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Summary

Price-based Optimal Control of Electrical Power Systems

During the past decade, electrical power systems have been going through so-
me major restructuring processes. From monopolistic, highly regulated and
one utility controlled operation, a system is being restructured to include
many parties competing for energy production and consumption, and for
provision of many of the ancillary services necessary for system operation.
With the emergence of competitive markets as central operational mecha-
nisms, the prime operational objective has shifted from a centralized, utility
cost minimization objective to decentralized, profit maximization objectives
of competing parties. The market-based (price-based) operation is shown to
be practically the only approach that is capable to simultaneously provide
incentives to hold the prices at marginal costs and to minimize the costs. As
a result, such an operational structure inherently tends to maximize the soci-
al welfare of the system during its operation, and to accelerate developments
and applications of new technologies.

Another major change that is taking place in today’s power systems is
an increasing integration of small-scale distributed generation (DG) units.
Since in future power systems, a large amounts of DG will be based on
renewable, intermittent energy sources, e.g. wind and sun, these systems
will be characterized by significantly larger uncertainties than those of the
present power systems.

Power markets significantly deviate from standard economics since the
demand side is largely disconnected from the market, i.e. it is not price res-
ponsive, and it exhibits uncertain, stochastic behavior. Furthermore, since
electrical energy cannot be efficiently stored in large quantities, production
has to meet these rapidly changing demands in real-time. In future po-
wer systems, efficient real-time power balancing schemes will become crucial
and even more challenging due to the significant increase of uncertainties
by large-scale integration of renewable sources. Physical and security limits
on the maximal power flows in the lines of power transmission networks re-
present crucial system constraints, which must be satisfied to protect the
integrity of the system. Creating an efficient congestion management sche-
me for dealing with these constraints is one of the toughest problems in the
electricity market design, as the line power flows are characterized by com-
plex dependencies on nodal power injections. Efficient congestion control



has to account for those limits by adequately transforming them into market
signals, i.e. into electricity prices.

One of the main contributions of this thesis is the development of a novel
dynamic, distributed feedback control scheme for optimal real-time update of
electricity prices. The developed controller (which is called the KKT control-
ler in the thesis) reacts on the network frequency deviation as a measure of
power imbalance in the system and on measured violations of line flow limits
in a transmission network. The output of the controller is a vector of nodal
prices. Each producer/consumer in the system is allowed to autonomously
react on the announced price by adjusting its production/consumption level
to maximize its own benefit. Under the hypothesis of global asymptotic sta-
bility of the closed-loop system, the developed control scheme is proven to
continuously balance the system by driving it towards the equilibrium where
the transmission power flow constraints are satisfied, and where the total
social welfare of the system is maximized. One of the advantageous featu-
res of the developed control scheme is that, to achieve this goal, it requires
no knowledge of marginal cost/benefit functions of producers/consumers in
the system (neither is it based on the estimates of those functions). The
only system parameters that are explicitly included in the control law are
the transmission network parameters, i.e. network topology and line impe-
dances. Furthermore, the developed control law can be implemented in a
distributed fashion. More precisely, it can be implemented through a set of
nodal controllers, where one nodal controller (NC) is assigned to each node in
the network. Each NC acts only on locally available information, i.e. on the
measurements from the corresponding node and on the information obtained
from NC’s of the adjacent nodes. The communication network graph among
NC’s is therefore the same as the graph of the underlying physical network.
Any change is the network topology requires only simple adjustments in NC’s
that are local to the location of the change.

To impose the hard constraints on the level to which the transmission
network lines are overloaded during the transient periods following relatively
large power imbalances in the system, a novel price-based hybrid model pre-
dictive control (MPC) scheme has been developed. The MPC control action
adds corrective signals to the output of the KKT controller, i.e. to the nodal
prices, and acts only when the predictions indicate that the imposed hard
constraint will be violated. In any other case, output of the MPC controller
is zero and only the KKT controller is active. Under certain hypothesis,
recursive feasibility and asymptotic stability of the closed-loop system with
the hybrid MPC controller are proven.

Next contribution of this thesis is formulation of the autonomous power



networks concept as a multilayered operational structure of future power
systems, which allows for efficient large-scale integration of DG and small-
scale consumers into power and ancillary service markets, i.e. markets for
different classes of reserve capacities. An autonomous power network (AN)
is an aggregation of networked producers and consumers, whose operation
is coordinated/controlled with one central unit (AN market agent). By per-
forming optimal dispatching and unit commitment services, the main goals
of an AN market agent is to efficiently deploy the AN’s internal resources
by its active involvement in power and ancillary service markets, and to
optimally account for the local reliability needs. An autonomous power net-
work is further defined as a major building block of power system operation,
which is capable of keeping track of its contribution to the uncertainty in the
overall system, and is capable of bearing the responsibility for it. With the
introduction of such entities, the conditions are created that allow for the
emergence of novel, competitive ancillary service market structures. More
precisely, in ANs based power systems, each AN can be both producer and
consumer of ancillary services, and ancillary service markets are characteri-
zed by double-sided competition, what is in contrast to today’s single-sided
ancillary service markets. One of the main implications of this novel ope-
rational structure in that, by facilitating competition, it creates the strong
incentive for ANs to reduce the uncertainties and to increase reliability of
the system. On a more technical side, the AN concept is seen as decentrali-
zation and modularization approach for dealing with the future, large scale,
complex power systems.

As additional contribution of this thesis, motivated by the KKT control-
ler for price-based real-time power balancing and congestion management,
the general KKT control paradigm is presented in some detail. The develo-
ped control design procedure presents a solution to the problem of regulating
a general linear time-invariant dynamical system to a time-varying econo-
mically optimal operating point. The system is characterized with a set of
exogenous inputs as an abstraction of time-varying loads and disturbances.
Economic optimality is defined through a constrained convex optimization
problem with a set of system states as decision variables, and with the valu-
es of exogenous inputs as parameters in the optimization problem. A KKT
controller belongs to a class of dynamic complementarity systems, which has
been recently introduced and which has, due to its wide applicability and
specific structural properties, gained a significant attention in systems and
control community. The results of this thesis add to the list of applications
of complementarity systems in control.





Samenvatting

In het laatste decennium hebben elektrische energiesystemen grote structu-
rele veranderingen ondergaan. Was het eens een monopolistisch, centraal
aangestuurde organisatie, nu is een systeem ontstaan met vele partijen die
onderling concurreren bij de opwekking en het gebruik van energie en voor
het verzorgen van de noodzakelijke reservecapaciteit. Door de komst van
een transparante energiemarkt is de doelstelling verschoven van een die was
gericht op de centrale minimalisatie van de kosten van de opwekkers tot
een maximalisatie van de opbrengsten van alle individuele deelnemers. Het
marktprincipe (op prijs gebaseerd) is de enige praktische manier om gelijk-
tijdig stimulansen te geven om te leveren/consumeren tegen de marginale
kosten en om de kosten te minimaliseren. Een dergelijke markt-gerichte
organisatie leidt tot maximalisatie van de maatschappelijke waarde en sti-
muleert de ontwikkeling en toepassing van nieuwe technologieën.

Een tweede belangrijke verandering in de huidige energiesystemen is een
toename van kleinschalige, verspreide opwekking (DG) van energie. Omdat
toekomstige energiesystemen met een groot aandeel DG gebaseerd zullen
zijn op hernieuwbare energiebronnen, zoals wind and zon, zullen deze syste-
men worden gekarakteriseerd door een aanmerkelijk grotere onzekerheid dan
heden ten dage.

Energiemarkten wijken sterk af van standaard economische modellen om-
dat de vraag vrijwel volledig is ontkoppeld van de markt: zij is niet gevoelig
voor de prijs en vertoont onzeker en onvoorspelbaar gedrag. Omdat elektri-
sche energie niet efficiënt kan worden opgeslagen, moet de productie de vraag
direct volgen. Het snel kunnen afstemmen van vraag en aanbod wordt in toe-
komstige energiesystemen een toenemend kritische factor door de groei van
hernieuwbare, minder goed voorspelbare energiebronnen. Fysieke en veilig-
heidsbegrenzingen van de maximale vermogensstroom in hoogspanningslij-
nen moeten worden bewaakt om de goede werking van het energiesysteem te
allen tijde te kunnen waarborgen. Het ontwerpen van een vermogensverdeler
in een net dat overbelasting voorkomt is een van de lastigste problemen bij
het ontwerpen van energiemarkten, omdat de vermogensstromen complexe
functies zijn van de geïnjecteerde vermogens in de knooppunten. Een effici-
ënte vermogensverdeler moet deze beperkingen omzetten in marktsignalen:
namelijk in marktprijzen.

Een van de belangrijkste bijdragen van dit proefschrift is de ontwikke-



ling van zo’n vermogensverdeler gerealiseerd als een nieuwe, dynamische,
gedistribueerde regelstrategie die deze marktprijzen real-time aanpast. De
ontworpen regelaar (die in dit proefschrift KKT regelaar wordt genoemd)
reageert op de afwijking van de netfrekwentie als een maat voor de onbalans
in het net en op de gemeten overschrijdingen van de maxima in de lijnen van
het transmissiesysteem. De uitgang van deze regelaar is een vector met de
prijzen voor het vermogen in elk knooppunt. Elke producent/gebruiker kan
reageren op deze prijzen door zijn productie/consumptie zo aan te passen
dat hij zijn eigen doelstellingen maximaliseert. Onder de aanname dat het
totale geregelde systeem stabiel is, is aangetoond dat de ontwikkelde KKT-
regelaar het systeem zo aanstuurt dat aan alle beperkingen wordt voldaan
en dat de doelfunctie, de maatschappelijke waarde, wordt bereikt. Een van
de grote voordelen van deze regelaar is dat deze geen kennis nodig heeft
van de marginale kosten van de producenten/consumenten in het energie-
systeem, noch is deze regelaar gebaseerd op schattingen van deze kosten. De
enige parameters die bekend worden verondersteld zijn de topologie van het
netwerk en de lijnimpedanties. Bovendien kan deze regelaar worden geïm-
plementeerd als gedistribueerde regelaar. Nauwkeuriger uitgedrukt, hij kan
worden geïmplementeerd als een knooppuntsregelaar, met op elk knooppunt
zo’n regelaar. Elke regelaar werkt alleen met lokaal beschikbare informatie,
dat wil zeggen op metingen bij het knooppunt en op informatie van alleen
de naburige knooppunten. De communicatie vindt dus met dezelfde knoop-
punten plaats als die waarmee direct fysieke vermogen wordt uitgewisseld.
Iedere verandering in het fysieke netwerk vereist slecht eenzelfde aanpassing
in de communicatie.

Om harde grenzen te kunnen stellen aan de overbelasting van de trans-
missielijnen tijdens redelijke grote verstoringen in het energiesysteem, is een
nieuwe, prijs-gebaseerde hybride voorspellende regelaar (MPC) ontwikkeld.
Deze MPC regelaar voegt corrigerende signalen toe aan de uitgang van de
KKT regelaar, dus aan de knooppuntsprijzen, en deze is alleen actief als
de voorspellingen aangeven dat de harde begrenzingen worden overschre-
den. In elk ander geval is de uitgang van de MPC regelaar nul en is alleen de
KKT-regelaar actief. Onder een bepaalde aanname, is de recursieve bestaan-
baarheid en asymptotische stabiliteit van het geregelde systeem met hybride
MPC regelaar bewezen.

Een andere bijdrage van dit proefschrift is de formulering van het con-
cept autonoom netwerk, dat de groot-schalige integratie van gedistribueerde
opwekking en kleine opwekkers toestaat in de energie- en reservecapaciteits-
markten. Een autonoom netwerk (AN) vertegenwoordigt gekoppelde produ-
centen en consumenten die worden aangestuurd door een centrale organisatie



(AN markt agent). Door het berekenen van de optimale vermogensverdeling
en de optimale inzet van productie-eenheden is de hoofdtaak van een AN
markt agent het efficiënt benutten van de interne middelen door actief te
opereren in de energie- en reservecapaciteitsmarkten en optimaal rekening
te houden met de betrouwbaarheid (reservecapaciteit) van het eigen net. Een
AN is ook gedefinieerd als een belangrijk bouwblok van het totale energienet
dat in staat is rekening te houden met en verantwoordelijkheid te dragen
voor zijn eigen reservecapaciteit. Met de introductie van AN’s zijn de voor-
waarden gecreëerd voor het ontstaan van nieuwe, reservecapaciteitsmarkten.
In een op AN’s gebaseerd energienet kan elke AN zowel producent als con-
sument zijn van de reservecapaciteit. De reservecapaciteitsmarkt wordt dan
gekarakteriseerd door een dubbelzijdige concurrentie, dit in tegenstelling tot
de huidige eenzijdige concurrentie. Een van de belangrijkste gevolgen van
deze nieuwe operationele structuur is dat, door concurrentie toe te laten,
dit een sterke stimulans vormt voor AN’s om onzekerheid te reduceren en
daarmee de betrouwbaarheid van het energiesysteem te verhogen. Vanuit
een meer technisch standpunt gezien is het concept van AN’s een modulaire
aanpak om om te gaan met de complexiteit van toekomstige energiesyste-
men.

Als extra bijdrage van dit proefschrift, gemotiveerd door de KKT-regelaar
voor prijs-gebaseerd, real-time balanceren van het vermogen en het voorko-
men van overbelasting in het transmissienetwerk, wordt de algemene KKT-
regelaar nader uitgewerkt. De ontwikkelde ontwerpmethode biedt een op-
lossing voor het regelen van een algemeen lineair, tijd-invariant dynamisch
systeem bij een tijdvariërend economisch optimaal werkpunt. Het systeem
wordt gekarakteriseerd met een aantal exogene ingangen als een abstractie
van tijdvariërende belastingen en verstoringen. Het economische optimum
wordt gedefinieerd door een convex optimalisatieprobleem met begrenzingen
met een aantal toestanden als beslisvariabelen en met de waarden van de
ingangen als parameters in het optimalisatieprobleem. Een KKT-regelaar
behoort tot de klasse van dynamische complementariteitsystemen die recent
zijn geïntroduceerd en die, door hun brede toepasbaarheid en specifieke ei-
genschappen, veel aandacht hebben gekregen in de systeem- en regeltechniek.
De resultaten van dit proefschrift vormen een bijdrage aan de lijst toepas-
singen van complementariteitsproblemen in de regeltechniek.
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Introduction

1.1 Restructuring of
electrical power systems

1.2 Scope and outline of the
thesis

1.3 Intelligent power systems
research project

Electrification is one of the great engineering achievements of the 20th
century. In many studies, the standard of living is directly related to the
electricity used per capita. Electrical power systems are also one of the lar-
gest and most complex engineering systems ever created. They consist of
thousands of generators and substations, and hundreds of millions of consu-
mers, all physically interconnected across circuits of continental scale. This
complex engineering system has to cope with technical, economical, busi-
ness, political, social and environmental aspects. It is therefore a common
meeting ground of many different disciplines, a multilayered infrastructure
that has evolved over many decades through research efforts in various fields,
utilizing new technologies as they have emerged.

Control applications have a long history in electrical power systems. This
long history, together with the persistence of a regulated industry have con-
tributed to a perception that the key control problems of electric power sys-
tems have been thoroughly solved. Today, however, new questions are being
introduced as electrical power systems are undergoing some major paradigm
shifts.

The most significant change is a liberalization and a policy shift towards
competitive market mechanisms for operation of the system. From a mo-
nopolistic, one utility controlled operation, the system is being restructured
to include many parties competing for energy production and consumption,
and for provision of many of the services necessary for the system operation.

Another crucial change is the encouragement of the large-scale integration
of distributed generators (DG), many of which are based on intermittent
renewable sources like wind and sun. This integration of DG is already
taking place for some time now and, for renewable sources, many countries
have posed high targets over ten years horizons. Non-dependence on fossil



12 Introduction

fuels of many DG technologies, together with environmental issues are the
main driving forces towards those targets.

Virtually all aspects, e.g. technical, economical, social, environmental
etc., of the power systems are affected by these changes, requiring examina-
tion of new control architectures that will enable high operational efficiency
and high reliability of tomorrow’s novel power systems. As an electrical po-
wer system is characterized by the tight and extremely complex interactions
of its structural layers, it is necessary to define the system boundaries of the
research. That is our goal in this chapter.

1.1 Restructuring of electrical power systems

Throughout most of the twentieth century, electrical utilities, which were
often government owned entities, were regional regulated monopolies. As a
single business entity, a utility owned and operated the generation, transmis-
sion and distribution systems located in a certain geographic area. Following
the impressive consequences of the liberalization of the telecommunication
and air transport markets during the past two decades, electrical power sys-
tems have been going through a similar restructuring processes. Electrical
energy is, however, quite a specific commodity, making a design of power
markets a very challenging task. There are two main reasons for this:

• Electrical energy cannot be efficiently stored in large quantities, which
implies that production has to meet rapidly changing demands imme-
diately in real-time.

• Produced energy is transported through a transmission system which
has a limited capacity and is characterized by complex dependencies of
transmission path flows on nodal power injections (nodal productions
and consumptions).

These physical properties of electrical power systems play a prominent role in
designing electricity markets and control architectures, and they are respon-
sible for a very tight coupling in between economical and physical/technical
layers of an electrical power system. This is also a reason why a straightfor-
ward transfer of knowledge and experience from deregulation and restructu-
ring of other sectors to the electric power system sector is often hampered or,
even more often, is simply impossible. With its own goals, peculiarities and
problems faced in practice over the course of the past two decades, power
system restructuring has developed as a research discipline of its own, with
a strong interdisciplinary character and with an impressive scientific output.
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As an introduction to the presentation of the motivation and the definiti-
on of the research scope of this thesis, we continue by giving a short descrip-
tion of the power system operation before restructuring, and the changes
occurring during the restructuring process. For a detailed introduction and
overview of power system restructuring, we refer to the many books on the
subject, e.g. (Schweppe et al., 1988; Ilic et al., 1998; Lai, 2001; Stoft, 2002;
Song and Wang, 2003).

1.1.1 Power balance control

One of the main control objectives in an electrical power system is to main-
tain the balance between power production and demand. However, one must
be careful in correctly interpreting the term power balance.

Generally speaking, power balance is a law of physics. At any time in-
stant, the power injected from the generators into the network is equal to the
power consumed by the loads plus the losses in the lines. From this point of
view, the system is always in balance. However, by considering the desired
consumption instead of the actual consumption, the notion of imbalance be-
comes well defined, and balancing becomes a control problem. This desired
consumption is what we will call a power demand, and is precisely defined
as follows: Power demand is the amount of consumed power if the network
frequency and voltage are equal to their target values.

If at the connection point of a consumer the rest of the power network
behaves as a sinusoidal voltage signal of 50Hz and 230 volts rms (target
values in Europe), this consumer will withdraw the energy from the network
at a desired power rate, e.g. equal to the nominal power of the consuming
electrical device. If the frequency and magnitude of the voltage are at their
target values for all the consumers in the system, there is a balance between
production and demand. In electrical power systems, the term power balance
is used not to denote a law of physics, but to denote the balance between
power production and demand.

Since electrical power systems are AC systems, both active and reactive
power, i.e. demand for active and demand for reactive power, have to be
considered. It turns out that for a large class of problems, active and reac-
tive power can be studied separately, since the flows of active and reactive
power in a transmission network are fairly independent of each other and
are influenced by different control actions. Frequency and active power are
closely related to each other, while reactive power is more closely related to
the voltage magnitude.

With the goal of maintaining the frequency to its target value, and the-
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refore to control the active power balance, there exists a number of feedback
control loops in the power system that continuously react on its deviations
by adequately adjusting power generation. However, the power balance con-
trol problem, interpreted in a broader sense, includes much more than “just”
controlling the frequency. This will become clear in next subsection, where
the basic control structure of a traditional power system is shortly presented.
To understand, identify and more precisely formulate the control problems
of today’s and tomorrow’s power system, it is crucial to understand how the
same, or similar problems, have been solved traditionally.

1.1.2 Control structure of traditional power systems

A power system control structure can be described as a temporal decompo-
sition based hierarchical structure. Control and decision making occur on
different time scales.

Upper and slower layers in the hierarchy are centralized and deal with
the economical and reliability aspects of the whole system. In traditional
power systems utilities own and operate virtually the whole system, i.e. the
generation, the transmission and the distribution. All the system-wide de-
cisions and control actions are made at a limited number of utility control
centers.

Lower and faster layers are responsible for real-time power balancing, and
are realized through several feedback loops that continuously react on the
network frequency deviations. Some of these control loops are decentralized
on the nodal level, e.g. local generator controllers acting on the measurements
from the generator bus (node), while some are decentralized on the level of
the so-called control areas.

In the following paragraphs we present the main components of the active
power balance control in traditional power systems. We start with the fast
acting layers and continue towards the slower ones. Figure 1.1 and Figure 1.2
illustrate this time-scale decomposition.

• Kinetic energy. One of the distinguishing features of a traditional
power system is that virtually all power has been generated on large
synchronous generators. Synchronous generators are characterized by
a large rotating inertia, and therefore present a significant buffer of
kinetic energy. Any imbalance occurring in a system will initially be
supported by a change in this kinetic energy. For instance, increase
in demand will initially be supported by extracting the kinetic energy
from a generator, causing the generator to slow down and the network
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Figure 1.1: Temporal decomposition of a power balance control.

frequency to drop. Figure 1.1 illustrates the systems response following
such an increase in the demand. At the time instant zero, the demand
increment increased from zero to the value indicated by a thin solid
line. The thick solid line labeled “Consumption” represents the actual
consumed power as a function of time. The gray shaded area repre-
sents the kinetic energy extracted from the rotating inertia to quickly
support the demand.

• Governor control. The fastest feedback loop acting on the frequency
deviation is the governor control feedback loop. This is a proportional
controller acting on the frequency deviation, which causes the mecha-
nical power that drives the shaft of a generator to increase. This is a
local control loop: it acts only on local measurements, i.e. the network
frequency measured at the generator bus. The extra power created by
the governor control loop is indicated in Figure 1.1 by the line labe-
led A. Not all generators in the system need to be equipped with a
governor control, and those that are, supply in addition to the basic
service of producing the power, an additional or ancillary service:
fast power balance support (also called primary control action). In
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Figure 1.1, we have indicated the time instant a as a measure of a
time-scale characterizing this particular service.

• Automatic Generation Control. Next, a slower acting control loop
in the hierarchy is the automatic generation control (AGC). (The term
AGC is more commonly used in USA; another used terms are load
frequency control or secondary control action.) One AGC controller
acts on one control area. A control area can correspond to a country
(what is often the case in Europe) but it is in general defined as a part
of the electric system that is capable and responsible for controlling its
own power balance in real-time. In connection to a control area, there
is defined an area control error (ACE): a signal obtained as a linear
combination of the network frequency deviation and the deviation of
the power flows in the tie-lines connecting the area with the neighboring
areas. The goal of an AGC controller is to drive the ACE to zero. If
all areas in the system succeed in driving their ACEs to zero then both
the system frequency and the sum of their tie-line exchange powers
maintain their target set-points. The output of an AGC controller is
a signal representing the total required change of power production
in the area. This signal is divided into a set of set-point updates for
the generators in the control area. Again, not all the generators in
the system are in the AGC loop; only a subset of generators perform
the control area balancing service. The power production generated
by the AGC loop is indicated in Figure 1.1 by the line labeled B.
Note that only with the governor control active, there would remain
a steady-state error in the frequency, indicating the sustained power
imbalance in the system. The integral action in the AGC drives the
frequency deviation to zero, and in Figure 1.1 we have indicated the
time instant b as a measure of a time-scale characterizing this particular
service. The set-point updates from the AGC controller are send to
the generators each 2 to 4 seconds.

• Economic dispatch. The next hierarchical level belongs to the eco-
nomic dispatch (ED). It is a change in the set-points of the generators
with the goal to reduce the systems operating costs by re-dispatching
the power production among the generators in a control area. This
is the fastest acting hierarchical level dealing explicitly on-line with
the utility’s economic objectives. For this, and any other slower acting
operation level, economic objectives are in the core of any decision ma-
king. ED is usually performed each 5 to 15 minutes, and its action is
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indicated in Figure 1.1 by the line labeled C. In the core of an ED is
the optimal power flow problem, i.e. the optimization problem where
the objective is to minimize the variable production costs, while satis-
fying the power balance, generators limits, and the network constraints
including the line flow limits of the transmission system.

• Power scheduling and unit commitment are the slowest opera-
ting layers, and act on the time horizon of 1 or 2 days ahead. The cost
minimizing objective is the same as in ED, but the unit commitment
problem is much more difficult since it includes discrete-type decisions,
i.e. switching the generators on and off. The set-points for the tie-line
flows used in the AGC control are also updated on this time scale. To
enforce the system’s reliability, at this level the additional amount of
stand-by generating capacity is scheduled to be on-line, e.g. the spin-
ning reserve, to provide generating support in case of emergency, e.g.
sudden failure of some generating units.

Figure 1.2 illustrates the time-scale decomposition of control actions in a
traditional power system. The indicated time scale at the bottom of the
figure approximatively characterizes the time characteristics of each block.
Each block represents a control, operation or decision making process, and
is roughly positioned in the time-scale based either on the frequency of the
signal updates in the block, or on the response time of the underlying process.
The blocks labeled exciter, power system stabilizer, maintenance scheduling
and investments planning are added to the figure to indicate that the power
system operation includes many more crucial ingredients, both on the faster
and on the slower time scale relative to those described above. For clarity,
many other existing blocks are not included in the figure. For a complete,
detailed presentation we refer to the classical power system textbooks, e.g.
(Kundur, 1994; Wood and Wollenberg, 1996; Sauer and Pai, 1997).

Over the course of many decades, the traditional power system control
structure has proven to be quite reliable. There is no doubt that the traditi-
onal power systems have shown an impressive level of robustness, although
even now not all dynamic phenomena in a large power system are fully un-
derstood. However, this robustness did not come for free. In a monopolistic,
regulated, utility-owned traditional system, robustness is achieved through
a conservative engineering and operation of the system. The price paid is
economical inefficiency, few driving forces for innovations, and in general,
a large resistance towards changes. Investments have been made for large,
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Figure 1.2: Time-scale decomposition of controls and actions in a traditional
power system.

long-lasting projects, with large time gaps in between. The government-
imposed regulations guaranteed the pay-off by regulating the price of elec-
tricity. This regulated price also included the average costs of all the above
mentioned services necessary to keep the system running.

Another reason for the reliability of traditional power systems is due to
the large synchronous generators. As we have seen, the initial step in the
power balance control is pretty much given for free. The synchronous gene-
rator as a buffer of kinetic energy has reduced the need for active control in
covering the continuously occurring fast imbalances. Finally, explanation for
the robustness of the 3rd and 4th layer, which are operated in an open loop
manner, can be found in a highly repetitive pattern of aggregated demand
in a traditional power system. From one working day to the other, the vari-
ations in the aggregated demand profiles are only a couple of percent. This
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high predictability and low uncertainty level, made the open loop operation
of higher hierarchal levels possible and, even more, rather successful.

1.1.3 Restructured, market-based power systems

A basic economic principle states that if a competitive market is established
for scarce resources, and competition involves equally strong players, then
the market will allocate the resources efficiently. A simplified explanation for
this is the following: efficient operation of each player is essential for its own
profit making, and inefficiency of the system as a whole is naturally eradi-
cated through competition (Lai, 2001). Furthermore, a competitive market
environment accelerates development and application of new technologies, as
companies seek to improve their efficiency. Investments and any other chan-
ges to eliminate the efficiency bottlenecks are made much faster relative to
the traditional, regulated systems. For convincing arguments made in favor
of creating competitive markets, and for scientific explanations for their ef-
ficiently, we refer to any standard microeconomic textbook, e.g. (Nicholson,
1995; Katz and Rosen, 1998).

In theory, a perfect competitive market will reach an equilibrium which
is characterized by maximal social welfare. For power systems, social welfare
is defined as a combination of the cost of the energy and the benefit of the
energy to society as measured by society’s willingness to pay for it. A market
is perfectly competitive if at least the following three conditions are met:
price taking suppliers/consumers, public knowledge of the market price, and
well-behaved production costs/consumer benefits (Stoft, 2002).

A price taking market player, i.e. supplier or consumer, is a player that
optimizations its production as if it does not affect the market price. In
other words, even if the player is strong enough to (significantly) influence
the market price by altering its production/consumption, he does not use
this market power to increase its own profit.

One implication of the above stated theoretical result is the following:
in a perfectly competitive market, a market price for a commodity is equal
to the marginal cost of producing that commodity. We will call this price a
competitive price, and will use this notion in the following section to define
nodal prices.

As we have seen in the previous section, electrical power delivered to
a consumer is a bundle of many services. Deregulation of a power system
involves “unbundling”, which refers to disaggregation of an electric utility
service into its basic components and creating a separate market for each
component. Furthermore, deregulation involves the separation of ownership
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Figure 1.3: Time-scale decomposition of controls and actions in a restructu-
red power system.

and operation.
The term ancillary service is commonly used to refer to any service ne-

cessary for keeping the power system in operation, e.g. provision of power
support in an AGC control loop, and for contributing to its reliability, e.g.
provision of spinning reserve. Therefore, in addition to energy markets, there
exist several ancillary service markets. Although in present power systems
the conditions for perfect competition are sometimes violated, in practice
these “imperfect” markets are still shown to be efficient.

There is no single, commonly accepted approach or solution to the power
system restructuring and markets design. This process is based on natio-
nal energy strategies and policies, and varies from country to country. An
attempt to give a more detailed description of some of the state-of-the-art
approaches would not serve the purpose of this introduction. Therefore, we
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continue by presenting only some of the common features of an operational
structure of restructured power systems. At the end of the section, we will
explicitly emphasize these characteristics that are relevant for the research
presented in this thesis.

