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Abstract
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scheduling problems. We give complete characterizations of all facet inducing inequalities
with integral coefficients and right.-hand side 1 or 2. Our results may lead to improved
cutting plane algorithms for single-machine scheduling problems.

1 Introduction

Recently developed polyhedral methods have yielded substantial progress in solving many
important NP-hard combinatorial optimization problems. Some well-known examples are the
traveling salesman problem [Padberg and Rinaldi 1991], and large-scale 0-1 integer program­
ming problems [Crowder, Johnson and Padberg 1983]. We refer to Hoffman and Padberg
[1985] and Nemhauser and Wolsey [1988] for general descriptions of the approach.

For machine scheduling problems, however, polyhedral methods have not been nearly so
successful. The investigation and development of polyhedral methods for machine scheduling
problems is important because traditional combinatorial algorithms do not perform well on
difficult problem types in this class.

Relatively few papers have been written in this area. Balas [1985] pioneered the study of
scheduling polyhedra with his work on the facial structure of the job shop scheduling prob­
lem. Queyranne [1986] completely characterized the polyhedron associated with the simple
nonpreemptive single-machine scheduling problem. Queyranne and Wang [1988] generalized
Queyranne's results to include precedence constraints. Wolsey [1989] compared different for­
mulations for the problem with precedence constraints. Dyer and Wolsey [1990] examined
several formulations for the single-machine scheduling problem with release times. Further­
more, Nemhauser and Savelsbergh [1992] developed a cutting plane algorithm for this problem.
Sousa and Wolsey [1992] investigated a time-indexed formulation for several variants of the
nonpreemptive single-machine scheduling problem. Crama and Spieksma [1991] studied the
same formulation for problems in which the jobs have equal processing times. Lasserre and
Queyranne [1992] presented a mixed integer programming formulation motivated by a control
theoretic view of scheduling decisions.

In this paper, we report new results for the time-indexed formulation of nonpreemptive
single-machine scheduling problems studied by Sousa and Wolsey [1992]. They introduced
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three classes of inequalities: a class of inequalities with right-hand side 1, and two classes of
inequalities with right-hand side k E {2, ... , n}. In their cutting plane algorithm, they used an
exact separation method only for inequalities with right-hand side 1 and for inequalities with
right-hand side 2 in one class. They used a simple heuristic to identify violated inequalities in
the remaining class. Their computational experiments revealed that the bounds obtained are
strong compared to bounds obtained from other mixed integer programming formulations.

These promising computational results stimulated us to study the inequalities with right­
hand side lor 2 more thoroughly. This has resulted in complete characterizations of all facet
inducing inequalities with integral coefficients and right-hand side 1 or 2. It appears that
only some of the classes of inequalities used in the computational experiments by Sousa and
Wolsey were facet inducing. Our results may hence lead to improved cutting plane algorithms
for single-machine scheduling problems. For reasons of brevity, this paper does not discuss
separation for the identified classes of facet inducing inequalities and it does not present any
computational results. We are currently studying and implementing separation algorithms.
The results of these activities will be reported in a sequel paper.

2 Problem formulation

The usual setting for nonpreemptive single-machine scheduling problems is as follows. A set
J of n jobs has to be scheduled on a single machine. Each job j E J requires uninterrupted
processing for a period of length Pj. The machine can handle no more than one job at a time.

The time-indexed formulation studied by Sousa and Wolsey [1992] is based on time­
discretization. The planning horizon is denoted by T. This formulation is given by:

minimize L L Cjt X jt

l$j$n l$t$T-pJ+l

subject to
L Xjt = 1 (j = 1, ... ,n),

l$t$T-pj+I

L L Xjs ~ 1 (t = 1, ...,T),
l$j$n t-Pj<s$t

Xjt E {O,l} (j = 1, ...,nj t = 1, ... ,T),

where Xjt = 1 if job j is started in period t and 0 otherwise. This formulation can be used
to model several variants of single-machine scheduling problems by an appropriate choice of
the objective coefficients and possibly a restriction of the set of variables. For instance, if the
objective is to minimize the weighted sum of the starting times, we take coefficients Cjt = Wjt,

and if there are release dates r j, we discard the variables x jt for t =1, ... , r j - 1.
In the above formulation the convex hull of the set of feasible schedules is not full­

dimensional. As it is often easier to study full-dimensional polyhedra, we consider the poly­
hedron P that is associated with an extended set of solutions and defined by

L Xjt ~ 1 (j = 1, ... ,n),
l$t$T-pj+l

L L xjs~l (t=l, ... ,T),
l$j$n t-p,<s$t

2
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Xjt E {D, I} (j = 1, ... , nj t = 1, ... , T).

Although it may seem more natural to relax the equations into inequalities with sense greater­
than-or-equal instead of less-than-or-equal, we have chosen for the latter option, since it has
the advantage that the origin and the unit vectors are elements of the polyhedron, which is
often convenient for dealing with affine independence.

Note that the collection of facet inducing inequalities for the polyhedron associated with
the extended set of solutions includes the collection of facet inducing inequalities for the
polyhedron associated with the original set of solutions.

Before we present our analysis of the structure of facet inducing inequalities with right­
hand side 1 or 2, we introduce some notation and definitions.

The index-set of variables with nonzero coefficients in an inequality is denoted by V. The
set of variables with nonzero coefficients in an inequality associated with job i defines a set
of time periods Vj = {s I(j, s) E V}. If job i is started in period s E Vj, then we say that job
i is started in V. With each set Vj we associate two values

Ij = min{sls - Pj + 1 E Vj}

and
Uj = max{sls E Vj}.

For convenience, let Ij = 00 and Uj = -00 if Vj = 0. Note that if Vj =1= 0, then Ij is
the first period in which job i can be finished if it is started in Y, and that Uj is the last
period in which job i can be started in ll. Furthermore, let I = min{/jli E {I, ... , n}} and
u=max{ujliE {1, ... ,n}}.

We say that period t starts at time t - 1 a.nd ends at time t. Now, an interval [a, b] is
defined as the set of periods {a +1, a +2, ... , b}, Le., the set of periods between times a and
b. If a ~ b, then [a, b] = 0.

Lemma 1 A facet inducing inequality with integral coefficients and integral right-hand side
b has coefficients in {D, 1, ... , b}.

Proof. Since the schedule x defined by Xjs = 1 a.nd Xj's' = 0 for all (j', S') =1= (j, s) is feasi­
ble for every (j, s), a valid inequality with right-hand side b does not have coefficients greater
than b. We now show that a facet inducing inequality does not have negative coefficients.
Let 2:1=1 2:;;ii+! ajsXjs :::;: b be a valid inequality with ai's' < O. Let x be any feasible
schedule with Xi's' = 1. If Xj's' = 1 is replaced by Xi's' = 0, then the schedule remains

feasible and 2:1=1 2:;;ii+! ajsxjs is increased. Therefore, any feasible schedule such that

2:1=1 2:;;i'+! ajsXis = b satisfies Xj's' = O. Since P is full-dimensional, it follows that the

inequality 2:1=1 2:;,;i'+! ajsXjs :::;: b cannot be facet inducing. 0

For presentational convenience, we use x(8) to denote 2:.Es x•. As a consequence of the
previous lemma, valid inequalities with right-hand side 1 will be denoted by x(V) :::;: 1 and
valid inequalities with right-hand side 2 will be denoted by x(y1) + 2x(y2) :::;: 2, where
V =VI UV 2

• Furthermore, we define Y/ = {(i, s) I (j, s) E y 2 }.

In the sequel, we shall often represent inequalities by diagrams. A diagram contains a
horizontal line for each job. The line associated with job i represents the time periods s
for which Xjs occurs in the inequality. For example, an inequality of the form (2) can be

3



represented by the following diagram:

1

2

n

t - PI t

1__1

t - P2 t

IL...-------JI

3 Facet inducing inequalities with right-hand side 1

The purpose of this section is twofold. First, we present new results that extend and com­
plement the work of Sousa and Wolsey (1992]. Second, we familiarize the reader with our
approach in deriving complete characterizations of classes of facet inducing inequalities.

A valid inequality xCV) ~ 1 is called maximal if there does not exist a valid inequality
x(W) ~ 1 with V ¥W. The following lemma is frequently used in the proofs in this section.

Lemma 2 A facet inducing inequality xCV) ~ 1 is maximal.

Establishing complete characterizations of facet inducing inequalities proceeds in two
phases. First, we derive necessary conditions in the form of various structural properties.
Second, we show that these necessary conditions on the structure of facet inducing inequali­
ties are also sufficient.

Property 1 If xCV) ~ 1 is facet inducing, then the sets Vj are intervals, i.e., Vj = [lj-pj, Uj].

Proof. Let j E{I, ... , n} and assume Vj =1= 0. Let tI, t2 E Vj be such that ti ~ t2' We
show that s E Vj for all s such that ti ~ s ~ t2. Let ti ~ s ~ t2' If Xjt 2 = 1, then it is
impossible to start any other job in V. Since s ~ t2, this implies that, if Xjs = 1, then it is
impossible to start any job in V before job j. In the same way, since s ~ tI, it is impossi­
ble to start any job after job j if Xis = 1. Since xCV) ~ 1 is maximal, it follows that s E Vj. 0

Property 2 Let xCV) ~ 1 be facet inducing.
(a) Assume I =h ~ 12 =min{lilj E {2, ... ,n}}. Then VI = [1- PIh] and Vj = [Ij - pj,l] for
all j E {2, ... , n}.
(b) Assume U= UI ~ U2 =max{ujlj E {2, ... ,n}}. Then VI = [U2-PI,U] andVj = [u-Pj,Uj]
for all j E {2, ... , n}.

Proof. (a) Let xCV) ~ 1 be facet inducing with I = II ~ 12 = min{lj I j E {2, ... , n}}. If
XIs = 1 for some s > h, then job 2 can be started in period 12 - P2 + 1, Le., job 2 can be
started in V. Hence VI S;; [1- PI,12]. Now, let XIs = 1 for some s E [1- PI, 12]. Since by
definition 1- PI +1 E VI and s ~ I - PI +1, it is impossible to start any job in V after job 1.
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Since s $ 12, it is impossible to start any job in V before job 1. Since xCV) $ 1 is maximal,
we conclude that s E VI and we find VI = [/- PI, 12], Let j E {2, ... , n}. IT Xjs =1 for some
s > I, then job 1 can be started in period 1- PI + 1. Hence Vi ~ [lj - pj,l]. It is easy to see
that if Xjs =1 for some s E [lj - pj,l], then it is impossible to start any other job in V. Since
xCV) $ 1 is maximal, we find Vi = [/j - Ph 1].

(b) Similar to (a). 0

Observe that by Property 2(a) a facet inducing inequality xCV) $ 1 with I = It necessarily
has UI = u. Consequently, Property 2(a) and 2(b) can be combined to give the following
theorem.

Theorem 1 A facet inducing inequality xCV) $ 1 has the following structure:

VI = [1- Pll u],
Vi = [u - pj,/] (j E {2, ... ,n}),

(3)

where 1= 11 $ UI = u.

This theorem says that a facet inducing inequality with right-hand side 1 can be represented
by the following diagram:

1- PI U

1 I I
U-Pj I ~1.

jE{2, ... ,n} I I
Note that if Vi = 0 for all j E {2, ... , n}, 1 = PI and U = T - PI + 1, the inequalities with
structure (3) coincide with the inequalities (1), and if 1 = u, the inequalities with structure
(3) coincide with the inequalities (2).

Example 1 Let n = 3, PI = 3, P2 = 4 and P3 = 5. The inequality with stucture (3), 1= 6
and U = 7 is given by the following diagram:

23456 7

1

2

3

! ~I2

I!
$1.

