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Abstract 

DECOUPLING OF BIDIAGONAL SYSTEMS 
INVOL VING SINGULAR BLOCKS 

R.M.M. Mattheij 

Faculteit Wiskunde en Infonnatica 

Technische Universiteit Eindhoven 

Postbus 513 

5600 ~m Eindhoven 

The Netherlands 

For one step difference equations, where the matrix coefficients may be singular, a stability 

analysis based on using fundamental solutions and their inverses does not apply. This paper 

shows how well-boundedness of the Green's function leads to a kind of dichotomy of the funda

mental solution, including certain "parasitic solutions" (which arise because of the singularity of 

the fundamental solutions). This then is used to show how one can find a stable decoupling and 

thus a numerical algorithm for solving a discrete BVP. Several examples sustain the analysis. 



-2-

1. Introduction 

In analyzing numerical methods for boundary value problems, one often uses explicit representa

tions or estimates of Green's functions. The notion of well-conditioning of such a BVP is inti

mately connected to a moderate bound of these Green's functions. As a consequence one can 

show cf. [6] that there exists a natural splitting of the solution space into nongrowing and nonde

caying solutions. It is essential for the latter analysis that the fundamental solution is nonsingular 

everywhere. A discrete analogue of such an analysis is straight-forward (cf. [2]). 

However, if the differential equations are impliCit, and have an index:2 1, i.e. if in the (linearized) 

system, the coefficient matrix of the derivative term is allowed to be singular, this may lead to 

problems. These differential algebraic equations are in fact ODEs coupled with algebraic rela

tions, cf. [5]. For certain numerical methods the rank deficiency is inherited in some of the matrix 

coefficients of the difference equation. This then explains our interest in rank deficient 

coefficients. Another example of one step recursions with such a rank deficiency arises from 

discretization of stiff problems; e.g. if we have 

dx 
di=A(t)X, AE IR 

and we use an implicit method, the trapezezoidal rule say, then the resulting recursion reads 

(I-hi A(tj+l» Xi +1 = (1 +h j A(tj»Xj. 

Clearly for hj A(tj+l) = 1 or hi A(tj) =-1 either one of the coefficients is zero. A generalisation to 

systems is obvious. 

In the singular coefficient case, we no longer have a fundamental solution that is invertible every

where. This then makes the more or less standard argumentation for relating well-conditioning to 

dichotomy no longer applicable. Indeed, apparently some "parasitic" solutions are generated 

(filling in for the trivial solutions in the Green's function); we have to show that these behave 

well in some sense too. 

In this paper we shall exclusively deal with the discrete rank deficient case. We shall analyze the 

Green's function and draw conclusions with respect to growth of ("parasitic") solutions. As a 

major result we can thus show how and why a decoupling technique makes sense and is stable for 

such problems. The analysis is in particular applied to problems which involve block tridiagonal 

matrices as arise e.g. from collocation methods for BVP. However, they may also be useful for 

multiple shooting techniques and related methods. 

In section 2 we generalise concepts and estimates for Green's functions for the singular case. In 

section 3 we then show what can be said about the growth of basis modes (as far as they exist). 

As a special application of this analysis we consider in section 4 tridiagonal matrices arising from 

a particular repartitioning in a staircase matrix, thus inducing singular blocks. The analysis finally 

enables us to derive a stable decoupling algorithm in section 5. The theory is illustrated by some 



examples in section 6.
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2. Green's functions and their consequences 

Let us consider a general implicit one step recursion for {Xi If..1 

(2.la) AjXi+BjXi+I=Ii. i=I •...• N-l. 

whereAj. Bj E R."xn, Ii E R.n. Assume we have a boundary condition (BC) for {Xi} given by 

M}tMNE R. llxn .bE R.". 

The problem (2.1) can be written as an (n XNi matrix equation 

(2.2a) Ax=b, 

where 

At B1 Xl II 
A2 B2 

(2.2b) A'-.- • x:= b'-. .-
AN-I BN-l IN-l 

M1 MN xN b 

The conditioning (with respect to absolute errors) is then characterized by the conditioning con

stant lC, defined as (cf. [2]) 

(2.2c) II A-I II =: lC. 