In the restructuring process, the scheduling algorithms present in the 3rd

and 4th layer of a traditional power system hierarchy, are being replaced by
energy and ancillary service markets. Just as within the classical scheduling
algorithms, the markets have different time frames, see Figure 1.3.

A forward-time energy market is usually a day-ahead market and is set
up by an independent entity, which takes one of a few different forms, e.g.
power exchange market or pool market; see (Stoft, 2002) for more details.
In the Netherlands a day-ahead energy market is set up and operated by
the Amsterdam Power Exchange1 (APX). Most of the existing day-ahead
energy markets can be seen as only one part of the above presented 4th layer
of a traditional power system. They are concerned only with the energy
production scheduling, and not with the emergency reserve capacity like for
instance spinning reserve.

The responsibility for maintaining the systems reliability and security
is assigned to another independent entity, usually called the independent
system operator (ISO). The system operator buys various classes of capacity
reserves, some required for normal operation of the system, and some in
case of emergencies. For a normal operation, these reserves include the
required generating capacity for support of the governor and the AGC control
loops. For a support of the system during emergency situations, like for
instance sudden tripping of a large generating unit, there can exist several
different classes of reserves (ancillary services). Each class is characterized
by the time of response. For example, 1MW reserve of a generic class A
denotes a capacity that is available as a power injection into the network
within a minutes upon the request. Figure 1.1, which we have used to
illustrate the actions during the normal operation of the system, can equally
be used to illustrate the actions in the emergency operation. In that case
the curves labeled A, B and C in Figure 1.1 correspond to different classes
of emergency reserves (ancillary services). The ISO usually purchases the
ancillary services in some form of forward-time markets. Then, during the
real-time operation, it activates those services to maintain, if required, the
real-time power balance.

In some countries, the ISO also runs the real-time market, i.e. it uses
the real-time updates of electricity price to balance the system. Currently,

1For details visit the web address www.apxgroup.com.



22 Introduction

the fastest operating real-time markets set a new price each five minutes.
Other commonly used time intervals are half-hour and one hour. Therefore,
in addition to being responsible for accumulating sufficient amount of ancil-
lary services, an ISO acts as an equivalent to the 3rd layer of a traditional
power system. An ISO has also the responsibility of keeping the line flows
in a transmission system below certain, predefined security limits, i.e. it is
responsible for congestion management. In the Netherlands, the function of
ISO is performed by TenneT2.

There are many other important ingredients in the operation of a re-
structured power system, like for instance existence of bilateral markets and
long-term contracts, for which we refer to one of the many books on the
subject, e.g. (Stoft, 2002). At the end we have to put emphasis on some
of the features of the present market structure, which are of concern in this
thesis.

Although today’s ancillary service markets are characterized by many
parties competing on the supply side, the only entity on the demand side
is the ISO. The system operator (ISO) service, which coordinates the ancil-
lary service markets and provides the only demand for them, is therefore a
monopoly service (Stoft, 2002).

Furthermore, in today’s power systems, demand is almost completely
unresponsive to price in virtually all power and ancillary service markets.
Price fluctuations are usually not passed on to the customers and there
does not exist an underlying technical infrastructure that would allow a
customer to act upon its benefit maximizing philosophy, i.e. to enable it to
act as a price elastic player. For example, there is a lack of an appropriate
metering that would take the current real-time price into account in forming
the electricity bill. This price inelasticity of customers is possibly the biggest
flaw of the present electricity markets (Stoft, 2002).

1.1.4 Spatial dimension of power balancing in market-based
power systems

Transmission lines have power flow limits which must be enforced during the
operation to protect the integrity of the system. The problem of controlling
the line power flows to avoid their overloading is usually referred to as a
congestion management problem. There are several different phenomena
that impose the transfer limits, including thermal limits, voltage limits and
stability limits. The most restrictive limit is applied at any time.

2For details visit the web address www.tennet.nl.
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The existence of transfer limits makes a transmission network a scarce
resource. Furthermore, a transfer of power over a larger distance in ge-
neral implies bigger transmission losses. Both existence of the power flow
limits and the line losses add a spatial dimension to the problem of power
balancing. Dealing with this dimension, e.g. creating an efficient congesti-
on management scheme, is one of the toughest problems in the electricity
market design.

Economists have dealt in detail with general transportation systems.
However, those systems usually assume a free choice among alternative pa-
ths between source and destination nodes and assume that the goods can
be stored when they can not be moved (Christie et al., 2000). For an elec-
trical transmission system, none of these assumptions is valid. The flow of
power in a transmission network is governed by physical laws characterized
by very complex dependencies of line power flows on nodal power injecti-
ons (nodal productions and consumptions). Changing the amount of power
injected in one node of a network will almost instantaneously result in chan-
ges of power flows in virtually all lines in the system. For a fixed pattern
of nodal power injections, it is possible to influence the line power flows
by utilizing the FACTS (Flexible Alternating Current Transmission System)
devices (Hingorani and Gyugyi, 1999; Mathur and Varma, 2002). However,
this influence is rather limited and can represent only a small part of a con-
gestion management solution. In a restructured power system, a solution to
the congestion management problem with economically optimal exploitation
of a transmission network is based on converting the system limits to correct
market signals. Nodal prices represent a notion central to a market-based
congestion management (Schweppe et al., 1988).

With an example of a simple three-node network in Figure 1.4, our goal
is to illustrate the basic principle of using the electricity prices for congestion
management. We assume that all three lines in the network have the same
characteristics, i.e. the same impedance, and for simplicity we neglect the
line losses. With CA(pA) denoting the cost of producing the power pA at
the generator connected in node A, the marginal cost MCA(pA) of that
generator is defined by MCA(pA) := ∂CA(pA)

∂pA
. For the considered example,

marginal costs of all the generators in the network are given at the top of
the figure. Let us assume the conditions of a perfect competitive market,
and assume that each generator bids its marginal costs into the market.
Furthermore, assume that the market operator knows the demand in each
node, and that the demand is not price dependent. In the considered example
the demands are equal to 300MW, 600MW and 450MW, and are indicated
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Figure 1.4: Congestion management using nodal prices.

by these numbers in the figure.
The task of a market operator is to determine an electricity price for each

node in the network, so that, when each generator adjusts its production
according to its bid, the following conditions are satisfied:



1.1. Restructuring of electrical power systems 25

i) production equals demand;
ii) power flow in each line in the network is less than or equal to some
predefined limit value;
iii) social welfare is maximized.

Due to the price inelasticity of the demand in this example, maximizing
the systems welfare is equivalent to minimizing the total cost of production.
Let us consider two different situations. In the first case we will assume
that the market operator is not responsible for fulfilling the task in (ii) (or
simply, assume that there are no line limits), while in the second case it is
responsible for this task (there exist line limits).

With no line limits considered, the price that satisfies (i) and (iii) will
be the same for all the nodes in the network and each generator will work
in an operating point where its marginal cost is equal to the price. The
market result for this case is presented in the upper part of Figure 1.4,
where λA = λB = λC = 39EUR/MWh denotes the market price. The
market price, in a perfectly competitive market, equals the systems marginal
cost, i.e. it reflects the cheapest way of supplying an additional increment of
power demand. If the network is not congested, and with losses neglected,
the minimal costs of supplying an additional increment of power to a node
is the same for all nodes in the network. Note that the generator in node A
produces power relatively cheaper than the other generators, and with the
presented market price it will support a large portion of the total demand,
causing the large power transfers from node A to the other nodes.

Now consider the case when the line connecting nodes A and B has a
limit on the power flow, which is equal to 100MW. We take the demand to
be the same as in the previous case. From the previous case, we see that if
the line limit is ignored, there will be a power flow of 183.3MW through this
line, i.e. the line will be congested. In order to enforce the constraint, the
market operator has a freedom to choose different prices for each node in
the network. To fulfil the conditions (i) and (iii) at the same time, it solves
a suitably defined optimization problem which includes the model of line
power flow dependencies on the nodal power injections. The results, i.e. the
nodal prices that yield the fulfillment of (i),(ii) and (iii), the corresponding
line flows and the generation production levels, are presented in the lower
part of Figure 1.4. Note that the nodal price at node A has been decreased,
resulting in a reduced power production in that node. On the other side,
price in the node B has been increased, causing the corresponding generator
to produce more power. Congestion prevents the demand at node B to use
cheaper power from a distant location A, and this demand is now in a larger
portion supported by a more expensive, local unit B. Note also that the line
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flows in the remaining two lines have been significantly altered.
Similar as in the first case, the prices obtained in the second case represent

the marginal costs of electricity. The nodal price of electricity at a given
instance in time and at a given system location (node) reflects the cheapest
way to deliver an increment of power to that particular node from the on-line
available generators while respecting all the constraints and system limits.
Behind this definition of nodal prices, it is “hidden” the fact that the nodal
prices are those prices that maximize the total social welfare of the system.
In more mathematical terms, nodal prices are nothing else than the optimal
Lagrange multipliers associated with the nodal power balance equalities of
the underlying optimal power flow optimization problem.

Based on the nodal prices, the owners of the transmission collect the
congestion rent, an income that comes as a result from differences in nodal
prices. The congestion rents are used to cover the operational costs of the
ISO or of a market operator, and to cover fixed and maintenance costs of
the transmission system owners. An additional benefit of the nodal prices is
that the existence of persistent high prices caused by congestion sends the
right signals to investors to build new generators, and to the transmission
owners to build the power lines that are needed.

Finally, it is important to note that the nodal prices in a perfectly com-
petitive market are competitive prices, and as such do not depend on the
specific operational structure of the market (Stoft, 2002). For example, it is
possible to establish competitive bilateral market for transmission rights, see
(Stoft, 2002) for details, and it can be shown that such markets will produce
the same nodal prices as a market that we have just shortly described.

1.1.5 Changes caused by distributed generation

Distributed generation units include micro-turbines, fuel cells, wind turbi-
nes, photovoltaic arrays, combined heat and power plants, small hydro-power
plants, biomass power plants, geothermal power plants, tidal power plants,
etc. Across the set of different DG technologies, there is a huge variety of
possible time responses to the power imbalances. DG units are typically
not based on synchronous generators. Some units operate asynchronous-
ly, coupled to the grid via AC-AC power electric converters. Others are
non-rotating, inertia-less sources, such as photovoltaic units and fuel cells.
With an absence of the rotating inertia, such sources introduce very different
characteristic to the system, and their ability to respond to the fast occurring
imbalances will likewise be very different from that of the traditional units.

Furthermore, it is expected that the large portion of the distributed ge-
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neration units will be based on intermittent renewable sources like wind
and sun. The consequence will be a large increase of the uncertainties in
any future system state prediction. Large and relatively fast fluctuations in
production are likely to become normal operating conditions, standing in
contrast to today’s operating conditions characterized by highly repetitive,
and therefore highly predictable, daily patterns. Note that, as in the traditi-
onal power systems, the success of the present power systems heavily relies
on high predictability.

With the inherent dynamical characteristics of DG units, and due to the
increased uncertainties, we can conclude that in the future power systems the
need for fast acting, power balancing control loops will increase significantly.

1.2 Scope and outline of the thesis

1.2.1 Motivation

The research presented in this thesis is motivated by the following issue of
concern for the operation of future power systems:

Future power systems will be characterized by significantly increased
uncertainties at all time scales and, consequently, their behavior in
time will be difficult to predict.

More and more privately owned, distributed generating (DG) units are
being integrated in the system. Each DG unit is an autonomous decision
maker competing to maximize its own benefit, and is characterized by a
badly predictable behavior. Large portion of DG will be based on renewable
energy sources, i.e. wind turbines and photovoltaic (PV) systems, and will
therefore be practically uncontrollable in their power outputs, introducing
large production fluctuations and large uncertainties in any future system
state prediction.

The power system liberalization and restructuring processes will continue
in the future, and the system reliability and efficiency will increasingly rely
on the efficiency and effectiveness of competitive markets for energy and
ancillary services. The current market operation significantly relies on the
repetitive daily patterns in demand, i.e. on the relatively high predictability
of the future system state.

Efficient provision of electrical power and ancillary services in a future
power systems will require novel market structures and innovations in sup-
porting the technical infrastructure and control solutions.
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1.2.2 Research scope and goals

The research presented in this thesis is exclusively concerned with the power
system control and operation in the time-scale window indicated with the
gray shaded area in Figure 1.5. With increased uncertainties in future power
systems, and for the considered time-scale window, new solutions are needed
to anticipate

• efficient and effective real-time power balance and congestion manage-
ment;

• contribution of large amounts of DG units in competitive, but badly
predicable supply of power and ancillary services;

• active involvement of price-sensitive consumers in energy and ancillary
services markets.

Our goal is to explore the technical possibilities of achieving economic
efficiency by investigating price-based control structures for active balancing
of both power and ancillary services. Organizational and juridical conside-
rations are outside the scope of this thesis.

In this thesis, we will explore the possibility of real-time, feedback-based
nodal pricing. However, we consider nodal prices only as a congestion mana-
gement tool and not also as a congestion pricing mechanism in transmission
system revenue generation.

Figure 1.6 illustrates the price-based control structure of an electrical po-
wer system. The figure is with some modifications adapted from (DeMarco,
2001), and serves well in illustrating our goals concerning real-time power
balance and congestion control. The goal is to design a price-based feedback
controller, indicated in Figure 1.6 by a gray shaded block, which guarantees
provision of correct nodal prices in real-time.

1.2.3 Outline of the thesis

The main results of this thesis are presented in four chapters.
In Chapter 2 we will present a novel explicit, dynamic, distributed feed-

back control scheme that utilizes nodal-prices for real-time optimal power
balance and network congestion control. The term explicit means that the
controller is not based on solving an optimization problem on-line. Instead,
the nodal prices updates are based on simple, explicitly defined and easily
comprehensible rules. We prove that the developed control scheme, which
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Figure 1.5: Time-scale decomposition of power system operation. The re-
search in this thesis is restricted to the gray-shaded time-scale window.

acts on the measurements from the current state of the system, always pro-
vide the correct nodal prices.

In Chapter 3 we will develop a novel, robust, hybrid MPC control scheme
for power balance control with hard constraints on line power flows and
network frequency deviations. The developed MPC controller acts in parallel
with the explicit controller from Chapter 2, and its task is to enforce the
constraints during the transient periods following suddenly occurring power
imbalances in the system.

In Chapter 4 the concept of autonomous power networks will be presented
as a concise formulation to deal with economic, technical and reliability issues
in power systems with a large penetration of distributed generating units.
With autonomous power networks as new market entities, we propose a novel
operational structure of ancillary service markets.

In Chapter 5 we will consider the problem of controlling a general li-
near time-invariant dynamical system to an economically optimal operating
point, which is defined by a multiparametric constrained convex optimiza-
tion problem related with the steady-state operation of the system. The
parameters in the optimization problem are values of the exogenous inputs
to the system. The results presented in this chapter present a formalization,
generalization and extension of the design methods from Chapter 2.

An overview of the main conclusions from this thesis is given in Chapter 6.
Moreover, in this chapter we present several recommendations for future
research.
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Figure 1.6: Price-Based Control Structure; adapted from (DeMarco, 2001).

1.3 Intelligent power systems research project

The research presented in this thesis was performed within the framework
of the “Intelligent Power Systems” project. The project is part of the IOP-
EMVT program (Innovation Oriented research Program - Electro-Magnetic
Power Technology), which is financially supported by SenterNovem, an ag-
ency of the Dutch Ministry of Economical Affairs. The “Intelligent Power
Systems” project is initiated by the Electrical Power Systems and Electri-
cal Power Processing groups of the Delft University of Technology and the
Electrical Power Systems and Control Systems groups of the Eindhoven Uni-
versity of Technology. In total 10 PhD students, who work closely together,
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Figure 1.7: The four parts of the intelligent power systems research project.

are involved in the project.
The research mainly focuses on the effects of the structural changes in

the generation and consumption which are taking place, like for instance the
large-scale introduction of distributed (renewable) generators (Reza et al.,
2003).

Such a large-scale implementation of the distributed generators leads
to a gradual transition from the current “vertically-operated power system”,
which is supported mainly by several big centralized generators, into a future
“horizontally-operated power system”, having also a large number of small
to medium-sized distributed (renewable) generators. The project consists of
four parts, as illustrated in Figure 1.7.

The first part investigates the influence of decentralized generation wit-
hout centralized control on the stability of the dynamic behavior of the trans-
mission network. As a consequence of the transition in the generation, fewer
centralized plants will be connected to the transmission network as more
generation takes place in the distribution networks, close to the loads, or in
neighboring systems. Solutions that are investigated include the control of
centralized and decentralized generation, the application of power electronic
interfaces and monitoring of the system.

The second part focuses on the distribution network, which becomes
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“active”. There is a need for the technologies that can operate the distribution
network in different modes and support the operation and robustness of
the network. The project investigates how the power electronic converters
of decentralized generators or power electronic interfaces between network
parts can be used to support the grid. Also, the stability of the distribution
network and the effect of the stochastic behavior of decentralized generators
on the voltage level are investigated.

In the third part autonomous networks are considered as a realistic con-
cept for enabling the large-scale integration of DG. The project investigates
the control functions needed to operate the autonomous networks in an op-
timal and reliable way. The research presented in this thesis belongs to this
part of the project.

The interaction between the grid and the connected appliances has a
large influence on the power quality. The last part of the project analyses all
aspects of the power quality. The goal is to support the discussion between
the polluter and the grid operator who is responsible for compliance with
the standards. The realization of the power quality test lab is an integral
part of the project.
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This chapter is based on the papers (Jokić, Lazar, and Van den Bosch, 2007a;
Jokić, Van den Bosch, and Lazar, 2007b)

2.1 Introduction

During the past decade there has been a tremendous amount of research de-
voted to a market-oriented approach for the electrical power system sector,
see e.g. (Schweppe et al., 1988; Ilic et al., 1998; Lai, 2001; Stoft, 2002; Song
and Wang, 2003) for an overview. Electrical power systems have some uni-
que properties, which make a market-oriented approach a challenging task.
For example, electrical energy cannot be efficiently stored in large amounts,
which implies that production has to meet rapidly changing demands in real-
time, making electricity a commodity with fast changing production costs.
Furthermore, unlike other transportation systems, which assume a free choi-
ce among alternative paths between source and destination, the flow of power
in electrical energy transmission networks is governed by physical laws and,
for some fixed pattern of power injections, it can be influenced only to a
certain degree, e.g. by utilizing FACTS devices (Mathur and Varma, 2002).
Therefore, physical and security limits on the maximal power flow in the
lines of electrical energy transmission networks represent crucial system con-
straints with a significant impact on power system economics (Christie et al.,
2000). Creating efficient congestion management schemes to cope with the
transmission constraints is one of the toughest problems in electricity market
design (Stoft, 2002).
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Publications of Fred Schweppe and his co-workers (Schweppe et al., 1980;
Caramanis et al., 1982; Schweppe et al., 1985) are the first studies that
systematically investigated the topic of price-based operation of electrical
power systems. Many of the results from that period are summarized in the
book (Schweppe et al., 1988). Ever since then, the notion of using prices to
operate electrical power systems has been used in a number of ways. For an
overview of different approaches in price-based congestion management of
transmission systems, see e.g. (Hogan, 1992; Wu and Varaiya, 1999; Christie
et al., 2000; Rubio-Oderiz and Perez-Arriaga, 2000; Bompard et al., 2003;
Alvarado, 2005) and the references therein.

Probably the most closely related to the results presented in this chapter
is the work of Alvarado and his co-workers (Glavitsch and Alvarado, 1998;
Alvarado, 1999; Alvarado et al., 2001; Alvarado, 2003, 2005).

In (Glavitsch and Alvarado, 1998), the authors have investigated how an
independent system operator (ISO) could use electricity prices for congesti-
on management without having an a priori knowledge about cost functions
of the generators in the system. With an assumption of quadratic, time-
invariant cost functions, the authors illustrated how, in principle, a sequen-
ce of market observations could be used to estimate the parameters in the
cost function of each generator. Based on these estimates, and by solving a
suitably defined optimization problem, an ISO could issue the nodal prices
causing congestion relieve. Although dealing with an intrinsically dynami-
cal problem, the paper considered all the processes in a static framework.
A parameter estimation procedure, which represents the core part of the
proposed approach, was based on the hypothesis that at the time of each
measurement the system is in steady-state, and was necessarily limited to
estimation of time-invariant quadratic costs or quadratic approximations of
costs.

In (Alvarado, 2003, 2005) the results of (Glavitsch and Alvarado, 1998)
have been extended by addressing possible issues of concern when price-based
congestion management is treated as a dynamical process. Furthermore, the
papers considered possible problems caused by linear cost functions, time-
varying cost functions, as well as possible effects of some units exercising
market power.

The usage of price as a dynamic feedback control signal for power balance
control has been investigated in (Alvarado et al., 2001). There, the effects
of interactions of price update dynamics, modeled as integral of network
frequency deviation, and the dynamics of an underlying physical system (e.g.
generators) on the stability of the overall system have been investigated.
However, no congestion constraints have been considered, and therefore only
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one, scalar valued, price signal was used to balance the power system.
Analysis of real-time market dynamics with the effects of network conge-

stion was performed in (Alvarado, 1999). However, in that paper, network
congestion has been modeled as a static equality constraint representing the
power flow in a congested line.

The work presented in this chapter is an extension of the above mentioned
contributions, in the sense that it considers, and solves, both the price-
based congestion management and the power balance problem in a dynamical
framework.

Motivation and overview

Due to the uncertainty in real-time power demand, and because of the fast
changing variable production costs, there is a general tendency in today’s
power markets towards increasing the speed with which market prices are
updated (DeMarco, 2001). By closing the time gap in between price up-
date dynamics and dynamics of the underlying physical system, it becomes
important to consider the two in a unified, dynamical framework (Alvarado
et al., 2001).

Furthermore, due to expected large-scale integration of distributed gene-
ration with large amount of renewable energy based units, e.g. wind turbi-
nes or photovoltaic systems, future power systems will be characterized by
significantly larger uncertainties. Success of power balance and congestion
management control schemes of present power systems heavily relies on re-
latively accurate predictions of future systems state, as the vast majority of
power production is scheduled in an open-loop manner. Presently, only a
relatively small amount of on-line capacity is involved in real-time markets
and in feedback control balancing loops, e.g. in the automatic generation
control (AGC) loop. In contrast to today’s power systems, feasibility, reli-
ability and economical efficiency of future power systems will increasingly
rely on real-time, price-based feedback control solutions.

In this chapter we present a price-based, dynamic controller for real-time
optimal power balance and network congestion control. The developed con-
troller is a feedback controller that reacts on the network frequency deviation
as a measure of power imbalance in the system and on measured violations
of line flow limits in a transmission network. The output of the controller
is a vector of nodal prices and the control objective is to continuously drive
the system towards an equilibrium where all the transmission network cons-
traints are satisfied, and where the social welfare of the system is maximized.

In the proposed solution, the real-time update of nodal prices, i.e. the
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controller, is explicitly described as a dynamical linear complementarity sys-
tem (van der Schaft and Schumacher, 1996, 1998; Heemels et al., 2000a). As
it will be shown in this chapter, the dynamic complementarity framework
naturally arises in network congestion control problems, since the optimal
nodal prices necessarily have to fulfill certain complementarity slackness con-
ditions.

In addition to providing the correct nodal prices in real-time, the devel-
oped controller has the following two advantageous properties:
- it requires no knowledge of cost/benefit functions of producers/consumers
(neither is it based on their on-line estimates);
- the transmission network structure is preserved in the controller, allowing
for its distributed implementation.

Nomenclature

The field of real numbers is denoted by R, while Rm×n denotes m by n
matrices with elements in R. For a matrix A ∈ Rm×n, [A]ij denotes the
element in the i-th row and j-th column of A. For a vector x ∈ Rn, [x]i
denotes the i-th element of x. The transpose of a matrix A is denoted by
A>. All inequalities are interpreted elementwise. For u, v ∈ Rk we write
u ⊥ v if u>v = 0. We use the compact notational form 0 ≤ u ⊥ v ≥ 0
to denote the complementarity conditions u ≥ 0, v ≥ 0, u ⊥ v. Ker A and
Im A denote the kernel and the image space of A, respectively. We use In

and 1n to denote an identity matrix of dimension n×n and a column vector
with n elements all being equal to 1, respectively. The operator col(·, . . . , ·)
stacks its operands into a column vector, and diag(·, . . . , ·) denotes a square
matrix with its operands on the main diagonal and zeros elsewhere. The
nonnegative orthant of Rn is defined by Rn

+ := {x ∈ Rn | x ≥ 0 }. Ln
1 (R+)

denotes the space of all measurable functions g : R+ → Rn which satisfy∫∞
0 ‖g(t)‖1dt < ∞, where for x ∈ Rn, ‖x‖1 :=

∑n
i=1 |[x]i|.

For a scalar-valued differentiable function f : Rn → R, ∇f(x) denotes
its gradient at x = col(x1, . . . , xn) and is defined as a column vector1, i.e.
∇f(x) ∈ Rn, [∇f(x)]i = ∂f

∂xi
. For a vector-valued differentiable function f :

Rn → Rm, f(x) = col(f1(x), . . . , fm(x)), the Jacobian at x = col(x1, . . . , xn)
is the matrix Df(x) ∈ Rm×n and is given by [Df(x)]ij = ∂fi(x)

∂xj
. For a vector

valued function f : Rn → Rm, we will use ∇f(x) to denote the transpose

1Different definitions, i.e. ∇f(x) as row vector vs. ∇f(x) as column vector, are often
found in literature.
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of the Jacobian, i.e. ∇f(x) ∈ Rn×m , ∇f(x) , Df(x)>, which is consistent
with the notation when f is a scalar-valued function.

We will use graph-theoretic terminology, see e.g. (Bollobas, 2002), to
represent power networks.

For the practical reason of easily relating variables in a static optimization
problem defined for a steady-state operation of a dynamical system, with the
corresponding signals in that dynamical system, we will make the following
abuse of notation: we will use the same symbol to denote a signal, i.e. a
function of time, as well as possible values that the signal may take at any
time instant.

2.2 Steady-state optimal control problem

Consider a connected undirected graph G = (V,E, A) as an abstraction of
an electrical power network. V = {v1, . . . , vn} is the set of nodes, E ⊆
V × V is the set of undirected edges, and A is a weighted adjacency matrix.
Undirected edges are denoted as eij = (vi, vj), and the adjacency matrix
A ∈ Rn×n satisfies [A]ij 6= 0 ⇔ eij ∈ E and [A]ij = 0 ⇔ eij 6∈ E. No self-
connecting edges are allowed, i.e. eii 6∈ E. We associate the edges with the
power lines of the electrical network and, for convenience, we set the weights
in the adjacency matrix as follows: [A]ij = − 1

zij
= −bij , where zij is the

inductive reactance of a line, i.e. the imaginary part of the line impedance,
and bij is the line susceptance, see (Christie et al., 2000) for details. Note
that the matrix A has zeros on its main diagonal and A = A>. The set of
neighbors of a node vi is defined as Ni , {vj ∈ V | (vi, vj) ∈ E}. Often
we will use the index i to refer the node vi. We define I(Ni) as the set of
indices corresponding to the neighbors of node i, i.e. I(Ni) , {j | vj ∈ Ni}.
We associate the nodes with the buses in the electrical energy transmission
network.

Optimal power flow problem

To define the steady-state related optimization problem, which reflects eco-
nomic objectives of a power system, with each node vi we associate a sin-
glet p̂i and a quadruplet (pi, pi

, pi, Ji), where pi, pi
, pi, p̂i ∈ R, p

i
< pi and

Ji : R → R is a strictly convex, continuously differentiable function. The
values pi and p̂i denote the reference values for node power injections into
the network. Positive values correspond to a flow of power into the network
(production), while negative values denote power extracted from the network
(consumption). Both pi and p̂i can take positive as well as negative values,
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and the only difference is that, in contrast to p̂i, the value pi has an asso-
ciated objective function Ji and a constraint p

i
≤ pi ≤ pi. In the case of a

positive pi, the function Ji represents the variable costs of production, while
for negative values of pi, it denotes the negated benefit function of a consu-
mer. We will refer to pi as the power from a price-elastic producer/consumer
(or simply, power from a price-elastic unit), and to p̂i as the power from a
price-inelastic producer/consumer (price-inelastic unit). Our choice for the
use of terms price-elastic and price-inelastic will become clear further in the
text.

Remark 2.2.1 The assumption that one price-elastic unit and one price-
inelastic unit are associated with each node is made to simplify the presen-
tation. However, the results of this chapter are directly applicable to the
case where some nodes in the network have several (many) units of each
kind (price-elastic or price-inelastic), or when at some nodes there are no
only units of one kind, or when at some nodes there are no units at all. All
combinations are allowed. 2

We use a “DC power flow” model (Christie et al., 2000) to determine the
power flows in the network for given values of node power injections. This
model is a linear approximation of a complex “AC power flow” model, and
is often used in practice. For a study comparing the AC and DC power flow
models of nodal price calculations, we refer to (Overbye et al., 2004).

