
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Figure 7.21: The bistatic RCS, σdB, for the E- and H-plane cross-sections of a single dielectric

sphere on the left in Figure 7.20. The solid and dashed lines are the results computed with the

PMCHW integral equation, and with the scattering operator S11 of the sphere inside a single

cubical scattering domain on the right in Figure 7.20.

In Figure 7.22, the bistatic RCS of the two spheres is shown. With reference to Figure 7.20, the

plane wave is incident from above with the E-plane aligned with the direction of translation of

the spheres. The result of applying the direct PMCHW approach are included as a reference. The

results of the combined scattering operator that follows from the embedding procedure agree very

well with the reference solution. More specifically, the average error in the bistatic RCS of the

embedded spheres via combined scattering operator is 0.25dB in comparison with the PMCHW

results. This is remarkable regarding the coarseness of the discretization. Further, it is possible

that the deviations should partly be attributed to the PMCHW formulation.

Finally, let us comment on the computational costs associated with 3D scattering configurations.

The application of scattering matrices in combination with all matrix multiplications involved

with LEGO may seem significantly more computationally expensive than the use of a regular di-

rect solver. On the contrary, in case of a closely packed structure (large common boundary parts)

and a high reusability of previously combined domains, LEGO is quite competitive, especially

for those cases where the response from multiple different excitations are examined. In particu-

lar, at best, the computational cost of LEGO may only increase as O(N2) with N a measure of

the domain size. This has been demonstrated in Section 4.8.
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Figure 7.22: The bistatic RCS, σdB, for the E- and H-plane cross-sections of the two dielec-

tric spheres depicted on the left in Figure 7.20, computed with the PMCHW integral equation

(solid lines) and with the scattering operator of the combined spheres obtained with the LEGO

procedure (dashed lines).



Chapter 8

Conclusions and recommendations

The fierce competition that businesses are facing calls for ongoing reductions in product devel-

opment time. Owing to the speed of modern computers, it has recently become possible to use

numerical methods to predict the behavior of the final product. Thus, the slow construction and

measurement cycle may be shortened. The initial product design draft is normally arrived at via

a systematic top-down approach, in which the product is regarded as a tree of interacting product

constituents, the building blocks, each with their own specific (sub)system’s response. Con-

versely, in device design one often follows a bottom-up approach, in which the building blocks

are designed separately to set specifications before assembly. In electromagnetic design, the op-

timization and sensitivity analysis often involves straightforward but time-consuming parameter

sweeps that require a full recomputation of the entire device. Such brute force approaches are

not in line with the desired systematic design approach. Although recently “marching on in any-

thing” [9] has been introduced to accelerate parameter sweeps, these techniques are not available

in present commercial software packages.

We have proposed a modular modeling procedure that describes the electromagnetic interac-

tion between large finite structures, called linear embedding via Green’s operators (LEGO). We

have started by constructing the linear Greens operators via Huygens’ principle with equivalent

boundary current sources that electromagnetically characterize the interaction of a specific build-

ing block with its environment, as a continuous multi-port system. Such a Green’s operator is

a scattering operator. In its most elementary form, we have generalized an embedding proce-

dure introduced in inverse scattering to describe multiple scattering between adjacent blocks, by

considering one of the blocks as the environment of the other and vice versa. Subsequently, scat-
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tering operators have been merged to compose a combined block and common boundaries have

been removed. We have validated the principle of LEGO for both 2D and 3D configurations.

A cascade of embedding steps can be employed to form scattering operators that fully character-

ize various types of larger complex composite blocks. We have demonstrated this principle via

the construction of large finite electromagnetic bandgap (EBG) structures. In addition, we have

shown that in a sequence of LEGO steps it remains possible to describe the complete interior

field within previously combined subdomains. In fact, with each subsequent LEGO step one

may choose for which of the subdomains the interior fields are preserved and updated for the

presence of additional domains. By building large databases, previously combined blocks may

be reused at will. Owing to its modular approach, LEGO is in line with the preferred systematic

approach of a design process. Further, LEGO is suitable for parallel or distributed processing.

Device design often involves tuning local medium properties in a compact designated domain

within a large environment. We have shown that, through an additional embedding step, the

equivalent sources on the boundary of the large environment can be transferred to the boundary

of the designated domain, so that subsequent design steps can be carried out with great efficiency.

This two-stage optimization process has been applied in the local tuning of the transmission

properties at the Y-junction of a power splitter, and in the local tuning of a mode splitter in EBG

waveguide technology.

We have implemented LEGO using boundary integral equations for the evaluation of the equiva-

lent sources on the subdomain boundaries, as well as for the fields scattered by the homogeneous

or perfectly conducting objects of arbitrary shape inside those subdomains. We have explained

that various electromagnetic solution methods may be used instead, e.g., to allow for inhomoge-

neous objects. On the other hand, LEGO may be integrated within existing software packages.

Further, we have demonstrated that scattering objects may also be continuous beyond domain

boundaries. Moreover, since the frequency is kept fixed, LEGO automatically applies to disper-

sive and lossy media. We have a large freedom of choice regarding the shape of a scattering

domain. For instance, in contrast with plane-wave methods, we may consider closely packed

objects for which a rectangular mesh no longer suffices. In case of canonical scatterers, we may

conveniently choose the building blocks to contain a single cell only. Further, the shape may

be selected so as to achieve minimum outer boundary size and thus optimum efficiency in a se-

quence of embedding steps. Moreover, the flexibility in selecting the domain shape allows for a

strategic choice as far as the reusability of the building blocks is concerned. In view of the above,

LEGO may be regarded as a versatile general-purpose method.
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Further, we have shown that the scattering operator of LEGOmay be applied to compute the band

diagram of EBG structures. Two alternative methods have been proposed to solve the pertaining

eigenvalue problem.

We have quantified the accuracy of the LEGO method for both Schelkunoff’s and Love’s equiv-

alence principle (SEP and LEP). The convergence of the scattered field as a function of the mesh

density obtained with LEGO is of the same order as that obtained with an integral equation for

the scattering from dielectric or perfectly conducting objects. For similar test and expansion

functions, the LEGO approach leads to more accurate fields with SEP than with LEP. However,

if a coarse quadrature rule is used for the test and expansion integrals, e.g., the midpoint rule,

LEP in combination with Gram matrices is superior. Further, we have demonstrated that the

construction of the elementary building blocks and the removal of common boundaries may lead

to interior resonances for LEGO based on SEP. These resonances can not be suppressed with a

combined-field integral equation or a singular value decomposition, since these resonances are

physical modal solutions. On the contrary, LEGO based on LEP is free of interior resonances,

which makes it more robust than SEP. In general, the dependence on the shape of the elementary

scattering domains, the accumulation of errors due to long LEGO sequences, and the choice of

building sequence have turned out to be negligible for both SEP and LEP.

At various stages in the LEGO approach we define separate source and observation boundaries,

and a source transfer operation from one to the other. For coinciding source and observation

boundary parts, this transfer operation can be made more efficient via a direct transfer of the

corresponding current parts. For the remaining boundary parts, currents are transferred via either

Huygens’ principle or Oseen’s extinction theorem. We have indicated that some care has to be

taken in the direct transfer of current amplitudes with the Gram matrix.

The matrix multiplications that occur in the computational scheme of the LEGO method have

proved to be the leading factor in the overall computational costs. Further, LEGO based on LEP

is a factor of three to five less efficient than LEGO based on SEP. To attain optimum performance

with LEGO, the matrix sizes, and thus the number of unknowns, should be kept as small as pos-

sible. Hence, the test and expansion integrals have been determined very accurately throughout

to ensure maximum accuracy of the scattered field for the mesh size at hand.