We assume (2.1) to be wen posed. i.e. A is invertible. Then there exists a fundamental solution 

{4>ilf"=o with 

Also, there exists a Green's function {Gjj}f"=l, j = 1, ...• N -1 with 

(2.4a) 

(2.4b) 

Explicit expressions for {G jj} when Aj E I and B j is nonsiogular for all i can be found e.g. in [7]. 

In this section we shall derive, more generally, expressions for the potentially rank deficient case. 

Le. we assume that for at least one index j a matrix A j or B j is singular. i.e. 

(2.5) A .4>- --B- 4>- 1 J J - } J+ 

is singular. 

If we denote by A + the pseudo-inverse of a matrix A (cf. [4]). then 
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(2.6) Bj tl>j+l(B/bj +1)+ =: Pj 

defines an orthogonal projection IR n -+ Range (B j tl>j+l). In order to construct the Green's func

tion we make the Ansatz 

(2.7a) 

(2.7b) 

where (1-Pj) Fij = O. (Note that Fij = 0 is the nonsingular case.) From (2.4a) and (2.7) we see 

(2.8a) Ajtl>jKj+Bjtl>j+lLj=Pj 

(2.8b) AjFjj + BjFj,j+l =l-Pj . 

Using (2.5) we obtain 

(2.9) Bj tl>j+lCLj -Kj )=Pj 

and take 

(2.10) (Lj-Kj) = (Bj tl>j+lt. 

Now we find from (2.4b) (N.B. M 1 tl>l = I-MNtl>N) 

(2.11) MNtl>NCLj-Kj)=-Kj , 

whence 

A similar derivation can be given for Lj. Summarizing we have 

Property 2.13. Define Gij = GijPj, then 

C2.13a) 

(2. 13b) 

Property 2.14. 

(i) lItl>i MN tl>N tl>jll S K IIAjll, is j 

(ii) lItl>i M 1 tl>l tl>j+lll S K IIB}I, i ~ j + L 

Proof First we show that if Aj tl>j Y = 0 for some nontrivial vector y, then tl>j+l Y = O. Suppose 

the latter is not true; without restriction assume lIyll2 = 1. Let Y be an orthogonal matrix with y as 

its first column and yea) equal to Y but for its first column which is ay, a e R. Define another 

matrix solution {'Pi(a)}. where 'Pi(a.) = tl>i Y, is j and 'Pi (a.) = tl>i Y(a.) , i ~ j + 1. (Note that in 

particular Aj 'Pj(a.) = -Bj 'Pj +1 (a.).) We have 
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M 1 'PI (a) + MN 'PN(a) = M 1 C'b1 Y + MN C'bN yea) 

= Y + (a- I)MN C'bN[y I 0 ... 0]. 

Hence there clearly exists a choice for a;t: 1 such that M 1 'PI (a) + MN 'PN(a) is nonsingular, 
showing that {'Pi(a)} is another fundamental solution. However, since 'PI (a) y-l = C'b1 we can't 

have uniqueness unless C'bj y = 0, i = j + 1, ... , N. 

So for the rest of the proof we can therefore restrict ourselves to 
Range (AjC'biAjC'bj)+) = Range(Bj C'bj+1(Bj C'bj +1t) =: Sjt Le. for (ii) we deduce from the forego
ing that if U E range(C'bj +1 C'bj+l) Q Bj 4>j+l U ¢ O. We can then proceed as follows 

1IC'b·M I 4>l(B·4>· 1)+zll 
IIC'b. M 4> (B· C'b. )+11 = I J J+ 
tIl J J+l~:S Ilzll 

It is not restrictive to assume Bj C'bj +1(Bj 4>j+l)+Z =Z, so with (Bj C'bj +1t Z =: y, Le. Bj C'bj+l y = z, 
we find 

+ lIC'bi M 1 C'b1 yll lIC'bj M 1 C'bl yll 
lIC'bi M I 4>t(Bj4>j+l) 1I=~:s IIBjC'bj+1yll ~~:s IIB}I lIC'bj +1yll' 

Since 4>j+l y =: u ¢ 0, we thus see that the last expression is underestimated by 

from which (ii) follows. Estimate (i) goes similarly. o 

Oearly, if all Aj and Bj are nonsingular, the expressions in (2.13) coincide with the standard fonn 
Green's function. 
Next, we consider the complementary parts (see (2.7) and (2.8b». 

