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BOUNDARY VALUE PROBLEMS AND DICHOTOMIC STABILITY*

R. ENGLANDt AND R. M. M. MATTHEIJ$

Abstract. Since the conditioning of a boundary value problem (BVP) is closely related to the existence
of a dichotomic fundamental solution (i.e., where one set of modes is increasing and a complementary set

is decreasing), it is important to have discretization methods that conserve this dichotomy property. The
conditions this imposes on such a method are investigated in this paper.

They are worked out in more detail for scalar second-order equations (the central difference scheme),
and for linear first-order systems as well; for the latter type both one-step methods (including collocation)
and multistep methods (those that may be used in multiple shooting) are examined.

Key words, boundary value problems, dichotomy, stability

AMS (MOS) subject classifications. 65L05, 65L10, 65L15

1. Introduction. In the study of boundary value problems (BVP) stability notions,
describing and interpreting the effects of (small) local perturbations, play an important
role. For initial value problems (IVP) the stability theory of numerical methods is very
well developed (cf. [3], [5], [14], [24]); for BVP this stability question is much more
complicated and less developed, although there has been rapid progress, in particular,
for singularly perturbed problems (cf. [1], [13], [21], [25], [28]).

The basic difficulty for BVPs is that the global errors depend on the data of the
entire interval on which the problem is defined, whereas they only depend on data of
the past interval in IVPs. Nevertheless there is much similarity. Indeed, thinking of a
linear problem, where the solution space of the homogeneous equations can be split
into subspaces of decaying modes on the one hand and growing modes on the other,
it is known that a condition number mainly depends on the boundary conditions (BCs)
imposed; these should be such that the "initial conditions" control the decaying modes,
and the "terminal conditions" the growing modes 18]. This question is closely related
to the notions of conditional stability (cf. [23]) and dichotomy (cf. [4]) (see also [2],
[15], [17], [20]). The latter concept will also play an important role here. In principle
dichotomy denotes a splitting of solution spaces into subspaces of solutions with a
markedly different growth behaviour, like increasing o decreasing, increasing faster
than a certain exponential rate o increasing slower as compared with this rate. Recent
results show that in a well-conditioned BVP, the ordinary differential equations (ODEs)
should be dichotomic in the sense that there is a splitting into solutions that do not
increase significantly on the one hand and do not decrease significantly on the other
(see 11]). Since the BCs also control the modes of the discretized problem, it is clear
that it makes sense to aim at discretizations that produce a decaying (growing)
approximate mode if the corresponding continuous mode is decaying (growing), in
particular, for singular perturbation problems.

Among existing BVP algorithms, it seems that multiple shooting ("stabilized
march") types of methods have hardly been investigated from this point of view, in
contrast to global approaches such as collocation (cf. [1], [25]). In [1], for example,
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1038 R. ENGLAND AND R. M. M. MATTHEIJ

a fairly detailed investigation is made of the damping of fast components in the proper
direction. As we shall show in this paper a similar study can also be made for other
methods, including multiple shooting.

A distinction must be made between "global" and "local" discretizations. A
recurrence relation for approximate output values, such as is found in multiple shooting
or condensed collocation at the matching points, is called the global difference equation.
The actual discretization method that is defined on the finer grid, e.g., by a Runge-Kutta
method in multiple shooting, is called the discretization method. Unless the finer grid
coincides with the coarser, the behaviour of particular interest is the growth of the
modes of the global difference equation; however, this partly reflects that for the
discretization scheme from which it results by internal condensation. The approach
will be based upon investigating increments of the global difference equation for
suitable model problems (as is done in IVP stability theory).

2. Dichotomic stability. As remarked in 1 a satisfactory numerical method for
solving BVPs should approximate both decreasing and increasing modes properly. The
word "accurately" is deliberately avoided, because we are rarely interested in fast
modes outside narrow (boundary) layers. In such layers accuracy may be desirable,
but outside them the required solution will often be quite smooth so that we may wish
to use larger stepsizes. This is precisely the BVP analogue of what is called "stiffness"
in IVPs (cf. [5], [24]). Note, however, that the related stability question for BVPs is
different. Indeed for stiff IVPs it is desirable that subdominant modes and spurious
modes damp out as increases, something that does not make sense for BVPs. It is
then of interest that these modes which make little or no contribution to the true
solution damp out in the appropriate direction. As follows from what has been said
in 1, the nature of the BCs appears to be most important here, as they somehow
have to control dominant, subdominant, and any possible spurious solutions. Before
a more precise definition is given of what should be called stable, an example is first
described.

Example 2.1. Let y"= A2y+f(t) (A a constant) and y(0)=y(1)= 1. Divide [0, 1]
into N subintervals of length h. Denote f =f(ih), Yi the approximant to y(ih) and
a h2A 2. Consider the following discretization:

(2.2) -Yi+3+4yi+z-5yi+l+(2-c)yi=hZf, O<=i<-N-3.