The fractional solution Xl4 = Xl7 = X33 = ! violates this inequality.

Sousa and Wolsey [1992] have shown that the given necessary conditions are also sufficient.

Theorem 2 A valid inequality xCV) $ 1 with structure (3) that is maximal is facet inducing.

Specific necessary and sufficient conditions for a valid inequality xCV) $ 1 with structure (3)
to be maximal are given by the following theorem. The proof of this theorem uses the concept
of a counterexample. If xCV) $ 1 is a valid inequality, then a counterexample for (j, s) ¢ V is
a feasible schedule such that Xjs = 1 and xCV) = 1.
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Theorem 3 A valid inequality xCV) ::; I with structure (3) is maximal if and only if Vi ~ 0
for some j E {2, ... , n}, or xCV) ::; I is one of the inequalities (I), i.e., 1 = PI and u =
T-PI+1.

Proof. Let xCV) ::; 1 be a valid inequality with structure (3). Let xCV) ::; 1 be maximal
and suppose Vi = 0 for all j E {2, ... , n}. It is not hard to see that xCV) ::; 1 must be one
of the inequalities (1) and hence 1= PI and u = T - PI + 1. On the other hand, it is easy to
see that if Vi ~ 0 for some j E {2, ... , n}, then there is a counterexample for any (j, s) rt V.
Hence xCV) ::; 1 is maximal. Analogously, if xCV) ::; 1 is one of the inequalities (1), then it is
maximal. 0

4 Facet inducing inequalities with right-hand side 2

In the previous section, we have derived a complete characterization of all facet inducing
inequalities with right-hand side 1. We now derive a similar characterization of all facet
inducing inequalities with right-hand side 2.

First, we study the structure of valid inequalities with right-hand side 2 and coefficients 0,
1, and 2. Consider a valid inequality x(VI) +2x(V2) ::; 2. Clearly, at most two jobs can be
started in V. Let j E {I, ... , n} and s E lfj. It is easy to see that, if job j is started in period
s, at least one of the following three statements is true.

(i) It is impossible to start any job in If before job j, and at most one job can be started
in V after job j.

(ii) At most one job can be started in V before job j, and it is impossible to start any
job in V after job j.

(iii) There exists a job i with i i= j such that job i can be started in V before or after
job j and any job j' with j' ~ j, i cannot be started in V.

Therefore, we can write V =LUMUU, where L S V is the set of variables for which statement
(i) holds, M ~ V is the set of variables for which statement (ii) holds, and U ~ V is the set
of variables for which statement (iii) holds. Analogously, we can write Vi = Lj U Mj U Uj.
Note that each of the sets Lj, Mj and Uj may be empty.

If job j is started in a period in If/, then it is impossible to start any job in V before or
after job j. Hence V2 ~ L nU. Analogously If/ ~ Lj nUj. It is not hard to see that if L; ~ 0
and Uj i= 0, then the minimum of Lj is less than or equal to the minimum of Uj, and the
maximum of Lj is less than or equal to the maximum of Uj. By definition Lj n Mj = 0 and
Mj n Uj = 0. If Lj ~ 0 and Mj ~ 0, then the maximum of Lj is less than the minimum of
Mj. Furthermore, if Mj ~ 0 and Uj ~ 0, then the maximum of Mj is less than the minimum
of Uj. It follows that if Lj n Uj ~ 0, then Mj = 0. By definition of the sets Land U, x(L) ::; 1
and x(U) ::; 1.

We conclude that a valid inequality x(lfI) +2x(V2 ) ::; 2 can be represented by a collection
of sets Lj, Mj and Uj. To derive necessary conditions on the structure of facet inducing
inequalities with right-hand side 2, we study this LMU-structure more closely.
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A valid inequality X(VI) +2X(V2) :$ 2 is called nondecomposable if it cannot be written as the
sum of two valid inequalities x(W) :$ 1 and x(W') :$ 1. A valid inequality x(VI )+2x(V2) :$ 2
is called maximal if there does not exist a valid inequality X(WI )+2x(W2) :$ 2 with VI ~ WI,
V2 ~ W2, and not WI = VI and W2 = V2.

Lemma 3 A facet inducing inequality X(VI) +2x(V2) :5 2 is nondecomposable and maximal.

The remaining part of the analysis of the LMU-structure proceeds in two phases. In the
first phase, we derive conditions on the structure of the sets L and U by considering them
separately from the other sets. The thus derived structural properties reveal that we have to
distinguish three situations when we consider the overall LMU-structure, based on how the
sets L and U can be joined. In the second phase, we investigate each of these three situations
and derive conditions on the structure of the set M.

Property 3 If x(VI) + 2x(V2) :$ 2 is facet inducing, then the sets Lj, Mj and Uj are
intervals.

Proof. Let j E {I, ... , n} and assume Lj =F 0. Let tt, t2 E Lj be such that tl :5 t2' We
show that s E Lj for all s with tl :5 s :5 t2' Let tl :$ s :5 t2' If Xjt2 = 1, then it is impossible
to start any job in V before job j. Since s :5 t2, this is also impossible if x j6 = 1. Similarly,
if XjtI = 1, then it is impossible to start more than one job after job j. Since s ~ tl, this is
also impossible if Xj6 = 1. Since x(V1 ) +2x(V2) :$ 2 is maximal, it follows that s E Lj.

Analogously, the sets Mj and Uj are intervals. 0

Consider a facet inducing inequality .1:(V1 ) + 2x(V2) :5 2. We have seen that V 2 ~ L n U.
Observe that if job j is started in Lj n Uj, then it is impossible to start any job in V before
or after job j. Since x(V1) +2x(V2) :$ 2 is maximal, this implies Vi = Lj n Uj for all j, Le.,
V2 = L n U.

Property 4 Let x(Vl) +2x(V2) :$ 2 be facet inducing.
(a) Assume 1= 11 :512 :5 min{lj I j E {3, ... ,nn. Then L1 = [1- Pt,12] and Lj = [lj - pj,l]
for all j E {2, ... , n}. Furthermore, there exists a j E {2, ... , n} such that Lj =F 0.
(b) Assume u = UI ~ U2 ~ max{uj I j E {3, ... ,nn. Then U1 = [U2 - PI,U] and Uj =
[u - Pj, Uj] for all j E {2, ... , n}. Furthermore, there exists a j E {2, ... , n} such that Uj =F 0.

Proof. (a) By definition 1- PI + 1 E VI' It is easy to see that 1 - PI + 1 ELI' If x16 = 1
for some s > 12, then job 2 can be started in V before job 1. Consequently, L1 ~ [1- Pl,12].
Now, let X16 =1 for some s E [1- Pt,12]' Since s :$ 12, it is impossible to start any job in V
before job 1. From 1- PI +1 E LI and s ~ 1- PI +1, it follows that at most one job can be
started in V after job 1. Since x(Vl) +2x(V2) :5 2 is maximal, we conclude that 8 E Lj and
hence L I = [I - PI, 12],

Let j E {2, ... , n}. If Xj6 = 1 for some s > 1, then job 1 can be started in V before job j.
It follows that Lj ~ [Ij - Pj, 1]. Assume lj - Pj < 1. By definition lj - Pj + 1 E Vi and clearly
Ij - Pj + 1 E Lj. It is now easy to see that if Xjs = 1 for some s E [lj - Pj, 1], then no job
can be started in V before job j, and at most one job can be started in V after job j. Since
X(Vl) +2x(V2) :$ 2 is maximal, we find Lj = [lj - Pj, 1].

Suppose Lj = 0 for all j E {2, ... , n}. We show that x(V1) + 2x(V2) :5 2 can be
written as the sum of two valid inequalities with right-hand side 1, which contradicts the
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fact that X(VI) + 2X(V2) ~ 2 is fa.cet inducing. Let W = {(I, s) I s E LI n UI } U {(i, s) I
j E {2, ... ,n}, sE Vj} and W' = ((1,s) I s E Vd. Clearly, x(W') ~ 1 and x(W) +
x(W') = x(VI) + 2x(V2). We still have to show x(W) ~ 1. Note that it suffices to show
LjE{2,...,n} LsEVj Xjs ~ 1. For i E {2, ... , n} we have Ij - Pj ~ I, since by assumption Lj = 0,
Le., s > I for all s E Vj. Consequently, if Xi! s l = Xjz S2 = 1 is a feasible schedule such that
LjE{2,...,n} LsEVj Xjs = 2, then XI,l-Pl+l = Xjl sl = Xh S 2 = 1 is also a feasible schedule. As
this schedule violates the inequality, it follows that LjE{2,...,n} LsEVj Xjs ~ 1.

(b) Similar to (a). 0

Like the proof of theorem 3, many of the proofs of the properties and theorems presented in
this section use the concept of a counterexample. If x(VI ) +2x(V2) ~ 2 is a valid inequality,
then a counterexample for (j,s) ¢ V is a feasible schedule such that Xjs = 1 and XCVI) +
2x(y2) = 2. Observe that if x(VI ) +2x(l/2) ~ 2 is facet inducing and (j, s) ¢ Y, then there
exists a counterexample for (j, s), since x(l/I) +2x(V2) ~ 2 is maximal.

Property 5 Let x(VI) +2x(V2) ~ 2 be facet inducing.
(a) Assume I = II ~ 12 ~ 1*, where 1* = min{/j liE {3, ,n}}. Then for alii E {3, ... ,n}
such that Lj # 0 we have Ij = 1* and for all i E {3, , n} such that Lj = 0 we have
1* - Pj ~ I, i.e., Lj = [/* - pj,/] for all j E {3, ... , n}.
(b) Assume U = UI ~ U2 ~ u*, where 1/* = max{uj I j E {3, ,n}}. Then for all j E
{3, ... ,n} such that Uj # 0 we have Uj = u* and for allj E {3, ,n} such that Uj = 0 we
have u* ~ U - pj,i.e., Uj = [u - Pj, u*] for all j E {3, ... , n}.

Proof. (a) By Property 4, Lj ~ [/* - pj,/] for all j E {3, ... ,n}. Assume w.l.o.g. l* = 13 ,

Suppose that Lj # [/* - pj,/] for some j E {4, ... ,n}, say L4 # [/* - P4,/]. Clearly, if
l* - P4 ~ I, then L4 = 0 and hence £4 = [1* - P4, I]. Consequently 1* - P4 < I and 14 > 1*,
Le., 1* - P4 + 1 ¢ V4. Since x(VI) +2x(V2) ~ 2 is maximal, there is a counterexample for
(4,1* - P4 + 1). Let (jbst},(h,S2) E l/ be such that X4,lo-p4+1 = Xj} S l = Xjz S 2 = 1 is a
feasible schedule. Since 1* - P4 +1 ~ I, the jobs jI and h are started after job 4. Clearly one
of the jobs 1,2 and 3 does not occur in {jl,j2}. Suppose job 3 does not occur. It is now easy
to see that X3,lo-P3+ I = Xj} S l = Xh S 2 = 1 is a feasible schedule. This schedule violates the
inequality, which yields a contradiction. If job 1 or job 2 does not occur in {jbh} we find a
contradiction in the same way.