With δi denoting a voltage phase angle at the node vi, the power flow
in a line eij ∈ E is given by pij = bij(δi − δj) = −pji. If pij > 0, power
in the line eij flows from node vi to node vj . The power balance in a node
yields pi + p̂i =

∑
j∈I(Ni)

pij . With the abbreviations p = col(p1, . . . , pn),
p̂ = col(p̂1, . . . , p̂n), δ = col(δ1, . . . , δn) the overall network balance condition
is

p + p̂ = Bδ,

where the matrix B is given by

B = A− diag(A1n). (2.1)

We define the optimal power flow problem as follows.
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Problem 2.2.2 Optimal power flow (OPF) problem.
For any constant value of p̂,

min
p,δ

J(p) , min
p,δ

n∑
i=1

Ji(pi) (2.2a)

subject to
p−Bδ + p̂ = 0, (2.2b)
p ≤ p ≤ p, (2.2c)

bij(δi − δj) ≤ pij , ∀(i, j ∈ I(Ni)), (2.2d)

where p = col(p
1
, . . . , p

n
), p = col(p1, . . . , pn), and pij = pji is the maximal

allowed power flow in the line eij . 2

We will refer to a vector p that solves the OPF problem as a vector of optimal
power injections. For an appropriately defined matrix L and a suitably
defined vector of power line limits pL, the set of constraints in (2.2d) can be
written in a more compact form as follows:

Lδ ≤ pL. (2.3)

Note that in Problem 2.2.2 we have included δ explicitly as a decision varia-
ble, which will be crucial in the control design later in this chapter. Another
possibility, common in the literature, is to introduce a “slack bus” with zero
voltage phase angle and to solve the equations for the line flows, completely
eliminating δ from the problem formulation (Christie et al., 2000; Schweppe
et al., 1988). However, in that case a specific structure, i.e. sparsity, of the
power flow equations is lost. As we will see later in this chapter, preserving
this sparsity will show to be beneficial for distributed controller implemen-
tation.

Ensuring that the operating point of the system coincides with the so-
lution of the OPF problem is one of the major operational goals of a power
system. In traditional power system structures, where the production units
are owned by one utility and there are little or no price elastic consumers,
adjusting the production according to the solution of the OPF problem is one
of the major operational goals of a utility. In such a system, the OPF pro-
blem is directly solved at a utility dispatch center, and the optimal reference
values p are sent to the production units. In this paper we are concerned
with a liberalized, market-based power system, where the OPF problem is
important due to its relation to the optimal nodal price problem, which is
defined next.
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Optimal nodal prices problem

In a liberalized, market-oriented power system, different units are owned by
separate parties and each of them acts autonomously to maximize its own
benefit. In other words, when a price-elastic unit at node i receives the
current nodal price λi, it adjusts its production level to be equal to pi, where
pi = arg minp̃i

{
Ji(p̃i) − λip̃i | p

i
≤ p̃i ≤ pi

}
. Since Ji is a strictly convex,

continuously differentiable function, this relation defines a unique mapping
from λi to pi for any λi ∈ R. For convenience, we denote this mapping with
Υi : λi → pi, i.e.

pi = Υi(λi) , arg min
p̃i

{
Ji(p̃i)− λip̃i | p

i
≤ p̃i ≤ pi

}
, (2.4)

and define Υ(λ) , col(Υ1(λ1), . . . ,Υn(λn)). The operational goal in a libe-
ralized power system is to determine the nodal price λi for each node i in
the network, in such a way that the total benefit of the system is maximized,
while all system’s constraints are fulfilled. Formally, we define the optimal
nodal price problem as follows.

Problem 2.2.3 Optimal nodal prices (ONP) problem.
For any constant value of p̂,

min
λ,δ

n∑
i=1

Ji(Υi(λi)) (2.5a)

subject to
Υ(λ)−Bδ + p̂ = 0, (2.5b)
Lδ ≤ pL, (2.5c)

where λ = col(λ1, . . . , λn) is a vector of nodal prices. 2

A vector λ that solves the ONP problem is the vector of optimal nodal prices.
The OPF and ONP problems are related through Lagrange duality, as it will
be shown later in this chapter. The ONP problem is employed next to define
the optimal power balance and congestion control problem.

Real-time power balance and congestion control problem

Consider a power network where each unit, i.e. producer/consumer, is a
dynamical system, and assign to each such unit an appropriate model of its
dynamics. Let Gi and Ĝi denote respectively a dynamical model of price-
elastic and price-inelastic unit at node i. (Recall that the assumption of
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one price-elastic and one price-inelastic unit at each node is made only to
simplify the presentation, see Remark 2.2.1.)

Let Gi be an LTI system given by its state-space realization

ẋi = Aixi + Fip
A
i + Bipi = Aixi + Fip

A
i + BiΥi(λi), ∀i, (2.6)

where xi is the state vector, pA
i denotes the actual node power injection from

the system Gi into the network, and the input pi = Υi(λi) denotes a price-
dependent reference signal for power injection, i.e. pi = Υi(λi) represents
desired production/consumption as a function of price.

Similarly, let the dynamical model Ĝi of a price-inelastic unit at node i
be given by

żi = Âizi + F̂ip̂
A
i + B̂ip̂i, ∀i, (2.7)

where zi denotes the state vector, p̂A
i denotes the actual node power injecti-

on from the system Ĝi into the network, and p̂i is a reference value for the
power injection, i.e. desired production/consumption. The desired producti-
on/consumption p̂i of a price-inelastic unit is a function of exogenous inputs,
i.e. it does not depend on the electricity price λi, neither on any other signal
from the power system. All residential and a large part of the industrial
consumers represent the largest portion, measured in on-line power at any
moment, of price-inelastic units in today’s power systems. The aggrega-
ted behavior of those consumers is most often modeled by static relations,
as opposed to the dynamical model (2.7). For an aggregated price-inelastic
consumption at node i, this model is given by

p̂A
i = p̂i −Di∆fi, ∀i, (2.8)

where p̂A
i is the actually consumed power, p̂i is desired consumption, ∆fi =

fi− fref is the network frequency deviation, and Di denotes a load-damping
constant, see (Kundur, 1994) for more details. Here, fi = 1

2π δ̇i is the network
frequency [Hz], and fref denotes the frequency reference value, e.g. fref =
50Hz in Europe.

Note that (2.2b) is always fulfilled when p and p̂ are replaced with pA =
col(pA

1 , . . . , pA
n ) and p̂A = col(p̂A

1 , . . . , p̂A
n ), since in this case (2.2b) represents

the conservation law, i.e.

pA −Bδ + p̂A = 0. (2.9)

The complete dynamical model of a power system (physical layer of a po-
wer system) is described with the set of differential algebraic equations
(2.6),(2.7),(2.8),(2.9), with p and p̂ as inputs. For a detailed presentation
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of power system modeling for real-time power balance control problems, i.e.
for classical dynamical models used in AGC studies, we refer to (Kundur,
1994), Chapter 11, or (Saadat, 1999), Chapter 12.

As opposed to the actual power injections, which are always in balance
(2.9), keeping the balance in reference values (2.2b), i.e. balance in desired
production and consumption, is a control problem. For future reference, we
will always use the term power balance to refer to the power balance in sense
of (2.2b), and not to the physical law (2.9).

To solve the power balance control problem, a measure of imbalan-
ce has to be available. The network frequency serves that purpose. Let
∆f , col(∆f1, . . . ,∆fn) denote the vector of nodal frequency deviations. In
steady-state the network frequency is equal for all nodes in the system and
the system is in balance if the network frequency is equal to its reference
value, i.e. if ∆f = 0. More precisely, if a system is in a steady-state with
∆f = 0, then for each node (2.6) implies pi = pA

i , while (2.7) and (2.8) imply
p̂i = p̂A

i , and therefore (2.9) implies (2.2b). If for some steady-state conditi-
ons the network frequency deviation is positive, the total desired production
in a network exceeds the total desired consumption.

The desired production/consumption of price-elastic units is a function
of current nodal prices λ. Therefore, nodal prices can be effectively used as
a feedback signal for power balance control. Each price-elastic system Gi

receives a price signal λi and, based on its benefit maximization objective
(2.4), it maps the signal into a reference pi. We will assume this mapping to
be instantaneous, although the model can easily be extended with dynamics,
time delays, threshold based rules, etc.

In addition to controlling the power balance, nodal prices are used for
congestion control, i.e. for fulfilment of the inequality constraints (2.3). For
convenience we will define the vector of line overflows as ∆pL , Lδ − pL.

From (2.6)-(2.9), by eliminating the algebraic equations (2.9), the com-
plete dynamical model of a power system with λ as input and col(∆f,∆pL)
as output, is given by

ẋ = Ax + Ĥp̂ + HΥ(λ), (2.10a)(
∆f
∆pL

)
= Cx +

(
0
−pL

)
, (2.10b)

where x is the complete system state vector containing all subsystem’s states,
i.e x = col(x1, . . . , xn, z1, . . . , zn), and A, Ĥ, H, C are suitably defined
constant matrices.
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Figure 2.1: Price-based control scheme.

Note that, with the model (2.10), the steady-state power balance condi-
tion is expressed as follows

0 = Ax + Ĥp̂ + HΥ(λ)
0 = ∆f

}
⇔ p−Bδ + p̂ = 0. (2.11)

Furthermore, note that the mapping Υ : λ → p, defined by (2.4), is linear if
and only if for each price elastic unit Ji is a quadratic function and p

i
= −∞,

pi = ∞. In practice, however, it will always be a nonlinear mapping and
therefore, the model (2.10) with the nodal prices λ as inputs, is nonlinear.
Finally, we are able to define the control problem considered in this chapter.

Problem 2.2.4 Optimal power balance and congestion control problem.
For a power system of the form (2.10), design a feedback controller that has
the network frequency deviation vector ∆f and the vector of line overflows
∆pL as inputs, and the nodal prices λ as output (see Figure 2.1), such that
the following objective is met: for any constant value of p̂ such that the
ONP problem is feasible, the state of the closed-loop system converges to
an equilibrium point where the nodal prices are the optimal nodal prices as
defined in Problem 2.2.3. 2

2.3 Price-based optimal controller

In this subsection we employ the relation between the solutions of the OPF
and the ONP problems to obtain a solution to Problem 2.2.4. We start by
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presenting the following basic result from power system economics.

Proposition 2.3.1 The optimal dual variable (Lagrange multiplier) associ-
ated with the power balance constraint (2.2b) in the Lagrange dual problem
of OPF, is the vector of optimal nodal prices for the corresponding ONP
problem. 2

Proof. Consider some constant value p̂ such that the OPF and ONP problems
are feasible. The OPF problem is a convex problem which satisfies Slater’s
constraint qualification (Boyd and Vandenberghe, 2004). This implies that
strong duality holds and that first-order Karush-Kuhn-Tucker (KKT) con-
ditions are necessary and sufficient conditions for optimality. For the OPF
problem, the Lagrangian is given by

L(p, δ, ν+, ν−, λ, µ) = J(p)− λ>(p−Bδ + p̂)+

(ν−)>(p− p) + (ν+)>(p− p) + µ>(Lδ − pL) (2.12)

and the KKT conditions are given by:

p−Bδ + p̂ = 0, (2.13a)

Bλ + L>µ = 0, (2.13b)
∇J(p)− λ + ν+ − ν− = 0, (2.13c)

0 ≤ (−Lδ + pL) ⊥ µ ≥ 0, (2.13d)
0 ≤ (−p + p) ⊥ ν+ ≥ 0, (2.13e)

0 ≤ (p + p) ⊥ ν− ≥ 0, (2.13f)

where λ, ν+, ν− and µ are (vector) Lagrange multipliers. The multiplier λ
is associated with the equality constraint (2.13a) and is therefore not sign
restricted. At the optimum, the value of the objective function and the vector
of optimal power injections in the OPF problem are equal to the value of the
objective function and the vector of power injections in the ONP problem,
i.e. p = Υ(λ). Assume that the optimal Lagrange multiplier λ from the
OPF dual problem is taken to be the vector of nodal prices. In this case the
conditions (2.13c),(2.13e) and (2.13f) correspond to the KKT conditions for
the constrained minimization problem in (2.4) for all price-elastic units in
the network. Therefore, for this particular λ, the vector of power injections
p = Υ(λ) in the ONP problem corresponds to the vector of optimal power
injections in the OPF problem, which concludes the proof. 2
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Remark 2.3.2 The matrix B, defined in (2.1), is a singular matrix with
rank deficiency one and with the kernel space spanned by the vector 1n.
Physically, this reflects the fact that only the relative voltage phase angles
determine the power flow. Note also that 1n /∈ Im B, since B = B> implies
1>n B = 0, i.e. 1n is orthogonal to each column of B. Finally, analyzing the
structure of L (see (2.2d) and (2.3)) one can easily observe that 1>n L> = 0
and therefore, 1n /∈ Im L>. These properties of B and L will be used later
in this section to prove Theorem 2.3.4 and Theorem 2.3.7. 2

Consider the OPF problem solution for some constant value p̂ such that
the problem is feasible. We denote the minimizers of OPF with p̃, δ̃, and
with λ̃ the value of the corresponding Lagrange multiplier. Strict convexity
of each Ji implies that at the optimum p̃ is unique. On the other hand,
due to singularity of B, if δ̃ is a minimizer so is δ̃ + 1nc where c ∈ R
is an arbitrary constant. However, note that for all minimizers the set of
active constraints is uniquely determined. Furthermore, we denote with µ̆
and µ̃ the Lagrange multipliers corresponding to inactive and active line
power flow constraints, respectively. Analogously, we define ν̆+, ν̃+ and ν̆−,
ν̃−. For inactive constraints col(µ̆, ν̆+, ν̆−) = 0. The equality (2.13b) yields
Bλ̃ = −L>µ̃. This condition implies that λ̃ ∈ Ker B in the case that no lines
are congested. This further implies λ̃ = 1nλ?, λ? ∈ R, i.e. at the optimum,
there is one price in the network for all nodes. In case at least one line in the
system is congested, it follows that the optimal nodal prices will in general
be different for each node in the system.

Next, we present the explicit dynamic controller that solves Problem 2.2.4.
Let Kλ, Kf and Kp be positive definite diagonal matrices, such that

Kf = αKλ, α ∈ R and α > 0. Consider the following dynamic linear com-
plementarity controller:(

ẋλ

ẋµ

)
=

(
−KλB −KλL>

0 0

) (
xλ

xµ

)
+

(
−Kf 0

0 Kp

) (
∆f
∆pL

)
+

(
0
w

)
,

(2.14a)

0 ≤ w ⊥ xµ ≥ 0, (2.14b)

λ =
(
In 0

) (
xλ

xµ

)
, (2.14c)

xµ(0) ≥ 0, (2.14d)

where xλ and xµ denote the controller states, col(∆f,∆pL) and w denote
inputs to the controller, while λ denotes the output. The matrices Kλ,
Kf and Kp represent the controller gains. The input col(∆f,∆pL), which
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collects the nodal frequency and line overflow vectors, is an exogenous input
to the controller, while the input w is required to be a solution to the finite
dimensional complementarity problem (2.14b). The output λ is a vector of
nodal prices.

The initialization constraint (2.14d) is required as a necessary condition
for well-posedness, in conformity with the inequality in the complementarity
condition (2.14b).

Assumption 2.3.3 The closed-loop system resulting from the interconnec-
tion of the controller (2.14) with the power system (2.10) is globally asymp-
totically stable for any constant value of p̂ (i.e. with respect to the corres-
ponding steady-state) such that the ONP problem is feasible. 2

Theorem 2.3.4 Suppose that Assumption 2.3.3 holds. Then the dynamic
controller (2.14) solves the optimal power balance and congestion control
problem, as defined in Problem 2.2.4. 2

Proof. To prove Theorem 2.3.4, it suffices to show that in steady-state, the
vector of nodal prices λ in (2.14) coincides with the Lagrange multiplier λ
in (2.13), and therefore, by Proposition 2.3.1, is a vector of optimal nodal
prices. Let p̂ be such that the ONP problem is feasible. In steady-state, the
values of the closed-loop system state vectors x, xλ and xµ are a solution of
the following complementarity problem

0 = Ax + Ĥp̂ + HΥ(xλ), (2.15a)

0 = Bxλ + L>xµ + α∆f, (2.15b)
0 = Kp∆pL + w, (2.15c)

0 ≤ w ⊥ xµ ≥ 0, (2.15d)

where ∆f and ∆pL are functions of the state vector x as defined in (2.10b).
In steady-state, the frequency is equal for all nodes in the network, i.e.
∆f = 1n∆f?, ∆f? ∈ R. Furthermore, from (2.15), with λ = xλ and µ := xµ,
the following holds:

(i) from (2.15b) it follows that Bλ+L>µ+1nα∆f? = 0, which, together
with 1n /∈ Im

(
B L>

)
(see Remark 2.3.2), implies that ∆f? = 0 and Bλ +

L>µ = 0, i.e. the optimality condition (2.13b) is satisfied;
(ii) from (2.15a) and ∆f? = 0, with (2.11), the power balance condition

(2.13a) is satisfied;
(iii) from (2.15c) and (2.15d), and since Kp is a positive definite diagonal

matrix, the complementarity condition (2.13d) is satisfied;
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(iv) conditions (2.13c), (2.13e) and (2.13f) are satisfied since they corres-
pond to the KKT conditions for optimization problem in (2.4).

To summarize, implications (i)-(iv) prove that in steady-state, the KKT
conditions (2.13) will necessarily be satisfied, with the vector of nodal prices
λ from the controller (2.14) acting as the corresponding Lagrange multiplier
in (2.13), which proves Theorem 2.3.4. 2

Remark 2.3.5 The only system parameters that are explicitly included in
the controller (2.14) are the transmission network parameters, i.e. the net-
work topology and line impedances, which define the matrices B and L.
To provide the correct nodal prices, the controller requires no knowledge
of cost/benefit functions J and of power injection limits (p, p) of produ-
cers/consumers in the system (neither is it based on their estimates). In
practice, often only a relatively small subset of all lines is critical concerning
congestion, and for the controller (2.14) it suffices to include only these cri-
tical lines by appropriately choosing ∆pL and L. 2

Remark 2.3.6 In the proof of Theorem 2.3.4 we have used the positive
definiteness of Kp, but not also the positive definiteness of Kλ and Kf (we
have only exploited nonsingularity of those matrices to obtain (2.15b)). The
positive definiteness of Kλ and Kf is required for stability of the closed-
loop system. Being positive, these gains in (2.14) ensure that the prices will
be updated in the “correct direction”, e.g. if the total production exceeds
the total demand, prices will decrease causing decrease in production and
increase in demand. 2

The controller (2.14) has a structure of the saturation-based KKT con-
troller. To solve Problem 2.2.4 the max-based KKT controller structure can
also be used. Both controller structures are presented in detail in Chapter 5
of this thesis. In Chapter 5 we also discuss the problem of checking asympto-
tic stability of the closed-loop system with a KKT controller, i.e. we discuss
methods to verify Assumption 2.3.3.

The property 1n /∈ Im
(
B L>

)
, which ensures zero frequency deviation

in steady-state (∆f = 0), is not robust with respect to possible errors in
the controller implementation, i.e. to perturbations of matrices B and L
in (2.14a). To overcome this drawback and to robustly ensure ∆f = 0 in
steady-state, the controller (2.14) can easily be modified to explicitly include
integral action on the network frequency deviation. This modified controller
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is given by the following dynamical complementarity system ẋλ0

ẋ∆λ

ẋµ

 =

0 0 0
0 −K∆B∆ −K∆L>∆
0 0 0

 xλ0

x∆λ

xµ

 +

−kf1>n 0
0 0
0 Kp

 (
∆f
∆pL

)
+

0
0
w

 ,

(2.16a)

0 ≤ w ⊥ xµ ≥ 0, (2.16b)

λ =
(

1 0 0
1n−1 In−1 0

) xλ0

x∆λ

xµ

 , (2.16c)

xµ(0) ≥ 0, (2.16d)

where the diagonal and positive definite matrices K∆ (K∆ ∈ R(n−1)×(n−1))
and Kp, and the positive scalar kf represent controller gains. B∆ is a sub-
matrix of B obtained by removing the first column and the first row of B,
and L∆ is a submatrix of L, obtained by removing the first column of L.

In the controller (2.16), nodal prices λ are composed of two parts (see
(2.16c)): the scalar valued xλ0 and the vector valued x∆λ. The main idea
for this decomposition is the following: xλ0 represents a reference price and
reacts solely on frequency deviations ∆f (see first row in (2.16a)), while the
elements of the vector x∆λ represent congestion prices, and are defined as the
differences between the nodal prices and the reference price. The reference
price update robustly ensures zero frequency deviation in a steady-state,
while the congestion prices ensure that the optimality condition (2.13b) is
satisfied in steady-state.

Theorem 2.3.7 Suppose that Assumption 2.3.3 holds. Then the dynamic
controller (2.16) solves the optimal power balance and congestion control
problem, as defined in Problem 2.2.4. 2

Proof. The dynamics of the scalar valued state xλ0 acts as an integral
action for network frequency deviations ∆f , and therefore ∆f = 0 is robust-
ly ensured in steady-state. With (2.11), this implies that, in steady-state,
the condition (2.13a) is satisfied. With λ and µ := xµ, fulfilment of the con-
ditions (2.13c)-(2.13f) in a steady-state follows analogously as in the proof
of Theorem 2.3.4 (see items (iii) and (iv)). Finally, to complete the proof, it
remains to show that in steady-state the values of λ and µ := xµ from (2.16)
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satisfy the optimality condition (2.13b), i.e. that Bλ + L>µ = 0. To show
this, we first represent the matrices B and L with B∆ and L∆ as submatrices
as follows:

B =
(

b1 b>2
b2 B∆

)
, L =

(
l1 L∆

)
. (2.17)

Since 1>n
(
B L>

)
= 0 (see Remark 2.3.2), it follows that b>2 = −1>n−1 B∆

and l>1 = −1>n−1 L>∆. With B1n = 0 (see Remark 2.3.2) and λ = 1nxλ0 +(
0

x∆λ

)
(see (2.16c)) we have

Bλ + L>µ = B

[
1nxλ0 +

(
0

x∆λ

)]
+ L>µ

= B

(
0

x∆λ

)
+ L>µ

=
(

b>2
B∆

)
x∆λ +

(
l>1
L>∆

)
µ

=
(
−1>n−1

In−1

)
(B∆x∆λ + L>∆µ). (2.18)

Finally, from (2.16a) and from non-singularity of K∆ it follows that in steady-
state B∆x∆λ + L>∆µ = 0, which, with (2.18), implies Bλ + L>µ = 0. 2

2.3.1 Well-posedness of the closed-loop system

The term well-posedness is in general used to denote the property of existence
and uniqueness of solutions, and is a fundamental issue for any class of
dynamical systems. A mathematical model of a dynamical system is said to
be well-posed if, given initial conditions, it has a unique solution.

Checking well-posedness of a closed-loop system with the price-based con-
troller (2.14),(2.16) is a nontrivial task, since this system is characterized by
a discontinuous right hand side and therefore classical techniques based on
Lipschitz continuity are not applicable. As one of the fundamental questions
in the theory of hybrid systems, the problem of well-posedness of dynamical
systems with discontinuous right hand side has recently gained an increasing
interest. Especially, well-posedness of complementarity systems has been
successfully studied, see (van der Schaft and Schumacher, 1996, 1998; Hee-
mels et al., 1999, 2000a; Schumacher, 2004), and the references therein, for
many of the available results on the topic.

Power systems in closed-loop with price-based controller belong to a spe-
cific class of gradient-type complementarity systems (GTCS) (Heemels et al.,
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2000b), for which well-posedness conditions have already been presented in
(Heemels et al., 2000b; Brogliato et al., 2006). In Section 5.4 of Chapter 5
in this thesis, conditions for well-posedness of the GTCS class of systems are
shortly summarized from (Brogliato et al., 2006; Heemels et al., 2000b). In
particular, based on Theorem 5.4.5 and Proposition 5.4.6, it can be verified
that for the power system (2.10) with the price-based controller (2.14),(2.16),
the following proposition holds.

Proposition 2.3.8 Suppose that the function Υi : R → R, defined by (2.4),
is globally Lipschitz for all i ∈ {1, . . . , n}, and suppose that the exoge-
nous input p̂ is a measurable function of time t and p̂(t) ∈ Ln

1 (R+). Then
the closed-loop system, i.e. system (2.10) interconnected with the controller
(2.14)/(2.16) in a feedback loop, is well-posed, i.e. for any admissible initial
condition, the closed-loop system state has a unique solution over the time
interval [0,∞). 2

Proof. The proposition is a direct consequence of Theorem 5.4.5 and Propo-
sition 5.4.6, which are given in Section 5.4 of Chapter 5 in this thesis. 2

In Proposition 2.3.8 by the term admissible initial condition, we mean
fulfillment of the condition (2.14d),(2.16d).

2.4 Distributed control implementation

Matrices B and L in (2.14) are highly structured and related in such a way
that this structure can be effectively utilized for distributed implementation
of the proposed explicit controller. For simplicity and clarity, we will present
this distributed implementation by considering an example of a simple power
network. In the next subsection the efficiency of the developed methodology
will be demonstrated on the IEEE 39-bus New England test network.

Example. Consider a simple network depicted in Figure 2.2 and assume
that at the optimum the lines e12 and e13 are congested so that p12 = p12

and p13 = p13. With µ12 and µ13 denoting the corresponding Lagrange mul-
tipliers from (2.13d), the optimality condition (2.13b) relates the optimal
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nodal prices with the following equality:


b12,13 −b12 −b13 0
−b12 b12,23 −b23 0
−b13 −b23 b13,23,34 −b34

0 0 −b34 b34

∣∣∣∣∣∣∣∣
b12 b13

−b12 0
0 −b13

0 0




λ1

λ2

λ3

λ4

µ12

µ13

 = 0, (2.19)

where b12,13 = b12 + b13 and so on. Each row in (2.19) represents an equality
related to the corresponding node in the network, i.e. the first row is related
to the first node etc. Note that the i-th row directly relates the nodal price
λi only with the nodal prices of its neighboring nodes, i.e. with λj , j ∈ I(Ni).
Similarly, only the nodal prices in the nodes corresponding to the congested
line eij are directly related to the corresponding Lagrange multiplier µij .
Note that in practice B is usually sparse; the number of neighbors for most
of the nodes is small, e.g. two to four. These highly structured relations
from the optimality conditions (2.13) are as well present in the proposed
controller (2.14) and (2.16), allowing for its distributed implementation. This
means that the control law (2.14) can be implemented through a set of nodal
controllers, where a nodal controller (NC) is assigned to each node in the
network, and each NC communicates only with the NC’s of the neighboring
nodes. From (2.14) and (2.19) it is easy to derive that the NC corresponding
to node 1 in the network depicted in Figure 2.2 is given by: ẋλ1

ẋµ12

ẋµ13

 =

−kλ1b12,13 kλ1b12 kλ1b13

0 0 0
0 0 0

  xλ1

xµ12

xµ13

 +

kλ1b12 kλ1b13 −kf1 0 0
0 0 0 kp12 0
0 0 0 0 kp13




xλ2

xλ3

∆f1

∆p12

∆p13

 +

 0
w12

w13

 , (2.20a)

0 ≤
(

xµ12

xµ13

)
⊥

(
w12

w13

)
≥ 0, (2.20b)

λ1 =
(
1 0 0

)  xλ1

xµ12

xµ13

 , (2.20c)

where kλ1 = [Kλ]11, kf1 = [Kf ]11, and kp12 , kp12 are the corresponding
elements from the gain matrix Kp in (2.14c).
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Figure 2.2: An example of a simple congested network.

Figure 2.3: Distributed control scheme for power balance and congestion
control.

Note that the state xµij is present only in one of the adjacent nodal con-
trollers, i.e. in node i or in node j, and is communicated to the NC in the
other node. 2

The distributed implementation of the developed controller is graphically
illustrated in Figure 2.3. The communication network graph among NC’s is
the same as the graph of the underlying physical network. Any change in the
network topology requires only simple adjustments in NC’s at the location of
the change. A distributed control structure is specially advantageous taking
into account the large-scale of electrical power systems.
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Figure 2.4: IEEE 39-bus New England test system.
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Figure 2.5: Power flow in the line connecting buses 25 and 26.

2.4.1 Application case study

To illustrate the potential of the developed methodology for practical appli-
cation we consider the widely used IEEE 39-bus New England test network.
The network topology, generators and loads are depicted in Figure 2.4. The
complete network data, including reactance of each line and load values can
be found in (Pai, 1989). All generators in the system are modeled using a
third order model consisting of governor, turbine and rotor dynamics. This
is a standard model used in “automatic generation control” studies (Kundur,
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Figure 2.6: Trajectories of nodal prices for generator buses 30-39.
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Figure 2.7: Nodal prices in the case of congestion.

1994). The parameter values, in per units, are taken to be in the ±20% inter-
val from the values given in (Saadat, 1999), pp. 545. Each generator is taken
to be equipped with a proportional feedback controller for frequency control
with the gain in the interval [18, 24]. We have used quadratic functions to
represent the variable production costs, i.e.

Ji(pi) =
1
2
cg,ip

2
i + bg,ipi,
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with the values of parameters cg,i, bg,i, for i = 1, ..., 10 as listed in Table 5 in
(Alvarado et al., 2001). The lower saturation limit and the upper saturation
limit for each generator was set to 0 and 10, respectively. All loads are taken
to be price-inelastic, with the values from (Pai, 1989).

The proposed distributed controller (2.14) was implemented with the fol-
lowing values of the gain matrices: Kλ = 3I39, Kf = 8I39. For simplicity of
exposition, the line power flow limit was assigned only for the line connecting
nodes 25 and 26, and the corresponding gain Kp in the controller was set
equal to 1.