Property 2.1S. 

0) {Fjj } i'S,j and {Fij }J";ei+l satisfy the homogeneous recursion of (2.1). 

(ii) Range(BjFj,j+l)n Range(AjFjj) = {OJ. 

(iii) There exists an orthogonal projection Qj such that 

Bj Fj,j+l = (/-Pj)Qj 

AjFjj = (/-Pj ) (/-Qj). 

Proof. (ii): If Range(Bj Fj.j+l) fl Range(AjFjj);t: {OJ, then there exist vectors a and b such that 
AjFjj a + Bj F j ,j+l b = 0 with Aj Fjj a ;t: O. Now define {f;} by 
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ii = Fij b. i ~ j + 1. 

Then clearly {ii} satisfies the homogeneous recursion for i = j and on account of (i) also for i "" j. 
So there exists a vector c such that ii = cl>i c for all i, and in particular for i = j. Hence 

Aj cl>j C = Aj F jj a "" O. Since Aj cl>j C E Range(Pj ) and (Aj Fjj) E Range(l-Pj) this is clearly a 
contradiction 

o 

Property 2.16. The splitting for Gij in (2.7) is unique and hence Gij is uniquely defined by 
(2. 13a,b). 

Proof. Clearly G ij is uniquely defined. Now suppose {Hij} is defined as {Fij} in (2.7). Then 

{Fij - Hij} satisfies the homogeneous recursion. Hence for some matrix S we have 

Since we must have MIFlj+MNFNj=MlHlj+MNHNj=O (see (2.4b» we deduce 

(M 1 cl>1 +MN <l>N)S = 0 =:> S = O. so Fij = Hij . [] 

We find immediately: 
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3. Estimates for the fundamental solutions 

In section 2 we derived expressions for the Green's function in tenns of the fundamental solution 

{wd and certain parasitic solutions {Fjj }jfixed. The latter kind of "solutions" are effectively one
sided solutions, i.e. built up from components which satisfy the homogeneous recursion for either 
i > j or i S j; this is in contrast to the fundamental solution which exists globally (albe it with 

possible zero components on a range of consecutive indices). 

We shall now show that well conditioning of the BVP (2.1), (2.2) implies a kind of dichotomy of 
{Wi} and a kind of one sided stability for {Fij}. To do this we first have to generalise some 
results of [6]; not so much because our problem is discrete, but rather because it is singular. 

First we examine the structure of {4>i} more in detail. Let rank(Cl> 1 ) = n -I and rank(Cl>N) = n - m. 
(N.B. 0 < 1 + m:S; n.) Then there clearly exists an orthogonal V such that 

(3.1a) 4>1 V = [* J el. 
I 

i.e. the last 1 columns of Cl>1 V consist of zeros; consequently the last columns of Cl>N V must have 
full rank. However if m > 0, we may posunultiply V by an orthogonal matrix W, 

(3.1b) W = [! ~]. IV E m(a-l)' • 

such that 

(3.1c) 

It is therefore not restrictive to identify V and V W. Next. let U 1 be an orthogonal matrix such that 

[ 

0 0] 1m 
uI 4>1 V = 0 0 =: '1'1 

000 11 
(3.2a) 

(i.e. '1'1 is upper triangular) and UN an orthogonal matrix such that 

'[0 0 0J 1m 
UTiCl>N V= 0 0 =: 'I'N 

00 tl 
(3.2b) 

(Le. 'I'N is lower triangular). Let 4>1 be a special initial value defined by (cf. (3.2a» 

(3.3,) ~, >{ ~, + [: : ~] } V
r
. 

It is simple to verify that 
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(3.3b) 

for some A E /R(n-m-Ij'- • BE /R(n-m)xI and C E /R 1xl , A and C being nonsingular. As a follow

ing step let 

(3.4a) A =: 6fvT , 

be the SVD of A. where f has positive elements 0'1 ••••• O'n-m+ Assume 0 < 0'1 ••••• ale S 1 and 
O'Ie+l • •••• O'n-m-I > 1, for some k E IV. Like in [6] we split f in two parts (which effectively 
corresponds to a separation of non-increasing and increasing modes coupled by the boundary 
condition); so we introduce 

(3.4b) D2 = diag(O'k+l •...• O'n-m-l) 

(3.40) D=[~ :2]. 
Inspired by this partitiOning, let a projection P be given by 

(3.5) ,_ [/m+k 0] 
P.- 0 0 . 