This clearly gives local discretization errors of O(ha). Since it is a third-order difference
equation, but has only two BCs, it is necessary to provide an extra BC in order to
solve for y uniquely. Suppose the relation

(2.3) Yi+-(2 + a)y + Y-I h2f
is used to express either y in terms of Yo and Y2 or YN-1 in terms of YN-2 and YN. (It
also has local discretization errors of O(h4).) This "trick" virtually creates an extra
BC at 0 or 1, respectively. The first choice leads to the system

(2.4)

4-5/(2+a) -1

-5+(2- a)/(2+ a) 4
2-c -5

-1

4 -1

4 -1

-5 4
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BVD AND DI-STABILITY 1039

5fl )-(2-a)+ 5
h2 f-2+ a/ 2+a

h2fl 1+2+
hA

hf_
h2fN_3 + 1

By choosing -A 2 as the forcing term f(t) the exact solution to the original BVP
is y(t)= 1 for t[0, 1]; of course both (2.2) and (2.3)should integrate this solution
exactly so that the only errors to be expected are those due to rounding. In Table 2.1
the errors lYi-y(ih)l are given some values of where A 2 and h were chosen as 800
and 1/80, respectively. The computations were performed on an IBM/MVS 4331 with
double precision (relative machine error 10-6).

The second choice, that is, eliminating yu_, leads to the system

(2.5)

-5 4

2-a -5

-1

4 -1

2--a -5 4 -1

-5 4-1/(2+a)
2-a -5+4/(2+ a).

A table corresponding to Table 2.1 only shows error <2x 10-15. Therefore it would
appear that (2.5) is stable and (2.4) is unstable A simple explanation can be given as
follows the characteristic polynomial X of the homogeneous part of (2.2) is
(26) x(r) r --4r2 + 5r- 2 + a.

TABLE 2.1

Yi-y(ti)

0 0 0
10 0.125 2.00 10-14

20 0.25 1.11 10-12

30 0.375 6.41 10 -ll

40 0.5 3.30 10.9

50 0.625 1.88 10-7

60 0.75 1.10 x 10--5

70 0.875 6.40 10-1

80 0
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1040 R. ENGLAND AND R. M. M. MATTHEIJ

For h o and A 2= 800 (2-a ), X has the zeros
__1 5(2.7)

that is, two "unstable" roots (lr l> a) and one "stable" root (Irjl< 1). Hence the
homogeneous part of (2.2) has two increasing basis solutions and one decreasing basis
solution. From an analysis such as that given in [18] it follows that it is necessary to
have two terminal conditions and one initial condition. Therefore (2.4) cannot be
stable, whereas (2.5) is likely to be stable. By comparing the errors in Table 2.1 at
points with distance 10h, it becomes clear that the solution {rl} which is second in
growth, is responsible for the error growth (a factor 58 after each 10 steps). It turns
out that such a dichotomy (cf. [4]) also holds for c (0, 12]; hence the stability of
(2.5) is uniform in h if h =< , although for values of c -> 7 the situation becomes more
complicated. To examine it, Fig. 2.1 shows a graph of x(r) for c--0. As can be seen
there is a double root and a third root 2 and there is a local minimum of-7 at
For any nonzero value of ce, it is easy to check the roots by shifting this graph up a
distance ce. Hence as long as c < 2 there are three real (and positive) roots, one smaller
than, and the other two larger than one. For 4/27 < ce < 12 there is a real root of
modulus less than and two complex conjugate roots of modulus greater than 1. For
c > 12, however, the smallest root becomes smaller than -1. Therefore, if h and A are
such that h2A2> 12, both methods are expected to be unstable.

,/

FIG. 2.1

For this problem, the homogeneous differential equation has two modes, a growing
mode e’ controlled by a terminal condition y(1)= 1, and a decaying mode e-At

controlled by an initial condition y(0)= 1. Thediscretization (2.2) has three modes,
one spurious mode being added by the use of a difference equation of higher order
than the differential equation. While heA2< 12 it has two growing modes and one
decaying mode. The initial condition controls the decaying mode; the final condition
controls the dominant (spurious) growing mode; and to obtain a stable numerical
solution, it is necessary to impose the extra boundary condition at the end so as to
control the second growing mode. When hA > 12 the original decaying mode becomes
an oscillatory growing mode and the given initial condition can no longer control it.

It is now appropriate to give the following definition.
DEFINITION 2.8. Let @ denote a class of linear BVPs on an interval [a,/3 ], where:

(a) the nth order (n->2) ODE, Dy=f(t), is such that the homogeneous equation,
Dy =0, has k independent solutions gj(t) (j 1,..., k) which grow in magnitude,
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BVD AND DI-STABILITY 1041

and (n-k) independent solutions gj(t) (j= k+ 1,..., n) with decaying magnitude;
and (b) the BC can be written as Py(a)=p ((n-k) equations) and Qy()=q (k
equations).