The simulation results are presented in Figure 2.5 and Figure 2.6. In
the beginning of the simulation, the line flow limit p25,26 was set to infinity,
and the corresponding steady-state operating point is characterized by the
unique price of 39.28 for all nodes. At time instant 5s, the line limit cons-
traint p25,26 = 1.5 was imposed. The solid line in Figure 2.5 represents the
simulated trajectory of the line power flow p25,26. In the same figure, the
dashed line indicates the limits on the power flow p25,26. The solid lines in
Figure 2.6 are simulated trajectories of nodal prices for the generator buses,
i.e. for buses 30 to 39, which is where the generators are connected. In the
same figure, dashed lines indicate the off-line calculated values of the cor-
responding steady-state optimal nodal prices. For clarity, the trajectories of
the remaining 29 nodal prices were not plotted. In the simulation, all these
trajectories converge to the corresponding optimal values of nodal prices as
well. The optimal nodal prices for all buses are presented in Figure 2.7. In
this figure, the nodal prices corresponding to generator buses 30-39 are emp-
hasized with the gray shaded bars. The obtained simulation results clearly
illustrate the efficiency of the proposed distributed control scheme.

2.5 Conclusions

In this chapter we have considered the problem of real-time, price-based, eco-
nomically optimal power balance control and congestion management. We
have designed a dynamic feedback controller for an optimal real-time update
of electricity prices. Under the hypothesis of global asymptotic stability of
the closed-loop system, we have proven that the developed controller will
continuously drive the system towards the equilibrium where all the network
constraints are satisfied, and where the total economical benefit of the sys-
tem is maximized. In other words, we have proven that the controller will,
based on the measurements from the current state of the system, always
provide the correct, optimal nodal prices. Furthermore, the proposed con-
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trol structure is characterized by certain properties which make it especially
suitable for practical applications. Summarized, these properties are:

• The only system parameters that are explicitly included in the control
law are the transmission network parameters, i.e. network topology
and line impedances. To provide the correct nodal prices, the control-
ler requires no knowledge of marginal cost/benefit functions of produ-
cers/consumers in the system (neither is it based on the estimates of
these functions).

• The controller is given in an explicit form, i.e. it is not based on solving
an optimization problem on-line. The nodal price updates are based
on simple, explicitly defined and easily comprehensible rules.

• The transmission network structure is preserved in the controller, al-
lowing for its distributed implementation.

The effectiveness of the proposed distributed control scheme has been
illustrated on the IEEE 39-bus New England test system with 10 price elastic
generating units.
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Hybrid model predictive control of power
systems

3.1 Introduction
3.2 Model predictive control
3.3 Hybrid MPC scheme

3.4 Illustrative example
3.5 Conclusions

This chapter is based on the paper (Jokić, Lazar, and Van den Bosch, 2007a)

3.1 Introduction

In Chapter 2 we have developed an explicit, price-based, dynamic controller
for real-time optimal power balancing and congestion management. The pro-
posed explicit controller guarantees that, following any admissible change in
power consumption/production, the power system will settle in the corres-
ponding economically optimal steady-state point with all line flow constraints
satisfied. Due to the inequality constraints representing the line flow limits,
the optimal controller was developed in a dynamical complementarity fra-
mework (van der Schaft and Schumacher, 1996, 1998; Heemels et al., 2000a),
and can be seen as an appropriate dynamical extension of the Karush-Kuhn-
Tucker (KKT) conditions for economic optimality of the power system. For
brevity, in this chapter we will refer to the price-based controller developed
in Chapter 2 with the name KKT controller.

Although steady-state optimal, the KKT controller does not guarantee
that during the transients following sudden imbalances in the system, some
of the power lines will not become overloaded to such an extent that it will
threaten the safety of the system’s operation. To solve this issue, in this
chapter we complement the KKT controller with a hybrid model predictive
controller (MPC), i.e. a MPC controller that uses a piecewise affine model
for predictions. The MPC control action amends the KKT control law so
that constraints are met during the transients following load changes, and
it converges to zero in steady-state. As a result, the response of the system
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is optimized and the constraints are satisfied in the transient period as well,
while the advantageous steady-state properties of the KKT controller are
preserved.

The results of this chapter add the optimal power flow problem with
congestion constraints to a list of previously considered problems in electri-
cal energy transmission systems, where the benefits of utilizing hybrid MPC
control schemes were already illustrated. The interested reader is referred
to (Geyer et al., 2003; Beccuti et al., 2005), where hybrid MPC was utili-
zed for efficient emergency voltage control, and to (Ferrari-Trecate et al.,
2004), where hybrid MPC was used for optimal control of co-generation po-
wer plants. Recently, in (Bemporad et al., 2006), hybrid MPC was employed
for solving the problem of multi-period investments for maintenance and
upgrade of electrical energy distribution networks.

3.2 Model predictive control

Model predictive control (also referred to as receding horizon control) is a
control strategy that offers attractive solutions for the regulation of constrai-
ned linear or nonlinear systems and, more recently, also for the regulation of
hybrid systems. Within a relatively short time, MPC has reached a certain
maturity due to the continuously increasing interest shown for this distincti-
ve part of control theory. This is illustrated by its successful implementation
in industry and by many excellent articles and books as well. For a detailed
overview of MPC see, for example, (Garcia et al., 1989; Mayne et al., 2000;
Qin and Badgwell, 2003; Findeisen et al., 2003; Camacho and Bordons, 2004)
and the references therein.

One of the reasons for the fruitful achievements of MPC algorithms con-
sists in the intuitive way of addressing the control problem. In comparison
with conventional control, which often uses a pre-computed state or out-
put feedback control law, predictive control uses a discrete-time model of
the system to obtain an estimate (prediction) of its future behavior. This is
done by applying a set of input sequences to a model, with the measured
state/ouput as initial condition, while taking into account constraints. An
optimization problem built around a performance oriented cost function is
then solved to choose an optimal sequence of controls from all feasible se-
quences. The feedback control law is then obtained in a receding horizon
manner by applying to the system only the first element of the computed
sequence of optimal controls, and repeating the whole procedure at the next
discrete-time step. Summarizing the above discussion, one can conclude that



3.2. Model predictive control 59

 

P a s t  F u tu re /P re d ic t io n s  

In it ia l  S ta te  x 0  

D e s ire d  e q u il ib r iu m  
p o in t   x r  

C lo s e d - lo o p  
s ta te  x k  

P re d ic te d  
  s ta te kx  

S ta te  c o n s tra in t  

C lo s e d - lo o p  
in p u t u k  

O p e n - lo o p  
     in p u t  ku  

In p u t c o n s t ra in t  

k  
C o n tro l  h o r iz o n  

P re d ic tio n  h o r iz o n  

 k  +  N u     k  +  N   

 

Figure 3.1: A graphical illustration of model predictive control.

MPC is built around the following key principles:

• The explicit use of a process model for calculating predictions of the
future plant behavior;

• The optimization of an objective function subject to constraints, which
yields an optimal sequence of controls;

• The receding horizon strategy, according to which only the first element
of the optimal sequence of controls is applied on-line.

The MPC methodology involves solving on-line an open-loop finite horizon
optimal control problem subject to input, state and/or output constraints.

A graphical illustration of this concept is depicted in Figure 3.1. At each
discrete-time instant k, the measured variables and the process model (linear,
nonlinear or hybrid) are used to (predict) calculate the future behavior of
the controlled plant over a specified time horizon, which is usually called the
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prediction horizon and is denoted by N . This is achieved by considering a
future control scenario as the input sequence applied to the process model,
which must be calculated such that certain desired constraints and objectives
are fulfilled. To do that, a cost function is minimized subject to constraints,
yielding an optimal sequence of controls over a specified time horizon, which
is usually called control horizon and is denoted by Nu. According to the
receding horizon control strategy, only the first element of the computed
optimal sequence of controls is then applied to the plant and this sequence
of steps is repeated at the next discrete-time instant, for the updated state.

3.3 Hybrid MPC scheme

The first step in the design of an MPC controller is to obtain an appropriate
dynamical model for calculating predictions of the future plant behavior.
Since our goal is to combine the MPC controller with the KKT controller
developed in Chapter 2, we first need an appropriate model of the power
system interconnected with the KKT controller in a feedback loop, as this
closed-loop system represents the plant for the MPC scheme. Here, the
term appropriate model has a twofold meaning. Firstly, some modeling
frameworks are more suitable for MPC purposes, and therefore it is desirable
to represent the model in one of such frameworks. Secondly, the model has
to be a discrete-time model. Concerning the first issue, in this chapter we
will work in a piecewise-affine framework (Sontag, 1981), for which efficient
MPC design methods have already been developed, see e.g. (Lazar, 2006)
and the references therein.

3.3.1 Piecewise affine model of the power system

In the previous chapter, in Section 2.2, we have in general terms presented
the basic ingredients of a power system: price-elastic and price-inelastic units
as dynamical subsystems, all coupled by means of algebraic power flow equa-
tions. In a compact form, an appropriate model of a power system (physical
layer of the power system), is given by (Chapter 2, equation (2.10)):

ẋ = Ax + Ĥp̂ + HΥ(λ), (3.1a)(
∆f
∆pL

)
= Cx +

(
0
−pL

)
, (3.1b)

where A, Ĥ, H, C are suitably defined constant matrices, x denotes the sy-
stem’s state vector, exogenous input p̂ denotes the desired power injections
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from price-inelastic units, control input λ denotes the vector of nodal prices,
the output ∆f denotes the network frequency deviations from the reference
value (50Hz in Europe), and the output vector ∆pL is a vector of line over-
flows, which is defined as the vector of line flows minus the corresponding
vector of line flow limits pL. The vector valued function Υ(·), which is defined
by (2.4), describes the benefit maximization behavior of price-elastic units.
In practice, Υ(·) is always a nonlinear function and therefore, the model
(3.1) with the nodal prices λ as inputs, is nonlinear. With the assumption
of strictly convex/concave and continuously differentiable cost/benefit func-
tions of price-elastic units, the mapping Υi : λi → pi can be arbitrarily well
approximated with a continuous piecewise affine function. Therefore, one can
always obtain a piecewise affine model that approximates (3.1) arbitrarily
well. We will assume for the remainder of this chapter that Υ(·) is a pie-
cewise affine function and thus, the power system model (3.1) is piecewise
affine (PWA) with respect to λ as input.

Next, we present a PWA representation of the KKT controller, which
was in Chapter 2 presented as a linear complementarity system (2.14). For
simplicity, we only consider the controller given by (2.14), although the con-
troller (2.16) can be considered equivalently.

With positive definite diagonal matrices Kλ, Kf and Kp representing the
controller gains, and with Γ denoting a diagonal matrix of the same size as
Kp, the controller (2.14) in a piecewise affine form is given by:(

ẋλ

ẋµ

)
=

(
−KλB −KλL>

0 0

) (
xλ

xµ

)
+

(
−Kf 0

0 Γ

) (
∆f
∆pL

)
, (3.2a)

λKKT =
(
In 0

) (
xλ

xµ

)
, (3.2b)

[Γ]ii = [Kp]ii if [xµ]i ≥ 0 and [∆pL]i ≥ 0
[Γ]ii = [Kp]ii if [xµ]i > 0 and [∆pL]i < 0
[Γ]ii = 0 if [xµ]i = 0 and [∆pL]i < 0,

(3.2c)

xµ(0) ≥ 0. (3.2d)

To summarize, we have shown that both the power system and the KKT
controller can be represented using a PWA model. The basic result on inter-
connection of PWA systems states that the feedback (as well as series and
parallel) interconnections of PWA systems are themselves PWA systems (Jo-
hansson, 1999). Therefore, the closed-loop system, i.e. the system obtained
by interconnecting the power system (3.1) with the KKT controller (3.2) in
the feedback loop, is a PWA system.



62 Hybrid model predictive control of power systems

3.3.2 MPC control problem

Following a large disturbance acting on the system, for example, a relatively
large, sudden change in p̂, it is desirable that the closed-loop system response
is such that the power lines overload ∆pL and the frequency deviations ∆f
are limited during the transient period, i.e.

∆pL ≤ ∆pmax
L , (3.3a)

−∆fmax ≤ ∆f ≤ ∆fmax, (3.3b)

at all times, where ∆pmax
L > 0, ∆fmax > 0 are some predefined values. Since

the lines can be overloaded only for a short period of time, satisfying the
constraints imposed on ∆pL and ∆f , as well as fast convergence to the new
steady-state, is crucial.

This is even more emphasized for future power systems that are expected
to rely on a large amount of uncontrollable, price-inelastic renewable energy
sources, like wind turbines or photovoltaic systems. Therefore, they will be
characterized by an increased uncertainty and faster changes in p̂.

Furthermore, the ability to guarantee (3.3a) for a vector ∆pmax
L with small

elements has a positive impact on power system economics, since in this case
the elements in the steady-state line limits vector pL can safely take larger
values, increasing the feasible region in the ONP problem, i.e. Problem 2.2.2.
The constraint (3.3b) is equally important, since large, prolonged frequency
excursions outside the imposed range can cause underfrequency protective
relays or load-shedding schemes to activate, resulting in interruptions of
power supply for some consumers (Kundur, 1994).

To guarantee the fulfillment of the constraints (3.3) during the transient
period, following a change in p̂, we design a hybrid MPC algorithm whose
purpose is to complement the output λKKT of the KKT controller (3.2) such
that inequalities (3.3) are satisfied at all times. The hybrid control scheme
is depicted in Figure 3.2. Let G denote the continuous-time model of the
power system (3.1) in closed-loop with the KKT controller (3.2), as shown
in Figure 3.2. To define the MPC algorithm, we first consider the following
discrete-time approximation of G in closed-loop with the MPC controller:

GD :


xk+1 = Ajxk + Bjλ

MPC
k + aj(p̂k)

yk = Cjxk =

∆pLk

∆fk

−∆fk

 if Hjxk ≤ hj , k ≥ 0, (3.4)

where Aj , Bj , aj(p̂k), Cj ,Hj , hj are matrices and vectors of appropriate di-
mensions for all j ∈ S = {1, . . . , s}, with S a finite set of indices. The
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Figure 3.2: Hybrid control scheme.

state vector x incorporates now both the states of the power system model
and the states of the KKT controller. As G is a piecewise affine system,
an equivalent discrete-time piecewise affine counterpart cannot be obtained.
However, one can obtain a discrete-time piecewise affine approximation of
G by discretizing each continuous-time affine sub-system of G and taking
into account physical insights when deriving the switching hyperplanes of
the discrete-time model, see, for example, (Geyer et al., 2003; Beccuti et al.,
2005).

The outputs of system (3.4) are given by ∆pLk - the power flow deviation
in the lines of the transmission network and ∆fk - the frequency deviation
in the nodes of the transmission network (−∆fk is considered an output just
to easily specify the constraints (3.3) in the MPC algorithm).

3.3.3 MPC algorithm

The MPC control action λMPC
k acts additively on the output of the KKT

controller (3.2) such that the constraints (3.3) are fulfilled at all times k ≥ 0.
In steady-state, λMPC

k converges to zero so that the network is only controlled
by the output of the KKT controller, which then guarantees optimality and
constraint satisfaction.

Problem 3.3.1 MPC optimization problem. Let N ≥ 1 be given and let
xk =: x0|k denote the measured state at time k ≥ 0. Let ck := (c0|k, . . . , cN |k)
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denote a sequence of optimization variables and let Ψ be a positive definite
and symmetric matrix. Minimize the cost:

J(ck) ,
N−1∑
i=0

c>i|kΨci|k, (3.5)

subject to the constraints
xi+1|k = Ajxi|k + Bjci|k + aj(p̂i|k)

yi|k = Cjxi|k =

 ∆pi|k

∆fi|k

−∆fi|k

 if Hjxi|k ≤ hj , ∀i = 0, . . . , N,

yN+1|k = CjxN+1|k =

 ∆pN+1|k
∆fN+1|k
−∆fN+1|k

 if HjxN+1|k ≤ hj , (3.6a)

yi|k ≤

∆pL
max

∆fmax

∆fmax

 , ∀i = 1, . . . , N + 1, (3.6b)

cN |k = 0. (3.6c)

2

Let c∗k := (c∗0|k, . . . , c
∗
N−1|k, 0) denote an optimal sequence of variables ob-

tained by solving Problem 3.3.1. Then, the MPC control law is defined as
follows:

λMPC
k := c∗0|k; k ≥ 0. (3.7)

The value of p̂k, which is employed in (3.6a), can be estimated from the
measured values of the system state. With the current estimated value p̂k

available, to obtain the future outputs in (3.6a), we assume p̂i|k = p̂k for all
i = 0, . . . , N .

Assumption 3.3.2 The closed-loop system resulting from the interconnec-
tion of the KKT controller (3.2) with the power system (3.1) is globally
asymptotically stable for any constant value of p̂ (i.e. with respect to the
corresponding steady-state) such that the optimal nodal prices (ONP) pro-
blem, i.e. Problem 2.2.3, is feasible. 2

Assumption 3.3.3 For any constant value of p̂k, the prediction horizon N
is long enough such that the predicted state xN |k lies in a subset of the state-
space that is invariant for the closed-loop system (3.4) with λMPC

k = 0 for
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all k ≥ 0, and where the constraints (3.6b) are satisfied. Furthermore, the
global optimum is attained in Problem 3.3.1 for any xk and all k ≥ 0. 2

Theorem 3.3.4 (i) Suppose that Assumption 3.3.3 holds. If Problem 3.3.1
is feasible at time k ≥ 0 for the measured state xk = x0|k, then Problem 3.3.1
remains feasible at time k + 1 for state xk+1 = Ajxk + Bjλ

MPC
k + aj(p̂k) if

Hjxk ≤ hj .
(ii) Suppose that Assumption 3.3.2 holds for GD with λMPC

k = 0 for
all k ≥ 0 and for any constant value of p̂k such that the ONP problem
is feasible. Furthermore, suppose that Assumption 3.3.3 holds. Then the
discrete-time closed-loop system (3.4) with the input λMPC

k defined as in
(3.7) is asymptotically stable for any constant value of p̂k such that the
ONP problem is feasible. 2

Proof. (i) The first statement follows, as done classically, by observing that
the shifted sequence of optimization variables c̃k+1 := (c∗1|k, . . . , c

∗
N−1|k, 0, 0)

is feasible with respect to Problem 3.3.1 at time k+1. This is due to feasibility
of c∗1|k, . . . , c

∗
N−1|k, 0, while feasibility of the last zero element follows from

Assumption 3.3.3.
(ii) First we prove that limk→∞ λMPC

k = 0. Let Vk := V (xk) = J(c∗k) and
let

Ṽk+1 := Ṽ (xk+1) = J(c̃k+1) = Vk − (c∗0|k)
>Ψ(c∗0|k) = Vk − (λMPC

k )>Ψ(λMPC
k )

for any k ≥ 0. Then, by optimality, it follows that

∆Vk := Vk+1 − Vk ≤ Ṽk+1 − Vk = −(λMPC
k )>Ψ(λMPC

k ) ≤ 0.

Since ∆Vk ≤ 0 and Vk is lower bounded by zero for any k ≥ 0, it follows
that limk→∞ Vk = VL ≥ 0 exists. Then, limk→∞∆Vk = VL − VL = 0. Since
0 ≤ (λMPC

k )>Ψ(λMPC
k ) ≤ −∆Vk, and Ψ is positive definite it follows that

lim
k→∞

(λMPC
k )>Ψ(λMPC

k ) = 0 ⇒ lim
k→∞

λMPC
k = 0. (3.8)

Then, the statement (ii) readily follows since by Assumption 3.3.2 the closed-
loop system (3.4) with λMPC

k = 0 is globally asymptotically stable for any
constant value of p̂k, which is such that the ONP problem is feasible. 2

Fulfilment of the first part of Assumption 3.3.3 can be a priori guaranteed
by adding a terminal1 equality or inequality constraint to Problem 3.3.1, see,
for example, (Lazar, 2006).

1By this we mean a constraint on the predicted state xN|k.
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Remark 3.3.5 The proposed hybrid MPC scheme is characterized by the
following advantageous features: (i) it is less sensitive to model mismatches,
as the model is used only to predict the constraints violations during tran-
sients and, if the system is not characterized by persistent and relatively
large disturbances, the MPC control action will be zero for the most of the
time; (ii) if the MPC controller fails to provide input to the system, the
KKT controller guarantees that the system will be driven to a state where
no constraints are violated; (iii) the fact that only the control input, and
not also the complete system’s state, is penalized in the MPC cost function
reduces the MPC computational time. 2

3.4 Illustrative example

The proposed hybrid control scheme was implemented for a three nodes
triangular network with a synchronous generator at each node. Each gene-
rator is modeled by a third order model, which is standardly used in AGC
studies (Kundur, 1994; Saadat, 1999). The generator model is taken from
(Saadat, 1999), pp. 543-545. We have used the following parameter values:
τg ∈ {0.2, 0.25, 0.2}, τT ∈ {0.5, 0.45, 0.5}, H ∈ {5, 5, 5}, D ∈ {0.7, 0.7, 0.8},
R ∈ { 1

22 , 1
24 , 1

20}, where the first element in each set denotes the parame-
ter value for a generator at the first node, etc., and the symbols are the
ones from (Saadat, 1999). We use quadratic functions to represent the va-
riable production costs Ji, with quadratic terms {1.2, 1.24, 1.4} and linear
terms {35.9, 36.1, 36}, respectively. For simplicity, no saturation limits were
considered for the generators, i.e. p

i
= −∞, pi = ∞, ∀i. Furthermore,

we use the following reactance values for each line: z12 = 0.1, z13 = 0.09,
z23 = 0.13. Appropriate values for the gains of the KKT controller were
chosen as Kλ = diag(2, 2, 2), Kf = diag(7, 7, 7). For the line connecting
nodes 1 and 2, the steady-state power flow limit was set equal to 1.2, i.e.
p12 = 1.2, and the maximal allowed violation of this constraint in a transient
period was set to 0.1, i.e. the corresponding element in ∆pmax

L from (3.3)
is ∆pmax

L12
= 0.1. For simplicity, no line flow limits were considered in the

remaining lines, and the KKT controller is implemented to act only on ∆p12

with gain Kp = 2. No frequency deviation constraints were imposed during
transients.

The resulting closed-loop system G is a continuous-time piecewise affine
model with 15 states and 3 affine sub-systems. The (robust) asymptotic sta-
bility of G for any values of p̂ in the interval indicated below was established
via a quadratic Lyapunov function, which validates Assumption 3.3.2. We
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Figure 3.3: Line power flow p12. Dashed lines represent power flow restricti-
on: 1.2 in steady-state; 1.3 in transient.

obtained a discrete-time model GD by discretizing each affine sub-system of
G with a sampling period of 0.1s and keeping the same switching hyperpla-
nes as the ones of the continuous-time model. The simulations showed that
GD is a good (i.e. for control purposes) approximation. The asymptotic
stability test was successfully carried out for the discrete-time model GD

with λMPC
k = 0 for all k ≥ 0 as well, which validates Assumption 3.3.2 for

GD. For the MPC controller, the following tuning parameters were used:
N = 12, Ψ = diag(0.1, 0.1, 0.1). For simplicity, we have used the following
estimate for the value of aj(p̂k):

aj(p̂k) = aj(p̂k−1) = xk − (Ajxk−1 + Bjλ
MPC
k−1 ) if Hjxk−1 ≤ hj .

A price-inelastic load was connected to each node. In the simulations, in
nodes 1 and 3, the corresponding loads were set equal to constant values:
p̂1(t) = 0, p̂3(t) = 2. The load at node 2 was taken to be a time varying
signal given by p̂2(t) = 3 for t < 5s and p̂2(t) = 4 for t ≥ 5s.

The system’s response to the change in the load is presented in Figu-
res 3.3 - 3.6. At time instant t = 0 the system is in a steady-state. In Fi-
gure 3.3, solid lines represent simulated trajectories of power flow p12 in line
e12. One trajectory (labeled “KKT”) corresponds to the system in closed-loop
with the KKT controller alone, while the other trajectory (labeled “KKT +
MPC”) corresponds to the MPC closed-loop system described in Figure 3.2.
In Figure 3.3, dashed lines represent the steady-state line flow limit p12 = 1.2
and the transient line flow limit p12 + ∆pmax

L12
= 1.3, respectively. Figure 3.4

presents the values of the nodal prices λ as a function of time (solid lines).
These trajectories correspond to the summation of the outputs from the KKT
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Figure 3.4: Nodal prices λ as sum of λKKT and λMPC. Dashed lines represent
steady-state optimal nodal prices.
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Figure 3.5: The MPC control actions.

controller and the MPC controller. In the same figure, dashed lines repre-
sent the off-line calculated values for the steady-state optimal nodal prices,
which depend on the value of p̂2(t). The MPC control actions are presented
in Figure 3.5. The simulated trajectories of the node frequency deviations
are presented in Figure 3.6. Note that, before the change in the load p̂2,
the line is not congested and all nodal prices are equal for the steady-state
optimal operating point. After the step increase in the load, in the optimal
steady-state operating point the line is congested and, as a consequence, the
optimal nodal prices have different values. The simulation results clearly
illustrate the effectiveness of the proposed hybrid control scheme for both
steady-state and transient behavior of the closed-loop system.
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3.5 Conclusions

In this chapter we have developed a novel hybrid MPC scheme for price-
based network frequency and congestion control. With the developed control
scheme, we have shown the potential of using price signals to control of fast
occurring imbalances. The developed control scheme is shown to be efficient
in limiting large frequency excursions and extensive line overloads.

The line flow constraints in a transmission system are specified for steady-
state operation of the system, and we have shown that the price-based op-
timal controller developed in Chapter 2 guarantees fulfilment of these cons-
traints in steady-state. In other words, in Chapter 2 these constraints were
treated as soft constraints, i.e. their temporary violations were allowed du-
ring transient periods. By combining the price-based KKT controller devel-
oped in Chapter 2 with a suitably defined MPC controller, we could impose
hard constraints on the maximal transient violations of the steady-state re-
lated line flow limits. Furthermore, we could impose hard constraints on the
maximal network frequency deviations.

The MPC controller serves only to add corrective signals to the output
of the KKT controller, i.e. to the nodal prices, and acts only when the
predictions indicate that the imposed hard constraints will be violated. In
any other case, the output of the MPC controller is always zero and only the
basic price-based KKT controller is active.

Under certain assumptions, we have proven asymptotic stability of the
complete closed-loop system, i.e. of the closed-loop system with both KKT
controller and MPC controller, while performed simulations illustrated the
effectiveness of the proposed control scheme.
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As we have shown in Chapter 2, the KKT controller allows for its dis-
tributed implementation. Therefore, it would be desirable if a hybrid MPC
scheme could also be implemented in a distributed fashion. Recently, a to-
pic of distributed model predictive control (MPC) has gained a significant
interest in control system community. For recent results on this topic see
(Venkat et al., 2006a,b; Alessio and Bemporad, 2007) and the references the-
rein. For an application of distributed MPC control strategies in automatic
generation control of power systems see (Venkat et al., 2006a,b).
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4.2 Autonomous power networks
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4.5 The autonomous power
networks concept:
benefits and challenges

4.6 Conclusions

This chapter is based on the papers (Jokić and Van den Bosch, 2006; Jokić,
Wittebol, and Van den Bosch, 2006; Wittebol, Jokić, and Van den Bosch, 2005;
Agović, Jokić, and Van den Bosch, 2005).

4.1 Introduction

Power systems are going through significant changes in many aspects. Cen-
tral to the many of the changes are two major paradigm shifts occurring
in the structure and operation of power systems. Major structural changes
are caused by large-scale integration of privately owned Distributed Genera-
tors (DG) in all levels of traditional, vertically structured power system. In
the operational sense, there is a shift towards the use of competitive mar-
kets as mechanisms for both balancing power production and consumption
and for ensuring the system’s reliability. Indeed, these two major changes
are coupled and one is supporting the other. Introduction of de-regulated,
open-access markets should encourage investment in DG by creating new
business opportunities. On the other hand, non-dependence on fossil fuels
and environmental issues supporting renewable based DG together with high
efficiency of some DG units, like for instance combined heat and power units,
are introducing novel players into the system. This has an impact on power
system economics and creates a rich playground for existence of competitive
markets.

All this as well results in large changes on the more technical side of
power systems. The network, as a dynamical system, is changing its charac-
teristics on all time scales. The introduction of large amounts of DG is a
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change towards a system with striking characteristics as large time and spa-
ce heterogeneity, low inertia, extremely large uncertainties, and an extreme
increase of the number of generators in comparison to traditional power sys-
tems. A large variety of DG technologies (micro-turbines, fuel cells, wind
turbines, photovoltaic (PV) arrays, to name a few) makes the system more
heterogeneous with respect to the traditional power system that was com-
pletely relying on large-scale synchronous generators. Across the set of these
different DG technologies, there is a huge variety of possible time responses
to the changes in reference values for power outputs. Furthermore, many
of the technologies, like fuel cells or PV, are inertia-less, and all the rene-
wables, like wind turbines and PV, are practically uncontrollable in their
power outputs and are introducing large production fluctuations and large
uncertainties in any future system state prediction.

Managing a system of such an underlying technical complexity is a major
challenge, moreover since the solution has to enhance the main driving force
causing the change: existence of unbundled, competitive markets as central
mechanisms for system operation and reliability. It is also evident that a
solution necessarily needs to be based on a large amount of players capable
of competing in all the markets.

Microgrids

One of the novel paradigms for defining the operation of distributed genera-
tion, which has gained significant attention in the power system society, is
the concept of microgrids (Lasseter, 2002; Venkataramanan and Illinadala,
2002). There is no simple or rather complete definition for a microgrid that is
able to present in a concise way its major characteristics and objectives. The
papers (Lasseter, 2002) and (Venkataramanan and Illinadala, 2002), which
are among the first references on the topic, define a microgrid as a cluster
of loads and microsources (DG units) that operates as a single controllable
system, which provides both power and heat to its local area. To the utility
a microgrid can be thought of as a controlled cell of a power system, while
to the customer inside the microgrid, it can be designed to meet customers
special needs; such as, enhance local reliability, reduce feeder losses, sup-
port local voltages, provide increased efficiency through use of waste heat,
or provide uninterruptible power supply functions. As in these two papers,
in most of the references dealing with microgrids, see e.g. (Lasseter and Pia-
gi, 2004; Kueck et al., 2003) and the references therein, the major emphasis
is on the microgrid’s internal objectives, problems and their solutions. One
of these objectives that has been widely studied (Pecas Lopes et al., 2003)
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is the possibility of a microgrid to efficiently operate in an island mode, i.e.
disconnected from the rest of the power system.