Finally. let 

(3.6) K :=P + (I-P) [: ~- :J 
o BV C 

(note that K is nonsingular). 
Then we define a fundamental solution {ci>j} by 

(3.7a) 

where 

[

1m" 0] 
(3.7b) X:=" V 0 • 

o 0 II 

and separated Be MI. M N by 

(3.8a) M 1 := P XT uf 
(3.8b) M N := (I - P) yT uJ; 

where 
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[

1m 0 01 
(3.8c) Y:= 0 6 0 . 

o 0 II 

We have the following lemmata 

Lemma 3.9. 

(i) M Iii + MN iN =1 

(ii) IIMlhS I, IIMNII2S 1 

(iii) 1I~1112 S 1, lIiNII2 S 1 

Proof. We have 

[

1m 0 0] 
- --1 1 -
~1 = ~l ~l X K- = U 1 0 V 0 000 [

1m 0 0] 
o jj~1 0 • 

o E C-1 

whereE = -e-1 B V jj-l. 

Because of the construction of 15-1 it directly follows that lI~lllz S 1. Furthennore we have 

ti>N =~N~~l X K-1 = UN Y [: f~-l :]. 
o 0 h 

Hence UiNliz S 1. From these expressions of ~1 and ~N the other assertions follow immediately. 
[J 

Proof. 

ti>i =~l [Ml ~1 +MN ~N] [~11 X K-1] =~iMl ti>l +~iMN iN' 

So the estimate follows from Lemma 3.9. 

Theorem 3.11.lIij P ijll s; (1C+4~) Yj. is j, 

lI~i{1-P) ~j+ll1 S (1C+4~)Yj, i ~ j + I, 

where Yj = max(IIA jll, liB jll). 

[J 
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+ -- + -- + = [<I>i M 1 <1>1 <l>j+t1- <l>j M N [<I>N M I <1>1 <I> j+d + <l>j M 1 [ell1 MN <l>N ellj +t1. 

The expressions in square brackets are each bounded in nonn by K"{j. Since M 1 ti>1 = P, the result 
follows from using Lemma 3.9, Lemma 3.10 and Theorem 2.15. [] 

We conclude from this theorem that there exists a "dichotomic" fundamental solution {ti>i} in the 
sense that basis modes of 

(3.l2a) SI := {ti>jP c Ice JR} 

do not increase significantly. as long as they exist for increasing index, and similarly of 

(3. 12b) S2:= {ti>j(l-P)c Ice JR}. 

for decreasing index. 
As far as parasitic modes (Le. which do not exist till some lX>int) is concerned, we deduce from 
Property 2.17 

Theorem 3.13. For any index j for which Pj -:t I (see (2.6)) we have 

IIFi}ll$K, i>j 

IIFjjlll S K, is j. 

So these parasitic modes do not grow, away from the lX>int j from which they originate. 

Remark 3.14. If the Be are separated we do not have to construct the fundamental solution ti> as 
above. As in [6] the projection matrix P can then be identified with M 1 elll . 
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4. Application to special block tridiagonal matrices 

Consider a discrete two point BVP with separated BC, Le. in (2.1b) we have 

(4.1) [Mi] ik [ 0] 
M I = 0 • MN= MN in-k 

A natural way of employing this zero structure (which apparently induces a decoupling) is to 

write the resulting system. for Xl • ••• , XN as 

(4.2a) Ax=b. 

where 

(4.2b) :1:= • b= 
fN-l 

= 

fN-l 

XN b l bN 

(here bZ• b l denote the first k and last (n-k) coordinates of b). We can repartition the matrix A 

into a block tridiagonal one (with square blocks of size n). This results in a two step recursion 

where (with obvious row partioning for Ai. Bi• Ci) 

(4.4) 

Moreover we obtain a (separated) BC 

(4.5a) 



(4.5b) 

The recursion (4.3) was already discussed in [8] with respect to stability and dichotomy by 

rewriting it into one step fonn: 

(4.6) [I" 0] [ Xi] [ 0 -I,,] [Xi-I] [ 0] 
o Ri xi+l + Si Qi Xi + bi . 