Let Mh be a consistent discretization method defined on an equally spaced grid
with mesh size h, giving an mth order (rn _-> n) linear difference equation Dh(yh) =fh(t)
and BC Phyh(a)=ph ((m-l) equations say), Qhyh()=qh (1 equations), where yh
is defined on the grid. Let the basis solutions of the discrete problem Dh(y) =0, be
denoted by r(ih), j 1, , m, and ordered in such a way that r(ih) gj( ih + O( h ),
j 1,..., n. Then Mh is said to be dichotomieally stable for @ if for each BVP
of this subset and its discretization and each mesh size h there holds"

(i) Ir(ih)l is an increasing function of (j 1,..., k);
(ii) ]r(ih)] is a decreasing function of (j= k+ 1,..., n);
(iii) Of the remaining (m-n) solutions of the discrete problem, )(ih), j=

n+ 1,..., m, (l-k) are such that ]r(ih) increases and (m-l-n+k) are such that
]r(ih)l decreases with i. [3

Remark 2.9. Definition 2.8 requires that to the spurious modes (only if m > n)
there correspond the proper type of BCs (e.g., initial conditions for decaying ones). It
does not require, however, that these BCs actually control the discrete solutions at all.
Including this requirement would make it necessary to introduce a condition number
or some threshold for it, not only for the discretization but also for the original problem.
Since the actual determination of the discrete BCs might be uncoupled from the
determination of the difference equation, our definition is still a meaningful one, as it
gives a necessary condition for a stable or well-conditioned discrete problem. Thus,
dichotomic stability is by no means a sufficient condition for a proper discretization.
Quite apart from accuracy criteria, the conditioning of a problem (continuous or
discrete) depends on the boundary conditions, which are not considered in Definition
2.8.

In what follows, attention will be mainly restricted to difference equations which
are of the same order as the differential equations. The following simpler notion,
applied to an equation with constant coefficients, may then be used.

DEFINITION 2.10. Let the basis solutions of the homogeneous part of an nth order
linear differential equation have components proportional to e.; (j 1,..., n). Let
Mh be a discretization method giving an nth order linear difference equation with
corresponding basis solutions of the discrete problem having components with growth
{(r)i}, where r -h + hA + O(h2). Then Mh is di(chotomically) stable on a region R c C
if and only if, for hAj. R,

(i) Re (hAj)_-<0:=Jrl=< 1,
(ii) Re(hA)_->0=Jr[_>-1. [3

Obviously, if m n in Definition 2.8 condition (iii) is redundant, while, for the
constant coefficient ase, Definition 2.8(i) and (ii) are equivalent to Definition 2.10(i)
and (ii). The class @ then consists of BVPs for which the homogeneous part of the
ODEs has basic solutions that for a given h satisfy Definition 2.10(i) and (ii). In this
sense Definition 2.10 is consistent with Definition 2.8. Of course, Definition 2.10
resembles the more familiar IVP notions of stability such as absolute stability and
A(a) stability [5], [29].

Example 2.11. If M is the forward Euler method, then R
c IRe (z)>=O}U{z Cllz+ 11<_- 1}.

3. An investigation of the di-stability of some methods. In this section the di-stability
of a number of methods is investigated to demonstrate the use of the concept, rather
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1042 R. ENGLAND AND R. M. M. MATTHEIJ

than to give a detailed discussion of all its aspects. In 3.1 consideration is given to
the classical central difference scheme for scalar second-order ODEs. Then in 3.2
one-step difference equations for systems of first-order differential equations are
examined. Finally, in 3.3 a more special one-step equation is considered, viz. multiple
shooting relations, and attention is paid to questions to selection of appropriate
discretization schemes for integration over a shooting interval.

3.1. The central difference scheme. Consider the scalar second-order ODE

(3.1) y" + py’ + qy O.

Perhaps one of the oldest numerical discretization methods uses central differences

(3o2) 1 + h y/h+l + (--2 + qh2)yh + 1
p

12i_ =o.

As may be seen the basis solutions of (3.1) are e’’, e2t with

(3.3) A1, /2
p

-1- p -4q,
2

and those of (3.2) are {(rl)h i}, {(r2)i} with

-q h2 +/-- h,/p2-4q + q2h2 1 +- h(3.4) rh,r2h=
2 2

Note that Definition 2.10 may be used to investigate the di-stability region R. The
expressions in (3.3) and (3.4) look rather uninviting to use for exploring this R. It is
therefore possible to proceed as follows"

Write for short

-2+qh2 1-(p/2)h
(3.5) K h L

l+(p/2)h’ l+(p/Z)h

It is easy to see that

(3.6a)

(3.6b)

(3.6c)

hIr, I, Irhl are both <1 iff Igl 1 < Lh -<: 1,

h[rl[, [rh[ are both >-1 iff [Kh[+Lh<=-I or [Kh[-Lh<=I<=L,
hone of [rl] Irl is ->-1 and the other _-<1 iff ]Kh[>= ]Lh+ 1[.

h hIn order to find out the values of p, q for which r and r2 are smaller or larger
than 1 in modulus, it is necessary to investigate these inequalities separately for the
case +ph/2>O and l+ph/2<O (cf. (3.5)). In Fig. 3.1 the various regions in which
(3.2) has similar dichotomy properties are sketched, using as abscissa qh2 and as
ordinate ph.