Much less attention has been paid to the relationship between the micro-
grid and the local utility, and the main feature of this relationship is often
summarized in the statement that a microgrid is a well behaved, “good citi-
zen” or “model citizen” (Lasseter et al., 2002) in the overall power system.
By “good” behavior, it is in most cases thought of a low impact, or more im-
portantly on absence of a negative impact, that a microgrid has on the rest
of electricity network, despite a potentially significant level of generation by
intermittent renewable sources (Abu-Sharkh et al., 2004). This low impact
is attained by a good match between generation and load inside microgrids,
even for faster time scale (seconds).

What is however less clear is the reward that would encourage a micro-
grid to behave in this way, especially in the case when the outside system is
rather strong and the microgrid’s total installed capacity is relatively small
so that even in the worst case, sudden internal imbalances would have a
rather low impact on the outside system. In the case of a significant number
of microgrids in the system, their mutual and overall system impacts will
indeed become significant, and “good citizen” behavior would not only be
desirable but is also becoming a necessity. To the best of our knowledge,
some more detailed elaboration of the overall system’s operation in such a
microgrids-based system has not yet been presented. Still, several references
are addressing this topic. In (Dimeas and Hatziargyriou, 2005) the operation
of a multiagent system for control of microgrids in a market environment is
presented. Only the real power market has been considered, and the empha-
sis of the paper is on the details of an auction algorithm and the operation
of microgrids market agents. In (Abu-Sharkh et al., 2004) the possibility of
creating local ancillary services markets has been addressed as an important
issue. Similarly (Kueck et al., 2003) refers to provision of ancillary services
from microgrids as a future research need.

The goal of this chapter is to take the microgrid concept one step fur-
ther. It presents the concept of autonomous power networks as a realistic
approach to deal with increased complexity and uncertainty of the future
power systems, while enabling markets-based operation for both dispatch
(economic) and ancillary services (reliability).

For an autonomous power network internal control action, with the emp-
hasis on voltage magnitude control, we refer to (Provoost et al., 2005b,a,
2007).
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4.2 Autonomous power networks

An autonomous power network (AN) is an aggregation of networked pro-
ducers and consumers in a relatively small area with respect to the overall
power system, whose operation is coordinated/controlled with one central
unit (AN market agent) acting as an interface in between internal produ-
cers/consumers and the rest of the power system, see Figure 4.1 and Fi-
gure 4.2. The goal of an AN market agent is efficient deployment of AN’s
internal resources and its active involvement in overall system competitive
markets where it reflects the preferences of its owners, i.e. of its internal
producers/consumers. In the physical as well as in the economical layer,
i.e. in power and ancillary service markets, each AN is presented as one
producer/consumer.

Although it shares many of the objectives and characteristics with the
microgrid, an AN has an additional property: it is a major building block
of a power system in all of its layers, i.e. physical, economic and reliability.
The idea of the overall system being a network of ANs is the central idea of
the AN concept. It is the requirement for active involvement of an AN in
all of the layers of the system, that defines an AN as a major building block
of the system. For power balance and reliability issues (ancillary services)
this implies that AN is obliged to provide, in an appropriate form, the in-
formation of its own actions and to take the responsibility for these actions.
Note that the “good citizen” behavior, if defined as within the microgrid
concept, implies high uniformity of microgids in some of their characteris-
tics, e.g. each microgrid has well controlled power exchange with the rest of
the network, even for the time scale of seconds. In the AN concept, there
are no such a priori characterizations (constraints), and different ANs can
have significantly different characteristics. However, it is crucial that all the-
se, possibly different and time-varying characteristics are taken into account
on the global level, so that the overall system will operate efficiently and
reliably.

Good citizen behavior for an AN is defined by the requirement for its
active and responsible involvement in the energy and ancillary service mar-
kets, as well as for following a set of pre-defined rules in provision of the
commodities sold in these markets. Energy and ancillary services markets
provide global coordination and time synchronization of ANs actions. These
markets have a central role in keeping the power balance between ANs and
in ensuring the overall system’s reliability by accumulating sufficient levels
of ancillary services, e.g. regulation capacity, spinning, non-spinning or ope-
rational reserves, etc. As presented in the next section, ANs can be both
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Figure 4.1: Autonomous power networks.

producers and consumers of ancillary services. This is a novel and unique
feature, and is in line with the driving forces for the power system restruc-
turing, since it introduces a large amount of well-defined players in ancillary
service markets. In AN based power systems, spare capacities for ancilla-



76 Autonomous power networks

Figure 4.2: Operational structure of a power system based on autonomous
networks.

ry services are treated in an equivalent way as energy is treated in energy
markets. As a result, the operational structure of ancillary service markets
becomes analogous to energy market. With the increase of uncertainties in
the future power systems, e.g. due to the increased penetration of renewable
sources, it is expected that the value of transactions in these markets will
increase as well.

To summarize, an AN is seen as an intrinsically local co-operative ven-
ture. Each of its internal members accepts the AN, presented by the AN
market agent, as its operational authority and in return shares the benefits
of this co-operation. The AN market agent is therefore the highest authority
for these members. Each unit (producer/consumer) can also act as an isola-
ted player, but it is then required to take responsibilities in all layers of the
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system, i.e. it is presented in the overall system as an AN. This especially
holds for large-scale synchronous generator based producers or large-scale
consumers, e.g. large factories, that are by themselves capable of efficient
involvement in markets. For price inelastic consumer inside some AN (e.g.
residential loads), AN becomes a market agent acting on their behalf. Fur-
thermore, for those consumers, the AN offers a possibility of their efficient
involvement in ancillary service markets if they agree on a certain level of
interruptions in power supply.

In contrast to the microgrids, which are usually associated with a “small
community”, like for instance typical housing estate, isolated rural communi-
ties, academic or public communities such as universities and schools, com-
mercial areas or trading estates, what implicitly defines a microgrid as a
very small cell of a power system, we do not restrict to any particular sizes
of networks candidates for AN. Possible different sizes of coexisting ANs are
a result of their efficiency in a competitive market environment. For existen-
ce of efficient overall markets, it is important that large amounts of ANs are
mutually interconnected. A well-meshed topology of transmission networks
fits well for this purpose. In this network topology the candidate areas for
ANs are all medium and low voltage networks with aggregated DG units and
corresponding loads. An illustration of New England system as an AN-based
system is presented in Figure 4.1.

4.3 Power balance and reliability

In this section we formulate the optimal power balance and reliability pro-
blem of a power system as a constrained optimization problem. The concept
of autonomous power networks is formally presented as a decomposition ba-
sed method for solving this optimization problem. The optimization problem
is decomposed into a set of subproblems where each subproblem is assigned
to one autonomous network. Coordination and time synchronization among
subproblems, i.e. among ANs, is performed through power and ancillary ser-
vices markets.

Ancillary services and reliability

By treating ancillary services, e.g. regulation capacity, spinning, non-spinning
or operational reserves, etc., as market commodities, the objectives of the
corresponding markets are to ensure a required reliability level of the power
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system. This required level of reliability is defined by the required total ac-
cumulated amount of each commodity. For instance, hourly spinning reserve
requirements are usually defined to be greater than a fixed percentage of
total forecast demand or the largest on-line unit.

To simplify mathematical formulations we will consider only one ancillary
service and denote it with A. However, extension to include more different
types of ancillary services is straightforward. Generally, with A we denote a
capacity that is available as a power injection (positive or negative) in the
system within some specified time interval. The system’s required reliability
level at some time t (t ≥ 0) is given by∑

i

Ai(t) ≥ Areq(t), (4.1)

where Ai(t) is the available capacity from unit (producer/consumer) i, and
Areq(t) is the required capacity that has to account for an uncertainty in
power production/demand, and can be different for a different t.

Suppose that for a certain autonomous network n it is required to have
the amount Areq

n (t) of the ancillary service capacity to ensure reliable ope-
ration of the AN. Then, the reliability condition of an autonomous network
n is given by

mn∑
i=1

An,i(t)−Aex
n (t) ≥ Areq

n (t), (4.2)

where An,i(t) is the capacity [W] available from unit i inside AN, mn is the
total number of units inside the autonomous network n,

∑mn
i=1 An,i(t) is the

total capacity available in the AN, and Aex
n (t) is the capacity that the AN

sells to the outside system, i.e. to other ANs.
For simplicity, further in the text we will leave out time dependence in

the notation, although we consider all the quantities being time dependent.
Note that if Aex

n is negative, the AN is buying this amount of the ancillary
service capacity from the outside system. Suppose that the overall power
system consists of N autonomous networks. Then, from (4.2), we can write

N∑
n=1

mn∑
i=1

An,i −
N∑

n=1

Aex
n ≥

N∑
n=1

Areq
n . (4.3)

Since the overall system is a network of ANs, i.e. each consumer or producer
is necessarily within some AN, we can take Areq =

∑
n Areq

n , i.e. required
overall system capacity is sum of required capacity levels for each AN. From
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(4.3), to ensure the reliability of the overall system, the task of the corres-
ponding ancillary service market is to achieve the balance of ancillary service
capacities among ANs, i.e. to ensure the following equality

N∑
n=1

Aex
n = 0. (4.4)

Note that with the above formulation, capacity from ancillary services is
traded in an equivalent way as electrical energy is traded in today’s markets.
All ANs determine their own required level of spare capacity, i.e. Areq

n , all
ANs are producers and consumers of spare capacity, and the overall balance
has to be achieved. This is in contrast with today’s power systems where
the required capacity for system’s reliability is determined by an indepen-
dent system operator (ISO). An ISO therefore presents the only demand for
ancillary service capacities, i.e. in today’s power systems ISO is the only
“consumer” of ancillary services.

In AN-based power system, attaining the required overall system relia-
bility level becomes a decentralized decision and each AN contributes. This
decentralization is desirable due to the overall system’s complexity and its
large scale, as for an AN it is easier to assess its internal required capaci-
ty level based on local predictions and on generally better insight into its
internal situation.

Power balance

The power balance within an autonomous power network n is given by

mn∑
i=1

Pn,i − P ex
n = Ln, (4.5)

where Pn,i is the power injection from unit i in an autonomous power network
n,

∑mn
i=1 Pn,i is the total power produced inside the AN, Ln is the total

internal load of the AN, and P ex
n is power that the AN sells to the outside

system. If P ex
n has negative value, the AN buys power from the outside

system. Obviously, from (4.5), the goal of the real power market is to ensure
the following equality

N∑
n=1

P ex
n = 0, (4.6)

i.e. to ensure the power balance among ANs.
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Coupling between power and ancillary services

Since power and ancillary services are provided by the same set of units, there
is a coupling in between these commodities. Naturally, if a generating unit
operates on its maximal power output, it has no capacity left for additional
(positive) power injection into the network, i.e. it can not perform the (up-
regulating) ancillary service.

More precisely, let Pn,i and An,i denote the power and ancillary service
capacity of a generating unit i in an autonomous network n, and let Pmin

n,i and
Pmax

n,i denote the lower and upper production limit of the unit, respectively.
Furthermore, suppose that the ancillary service A is defined as the capacity
for both up and down regulation in power production, i.e. as the capacity
which is available as both positive and negative power injection within a
predefined time interval upon the request. Then the following constraints
hold

Pmin
n,i ≤ Pn,i ≤ Pmax

n,i , i = 1, . . . ,mn, (4.7a)

0 ≤ An,i ≤ min(Amax
n,i , Pn,i − Pmin

n,i , Pmax
n,i − Pn,i), i = 1, . . . ,mn, (4.7b)

where Amax
n,i is the absolute value of the increment in power production that

the corresponding unit can achieve within the predefined time interval.
The constraints (4.7b), which ensure that the working point of a pro-

duction unit is sufficiently distanced from the saturation limits of the unit,
couple the power and ancillary service capacity.

Social welfare maximization problem

In addition to the fulfilment of the power balance and reliability conditions,
the operational goal of a power system is to perform this task in an opti-
mal way. Here, optimality is defined through the total social welfare of the
system.

For simplicity of the presentation, we will not consider the benefit func-
tions of consumers, i.e. we will assume that the social welfare maximization
problem is equivalent to the total cost minimization problem. This is wit-
hout any loss of generality and inducing the consumption side in the problem
is straightforward.

With the abbreviations Pn = col(Pn,1, . . . , Pn,mn), An = col(An,1, . . . ,
An,mn), i = 1, . . . , N and P = col(P1, . . . , PN ), A = col(A1, . . . , AN ), P ex =
col(P ex

1 , . . . , P ex
N ), Aex = col(Aex

1 , . . . , Aex
N ), the cost problem for the overall
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power system is defined as follows:

min
P,A,P ex,Aex

N∑
n=1

fn(Pn, An) (4.8a)

subject to
mn∑
i=1

Pn,i − P ex
n = Ln, n = 1, . . . , N (4.8b)

mn∑
i=1

An,i −Aex
n ≥ Areq

n , n = 1, . . . , N (4.8c)

gn(Pn, An) ≤ 0, n = 1, . . . , N (4.8d)
N∑

n=1

Aex
n = 0, (4.8e)

N∑
n=1

P ex
n = 0, (4.8f)

where fn(Pn, An) :=
∑mn

i=1 fn,i(Pn,i, An,i) denotes the aggregated costs of an
autonomous network n for producing Pn and An (fn,i(Pn,i, An,i) denotes the
cost of unit i for producing Pn,i and An,i). For compactness, the constraints
(4.7) are represented in (4.8) by the generic constraints (4.8d). More preci-
sely, for each n ∈ {1, . . . , N} the constraint gn(Pn, An) ≤ 0 stands for the set
of constraints (4.7). Note that the constraints (4.8b), (4.8c) and (4.8d) are
defined on the AN level, i.e. they are decoupled for each AN, while (4.8e)
and (4.8f) are the coupling constraints among ANs.

For all the considerations in this section, we assume that the optimization
problem (4.8) is convex.

The solution of the optimization problem (4.8) defines the optimal ope-
rating point for the overal power system and corresponds to the operating
point that would be achieved with efficiently designed power and ancilla-
ry services markets under the assumption of perfect competition. So, the
above formulated optimization problem implicitly defines the ideal system
operation that the market-based system strives for.

Dual decomposition

To present a market-based solution to the social welfare maximization pro-
blem (4.8), we use the Lagrangian relaxation and we dualize only the coupling
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constraints (4.8e) and (4.8f). The partial Lagrangian is then given by

L(P,A, P ex, Aex, λP , λA) =
N∑

n=1

fn(Pn, An)−λP
N∑

n=1

P ex
n −λA

N∑
n=1

Aex
n , (4.9)

where λP and λA denote the Lagrange multipliers, and the Lagrange dual
problem is given by

max
λP ,λA

`(λP , λA), (4.10)

where `(λP , λA) is the dual objective function, which is defined as follows

`(λP , λA) := min
P,A,P ex,Aex

{
L(P,A, P ex, Aex, λP , λA)

subject to (4.8b), (4.8c), (4.8d)
}

. (4.11)

Note that for fixed λP and λA, the minimization problem in (4.11) can be
decomposed in N subproblems, where each subproblem is assigned to one
AN only. For an autonomous network n, this subproblem is given by

min
Pn,An,P ex

n ,Aex
n

fn(Pn, An)− λP P ex
n − λAAex

n (4.12a)

subject to
mn∑
i=1

Pn,i − P ex
n = Ln, (4.12b)

mn∑
i=1

An,i −Aex
n ≥ Areq

n , (4.12c)

gn(Pn, An) ≤ 0, (4.12d)

and it represents the benefit maximization problem of the AN in a market-
based system with λP and λA corresponding to the current market prices for
power and ancillary service.

For some given values of λP and λA, the minimizers P̃ ex
n and Ãex

n of
the optimization problem (4.12) represent the optimal values of power and
ancillary service capacity for exchange with the rest of the power system, i.e.
with other ANs. In other words, with the given market prices λP and λA,
the autonomous network n will gain a maximal profit if it buys (sells) the
amount of power equal to P̃ ex

n and if, at the same time, it buys (sells) the
amount of ancillary service capacity equal to Ãex

n .
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The maximizers λ̃P and λ̃A of the dual problem (4.10) correspond to
the optimal market prices for power and ancillary service. For the optimal
market prices it holds that

∑N
n=1 P̃ ex

n = 0 and
∑N

n=1 Ãex
n = 0, i.e. that the

overall power system is in balance, and that the total social welfare of the
system is maximized.

To summarize, market-based operation of an AN-based power system
corresponds to the dual decomposition of the social welfare maximization
problem (4.8). Each AN solves its own benefit maximization problem (4.12)
as a function of spot prices λP and λA, and in summation all ANs define the
dual objective function (4.11). The goal of the power and ancillary service
markets is to solve the dual problem (4.10) by finding the optimal spot prices
λ̃P and λ̃A.

Before continuing with a more detailed presentation of market operation
of AN-based power systems, note that in a more precise formulation the
power balance constraint between ANs, i.e. the constraint (4.8f), is replaced
by power flow equations of the transmission network which connects ANs.
Furthermore, transmission line power flow limits are added as inequality
constraints. In this case, the partial Lagrangian (4.9) and the dual problem
(4.11) include the Lagrange multipliers corresponding to the power balance
equalities in each node of the transmission network, as well as the Lagrange
multipliers for power flow limit constraints in the lines of the transmission
network. The result of such a formulation is that, at the optimum, each node
in the transmission network, and therefore each AN, in general can have a
different nodal price for electrical power. For more details on nodal pricing
see Chapter 2 of this thesis.

It is also possible to account for transmission network limits in the pri-
cing of ancillary services. The result is the introduction of nodal prices for
ancillary services. For more details on nodal pricing of ancillary services we
refer to (Chen et al., 2003; Alvarado, 2006).

4.3.1 Market operation

In this subsection we consider the operation of power and ancillary servi-
ce markets of AN-based power systems in some more detail. We present
two possible market operation structures: bids-based markets and iterative
markets. Our main emphasis is on the trade-offs that each AN is facing in
its desire to maximize its own benefit, which are induced by the coupling
between power and ancillary services. Finally we address the need and the
possibility of creating the markets that are operating in a receding horizon.
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Bids-based markets

In present power systems, forward time power markets, e.g. day-ahead po-
wer markets, are bids-based markets. In such a market, producers submit
power-price supply bids, while the consumers (or retailers) submit power-
price demand bids. The market operator aggregates all the supply bids into
the supply curve and all the demand bids into the demand curve. Intersec-
tion of the aggregated supply and demand curves defines the market price
for electricity λP .

In AN-based power systems, bids-based operation of a power market is
analogous to the operation of present power markets. The only difference is
that the market operator does not make a distinction between supply and
demand bids. More precisely, an autonomous network n submits a power-
price bid λ̄P

n (P ex
n ) that generally ranges from negative (demand offer) to

positive values (supply offer) of the power exchange P ex
n , as each AN can be

both producer and consumer of electrical energy. Each point (P ex
n , λp) on a

bid curve λ̄P
n (P ex

n ), see Figure 4.3, defines how much power P ex
n the AN will

to trade with the rest of the power system, if the market price is equal to
λp = λ̄P

n (P ex
n ). The market operator aggregates the bids from all ANs into

one curve and determines the market price λ̃P as the price for which the total
aggregated curve fulfils the constraint (4.8f), i.e. as the price which clears
the market by establishing the power balance among ANs. The bids-based
operation of an AN-based power market is illustrated in Figure 4.3.

A novelty introduced by AN-based power systems is a unique and no-
vel treatment of ancillary services. Each AN submits a capacity-price bid
λ̄A

n (Aex
n ), which generally ranges from negative (demand offer) to positive

values (supply offer) of the capacity exchange Aex
n , as each AN can be both

producer and consumer of ancillary service capacity. The market operator
aggregates all the capacity bids into one curve, and determines the market
price λA as the price that results in the capacity balance among ANs.

Note that in the bids-based markets, each AN is obliged to submit an
independent bid to each of the markets, i.e. to the power and the ancillary
service markets. Therefore, due to the coupling between power and ancillary
services, an AN has to take the responsibility of determining its own trade-off
between the prices and quantities of power and ancillary service capacities in
the submitted bids. To be more precise on this issue, let us consider the AN’s
benefit maximization problem (4.12), where the set of inequality constraints
(4.12d) includes the coupling constraints between power and ancillary servi-
ce capacity, e.g. the constraints (4.7). We will say that the pair (P ex

n , Aex
n )

is feasible if for those values the constraints (4.12b),(4.12c),(4.12d) are fea-
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Figure 4.3: Operation of bids-based markets in an autonomous networks
based system.

sible in Pn and An. We make the following definition in connection with the
optimization problem (4.12):

Jn(P ex
n , Aex

n ) := min
Pn,An

{
fn(Pn, An)

subject to (4.12b), (4.12c), (4.12d)
}
, (4.13)

where we take Jn(P ex
n , Aex

n ) := ∞ if (P ex
n , Aex

n ) is not a feasible pair. Fur-
thermore, we define the following mappings:

λ̃P
n (P ex

n , Aex
n ) :=

∂Jn(P ex
n , Aex

n )
∂P ex

n

, (4.14a)

λ̃A
n (P ex

n , Aex
n ) :=

∂Jn(P ex
n , Aex

n )
∂Aex

n

, (4.14b)

where for a fixed Aex
n , ∂Jn(P ex

n ,Aex
n )

∂P ex
n

denotes a subgradient of Jn at P ex
n , and

the right hand side in (4.14b) is defined analogously. Note that λ̃P
n (P ex

n , Aex
n )

and λ̃P
n (P ex

n , Aex
n ) are defined only for a feasible pair (P ex

n , Aex
n ). The value

of λ̃P
n (P ex

n , Aex
n ) represents the incremental cost of the AN for a change in

P ex
n , while the value of λ̃A

n (P ex
n , Aex

n ) represents the incremental cost of the
AN for a change in Aex

n .
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In perfectly competitive markets, an AN would bid its incremental costs
to the power and ancillary service markets. However, the power incremen-
tal cost λ̃P

n (P ex
n , Aex

n ) depends on the value of Aex
n , and to make a valid

bid λ̄P
n (P ex

n ) to the power market, the AN market agent has to predict Aex
n

and, based on this prediction, to determine λ̄P
n (P ex

n ) from λ̃P
n (P ex

n , Aex
n ).

Analogously, the AN market agent has to approximate the ancillary service
incremental costs λ̃A

n (P ex
n , Aex

n ) to define a valid bid λ̄A
n (Aex

n ) for the ancillary
service market. Even in the conditions of perfect competition, due to the ne-
cessary approximations, the bids-based markets in general do not guarantee
the maximization of the total social welfare.

Iterative markets

It is possible do design power and ancillary service markets that, under the
conditions of perfect competition, guarantee that the maximal social welfare
is attained. Such markets are more complex, as they are based on iterative
exchange of information between markets operators and market players. For
completeness of the presentation we shortly address the possibility of this
operational structure.

The operation of iterative markets corresponds directly to solving the
social welfare optimization problem (4.8) by a dual decomposition method.
For details of decomposition methods in optimization we refer to Chapter 6 of
(Bertsekas, 1999). For an application of such an approach in power markets,
see (Conejo and Aguado, 1998; Aguado and Quintana, 2001).

Suppose that at the beginning of the iterative process, a market operator
announces the prices λP and λA. Then the operation of the iterative markets
is based on iterations beween the following two steps:
1) Based on the announced prices λP and λA, each AN solves its benefit
maximization problem and communicates the values of the corresponding
minimizers P̃ ex

n and Ãex
n to the market operator.

2) The values (−
∑N

n=1 P̃ ex
n ) and (−

∑N
n=1 Ãex

n ) define a sub-gradient for the
dual problem (4.10). Knowing this sub-gradient, the market operator makes
an update of the prices λP and λA, using a subgradient, a cutting-plane, or
some other method.

For a convex social welfare maximization problem (4.8), the above ite-
rative algorithm converges to the optimum, i.e. optimal market prices are
attained, which maximizes the social welfare of the system.
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Receding horizon markets

The above presented general operational formulation of AN-based power
systems is valid for any forward time markets. Usually forward time markets
have a horizon of one day and result in a unit commitment solution for the
overall system. For the AN-based power systems, we can still expect the
existence of markets with day-ahead horizon, since for large-scale units this
long horizon is necessary for solution of unit commitment. However, DG
units have much shorter up and down minimum times, and can quickly be
brought back on-line once they where shut down. Furthermore, increased
uncertainties (renewables) make the future AN’s state badly predictable.
Therefore it might be beneficial, or even necessary, that an AN performs a
dispatching and unit commitment in a receding horizon manner with a much
shorter “sampling time”, which is properly adjusted with respect to the AN’s
internal characteristics. To accommodate such operation of ANs, future time
markets should operate in a receding horizon as well.

For illustration, suppose that all the markets operate in a receding ho-
rizon with the trading intervals of 30 minutes, and with the horizon of one
day. Receding horizon operation means that all the markets are cleared each
30 min. Here, clearing the markets mean that the prices for power and all
ancillary services are determined for each trading period in the horizon, i.e.
for each half-hour interval, looking one day ahead from the current moment.

Now, suppose that some AN has a large amount of small DG units. To
optimally exploit these internal resources, this AN can internally operate
with a shorter “sampling time” than the sampling time of the markets, i.e. it
can re-dispatch its resources, for example, each 10 minutes. However, since
AN has to represent itself to the markets with the bids for power and ancillary
services over the time intervals of 30 min, in performing the dispatch (and
unit commitment), the AN market agent has to include additional set of
equality constraints in its optimization problem. These equality constraints
couple the blocks of three subsequent (AN’s internal) sampling periods by
requiring that P ex, Aex, Bex, etc., are constant over these periods.

Note also that different ANs can have significantly different internal ope-
rational structure. For example, some ANs might operate based on internal
markets (with different, internal sampling time) for power and ancillary ser-
vices. In that case AN market agent acts as an ISO for its internal produ-
cers/consumers, and as a single player in the system-wide markets. On the
other side, some ANs can have complete knowledge of the cost/benefit func-
tions of their internal members and act (only) as a players in the system-wide
markets.
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Figure 4.4: Required capacities Breq and Areq for AN’s reliability.

To summarize, each AN can optimally determine the parameters, e.g.
sampling time, of its internal operation, but in its operation it is responsible
to comply with the system-wide integration “protocols”, i.e. it has to submit
the bids with the sampling time of the markets. This allows for co-existence
of ANs that have significantly different internal operational characteristics
and structure.

4.4 Example

The simulation of optimal AN dispatching in the day ahead markets, based
on predicted spot prices for real power, and two ancillary services, named
A and B, has been performed. The simulated AN consists of 8 controllable
generating units. The considered trading period was half an hour. The
required levels (Breq, Areq) of capacities for ancillary services are presented in
Figure 4.4. Predicted spot prices of real power P and ancillary services A and
B are presented in Figure 4.5, while Figure 4.6 presents the corresponding
optimal values of P ex, Aex and Bex.

The set of constraints that accounts for the coupling between real power
and ancillary service capacity (i.e. corresponding to (4.12d) in the general
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Figure 4.5: Market prices λP , λA and λB.

Figure 4.6: Optimal values of P ex, Aex and Bex.

formulation), is taken in the following form:

0 ≤ Ai ≤ min(Amax
i , Pi − Pmin

i , Pmax
i − Pi), i = 1, . . . , 8, (4.15a)

0 ≤ Bi ≤ min(Bmax
i , Pmax

i − Pi), i = 1, . . . , 8, (4.15b)

i.e. the ancillary service A denotes the capacity available for both up and
down movements in power production, while the ancillary service B denotes
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the (slower) available capacity for up movements in power production (power
injection). The values of prices, internal AN’s loads, and production from
uncontrollable generators, e.g. wind turbines, are chosen in such a way that
the trade-offs induced by coupling of commodities (P , A, and B) are easily
observed, rather than taken to have some realistic daily profile. Internal
loads, as well as the production from uncontrollable generators, are taken to
be constant. Costs for power production of controllable units are taken to
be quadratic functions of produced power.

From the obtained simulations, we can easily observe the coupling bet-
ween the commodities. For example, the increase of the price λB during
the trading periods 1 − 9 resulted in the increase of Bex, ranging from the
negative to the positive values of Bex. With the increase of Bex, P ex is de-
creased. Loosely speaking, this is because of the following reason: to allocate
more spare capacity B, according to (4.15b), the generating units necessari-
ly need to operate in a restricted operating range, what puts the limits on
the maximal value of P ex. By restricting their operating range according to
(4.15b), the same generating units now as well have an opportunity to sell
more capacity A, see (4.15a), and as a result we can observe the increase of
Aex, although the price λA is constant over these trading periods.

Similar effects of the coupling between the commodities can as well be
observed in the remaining (10− 48) trading periods.

4.5 The autonomous power networks concept: be-
nefits and challenges

In the previous sections we have introduced the autonomous power net-
works as main building blocks of the operational structure of a power sys-
tem. The ANs were represented as an intermediate layer in the hierarchy
of the system’s operational structure, see Figure 4.2. More precisely, the
“ANs layer” stands between the lowest layer, represented by atomic pro-
ducers/consumers, e.g. single power/capacity units, and the highest layer,
which corresponds to the power and ancillary service markets. One may ar-
gue about the necessity and the added value of introducing this intermediate
layer in the operational structure of a power system. Furthermore, one may
argue that the ANs are already present in today’s power systems as control
areas (which in Europe often correspond to national borders) and the cor-
responding system operators. We have left the discussion of these issues for
the final section in the chapter, as the subjects presented in the previous
sections form the basis for such discussions.
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In the following subsections we discuss the benefits of the proposed AN
concept with respect to its implications on dealing with increased uncertain-
ties, the large-scale and complexity of the power system, and on its support
of competitive markets.