(b) Similar to (a). 0

Properties 4 and 5 say that if XCVI ) +2x(y2) ~ 2 is facet inducing and we assume I = 11 ~

12 ~ 1*, then the set L can be represented by the following diagram:

1

2

iE{3, ... ,n}

1- Pi 12

11.....--_1
12 - P2 1

I I
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Similarly, if we assume u = Ul 2: U2 2: u·, then the set U can be represented by the following
diagram:

U2 - PI U

I I I
u - P2 U2

2 I I
u- Pi u·

jE{3, ... ,n} I
Furthermore, a facet inducing inequality with right-hand side 2 has at most three types of
intervals Lj, each characterized by the definition of the first period of the interval, and at
most three types of intervals Uj, each characterized by the definition of the last period of the
interval. Stated slightly differently, with the exception of two jobs the intervals Lj have the
same structure for all jobs. Similarly, the intervals Uj have the same structure for all but
two jobs. As a consequence, when we study the overall LMU-structure, it suffices to consider
three situations, based on the jobs with the deviant intervals Lj and Uj:

(la) 1 = It < 12 :5 I· and u = Ul > U2 2: U*, where 1* = min{lj I j E {3, ... ,n}} and
u· =max{uj Ii E {3, ... ,n}};
(lb) 1 = 11 < 12 < 1* and U = Ul > U3 > u·, where 1· = min{lj I j E {3, ... ,n}} and
u· =max{uj Ij E {2,4, ... ,n}};

(2) 1 = It and U = U2.

Before we investigate each of the three situations, we prove a property that applies to case 1.

Property 6 If x(V1
) + 2x(V2

) :5 2 is facet inducing with 1 = 11 < 12 = min{lj I j E
{2, .. . ,n}} and U =Ul > Uj = ma..x{uj I j E {2, .. . ,n}}, then 12 < Uj.

Proof. Suppose that 12 2: Uj. We show that X(Vl) + 2x(V2 ) :5 2 can be written as the
sum of two valid inequalities with right-hand side 1, which yields a contradiction. Let W =
{(l,s) I sELl n Utl U {(j,s) I j E {2, ... ,n}, s E Vj} and W' = {(l,s) I s E VI} U {(j,s) I
j E {2, ... ,n}, s E Lj n Uj}. Clearly x(W) + x(W') = x(VI) + 2x(V2) and x(W') :5 1.
From Vj ~ [lj - Pj,Uj] ~ [12 - Pj,Uj] for all j E {2, ... ,n} and 12 2: Uj, it easily follows that
Ej=2 EsElj Xjs :5 1 and hence x(W) :5 1. 0

4.1 Case la

Observe that the conditions on lj and Uj and Properties 4 and 5 completely determine the
sets L and U. Therefore, all that remains to be investigated is the structure of the set M.

Property 7 If x(V1
) + 2x(V2

) :5 2 is facet inducing with 1 = It < 12 :5 1* and U = UI >
U2 2: U*, then M1 = [u· - Pill·] n[h, U2 - PI], M2 = [u· - P2, 1·] n [1, U- P2] n [12 - P2, U2] and
Mj = [U2 - pj,12]n [1,u - Pj] for j E {3, .. . ,n}.
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(4)

Proof. Let X(VI) +2X(V2) $ 2 be facet inducing with I = It < 12 $ 1* and u = UI > U2 ~

u*. Since LI n MI = 0 and MI n UI = 0, we have MI ~ [/2, u2 - PI]' If job 1 is started in MIl
then job 2 should be the only job that can be started in V before or after job 1, i.e, it should
be impossible to start any job j E {3, ... , n} in V. Hence MI ~ [u* - PI, 1*]. We conclude that
MI ~ [u* - PIl/*] n [12, u2 - PI]. If job 1 is started in period S E [u* - PIl/*] n [12, u2 - PI], then,
since S E [/2, U2 - PI], [/2, u2 - PI] C [1- PIl u], and L2n U2 = [u - P2, I], job 2 cannot be started
in L2nU2. Since xCVI )+2x(V2) $ 2 is maxinlal, it follows that MI = [u* -PIl/*]n[/2, U2-PI]'

Since L2 n M2 = 0 and M2 n U2 = 0, we have M2 ~ [I, u - P2]. By definition M2 ~

[/2 - P2, U2]' If job 2 is started in M2 , then job 1 should be the only job that can be started
before or after job 2, i.e., it should be impossible to start any job j E {3, ... , n} in V. Hence
M2 ~ [u* - P2, /*]. We conclude that M2 ~ [u* - P2, /*] n [I, u - P2] n [/2 - P2, U2]. If job 2
is started in period S E [u* - P2, 1*] n [I, u - P2] n [/2 - P2, U2], then, since S E [/2 - P2, U2]
and LI n UI = [U2 - PIl/2], job 1 cannot be started in LI nUl. Since x(VI ) +2x(V2) $ 2 is
maximal, it follows that M2 = [u* - P2, 1*] n [I, u - P2] n [/2 - P2, U2].

Let j E {3, .. . ,n}. Since Li n Mi = 0 and Mi n Ui = 0, we have Mi ~ [/,u - Pi]' If
job j is started in Mi, then job 1 should be the only job that can be started in V before or
after job j, Le., it should be impossible to start any job j' E {2,3, ... ,n} \ {j} in V. Hence
Mi ~ [U2 - Pi, 12], We conclude that Mi ~ [U2 - Pi, 12]n [I, u - Pi]' If job j is started in
period S E [U2 - Pi, 12]n [I, u - Pi], then, since S E [U2 - Pi, 12], LI nUl = [U2 - PIl/2], and,
by Property 6, 12 < U2, job 1 cannot be started in L I n UI . Since x(VI ) + 2x(V2) $ 2 is
maximal, it follows that Mi = [U2 - Pj, 12]n [l, u - Pi]'

Observe that by definition Mk ~ [/k - Pk,Uk] for all k E {l, ... ,n} and that for all but
k = 2 this condition is dominated by other conditions. 0

Properties 4,5 and 7 completely determine the LMU-structure of a facet inducing inequality
XCVI) +2x(V2) $ 2 with I = It < 12 $ 1* and U = UI > U2 ~ u*. However, in order to
emphasize the inherent structure of the intervals Mj, we prefer to use a different representation
of the set M. It is easy to show that, if x(VI) + 2x(V2) $ 2 is facet inducing with I = 11 <
12 $1* and u = UI > U2 ~ u*, then for all j E {3, .. . ,n}, [u2-Pi,/] ~ L j and [u-pj,/2]~ Ui'
We can use this observation to show that Properties 4, 5 and 7 can be combined to give the
following theorem.

Theorem 4 A facet inducing inequality x(VI) + 2x(V2) $ 2 with I = II < 12 $ 1* and
u =UI > U2 ~ u* has the following LMU-structure:

LI = [/- PI,/2], MI = [u* - PIl/*] \ (L I U UI),
L2 = [/2 - P2, I], M2 = [max{u*, 12} - P2, min{1*, U2}] \ (L2 U U2),
Li = [/* - Pi, 1], M j = (U2 - Pj, 12] \ (Li u Ui),

UI = [U2 - Pll U],
U2 = [u - P2, U2],
Uj = [u-Pj,u*] (j E {3, ,n}),

where [U2 - Pi,l] ~ Li and [u - pj,/2] ~ Ui for all j E {3, , n}.

This theorem says that a facet inducing inequality X(VI) +2x(V2) $ 2 with I = It < 12 $ 1*
and u = UI > U2 ~ u* can be represented by the following diagram:
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1

2 :5 2.

i E {3, .. . ,n}

U

u·

Example 2 Let n = 4, PI = 3, P2 = 5, P3 = 6, and P4 = 9. The inequality with LMU­
structure (4) and 1 = 7,12 =9, 1* =12, u* = 14, U2 = 16 and u = 19 is given by the following
diagram:

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19,.-.,
1

I I
I Ir"--j-j

2 I 2 I I I 2 :5 2.L_..l __ L_..l

3 ,.-.,
4

I I
L_..l

L M U

The fractional solution XIS = XI,19 = X2,IO = X2,I6 = X4,4 = ! violates this inequality. It is
easy to check that this solution satisfies all inequalities with structure (3).

Sufficient conditions are given by the following theorem.

Theorem 5 A valid inequality x(VI ) +2x(V2) $ 2 with 1 = II < 12 $ 1* and u = Ul > U2 ~

u* and LMU-structure (4) that is nondecomposable and maximal is facet inducing.

Proof. Let X(VI) +2x(V2) $ 2 be a valid inequality with 1 = 11 < 12 $ 1* and u = Ul >
U2 ~ u* and LMU-stucture (4) that is nondecomposable and maximal, and let F = {x E
PIX(VI) + 2x(V2) = 2}. We show that dim(F) = dim(P) - 1 by exhibiting dim(P) - 1
linearly independent directions in Fj a direction in F is a vector d = x - Y with x, Y E F. For
notational convenience, a direction will be specified by its nonzero components. We give three
sets of directions: unit vectors djs =1 for all (i,s) ri. V, djs = l,dI,I-Pl+I =d2u2 = -1 for all
(i,s) E V2, and a set of 1V1-IV21-1linearly independent directions djl sl = 1,dh,s2 =-1
with (ill SI), (h, S2) E V \ V2. Together these give dim( P) -1 linearly independent directions
in F.

If (i, s) ri. V, then, since x(Vl) +2x(V2) $ 2 is maximal, there is a counterexample for
(i,s), say, defined by Xjs = Xj!S! = Xh S2 = 1. Clearly this schedule is an element of F. Note
that the schedule Yi!S! = Yh S2 = 1 also is an element of F and hence d = x - Y yields the
direction djs =1.

Note that for (i, s) E V2 the schedule xjs = 1 is an element of F. Since 1 < 12 and, by
Property 6, 12 < U2, we have that Yl,l-Pl +1 =Y2U2 =1 is a feasible schedule. This schedule
also is an element of F and hence djs = 1, dI,I-P1 +I =d2u2 = -1 is a direction in F for all
(i, s) E V 2.
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We determine the 1V1-1V21- 1 directions dhsl = l,dhs2 = -1 with (jt,sl),(h,s2) E
y \ y2 in such a way that the undirected graph G whose vertices are the elements of Y \ y 2

and whose edges are given by the pairs {(jt, sd, (h, S2)} corresponding to the determined
directions is a spanning tree. This implies that the determined directions are linearly inde­
pendent.

Observe that djlsl = l,dhs2 = -1 with (h,sd,(h,S2) E Y \ y2 is a direction in F, if
there exists an index (i, t) E Y \ y 2 such that xh Sl = Xit = 1 and Yh S2 =Yit = 1 are both
feasible schedules. In this case, we say that djlsl = l,dhs2 = -1 is a direction by (i,t).

First, we determine directions that correspond to edges in G within the sets {(j, s) I s E
(Lj U Mj) \ Uj} and {(j,s) I s E Uj \ Lj}. For s - l,s E L1 \ U}, d1,s-1 = -1,dts = 1 is
a direction by (2,U2)' If Ml i- 0, then d1l2 = -1,dlm = 1 is a direction by (2,U2), where
m = minis I s E Md, and for s - 1, s E M}, dl ,s-I =-1, dIs = 1 is a direction by (2, U2).
Furthermore, for s - l,s E Ul \ L}, dl ,s-1 = -1,dts = 1 is a direction by (2,/2 - P2 + 1).
Now, let j E {2, .. . ,n}. For s -1,s E Lj \ Uj, dj,s-1 = -1,djs =1 is a direction by (l,u). If
Mj i- 0, then djl = -1,djm = 1 is a. direction by (l,u), where m = minis I s E Mj}, and for
s -1, s E Mj, dj,s-1 = -1, djs =1 is a. direction by (1, u). Furthermore, for s -1, s E Uj \ Lj,
dj,s-1 = -1,djs = 1 is a. direction by (1,/- PI + 1).