As may be seen, the lines qh2= O, qh2= 4 and ph 0 form the boundaries of these
regions:

(3.7a) l, [rhl are both 1 iff 0 < qh2<4, ph > O,r

(3.7b) are both >1 iff 0 < qh2<4, ph <0,

(3.7c) hone of Irl l, [r[ is >-1 and the other is -<1 iff ]qh- 21 >- 2.

D
ow

nl
oa

de
d 

05
/2

0/
15

 to
 1

31
.1

55
.1

51
.1

37
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



BVD AND DI-STABILITY 1043

ph:2

ph=O b

ph -2

ph

IX

qh

qh=O qh:Z,
FIG. 3.1

In greater detail the regions may be broken down as shown into

Ia" (qh2 <0,= ph > 2)" rh>l= 1, 0 >-- rz > -l,
h> 1 0<rzh<lIb: (qhZ=<0,]ph]<2)" r=

Ic" (qh20, ph <-2)" rl
h _-<-1, 0=< r2

h <_- 1,
h< 1 0>rzh>--III" ([qh2-21 <=2, ph >-_ 2)" 0_-< r,

h r2h<lIII" (0 =< qh2 <- 2, O<-ph<=2, (ph)2+(qh2-2)2->4) 0<-rl,
h rzh>_lIV: (2=<qh2_-<4, O<=ph<=2, (ph)Z+(qh2-2)2->4) O>=r,

hV: (ph->O, (ph)2+(qh2-2)2<4) ]rh]=]r21<=l, complex conjugates,
h hVI" (ph<=O, (ph)2+(qh2-2)2<4) ]r[=[r2]_->l, complex conjugates,

VII" (0=< qh2=< 2, 0->ph>-2, (ph)Z+(qh2-2)2->4): rh, r2=
h r2h<_lVIII" (2=<qh2=<4, 0=>.ph>-2, (ph)Z+(qh2-2)2>=4)" rl,

h> 1IX: ([qh2- 21 <= 2, ph < -2): rh _-< -1, /’2

h<l, rzh<--IXa" (qh2->4, ph->2)" 0=< r
h> 1, h<--IXb" (qh2>-4,]ph]<2)" 0->r=- r2=

Xc" (qh2>4, ph<-2)" 0>rh> 1, h>l/’2---

It is interesting to compare Fig. 3.1 with Fig. 3.2, where regions are shown in which

p

FIG. 3.2
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1044 R. ENGLAND AND R. M. M. MATTHEIJ

the original differential equation (3.1) has similar dichotomy properties. As before,
the lines q 0 and p 0 form the boundaries of the regions:

(3.8a) Re (A1), Re (A2) are both =<0 iff q_->_0, p=>0 (B, C),

(3.8b) Re (1), Re (2) are both _>-0 iff q>=0, p-<0 (D, E),

(3.8c) one of Re (1), Re (2) is ->0 and the other is <-0 iff q<-0 (A).

In the regions C, D shown, where 4q -> p2, A 1, /2 are complex conjugates, but elsewhere
they are real. The scales in Fig. 3.2 are somewhat arbitrary and the position of the
separatrix p2= 4q does not change if qh 2 and ph are used instead of q and p as abscissa
and ordinate. The two figures are thus directly comparable.

If q < 0 (region A), the differential equation (3.1) has two modes: a growing mode
with > 0 and a decaying mode with < 0. For any positive value of h, the discretization
method (3.2) also has two modes: a growing mode with Irl> 1 and a decaying mode
with ]r < 1 (regions I a, I b, IC). Thus for all values of p and h, the method is di-stable
for q < 0. Results will however deteriorate for Iphl much greater than 2 as in regions
I a, I where one of the two modes becomes oscillatory (r < 0), although it still decays
in the appropriate direction.

If q >0, p>0 (regions B, C) the differential equation (3.1) has two decaying
modes with Re ()< 0. If qh<-4, the discretization method also has two decaying
modes with Irl < (regions II, III, IV, V). Similarly, if q > 0, p < 0 (regions D, E) the
differential equation (3.1) has two growing modes with Re (A)> 0. If qh<-4, the
discretization method also has two growing modes with Irl > (regions VI, VII, VIII,
IX). Thus for all values of p, the method is di-stable for qh<= 4. Once again, results
will deteriorate for Iphl greater than about 2, as in regions II, IX where one of the
two modes becomes oscillatory, while those of the differential equation do not oscillate
in regions B, E.

Clearly the method is not di-stable for qh2> 4, as the differential equation still
has two decaying modes if p > 0, or two growing modes if p < 0, but the discretization
method has one decaying mode and one growing mode in regions Xa, X, X.