4.5.1 Uncertainties and reliability

In today’s power system, the independent system operator (ISO) determines
the required amounts of ancillary services for each trading period. For each
ancillary service, this task is performed based on the corresponding reliability
standards and regulations. For example, the standards require that the
amount of spinning reserve has to be greater than the largest committed unit,
as it has to account for its possible loss. This reserve requirement is known
as the (N − 1) reliability criterion and is based on the rule that all loads
have to be served at all times without interruption. As another example,
the required capacity for automatic generation control is correlated to the
aggregated uncertainty and/or predicted rates of change in power demand.

In contrast to this, in the ANs based power systems each AN determines
its own required amount of ancillary service capacities over each time period.
Such decentralization of (parts of) ISO services carries both advantageous
and disadvantageous implications for the system operation. Our emphasis is
therefore on the need of finding the optimal trade-offs in between the two.

It is well known that the uncertainty in the prediction of power produc-
tion/consumption of an aggregated set of producers/consumers is smaller as
the considered set is larger. This is the effect of aggregation of partially or
fully uncorrelated effects. Having in mind this positive effect of aggregati-
on, it is preferable to rely on a highly centralized operational structure with
one central authority, e.g. ISO, responsible for determining the required
amounts of ancillary services for the complete power system. With access to
the system-wide information, the central authority can adequately comply
to the (N − 1) reliability criterion. Therefore, a crucial question is the fol-
lowing: what are the driving forces to base operation of the system on the
ANs, which correspond to the aggregated subsets of consumers/producers
and are therefore characterized by larger relative uncertainties than those on
the overall system level?

Spatial dimension of reliability

One part of the answer to the above question is in the spatial character
of a power system and its reliability. Due to finite transmission network
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capacity and possible outages of transmission lines, to ensure and to increase
reliability of power supply, power production and ancillary services need to
be distributed across the system. If the operation of the system would be
based on one central authority, this authority would therefore necessarily
need to keep track of spatial distribution of uncertainties and consequently
of the spatial distribution of ancillary services. It is this spatial dimension
of uncertainties that puts the limits on the positive effect that one can gain
from the aggregation of uncertainties. For example, there is a little benefit of
having less uncertain predictions for the aggregated European power system,
if one has to account for its spatial dimension. Consequently, there is a little
benefit of having one European ISO, in comparison with a set of efficiently
cooperating ISOs, each acting upon “local” predictions. The latter describes
the actual operational structure of today’s European system, while increase
of the cooperation efficiency is one of the central research topics for many
years now.

We can conclude that the ANs are already present in today’s power sys-
tems in the form of control areas (which in Europe often correspond to nati-
onal borders) and the corresponding system operators. They are an interme-
diate, decomposition/coordination based layer of the operational structure
of European power system. Loosely speaking, we can see the concept of ANs
as further refinements (decomposition) of this already present structure. In-
troduction of large amounts of distributed generation (DG) is taking place in
virtually all geographical ares and not only on the transmission network level,
but also on-side to the loads in the medium and low voltage (distribution)
networks. The system is going through the transformation from vertically
structured into the horizontally structured system. There is no longer a clear
division between “top” production end of the system, and the “bottom” con-
sumption end. Further refinement of already present ANs (control areas) can
be justified by a tendency to reach the operational structure that will in the
most practical way facilitate the optimal exploitation of mixed distribution
of consumers and producers in a horizontal power system, and to facilitate
the local character of DG by enhancing local reliability.

To summarize, one of the driving forces for introduction of ANs is to
enhance local reliability of power supply by optimally exploiting distributed
generation. Note that this is also one of the central ideas in the microgrid
concept (Lasseter, 2002; Venkataramanan and Illinadala, 2002). However,
as already argued in the introduction of this chapter, a microgrid is a rather
extreme step in this direction, with an unclear formulation from the overall
system point of view. In the ANs concept, ANs represent building blocks
of an operational structure, which is tailored to optimally account for the
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trade-offs between local security and reliability of supply on one side and
complete reliance on the benefits of large-scale networking on the other side.

Note that in future power systems with a large amount of relatively small
producers, there might be a need for revision of requirements for (N − 1)
reliability criterion. Suppose that at a certain time instant, there are no
large-scale production units committed, and virtually complete demand is
balanced by DG. Apparently, it such a situation it is a challenging task to
fined a well-grounded rules for defining the (equivalent to) (N−1) reliability
criterion.

Double-sided competition for ancillary services

The next important driving force for introduction of ANs is the desire to
impose the the following principle: the system operation is based on such
rules (protocols) that create the incentive for reducing the uncertainties in
the system. A first step towards the possibility of having such operational
protocols is that the basic building elements of the system are capable of
keeping track of their contribution to the uncertainty in the overall system,
and are capable of bearing the responsibility for it. The protocols then
have to adequately define those responsibilities for an element in the system.
Here “adequately” means that the protocols will indeed result in the desired
incentives.

For example, consider the operational structure where renewable energy
sources, e.g. wind turbines, pay the ISO certain fixed amount to account for
the uncertainties in their production over some relatively long time horizon,
e.g. month or year. Here, by relatively long time horizon we mean relative
to the time scale present in the definition of each particular ancillary service.
Furthermore, suppose that these wind turbines are not required to define
and announce their day-ahead production profile, but the ISO is responsible
to account for this profile by adding to the uncertainty in predictions and by
adequately increasing the required amount of ancillary services. Obviously,
this operational structure provides no incentive to reduce the uncertainties.
Providers of ancillary services only have to satisfy the demand, but have
no influence on it, while the wind turbines bear no further responsibility
for their actions. It is important to note that the wind turbines have a
technical possibility (although limited) of reducing its uncertainties and even
of participating in frequency control or acting as a spinning reserve, see
(Kristoffersen, 2005; Verhaegen et al., 2006) for more details.

Now suppose that a set of wind turbines acts as an autonomous power
network, and is therefore required to comply to the set of predefined system
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integration protocols. This set of turbines is then required to keep track
of its own uncertainty by estimating its own Areq(t), Breq(t), etc., and it is
responsible to ensure that at each time instant these amounts of ancillary
services will be allocated in the system. By accepting this responsibility
(and the accompanying penalties), this AN has an incentive to estimate
Areq(t), Breq(t), etc., as accurately as possible. Furthermore, depending on
the current market situation, by taking appropriate internal actions, this
AN now has an incentive to reduce its own uncertainties on the point of
interconnection with the reset of the power system.

The benefit of the ANs concept is the introduction of the double-sided
competitive markets for ancillary services, i.e. markets which are characte-
rized with large amount of players on both supply and demand side. Com-
petition and responsibility of delivering the treated commodities, create the
incentive for reduction of uncertainties in the system. The ANs are well defi-
ned players in such a system, as it is reasonable to demand that they bear the
responsibility for of their own actions. Note that for the latter issue, the size
of an ANs plays a crucial role. It is not reasonable to expect that each small,
single “atomic” consumer, e.g. a household, complies to all the integration
protocols and is held responsible for all its action. This is so for the following
two reasons. Firstly, such requirements would put serious constraints on the
behavior of the consumer, which would then no longer enjoy simplicity of the
“plug and play” principle that today’s power systems provide. Secondly, if a
consumer desire to use the network with plug and play simplicity, it would
be required to buy the ancillary services to account for almost its complete
installed capacity. In other words, if a small consumer is held responsible to
ensure its own reliability, such a system would almost completely disregard
the benefits of aggregation.

To summarize, in forming the ANs as the building blocks of the system,
there are different opposing forces concerning the sizes of the coexisting ANs.
On one side, to exploit the benefits of aggregation of uncertainties, one desi-
res an AN to be as large as possible subsets of the overall power system.
However, to cope with the spatial dimension of the system, there is a limit
from the benefits that one can obtain from this aggregation by increasing
the size of ANs. On the other side, to create the incentives for dealing with
the uncertainties in the system by facilitating competition, one would desire
a large amount of players capable for competing in all markets. Obviously,
there is a trade-off between those opposing forces. In the optimal scenario
ANs should be characterized as both competitive and thrust worth parters.

Finally, there is an additional crucial driving force for introduction of
ANs and that is the necessity of operational decomposition to deal with the
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large-scale and complexity of the overall system. This is especially important
for the unit commitment problem, which is not scalable. It is impossible to
solve this problem for a large amount of units in some reasonable time period.
An AN offers the unit commitment service for its internal members. With
the coordination and time synchronization of ANs through the system-wide
markets, the unit commitment problem is efficiently solved for large systems.

4.6 Conclusions

Due to increased uncertainties, reliable and economically optimal provisi-
on of ancillary services will become increasingly important in future power
systems. Price inelasticity of customers is one of the biggest flaws of the
present electricity markets. Active involvement of consumers in both energy
and ancillary service markets, is an issue with the largest, yet unexploited,
potential for increasing efficiency of electrical power systems.

In this chapter we have presented the concept of autonomous power net-
works as a concise formulation to deal with economic, technical and reliability
issues in future power systems characterized by a large amount of distributed
generation units. The autonomous power network (AN) was defined as an
aggregated set of producers and consumers, which is capable and responsi-
ble for complying to the set of integration protocols required for efficient and
reliable operation of the overall power system. In other words, the AN was
presented as a major building block of a power system in all of its layers, i.e.
physical, economic and reliability.

Specifically, we have introduced the AN as a new market entity that ena-
bles creation of competitive markets for ancillary services which are charac-
terized by large amount of players on both supply and consumption side.
Each AN is presented to the rest of the system as both potential producer
and consumer of electrical energy and ancillary services. This is in contrast
with the present power systems, where the independent system operator
coordinates the ancillary service markets and at the same time provides the
only demand for them. In AN based power systems, the independent system
operator only acts as a coordinator of markets.

Furthermore, ANs enable active involvement of virtually all consumers
in energy and ancillary service markets. Each dealing with a limited set of
consumers, ANs present both technical infrastructure and market support
for a small consumer, e.g. residential loads, in its integration to the markets.
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5.1 Introduction

In many production facilities, the optimization problem reflecting economi-
cal benefits of production is associated with a steady-state operation of the
system. The control action is then required to maintain the production in
an optimal regime in spite of various disturbances, and to efficiently and
rapidly respond to changes in demand, while settling the system in a new
steady-state that is optimal for novel conditions. The vast majority of con-
trol literature is focused on regulation and tracking with respect to known
setpoints or trajectories, while coping with different types of uncertainties
and disturbances in both plant and its environment. Typically, setpoints
are determined off-line by solving an appropriate optimization problem, and
they are updated in an open-loop manner. The optimization problem typi-
cally reflects variable costs of production and economical benefits under the
current market conditions, e.g. fuel or electricity prices, and accounts for
physical and security limits of the plant. In this chapter we reformulate the
problem of real-time economic optimization as a feedback control problem.

If a production system is required to follow a time-varying demand in
real-time, e.g. if produced commodities cannot be efficiently stored in lar-
ge amounts, it becomes crucial to perform economic optimization on-line.
Furthermore, in such systems, increase of the frequency with which the eco-
nomically optimal setpoints are updated can result in a significant increase of
economic benefits accumulated in time. If the time-scale on which economic
optimization is performed approaches the time-scale of the underlying phy-
sical system, i.e. of the plant dynamics, dynamic interaction in between the
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two has to be considered. Economic optimization then becomes a challenging
control problem, even more since it has to cope with inequality constraints
that reflect the physical and security limits of the plant.

In this chapter we present a feedback control design procedure as a solu-
tion to the problem of regulating a general linear time-invariant dynamical
system to a time-varying economically optimal operating point. The consi-
dered dynamical system is characterized with a set of exogenous inputs as
an abstraction of time-varying loads and disturbances acting on the system.
Economic optimality is defined through a convex constrained optimization
problem with a set of system states as decision variables, and with the values
of exogenous inputs as parameters in the optimization problem.

The results of this chapter present a formalization, generalization and
extension of the methods we have used to design a price-based power balance
and congestion management controller in Chapter 2.

Nomenclature

The field of real numbers is denoted by R and Rm×n denotes m by n matrices
with elements in R. For a matrix A ∈ Rm×n, [A]ij denotes the element in
the i-th row and j-th column of A. For a vector x ∈ Rn, [x]i denotes
the i-th element of x. Given A ∈ Rm×n and two sets I ⊆ {1, . . . ,m} and
J ⊆ {1, . . . , n}, we write [A]I• to denote a submatrix of A formed by rows
I of A, and with [A]•J we denote a submatrix of A formed by columns J
of A. The transpose of a matrix A is denoted by A>. Ker A and Im A
denote the kernel and the image space of A, respectively. We use In to
denote an identity matrix of dimension n, and when the dimension is clear
from the context we often use I. A vector x ∈ Rn is said to be nonnegative
(nonpositive) if [x]i ≥ 0 ([x]i ≤ 0) for all i ∈ {1, . . . n}, and in that case
we write x ≥ 0 (x ≤ 0). The nonnegative orthant of Rn is defined by
Rn

+ := {x ∈ Rn | x ≥ 0 }. Ln
1 (R+) denotes the space of all measurable

functions g : R+ → Rn which satisfy
∫∞
0 ‖g(t)‖1dt < ∞, where for x ∈ Rn,

‖x‖1 :=
∑n

i=1 |[x]i|. The operator col(·, . . . , ·) stacks its operands into a
column vector, and diag(·, . . . , ·) denotes a square matrix with its operands
on the main diagonal and zeros elsewhere. In the Euclidian space Rk the
standard inner product is denoted by 〈·, ·〉 and the associated norm is denoted
by ‖·‖. For u, v ∈ Rk we write u ⊥ v if 〈u, v〉 = u>v = 0. We use the compact
notational form 0 ≤ u ⊥ v ≥ 0 to denote the complementarity conditions
u ≥ 0, v ≥ 0, u ⊥ v. The matrix inequalities A � B and A � B mean A and
B are Hermitian and A − B is positive definite and positive semi-definite,
respectively.
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For a scalar-valued differentiable function f : Rn → R, ∇f(x) denotes
its gradient at x = col(x1, . . . , xn) and is defined as a column vector1, i.e.
∇f(x) ∈ Rn, [∇f(x)]i = ∂f

∂xi
. For a vector-valued differentiable function f :

Rn → Rm, f(x) = col(f1(x), . . . , fm(x)), the Jacobian at x = col(x1, . . . , xn)
is the matrix Df(x) ∈ Rm×n and is defined by [Df(x)]ij = ∂fi(x)

∂xj
. For

a vector valued function f : Rn → Rm, we will use ∇f(x) to denote the
transpose of the Jacobian, i.e. ∇f(x) ∈ Rn×m , ∇f(x) , Df(x)>, what is
consistent with the gradient notation ∇f when f is a scalar-valued function.

With a slight abuse of notation we will often use the same symbol to
denote a signal, i.e. a function of time, as well as possible values that the
signal may take at any time instant.

5.2 Problem formulation

In this subsection we formally present the constrained steady-state optimal
control problem considered in this chapter. Furthermore, we list several stan-
ding assumptions, which will be instrumental in the subsequent sections.

Consider an LTI system Σ described by a state-space realization

ẋ =
(

ẋp

ẋq

)
=

(
App Apq

Aqp Aqq

) (
xp

xq

)
+

(
Fp

Fq

)
w +

(
Bp

Bq

)
u,

, Ax + Fw + Bu, (5.1a)

y =
(
I 0

) (
xp

xq

)
, Cx, (5.1b)

where x(t) ∈ Rn is the state variable, u(t) ∈ Rm is the control input, w(t) ∈
Rnw is an exogenous input and y(t) ∈ Rm is the measured output. The state
x is partitioned into xp ∈ Rm and xq ∈ Rn−m, inducing the corresponding
partitioning of the matrices A ∈ Rn×n, F ∈ Rn×nw , B ∈ Rn×m as indicated
in (5.1a).

With W ⊂ Rnw denoting a known bounded set and for a constant w ∈
W , consider the following convex optimization problem associated with the

1Both possible definitions, i.e. ∇f(x) as a row vector or ∇f(x) as a column vector, are
commonly found in literature.
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partial state vector xp of the dynamical system (5.1):

min
xp

J(xp) (5.2a)

subject to
Lxp = h(w), (5.2b)
qi(xp) ≤ ri(w), i = 1, . . . , k, (5.2c)

where J : Rm → R is a strictly convex and continuously differentiable func-
tion, L ∈ Rl×m is a constant matrix, h : Rnw → Rl and ri : Rnw → R,
i = 1, . . . , k are continuous functions, while qi : Rm → R, i = 1, . . . , k are
convex, continuously differentiable functions. For the matrix L we require
rank L = l < m.

For a constant exogenous signal w(t) = w ∈ W , the optimization problem
(5.2) reflects the corresponding optimal steady-state operating point for the
state xp in (5.1). A typical example is the case when Σ represents some
production unit and the corresponding optimization problem reflects the
variable production costs, i.e. it reflects the economic objectives of the plant
under the current market conditions. For instance, with (5.1) describing the
relevant dynamics of an electrical power plant, (5.2a) reflects the variable
production costs of producing electrical power. In this case, the exogenous
signal w represents the demand for the commodity (demand for electrical
power) and the equality constrains (5.2b) include the production-demand
balance constraints (electrical power balance). The inequality constraints
(5.2c) represent the security-type “soft” constraints for which some degree
of transient violation may be accepted, but whose feasibility is required for
steady-state operation (power flow levels in the transmission lines of the
electrical power system). The state vector xp collects only the states which
appear explicitly in (5.2). Note that in general not all of the elements of xp

that appear in the constraints (5.2b),(5.2c) need to appear in the objective
function J , and vice versa. The objective of the control input u is to drive
the state xp to its optimal, constrained steady-state operating point. We
continue by listing the set of assumptions concerning the dynamics (5.1) and
the optimization problem (5.2).

Let Il denote the set of indices i for which the function qi in (5.2c)
is a linear function, and let In denote the set of indices corresponding to
nonlinear qi. We make the following assumption:

Assumption 5.2.1 For each w ∈ W the set

{xp | Lxp = h(w), qi(xp) < ri(w) for i ∈ In, qi(xp) ≤ ri(w) for i ∈ Il}
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is nonempty. 2

Assumption 5.2.1 states that the convex optimization problem (5.2) satisfies
Slater’s constraint qualification (Boyd and Vandenberghe, 2004) for each
w ∈ W , implying that strong duality holds for the considered problem.
Note also that due to strict convexity of the objective function in (5.2), the
optimization problem has an unique minimizer x̃p for each w ∈ W . For all
the considerations in this chapter, we assume the following to hold:

Assumption 5.2.2 For each w ∈ W , in the optimization problem (5.2) the
minimum is attained. 2

To emphasize the hypothesis in Assumption 5.2.2, in (5.2) we use minimum
(min) instead of infimum (inf). Furthermore, in connection with the dyna-
mical system (5.1) we make the following simplifying assumption:

Assumption 5.2.3 The matrix A is Hurwitz. The sub-matrix of A−1B
formed by taking the first m rows of A−1B has full rank. (Note that this is
a square matrix.) 2

Remark 5.2.4 Assumption 5.2.3 guarantees that for all constant w(t) =
w ∈ W , the partial state vector xp can be driven to an arbitrary steady-
state point, which is then characterized by a unique, constant value of the
input signal u. 2

In other words, Assumption 5.2.3 implies that the steady-state relations from
(5.1) do not pose any additional constraints to the optimization problem
(5.2). Although seemingly restrictive, this assumption is in practice almost
always fulfilled since xp represents the states which directly appear in the
economical objective of the plant, e.g. the optimization problem (5.2). Well
designed systems allow complete steady-state control (in the sense of the
above stated assumption) of these “economically relevant” states. However,
it is also possible to relax this assumption. Then, any constraint on the
steady state imposed by (5.1) should be included in (5.2b). The assumption
that A is Hurwitz is also reasonable. Thinking of u as a setpoint signal for
steady-state operation, (5.1) represents the plant which already includes a
stabilizing controller.

Assumption 5.2.5 In (5.1) the output matrix C in (5.1b) is given by
C =

(
I 0

)
, i.e. the state vector xp can be measured. Furthermore, all

components of w that appear in (5.2) are known at all time instants. 2
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From Assumption 5.2.5 it follows that violations of the constraints (5.2b)
and (5.2c) are available for control. In practice, and in contrast to the above
assumption, violations of the constraints are often directly measurable, and
not only indirectly through xp and w. To illustrate this, consider again an
example of a electrical power system. Demand for electrical power, which
corresponds to the exogenous signal w, is never explicitly known. However,
the network frequency serves as a measure of production-demand imbalance,
i.e. as a measure of the violation of an equality constraint in (5.2b). Fur-
thermore, if the power flow in a tie-line should not exceed a certain constant
value, the preferred solution in practice is to directly measure the violation
of this inequality constraint, and not to determine it indirectly by solving
on-line the power flow equations. Assumption 5.2.5 is made only for the
purpose of simplifying the presentation in the next subsection, and it does
not result in a significant loss of generality.

With the definitions and assumptions made so far, we are now ready to
formally state the control problem considered in this chapter.

Problem 5.2.6 Steady-state optimal control problem.
For a dynamical system Σ given by (5.1), design a feedback controller that
has y as input signal and u as output signal, such that the following objective
is met for any constant-valued exogenous signal w(t) = w ∈ W : the state
of the closed-loop system globally converges to an equilibrium point with
xp = x̃p(w), where x̃p(w) denotes the minimizer of the optimization problem
(5.2) for some w ∈ W . 2

In connection to Problem 5.2.6 we define the following two subproblems:
i) ensuring existence of a closed-loop system equilibrium characterized by
xp = x̃p(w);
ii) ensuring global convergence to an equilibrium with xp = x̃p(w), for all
w ∈ W .
Solving the first subproblem is not a very difficult task and a detailed pre-
sentation of a solution to the subproblem (i) is given in the following section.
However, for a general dynamical system (5.1) and a general optimization
problem (5.2), solving the subproblem (ii) is very difficult task. Several
important issues on this subject are discussed in Section 5.6.

5.3 KKT Controllers

In this section we present several controller structures that guarantee the
existence of an equilibrium point with xp = x̃p(w) as described in Pro-
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blem 5.2.6.
Assumption 5.2.1 implies that for each w ∈ W , the first order Karush-

Kuhn-Tucker (KKT) conditions are necessary and sufficient conditions for
optimality. For the optimization problem (5.2) these conditions are given by
the following set of equalities and inequalities:

∇J(xp) + L>λ +∇q(xp)µ = 0, (5.3a)
Lxp − h(w) = 0, (5.3b)

0 ≤ −q(xp) + r(w) ⊥ µ ≥ 0, (5.3c)

where we use the abbreviations q(xp) = col(q1(xp), . . . , qk(xp)), r(w) =
col(r1(w), . . . , rk(xp)) and λ ∈ Rl, µ ∈ Rk are Lagrange multipliers. Since
the above conditions are necessary and sufficient conditions for optimality, it
is apparent that the existence of an equilibrium point with xp = x̃p(w) is im-
plied if for each w ∈ W the controller guarantees the existence of the vectors
λ and µ, such that that the conditions (5.3) are fulfilled in a steady-state of
the closed-loop system. In what follows, we present two different controller
structures for which we prove, in Theorem 5.3.1, that they achieve this goal.

Max-based KKT controller. Let Kλ ∈ Rl×l, Kµ ∈ Rk×k, Kc ∈ Rm×m

and Ko ∈ Rk×k be diagonal matrices with non-zero elements on the main
diagonal and Ko � 0. Consider a dynamic controller with the following
structure:

ẋλ = Kλ(Lxp − h(w)), (5.4a)
ẋµ = Kµ(q(xp)− r(w) + v), (5.4b)

ẋc = Kc(L>xλ +∇q(xp)xµ +∇J(xp)), (5.4c)
0 ≤ v ⊥ Ko xµ + q(xp)− r(w) + v ≥ 0, (5.4d)

u = xc, (5.4e)

where xλ, xµ and xc denote the controller states and the matrices Kλ, Kµ, Kc

and Ko represent the controller gains. Note that the input vector v(t) ∈ Rk in
(5.4b) is at any time instant required to be a solution to a finite-dimensional
linear complementarity problem (5.4d). 2

Saturation-based KKT controller. Let Kλ ∈ Rl×l, Kµ ∈ Rk×k and
Kc ∈ Rm×m be diagonal matrices with non-zero elements on the main diago-
nal and Kµ � 0. Consider a dynamic controller with the following structure:
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ẋλ = Kλ(Lxp − h(w)), (5.5a)
ẋµ = Kµ(q(xp)− r(w)) + v, (5.5b)

ẋc = Kc(L>xλ +∇q(xp)xµ +∇J(xp)), (5.5c)
0 ≤ v ⊥ xµ ≥ 0, (5.5d)

u = xc, (5.5e)
xµ(0) ≥ 0, (5.5f)

where xλ, xµ and xc denote the controller states and the matrices Kλ, Kµ

and Kc represent the controller gains. Note that the input vector v(t) ∈ Rk in
(5.5b) is at any time instant required to be a solution to a finite-dimensional
linear complementarity problem (5.5d). The initialization constraint (5.5f)
is required as a necessary condition for well-posedness, conform with the
inequality in the complementarity condition (5.5d). 2

The choice of names max-based KKT controller and saturation-based KKT
controller will become clear later in this section. Both controllers belong
to the class of dynamic complementarity systems (van der Schaft and Schu-
macher, 1996, 1998). Although other closely related modeling frameworks,
such as projected dynamical systems, see (Brogliato et al., 2006; Heemels
et al., 2000b) for more details, could equivalently have been used to descri-
be the same dynamical system, the complementarity framework arises as
a natural framework for the topic considered here. In particular, this mo-
deling framework is seen as a natural dynamical extension of the algebraic
complementarity in the KKT conditions (5.3).

Theorem 5.3.1 Let w(t) = w ∈ W be a constant-valued signal, and sup-
pose that Assumption 5.2.1 and Assumption 5.2.3 hold. Then the closed-
loop system, i.e. the system obtained from the system (5.1) connected with
the controller (5.4)/(5.5) in a feedback loop, has an equilibrium point with
xp = x̃p(w), where x̃p(w) denotes the minimizer of the optimization problem
(5.2) for some w ∈ W . 2

Proof. We first consider the closed-loop system with max-based KKT con-
troller, i.e. controller (5.4). By setting the time derivatives of the closed-loop
system states to zero and by exploiting the non-singularity of the matrices
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Kλ, Kµ and Kc, we obtain the following complementarity problem:

0 = A

(
xp

xq

)
+ Bxc + Fw, (5.6a)

0 = Lxp − h(w), (5.6b)
0 = q(xp)− r(w) + v, (5.6c)

0 = L>xλ +∇q(xp)xµ +∇J(xp), (5.6d)
0 ≤ v ⊥ Ko xµ + q(xp)− r(w) + v ≥ 0, (5.6e)

with the closed-loop system state vector xcl := col(xp, xq, xλ, xµ, xc) and
the vector v as variables. Any solution xcl to (5.6) is an equilibrium point
of the closed-loop system. By substituting v = −q(xp) + r(w) from (5.6c)
and utilizing Ko � 0, the complementarity condition (5.6e) reads as 0 ≤
−q(xp) + r(w) ⊥ xµ ≥ 0. With λ := xλ and µ := xµ, the conditions
(5.6b),(5.6c),(5.6d),(5.6e) therefore correspond to the KKT conditions (5.3)
and, under Assumption 5.2.1, they necessarily have a solution. Furthermo-
re, for any solution (xp, xλ, xµ, v) to (5.6b),(5.6c),(5.6d),(5.6e), it necessarily
holds that xp = x̃p(w). It remains to show that (5.6a) admits a solution
in (xq, xc) for xp = x̃p(w). This, however, readily follows from Assumpti-
on 5.2.3. Moreover, Assumption 5.2.3 implies uniqueness of xq and xc in an
equilibrium.

Now, consider the closed-loop system with saturation-based KKT con-
troller, i.e. controller (5.5). The difference in this case comes only through
(5.5b) and (5.5d), and for a proof it is therefore sufficient to show that the
conditions

0 = Kµ(q(xp)− r(w)) + v, (5.7a)
0 ≤ v ⊥ xµ ≥ 0, (5.7b)

imply 0 ≤ −q(xp) + r(w) ⊥ xµ ≥ 0, similarly as implied by the conditions
(5.6c) and (5.6e). The rest of the proof then follows as above. The desired
implication directly follows from (5.7), since Kµ � 0. 2

Note that Theorem 5.3.1 only ensures the existence of an equilibrium point
with xp = x̃p(w), and says nothing about its uniqueness. However, from the
proof of the theorem it follows that for any equilibrium it necessarily holds
that xp = x̃p(w), and that any equilibrium is characterized by the same,
unique values of the state vectors xq and xc. Conditions for uniqueness of
the equilibrium, i.e. uniqueness of the remaining states (xλ, xµ), are impor-
tant for the question of global asymptotic stability of the closed-loop system.
These conditions are presented later in this chapter.
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Remark 5.3.2 This remark concerns Assumption 5.2.5. As already men-
tioned, violations of the constraints are often directly measurable, and not
only indirectly through xp and w, as stated in Assumption 5.2.5. Assu-
me that the output y of the system (5.1), instead of being given by (5.1b),
has the form y = col(α(x, w), β(x,w), xp), where α : Rn × Rnw → Rl and
β : Rn ×Rnw → Rk are continuous functions, characterized by the following
steady-state-related properties:

[α(x, w)]i = 0 ⇔ [Lxp − h(w)]i = 0, i = 1, . . . , l, (5.8a)
[β(x,w)]j ≤ 0 ⇔ [q(xp)− r(w)]j ≤ 0, j = 1, . . . , k. (5.8b)

Here, by steady-state-related we mean that the above proporties hold when
w ∈ W is a given constant signal and the system is in a steady-state. The
values of α and β therefore carry the information of the violation of the
constraints, and as such they can be directly used for control. From (5.8) it
follows that by replacing Lxp−h(w) by α(x,w) and q(xp)− r(w) by β(x,w)
in (5.4a),(5.4b),(5.4d),(5.5a), and (5.5b), the statement of Theorem 5.3.1 still
holds. 2

Remark 5.3.3 Assumption 5.2.3 implies the steady-state relation xp =
Ru + Pw for any constant-valued signal w, where R and P are constant
matrices and R is square and nonsingular. Using this relation, it is possible
to eliminate the state vector xc from the controllers (5.4)/(5.5) by replacing
the differential equations (5.4c)/(5.5c) with appropriate algebraic relations.
For the controllers obtained via this modification Theorem 5.3.1 still holds.
Here we present the modification for controller (5.4). Let g(xλ, xµ, w) be a
function such that

u = g(xλ, xµ, w) ⇔ L>xλ +∇q(Ru + Pw)xµ +∇J(Ru + Pw) = 0.