We have illustrated that the most efficient application of LEGO involves a closely-packed con-

figuration of identical elements. In particular, with respect to the number of array elements, the

complexity of a sequence of LEGO steps increases as O(N1.5) and O(N2) for 2D and 3D con-
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figurations, respectively. Although direct solution methods may be more efficient for a single

excitation via a multi-level fast-multipole algorithm, LEGO provides a reusable scattering ma-

trix that encompasses the scattered field for all possible excitations. For nearby scattering objects

with a large refractive index in comparison with the background medium, the LEGO approach

offers additional advantages since, due to a finite distance between the object and the domain

boundary, a coarse mesh may be chosen on that boundary without loss of accuracy.

We have investigated integral equations for the scattering from perfectly conducting and dielec-

tric objects to ensure an optimal choice of the discretization for flat-facetted meshes. Further, we

have employed piecewise-constant or continuous piecewise-linear functions for 2D and scatter-

ing configurations, and Rao-Wilton-Glisson (RWG) functions for 3D ones. For the accuracy of

the PMCHW and Müller integral equation in the 2D case, we have illustrated that the difference

in formulation only matters for coarse mesh densities, i.e., the non-vanishing singular integral

parts eventually limit the convergence to becoming quadratic. We have formulated an alternative

integral equation where all dominant singular integral parts vanish for 2D dielectric scatterers

(TM case). This leads to cubic convergence, irrespective of the mesh density and object shape.

Like the MFIE and Müller’s integral equation, the corresponding condition number is indepen-

dent of the mesh density. Spikes appear in the condition number for the PMCHW and Müller

formulations in case of interior cavity modes. In addition to the well-known impedance scal-

ing of the integral equations and the currents, we have proposed additional scaling for Müller’s

formulation that has led to a further reduction of the condition number. For 2D perfect conduc-

tors, the order of convergence varies with the smoothness of the boundary, and is the same for

piecewise-constant and linear test and expansion functions, albeit that the magnitude of the error

is significantly smaller in the case of the piecewise-linear functions.

Domain scaling of a flat-facetted mesh improves the convergence for scattering objects with a

smooth boundary by one order. For the 2D MFIE, this is only the case for piecewise-linear

functions. For the 3D MFIE, domain scaling does not improve the convergence rate. For object

shapes involving edges or corners, an EFIE leads to more accurate results than its MFIE counter-

part. Accordingly, a 3D CFIE or a 2D CFIE with piecewise-constant functions causes a decrease

in accuracy in comparison with a pure EFIE. We have used a similar line of reasoning to clarify

the inferior results of the 3DMüller formulation in comparison with those of PMCHW. To inves-

tigate why domain scaling did not lead to better convergence for piecewise-constant functions,

we have regularized the identity operator of the 2D MFIE. This resulted in the same convergence

behavior as that of piecewise-linear functions. Further, application of the midpoint rule to the

test and expansion integrals in the 2D case has resulted in an increase in magnitude of the error
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of the field for piecewise-linear functions. Further, any improvement in the order of convergence

owing to domain scaling or singularity cancellations is lost.

8.1 Recommendations

To conclude this thesis, we would like to discuss a few possible applications and extensions of

the LEGO approach for future research. Acceleration techniques applied in available boundary

integral equations may be used to increase the efficiency of LEGO, e.g., the multi-level fast-

multipole algorithm (MLFMA) [121, 122]. Further, for SEP, iterative solvers may be utilized to

accelerate the construction of the transfer matrices via a “marching on in anything” scheme [9]

in a predictor-corrector scheme. For both SEP and LEP, these techniques may also lead to a

reduction of the computational costs of the boundary integral equations that are employed to

compose the scattering operator of the elementary building blocks. Finally, since the elementary

LEGO blocks and the actual scattering configuration are largely independent, the use of only a

few standard domain shapes may suffice for most design applications. Accordingly, by employ-

ing entire-domain basis functions for these predefined domain shapes, LEGO may become even

more competitive [26, 27].

An interesting extension of LEGO would be de-embedding. For instance, to perform local struc-

ture optimization, the designated domain presently has to be identified in advance, i.e., before the

surrounding scattering operator is constructed. Otherwise, if part of the designated domain over-

laps with the scattering domain, a recomposition of the large scattering domain is inevitable to

exclude the subdomains that overlap with the designated domain. With the ability to perform de-

embedding this would no longer be necessary, since parts of the large scattering operator could

simply be removed. Moreover, the construction of large scattering operators would become more

efficient by using only simple large blocks, since local imperfections can be introduced at a later

stage. Although the principle of de-embedding is a relatively straightforward reverse embedding

process in the absence of common boundaries, de-embedding in case common boundaries have

been removed is far more complicated.

The LEGO approach should be considered as a design tool for a range of different applications,

e.g., the design of frequency selective surfaces (FSS), large finite antenna integrated arrays or

configurations with a few nonlinearly reacting building blocks. A 21
2
D extension of 2D LEGO

may be a powerful tool for the design of waveguides and cavities embedded in EBG membranes.



270 Conclusions and recommendations

Further, by enforcing periodicity in one or two directions, EBG chains and layers may be con-

structed which in turn may be combined with other structures with the same periodicity. Possible

applications may be sources above EBG structures of finite thickness, or, in combination with the

optimization stage of LEGO, the computation of band diagrams of linear-defect EBGwaveguides

using supercells.

The fast optimization stage of LEGO has been demonstrated by means of straightforward para-

meter sweeps. Existing optimization strategies may be incorporated to attain further acceleration,

e.g., gradient-based or genetic algorithms [123,124]. Although LEGO via SEP lacks the robust-

ness of LEGO via LEP as regards the suppression of interior resonances, it is more efficient and

accurate than LEGO via LEP. Therefore, it may still be worthwhile to properly suppress these

resonances for LEGO via SEP. Further research is required to determine the most efficient and

effective method for LEGO. Only one of the two proposed methods to compute the band dia-

grams of EBG structures has been implemented. The other method may be more efficient for

small systems. A comparison of both methods is recommended. Only scattering operators that

are based on LEP can be used with the approach that we have followed. The efficiency of the

method may be improved through an extension that applies to SEP as well.

For closely packed configurations, we have shown that LEGO is especially well suited if neigh-

boring blocks are fully concatenated, i.e., if common boundaries are removed. For this, the use

of scattering domains with non-smooth boundaries becomes inevitable. From the analysis of

boundary integral equations, we have determined that these irregularities in the boundary are

decisive for the accuracy of the resulting scattered field. In the LEGO approach we have so far

restricted ourselves to uniform meshes. The introduction of graded meshes to create a relatively

more dense mesh near the irregularities in the boundary could therefore improve the performance

of LEGO.

Since the superiority of the PMCHW over the Müller formulation for 3D scattering configura-

tions is caused by the poor testing of the MFIE part with RWG functions, a systematic search for

other test functions may be fruitful. Further, for circular cylinders and spheres we have illustrated

that the domain scaling of a flat-facetted mesh increases the convergence rate by one order. It

may be worthwhile to investigate whether a simple scheme can be formulated such that domain

scaling may also lead to an improvement for smooth scattering objects of a more general shape.



Appendix A

Analytical parts of 2D integrals

In the discretization of the 2D integral equations by proper test and expansion functions, the

integrand is singular for coinciding source and observation points. The singular integrand parts

may be integrated analytically. In Section 5.4 we have presented the general approach to cast

these singular integral parts in the form of two generic singular double integrals in terms of local

coordinates. In Section A.1, we present the solution of the remaining singular double integrals.

Since the integrand may involve a logarithm, which is a multiply-valued function, care must be

taken that no branch cuts are crossed. In Section A.2, the conditions for such a prohibited branch

cut crossing are determined, and a simple remedy is presented, which amounts to a rotation of

the branch cut in the complex plane. For (partially) overlapping test and expansion functions,

the so-called self term, analytical solutions are provided in Section A.3 for both the regular and

singular parts of the double integral by means of a series expansion of a modified Bessel function.