3.2. One-step difference equations for systems. Most BVP algorithms for systems
of first-order differential equations are based on finding (directly or indirectly) a
one-step recurrence relation for approximate solutions on a certain grid. Together with
the BC this then leads to a linear system from which the (approximate) solution can
be found. Examples are the Box scheme [12], higher-order difference schemes [16],
collocation [1], [22], and multiple shooting [6], [19]. In this section consideration is
given to one-step difference equations that arise from one-step discretization schemes,
such as Runge-Kutta or one-step Obrechkoff formulae. It is well known that a large
class of collocation methods can be interpreted as implicit Runge-Kutta methods [27].
These methods have been extensively investigated for their IVP stability properties (cf.
[1], [3], [26]).

A general Runge-Kutta method for the system of differential equations y’--f(t, y)
may be written

(3.9a) q y) + h E atf( t, + cth qt), k 1, 2,. ., m,
/=1

(3.9b) y/h+l y h h 2 blf( ti + clh, q,)
!=1
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BVD AND DI-STABILITY 1045

where the coefficients akl (k,l= 1, 2,..., m), bt (1 1, 2,..., m) define the method,
Ck Y=I akt, k 1, 2,’’’, m, and for consistency YI bl 1. Clearly any permutation
of the rows of the matrix A {akl} applied also to its columns and to the elements of
the vectors b= {b}, e= {Ok}, will not change the method. When written in the form
(3.9), such a method expresses y+l in terms of y, but for BVPs it is of equal interest
to express y in terms of y+, as though the integration were to be performed in the
opposite direction. Thus

(3.10a) qk=Y)+, -h 2 (bl--akt)f(ti+l--(1--Cl)h, ql), k= 1,2,"" ", m,
/=1

(3.10b) y=y+-h btf(ti+-(1-c)h,
/=1

and if the coefficients ak, bt, ck represent a method applied in the forward direction,
the same method applied in the backward direction is represented by the coefficients
b, agl ), hi, (1 Ok).

DEFINITION 3.11. A Runge-Kutta method will be called symmetric if it is the
same method whether applied in a forward or backward direction.

Thus, letting e be the vector of rn unit elements, the method (3.9) is symmetric
if there is a permutation matrix P such that

(i) eb r a PAP,
(ii) b Pb,
(iii) e- e Pc.
As defined in Definition 2.10, the concept of di-stability is given in terms of

constant coefficient homogeneous linear differential equations. The most general first-
order system of this type may be written y’= Jy where J is a constant matrix, but since
the method (3.9) only uses the function f(t, y) in a linear manner, it is not affected by
a linear change of variables which causes J to undergo a similarity transformation.
For practical purposes, it is sufficient to consider J a complex diagonal matrix, and
thus to examine the effect of the method on one single differential equation of the
form y’= Ay, as is normally done for linear stability analysis of methods for initial
value problems.

When method (3.9) is applied to this standard test equation, it is found that

(3.12) yh+l yh r(hl

where r(z) is a rational function of degree not exceeding m in the numerator and the
denominator. Explicitly (cf. [3]),

(3.13) r(z) + b z(I-Az)-le
the denominator being the determinant of I- Az.

For a symmetric Runge-Kutta method, and indeed for a larger class of Runge-
Kutta methods which could be called linearly symmetric, the rational growth factor
r(z), which characterizes the fundamental solutions of the difference equation, is such
that

(3.14) r(-z)=l/r(z).

For one-step Obrechkoff formulae (cf. [14])

tf a(3.15) y?+ yh + 2 h \k.O/fi+l "1 ]l/yl 1))
/=1
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1046 R. ENGLAND AND R. M. M. MATTHEIJ

where yt is the lth derivative of y(t) obtained by repeated differentiation of the
differential equation y’=f(t, y) at (t,y)=(ti, y)). Applying such a method to the
standard test equation y’= &y, it is again found that (3.12) is satisfied, where now

(3.16) r(z)= 1+ Y ]3,,z’ 1-2 ]3o,Z’
/=1 /=1

Thus such a method may be defined to be symmetric when /31=(-1)-1/3o (/=
1, 2,..., m) which is equivalent to (3.14).

There is clearly a one-to-one relationship between one-step Obrechkoff formulae
and their growth factors r(z). However, in general, many different one-step methods
may give rise to the same rational growth factor r(z). Nevertheless, their linear stability
properties such as absolute stability, A()-stability, and also di-stability will be entirely
determined by the function r(z). Thus, by using Definition 2.10, a one-step method is
dichotomically stable on a region R c C if and only if for all z R, its growth factor
r(z) satisfies

(3.17a) Re (z)O]r(z) 1,

(3.17b) Re (z) Olr(z)l 1.

THZORZM 3.18. A one-step method that is symmetric and A()-stable is di-stable
on the region R := {z C lRe (z)l sin lira (z)] cos } (0< N /2).