Clearly both matrices in this implicit recursion are singular; this caused some problems for appli

cation of the general theory, which were circumvented by an indirect analysis in [8]. 

With the more general results of the preceding sections we can tackle this problem more naturally 

now. Ralher than (4.6) we consider a recursion of which we shall only analyse the essential, Le. 

the homogeneous part: 

(note that (4.7a) is directly found from (4.6) through left multiplication by a suitable nonsingular 

matrix and setting bi = 0). The fonn (4.7a) is unbiassed with respect to the increase or decrease of 

the index sequence 

As BC we have 

(4.7b) 
[

My 0] [Xl] [0 0] [XN_I] 
Al Bl + A~-l B~-l = 
o 0 Xz 0 Mk xN 

fonnally written as 

MI [::] H;N-I [X=~I] =b. 

In order to avoid unnecessary complication let us assume lhat the original recursion (2.1a) 

involves nonsingular matrices only. Let {¢'j} f=ll denote a fundamental solution of (4.7) with 
A A A.... ,. A A 211 2n 

Ml Cl»1 +MN-l Cl»N-I =1, so Cl»j, M .. MN_I = IR x • 

From (2.3) we see that it is meaningful to define lhe projections 
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(4.8) P :=MI ~I = [~ =]. I-P -MN~N' 
Since we here assume that (2.1) is nondefective we can write for the Green's function of (2.1), 

see (2.4) 

(4.9) 
Gij = ¢>j P(Bj ¢>j+l)-t, i ~ j + 1 

Gij = ¢>j(/-P)(Aj ¢>jr1 is j. 

We now have 

Property 4.10. LetP" PN e 1/" be such thaI PI = [~]. PH = [I:",], 

[

A 11 A 12 A 13 A 14] ¢>j ¢>i ¢>. ¢>. 
A I , A 11 A 21 "13 A 23 /I x (/I-I:) 

Define 4>; as 4>~1 cf,~ 4>+3 ~+4 ' 4>; ,4>; ,4>; ,4>i E R . 
I I , .... , 

Then for2S is N -1 we have 

A...+j - A...Jj • - 1 4 "V, -'*'. t J - , ...• 

Proqf. W rile 4>, = [ ~~: ~~]. with square blocks. For 2" I" N - 2 we then see 

[Kfll KHI ] = [Kr1 KP]. It follows from the BC that the first k columns of {KP} and the last 

(n-k) columns of {K]2} form the (normalized) fundamental solution {4>;} of (2.1a), (4.1). Furth

ermore, since the last (n-k) columns of {KP} satisfy homogeneous BC and the recursion, 

except for 

[AI Kl' + Bf K!ll [I:] =1 ..... 
it is clear that they are identical to the last n-k columns of the Green's function {Gil}' The argu

ment for the first k columns of {K J2} is similar. 0 

Note that for all j the projections like P j in (2.6) are identical to P, where 

(4.11) 
[

1/1 01 
p= "0J" 

Property 4.12. Let {Gij} denote the Green's function of (4.7), Then, using the notation of Pro-
• - A" " 2nx2n 

perty 2.13, I.e. G ij = G ij P (where G ij E R now) 



_ [<I>i P <l>j!1 0] 
G ij = <1>. P ""'71 0 • i ~ j + 1 

1+1 '*')+1 

- [<I>i (I - P) <l>j1l 01 
Gij = <l>i+l (I -P) <l>J1l 0 • is. j. 

if 1 S. js. N -2, where 

• for some Ll e /Rkx(n-k), 

(J/c+L 1 Lfrl 0 
Lf (J/c+L 1 Lf)-1 0 

\0J A A + <1>-1 (Bj<l>j+l) = 0 L! (In-/c+L2 LI>-l j+l 

0 (In-/c+L2 L!rl 
~ 

n 

Substitution in the expression for a ij proves the assertion for i > j , 2 SiS. N -I. A similar proof 
can be carried out for i S. j , 2 S. i S. N - 1. Further inspection finally shows that for the boundary 
cases aNj and a lj the aSsertion is uue as wen. 0 