Second, we determine directions that correspond to edges in G between sets {(j, s) I s E
(Lj U Mj) \ Uj} belonging to different jobs and between sets {(j,s) I s E Uj \ Lj} belonging
to different jobs. We define W = {(1,s) I sELl n Utl U {(j,s) I j E {2, ... ,n}, s E \ti}
and W' = {(1,s) I s E Yj} U {(j,s) I j E {2, ... ,n},s E Lj n Uj}. Clearly x(W') ~ 1. Since
x(yl )+2x(y2) :$ 2 is nondecomposable, there is a feasible schedule such that x(W) = 2, Le.,
L'J=2 LSEVj Xjs = 2. Let XhSI = Xh S2 = 1 with SI < S2 be such a schedule. It is easy to see
that job jl is started in Ljl and job h is started in Uh' Since I = 11, Yl,I-PI+I = Yh S2 = 1 also
is a feasible schedule and it follows that dl,l-PI +1 = -1, diIsI = 1 is a direction by (h, S2).
In the same way, since u = U}, YiISl = Ylu = 1 is a feasible schedule and it follows that
dIu = -1,dhs2 = 1 is a direction by (jl, sd. For j E {2, ... , n} \ btl such that Lj U Mj i- 0,
diIsI = -l,dj,lj-pj+l = 1 is a direction by (l,u). Furthermore, for j E {2, ... ,n} \ {h} such
that Uj i- 0, dj2s2 = -1,djuj = 1 is a direction by (1,/- PI +1).

Finally, we determine a direction that corresponds to an edge in G between L U M and
U. Since x(yl ) +2x(y2) :$ 2 is nondecomposable and x(U) ~ 1, there is a feasible schedule
with x(L)+x(M) = 2. Let Xjlsl = Xh S2 = 1 be such a schedule. Since 11 = I, we may assume
w.l.o.g. jl = 1. Since S2 E Lh U Mj2' Yh S2 = Ylu = 1 also is a feasible schedule. It follows
that dIsl = -1,dlu = 1 is a direction by (h,S2)'

It is easy to see that the determined directions form a spanning tree of G and hence we
have determined IVI - 1V21- 1 linearly independent directions.O

Specific necessary and sufficient conditions for a valid inequality X(yl) + 2x(y2) ~ 2 with
I = It < 12 ~ 1* and u = Ul > U2 ~ u* and LMU-structure (4) to be nondecomposable and
maximal are given by the following two theorems.

Theorem 6 A valid inequality x(yl) +2x(y2) :$ 2 with I = It < 12 ~ 1* and u =Ul > U2 ~

u* and LMU-structure (4) is nondecomposab/e if and only if Mj i- 0 for some j E {I, ... , n},
and 1* < U2 or 12 < u*.

Proof. Let X(yl) + 2x(y2) ~ 2 be a valid inequality with 1 = 11 < 12 ~ 1* and u = Ul >
U2 ~ u* and LMU-structure (4).
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Suppose that X(Vl) + 2X(V2) ~ 2 is nondecomposable. Since x(L) ~ 1 and x(U) ~ 1,
we have Mj '# 0 for somej E {l, ,n}. Suppose 1* ~ U2 and 12 ~ u*. Let W = {(l,s) I
sELl n Utl U {(j,s) I j E {2, ,n}, s E ltj} and W' = {(l,s) I s E VI} U {(j,s) I j E
{2, ... , n}, s E Lj n Uj}. Clearly x(W) + x(W') = x(Vl) +2x(V2) and x(W' ) ~ 1. Observe
that V2 ~ [12 - P2,U2] and for j E {3, ... ,n}, ltj ~ [1* - Pj,u*] ~ [U2 - pj,h]. Since, by
Property 6, 12 < U2, it follows that Ej=2 ESEVj Xjs ~ 1 and hence x(W) ~ 1, which yields a
contradiction. It follows that 1* < U2 or 12 < u*.

Suppose that Mj '# 0 for some j E {l, ... ,n}, and 1* < U2 or 12 < u*. Let Wand W'
be such that x(W) + x(W' ) = x(Vl ) + 2x(V2) and x(W) ~ 1 and x(W' ) ~ 1. We assume
w.l.o.g. (1,1- PI +1) E W. Note that Xl/-PI+! =X2U2 = 1 is a feasible schedule. As x(W) ~ 1
and (1, I - PI + 1) E W, it follows that (2, U2) E W'. We conclude that since I < U2 and
(1,1- PI +1) E W, we have (2, U2) E W'. We show that (1, u) E W' and (2,12 - P2 +1) E W.
By assumption either 1* < U2 or 12 < u*. Suppose 1* < U2. Note that U2 '# 0 and Lj '# 0
for some j E {3, .. . ,n}. Since 1* < U2 and (2,U2) E W', we have (j,I* - Pj + 1) E W for all
j E {3, ... ,n} such that Lj -::f 0. Furthermore, since 1* < U2 < U, it follows that (l,u) E W',
and since 12 < U2 < U, it follows that (2,/2 - P2 + 1) E W. Analogously, (2,12 - P2 +1) E W
and (1, u) E W' ifl2 < u*.

By assumption Mj -::f 0 for some j E {1, ... , n}. Suppose that Mj '# 0 for some j E
{2, ... , n}. If job j is started in Mj, then job 1 can be started in V before or after job j. If
s E Mj, then, since Xl,I-PI+! = Xjs = 1 is a feasible schedule and (1,1- PI +1) E W, it follows
that (j, s) E W'. We find that Xjs = XIu = 1 is a feasible schedule such that x(W' ) = 2,
which yields a contradiction. We conclude that from (1,1- PI + 1) E W, (l,u) E W' and
Mj '# 0, it follows that X(Vl) +2x(V2) ~ 2 is nondecomposable.

Suppose that M l '# 0. If job 1 is sta.rted in MI then job 2 can be started in V before or
after job 1. As in the previous case, from (2,12 - P2 +1) E W , (2, U2) E W' and Ml '# 0, it
follows that x(Vl) +2x(V2) ~ 2 is nondecomposable. 0

Theorem 7 A valid inequality x(VI) + 2x(V2) ~ 2 with I = It < 12 ~ 1* and u = Ul > U2 ~

u*, and LMU-structure (4) is maximal if and only if

(2) Ifu2 < 1* and U2 < U- P2, then Ll n UI -::f 0;

One of the following holds:
(3a) Lj n Uj '# 0 for some j E {2, ... , n} ;
(3b) I ~ u* - P2 and L2 '# 0 and Uj -::f 0 for some j E {3, . .. ,n};
(3c) I ~ u2-min{pj Ii E {3, . .. ,n}, Lj -::f 0} and U2 '# 0 and Lj '# 0 for some j E {3, ... ,n}i

One of the following holds:
(4a) Lj n Uj '# 0 for some j E {2, ... , n};
(4b) l* ~ u - P2 and U2 '# 0 and Lj -::f 0 for some j E {3, ... ,n}i
(4c) 12~ u-min{pj I j E {3, ... , n}, Uj -::f 0} and L2 '# 0 and Uj '# 0 for some j E {3, ... , n}i

One of the following holds:
(5a) L l n Ul '# 0;
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(5b) min{/2,1 + P2} $ u* - PI and Vj::f 0 for some j E {3, .. . ,n};
(5c) min{/2,I+P2} $ u-min{pj Ii E {3, ... ,n}, Mj:/: 0} and Mj::f ofor some
jE{3, ... ,n};

One of the following holds:
(6a) LI n VI #- 0;
(6b) 1* $ max{u2, u - P2} - PI and Lj ::f 0 for some j E {3, .. . ,n};
(6c) I $ max{u2, u - P2} - min{pj I j E {3, ... , n}, Mj #- 0} and Mj #- 0 for some
j E {3, ... ,n};

For all j E {3, ... , n}, one of the following holds:
(7a) min{/*,1 + Pj} $ U2 - PI and M I #- 0;
(7b) min{/*,1 + Pj} $ u - P2 and M2 ::f 0;
(7c) min{/*,I+ Pj} $/2 ;

For all j E {3, ... , n}, one of the following holds:
(8a) 12 $ max{u*, u - Pj} - PI and M I ::f 0;
(8b) 1$ max{u*,u - Pj} - P2 and M2 ::f 0;
(8c) U2 $ max{u*,u - Pj}.

Proof. Let x(VI) + 2x(V2) $ 2 be a valid inequality with I = 11 < 12 $ 1* and u = UI >
U2 ~ u* and LMU-structure (4). Observe that X(llI) + 2x(1l2) $ 2 is maximal if and only if
it is impossible to extend any of the intervals Lj, Mj and Vj.

First, we show that M I cannot be extended. If 12 < u* - PI, Le., [/2, u* - PI] :/: 0, then
X2.l2-P2+1 = XI" = XjuO = 1 defines a counterexample for (l,s) for all s E [/2,u* - PI],
where j E {3, ... , n} is such that Uj = u*. If 1* < U2 - PI, Le., [/*, U2 - PI] #- 0, then
Xj,IO-Pi+ I = XI" = X2U2 = 1 defines a counterexample for (l,s) for s E [/*,U2 - PI], where
j E {3, ... ,n} is such that Ij = 1*. Hence M I cannot be extended. In the same way we can
show that the intervals Mj with j E {3, ... , n} cannot be extended.

We show that M 2 cannot be extended if and only if (1) and (2) hold. Suppose that (1)
does not hold, Le., u* < 12, I < 12- P2, and LI n VI = 0. Clearly (2,12- P2) ~ V. Let job 2 be
started in period 12 - P2. Since 1* > /2, it impossible to start a job j E {3, ... , n} in V before
job 2. Since u* < 12, it is impossible to start a job j E {3, ... , n} in V after job 2. Clearly,
job 1 cannot be started in LI n VI and we find that M2 can be extended by 12 - P2. In the
same way, if U2 < 1*, U2 < U- P2 and LI n VI = 0, then M2 can be extended by U2 + 1.

Now, suppose that (1) and (2) hold. Suppose u* ~ 12, Le., [I, max{u*, 12}-P2] = [I, U*-P2]'
If I < u* - P2, then Xl,l-PI+I = X2s = XjuO= 1 defines a counterexample for (2,s) for all
s E [I, u* - P2], where j E {3, ... , n} is such that Uj = u*. Suppose that u* < 12, Le.,
[I, max{u*, 12} - P2] = [/,/2- P2]. If 1< 12 - P2, then, by (1), LI n VI #- 0 and X2s = X1l2 = 1
defines a counterexample for (2,8) for all 8 E [/,/2 - P2]. Hence there is a counterexample
for (2,s) for all s E [/,max{u*,/2} - P2]. In the same way, we can show that there is a
counterexample for (2,s) for all s E [min{/*,u2},u - P2]. We conclude that M2 cannot be
extended.

Clearly, the upper bound of LI cannot be increased. The lower bound of L 1 cannot be
decreased if and only if there is a counterexample for (1, I - pd. Such a counterexample
is given by a feasible schedule XI,I-PI = Xjs = 1 with (j, s) E V 2 or by a feasible schedule
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Xl,I-PI = XhSI = Xj,S2 = 1 with (jt,st}, (h,S2) E Y \ y2. Observe that if i E {2, .. . ,n} is
such that Lj n Uj :F 0, then Xl,I-PI = Xjl = 1 defines a counterexample for (1,1- PI)' We
find that there is a counterexample of the first type if and only if (3a) holds. Consider a
counterexample of the second type. Since U2 ~ maxi Uj liE {3, ... , n}}, we may assume
that job 2 occurs in this counterexample, i.e., the counterexample contains job 2 and a job
il E {3, ... , n}. Suppose that job 2 is started before job il' It is easy to see that job 2 is
started in L2' So L2 :F 0 and job 2 is started in period I. Furthermore, job il is started in
UjI' Hence I $ u· - P2 and Uh :F 0. We find that there is a counterexample of the second
type such that job 2 is started before job jI if and only if (3b) holds. If job 2 is started after
job it, then job il is started in period I and job 2 in U2. Job it may be choosen such that
PjI = min{Pi I j E {3, ... , n}, L j #- 0}. We find that there is a counterexample of the second
type such that job 2 is started after job jl if and only if (3c) holds. We conclude that the
lower bound of L1 cannot be decreased if and only if (3) holds. Analogously, Ul cannot be
extended if and only if (4) holds.