Proof Since the method is A()-stable, the growth factor r(z) satisfies Ir(z)N 1
on R-:={zeCl-Re(z) sinllm(z)cos}. Since it is symmetric r(z)l=
1/lr(-z)] on R+: {zClRe (z)sin lIm (z)[ cos }. Thus (3.17) is satisfied on
R=R-UR+.

So we may conclude that a stability property in the left half plane plus symmetry
as investigated in [1], [25] gives indeed a sufficient criterion for di-stability.

Example 3.19. The implicit midpoint rule (which is also the Box scheme, or a
collocation method at a single Gauss quadrature point), or the trapezoidal rule (which
is a collocation method at two Lobatto points, or a simple one-step Obrechkoff formula),
are both implicit Runge-Kutta methods with growth factor

1 +5z(3.20) r(z)

These methods are A-stable (A()-stable with /2) and symmetric. Therefore they
are di-stable on the whole of the complex plane C.

Example 3.21. Any one-step method whose growth factor r(z) is a diagonal Pad6
approximant to the exponential e is A-stable [3]. These Pad6 approximants also
satisfy (3.14), and so such methods are di-stable on the whole of the complex plane C.

Since a symmetric method has a growth factor which satisfies (3.14) it also satisfies
lr(z)l2= r(z)?(z)= r(z)r()= r(z)r(-z)= 1 whenever Re (z)= 0. It is thus tempting to
suppose that any symmetric method might be di-stable on the whole of the complex
plane C. The following counterexample shows that this is not the case.

Example 3.22. A one-step method (Runge-Kutta or one-step Obrechkoff formula)
whose rational growth factor is

41 +5z +z(3.23) r(z) 4
Z + 5Z

is symmetric and A()-stable with /6, but is not A-stable, and hence not di-stable
on the whole of the complex plane C. It is in fact di-stable on the region

R := {z= x + iy3y2-xZ+(4x4+ 9}
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BVD AND DI-STABILITY 1047

which contains the smaller region

/ := {z C IRe (z)l => IIm (z)l }.
General one-step methods will have their mesh size restricted for stability reasons.

This is well known for explicit formulae applied to initial value problems, in which
case it is necessary that, for each eigenvalue ) of the Jacobian matrix J, the product
hA must lie in the absolute stability region R:-{zC[]r(2)l<l}. When applied to
boundary value problems, implicit formulae also suffer from such a stability restriction
upon their step size, as the growing modes must be properly represented. However, a

symmetric method which is also A-stable will not suffer from any mesh size restriction
owing to stability, as it is di-stable on the whole of the complex plane C. A symmetric
A(c)-stable method will be equally efficient provided the eigenvalues of the Jacobian
matrix J lie within the appropriate sectors of di-stability of the complex plane, although
these statements are to some extent dependent upon the assumption that the matrix J
is constant. The boundary conditions could also disturb the overall stability of such a

discretization, as is well known in the case of the implicit midpoint rule and the
trapezoidal rule, which suffer from the same kind of oscillation as the central difference
scheme for second-order equations.

3.3. Mtfltille shooting. As illustrated in Example 2.1, the use of a difference
equation of order higher than that of the differential system imposes the need for
additional boundary conditions. Such a situation most naturally arises when using a
central difference scheme of higher order than the differential equation, e.g., fourth-
order (five-point) central differences for a second-order differential equation. In those
cases, an analysis similar to that performed in Example 2.1 should show where
additional boundary conditions are needed.

However, when treating systems of first-order differential equations, shooting or
multiple shooting are very natural approaches. One way of viewing multiple shooting
is to think of a basic discretization method (one-step or multistep) but to eliminate
from the algebraic equations the solution values internal to each shooting interval
(internal condensation) or all the internal variables in the case of simple shooting. In
practice the difference equations are set up sequentially, and internal variables elimi-
nated as soon as they are not needed. The step size may also be determined and varied
dynamically.

If the basic discretization method is a one-step scheme, it is important that it
should be dichotomically stable for the problem to which it is applied. Then any
decaying (growing) mode of the differential system generates a decaying (growing)
mode of the basic difference equation, which is controlled by an initial (terminal)
condition. The only difference from direct solution of the one-step difference equation
(apart from a reduction in storage requirements) is that sequential block elimination
of internal variables may be an unstable process, and lead to swamping of decaying
modes by rounding errors in the growing modes. This is one of the principal motivations
behind multiple shooting, in which, unlike simple shooting, the sequential block
elimination is not carried too far before a new uncontaminated set of fundamental
solutions is again restored. The global difference equation, which relates values at the
ends of the shooting intervals, must then be solved, by some stable recursion process,
involving decoupling of decaying and growing modes and not by direct block elimi-
nation.