It is convenient to associate to the 2n-th order system (4.7) quantities as defined in section 2, but 
now provided with a cap to avoid confusion. Hence the Green's function Gij (see Property 4.12) 
actually consists of two parts (cf. (2.7)ff). viz. {; ij PI = a ij and (; ij(1 - PI) =: F ij. To the latter 
"parasitic part" we can associate projection matrices Q 1 and 1 - Q 1. defined for the larger system 
just like in Property 2.15(iii), realizing that they are index independent The proof of the fonow
ing Property about "parasitic solutions" is immediate. 

Property 4.13. 



(i) [0 0 0J 
The projection matrix Qj is given by 0 I" 0 

000 
tn 

tn 

(ii) o [

0 G .. ] . II 

Ff= 0 G. .' 
1+1.1 

Corollary 4.14. The Green's function for (4.7a.b) is given by 

Of course, the results of this section might also be obtained by manipulating directly on the 

matrix resulting from (4.7a,b) in relation to (4.2). However. the construction in this section 

demonstrates the validity of our analysis given in Section 3. 

From Theorem 3.11 we can now see that the (inflated) one-step system (4.7a,b) has a dichotomic 

fundamental solution. 
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5. Decoupling and singular matrices 

In this section we consider the BVP (2.1), (2.2). assuming that it is well-conditioned, but allow

ing any of the matrices involved to be singular. 

A general decoupling method which employs orthogonal matrices was given in [8}. We first 

describe it here briefly: Let Qo be an orthogonal matrix. Then perfonn a QU-decomposition 

(5.1a) Al QI =RI Ut 

(Le. R t orthogonal and U 1 (block) upper triangular). Next, perfonn a "(block) UQ

decomposition" on Ri1 B 1. i.e. 

where VIis (block) upper triangular. Initially one can take both U I and V t to be upper triangu

lar. The block fonn follows from the construction in Theorem S.6. We can continue this process 

giving at the i-th step 

(S.2a) Ai Qi =: Ri Ui 

(5.2b) RTI Bi =: Vi Qi!l 

By defining 

(5.3a) MI :=MIQt 

(S.3b) MN :=MNQN 

(5.4a) -- Q-l Xi:= i Xi 

(5.4b) -- -1 Ii :=R i Ii, 

we obtain an upper triangular recursion 

In order to employ the decoupling for separate computation of non-increasing and non-decreasing 

modes, we need appropriate blocks of Uj and Vi to be nonsingular. In the following theorem we 

shall show that a suitable pennutation gives block upper triangular Ui and Vi. which allow for a 

globally meaningful decoupling. 

Theorem 5.6. Let rank(Ai) = ki and rank(B i) = n -Ii' Then there exists an orthogonal matrix Q 1 

such that Uj has zero lower right (n -ki) x (n -ki ) blocks and Vi has zero upper left Ii x Ii blocks. 

Moreover Ii S ki for all i and there exists a k, with Ii S k S ki for all such that the upper left k x k 

blocks of the Uj and the lower (n -k) x (n-k) blocks of the Vi are nonsingular. 

Proof We shall use induction. We can always choose the columns in Qi such that the first kl 
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columns are orthogonal to Null(A 1). so the last (n - k 1) rows of U t are zero. Since the BVP is 

well-posed, i.e. the "multiple shooting" matrix is nonsingular it follows that the last (n - k I) rows 

of RII BII must have full rank, so the lower right (n-k t ) x (n-kl) block of V t is nonsingular. 

By a suitable choice of R, we can guarantee that V 1 has zeros on the first 11 diagonal positions, 

where 11 is such that rank(B 1) = n -11' 

Now let the statement be true for i - 1. Due to the zero h-l x li-l left upper block of Vj - 1 , the 

corresponding block of Uj must be nonsingular, i.e. ki ~ Ii-I' It is always possible to permute the 

last n -1;-1 columns of Bi-l and Ai such that Ui' when singular, i.e. of k; S n, is such that its right 

lower (n - kj ) x (n - ki) is zero; this affects only the orthogonal matrix Qi: if the permutation Pi, 

say, then one should replace Qi by Pi Qi' 

The zero block in Ui implies a nonsingular block at the same position in Vi hence Ii S k j • By per

muting rows of Ai and Bi it can be assured that the left upper (ljxlj) block of Vi is zero. The 

existence of the integer k follows from the construction above. [] 

The proof of the preceding theorem actually gives a constructive method for finding a partioning 

integer k and {Qj,Rd. We can go a step further and construct Q; such that it produces an 

appropriately ordered diagonal of the Uj and Vj as far as the nondisappearing parts of the funda-
- N mental solution of (5.5), {ct>j} i=1 say, are concerned. 