A.1 Evaluation of the singular integrals

In the evaluation of the singular integral parts discussed in Section 5.4, the solutions to the

following two singular double integrals are yet to be determined, i.e.,

Ia[f ] =

1∫
−1

1∫
−1

f(η, ξ)
1

ξ − ηq1 − q0
dξ dη, (A.1)



272 Analytical parts of 2D integrals

and

Ib[f ] =

1∫
−1

1∫
−1

f(η, ξ) ln (dn [ξ − ηq1 − q0]) dξ dη, (A.2)

with f(η, ξ) ∈ {1, ξ, η, ηξ}. All combinations of applied test and expansion function combi-
nation can be expressed in terms of Ia and Ib. In this section, we ignore the presence of the

branch cut of the logarithm, which is accounted for in Section A.2. The integration of the inner

(expansion) integral is straightforward for Ia[f ],

1∫
−1

f(η)

1∫
−1

1

ξ − ηq1 − q0
dξ dη =

1∫
−1

f(η) ln

(
1 − ηq1 − q0

−1 − ηq1 − q0

)
dη, (A.3)

in case f(η, ξ) = f(η), and

1∫
−1

f(η)

1∫
−1

ξ

ξ − ηq1 − q0
dξ dη =

1∫
−1

f(η)

[
2 + (q0 + ηq1) ln

(
1 − ηq1 − q0

−1 − ηq1 − q0

)]
dη, (A.4)

in case f(η, ξ) = ξf(η). These intermediate results indicate that the integrand of the test in-

tegral also has a logarithmic singularity, which implies that proper care must be taken to avoid

integration across a branch cut.

Via subsequent application of the standard indefinite integral in [125, Eq. (2.723.1)], solutions

may be obtained for Ia and Ib. Upon defining the constants

A1 ≡ 1 − q1 − q0,

A2 ≡ 1 + q1 − q0,

A3 ≡− 1 − q1 − q0,

A4 ≡− 1 + q1 − q0,

(A.5)

together with,

Bi ≡ Ai ln(Ai),

Ci ≡ AiBi,
(A.6)
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for i ∈ [1, 4], the solutions to Ia[f ] read

Ia[1] = − 1

q1
[B1 −B2 −B3 +B4],

Ia[ξ] =
1

2q1
[B1A3 −B2A4 −B3A1 +B4A2 + 4q1],

Ia[η] = − 1

2q2
1

[B1A2 −B2A1 −B3A4 +B4A3 + 4q1],

Ia[ηξ] =
1

6q2
1

[B1(A3(2q1 − q0) − 2) +B2(A4(2q1 + q0) + 2)

−B3(A1(2q1 − q0) − 2) −B4(A2(2q1 + q0) + 2) + 4q0q1].

(A.7)

The integral Ib[f ] may be expressed in terms of the same constants, i.e.,

Ib[1] = − 1

2q1
[C1 − C2 − C3 + C4] − 6 + 4 ln(dn),

Ib[ξ] =
1

6q1
[C1(A3 − 1 ) − C2(A4 − 1 ) − C3(A1 + 1 ) + C4(A2 + 1 ) − 8q0q1,

Ib[η] = − 1

6q2
1

[C1(A2 + q1) − C2(A1 − q1) − C3(A4 + q1) + C4(A3 − q1) − 8q0q1,

Ib[ηξ] =
1

24q2
1

[C1(3A3A2 + 2q0A1) − C2(3A4A1 + 2q0A2)

−C3(3A1A4 + 2q0A3) + C4(3A2A3 + 2q0A4) − 4q1
(
3 + q2

0 + 3q2
1

)
].

(A.8)

In turn, the analytical expressions for the singular double integrals for any of the combinations

of test and expansion functions simply follow from a linear combination of Ia[f ] and Ib[f ].

If the midpoint rule is applied to the test integral, the integral over Γm becomes proportional to

its value at the edge centroid, ρm = ρcm. This is equivalent to multiplying f(η, ξ) by δ(η) in the

original double integrals. For the remaining single integrals, the solutions read

Ia[1] = ln

(
1 − q0

−1 − q0

)
,

Ia[ξ] =2 + q0 ln

(
1 − q0

−1 − q0

)
,

Ib[1] =(1 − q0) ln (1 − q0) − (−1 − q0) ln (−1 − q0) − 2 + 2 ln(dn),

Ib[ξ] = − q0 +
1

2
(q2

0 − 1) ln

(
1 − q0

−1 − q0

)
.

(A.9)

Note that q1 no longer appears in the expressions, because the solution is independent of the

orientation of the observation edge, and thereby is independent of the angles ψm and φ.
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A.2 The avoidance of branch cuts

Let us consider integrals over a domain of integration defined by {ξ, η} ∈ (−1, 1), with inte-

grands that contain a logarithm of the form ln(ζ), where the argument

ζ = ξ − ηq1 − q0 (A.10)

assumes all values inside a parallelogram centered about q0 in the complex ζ-plane. The integrals

considered here arise from convergent integrals involving test and expansion functions over edges

of a discretized boundary, and a logarithmic kernel with an argument that is proportional to the

distance between the respective points on the respective edges. The geometric parameters are

completely captured by the complex parameters q0 and q1. The parallelogram in the ζ-plane is

shown on the left of Figure A.1.

O

�{ζ}

�{ζ}

ξ

η−q0

−1 ∓ q1 − q0

1 ± q1 − q0

1 ∓ q1 − q0

−1 ± q1 − q0 η

ξ

(1,1)

(-1,-1)

Figure A.1: On the left, the argument of the logarithm is shown as a function of the integration

area in the complex plane where the branch cut is indicated. On the right, some possible positions

of the branch cut are depicted as a function of ξ and η. The dotted branch cut is implausible since

the branch point must lie outside the dotted parallelogram, whereas the dashed branch cut is

subject to rotation.

The logarithm is a multiple-valued function, with a branch point at the origin of the complex

plane. The principal branch of the logarithm is defined on a Riemann sheet with a branch cut that

coincides with the negative real axis, (−∞, 0). Since the edges do not cross, and the end points

of the edges can be excluded from the integration, the branch point must be located outside the

domain of integration. However, due to the various algebraic manipulations by which we have
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arrived at logarithms of a generic form ln(ζ), the branch cuts may have been rotated or even

deformed, such that the branch cut may now inadvertently intersects the domain of integration

into two parts. This is illustrated on the right of Figure A.1. The remedy is simple, i.e., we

may deform the branch cut until it no longer cuts the domain of integration. Since the branch

point must lie outside the parallelogram in the complex ζ-plane, a simple rotation of the branch

cut over 180 degrees about the origin will suffice. Since the ξ-integral ranges from −1 to 1,

and the logarithm in the integrand is multiplied by a function of either even or odd parity with

respect to ξ, the rotation of the branch cut amounts to performing the substitutions q0 → −q0 and
q1 → −q1, together with a possible overall change of sign in case of odd parity with respect to ξ.

The branch cut associated with the principal branch in the complex ζ-plane may be parameterized

by ζ = −p with p ≥ 0. Inversion of Eq. A.10 for ξ, η leads to

[
ξ

η

]
=

[
−p+ q0
 − q1
q0�/q1�

−q0�/q1�

]
. (A.11)

Hence, the branch cut (completely) cuts the domain of integration, if and only if

|q0�/q1�| ≤ 1 and q1
q0�/q1� ≤ q0
 − 1. (A.12)

If the conditions in Eq. A.12 are met, the substitutions described above should be performed.