Clearly, L2 cannot be extended if and only if there is a counterexample for (2,12 - P2), if
L 2 :F 0, and a counterexample for (2, I), if L2 = 0, i.e., if and only if there is a counterexample
for (2, Y - P2), where y = min{l2' 1+ P2}. The proof that there is such a counterexample if
and only if (5) holds, is similar to the proof that there is a counterexample for (1,1- PI) if
and only if (3) holds. Analogously, U2 cannot be extended if and only if (6) holds.

Let j E {3, ... , n}. It is easy to see that Lj cannot be extended if and only if there is a
counterexample for (j, y - Pi)' where y =min{/*, I +Pi}' Suppose y $ 12, If L 1 n Ul :F 0, then
xi,y-pj = X1I2 = 1 defines a counterexample for (j, y - Pi)' If L1 nUl = 0, Le., 12 $ U2 - Pb
then xi,y-pj = X1I2 = X2U2 defines such a counterexample. Hence, if y $ 12, then there is a
counterexample for (j, y - Pi)' Now, suppose y > 12• Since x(U) $ 1, in any counterexample,
at least one job is started in L U 111. If X j,y_p) = 1, then job 1 and 2 are the only jobs that
can be started in L U 111. It is now easy to see that a counterexample for (j, y - Pi) contains
job 1 and job 2 and we find that there is such a counterexample if and only if (7a) or (7b)
holds. Analogously, the intervals Ui with j E {3, ... , n}, cannot be extended if and only if
(8) holds. 0

4.2 Case lb

As in case la, the conditions on Ii and Uj and Properties 4 and 5 completely determine the
sets L and U. All that remains to be investigated is the structure of the set M.

Property 8 If x(Vl) +2X(V2) $ 2 is facet inducing with I = It < 12 < 1* and U = Ul >
U3> u·, then Ml = 0, M 2 = [U3 - P2,l*] n [I, U - P2] n [h - P2, u*], M3 = [u· - P3, 12]n
[/,u - P3] n [1* - P3,U3] and Mi = [U3 - Pi,/2]n [/,u - Pi] n [/* - Pi'u·] for j E {4, ... ,n}.

Proof. Let x(Vl) +2x(y2) $ 2 be facet inducing with I = 11 < 12 < 1* and u = Ul > U3 >
U·. If job 1 is started in Y and it is possible to start a job in V before job 1, then, since
12 = min {I j I j E {2, ... , n}}, job 2 can be started in V before job 1. If it is possible to start
a job in V after job 1, then, since U3 = maxiUi I j E {2, ... , n}}, job 3 can be started after
job 1. It follows that M l = 0.

Since L 2 n M2 = 0 and M2 n U2 = 0, we have M2 ~ [I, U- P2]. By definition M2 ~

[/2 - P2, u·]. If job 2 is started in M2, then job 1 should be the only job that can be started
before or after job 2, i.e., it should be impossible to start any job j j E {3, ... , n} in V. Hence
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M 2 ~ [U3 - P2,1*]. We conclude that M 2 ~ [U3 - P2,1*] n [1,u - P2] n [12 - P2,u*]. IT job 2
is started in period s E [U3 - P2, 1*] n [1, u - P2] n [12 - P2, u*], then, since s E [12 - P2, u*],
LInUI = [U3-P}' 12], and U3 > u*, job 1 cannot be started in LInUI . Since XCVI )+2x(V2) ~ 2
is maximal, it follows that M 2 = [U3 - P2, 1*] n [I, u - P2] n [12 - P2, u*]. Analogously,
M3 = [u* - P3, 12] n [I, u - P3] n [1* - P3, U3] and Mi = [U3 - Pi, 12] n [I, u - Pi] n [/* - Pi, u*]
for j E {4, ... ,n}. 0

Properties 4, 5 and 8 determine the LMU-structure of a facet inducing inequality x(VI) +
2x(V2) ~ 2 with I = 11 < 12 < 1* and u = UI > U3 > u*. As in case la, we prefer to
use a different representation of the set M, in order to emphasize the inherent structure of
the intervals Mi' It turns out that a facet inducing inequality x(VI) + 2x(V2) ~ 2 with
1 =11 < 12 < 1* and u = UI > U3 > u* has the following property, which restricts the class of
inequalities determined by Properties 4, 5 and 8 and leads to a simpler form of the intervals

Mi'

Property 9 If X(Vl) +2x(V2) ~ 2 is facet inducing with I = 11 < 12 < 1* and u = Ul >
U3 > u*, then 1* ~ u*.

Proof. Let x(V1) + 2x(V2) ~ 2 be fa.cet inducing with I = II < 12 < 1* and u = Ul >
U3 > u*. To be able to prove that 1* ~ u*, we first show that 1* < U3 and 12 < u*. Suppose
1* ~ U3. We show that [U3 - P2, U3] ~ V2, which contradicts U3 > u*. Let job 2 be started
in [U3 - P2, U3]. Since by assumption 1* ~ U3, it is impossible to start any job j E {3, ... , n}
before job 2. Clearly, it is impossible to start any job j E {3, ... , n} after job 2. So job 1
is the only job that may be started in V. Since L1 n U1 = [U3 - P2, 12] and, by Property 6,
12 < U3, job 1 cannot be started in L1n U1 • Since x(V1) +2x(V2) ~ 2 is maximal, it follows
that [U3 - P2, U3] ~ V2. IT 12 ~ u*, then analogously [/2- P3, 12] ~ V3, which contradicts 12 > l*.
Hence 1* < U3 and 12 < u*.

To prove that 1* ~ u* we consider two cases: 1* > u - Pi for some j E {2, 4, ... , n}, and
1* ~ u - Pi for all j E {2,4, . .. ,n}. Suppose that jl E {2,4, ,n} is such that 1* > u - Pi1
and let job jl be started in [u - Pil , 1*]. Clearly, any job j E {3, , n} \ {il} cannot be started
before job jl' IT job 2 is started before job it, then, since M2 ~ [U3 - P2,1*] and 1* < U3,
job 2 is not started in M 2 and hence job 2 is started in L 2• If job 1 is started before job j},
then, since M1 =0, job 1 is started in L1• It follows that at most one job can be started
in V before job jl' Since L1 n U1 = [U3 - PI, 12] and 12 < 1* < U3, job 1 cannot be started
in L 1 n U1 • Since X(Vl) +2x(V2) ~ 2 is maximal, it follows that [u - Pill 1*] ~ Uil' Hence
l* ~ u*. Now, suppose that 1* ~ u - Pi for all j E {2,4, ,n}. Observe that from 12 < u*
and Property 8, it follows that Uj f:. 0 for some j E {2, 4, , n} or M2 =F 0. IT Ui =F 0 for
some j E {2,4, ... ,n}, then clearly 1* ~ u*. Suppose Ui =0 for all j E {2,4, . .. ,n}. Clearly,
M 2 =F 0 and, since by Property 8, M 2 = [U3 - P2, 1*] n [1, u - P2] n [12 - P2, u*], we must have
U3 - P2 < 1*. It is easy to see that if job 2 is started in [U3 - P2, 1*] n [I, u - P2], then job 1 is
the only job that can be started before or after job 2 and job 1 cannot be started in L1 n U1 •

Since x(V1 ) +2x(V2) ~ 2 is maximal, this implies M 2 = [U3 - P2, 1*] n [I, u - P2] and it follows
that l* ~ u*. 0

It is not hard to see that Properties 4, 5, 8, and 9 can be combined to give the following
theorem.
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(jE{4, ... ,n}),

Theorem 8 A facet inducing inequality X(V1) + 2X(V2) ::; 2 with 1 =
U = U1 > Ua > u... has the following LMU-structure:

L1 = [I - Ph 12], M1 = 0, U1 = [U3 - Ph u],
L2 = [/2 - P2, Il, M2 = [ua - P2, I"'l \ (L2 u U2), U2 = [u - P2, u...],
La = [I'" - Pa, I], Ma = [u'" - Pa, 12] \ (La U Ua), Ua = [u - Pa, ua],
Lj=[/"'-pj,/], Mj=[ua-Pj,/2]\(LjUUj), Uj=[u-Pj,u"']

It < 12 < I'" and

(5)

where I'" ::; u....

This theorem says that a facet inducing inequality x(V1) + 2x(V2) ::; 2 with I = 11 < 12 < I'"
and U = U1 > Ua > u... can be represented by the following diagram:

1- PI 12 Ua - PI U

1 I I I I
12 - P2 1 Ua - P2 I· U - P2 U·

I I
,.------, I2 I IL ______ .J

l* - pa 1 u· - pa 12 u - pa Ua ~2.

0
,.----,

I I3 I I
L ____ .J

I'" - Pi 1 ua - Pi 12 U - Pj U·

jE{4, ... ,n} I I
,. ,

II I
L_.J

L M U

Example 3 Let n = 4, PI = 3, P2 = 5, P3 = 6, and P4 = 9. The inequality with LMU­
structure (5) and I = 5, 12 = 7, I'" = 9, u'" = 12, U3 = 13 and u = 16 is given by the following
diagram:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 ,.-,
2 I I

~ 2."1" L_.J

3 I - I 2I 2 I

4
- -.--

•- _1__

L M U

The fractional solution X1,16 = Xai = X3,13 = X41 = ~ and Xu = ~ violates this inequality. It
is easy to check that this solution satisfies all inequalities with structure (3).

Sufficient conditions are given by the following theorem.

Theorem 9 A valid inequality x(V1) +2X(V2) ::; 2 with I = 11 < 12 < I'" and u = Ul > U3 >
u... and LMU-structure (5) that is nondecomposable and maximal is facet inducing.

The proof of this theorem proceeds along the same lines as that of Theorem 5. Specific
necessary and sufficient conditions for a valid inequality x(V1) + 2x(V2) ::; 2 with I = 11 <
12 < l* and u = U1 > Ua > u... and LMU-structure (5) to be nondecomposable and maximal
are given by the following two theorems.
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Theorem 10 A valid inequality X(VI )+2x(V2) :::; 2 with 1= 11 < 12 < 1* and u = 'Ill > U3 >
u* and LMU-structure (5) is nondecomposable if and only if Mj #- 0 for some j E {2, ... , n}.

Proof. Let x(VI ) + 2x(V2) :::; 2 be a valid inequality with 1 = II < 12 < 1* and u = UI >
U3 > u* and LMU-structure (5). If x(V1) + 2x(V2) :::; 2 is nondecomposable, then, since
x(L):::; 1 and x(U):::; 1, Mj #- 0 for some j E {2, .. . ,n}.