Now let i.: be the largest possible integer such that for all i, the i.: x i.: left upper blocks of U; are 

nonsingular (see Theorem 5.6). 

Let us denote by 6; and Vj the i.: x i.: left upper blocks of Uj and Vi respectively. This induces the 

recursion 

Property 5.8. Let i := max Ij • Then there exists a matrix solution {'iti } of (5.7), SO 'iti E JRkxi.: for 

all i and a projection P, with rank(P) S i.: - i such that 

1I'f; P 'fjl! S (K+4~)'Yj, is j 

U'fi(I-P)'fj+lI1S (K+4~)'Yj, i ~ j + I, 

where 'Yj = max (I1Ajll, IIBjll). 

Proof We use the orthogonal invariance of the 2-norm to see that the problem (5.3), (5.5) induces 

a matrix with the same bound for its inverse as (2.1); hence because of the orthogonality of the 

transformation {Qi} and {R;} the estimates essentially follow from Theorem 3.11, constructing P 
like P in (3.5). (] 

From Property 5.8 we deduce that we can choose the matrix Q 1 such that the nondecreasing 

modes, cf. {'it; P} in Property 5.8. appear before the nonincreasing ones in {,¥;}, i.e. P is of the 
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fonn diag (0. O •... , O. 1 •...• 1). This then finally gives us the result that there exists a stable 

decoupling, also in the rank. deficient case. 
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6. Examples 

In this section we give two-examples to demonstrate the preceding analysis 

Example 6.1. Consider the ODE 

dx [ c
2 

A+S21l cs(J1- A) ] 
(6.1) dt = cs(jJ.-A.) s2 A+C21l x + /(t) , 

where c = cos t • S = sint and f is chosen such that x(t) = (cos t. sint) is a solution. As BC we 

take 

(6.2) [ ~ ~] x(O) + [~ ~] x(~)= [ ~1] . 
For A. large positive and 1.1 large negative this constitutes a stiff B VP, having layers at both ends of 

the interval [O.n]. Therefore we use the midpoint schema on a nonunifonn interval: Writing (6.1) 

as 

dx di =A(t)x + /, 

we have at the grid point ti 

(6.3) [/--
2
1 h Ai+l. ] xi+l = [I +-21 h Ai +1. ] Xi + h h+1. • 

1 2 1 

As grid points we use +0 ' j = 0, ... ,30 and moreover in the left layer: 

t = _1_ _1_ _1_ _1_ _1_ _1_ _1_ _1_ _1_ _1_ and in the right layer the 
1200 ' 600' 400 ' 300' 250' 200 • 150' 100' 50 • 25 

POints t = 7t-...L for)' = O' . .. 30 10 • ••. 

In Table 6.1 we display some typical values for Uj and Vi 
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t Ui V· I 
0.04 1.4999 -0.0125 0.5000 .610-18 

0 .710-10 0 2.0000 

0.10 1.9998 0.0225 .910-16 -0.0225 

0 1.0001 0 2.9999 

1.6 6.1809 -1.5710 4.1933 -3.0522 

0 8.7366 0 10.4927 

2.9 6.1809 -1.5710 4.1933 -3.0522 

0 8.7366 0 10.4927 

3.1316 1.9960 0.1097 .910-15 -0.1100 

0 1.0020 0 2.9980 

3.1333 1.4998 0.0225 0.5000 .-410-15 

0 .2310-13 0 2.0000 

Table 6.1. 