In the evaluation of these conditions, special care must be taken to avoid that round-off error

leads to erroneous decisions. Table A.1 summarizes whether a minus sign should be included in

the solution of Ia and Ib after rotating the integration domain around the origin for the various

combinations of f(η, ξ). Obviously, the opposite results of Table A.1 hold for the product q1Ia[f ],

required for the singular integral in Eq. (5.74).

f(η, ξ) Ia(f) Ib(f)

1 yes no

ξ no yes

η yes no

ηξ no yes

Table A.1: An overview of the integrals Ia[f ] and Ib[f ], indicating whether a minus sign is to be

included after rotation of the integration domain for the terms in f(η, ξ).
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A.3 Self term

In case the test and expansion function edges under consideration coincide, the most commonly

used approach is described in [73]. Below we show that it is possible to derive an analytical

expression not only for the singular part of the integral, but also for the regular part up to a

desired order of accuracy. Since this avoids the repeated evaluation of Bessel functions, we

regard our approach as a more elegant and efficient approach.

With reference to Figure 5.5, the inner product ν̂ ·(ρm−ρn) is zero for Γm = Γn. In that case, we

only need to consider the testing and expansion of the operator L, which involves the modified

Bessel function of the second kind of order zero, K0, which may be expanded in a convergent

series according to [126, Eq. 9.6.54]

K0(2z) =
∞∑
k=0

[Φ(k) − ln (z)] z2k

(k!)2 . (A.13)

Here, Φ(k) is a harmonic number, which follows from the truncated harmonic series,

Φ(k) =

⎧⎪⎨
⎪⎩

−γE +
k∑

n=1

1

n
, for k = 0,

−γE, for k = 0,

(A.14)

where γE is Euler’s constant. Since the test and expansion edges coincide, dR and the angles

ψm, ψn and φ in Figure 5.5 all vanish. As a consequence, Eq. (5.67) reduces to

|ρm − ρn|2 = d2 |ξ − η|2 , (A.15)

where d = dm = dn.

With Eq. (A.15), the resulting integral for the self term may be written in local area coordinates

as

Is(f) =

∫
Cm

fm(ρ)

∫
Cn

fn(ρ
′)K0 (γ |ρ − ρ′|) d′ d = d2

1∫
−1

1∫
−1

f(η, ξ)K0 (γd |ξ − η|) dξ dη.

(A.16)

The integral Is is carried out separately for each term in the series representation of K0. With

the definition p = γd, the solutions to Is for the various combinations of test and expansion
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functions in Eq. (5.69) are given by

Is[δ (η)] = 2d
∞∑
k=0

1 + (1 + 2k)[Φ(k) − ln (p/2)]

(1 + 2k)2 (k!)2

(p
2

)2k

,

Is[1] = 2d2

∞∑
k=0

3 + 4k + 2(1 + k)(1 + 2k)[Φ(k) − ln(p)]

(1 + k)2 (1 + 2k)2 (k!)2 p2k,

Is[ηξ] = 2d2

∞∑
k=0

2 − k [2(1 + k)(1 + 2k)(2 + k)[Φ(k) − ln(p)] + k(7 + 4k)]

(1 + k)2 (1 + 2k)2 (2 + k)2 (k!)2 p2k.

(A.17)

The integrals Is[ξ] and Is[η] are zero because the argument ofK0 in Eq. (A.16) is an even function

of (ξ − η), whereas the product of the corresponding test and expansion functions f(η, ξ), are

odd functions of (ξ − η). The self term for a certain combination of test and expansion function,

follows as a linear superposition of the obtained integral series Is.

In Eq. (A.15) it is assumed that τ̂m and τ̂ n are oriented in the same direction. This covers the

(standard) cases where the MoM approach is applied to determine the scattered field from an

object, as in Chapter 3, in the LEGO concept. However, τ̂m and τ̂ n may be oppositely directed

for the common contour parts of adjacent domains. If this is the case, either the sign of ξ or η

changes in Eq. (A.15), which implies that the sign of Is[ηξ] must be reversed.

The summations in Eq. (A.17) may be truncated. Because the number of terms that is required for

sufficient accuracy is inherently related to the maximum value of the argument ofK0, and hence

to the applied discretization via γd, we first determine an upper bound for the argument. For

practical applications it is reasonable to assume that the used mesh density satisfies the Nyquist

criterion. In that case, the edge length L must be smaller than half a wavelength, i.e., λ > 2L.

With this in mind, an upper bound may be deduced for the argument of K0. Because γL is the

largest value of the argument ofK0 within the integration range of Is, we have

|γL| =

∣∣∣∣ωLc
∣∣∣∣ =

2πL

λ
< π. (A.18)

Accordingly, with the substitution of z = π in the expression forK0 we find that truncation after

15 terms guarantees an accuracy of 10−16 if the applied mesh density meets the Nyquist criterion.

With respect to the numerical implementation, it is computationally efficient to determine the

coefficients in the series in a pre-processing stage, as only p may vary. In case of a uniform

discretization, p is constant and a single evaluation of Is suffices.
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Appendix B

Scattering from canonical objects

The analytical expressions formulated in this appendix may be used to construct the scattering

operator of a domain in case it contains a single circular cylinder or a sphere. After successive

embedding steps these analytic solutions are also used to construct the complete interior field

within that domain, i.e., the field due to the interaction with other embedded domains. Further-

more, the resulting expressions may also be used as a reference solutions for the assessment of

the accuracy of the numerical implementations of the 2D and 3D boundary integral equations.

Accordingly, interior and exterior scattered fields are required for both electric and magnetic

sources outside a circular cylinder or a sphere. The expressions formulated below are merely

included for completeness of the work [38].

B.1 Scattering by circular cylinders

Below, we determine analytical solutions for the field scattered by a dielectric circular cylinder

with radius a, due to the action of a line-source positioned at ρ′ exterior to the cylinder. The

cylinder contains a homogeneous material with ε = ε2 and μ = μ2, and is centered about the

origin. The background medium is homogeneous with ε = ε1 and μ = μ1. Only the TM-case

is treated, as the TE-case readily follows by duality, since both μ and ε contrasts are taken into

account.

Before we proceed with the derivation of the Green’s function for a circular cylinder, let us first
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determine the 2D free-space Green’s function in the homogeneous background medium, and

express its solution in terms of cylindrical coordinates. The Green’s function G(ρ,ρ′) is defined

as the solution of the scalar Helmholtz equation,[∇2
t − γ2

1

]
G(ρ,ρ′) = −δ(ρ − ρ′). (B.1)

In terms of cylindrical coordinates, this becomes,[
1

ρ
∂ρρ∂ρ +

1

ρ2
∂2
φ − γ2

1

]
G(ρ, φ) = −δ(ρ− ρ′)δ2π(φ− φ′)

ρ
, (B.2)

where for convenience the dependence of the Green’s function on the source position is omitted.

The function δ2π is a 2π-periodic continuation of the delta function. To utilize the invariance of

the configuration we apply a Fourier transformation with respect to the angular coordinate φ,

Gn(ρ) =
1

2π

2π∫
0

G(ρ, φ)e−jnφ dφ, (B.3a)

G(ρ, φ) =
∞∑

n=−∞
Gn(ρ)e

jnφ. (B.3b)

Accordingly, Eq. (B.2) becomes[
1

ρ
∂ρρ∂ρ −

(
n

ρ

)2

− γ2
1

]
Gn(ρ) = −δ(ρ− ρ′)e−jnφ

′

2πρ
. (B.4)

The corresponding homogeneous solutions are linear combinations of the nth-order modified

Bessel functions In and Kn of the first and second kind, respectively. In view of Eq. (B.4),

Gn(ρ) must be continuous upon crossing ρ = ρ′. Demanding that Gn remains regular for ρ ↓ 0

and satisfies the radiation conditions at infinity, the solution may be cast in the general form,