Then the closed-loop system with the controller of the following structure:

ẋλ = Kλ α(x, w), (5.9a)
ẋµ = Kµ(β(x, w) + v), (5.9b)

0 ≤ v ⊥ Ko xµ + β(x,w) + v ≥ 0, (5.9c)
u = g(xλ, xµ, w), (5.9d)

has an equilibrium point with xp = x̃p(w). Here α(x,w) and β(x,w) are the
signals satisfying the conditions from Remark 5.3.2. The proof for the above
statement is the same as the proof of Theorem 5.3.1: in a steady-state, the
closed-loop system relations necessarily include the KKT conditions (5.3).
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Furthermore, utilizing the steady-state relation α(x, w) = 0, in some cases
it is possible to eliminate w in g(xλ, xµ, w) and to obtain u = g(xλ, xµ, x)
instead of (5.9d). 2

Remark 5.3.4 Consider the case when the optimal steady-state-related op-
timization problem is given by minu{J(u) | Lxp = h(w), q(xp) ≤ r(w)}
instead of (5.2). This is often the case in practice, i.e. economic optimality
is often explicitly expressed as a function of the set-point signals (inputs)
to the system. For example, this is the case in optimal control of electrical
power systems, which was considered in Chapter 2 of this thesis. Using the
steady-state relation xp = Ru + Pw, as in Remark 5.3.3, the controller (5.9)
with g(xλ, xµ, w) defined by

u = g(xλ, xµ, w) ⇔ R>L>xλ + R>∇q(Ru + Pw)xµ +∇J(u) = 0,

will guarantee the existence of an equilibrium point with u = ũ(w), where
ũ(w) is a unique minimizer of the steady-state related optimization pro-
blem. 2

Up to now, all the considerations in this chapter dealt only with the
steady-state behavior of the closed-loop system. Utilizing integral action
and/or algebraic relations, it is possible to “shape” this behavior in such a
way that the closed-loop system will be guaranteed to have an equilibrium
for which the subset of system states coincides with the solution of a given
constrained optimization problem. We have seen that this desired static be-
havior of the system can be obtained in several different ways. However,
the main idea was always the same: utilize the integral action and/or alge-
braic relations to “built in” the KKT conditions in the closed-loop system
steady-state relations.

5.3.1 Complementarity integrators

The main distinguishing feature between the max-based KKT controller (5.4)
(and its variations) and the saturation-based KKT controller (5.5) (and its
variations) is in the way the steady-state complementarity slackness con-
dition (5.3c) is enforced. Although characterized by the same steady-state
relations, the two controllers, and therefore the corresponding closed-loop
systems, have some significantly different dynamical features which will be
discussed further in this section. In the following two paragraphs our atten-
tion is on the equations (5.4b),(5.4d) and (5.5b),(5.5d), and the goal is to
show the following:
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Figure 5.1: Max-based complementarity integrator.

• The max-based KKT controller, i.e. the controller (5.4), can be represen-
ted as a dynamical system in which certain variables are coupled by means
of static, continuous, piecewise linear characteristics;
• The saturation-based KKT controller, i.e. the controller (5.5), can be re-
presented as a dynamical system with state saturations.

Max-based complementarity integrator. Let a, b and c be real scalars
related through a complementarity condition 0 ≤ c ⊥ a+b+c ≥ 0. It is easily
verified, e.g. by checking all possible combinations, that this complementa-
rity condition can equivalently be written as b+ c = max(a+ b, 0)−a. With
max(·, ·) defined for vectors as an elementwise maximum, i.e. for v, w ∈ Rn,
(z = max(v, w)) ⇔ ([z]i = max([v]i, [w]i), i = 1, . . . , n), the above equiva-
lence holds as well for a, b, c being vectors of the same dimension. Now, by
taking c = v, a = Koxµ and b = q(xp) − r(w), it follows that (5.4b) and
(5.4d) can be equivalently described by

ẋµ = Kµ(max(Ko xµ + q(xp)− r(w), 0)−Ko xµ). (5.10)

With β := q(xp)−r(w), Figure 5.1 presents a block diagram representation of
the i-th row in (5.10). The block labeled “Max” in the figure, represents a sca-
lar max relation as a static piecewise linear characteristics. With [Ko]ii > 0,
it is easy to verify that if the system in Figure 5.1 is in steady-state, than the
value of its input signal [β]i and the value of its output signal [xµ]i necessarily
satisfy the complementarity condition [xµ]i ≥ 0, [β]i ≤ 0, ([xµ]i [β]i) = 0. 2

Saturation-based complementarity integrator. The differential alge-
braic equations (5.5b), (5.5d) restrict the state vector xµ to the nonnegative
orthant Rk

+. For xµ > 0, i.e. when xµ is in the interior of Rk
+, its dynamics

is described by the equation ẋµ = Kµβ(x,w), where β(x,w) := q(xp)−r(w).
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Figure 5.2: Saturation-based complementarity integrator.

However, on the boundary this dynamics is modified to prevent the solution
from leaving Rk

+. Precisely, the dynamics of the i-th element in xµ is given
by

[ẋµ]i =

{
0 if [xµ]i = 0 and [Kµ]ii[β]i < 0,

[Kµ]ii[β]i otherwise.
(5.11)

Figure 5.2 presents a block diagram representation of (5.11), which is a
saturated integrator with the lower saturation point equal to zero. The
equivalence of the dynamics (5.5b), (5.5d) and the saturated integrators
defined by (5.11) is shown in the next section.

With [Kµ]ii > 0, it is easy to verify that in steady-state the value of the
input signal [β]i and the value of the output signal [xµ]i necessarily satisfy
the complementarity condition [xµ]i ≥ 0, [β]i ≤ 0, ([xµ]i [β]i) = 0. 2

The above discussions present us with the basic building blocks for im-
posing steady-state complementarity conditions. We will use the term max-
based complementarity integrator to refer to a system with the structure
as depicted in Figure 5.1, and the term saturation-based complementarity
integrator for the system in Figure 5.2. Together with a pure integrator,
complementarity integrators form the basic building block of a KKT con-
troller.

5.4 Well-posedness of the closed-loop system

The term well-posedness is in general used to denote the property of existence
and uniqueness of solutions, and is a fundamental issue for any class of
dynamical systems. A mathematical model of a dynamical system is said to
be well-posed if, given initial conditions, it has a unique solution.
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In this section we present sufficient conditions for well-posedness of the
closed-loop system, i.e. of the system (5.1) interconnected with a KKT con-
troller in a feedback loop. It turns out that, due to the continuity of the right
hand side, checking well-posedness of the closed-loop system with the max-
based KKT controller can be performed based on the classical Lipschitz con-
tinuity conditions. For the completeness of the presentation, we recall these
conditions in the following subsection. However, the saturation-based KKT
controller is characterized by discontinuous dynamics and for well-posedness
conditions one has to reside on the theory of complementarity systems.

5.4.1 Max-based KKT controller

We have seen that (5.4b) and (5.4d), i.e. complementarity conditions in the
max-based KKT controller, can equivalently be represented using the pie-
cewise linear max-relation (5.10). The closed-loop system with max-based
KKT controller (5.4) is therefore given by(

ẋp

ẋq

)
= A

(
xq

xp

)
+ Bxc + Fw, (5.12a)

ẋλ = Kλ(Lxp − h(w)), (5.12b)
ẋµ = Kµ(max(Ko xµ + q(xp)− r(w), 0)−Ko xµ), (5.12c)

ẋc = Kc(L>xλ +∇q(xp)xµ +∇J(xp)). (5.12d)

We will use the abbreviation x = col(xq, xp, xλ, xµ, xc) for the closed-loop
state vector, and denote its dimension by ncl, i.e. x(t) ∈ Rncl . Note that,
since J and q are continuously differentiable functions, the right hand side
of (5.12) is continuous in x. Furthermore, since h and r are continuous
functions, if w(t) is a piecewise continuous function of t, so is the right hand
side of (5.12). In a compact form (5.12) is then represented by

ẋ = f(x, t), (5.13)

where f(x, t) is piecewise continuous in t and continuous in x. The following
standard notion of solution is used in connection to the system (5.13):

Definition 5.4.1 A function x : [t0, t1] 7→ Rncl is called a solution to the
differential equation (5.13) with initial state x0 at time t0, if x is continuous, x
is differentiable on (t0, t1) (i.e. ẋ(t) exists for all t ∈ (t0, t1)), ẋ(t) = f(x(t), t)
for all t ∈ (t0, t1) and x(t0) = x0. 2

A sufficient condition for global existence and uniqueness of solutions to
(5.13) is given by the following well-known theorem.
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Theorem 5.4.2 (Khalil (2002), Theorem 3.2) Suppose that f(x, t) is pie-
cewise continuous in t and satisfies the Lipschitz continuity condition

‖f(x, t)− f(y, t)‖ ≤ c‖x− y‖ (5.14)

for all x, y ∈ Rncl and for all t ∈ [t0, t1]. Then, the equation ẋ = f(x, t), with
x(t0) = x0, has a unique solution over [t0, t1]. 2

The term globally Lipschitz is commonly used to indicate that the condition
(5.14) holds on whole Rncl . A function f(x, t) is said to be locally Lipschitz
on a domain (open and connected set) Ω ⊂ Rncl if each point in Ω has a
neighborhood Ω0 such that f satisfies condition (5.14) for all points in Ω0

and for all t ∈ [t0, t1] with some Lipschitz constant c.
Since the function max(·, 0) is globally Lipschitz continuous, and since

sums, products and compositions of Lipschitz continuous functions are Lip-
schitz continuous, it is obvious that the closed-loop system with max-based
KKT controller is globally (locally) well-posed if the functions q, ∇J , and
all entries in ∇q are globally (locally) Lipschitz.

5.4.2 Saturation-based KKT controller

A saturation-based KKT controller, as well as the closed-loop system with
saturation-based KKT controller, belongs to a specific class of complemen-
tarity systems. In (Heemels et al., 2000b) this class of systems is named
gradient-type complementarity systems (GTCS), and it is shown that, un-
der certain mild assumptions, the class of GTCS is equivalent to the class
of projected dynamical systems (Dupuis and Nagurney, 1993). The results
from (Heemels et al., 2000b) are further extended in (Brogliato et al., 2006)
by showing that class of GTCS is, under certain conditions, equivalent to a
specific class of differential inclusions. In both references, sufficient conditi-
ons for well-posedness have been presented.

In this subsection we shortly present and summarize some of the results
from (Brogliato et al., 2006; Heemels et al., 2000b). These results can be
used to perform a well-posedness analysis of the the closed-loop system with
saturation-based KKT controller. For all further details and for all the proofs
we refer to (Brogliato et al., 2006; Heemels et al., 2000b).

Furthermore, based on the equivalence of the GTCS and the projected
dynamical systems, in this subsection we finally show that the saturation-
based KKT controller is a dynamical system with state saturations, which is
the distinguishing property we emphasized by choosing the names “saturation-
based KKT controller” and “saturation-based complementarity integrator”.
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Gradient-type complementarity systems

Let f : Rn → Rn be a continuous function, let g : R+ → Rn be a measurable
function, and let s : Rn → Rk be a concave continuously differentiable
function, such that the set

S := {x ∈ Rn | −s(x) ≤ 0} (5.15)

has a nonempty interior. Note that S is a closed convex set. The gradient-
type complementarity system is given by the equations

ẋ(t) = −f(x(t))− g(t) +∇s(x(t))v(t), (5.16a)
z(t) = s(x(t)), (5.16b)

0 ≤ z(t) ⊥ v(t) ≥ 0, (5.16c)

where x(t) ∈ Rn is the state variable, while v(t) ∈ Rk and z(t) ∈ Rk de-
note the input and the output, which are coupled by the complementarity
condition (5.16c).

In (Heemels et al., 2000b; Brogliato et al., 2006), the following notion of
solution to GTCS system (5.16) was presented.

Definition 5.4.3 An absolutely continuous function x : [0, T ] → S is a
solution to the system (5.16) on [0, T ] with initial state x0 ∈ S if x(0) = x0

and (5.16) holds almost everywhere in [0, T ]. 2

Note that, due to (5.16c), and according to Definition 5.4.3, any solution
x(t), t ∈ [0, T ] of the system (5.16) must necessarily lie in S for almost every
t ∈ [0, T ].

For x ∈ S we define the active index set I(x) as

I(x) := {i ∈ {1, . . . , k} | [s(x)]i = 0}, (5.17)

and make the following assumption.

Assumption 5.4.4 The matrix [∇s(x)]•I(x) has full column rank for all
x ∈ S. 2

Theorem 5.4.5 (Brogliato et al. (2006), Theorem 3.2) Suppose that As-
sumption 5.4.4 holds and suppose that g ∈ Ln

1 (R+). Furthermore, suppose
that f is continuous over Rn and hypermonotone, i.e. that there exists c ≥ 0
such that

〈f(x)− f(y), x− y〉 ≥ −c‖x− y‖2 for all x, y ∈ Rn. (5.18)
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Then, for any initial condition x(0) = x0 ∈ S, the GTCS (5.16) has a unique
solution 2 x(t), over the whole R+. 2

Proposition 5.4.6 If f : Rn → Rn is globally Lipschitz, then it is hyper-
monotone, as defined in (5.18). 2

Proof. For all x, y ∈ Rn it necessarily holds that

−〈f(x)− f(y), x− y〉 ≤ |〈f(x)− f(y), x− y〉| ≤ ‖f(x)− f(y)‖ · ‖x− y‖,
(5.19)

were the second inequality is the so-called Cauchy-Schwartz inequality. Since
f is globally Lipschitz, by definition there exists c ∈ R such that

‖f(x)− f(y)‖ ≤ c‖x− y‖ (5.20)

holds for all x, y ∈ Rn. The inequality (5.18) follows directly from (5.19) and
(5.20). 2

Remark 5.4.7 In (Heemels et al., 2000b), the functions f and s in (5.16)
are assumed to be real-analytic and g(t) ≡ 0. With these assumptions, ad-
ditional information about the solutions to GTCS (5.16) has been provided.
Loosely speaking, the notion of solution in Definition 5.4.3 has been further
refined by excluding the so-called left accumulations of discrete event times.
For details, see (Heemels et al., 2000b). For definitions of different solution
concepts used for non-smooth systems see (Çamlibel et al., 2002). 2

Saturation-based KKT controller as GTCS

The closed-loop system with saturation-based KKT controller (5.5) can be
written in the following suitable form(

ẋa

ẋµ

)
=

(
−fa(xa, xµ)
−fµ(xa)

)
+

(
−ga(w)
−gµ(w)

)
+

(
0
I

)
v, (5.21a)

z =
(
0 I

) (
xa

xµ

)
, (5.21b)

0 ≤ z ⊥ v ≥ 0, (5.21c)

2Here, the notion of solution is according to Definition 5.4.3
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where xa := col(xp, xq, xλ, xc) and

(
−fa(xa, xµ)
−fµ(xa)

)
=


A col(xp, xq) + Bxc

KλLxp

Kc(L>xλ +∇q(xp)xµ +∇J(xp))
Kµq(xp)

 , (5.22a)

(
−ga(w)
−gµ(w)

)
=


Fw

−Kλh(w)
0

−Kµr(w)

 . (5.22b)

Obviously (5.21) belongs to a GTCS class of systems (5.16). For the system
(5.22), i.e. for a closed-loop system with saturation-based KKT controller,
∇s is given by

(
0 I

)>, see (5.21a) and (5.16a), and therefore Assumpti-
on 5.4.4 is trivially fulfilled. Furthermore, since J and q are continuously
differentiable functions, fa and fµ in (5.21) are continuous functions. The-
refore, according to Theorem 5.4.5, with restriction of the input signals w,
h(w) and r(w) to the corresponding L1(R+) spaces, the system (5.21) is
well-posed if the function col(fa, fµ) defined by (5.22a) is hypermonotone,
i.e. if it fulfills the condition (5.18).

Projected dynamical systems

As before, in the definition of gradient-type complementarity systems, let
f : Rn → Rn be a continuous function, let g : R+ → Rn be a measurable
function, and let s : Rn → Rk be a concave continuously differentiable
function, such that the set

S := {x ∈ Rn | −s(x) ≤ 0} (5.23)

has a nonempty interior. We first recall the definition of projected dynamical
systems (Dupuis and Nagurney, 1993) and for that purpose we make the
following definitions.

The cone of inward normals at x ∈ S is defined by

n(x) = {γ | 〈γ, x− z〉 ≤ 0 for all z ∈ S}. (5.24)

Given x ∈ S and v ∈ Rn, the projection of the vector v at x with respect to
S is defined by

ΠS(x, v) = v − 〈v, n∗(x)〉n∗(x), (5.25)
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where
n∗(x) ∈ arg max

n∈n(x),‖n‖≤1
〈v,−n〉. (5.26)

Note that ΠS(x, v) is well-defined even though n∗(x) may not be uniquely
specified by (5.26). Finally, the projected dynamical system (PDS) is defined
by

ẋ(t) = ΠS(x(t),−f(x(t))− g(t)), x(0) = x0 ∈ S. (5.27)

In (Brogliato et al. (2006), Theorem 3.2) it is shown that under the
conditions stated in Theorem 5.4.5, the PDS (5.27) is well-posed, with the
notion of solution defined by Definition 5.4.3. Moreover, it is shown that in
that case the solution of the PDS (5.27) and the solution of the GTCS (5.16)
coincide.

If the closed-loop system (5.21) is well-posed, by rewriting it as a PDS of
the form (5.27), it is easy to verify (from the definition of the mapping ΠS)
that the dynamics of the i-th element in xµ is described by

[ẋµ]i =

{
0 if [xµ]i = 0 and [−fµ(xa)− gµ(w)]i < 0,

[−fµ(xa)− gµ(w)]i otherwise,
(5.28)

which defines the dynamics of a saturated integrator with the lower satura-
tion point equal to zero and the input [−fµ(xa)− gµ(w)]i.

To summarize, equivalence of the dynamics (5.5b), (5.5d) and the sa-
turated integrators defined by (5.11) directly follows from the equivalence
of GTCS ((5.5b), (5.5d) belong to GTCS class) and projected dynamical
systems ((5.11) belongs to PDS class).

5.5 Example

Consider a third-order system of the form (5.1) with (5.1a) given by ẋ1

ẋ2

ẋ3

 =

 −2.5 0 −5
0 −5 −15

0.1 0.1 −0.2

  x1

x2

x3

 +

 0
0

−0.1

 w+

 2.5 0
0 5
0 0

 (
u1

u2

)
, (5.29)

where xp = col(x1, x2), xq = x3 and u = col(u1, u2). The associated steady-
state related optimization problem is defined as follows:
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Figure 5.3: Simulated trajectory of the state vector xp for the close-loop
system with max-based KKT controller.

min
xp

1
2
x>p Hxp + a>xp (5.30a)

subject to
x1 + x2 = w, (5.30b)

(x1 − 4.7)2 + (x2 − 4)2 ≤ 3.52, (5.30c)

where H = diag(6, 2), a = col(−4,−4), and the value of the exogenous signal
w is limited to be in the interval W = [4, 11.5]. It can be verified that for
this set W and the constraints (5.30b) and (5.30c), the Assumption 5.2.1
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Figure 5.4: Simulated trajectory of the state vector xp for the close-loop
system with saturation-based KKT controller.

holds true. Furthermore, since A−1B = 1
7

 −5 2
3 −4
−1 −1

, the condition in

the Assumption 5.2.3 is fulfilled. We assume that the complete state vector
is available for control, i.e. that the output equation (5.1b) is given by y = x.
From the dynamics of the state x3, it follows that in steady-state the equality
x1+x2−2x3 = w holds. Therefore, in steady-state, x3 = 0 implies fulfilment
of the constraint (5.30b). This implies that for control we can directly use
the value of the state x3 as a measure for violation of this constraint (see
Remark 5.3.2).
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Figure 5.5: Violation of the inequality constraint as a function of time.
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Figure 5.6: Simulated trajectory of the controller state xµ.

A max-based KKT controller is given by

ẋλ = Kλ x3,

ẋµ = Kµ((x1 − 4.7)2 + (x2 − 4)2 − 3.52 + v),

ẋc = Kc

((
1
1

)
xλ +

(
2x1 − 9.4
2x2 − 8

)
xµ +

(
6 0
0 2

) (
x1

x2

)
+

(
−4
−4

))
,

0 ≤ v ⊥ (Koxµ + (x1 − 4.7)2 + (x2 − 4)2 − 3.52 + v) ≥ 0,

u = xc,
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Figure 5.7: The value x1 + x2 as a function of time.

while a saturation-based KKT controller is given by the same set of diffe-
rential equations except that the complementarity condition is replaced by
0 ≤ v ⊥ xµ ≥ 0.

Thick solid lines in Figure 5.3 and Figure 5.4 represent the trajectories of
the state vector xp which were obtained from simulations of the closed-loop
system controlled with the max-based KKT controller (Figure 5.3) and with
the saturation-based KKT controller (Figure 5.4). Both controllers were
implemented with the gains Kλ = 0.15, Kµ = 0.1, Kc = −0.7I2, and the
gain Ko in the max-based controller was set to 0.5. In both figures, thin solid
lines labeled wi, i = 1, . . . , 4, represent the equality constraint x1 + x2 = wi

where wi ∈ {4, 7, 10, 11.5}. At the beginning of the simulation, the value
of the exogenous signal w is set to w1 = 4 and the initial vale of the state
vector xp indicated in the figures with xp(0). At time instances t = 100,
t = 300 and t = 500 the value of exogenous signal w is stepwise changed
to w2 = 7, w3 = 10 and w4 = 11.5, respectively. In both figures, the tick,
dashed circle represents the inequality constraint (5.30c), i.e. the steady-
state feasible region for xp is within this circle. Thin dotted lines represent
the contour lines of the objective function (5.30a), while the straight dashed
line represents the locus of the optimal point x̃p(w) for the whole range of
values w in the case when the inequality constraint (5.30c) would be left out
from the optimization problem.

The obtained simulation results clearly illustrate the action of the KKT
controllers, which guarantee that, following any change in w, the system will
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settle in the optimal steady-state point with all the constraints satisfied.
Figures 5.5 and 5.6 present the violation of the inequality constraint

(5.30c) as a function of time and the trajectory of the state vector xµ, res-
pectively. Vertical dotted lines in these figures indicate the time instances at
which the signal w changes its value, and the labels wi in between these lines
indicate the value of this signal. In both Figures 5.5 and Figure 5.6, the thick
gray line corresponds to the trajectory of the system with the saturation-
based KKT controller, while thin black line corresponds to the trajectory
when the max-based KKT controller is used. Note that the trajectories in
Figures 5.5 represent (x1(t)−4.7)2 +(x2(t)−4)2−3.52 and not the minimal
Euclidian distance from each point in the trajectory of xp(t) to the circle in
Figure 5.3 and Figure 5.4.

The solid lines in Figure 5.7 represent the trajectory of x1(t) + x2(t), i.e.
the left hand side of the equality constraint (5.30b) as a function of time.
The thick gray line corresponds to the trajectory with the saturation-based
KKT controller, while thin black line corresponds to the trajectory when
the max-based KKT controller is used. The dashed line in the same figure
represents w(t), i.e. the right hand side of the equality constraint (5.30b) as
a function of time.

5.6 Stability analysis of the closed-loop system

In this section we address the problem of stability analysis of the closed-loop
system, i.e. of the system (5.1) interconnected with a KKT controller in a
feedback loop.

For global asymptotic stability, the equilibrium point of the closed-loop
system necessarily needs to be unique. Therefore, we start by presenting
conditions for uniqueness of the closed-loop equilibrium.

5.6.1 Uniqueness of the equilibrium point

Theorem (5.3.1) states that for any admissible constant-valued exogenous
signal w(t), the closed-loop system necessarily has an equilibrium. Further-
more, from the proof of this theorem it follows that for all corresponding
equilibrium points the values of the state vectors xp, xq and xc are unique.
It remains to present the conditions which further imply uniqueness of the
remaining closed-loop state vectors (xλ, xµ) in an equilibrium. To present
these conditions, we first recall several definitions and properties from convex
optimization.



5.6. Stability analysis of the closed-loop system 121

Let x̃p(w) denote a unique solution to (5.2) for some w ∈ W . Each
x̃p(w) is characterized by a unique set of active constraints in (5.2c), whe-
re an inequality constraint qi(xp) ≤ ri(w) is defined as active at x̃p(w) if
qi(x̃p(w)) = ri(w). We define Ia(x̃p(w)) as the set of indices corresponding
to the set of active inequality constraints at x̃p(w), i.e. Ia(x̃p(w)) := {i | 1 ≤
i ≤ k, qi(x̃p(w)) = ri(w)}. Furthermore, we make the following standard
definitions in connection with the optimization problem (5.2) and its solution
x̃p(w).

Definition 5.6.1 (LICQ). If for x̃p(w) it holds that the set of vectors formed
of all columns of L> and∇qi(x̃p(w)), i ∈ Ia(x̃p(w)), is a linearly independent
set, we say that the linear independence constraint qualification (LICQ)
holds at x̃p(w). 2

In other words, a linear independence constraint qualification states that at
x̃p(w) the set of active constraints gradients is linearly independent. (Note
that all the equality constrains are in the set of active constraints).

Definition 5.6.2 (Primal degeneracy.) If at x̃p(w) the LICQ is violated,
optimization problem (5.2) is characterized by primal degeneracy at x̃p(w). 2

Proposition 5.6.3 Let w ∈ W be given and let x̃p(w) denote the corres-
ponding unique solution to (5.2). If LICQ holds at x̃p(w), the set of La-
grange multipliers satisfying the corresponding KKT conditions (5.3) is a
singleton. 2

Proof. The proposition trivially follows from (5.3). 2

Finally, conditions for uniqueness of a closed-loop equilibrium are sum-
marized in the following proposition.

Proposition 5.6.4 For all constant input signals w(t) = w ∈ W such
that LICQ holds at x̃p(w), the closed-loop system has a unique equilibri-
um point. 2

Proof. The proposition trivially follows from Proposition 5.6.3. 2

5.6.2 Stability analysis for a fixed w ∈ W

Global asymptotic stability analysis of the closed-loop system for a constant
value of the exogenous signal w(t) = w ∈ W , for which x̃p(w) is not characte-
rized by primal degeneracy, can be performed by searching for an appropriate
Lyapunov function.
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When the steady-state related optimization problem (5.2) is a quadratic
program with linear constraints, the closed-loop system with a KKT control-
ler is a linear complementarity system (Heemels et al., 2000a). Since both
types of complementarity integrators can be presented in a piecewise affine
framework, the closed-loop system can be equivalently presented as a piece-
wise affine system (Sontag, 1981; Johansson and Rantzer, 1998), for which
efficient stability analysis methods have already been developed (Johansson
and Rantzer, 1998; Hassibi and Boyd, 1998; Gonçalves et al., 2003).

When the steady-state related optimization problem (5.2) is given with a
(higher order) polynomial objective function and (higher order) polynomial
inequality constraints, the corresponding closed loop system is a “polynomial
complementarity system”. Since both types of complementarity integrators
can be presented in a piecewise affine framework, the corresponding closed-
loop system can always be represented as a piecewise polynomial system.
For such systems, it is possible to perform stability analysis based on the
sum-of-squares decompositions of non-negative polynomials (Parrilo, 2000;
Lasserre, 2001). This analysis procedure is a direct higher order polynomi-
al generalization of the PWA system analysis from (Johansson and Rantzer,
1998), and can be found in (Prajna and Papachristodoulou, 2003; Papachris-
todoulou and Prajna, 2005).

In general, for any nonlinear optimization problem (5.2), the closed-loop
system can be approximated arbitrarily well with a piecewise affine (or a
piecewise polynomial) system, and stability analysis can be performed in
that framework.

Note that if a constant value of the exogenous signal w(t) = w ∈ W is
such that the optimum x̃p(w) is characterized by primal degeneracy, instead
one equilibrium point there might exist a set of equilibria (not a singleton),
which is then an invariant set for the closed-loop system. Each equilibrium in
this set is characterized by different values of the state vectors (xλ, xµ), but
unique values of the remaining states. Under additional generalized Slater
constraint qualification, see (Pomerol, 1981) for details, the set of equilibria is
guaranteed to be bounded. For stability analysis with respect to this set, one
has to invoke LaSalle’s invariance theorem, see (Khalil, 2002) for a general
introduction and (Hespanha, 2004; Sanfelice et al., 2005; Çamlibel et al.,
2006), including the references therein, for generalizations of the invariance
theorem to hybrid systems.