For t = 0.04.3.1333 we see that Uj is almost singular and similarly Vi for t = 0.10,3.1316; latter 

points mark the end of the layers. and if the decoupling is done adequately this should not have a 

noticeable global effect (cf. [1]). Though, clearly. A is not constant. the matrices Ui and Vi appear 

to be almost constant (due to the fact that h A., I h I.L I are "large". a well-known by-product of di

stable methods, see [3]), It is worth noting that the dichotomy can be deduced from the quotient 

of diagonal elements of Uj and Vi: I (Uihz' (Vi)zzl < 1 and I (Vi)l1 ,(Ui )l1 I < 1. 

In tabel 6.2 we have displayed the discrete fundamental solution it of the transfonned recursion 

5.5 for some values of tit and in the last column the absolute error vector (after transforming 

back). 



t 

o 

0.04 

0.10 

1.6 

2.9 

3.1316 

3.1333 

3.1416 
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ell-I 
0.365 10-39 0.344 10-2 

0 1.00 

0.299 10-38 .0;742 10-19 

0 .495 10-17 

0.639 10-22 -0.188 10-18 

0 0.165 10-17 

0.447 10-19 -0.263 10-19 

0 0.728 10-19 

0.102 10-16 -0.118 10-20 

0 0.560 10-20 

0.122 -0.126 10-22 

0 0.837 10-21 

0.367 0.776 10-37 

0 0.965 10-35 

1.000 0 
0 0.128 10-35 

Table 6.2. 

error 
0 

0.274 10-2 

0.639 10-4 

0.181 10-5 

0.121 10-2 

0.195 10-4 

0.265 10-4 

0.125 10-2 

0.195 10-2 

0.205 10-4 

0.222 10-6 

0.351 10-6 

0.351 lQ-li 

0.198 10-6 

0 

0.481 10-7 

The table shows that there is a nice layer resolution indeed; moreover the global error is of a 
proper order. These computations are essentially based on employing the stable decoupling. 

Example 6.2. Consider the second order DAE 
(6.4) Ex =Ax +q , 

where E is the (constant, singular) matrix [ ~ ~]. 
Introducing an additional variable y, we can write 

{
EX=y 

(6.5) Ey =Ax +q. 

For this simple index 1 probleem, we can use the trapezoidal method with grid spacing h result
ing in (cf. [5]) 
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(6.6) Ai zi + Bi zi+l = bi, i = 0, ... , N-l 

where 

. ,_ [ -! E -~ 1 . '-[ -! E -~ E-1 
(6.7) A, ,- 0 0 ,B, .- -A E ' 

and 'i = [;;] , with Xi"' x(ih) , Yi "' y(ih), 

Assume we have a BC for (6.4) 

whereMa,Mb E nlx2. 

Then a complete set of BC for (6.6) is given by (cr. [5]) 

(6.9) Mozo+MNZn=d, 

where 

(6.10) Mo :=[ ~ 1~1 ' MN >=[ ~ ~ , d:=[ q~J 
The BVP (6.6), (6.9) has a unique solution. A typical block row in the matrix resulting from the 

set of equations for {Zj} is given by 
1 1 1 1 

0 -- 0 -- 0 -- 0-h 2 h 2 
0 0 0 0 0 o 0 -1 

(6.11) 0 0 0 0 0 * * 1 0 0 

0 0 0 0 * * 0 0 

(where * denotes an element of A). In view of the algorithm outlined in section 5, we note that 

whatever choice of Qi is made, Rj Uj, so Uj, will have zeros in the last three rows. Hence we can 

take Rj = 1. As for the matrix Bi we note that it is nonsingular if A is (unless h is such that 

all + 2/h == al2 a21/a22)' Hence we can take Qi+l simply such that Bi Qi+l is upper triangular 

(by Householder's method e.g.), The resulting matrices Uj and Vi induce a simple decoupling: 

The dimension k of the nonsingular diagonal block is I, From this it fonows that the projection 

matrix P as in Property (5.8) must equal 

- [1 01 
P = 0 0j' 

Hence it follows that the parasitic solutions generated by the Green's function are zero, except at 

the point where they arise. This then implies numerical stability of the decoupling if only the 

decoupled scalar recursion employing the first diagonal elements of Ui and Vj is used in a stable 
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direction. The existence of a stable direction follows directly from the well conditioning of the
DAE (6.4), (6.8) (cf. [4]).
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