Since, in each shooting interval, we are solving a number of initial value problems,
it is natural to consider multistep schemes, instead of one-step schemes, for use in the
basic discretization. As always, the use of a multistep discretization method for a
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1048 R. ENGLAND AND R. M. M. MATTHEIJ

system of first-order differential equations introduces spurious modes, and imposes
the need for additional boundary conditions. In general, since the discretization should
be dichotomically stable for the problem to be solved, Definition 2.8 provides a criterion
as to how many additional conditions should be imposed at the beginning or at the
end ofthe interval--an initial condition for each spurious decaying mode and a terminal
condition for each growing mode.

However, in a multiple shooting context, a multistep discretization scheme would
be used to solve initial value problems, and sequentially eliminate internal variables.
Thus, for practical reasons the additional boundary conditions should all be extra
starting values, which are always required in conjunction with multistep methods for
initial value problems. These extra initial conditions could be generated by some
one-step method of high order, or by low-order methods of the multistep family at
small step size as is done in automatic, variable-order, initial value integrators. The
important point is that the multistep discretization method together with the starting
procedure (which provides the additional initial conditions) should be dichotomically
stable for the problem to be solved. This means that any spurious mode of the multistep
method should be of the decaying type.

These considerations lead us to consider new stability properties of discretization
formulae for solving initial value problems. In the context of stiff initial value problems,
the need to represent decaying modes by decaying approximations has lead to the
definition of A(a)-stability (cf. [5], [29]).

Clearly, when considering multiple shooting for boundary value problems, there
will normally be growing modes present, and it would be meaningless to require that
a discretization represent them by decaying approximations, or be absolutely stable
for some hA with positive real part. The first idea might be to consider some form of
relative stability to ensure that numerical approximations do not grow faster than the
true growing modes. This leads to the following definition of R(fl)-stability.

DEFINITION 3.24. If a discretization Mh applied to the test equation y’= Ay
generates a difference equation with basis solutions {(r)i}, j 1, 2,..., k, it will be
called R()-stable if Ir l<le  l (j-1,2,,,, ,k) for al step sizes h, and A C such
that hA R+:={z6C[Re(z) sin>JIn(z)Jcos}. [3

This may be interpreted by saying that R/ lies within the white fingers of the
order star of the method (cf. [26]).

Definition 3.24 does not contribute towards the dichotomic stability ofthe discretiz-
ation. One important requirement for dichotomic stability is that growing modes should
be represented by growing approximations, or that the discretization be absolutely
unstable for hA with positive real part. This idea leads to the definition of the following
desirable property.

DEFINITION 3.25. If a discretization Mh applied to the test equation y’= Ay
generates a difference equation with fundamental solutions {(rh)i}, j 1, 2,’" ", k, it

hwill be called A(3,)-unstable if one of the r;, say rl
h satisfies Irl [> 1 for all step sizes

h, and A C such that hA g+:={zC[Re(z) sin y>[lm (z)[ cos y}. [3

Most methods for stiff initial value problems are not A(y)-unstable, as they
concentrate on decaying modes, and often require that limlI_ [r.[<l. (j=
1, 2, , k). However, at least for boundary value problems, it does seem that A(y)-
instability is a desirable property. Nevertheless, it is still not sufficient to determine a
region of dichotomic stability of the global multiple shooting equations. For this it is
necessary that, while the dominant approximate mode grows, the spurious modes of
the formula decay. Thus there should be a region R+ in which [r[=>l and [r[_-< 1,
j 2, 3, , k. If the discretization satisfies these inequalities in R/ of Definition 3.25,
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BVD AND DI-STABILITY 1049

and is also A(c )-stable, then the global equation is dichotomically stable on R+,
together with the relevant region in the left-hand side of the complex plane.

Example 3.26. The methods given in Example 3.19 are A(c )-stable with c r/2,
and also A( y) -unstable with 3, 7r/2, since there is only one fundamental solution
{(r)i}={r(z)i}, and ]r(z)]<l when Re(z)<0 while ]r(z)]>l when Re(z)>0.
However, these methods are not R (/3 )-stable since ]r(z)]--> oe when z--> 2.

Example 3.27. The following one-step methods have growth factor

1 + 1/2z +z(3.28) r(z) -1/2z+z

which is the Pad6 (2.2) approximant to the exponential e z"

(i) A one-step Obrechkoff formula:

1
,).y/h+l yh +_ h(y’i+ + Y’i) -- h2(y+l Y

(ii) The two-stage implicit Runge-Kutta method using Gaussian quadrature
points:

q +h[f(ti+(-?)h, ql)+(-7)f(ti+(l+"/--2 -7- q2)]Y zo]
h,

q:z=Yhi+h[(+-36 )f(ti+(--36 )h, ql) -4

y)+l y)+h [f(ti+ (-)h, q,) +f(ti+ (+)h, q) ].
(iii) The three-stage implicit Runge-Kutta method using Lobatto quadrature

points [10]:

q=y)+h 5
y:+f t+h, qe

2 1 1y)+=y)+h y:+f t+h, qe +Y:+l
These methods are A()-stable with =/2, and A(7)-unstable with T= /2. In
addition they are R()-stable with 16.9. In contrast to the previous example, the
positive real axis is in a white finger of the order star.