Gn(ρ) = CnIn (γ1ρ<)Kn (γ1ρ>) , (B.5)

with ρ> = max(ρ, ρ′) and ρ< = min(ρ, ρ′). After multiplication of Eq. (B.4) by ρ and a subse-

quent integration over ρ, we find that ∂ρGn(ρ) jumps at ρ = ρ′. From this jump condition and

the Wronskian relation [126, Section 9.6],

I ′n(z)Kn(z) − In(z)K
′
n(z) =

1

z
, (B.6)

the constant Cn may be determined. This leads to

G(ρ, φ) =
1

2π

∞∑
n=−∞

In (γ1ρ<)Kn (γ1ρ>) ejn(φ−φ′). (B.7)
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The 2D Green’s function may thus be interpreted as the superposition of cylindrical harmonics

with a phase difference and amplitude depending on the source and observation positions. If the

line source is positioned at the origin instead, we have ∂φ = 0, such that n = 0 in Eq. (B.4). This

leads to the general solution

G(ρ) = C1K0 (γ1ρ) + C2I0 (γ1ρ) , (B.8)

where the Green’s function depends on ρ only. The constant C2 is set to zero to comply with the

radiation condition. The remaining constant C1 is determined by integration of Eq. (B.4) over a

small circle around ρ with a radius that approaches zero. Accordingly, with the small argument

behavior ∂zK0(z) ∼ −1
z
for |z| → 0, we obtain C1 = 1

2π
. If the line source is not located at the

origin, but at ρ′ instead, we have without loss of generality

G(ρ,ρS) =
1

2π
K0 (γ1|ρ − ρ′|) . (B.9)

Note that Eqs. (B.7) and (B.9) are solutions to the same problem. Only the “labeling of the map”

regarding the Cartesian coordinate system has been changed.

The Green’s function, Gcyl, associated with the homogeneous circular cylinder also satisfies a

Helmholtz equation like Eq. (B.1), albeit that for ρ ∈ (0, a) we have γ2 = γ2
2 = −ωε2μ2, while

for ρ ∈ (a,∞) we have γ1 = γ2
1 = −ωε1μ1. The Fourier constituents, Gcyl

n , may therefore be

written as

Gcyl
n (ρ, ρ′) =

{
TnKn (γ1ρ

′) In (γ2ρ) , ρ < a,

RnKn (γ1ρ
′)Kn (γ1ρ) + In (γ1ρ<)Kn (γ1ρ>) , ρ > a,

(B.10)

where the second term on the right-hand side for ρ > a represents the incident field, Gin
n . The

remaining terms can be attributed to a Gsc
n , which represents the reflected scattered field (ρ > a)

and the scattered interior field (ρ < a).

The unknown scattering amplitudes Tn and Rn are determined by enforcing the boundary con-

ditions at the interface r = a. Since this is a source-free interface, boundary conditions of the

continuity type hold for the tangential field components. Since Ez = −sμGn, the appropriate

boundary conditions for Gn imply continuity of

n̂ × E → Gcyl
n (ρ, ρ′), (B.11a)

n̂ × H =
1

sμ
n̂ × ∇ × E → 1

μ
∂ρG

cyl
n (ρ, ρ′), (B.11b)
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where the source-free counterpart of Eq. (2.10b) is used to arrive at the second condition. After

applying these conditions to Gcyl
n , a set of linear equations is obtained for the unknown coeffi-

cients Tn and Rn. The subsequent introduction of the characteristic denominator

dn = [Z1Kn (γ1a) I
′
n (γ2a) − Z2K

′
n (γ1a) In (γ2a)] (B.12)

yields

Rn = [Z2 I
′
n (γ1a) In (γ2a) − Z1 In (γ1a) I

′
n (γ2a)] /dn, (B.13a)

Tn =
Z2

γ1adn
, (B.13b)

for ρ′ > a, where the Wronskian relation Eq. (B.6) has been used for Tn. For the special case of a

PEC, the electric conductivity, and thereby the imaginary part of ε2, goes to infinity. Accordingly,

the scattering amplitude vanishes, i.e., Tn = 0, while Rn reduces to

Rn = − In (γ1a)

Kn (γ1a)
. (B.14)

A similar expression holds for the PMC, with the exception that Rn is expressed in terms of the

derivatives of the Bessel functions.

The field response due to an electric or a magnetic line source may be expressed in terms of

Gcyl
n by means of Lorentz’ reciprocity theorem for reciprocal material media. Let state “a” be

generated by an electric source, viz., Ja = δ(ρ − ρa)ẑ. Then, the radiated electric field at ρb
follows from Eq. (2.41), i.e.,

Ea
z (ρb) = −sμ1G(ρb,ρa). (B.15)

Substitution of Eq. (B.15) into the counterpart of Eq. (2.10b) yields

Ha
t (ρb) = − 1

sμi
∇b

t × [ẑEa
z (ρb)] = −ẑ × ∇b

tG(ρb,ρa). (B.16)

Accordingly, for an electric line source Jz(ρ′)ẑ in the presence of a circular cylinder with radius

a < ρ′, Eqs. (B.15) and (B.16) provide the corresponding fieldsEz(ρ)ẑ andH t(ρ), respectively.

To determine the field response in case of a transverse magnetic line source, we select M b =

δ(ρ− ρb)α̂ for state “b” with α̂ parallel to the transverse plane. Applying the reaction theorem,

Eq. (2.30) to both states yields

Eb
z(ρa) = −α̂ · Ha

t (ρb) = −(α̂ × ẑ) · ∇b
tG(ρa,ρb). (B.17)
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Note that ρa and ρb have been interchanged in the Green’s function on account of the source

reciprocity of the Green’s function. Again, the magnetic field follows fromEb
z via the counterpart

of Eq. (2.10b), according to

Hb
t(ρa) =

1

sμi
ẑ × ∇a

tE
b
z(ρa). (B.18)

Accordingly, for a transverse magnetic line sourceMα(ρ
′)α̂ in the presence of a circular cylinder

with radius a < ρ′, Eqs. (B.17) and (B.18) provide the corresponding fields Ez(ρ)ẑ and H t(ρ),

respectively. Note that the associated equivalent current distributions on ∂D that would produce

the same field via an appropriate integral representation follow from their definitions, Eq. (5.7).

B.2 Scattering by spheres

Below, we determine analytical solutions for the field scattered by a dielectric sphere with radius

a, due to the action of a point source positioned at r′ exterior to the sphere with an arbitrary

orientation α̂. The sphere contains a homogeneous medium with ε = ε2 and μ = μ2, and is

centered about the origin. The background medium is homogeneous with ε = ε1 and μ = μ1. In a

2D configuration, the fields may be decomposed into two separate polarization states with respect

to ẑ. A decomposition with respect to polarization is also applicable for spherically layered

media, where the configuration is uniform normal to the r̂-direction in a spherical coordinate

system. However, in contrast with the 2D case, r̂ is now the direction with respect to which the

two polarizations are labeled. It is convenient to express the fields in terms of uncoupled Debye

potentials, Πe and Πm, which are scalar functions. In particular, Πe and Πm are associated with

fields TM and TE with respect to r̂, respectively. For a source-free background medium, we

have [38]

E = ∇ × rΠm +
1

sε1

∇ × ∇ × rΠe, (B.19a)

H = ∇ × rΠe − 1

sμ1

∇ × ∇ × rΠm. (B.19b)

By substituting these relations into the source-free counterparts of Maxwell’s equations, it fol-

lows that the Debye potentials satisfy,

[∇2 − γ2
1

]{ Πe

Πm

}
= 0. (B.20)
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Next, the r̂-components of the fields are extracted from Eq. (B.19). With the vector identity,

∇ × ∇ × A = ∇∇ · A − ∇2A, and Eq. (B.20), we obtain

Er =
1

sε1

[
∂2
rrΠe − γ2

1rΠe

]
, (B.21a)

Hr = − 1

sμ1

[
∂2
rrΠm − γ2

1rΠm

]
. (B.21b)

The expressions for the remaining transverse field components read[
Eθ

Eφ

]
=

[
∂θ − 1

sin θ
∂φ

1
sin θ

∂φ ∂θ

][
1

sε1r
∂rr 0

0 −1

][
Πe

Πm

]
, (B.22a)

[
Hθ

Hφ

]
=

[
∂θ − 1

sin θ
∂φ

1
sin θ

∂φ ∂θ

][
0 − 1

sμ1r
∂rr

−1 0

][
Πe

Πm

]
. (B.22b)

Before we proceed with the determination of the Debye potentials for a sphere, let us first start

with the Debye potentials for a point source. To this end, we express the Green’s function in

terms of spherical harmonics and Bessel functions. The Green’s function G(r, r′) is the point-

source solution of the scalar wave equation (2.36), which may be written in terms of spherical

coordinates as,[
1

r2
∂rr

2∂r +
1

r2 sin θ
∂θ sin θ∂θ − m2

sin2 θ
− γ2

1

]
G(r, θ, φ) = −δ(r − r′)δ(θ − θ′)δ(φ− φ′)

r2 sin θ
.