Suppose Mj #- 0 for some j E {2, ... , n}. Let Wand W' be such that x(W) + x(W') =
x(V1) + 2x(V2), and x(W) :::; 1 and x(W') :::; 1. We assume w.l.o.g. that (1,1- PI + 1) E W.
Since 1 < 12 < U3, XI,I-PI+! = X3U3 = 1 is a feasible schedule. From (1,1- PI + 1) E W and
x(W) :::; 1 it follows that (3, U3) E W'. In the same way, since 12 < U3 and (3, U3) E W',
it follows that (2,/2 - P2 + 1) E Wand, since 12 < U, it follows that (l,u) E W'. Now, let
j E {2, ... , n} be such that Mj #- 0. If job j is started in Mj, then job 1 can be started in
V before or after job j. If s E Mj , then, since X1.I-Pl+1 = Xj6 = 1 is a feasible schedule and
(1,1- PI + 1) E W, we have (j,s) E W'. We find that Xj6 = XII' = 1 is a feasible schedule
such that x(W') = 2, which yields a contra,diction. We conclude that from (1,1- PI + 1) E W,
(1, u) E W' and Mj #- 0, it follows that X(VI) + 2x(V2) :::; 2 is nondecomposable. 0

Theorem 11 A valid inequality x(V1) + 2x(V2) :::; 2 with I = 11 < 12 < 1* and u = U1 >
U3 > u* and LMU-structure (5) is maximal if and only if

One of the following holds:
(la) Lj n Uj #- 0 for some j E {2, ... , n};
(lb) 1:::; u* - P3 and L3 #- 0 and Uj #- 0 for some j E {2,4, .. . ,n};
(1c) 1 :::; U3 - min {Pj IJ E {2, 4, ... , n}, Lj #- 0};

One of the following holds:
(2a) Lj n Uj #- 0 for some j E {2, .. . ,n};
(2b) 1*:::; u - P2 and U2 #- 0 and Lj #- 0 for some j E {3, .. . ,n};
(2c) 12 :::; u-min{pj IJ E {3, ... ,n}, Uj #- 0};

One of the following holds:
(3a) min{l*,1 +P3}:::; U - P2 and M2 #- 0;
(3b) min{l*,l +P3} :::; 12 and L1n UI #- 0;
(3c) min{l*, I + P3} :::; 12 and min{l*, 1+ P3} :::; u* - PI;
(3d) min{/*,1 + P3} :::; 12 and min{Z*,Z+ P3} :::; u-min{pj I j E {4, ... ,n}, Mj #- 0} and
Mj #- 0 for some j E {4, ... ,n};

One of the following holds:
(4a) I:::; max{u*, u - P2} - P3 and M3 #- 0;
(4b) U3:::; max{u*,u - P2} and L1 nUl #- 0;
(4c) U3 :::; max{u*, u - P2} and 1* :::; max{u*, u - P2} - PI;
(4d) U3 :::; max{u*, u - P2} and 1:::; max{u*, u - P2} - min{pj I j E {4, ... , n}, Mj #- 0} and
Mj #- 0 for some j E {4, ... , n};

For all j E {4, ... , n}, one of the following holds:
(5a) min{l*,l + Pj} :::; u - P2 and M2 #- 0;
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For all j E {4, ... , n}, one of the following holds:
(6a) 1$ max{u·, u - Pj} - 1'3 and M 3 :f; 0;
(6b) U3 $ max{u·,u - Pj}.

Proof. Let X(yl) +2x(y2) $ 2 be a valid inequality with I = 11 < 12 < I· and u = Ul >
U3 > u· and LMU-structure (5). Observe that x(V1) + 2x(y2) $ 2 is maximal if and only if
it is impossible to extend any of the intervals Lj,Mj and Uj.

In the same way as in the proof of Theorem 7 it can be shown that the intervals Mj cannot
be extended.

We show that L2 cannot be extended. Note that since 12 < U3, we have L2 :f; 0. It is
now easy to see that it suffices to show that there is a counterexample for (2,12 - P2). If
L1nUl :f; 0, then x2h-p2 = X1l2 = 1 defines a counterexample for (2,12 - P2). If L1n U1 =0,
i.e., 12 $ u3 - PI, then x2h-P2 = X1l2 = X3U3 = 1 defines a counterexample for (2,12 - P2).
Hence L 2 cannot be extended. Analogously, U3 cannot be extended.

Clearly, L1 cannot be extended if and only if there is a counterexample for (1, I - pd.
If such a counterexample is given by a feasible schedule Xl,l-pl = Xjl sl = Xi2 s2 = 1 with
(jl,SI),(h,S2) E y \ y2, then, since U3 = max{uj I j E {2, .. . ,n}}, we may assume that
job 3 occurs in this counterexample. We can use this observation to show that L 1 cannot be
extended if and only if (1) holds. Analogously, Ul cannot be extended if and only if (2) holds.

It is easy to see that L3 cannot be extended if and only if there is a counterexample for
(3, Y-P3), where Y = min{I*, l+P3}. Since Ul = U, we may assume that such a counterexample
contains job 1. Suppose Y > 12, Since x( U) $ 1, in any counterexample at least one job is
started in L U M. If X3,1I-p3 = 1, then job 2 is the only job that can be started in L U M.
Hence in a counterexample for (3, Y - P3) job 2 is started in M2 and job 1 is started in U1•

Such a counterexample exists if and only if (3a) holds. If Y $ 12 and X3,1I-P3 = 1, then job 1
and any job j E {2, 4, ... , n} and Mj :f; 0 may be started in L U M. It is now not hard to see
that there is a counterexample for (3, Y - P3) if and only if (3) holds. Analogously, U2 cannot
be extended if and only if (4) holds.

Let j E {4, ... , n}. It is easy to see Li cannot be extended if and only if there is a
counterexample for (j,Y-Pj), where Y = min{l*,l+Pi}' Suppose Y $12. If L1 nU1 :f; 0, then
Xj,lI-Pi = X1I2 = 1 defines a counterexample for (j, Y - Pi)' If L1 nUl =0, i.e., 12 $ U3 - pI,
then Xj,lI-Pi =X1I2 = X3U3 = 1 defines such a counterexample. Hence, if Y $ 12, then there is a
counter example for (j,y- Pj). Now, suppose Y > 12, Since x(U) $ 1, in any counterexample
at least one job is started in L U M. If X j,y_1', = 1, then job 2 is the only job that can be
started in L U M. It is now easy to see that a counterexample for (j, Y - Pj) contains job
2 and job 1 and we find that there is such a counterexample if and only if (5a) holds. We
conclude that the intervals Lj with j E {4, , n} cannot be extended if and only if (5) holds.
Analogously, the intervals Uj with j E {4, , n} cannot be extended if and only if (6) holds.
o

4.3 Case 2

Observe that in this case the conditions on Ij and Uj and Properties 4 and 5 do not completely
determine the sets L and U. It turns out to be beneficial to introduce a notion slightly different
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from that ofl* and u*, namely I' = min{/j liE {3, ... , n}} and u' = ma.x{Uj I j E {3, ... , n}}.
Note that it is possible that 12 > I' or UI < u', Le., I' and u' do not necessarily coincide with 1*
and u* as defined in Property 5. We can however prove a property that is similar to Property
5.

Property 10 Let x(VI ) +2x(V2) $ 2 be facet inducing with I =hand u =U2.
(a) For all j E {3, ... ,n} such that L j # 0, we have Ij = I' and for all i E {3, ... ,n} such
that Lj = 0, we have I' - Pj ~ I, i.e., Lj = [I' - Pj, I] for all j E {3, ... , n}.
(b) For all i E {3, ... , n} such that Uj # 0, we have Uj = u' and for all j E {3, ... , n} such
that Uj =0, we have u' $ u - Pj, i.e., Uj = [u - pj,u1 for all j E {3, . .. ,n}.

Proof. (a) By Property 4, Lj ~ [/'- pj,/] for all j E {3, ... ,n}. Assume w.l.o.g. I' = 13 •

Suppose that Lj # [I' - pj,/] for some j E {4, . .. ,n}, say L4 # [I' - P4,/]. Clearly, if
I' - P4 ~ I, then L4 = 0 and hence L4 = [I' - P4, I]. Consequently, I' - P4 < I and 14 > I',
i.e., I' - P4 + 1 rt. V4. Since x(VI) + 2x(V2) $ 2 is maximal, there is a counterexample for
(4,I'-P4+1). Let (jIlSI),(h,S2) E 11 be such that x4,/'-pdI = XjI BI = Xi2 B2 = 1 is a feasible
schedule. Since I' - P4 + 1 $ I, the jobs il and h are started after job 4. Assume that job
il is started before job h. If job 2 does not occur in {jIlh}, then, since U2 = u, job h may
be replaced by job 2. So we may assume that job 2 occurs in {jIlh}. It follows that one
of the jobs 1 and 3 does not occur in {jI,h}. Suppose that job 3 does not occur. It is now
easy to see that X3,I'-P3+I = xJI BI = X j2 B2 = 1 is a feasible schedule. This schedule violates
the inequality, which yields a contradiction. If job 1 does not occur in {jllh}, then we find
a contradiction in the same way.

(b) Similar to Ca). 0

We next investigate the structure of the set M.

Property 11 If x(VI) +2x(V2) $ 2 is facet inducing with I = hand U = U2, then M I =
[u' - P1l/1 n [min{I2, I'}, u - PI] n [1- P1l UI], M2 = [u' - P2, 11 n [I, ma.x{ UIl u'} - P2] n [/2- P2, u]
and Mj =0 for j E {3, . .. ,n}.

Proof. Let x(VI) + 2x(V2) $ 2 be facet inducing with I = hand U = U2. To determine
M I we consider two cases: 12 ~ I' and 12 < I'. Suppose 12 ~ I'. Let job 1 be started
in V. If it is possible to start a job in V after job 1, then, since U2 = u, job 2 can be
started in V after job 1. If it is possible to start a job in V before job 1, then, since
I' $ 12 , there exists a j E {3, ... , n} such that job j can be started in V before job 1. It
easily follows that MI = 0. Suppose 12 < I'. Since LI n M I = 0 and MI n UI = 0, we
have M I ~ [min{/2, I'}, U - PI]' By definition M I ~ [I - Pll UI]' If job 1 is started in MIl
then job 2 should be the only job that can be started in V before or after job 1, i.e., it
should be impossible to start a.ny job j E {3, ... ,n} in V. Hence M I ~ [u'- PIl/1- We
conclude that M I ~ [u' - PI, 11 n [min{I2,l'}, U - PI] n [I - Pll UI]. If job 1 is started in
period S E [u' - PI,/1 n [min{/2,I'},u - PI] n [/- P1lUI], then, since S E [/- PI,UI] and
L2 n U2 = [ma.x{uI'u'} - p2,/], job 2 cannot be started in L2 n U2. Hence, if 12 < I', then
M I = [u' - PIl 11 n [min{/2 ,l'}, U - PI] n [1- PIl ud. Note that the intersection of these three
intervals is empty ifl2 ~ I'. We conclude that M I = [U'-PI ,I']n[min{/2,l'}, u-PI]n[/-Pb UI]'
Analogously M2 = [u' - P2, 11 n [I, ma.x{ Ull u'} - P2] n [/2 - P2, u].
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Let j E {3, ... , n}. If job j is started in Y and it is possible to start a job in V before
job j, then, since 11 = 1, job 1 can be started before job j. If it is possible to start a job
in V after job j, then, since U2 =u, job 2 can be started after job j. It follows that Mj =0. 0

(6)

Properties 4,10 and 11 completely determine the LMU-structure ofa facet inducing inequality
x(Vl) +2x(y2) $ 2 with 1 = It and u = U2. As in the previous two cases, we prefer to use
a different representation of the set M, in order to emphasize the inherent structure of the
intervals Mj. It is easy to show that if x(yl) +2x(V2) $ 2 is facet inducing with 1= 11 and
u = U2, then [1' - p2,1] ~ L2 and [u - PllU'] ~ U1. It is now not hard to see that Properties
4, 10 and 11 can be combined to give the following theorem.

Theorem 12 A facet inducing inequality x(Vl) +2x(V2) $ 2 with 1= It and u = U2 has the
following LMU-structure:

L1 = [1- pllmin{12,1'}], M l = [u' - Pllmin{I',ul}] \ (L1 U Ut},
L2 = [12 - P2,1], M2 = [max{u',/2} - P2,/1 \ (L2U U2),
Lj = [I' - pj,l], Mj = 0,

Ul = [u - PI, ttl],
U2 = [maxi UI, u'} - pz, u],
Uj = [u - Pj,u'] (j E {3, .. . ,n}),

where [I' - P2, I] ~ L2 and [u - Pllu1 ~ Ul .