Finally, note that if the value of the exogenous input signal w is a con-
stant such that the steady-state optimization problem (5.2) is infeasible, the
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Figure 5.8: Analysis problem of the closed-loop system stability for all
w ∈ W as a robust stability analysis problem of an LTI system affected
by structured uncertainties.

closed-loop system has no equilibrium and is therefore necessarily unstable 3.

5.6.3 Stability analysis for all w ∈ W

Ideally, one would desire a proof of the closed-loop system stability for all
possible constant values of the exogenous signal w(t), i.e. for w(t) = w
where w is any constant in W . Unfortunately, for a general steady-state
optimization problem (5.2) and a corresponding KKT controller, proving
this desired property is a very difficult task. Still, by accepting some level
of conservatism and/or by appropriate modification of the KKT controller,
such analysis is possible and, in some cases, can be very efficient.

In this section, we discuss a possibility of performing global stability
analysis for all equilibrium points of a closed-loop system by using the results
and tools from robust stability theory of linear time invariant (LTI) systems
affected by structured uncertainties.

Suppose that w ∈ W is given, and let G denote a model of the closed-
loop system obtained by shifting the origin of the system to its equilibrium
point. For each w ∈ W , G is a nonlinear autonomous system. Let M denote
the (infinite) set of all systems G when w varies in W . The desired goal is
to check asymptotic stability, with respect to the origin, of each element in
M.

One tractable approach to achieve this goal is to define a set of systems
N such that M ⊂ N , and where each element of N has an appropriate

3By term unstable we mean lack of asymptotic stability with respect to an equilibrium
point. Limit cycles or bounded chaotic behaviors are therefore here considered as unstable
behaviors.
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structure. Here, by appropriate structure we mean that N can be repre-
sented as an LTI system G0 interconnected with a suitably characterized,
structured uncertainty block ∆ in the feedback loop, see Figure 5.8. When
∆ is characterized by means of integral quadratic constraints (Megretski and
Rantzer, 1997), proving stability of each element in N presents a classical
robust stability analysis problem of an LTI system, see e.g. (Scherer and
Weiland, 2000). Since M ⊂ N , proof of stability for each element in N
implies stability of each element in M.

Note that nonlinearities in a closed-loop system originate from the com-
plementarity integrators in a KKT controller, and from the terms q(xp),
∇q(xp)xµ, ∇J(xp), if indeed these terms are nonlinear in xp and xµ.

We have to emphasize that even if one succeeds in formulating the robust
stability problem, i.e. in formulating the set N with an appropriate charac-
terization of ∆, for a general steady-state optimization program (5.2), i.e.
for a general KKT controller, this approach can be rather conservative.

Since a presentation of the above described procedure by considering
a general steady-state optimization problem would not be insightful, in the
following section we will restrict our attention to stability analysis of a closed-
loop system when the steady-state related optimization problem (5.2) is qua-
dratic program with linear constrains. In that case q(xp), ∇q(xp)xµ and
∇J(xp) are linear mappings of xp and xµ. Furthermore, for simplicity, we
will consider a closed-loop system with a max-based KKT controller. These
restrictions allow us to give an insightful presentation of certain problems,
and their possible solutions, which are specific for a closed-loop system with
a KKT controller.

Note that we do not aim to give an exposition of the relevant results
from robust control theory. Still, for completeness of the presentation, we
will shortly recall some of those results. For a detailed introduction and
for many of the state-of-art results on this topic, we refer to the textbook
(Scherer and Weiland, 2000).

Stability of a closed-loop system with max-based KKT controller

Let w(t) = w ∈ W be a given constant-valued exogenous input to the closed-
loop system with a max-based KKT controller and let x̃µ(w) and x̃p(w)
denote the values of the corresponding state vectors in an equilibrium point.
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Figure 5.9: Max-based complementarity integrator after performing a state
transformation to shift a closed-loop system equilibrium point to the origin.
Piecewise affine characteristic in the block δi represents the max operator
and always lies in the gray shaded sector.

Furthermore, let ρ, % and σ be three index sets defined as follows:

ρ := {i | [x̃µ(w)]i > 0 = [q(x̃p(w))− r(w)]i}, (5.32a)
% := {i | [x̃µ(w)]i = 0 = [q(x̃p(w))− r(w)]i}, (5.32b)
σ := {i | [x̃µ(w)]i = 0 > [q(x̃p(w))− r(w)]i}. (5.32c)

After performing a state transformation to shift the equilibrium to the ori-
gin, the max-based complementarity integrator can be represented as an
integrator interconnected with a static, continuous piecewise affine (PWA)
characteristic, where for each set of indices ρ, % and σ this characteristic
is (qualitatively) different. However, the PWA characteristic always ful-
fils a sector bound condition, as illustrated in Figure 5.9. By treating the
PWA characteristics as sector bounded uncertainties, stability analysis of a
closed-loop system for a set of constant-valued exogenous signals w can be
performed by analyzing (robust) stability of one (uncertain) model, which
is depicted in Figure 5.10. Figure 5.10 presents a closed-loop system with a
max-based KKT controller as interconnection of a nominal system G0 with
an uncertainty block ∆. The uncertainty ∆ accounts for all PWA characte-
ristics from complementarity integrators in all possible equilibria.

The following well-known theorem presents a sufficient condition for ex-
ponential stability of a closed-loop system depicted on the right hand side
in Figure 5.8. The theorem, as well as an insightful proof, are given for the
completeness of the presentation.
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Figure 5.10: Closed-loop system with PWA characteristics from complemen-
tarity integrators represented as uncertainties.

Theorem 5.6.5 Let the system G0 from Figure 5.8 be an LTI given by its
state-space realization

ẋ = Ax + Bη, (5.33a)
ξ = Cx + Dη, (5.33b)

and let
η = ∆(ξ) (5.34)

denote the relation (in time-domain) between interconnecting signals ξ and
η. The system given by a (5.33), (5.34) is exponentially stable if there exists
a symmetric matrix P � 0 and a Hermitian multiplier Π with(

A>P + PA PB
B>P 0

)
+

(
0 I
C D

)>
Π

(
0 I
C D

)
≺ 0, (5.35)

such that (
∆(ξ)

ξ

)>
Π

(
∆(ξ)

ξ

)
≥ 0 for all ξ. (5.36)

2

Proof. Let P � 0 and Π be such that the matrix inequalities (5.35) and
(5.36) hold. Then there exists ε ∈ R, ε > 0 such that(

A>P + PA PB
B>P 0

)
+

(
0 I
C D

)>
Π

(
0 I
C D

)
+

(
εP 0
0 0

)
≺ 0. (5.37)
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Let x(t), η(t) and ξ(t) be arbitrary system trajectories. Left multiplication
of (5.37) with col(x(t), η(t))> and right multiplication with col(x(t), η(t))
implies

d

dt
x(t)>Px(t) +

(
η(t)
ξ(t)

)>
Π

(
η(t)
ξ(t)

)
+ εx(t)>Px(t) ≤ 0, (5.38)

what with (5.36) and (5.34) further implies

d

dt
x(t)>Px(t) + εx(t)>Px(t) ≤ 0. (5.39)

Hence, the function V (x) = x>Px is a Lyapunov function which proves the
stability of the system. 2

In a case when ∆ represents sector bounded PWA characteristics of the
complementarity integrations, see Figure 5.10, it is easy to derive a class
of multipliers Π which satisfy the condition (5.36). For example, one can
use the standard multipliers for sector bounded static nonlinearities, see e.g.
(Megretski and Rantzer, 1997) and the example in the following section.
Furthermore, each uncertainty block δi from Figure 5.10 can be interpreted
as multiplication (in time domain) with a time-varying uncertainty δi(t),
where 0 ≤ δi(t) ≤ 1 for all i ∈ {1, . . . , k} and for all t ∈ R, and one can re-
side on standard repeated-blok multipliers from classical structured singular
value theory, or on less conservative full-block multipliers, see (Scherer and
Weiland, 2000) for details.

Since the condition (5.35) is a linear matrix inequality (LMI) in P and Π,
its feasibility can be efficiently tested by a dedicated software, e.g. (Sturm,
2001). However, Theorem 5.6.5 will in practice often fail to give any conclu-
sive answer in stability analysis of the closed-loop system with a max-based
KKT controller. This is explained with the following observations.

Note that by treating the PWA characteristics from complementarity in-
tegrators as sector bounded uncertainties, we do not capture any information
about the set W , i.e. about the set of admissible values of the exogenous in-
put w. Furthermore, we do not capture any additional information about
the terms ri(w), i = 1, . . . , k and h(w) from (5.2).

For each PWA characteristic we only utilize the information that it be-
longs to a certain sector and therefore the model from Figure 5.10 accounts
not only for the set of systems whose stability we desire to prove, but it also
accounts for an infinite set of additional systems. For practical reasons, let
us denote the latter set with G. The set G necessarily includes a system
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Figure 5.11: First order approximation of max-based complementarity inte-
grator.

which is obtained when each complementarity integrator in the closed-loop
system is replaced by pure integrator. This is easy to observe, since the
uncertainty block δi from Figure 5.9 also accounts for a constant positive
gain less or equal then 1, in which case the whole scheme from Figure 5.9
reduces to a pure integrator with a constant gain. If the total number of
constraints in the optimization problem (5.2) is bigger that the dimension of
the partial state vector xp, i.e. if l + k > m (see (5.2)), the above described
robust stability analysis approach will necessarily fail to give any conclusive
answer. Reason for this is the following: when l + k > m, state matrix (ma-
trix “A” in a state-space realization) of the closed-loop system where each
complementarity integrator is replaced with a pure integrator is necessarily
singular. Since this particular system is an element of G, we conclude that,
when l + k > m, there always exists at least one system in G for which
there does not exist a Lyapunov function with strictly negative definite time
derivative along the system trajectories. Therefore, when l + k > m, linear
matrix inequalities from a robust stability analysis test cannot be strictly
feasible.

There is a simple remedy for the above problem. In a case when l+k > m,
one can easily modify a max-based KKT controller to obtain a closed-loop
system for which it is possible to perform stability analysis for all values of
w ∈ W . This modification includes replacement of (some of) the comple-
mentarity integrators with their first order approximations. Here, by the
term first order approximation of a max-based complementarity integrator
we denote a system represented with a block scheme in Figure 5.11 where
[K1]ii 6= [K2]ii (for comparison, see the scheme of a max-based complemen-
tarity integrator from Figure 5.1). Replacement of a max-based complemen-
tarity integrator with its first order approximation is seen as equivalent to
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replacement of a pure integrator with a first order LTI system.

Note that a max-based complementarity integrator consists of two dy-
namical modes: one corresponds to a first order LTI system and the other
to a pure integrator. In a first order approximation of a max-based comple-
mentarity integrator, both dynamical modes correspond to a first order LTI
system. Usage of the first order approximations does not guarantee that the
corresponding inequality constraints (5.2c) will be satisfied in a steady-state.
However, for a fixed w ∈ W , one can always guarantee that the violations of
these constraints will be arbitrarily small, if the gains [K1]ii and [K2]ii (see
Figure 5.11) are chosen in such a way that the value |[K1]ii− [K2]ii| is made
sufficiently small. The benefit of using the first order approximations is that
it allows for the usage of robust stability analysis tools in stability analysis
of a closed-loop system for all w ∈ W .

If the total number of constraints in the optimization problem (5.2) is
bigger that the dimension m of the partial state vector xp, i.e. if ni := l+k >
m, and if ni − m complementarity integrators in the KKT controller are
replaced with its first order approximations, the stability analysis is possible,
i.e. the LMIs in the analysis procedure are no longer deemed to be not strictly
feasible.

Stability analysis procedure of a closed-loop system with a KKT control-
ler for all w ∈ W is illustrated in the following example.

5.6.4 Example

Consider a third-order system of the form (5.1) with (5.1a) given by

 ẋ1

ẋ2

ẋ3

 =

 −2.5 0 −5
0 −5 −15

0.1 0.1 −0.2

  x1

x2

x3

 +

 0
0

−0.1

 w+

 2.5 0
0 5
0 0

 (
u1

u2

)
, (5.40)
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Figure 5.12: Simulated trajectory of the state vector xp.

where xp = col(x1, x2), xq = x3 and u = col(u1, u2). The associated steady-
state related optimization problem is defined as follows:

min
xp

1
2
x>p Hxp + a>xp (5.41a)

subject to
x1 + x2 = w, (5.41b)

−x1 + x2 ≤ 4.5, (5.41c)
x1 − x2 ≤ −2, , (5.41d)

x1 + 3x2 ≤ 26, (5.41e)
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where H = diag(6, 2), a = col(−4,−4), and the value of the exogenous signal
w is limited to be in the interval W = [3, 12].

It can easily be verified that Assumption 5.2.1 and Assumption 5.2.3 hold
for (5.40), (5.41) and the given set W . We assume that the complete state
vector is available for control, i.e. that the output equation (5.1b) is given by
y = x. From the dynamics of the state x3, it follows that in steady-state the
equality x1 + x2− 2x3 = w holds. Therefore, in steady-state, x3 = 0 implies
fulfilment of the constraint (5.41b). This implies that we can use the value
of the state x3 as a measure for violation of this constraint (see Remark 5.3.2).

Controller and simulation results. For the simulation of the closed-
loop system response, we have used the max-based KKT controller with the
gains Kλ = 0.5, Kµ = 0.4I3, Kc = −8I2 and Ko = I3. The results of the
simulation are presented in Figure 5.12. The black, thick, solid line in the
figure represents the trajectory of the partial state vector xp = col(x1, x2)
from the closed-loop system response to the step-wise changes in the exo-
genous input w. The straight, black solid lines labeled with w represent
the equality constraint (5.41b) and for each line the corresponding value of
w is indicated in the figure. At the beginning of the simulation, the state
of the closed-loop system in at the origin and w = 3. At the time instant
t = 100, the step change of the exogenous signal w is applied, in which w is
set to 4. This step-wise strictly increasing changes of w are continued in the
time intervals of ∆t = 50 and the value of w after each change is indicated
in the figure. The last applied change set the value of w to 12. Gray, so-
lid straight lines labeled C1, C2 and C3 represent the inequality constraints
(5.41c), (5.41d) and (5.41e), respectively, and the steady-state feasible region
is in the interior and on the boundary of the convex polyhedron presented
in the figure. Thin dotted lines represent the contour lines of the objective
function (5.41a), while the straight dashed line represents the locus of the
optimal point x̃p(w) for the whole range of values w in the case when all the
inequality constraints in the optimization problem (5.41) would be left out.

The obtained simulation results clearly illustrate that the desired closed-
loop system behavior is achieved: for any admissible constant-valued w the
close-loop system has settled in the optimal steady-state point, where opti-
mality is defined with (5.41).

Primal degeneracy. Consider the solution x̃p(w) of the optimization pro-
blem (5.41) for w = 10.75 and for w = 12. In both cases, x̃p(w) is characte-
rized by three active constraints (two inequality and one equality constraint,
see Figure 5.12). Since the dimension of xp is two, the linear independen-
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ce constraint qualification cannot hold for these points, i.e. for w = 10.75
and for w = 12, x̃p(w) is necessarily characterized by primal degeneracy.
It can be verified that for w = 10.75 and for w = 12, the closed-loop sy-
stem is characterized by a set of equilibria, which is not a singleton. For
example, when w = 10.75 and the closed-loop system is in steady-state, the
state vectors (xλ, xµ) of the KKT controller are given by xλ = (−13 − 2γ),
xµ = col(1.75− γ, 0, γ) where γ is a number between 0 and 1.75.

Due to the existence multiple equilibria, any search for a Lyapunov func-
tion to prove asymptotic stability of an equilibrium point corresponding to
w = 10.75 or w = 12 will necessarily fail to provide a conclusive answer. A
possible remedy for this problem is to replace some of the complementarity
integrators with their first order approximations, as we will see later in this
example.

Note also that for any constant-valued input w, such that w > 12, the
closed-loop system is necessarily unstable since in this case the constraints
from (5.41) are infeasible.

Controller modification. Since the total number of constraints in (5.41)
is 4, and since the dimension of the partial state vector xp is 2, to be able to
perform asymptotic stability analysis for equilibria corresponding to all con-
stant values of w, we have replaced two complementarity integrators in the
KKT controller with their first order approximations. The modified integra-
tors are those corresponding to the constraints (5.41d) (C2 in Figure 5.12)
and (5.41e) (C3 in Figure 5.12), and in both modifications we have used the
gains [K1]ii = 1 and [K2]ii = 0.999 (see Figure 5.11), while all the other
gains in the controller are left unchanged.

One of the consequences of this modification is that the closed-loop sys-
tem is no longer guaranteed to satisfy the corresponding constraints for all
admissible values of w. However, the violations of those constrains, which
are shown in Figure 5.13, are very small and for some practical application
could be neglected.

The three labeled curves in Figure 5.13 represent the steady-state vio-
lations of the three inequality constrains. For each w, the value for which
the corresponding point in the curve C2 exceeds zero, is the value for which
the constraint (5.41d) will be violated in the equilibrium of the closed-loop
system corresponding to that w. Line C1 in Figure 5.13 corresponds to
the violation of the constraint (5.41c), while the line C3 corresponds to the
violation of (5.41e). Note that, since the complementarity integrator cor-
responding to the constraint (5.41c) (C2) was not replaced by a first order
approximation, this constraint will be satisfied for all w.
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Figure 5.13: Violations of steady-state constraints for different values of the
exogenous input w.

As a result of the modification of the KKT controller, for any w there
now exists a unique equilibrium point (including all w > 12). Furthermore,
we can now prove asymptotic stability of the equilibrium for each w ∈ R,
what is done in the following paragraph.

Multipliers and stability analysis. Let Figure 5.10 represent the closed-
loop system with the modified KKT controller, and with δi, i = 1, . . . , 3,
corresponding to the three PWA characteristics from the (modified) com-
plementarity integrators. For practical reasons, we denote the relations bet-
ween the signals ξi and ηi, see Figure 5.10, with ηi = δi(ξi), i = 1, . . . , 3,
and define the following abbreviations ξ = col(ξ1, ξ2, ξ3), η = col(η1, η2, η3),
∆(ξ) = col(δ1(ξ1), δ1(ξ2), δ1(ξ3)), i.e. η = ∆(ξ). The fact that each δi(·)
belongs to the sector as presented in Figure 5.9, implies the following ine-
quality:

(ξi − δi(ξi))δi(ξi) ≥ 0, for all ξi ∈ R and i = 1, 2, 3, (5.42)
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or equivalently(
δi(ξi)

ξi

)>(
−2 1
1 0

) (
δi(ξi)

ξi

)
≥ 0, for all ξi ∈ R and i = 1, 2, 3.

(5.43)
From (5.43) it is easy to verify that the inequality(

∆(ξ)
ξ

)>(
Q(y) S(y)
S>(y) 0

) (
∆(ξ)

ξ

)
≥ 0 (5.44)

holds for all y = col(y1, y2, y3) ∈ R3, y > 0, and all ξ ∈ R3, where
Q(y) = diag(−2y1,−2y2,−2y3) and S(y) = diag(y1, y2, y3). In other words
(5.44) defines a set of multipliers Π (these are standard multipliers for sector
bounded nonlinearities) with the vector y as variables.

With the above derived multipliers, an LMI solver successfully finds a
feasible solution for the corresponding LMIs in Theorem 5.6.5, what proves
asymptotic stability of the equilibrium of the closed-loop system for each
w ∈ R.

5.7 Conclusions

We have presented a control design procedure as a solution to the problem
of regulating a general linear time-invariant dynamical system to a time-
varying economically optimal operating point. The system was characterized
with a set of exogenous inputs as an abstraction of time-varying loads and
disturbances acting on the system. Economic optimality was defined through
a constrained convex optimization problem with a set of system states as
decision variables, and with the values of exogenous inputs as parameters.

A distinguishing, advantageous feature of the presented approach is that
it offers an explicitly defined controller structure as a solution, i.e. the resul-
ting controller is not based on solving on-line the corresponding optimizati-
on problem. We have presented well-posedness conditions for the developed
control structure.

The presented control design procedure is a formalization, generalization
and extension of the methods we have used to design a price-based power
balance and congestion management controller in Chapter 2.



6

Conclusions and recommendations

6.1 Contributions 6.2 Open problems and ideas
for future research

In this thesis we have investigated the use of price signals in real-time
power balance control, congestion control and ancillary service scheduling in
electrical power systems. In this chapter we present an overview of the main
results and contributions and discuss open problems, possible directions and
starting points for future research.

6.1 Contributions

The main contributions of the thesis are:

• A novel, distributed, price-based control structure for real-time optimal
power balance control and congestion management.

• A novel, robust, hybrid MPC control scheme for power balance con-
trol with hard constraints on line power flows and network frequency
deviations.

• The concept of Autonomous Power Networks as a concise formulation
to deal with economic, technical and reliability issues in power systems
with a large penetration of dispersed generation units.

• A novel operational structure of ancillary service markets.

• A constrained steady-state optimal control based on dynamical comple-
mentarity controllers derived from the Karush-Kuhn-Tucker optimality
conditions.
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6.1.1 Real-time price-based power balance and congestion
control

Due to large-scale integration of distributed generation with large amounts
of renewable energy based units, future power systems will be characterized
by significantly larger uncertainties. Success of power balance and congesti-
on management control schemes in present power systems heavily relies on
relatively accurate predictions of future systems state, as the vast majority
of power production in those systems is scheduled in an open-loop manner.
Feasibility, reliability and economical efficiency and effectiveness of future
power systems will increasingly relay on real-time, feedback control soluti-
ons.

In Chapter 2, we have considered the problem of real-time, price-based, eco-
nomically optimal power balance control and congestion management. We
have designed a dynamic feedback controller for optimal real-time update
of electricity prices. The developed controller reacts on a measure of power
imbalance in the system and on measured violations of line flow limits in
a transmission network. The output of the controller is a vector of nodal
prices. Each nodal price is communicated to the production/consumption
units at the corresponding network node, which then autonomously react
on this price by adjusting their production/consumption levels to maximize
their own benefits from producing/consuming electrical energy.

Under the hypothesis of global asymptotic stability of the closed-loop
system, we have proven that the developed controller will continuously drive
the system towards the equilibrium where all the network constraints are
satisfied, and where the total economical benefit of the system is maximized.
In other words, we have proven that the controller will, based on the mea-
surements from the current state of the system, always provide the correct
nodal prices. Furthermore, the proposed control structure is characterized
by certain properties which makes it especially suitable for practical appli-
cations. Summarized, those properties are:

• The only system parameters that are explicitly included in the control
law are the transmission network parameters, i.e. network topology
and line impedances. To provide the correct nodal prices, the control-
ler requires no knowledge of marginal cost/benfit functions of produ-
cers/consumers in the system (neither is it based on the estimates of
those functions).

• The controller is given in an explicit form, i.e. it is not based on solving
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an optimization problem on-line. The nodal prices updates are based
on simple, explicitly defined and easily comprehensible rules.

• The transmission network structure is preserved in the controller, al-
lowing for its distributed implementation. More precisely, the control
law can be implemented through a set of nodal controllers, where one
nodal controller (NC) is assigned to each node in the network. Each NC
acts only on locally available information, i.e. on measurements from
the corresponding node and on the information obtained from NC’s of
the adjacent nodes. The communication network graph among NC’s
is therefore the same as the graph of the underlying physical network.
Any change is the network topology requires only simple adjustments
in NC’s that are local to the location of the change. The distribu-
ted control structure is specially advantageous taking into account the
large-scale of electrical power systems.

The effectiveness of the proposed distributed control scheme has been
illustrated on the IEEE 39-bus New England test system with 10 price elastic
generating units.

The main assumption of the developed control scheme is that the DC
approximation of the power flows in the network is allowed.

6.1.2 Hybrid MPC control scheme for power balance control

On the time scale of one to several seconds, increased uncertainties in futu-
re power systems will introduce relatively large, suddenly occurring power
fluctuations in line power flows, threatening the security of the system by
approaching its stability limits. Due to the decrease in inertia of the system,
fast acting control loops for frequency and power balance control will become
crucial.

With the novel model predictive control (MPC) scheme presented in Chap-
ter 3, we have shown the potential of using price signals in contributing to
control of fast sudden imbalances. The developed control scheme is shown to
be efficient and effective in limiting large frequency excursions and extensive
line overloads.

Line flow constraints in a transmission system are specified for steady-
state operation of the system, and we have shown that the price-based op-
timal controller developed in Chapter 2 guarantees fulfilment of those cons-
traints in steady-state. In other words, in Chapter 2 those constraints were
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treated as soft constraints, i.e. their temporary violations were allowed du-
ring transient periods.

By combining the “basic” nodal-price controller developed in Chapter 2
with a suitably defined MPC controller, we could impose hard constraints on
the maximal transient violations of the steady-state related line flow limits.
Furthermore, we could impose hard constraints on the maximal network
frequency deviations.

The MPC controller served only to add corrective signals to the output
of the basic nodal-price controller, i.e. to the nodal prices, and acted only
when the predictions indicated that the imposed hard constraint will be
violated. In any other case, output of the MPC controller was zero and only
the basic nodal-price controller was active. Due to this exclusively corrective
function of the MPC control action, the closed-loop system performance is
less sensitive to errors in the model used for predictions.

Under certain hypotheses, we have proven asymptotic stability of the
complete closed-loop system. Simulations illustrated the effectiveness of the
proposed control scheme.

6.1.3 Autonomous power networks

Due to the increased uncertainties, reliable and economically optimal provi-
sion of ancillary services will become increasingly important in future power
systems. Price inelasticity of customers is one of the biggest flaws of the
present electricity markets. Active involvement of consumers in both energy
and ancillary service markets, is an issue with the largest, yet unexploited
potential for increasing efficiency and effectiveness of electrical power sys-
tems.

In Chapter 4 we have presented the concept of Autonomous Power Networks
as a concise formulation to deal with economic, technical and reliability is-
sues in future power systems characterized by large amount of distributed
generation units. The autonomous power network (AN) was defined as an
aggregated set of producers and consumers, which is capable and responsi-
ble for complying to the set of integration protocols required for efficient and
reliable operation of the overall power system. In other words, an AN was
presented as a major building block of a power system in all of its layers, i.e.
physical, economic and reliability.

Specifically, we have introduced an AN as a new market entity that ena-
bles creation of competitive markets for ancillary services which are characte-
rized by large amount of players on both supply and consumption side. Each
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AN is presented to the rest of the system as both potential producer and
consumer of electrical power and ancillary services. This is in contrast with
the present power systems, where an independent system operator (ISO)
coordinates the ancillary service markets and at the same time provides the
only demand for them. In an AN based power system, the ISO remains as a
coordinator of the markets.

Furthermore, an AN enables active involvement of virtually all consu-
mers in energy and ancillary service markets. Dealing with a limited set of
consumers, an AN presents both the technical infrastructure and the market
support for a small consumers, e.g. residential loads, for its integration into
the markets.

6.1.4 Constrained steady-state optimal control

In Chapter 5 we have considered the problem of constrained steady-state op-
timal control. We have presented a control design procedure as a solution to
the problem of controlling a general linear time-invariant dynamical system
to an economically optimal operating point. The system was characterized
with a set of exogenous inputs as an abstraction of time-varying loads and
disturbances acting on the system. Economic optimality was defined through
a constrained convex optimization problem with a set of system states as de-
cision variables, and with the values of exogenous inputs as parameters.

A distinguishing, advantageous feature of the presented approach is that
it offers an explicitly defined controller structure as a solution, i.e. the resul-
ting controller is not based on solving on-line the corresponding optimization
problem.

The presented control design procedure is a formalization, generalization
and extension of the methods we have used to design a price-based power
balance and congestion management controller in Chapter 2.

6.2 Open problems and ideas for future research

There are several interesting research directions and open problems in con-
nection to the research presented in this thesis. In the following several
subsections we address and discuss those issues.

Distributed MPC

Recently, the topic of distributed model predictive control (MPC) has gained
a significant interest in control system community. Many theoretical results
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and application case studies have already been reported, however, almost
exclusively dealing with linear systems.

In Chapter 3, we have complemented the distributed price-based con-
troller with a centralized hybrid MPC. Development of efficient distributed
hybrid MPC is therefore of great interest for this particular application.

Stability analysis by exploiting sparsity of power system models

Power system dynamic behavior in the low frequency range is described
through a set of sparse differential algebraic equations (DAE), see e.g. (Pal
and Chaudhuri, 2005). The sparsity in the DAE comes through algebraic
power flow equations. In virtually all current stability analysis and con-
trol synthesis approaches for power systems, sparse algebraic equations are
eliminated at the loss of this structure (Pal and Chaudhuri, 2005).

In Chapter 2, in designing the price-based real-time power balance con-
troller, we have successfully exploited the sparsity of power flow equations,
with the result of obtaining a distributed control structure. One interesting
and important research question is the following:
Is it possible to develop a stability analysis and control synthesis technique
that exploits the sparsity inherent to power system models, and which would
not be too conservative for practical applications?

Receding horizon based operation of power and ancillary services
markets

In Chapter 4 we have presented an autonomous networks based power sy-
stem, where each autonomous network (AN) schedules its production and
ancillary services by its active involvement in competitive energy and ancil-
lary servies markets. If each AN performs this scheduling (including unit
commitment) in a receding horizon, the markets also operate on a receding
horizon principle and coordinate the actions among ANs. Due to the cou-
pling between subsequent time intervals, e.g. ramp constraints, minimum up
and down times in unit commitment, etc., and due to the couplings between
energy and ancillary services markets, the whole system becomes a complex
dynamical system. A challenging task is to analyse the behavior of such a
system and to put requirements on each player so that feasibility, stability
and optimality will be guaranteed at all times.
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