(B.23)

The dependence of the Green’s function on r′ has been omitted for convenience. To utilize the

invariance of the configuration along the θ̂ and φ̂ directions, we apply the transformation,

Gm
n (r) =

2n+ 1

4π

(n−m)!

(n+m)!

2π∫
0

π∫
0

G(r, θ, φ)Pm
n (cos θ)e−jmφ sin θ dθ dφ, (B.24a)

G(r, θ, φ) =
∞∑
n=0

n∑
m=−n

Gm
n (r)Pm

n (cos θ)ejmφ, (B.24b)

with Pm
n being the associated Legendre polynomial of integer orderm and degree n. By applying

the transformation to Eq. (B.23), followed by a separation of variables with separation constant

n(n+ 1), we obtain[
1

r2
∂rr

2∂r − n(n+ 1)

r2
− γ2

1

]
Gm
n (r) = −2n+ 1

4π

(n−m)!

(n+m)!

δ(r − r′)
r2

Pm
n (cos θ′)e−jmφ

′
(B.25)

The general solution is expressed in terms of modified spherical Bessel functions of the first and

second kind known as in(z) and kn(z), respectively, with order n and argument z. In view of
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Eq. (B.25), Gm
n (r) must be continuous across r = r′. Accordingly, we may write

Gm
n (r) = Cm

n in (γ1r<) kn (γ1r>) , (B.26)

with r> = max(r, r′) and r< = min(r, r′). Furthermore, Eq. (B.25) implies that ∂rGm
n (r) must

jump at r = r′. Accordingly, from that jump condition and the Wronskian relation

i′n(z) kn(z) − in(z) k
′
n(z) =

1

z2
, (B.27)

the constants Cm
n may be determined. This leads to

G(r, θ, φ)= γ1

∞∑
n=0

2n+ 1

4π

n∑
m=−n

(n−m)!

(n+m)!
in (γ1r<) kn (γ1r>) Pm

n (cos θ)Pm
n (cos θ′)ejm(φ−φ′)

= γ1

∞∑
n=0

2n+ 1

4π
in (γ1r<) kn (γ1r>) Pn(cos Θ), (B.28)

with Θ the scattering angle between the source and observation point. Further, we have used

Pn(cos Θ) = Pn(cos θ)Pn(cos θ′) + 2
n∑

m=1

(n−m)!

(n+m)!
Pn(cos θ)Pn(cos θ′) cos(φ− φ′), (B.29a)

cos Θ = cos θ cos θ′ + sin θ sin θ′ cos(φ− φ′). (B.29b)

Next, we express the field from an electric point source in terms of Green’s function. In turn, the

corresponding Debye potentials follow from the radial field components. In view of Eq. (2.43),

the magnetic field from the electric point source, J(r) = α̂δ(r − r′), is found to be

H = ∇ × [α̂G(r, r′)] . (B.30)

The substitution of Eq. (B.30) in the source-free counterpart of the law of Ampère-Maxwell,

Eq. (2.11a), yields the electric field outside the source point. By taking the inner product with r,

rEr is found to be

rEr =
1

sε1

r∇ × ∇ × [α̂G(r, r′)] . (B.31)

Using source reciprocity, (cf. Eq. (2.49)), we have

r · ∇ × ∇ × [α̂G(r, r′)] = α̂ · ∇′ × ∇′ × [r̂G(r, r′)] . (B.32)

In view of the identity

∇′ × [(r − r′)G(r, r′)] = 0, (B.33)
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Eq. (B.31) may be written as

rEr =
1

sε1

α̂ · ∇′ × ∇′ × [r′G(r, r′)] . (B.34)

Via a similar approach for Hr in Eq. (B.30), we obtain

rHr = α̂ · ∇′ × [r′G(r, r′)] . (B.35)

By subjecting Eq. (B.20) to the transformation in Eq. (B.24), the part within brackets on the

left-hand side is the same as that of Eq. (B.25). Consequently, for the n-th harmonic, Er and Hr

in Eq. (B.20) reduce to

Er = − 1

sε1

n(n+ 1)

r
Πe, (B.36a)

Hr =
1

sμ1

n(n+ 1)

r
Πm. (B.36b)

Hence, the Debye potentials follow from the r-components of the field and the Green’s function

expressed in terms of spherical harmonics. Combined, we have

Πe = − γ1

4π
α̂ · ∇′ × ∇′ × r′

∞∑
n=0

2n+ 1

n(n+ 1)
Υn(r, r

′)Pn(cos Θ), (B.37a)

Πm = sμ1
γ1

4π
α̂ · ∇′ × r′

∞∑
n=0

2n+ 1

n(n+ 1)
Υn(r, r

′)Pn(cos Θ), (B.37b)

with,

Υn(r, r
′) = in (γ1r<) kn (γ1r>) . (B.38)

Via Eq. (B.19) the electric and magnetic field of an electric point source in a homogeneous

medium may be expressed in terms of the Debye potentials. Note that the potentials for a mag-

netic point source readily follow by duality.

In turn, the potentials associated with the scattering from a dielectric sphere have the same form

as they follow from Eq. (B.20) through a similar derivation as performed for the electric point

source. In fact, only Υn changes, i.e., an interior scattered field for r < a, and an exterior

scattered field combined with the above incident field for r > a. In particular, we may write

Υcyl
n (r, r′) =

{
Rj
n kn(γ1r

′)kn(γ1r) + in (γ1r<) kn (γ1r>) , r > a,

T jn kn(γ1r
′)in(γ1r), r < a,

(B.39)

with j = TM for Υcyl
n = Πe and j = TE for Υcyl

n = Πm. Here, Rn and Tn represent the as

yet unknown reflection and transmission coefficients for the scattered exterior and interior fields,
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respectively. The second term for r > a is the electric point source solution, Eq. (B.38). Once

the scattering coefficients have been determined, we may account for the presence of the sphere

by replacing Υn by Υcyl
n in Eq. (B.37) and considering Πe and Πm in the background medium.

Notice that all derivatives with respect to θ and φ of Πe and Πm in Eq. (B.36), only operate on

Pn(cos Θ). This is also the case for the primed coordinates.