This theorem says that a facet inducing inequality x(V1)+2x(y2) $ 2 with I = It and u =U2
can be represented by the following diagram:

U

U - P; u'

I'"'"------.JI

maxi Ul> u'} - P2 U

1 1 ~ 2.

u - PI UI

I'"'"------.JI

M

1- PI min{/2 , I'} u' - PI min{/', ud

I I i----~
_______. 1. .1

maxiu', 12 } - P2 I'r------.,
I I1. .12

1

jE{3, ... ,n}

Example 4 Let n = 4, PI = 3, P2 = 5, P3 = 6, and P4 = 9. The inequality with LMU­
structure (6) and I = 12 = 6, 1* = 9, u* = 11, and Ul = U = 14 is given by the following
diagram:

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14
1

2

3
4

!
r-.,

:l, I
3 , I 3

I I
-"--ij !
_~_-' 3 3

!
3

III I 2 I

~ 2.

L M U
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Note that (4,6) E Ln U, Le., X46 has coefficient 2. The fractional solution X14 = X29 = X2,14 =
X34 = X41 = 1and Xl,14 = ~ violates this inequality. It is easy to check that this solution
satisfies all inequalities with structure (3).

Sufficient conditions are given by the following theorem.

Theorem 13 A valid inequality x(V1) +2x(V2) 5 2 with I = 11 and u = U2 and LMU­
structure (6) that is nondecomposable and maximal is facet inducing.

Proof. Let x(Vl) + 2x(VZ) 5 2 be a valid inequality with I = 11 and u = U2 and LMU­
structure (6) that is nondecomposable and maximal, and let F = {x E Plx(V1)+2x(V2) = 2}.
As in the proof of Theorem 5, we show that dim(F) =dim(P) - 1 by exhibiting dim(P) - 1
linearly independent directions in F. Again, we give three sets of directions: unit vectors
dj6 =1 for all (j, s) ft V, directions djs = 1, d1,1-P1 +1 = d2u =-1 for all (j, s) E y 2, and a set
of 1V1-lVzl-1linearly independent directions dj1 s1 = 1,dh,62 = -1 with (iI,sl),(h,sz) E
y \ V 2 • Together these give dim(P) - 1 linearly independent directions in F. The first and
second set of directions can be determined as in the proof of Theorem 5.

Again, we determine the 1V1-lVzl-1 directions dj1 s1 = 1, dh62 = -1 with (jI, SI), (h, S2) E
V \ y2 in such that the undirected graph G whose vertices are the elements of Y \ y2 and
whose edges are given by the pairs {(jll 81), (h, sz)} corresponding to the determined direc­
tions is a spanning tree. It is not hard to see that this implies that the determined directions
are linearly independent.

Furthermore, we say that dj1 s1 = 1,dhs2 = -1 with (jI,sl),(h,sz) E Y\ V 2 is a direction
by (i, t), if there exists an index (i, t) E V \ V 2 such that Xj1 61 = Xit = 1 and Yh 62 = Yit = 1
are both feasible schedules.

First, we determine directions that correspond to edges in G within the sets {(j, s) I s E
(Lj U Mj) \ Uj} and {(j,s) I 8 E Uj \ Lj}. For 8 - 1,s ELI \ UI, d1,6-1 = -l,dh = 1 is a
direction by (2,u). If M1 '=10, then d1,min{12,/I} = -1,d1m = 1 is a direction by (2,u), where
m = min{8 ISEMI}' and for 8 -1,8 E M I , d1 ,s-1 = -l,dls = 1 also is a direction by (2,u).
Let s -1,8 E U1 \ L1. Note that 8 -1> min{lz,l'}. If lz 51', then d1,6-1 = -l,dh = 1 is a
direction by (2,lz -pz+1). If lz > I', then d1,s-1 = -l,dh = 1 is a direction by (j,I'-pj+1),
where j E {3, .. . ,n} is such tha.t Ij = I'. In the same wa.y we find that for s -l,s E Lz \ U2,
d2,s-1 = -1,d26 = 1 is a direction by (l,ud, if Ul ~ u', and by (j,u'), if Ul < u', where
j E {3, ... , n} is such that Uj = u'. Observe that if job 2 is started in M 2 , then job 1 is the
only job that can be started before or after job 2. We find that if L2 '=I 0 and M2 :f: 0, then
d2/ = -l,dzm = 1 is a direction by (l,ud, where m = min{s 18 E Mz}. For s -l,s E M2,
d2,s-1 = -l,dzs = 1 also is a direction by (l,Ul)' Furthermore, for 8 - 1,s E U2 \ L2,
dZ,6-1 = -1,d26 = 1 is a direction by (1,1- PI + 1). Now, let j E {3, . .. ,n}. Note that
Mj = 0. Clearly, for s -:- 1,8 E Lj \ Uj, dj,s-1 = -l,djs = 1 is a direction by (2,u) and for
s -l,s E Uj \ Lj, dj,s-1 = -l,djs =1 is a direction by (1,1- PI +1).

Second, we determine directions that correspond to edges in G between the sets {(j, s) I
s E (Lj U Mj) \ Uj} belonging to different jobs and between sets {(j,s) I s E Uj \ Lj}
belonging to different jobs. It is easy to see that for j E {3, , n} such that Lj :f: 0,
d1,/-P1+1 = -I,d/I-Pi+! = 1 is a direction by (2,u). For j E {3, ,n} such that Uj:f: 0,
dzu = -l,dju' = 1 is a direction by (1,1- PI + 1). We still have to determine a direction
that corresponds to an edge in G between {(2, s) I S E (Lz U M2 ) \ U2 } and one of the sets
{(j, s) I s E (Lj U Mj) \ Uj} with j E {1,3, ... , n}, and a direction that corresponds to an edge
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in G between {(l,s) I s E U1 \L1 } and one of the sets {(j,s) I s E Uj \Lj} with j E {2, .. . ,n}.
Note that, since x(V1 ) + 2x(V2) 5 2 is nondecomposable, we have (L2 U M2) \ U2 :I 0. We
define W = {(l,s) 18 E Vd U {(2,s) I s E L2 n U2} U {(j,s) I j E {3, .. . ,n}, 8 E Lj} and
W' = {(l,s) I s E L1 n Ud U {(2,s) I s E V2} U {U,s) I j E {3, ... ,n}, 8 E Uj}. Note
that x(W) +x(W') =x(Vl) +2x(V2 ). Since x(V1 ) +2x(V2) 5 2 is nondecomposable, there
exists a feasible schedule such that x(W) = 2 or there exists a feasible schedule such that
x(W') = 2. Suppose that there exists a feasible schedule such that x(W) = 2. It is easy to see
that in such a schedule some job j E {3, ... , n} is started in Lj and that job 1 is started after
job i. It easily follows that Xj,I'-PJ+ 1 = X1Ul = 1 is a feasible schedule for all i E {3, ... , n}
with Lj :I 0. Let il E {3, ... , n} be such that Ljl :I 0. If L2 :f 0, then, since [I' - P2, I] ~ L2 ,

we have 12 5 I'. It follows that Y2.l2-P2+ 1 = Y1U l = 1 is a feasible schedule. If job 2 is started
in M 2 , then job 1 can be started after job 2. Hence, if M 2 :f 0, then Y2h-P2+l = Y1Ul = 1
also is a feasible schedule. We conclude that d2.l2-P2+1 = -1, djl,l'-Pn +l = 1 is a direction by
(l,Ul)' Since xil,l'-Ph+l = X1Ul = 1 is a, feasible schedule, it follows that Yjl,I'-Ph+1 = Y2u is
a feasible schedule. We find that d1ul = -1, d2u = 1 is a direction by Ut, I' - Pjl + 1).

Suppose that there is a feasible schedule such that x(W') = 2. It is now not hard to see
that x2h-P2+l =Xju' = 1 is a feasible schedule for some i E {3, ... , n} such that Uj :f 0. Let
il E {3, ... ,n} be such that Uil:f 0. Clearly, YI,I-Pl+l = Yitu' = 1 also is a feasible schedule
and we find that d 2h-P2+l = 1, dI,I-Pl+I = -1 is a direction by Ut, u'). If U1 'f: 0, then,
since [u - PI, u1 ~ U1 , we have UI ~ u'. Since x2h -P2+l =xjl u' =1 is a feasible schedule, it
follows that Y2h-P2+l = Ylu] = 1 is a feasible schedule. We find that djl'u' =1, d Iul = -1 is
a direction by (2,12 - P2 + 1).

Finally, we determine a direction that corresponds to an edge in G between L U M and U.
Since x(V1 )+2x(V2) 5 2 is nondecomposable and x(U) 5 1, there is a feasible schedule such
that x(L) +x(M) = 2. It is easy to see that in such a schedule job 1 and job 2 are started in
L U M. Let Xls1 = X2S2 = 1 be such a schedule. Since SI E L1 U Mt, Ylsl = Y2u = 1 also is a
feasible schedule. It follows that d2s2 = 1,d2u = -1 is a direction by (l,SI)'

It is easy to see that the determined directions form a spanning tree of G and hence we
have determined IVI - 1V21- 1linearly independent directions. 0

Specific necessary and sufficient conditions for a valid inequality x(V1 ) + 2x(V2
) 5 2 with

I = It and u = U2 and LMU-structure (6) to be nondecomposable and maximal are given by
the following two theorems.

Theorem 14 A valid inequality x(l/I) + 2x(V2 ) 5 2 with I = 11 and U = U2 and LMU­
structure (6) is nondecomposable if and only if MI :f 0 or M 2 :f 0, and I' < Ul or 12 < u'.

Proof. Let x(VI ) + 2x(V2 ) 5 2 be a valid inequality with I = It and u = 1£2 and LMU­
structure (6).

Suppose that x(V1
) + 2x(V2 ) 5 2 is nondecomposable. Since x(L) 5 1 and x(U) 5 1,

Mj 'f: 0 for some j E {I, ... , n} and, since by definition of LMU-structure (6), Mj = 0 for
all i E {3, ... , n}, it follows that lIfl 'f: 0 or M 2 :f 0. Suppose that I' ~ 1£1 and 12 ~ u'. We
define W ={(l,s) 18 E VI} U {(2,s) I s E L2 n U2 } U {(j,s) liE {3, ... ,n}, 8 E Lj} and
W' = ((l,s) Is E Ll nUdu{(2,s) I s E V2}u{U,s) Ii E {3, ... ,n}, 8 E Uj}. Clearly
x(W)+x(W') = xCVI )+2x(V2). Since I' ~ Ut, it follows that LsEVl Xls+ Lj=3 LsELj Xjs 5 1
and hence x(W) 5 1. In the same way, it follows from 12 ~ u' that x(W') 5 1, which yields
a contradiction. Hence I' < UI or 12 < u'.
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Suppose that MI -::f: 0 or M 2 -::f: 0, and I' < UI or 12 < U'. Let W and W' be such that
x(W) + x(W' ) = x(VI ) +2x(V2) and x(W) ::; 1 and x(W' ) ::; 1. We assume w.l.o.g. that
(1,1- PI + 1) E W. Since I < u, XI,I-Pl+1 = X2u = 1 is a feasible schedule. As x(W) :$ 1
and (1,1- PI + 1) E W, it follows that (2,u) E W'. We conclude that, since I < u and
(1,1- PI +1) E W, we have (2,u) E W'. If Lj -::f: 0 for some j E {3, . .. ,n}, then I' < u. Since
I' < u and (2,u) E W', (j,I'- Pj + 1) E W for all j E {3, .. . ,n} such that Lj -::f: 0. In the
same way, if Uj -::f: 0 for some j E {3, ... , n}, then I < u'. Since I < u' and (1,1- PI +1) E W,
(j, u') E W' for all j E {3, ... , n} such that Uj -::f: 0. By assumption M l -::f: 0 or M2 -::f: 0. We
consider each of these two cases.