The unknown scattering coefficients follow from the boundary conditions at the interface r =

a. Since this is a source-free interface, boundary conditions of the continuity type hold for

the tangential field components. By inspecting Eq. (B.22), continuity of the individual field

components implies that Πe, Πm, 1
ε
∂r[rΠe], and 1

μ
∂r[rΠm] must remain continuous across r =

a. We consider the TE-case first. Since the spherical harmonics are linearly independent, the

conditions for Πm lead to the following set of equations,

RTE
n kn(γ1a) + in(γ1a) = TTE

n in(γ2a), (B.40a)

μ2R
TE
n ∂a [akn(γ1a)] + μ2∂a [ain(γ1a)] = μ1T

TE
n ∂a [ain(γ2a)] , (B.40b)

for r′ > a. Subsequently, with the introduction of the characteristic denominator

dTE
n =

[
Z1k̆n(γ1a)̆i

′
n(γ2a) − Z2k̆

′
n(γ1a)̆in(γ2a)

]
, (B.41)

with ĭn(z) = zin(z) and k̆n(z) = zkn(z), the scattering coefficients are found to be

TTE
n = μ2c1/d

TE
n , (B.42a)

RTE
n =

[
Z2ĭ

′
n(γ1a)̆in(γ2a) − Z1ĭn(γ1a)̆i

′
n(γ2a)

]
/dTE

n , (B.42b)

where the Wronskian relation in Eq. (B.27) has been used for TTE
n . The scattering coefficients,

TTM
n and RTM

n involving Πe, follow from Eq. (B.42) by duality. Further, if the sphere comprises

a PEC, the electric conductivity, and thereby also the imaginary part of ε2 becomes infinite.

Accordingly, for a PEC the reflection coefficients reduce to

RTE
n = − ĭn(γ1a)

k̆n(γ1a)
, and RTM

n = − ĭ′n(γ1a)

k̆′n(γ1a)
, (B.43)

while Tn = 0 for both polarizations.
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Appendix C

Far field integrals in closed form

In this appendix, we derive analytical expressions for the far-field integrals pertaining to the test

and expansion integral for the forcing vector and the scattered field representation, respectively.

For the 3D case in Section C.1, this involves the RWG function, ∧, and the rotated RWG func-

tion, ∨. The far-field integral for the 2D case in Section C.2 is used to determine the normalized

radiation pattern of a line source near a scattering object. In particular, expressions are provided

for the piecewise constant and piecewise linear functions.

C.1 3D far-field integral

The far field due to current distributions, expanded in terms of ∧- or the ∨-functions, may be
determined analytically [127]. A compact derivation for the resulting expressions is presented

below. To determine a bistatic RCS, these expressions may be used in the computation of the

forcing vector in case of an incident plane wave, Eq. (7.30), but also for the evaluation of the

scattered far field, Eq. (7.32).

The far-field integral in question may in case of a∧n-expansion function be cast in the following

form (Eq. (7.34)),

Fv ∧n (r̂) =

∫
Γ±
n

∧n(r
′)eγv(r̂·r

′) dA′. (C.1)

It is convenient to evaluate the integral in Eq. C.1 in terms of the local coordinate system intro-
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duced in Section 7.2. Upon defining the propagation vector in the radial direction, γv ≡ γvr̂, the

integral in local coordinates may be rewritten as∫
Γ±
n

∧n(r
′)eγv(r̂·r

′) dA′ =
j

2Aq

∫
Γq

(r′ − rqj)e
γv ·r′

dA′ =
j
2

eγv ·rqj∇γv

∫
Γq

eγv ·(r′−rqj ) dA′, (C.2)

for r′ ∈ Γq. The remaining integral can be expressed as [128]∫
Γq

eγv ·(r′−rqj ) dA′ =
X1(β1) −X2(β2)

β1 − β2

, (C.3)

where β1 and β2 denote the covariant components of the propagation vector in the local basis,

∧q
j , and are given by

β1 = γv · �j−1, (C.4a)

β2 = −γv · �j+1. (C.4b)

The function Xq is given by

Xq(β) = β−q
[
eβ −

q−1∑
�=0

1

!
β�

]
. (C.5)

Due to finite-precision arithmetic, the evaluation of Xq(β) according to its definition in terms of

elementary functions would lead to severe loss of accuracy for small |β|, especially if q is large.
On that account, we apply a Taylor expansion of the exponential functions, such that Eq. (C.5)

reduces to

Xq(β) =
∞∑
�=q

1

!
β�−q =

∞∑
�=0

1

(+ q)!
β�. (C.6)

If the above expansion is applied for |β| < π/2, truncation after 24 terms is sufficient to obtain

an accuracy of 10−15 for q ≤ 4. In turn, the gradient of Eq. (C.3) may be expressed in terms of

the edge vectors associated with the local basis ∧q
j ,

∇γv

∫
Γq

eγv ·(r−rqj ) dA′ = g1�j−1 − g2�j+1, (C.7)

in which the contravariant components of g in the local basis are given by

gv =
(βv − β3−v) [X1(βv) −X2(βv)] +X1(β3−v) −X1(βv)

(βv − β3−v)
2 , with v = 1, 2. (C.8)
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To avoid loss of accuracy, Eq. (C.8) is evaluated via a truncated Taylor expansion for β1 ≈ β2,

according to

gv =
N∑
n=0

(
#n
2
$ + 1

)(βv − β3−v
2

)n n+2∑
m=0

[
(−1)m

(n+ 2 −m)!
Xm+1

(
β1 + β2

2

)]
+O([β1 − β2]

N+1),

(C.9)

where the floor function, #x$, gives the largest integer less than or equal to x. For |β1−β2| < 10−2

we employ Eq. (C.9) with N = 6, instead of Eq. (C.8). Because the solution of Eq. (C.7) is

expressed in terms of the edge vectors, the solution to Eq. (C.1) with ∨n instead of ∧n follows

immediately from the expressions given above.

C.2 2D radiation pattern

Below we determine the radiation pattern normalized to the total power radiated by an electric

line source in free space, ℘(φ). To determine ℘(φ), we require the scattered far field. With em-

bedding based on Schelkunoff’s equivalence principle involving only electric equivalent currents,

the scattered electric field follows from Eq. (5.54), and is given by

Esc
z (ρ) =

sμv
2π

∫
C

Jz(ρ
′)K0 (γv |ρ − ρ′|) d′, (C.10)

where v denotes the medium index and C represents the outer contour of the composite scattering
domain. For large argument z, we may write

K0(z) ≈
√

π

2z
e−z. (C.11)

Further, in the far field we have, |ρ − ρ′| = ρ− ρ̂ · ρ′ + O
(

1
ρ

)
, with ρ = |ρ|. Accordingly, the

far field approximation of Eq. (C.10) is given by

Esc
z (ρ) ≈ sμv√

8πγvρ
e−γvρ

∫
C

Jz(ρ
′)eγv(ρ̂·ρ

′) d′. (C.12)

The remaining integral is the 2D counterpart of the 3D far-field integral in Eq. (7.34). Likewise,

for the far field of an electric line source placed at the origin, we obtain

Ein
z (ρ) = −sμv

2π
K0 (γvρ) ≈ − sμv√

8πγvρ
e−γvρ. (C.13)



292 Far field integrals in closed form

Upon applying the radiation condition to obtain the magnetic field the Poynting vector is found

to be

S(ρ) =
1

2
�{E × H∗} =

Yv
2

|Ez(ρ)|2 ρ̂. (C.14)

Since the electric field is proportional to ρ−1/2, the total power radiated per unit angle is given by

P (φ) = |ρS(ρ)| =
ρYv
2

|Ez(ρ)|2 , (C.15)

with Ez = Ein
z + Esc

z . The total power radiated by the electric line source follows from the

integration of the corresponding power density Sin along a circle, which yields

Pt =

∫
C

ρSin(ρ) · ρ̂ d =
ρYv
2

2π∫
0

∣∣Ein
z (ρ)

∣∣2 dφ = πρYv
∣∣Ein

z (ρ)
∣∣2 . (C.16)

Because Pt/2π represents the average power radiated per unit φ, the normalized radiation pattern

follows from

℘(φ) =
2πP (φ)

Pt
≈
⎡
⎣1 −

∫
C

Jz(ρ
′)eγv(ρ̂·ρ

′) d′

⎤
⎦

2

. (C.17)

Similar to the 3D case, the remaining far-field integral may be computed analytically. More

specifically, via a transformation to the local coordinate system introduced in Section 5.3, ρ′ =

ρcn + dnξτ̂ n, the far-field integral may be rewritten as

∫
C

Jz(ρ
′)eγv(ρ̂·ρ

′) d′ = dne
γv(ρ̂·ρcn)

1∫
−1

f(ξ)eξdnγv(ρ̂·τ̂n) dξ, for ρ′ ∈ Γn, (C.18)

where f(ξ) is a linear combination of the terms {1, ξ}, which depends on the specific expansion
function (�n or ∧n). The remaining integral may be identified as the standard integral

If [f ] =
1

2

1∫
−1

f(ξ)eξa dξ, (C.19)

which solution is expressed in terms of hypergeometric functions

If [1] =
sinh(a)

a
,

If [ξ] =
a cosh(a) − sinh(a)

a2
.

(C.20)

For small values of a, a truncated Taylor-expansion is required.
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vol. 32, pp. 466–470, 1978.

[52] C. Müller, Foundations of the mathematical theory of electromagnetic waves. Springer-

Verlag Berlin, 1969.

[53] J. R. Mautz and R. F. Harrington, “Electromagnetic scattering from a homogeneous mate-

rial body of revolution,” Archiv für Electronik und Übertragungstechnik (AE Ü), vol. 33,
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Summary

LEGO: Linear Embedding via Green’s Operators

Reduction of lead time has long been an important target in product development. Owing to the

advance of computer power product optimization has been moved from the production stage to

the preceding design stage. In particular, the full electromagnetic behavior of the final product

can now be predicted through numerical methods. However, for the tuning of device parame-

ters in the optimization stage, commercial software packages often rely on brute-force parameter

sweeps. Further, for each set of parameter values a full recomputation of the entire configuration

is usually required. In case of stringent product specifications or large complex structures, the

computational burden may become severe. Recently, “marching on in anything” has been intro-

duced to accelerate parameter sweeps. Nevertheless, it remains necessary to further reduce the

computational costs of electromagnetic device design. This is the main goal in this thesis.

As an alternative to existing electromagnetic modeling methods, we propose a modular model-

ing technique called linear embedding via Green’s operators (LEGO). It is a so-called diakoptic

method based on the Huygens principle, involving equivalent boundary current sources by which

simply connected scattering domains of arbitrary shape may fully be characterized. Mathemat-

ically this may be achieved using either Love’s or Schelkunoff’s equivalence principles, LEP

or SEP, respectively. LEGO may be considered as the electromagnetic generalization of de-

composing an electric circuit into a system of multi-port subsystems. We have captured the

pertaining equivalent current distributions in terms of a lucid Green’s operator formalism. For

instance, our scattering operator expresses the equivalent sources that would produce the scat-

tered field exterior to a scattering domain in terms of the equivalent sources that would produce

the incident field inside that domain. The enclosed scattering objects may be of arbitrary shape

and composition. The scattering domains together with their scattering operators constitute the

LEGO building blocks. We have employed various alternative electromagnetic solution meth-

ods to construct the scattering operators. In its most elementary form, LEGO is a generalization

of an embedding procedure introduced in inverse scattering to describe multiple scattering be-
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tween adjacent blocks, by considering one of the blocks as the environment of the other and vice

versa. To establish an interaction between current distributions on disjoint domain boundaries

we define a source transfer operator. Through such transfer operators we obtain a closed loop

that connects the scattering operators of both domains, which describes the total field including

the multiple scattering. Subsequently, a combined scattering block is composed by merging the

separate scattering operators via transfer operators, and removing common boundaries.

We have validated the LEGO approach for both 2D and 3D configurations. In the field of elec-

tromagnetic bandgap (EBG) structures we have demonstrated that a cascade of embedding steps

can be employed to form electromagnetically large complex composite blocks. LEGO is a mod-

ular method, in that previously combined blocks may be stored in a database for possible reuse

in subsequent LEGO building step. Besides scattering operators that account for the exterior

scattered field, we also use interior field operators by which the field may be reproduced within

(sub)domains that have been combined at an earlier stage. Only the subdomains of interest are

stored and updated to account for the presence of additional domains added in subsequent steps.

We have also shown how the scattering operator can be utilized to compute the band diagram of

EBG structures. Two alternative methods have been proposed to solve the pertaining eigenvalue

problem. We have validated the results via a comparison with results from a plane-wave method

for 2D EBG structures. In addition, we have demonstrated that our method also applies to unit

cells containing scattering objects that are perfectly conducting or extend across the boundary of

the unit cell.

The optimization stage of a design process often involves tuning local medium properties. In

LEGO we accommodated for this through a transfer of the equivalent sources on the boundary

of a large scattering operator to the boundary of a relatively small designated domain in which

local structure variations are to be tested. As a result, subsequent LEGO steps can be carried

out with great efficiency. As demonstrators, we have locally tuned the transmission properties

at the Y-junction of both a power splitter and a mode splitter in EBG waveguide technology. In

these design examples the computational advantageous of the LEGO approach become clearly

manifest, as computation times reduce from hours to minutes. This efficient optimization stage

of the LEGO method may also be integrated with existing software packages as an additional

design tool. In addition to the acceleration of the computations, the reusability of the composite

building constitute an important advantage.

The Green’s operators are expressed in terms of equivalent boundary currents. These operators

have been obtained using integral equations. In the numerical implementation of the LEGO
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method we have discretized the operators via the method of moments with a flat-facetted mesh

using local test and expansion functions for the fields and currents, respectively. In the 2D case

we have investigated the influence of using piecewise constant and piecewise linear functions.

For the 3D implementation, we have applied the Rao-Wilton-Glisson (RWG) functions in com-

bination with rotated RWG functions. After discretization, operators and operator compositions

are matrices and matrix multiplications, respectively. Since the matrix multiplications in a LEGO

step dominate the computational costs, we aim at a maximum accuracy of the field for a mini-

mum mesh density.

For LEGO with SEP, we have determined the unknown currents through inverse field propaga-

tors, whereas with LEP, the currents are directly obtained from the tangential field components

via inverse Gram matrices. After a careful assessment of the computational costs of the LEGO

method, it turns out that owing to the removal of common boundaries and the reusability of scat-

tering domains, the most efficient application of LEGO involves a closely-packed configuration

of identical blocks. In terms of the number of array elements, N , the complexity of a sequence

of LEGO steps for 2D and 3D applications increases as O(N1.5) and O(N2), respectively. We

have discussed possible improvements that can be expected from ”marching on in anything” or

multi-level fast-multipole algorithms. From an evaluation of the resulting scattered field, it turns

out that LEGO with SEP is more accurate than with LEP. However, the spurious interior reso-

nance effect common to SEP in the construction of composite building blocks can not simply

be avoided through a combined field integral equation. By contrast, LEGO based on LEP is

robust. Further, we have demonstrated that additional errors due to the choice of domain shape

or building sequence, or the accumulation of errors due to long LEGO sequences are negligible.

Further, we have investigated integral equations for the scattering from 2D and 3D perfectly

conducting and dielectric objects. The discretized integral operators directly apply to the LEGO

method. For scattering objects that are not canonical, these integral equations are used in the

construction of the elementary LEGO blocks. Since we aim at a maximum accuracy of the field

for a minimum mesh density, the regular test and expansion integral parts are primarily deter-

mined through adaptive quadrature rules, while analytic expressions are used for the singular

integral parts. It turns out that the convergence of the scattered field is a direct measure for the

accuracy of the scattered field computed with LEGO based on SEP or LEP. As an alternative

to the PMCHW and the Müller integral equations, we have proposed an new integral equation

formulation, which leads to cubic convergence in the 2D case, irrespective of the mesh density

and object shape. In case of scattering object with a regular boundary domain scaling may be

used to improve the convergence rate of the scattered field.
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