Suppose M l -::f: 0. To prove that x(VI) +2x(V2) ::; 2 is nondecomposable, we first show
that (2,12 - P2 + 1) E W. By assumption I' < UI or 12 < U'. Suppose I' < Ul' Note that
UI -::f: 0 and Lj -::f: 0 for some j E {3, ... ,n}. Since I' < UI and (j,I'- Pj + 1) E W for all
j E {3, . .. ,n} such that Lj -::f: 0, it follows that (l,uI) E W'. Observe that if job 1 is started
in Ml , then job 2 can be started in V before job 1. It follows that X2h-P2+l = XIs = 1 is a
feasible schedule for all sEMI and hence x2h-P2+l = Xl U1 = 1 is a feasible schedule. Since
(l,Ul) E W', we find that (2,/2 - P2 + 1) E W. Now, suppose 12 < U'. Note that L2 -::f: 0 and
Uj -::f: 0 for some j E {3, ... , n}. Since 12 < u' and (j, u') E W' for all j E {3, ... , n} such that
Uj -::f: 0, it follows that (2,12 - P2 + 1) E l¥. We conclude that (2,12 - P2 + 1) E W in case
I' < Ul and in case 12 < u', i.e., (2,12 - P2 +1) E lV. If sEMI, then, as x2h-P2+l = XIs = 1 is
a feasible schedule and (2,/2 - P2 +1) E W, we have (l,s) E W'. We find that XIs = X2u = 1
is a feasible schedule such that x(W' ) = 2, which yields a contradiction. We conclude that
from (2,/2 - P2 + 1) E W, (2,u) E lV' and MI -::f: 0, it follows that x(Vl) + 2x(V2 ) :$ 2 is
nondecomposable.

Analogously, if M 2 -::f: 0, then (1, ud E lV' and from (1,1- PI + 1) E W, (1, Ul) E W', and
M 2 -::f: 0, it follows that X(VI) +2x(V2 ) ::; 2 is nondecomposable. 0

Theorem 15 A valid inequality x(l'l) + 2x(1'2) ::; 2 with I = II and U = U2 and LMU­
structure (6) is maximal if and only if

(1) Iful < I' and UI < U - PlI then Ul ~ u' and L 2 n U2 -::f: 0;

(2) If 12 > u' and 12 - P2 > 1, then 12 :$ i' and L I nUl -::f: 0;

One of the following holds:
(3a) Lj n Uj -::f: 0 for some j E {2, ... j n};
(3b) 1:$ u' - P2 and L2 -::f: 0 and Uj -::f: 0 for some j E {3, .. . ,n};
(3c) 1::; u - min{pj Ii E {3, ... ,n}, Lj -::f: 0} and Lj -::f: 0 for some j E {3, ... ,n};

One of the following holds:
(4a) Lj n Uj -::f: 0 for some j E {I, 3, ... , n};
(4b) I' ::; u - PI and Lj -::f: 0 for some j E {3, ... , n};
(4c) 1:$ u - min{pj I j E {3, .. . ,n}, Uj -::f: 0} and Uj -::f: 0 for some j E {3, .. . ,n};

If min{12, 1+P2} > 1J then one of the following holds:
(5a) L l n Ul -::f: 0;
(5b) min{12,1 +P2} ::; u' - PI and Uj -::f: 0 for some j E {3, ... , n};
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If 12 = I, then one of the following holds:
(6a) Lj n Uj ::J 0 for some j E {I, 3, ... , n};
(6b) I $ ul-min{pj I j E {3, , n}, Lj ::J 0} and U1 ::J 0 and Lj ::J 0 for some j E {3, ... , n}j
(6c) I $ u' - min {Pj I j E {I, 3, , n}, L j ::J 0} and Uj ::J 0 for some j E {3, ... , n} j

If max{Ul, U- PI} < u, then one of the following holds:
(7a) L2n U2 ::J 0;
(7b) I' $ max{u}, u - pt}- P2 and Uj ::J 0 for some j E {3, ... , n};

If Ul = u, then one of the following holds:
(8a) Lj n Uj ::J 0 for some j E {2, ... , n};
(8b) 12 $ u-min{pj I j E {3, , n}, Uj ::J 0} and L2 ::J 0 and Uj ::J 0 for some j E {3, ... , n};
(8c) I' $ u - min{pj I j E {2, ,n}, Uj::J 0} and Ui::J 0 for some j E {3, . .. ,n};

For all j E {3, ... , n}, one of the following holds:
(9a) min{I', 1+Pi} $12;

(9b) min{I', I +Pi} $ u - PI and Afl ::J 0;
(9c) min{I', 1+Pi} $ Ul - P2 and Af2 ::J 0;

For all j E {3, ... , n}, one of the following holds:
(lOa) Ul $ max{u',u - Pi};
(lOb) 12 $ max{u', u - Pi} - PI and Afl ::J 0;
(lOc) 1$ max{u',u - Pi} - P2 and 1I12 ::J 0.

Proof. Let x(VI
) + 2X(V2) $ 2 be a valid inequality with 1 = 11 and u = U2 and LMU­

structure (6).
We show that M 1 cannot be extended if and only if (1) holds. Suppose that (1) holds.

Observe that if 12 ~ I', then M 1 = 0 and we have to show that there is a counterexample for
all (1,8) with 8 E [I', u - PI]' If 12 < 1', then we have to show that there is a counterexample
for all (1,8) with 8 E [/2 , u' - PI] or 8 E [min{I', ud, u - PI]' If l' < u - PI, then Xj,I'-Pi+! =
XIs = X2u = 1 defines a counterexample for all (1,8) with 8 E [1', u - PI], where j E {3, ... , n}
is such that Ij = I'. If h ~ 1', this implies that M I cannot be extended. Now, suppose
12 < 1. If Ul < I' and Ul < U - Pb then by (1) Ul - P2 + 1 E L 2 n U2 and we find that
X2,UI-P2+! = XIs = 1 defines a counterexample for all (1,8) with 8 E [UI,U - PI]. It follows
that there is a counterexample for all (1,8) with s E [min{/', ud, U-Pl]. Clearly, if 12 < u'-PI,
then XI2 - P2+! = XIs = Xju

'
= 1 defines a counterexample for all (1,8) with S E [/2 , u' - PI],

where j E {3, ... , n} is such that Uj = u'. We conclude that M 1 cannot be extended. It is
not hard to see that, if (1) does not hold, then M 1 can be extended by max{u' - PI,Ul} + 1.
Hence M1 cannot be extended if and only if (1) holds. Analogously, M2 cannot be extended
if and only if (2) holds.

In the same way as in the proof of Theorem 7, it can be shown that L 1 cannot be extended
if and only if (3) holds. Analogously, U2 cannot be extended if and only if (4) holds.

Clearly, L2 cannot be extended if and only if there is a counterexample for (2, Y - P2),
where y = min{I2 , I +P2}. It is not hard to see that if y > 1, then any counterexample for
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(2, y- P2) contains job 1. Such a counterexample exists if and only if (5) holds. Now, suppose
y = 1, i.e., 12 = 1. We assume w.l.o.g. P3 ? P4 ? ... ? Pn. Note that by this assumption we
have that if Lj =I 0 for some i E {3, ... , n}, then L3 =I 0, and if Uj =I 0 for some i E {3, ... , n},
then U3 =I 0. Clearly, there is a counterexample for (2,1 - P2) defined by X2,I-P2 = Xj6 = 1
with (j, s) E y2 if and only if (6a) holds. We show that there is a counterexample for (2,1- P2)
defined by X2,I-P2 = Xj1 61 = Xj2 s2 = 1 with (jl, 8t}, (h,82) E Y \ V2 if and only if (6b) and
(6c) hold. IT (6b) holds, then X2,1-P2 = Xjl 1= Xl ul = 1 defines a counterexample for (2,1-P2),
where il E {3, ...n} is such that Lit =10 and Pil = min{pi liE {3, ... ,n}, Lj =l0}. Now,
suppose (6c) holds. Note that U3 =10. Let hE {1,3, . .. ,n} be such that Pjl = min{pj liE
{1,3, ... ,n}, Li =l0}. IT il =13, then X2,1-P2 = Xitl = X3u' = 1 defines a counterexample for
(2,1- P2). IT il =3, then, since L1 =I 0 and Pil = min {Pj liE {I, 3, ... , n}, Li =I 0}, we have
PI ? P3. Note that since x(yl)+2x(V2 ) $ 2 has LMU-structure (6), we have [u-pt,u1 ~ U1 •

Since U3 =I 0and [u-p}, u'] ~ Ut, it follows that U1 =I 0and hence Ul ? u'. It follows that (6b)
holds and hence there is a counter example for (2,1- P2). Now, let X2,I-P2 = Xil S1 = Xh 62 = 1
with (jt, 81), (h, 82) E Y \ y2 and 81 < 82, define a counterexample for (2,1- P2)' It is easy
to see that if h = 1, then (6b) holds, and if i2 E {3, ... ,n}, then (6c) holds. We find that if
y = 1, then L 2 cannot be extended if and only if (6) holds. We conclude that L 2 cannot be
extended if and only if (5) and (6) hold. Analogously, U1 cannot be extended if and only if
(7) and (8) hold.

In the same way as in the proof of Theorem 7, it can be shown that the intervals Li with
i E {3, , n} cannot be extended if and only if (9) holds. Analogously, the intervals Ui with
i E {3, ,n} cannot be extended if and only if (10) holds. 0

5 Related research

As mentioned in the introduction, Sousa and Wolsey [1992] and Crama and Spieksma [1991]
have also studied the time-indexed formulation of single machine scheduling problems. In
this section, we briefly indicate the relation between their research and our research.

Sousa and Wolsey present three classes of valid inequalities. The first class consists of
inequalities with right-hand side 1, and the second and third class consist of inequalities with
right-hand side k E {2, ... , n - I}. Each class of inequalities is derived by considering a set
of jobs and a certain time period. The right-hand side of the resulting inequality is equal to
the cardinality of the considered set of jobs.

They show that the inequalities in the first class, which is exactly the class of inequalities
with structure (3), are all facet inducing. In Section 3, we have complemented this result
by showing that all facet inducing inequalities with right-hand side 1 are in this class. With
respect to the other two classes of valid inequalities we make the following observations. Any
inequality in the second class that has right-hand side 2 can be lifted to an inequality with
LMU-structure (4) if Pkl =I Pk2 , and to an inequality with LMU-structure (6) if Pkl = Pk2'

where {k}, k2 } is the set of jobs considered. Any inequality in the third class that has right­
hand side 2 can be written as the sum of two valid inequalities with right-hand side 1. For
either of the two classes, Sousa and Wolsey give an example of a fractional solution that
violates one of the inequalities in the class and for which they claim that it does not violate
any valid inequality with right-hand side 1. We found that in both cases the latter claim is
false.

Crama and Spieksma investigate the special case of equal processing times. They com-
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pletely characterize all facet inducing inequalities with right-hand side 1 and present two
other classes of facet inducing inequalities with right-hand side k E {2, ... , n - 1}.

Our characterization of all facet inducing inequalties with right-hand side 1 was found
independently and generalizes their result. The inequalities in their second class that have
right-hand side 2 are special cases of the inequalities with LMU-structure (6), and the in­
equalities in their third class that have right-hand side 2 are special cases of the inequalities
with LMU-structure (4). In addition to the facet inducing inequalities reported in their pa­
per, they have identified other classes of facet inducing inequalities with right-hand side 2
[Spieksma 1991].
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