These examples were all of one-step methods with only one fundamental solution.
The next examples are of genuine multistep methods.

Example 3.29. The following two-step methods, when applied to the test equation
r,),(r)"y’ Ay, generate a difference equation with the same pair of basis solutions

(i) A two-step Obrechkoff method (Enright’s two-step second derivative method)
[9]:

(294b +5 -1 )_1,2y)+l y) + h= y:+l y y:- , y+,.
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1050 R. ENGLAND AND R. M. M. MATTHEIJ

(ii) A hybrid implicit stiffly stable method [7]"

21 3 1 3
q2= Yhi+l +- Yhi -- Yhi-,--- hy’i+,

33 yh 7 7 1 5

--32 y+h

)1]y)+=y)+h y:+f t+h, q2 +gy:+
For both methods

(3.30a)

[ 5 (3 43 A 1 )’/2]/[ ( 29 1 )]r= l+hA+ l+-hA+h ----h3A 2 1-hA+-hZA
12 4 192 96 48 8

h 5 3 43 29
r2 1+ hA 1 +- hA+hA--- h3A 2 1- hA +- h2A 2

4 192 96 48 8

These methods are therefore A()-stable with /2, and R()-stable with 17.4
as may be seen by determining the order star. However, they are not A(y)-unstable
since rh h, r2 0 when hA . If they are used with too large a step size h then all the
basis solutions of the difference equation will decay, while some of those for the
original differential equation will grow. Thus, for the global difference equation, the
region of di-stability is bounded in the positive half of the complex plane, and the step
size will be limited for stability reasons, as is that for the central difference method
(3.2) when the coefficient q > 0.

Example 3.31. Consider the three-step Obrechkoff method

( 2471 1 )19 yy)+=y)+h 79
Y:+I+Y:-y:-I+Y:-2 -h2(y+,- ).

When applied to the test equation y’= Ay, this method generates three fundamental
solutions {( rhl)}, {(r)}, {(r)}; r approximates eh for Ih] small. In fact r eh

h hO(h6A 6) as hA 0. The spurious roots r), r3 are both zero for hA 0. Also r 1 and
h r 0 as hA . It may be checked by determining the absolute stability regionF2
and order star, that the method is A()-stable with 88.3, and A(y)-unstable with

= /2. It is also R()-stable with /12 (15) the largest possible value of for
a discretization method with fifth-order accuracy. Fuhermore the spurious roots

h hsatisfy ]r]<l, ]r2<l for Re (hA)0 (and indeed for all values of hA), and so the
global multiple shooting equations have an unbounded region of di-stability containing
R-U R+ where

R-:= {z c l-Re (z) sin 88.3> Jim (z) cos 88.3},

e+ := {z C ]Re (z) > 0}.

With this method, the step size will not be limited for stability reasons, unless the
Jacobian matrix J has eigenvalues very close (within 2) to the imaginary axis, or
unless stability is disturbed by either the variation of J, or by boundary conditions
which do not actually control the modes of the discrete solution.

Very few (if any) multistep methods of this type are to be found in the literature.
A paper has been published [8], which specifies precise families of such methods; we
hope to use these for solving boundary value problems in the future.
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BVD AND DI-STABILITY 1051

4. Examples. This initial paper introduces the concept of dichotomic stability,
and its importance for numerical methods for the solution of boundary value problems.
It is not possible, in a limited space, to give an exhaustive analysis of the implications
of the concept, or a complete description of a multiple shooting method which takes
this analysis into account. For other papers that extend the analysis and implementation
aspects, see, e.g., [8].

Nevertheless, this paper would not be complete without an example to illustrate

(i) the necessity, for certain "stiff" problems, of a large region of di-stability, and (ii)
the failure of other methods, e.g., A-stable methods, for such problems. Implicitly, the
importance of dichotomic stability for global methods (in particular collocation) was
demonstrated in [1]. A shooting approach is considered here. In subsequent papers,
details are given as to how an integrator should select appropriate step sizes, which
are commensurate with the activity of a desired particular solution. Here, it is assumed
that a suitable constant step size can be found, and bounds upon its value are considered.

Example 4.1. Consider the following pair of ordinary differential equations:

(4.2a) y,=[0 A] [(l-A) e ]A 0
y+

(l-A) e

(where A is a real positive constant), with the boundary conditions

(4.2b) [10 00]Y(0)+[: 0] y(1)=I 1]1 e

The solution of (4.2) is

y(t)=(et, e’) ,
while the basis solutions of the homogeneous part form a fundamental set

(t) [ e-t e ’l
_e-At earl"

Problem (4.2) is well conditioned, with a condition number independent of A (cf.
[18]), and it might be expected that for any given tolerance (TOL), there should exist
a maximum step size h (independent of A such that the global error is bounded by TOL.

Consider the use of the Backward Euler method, and a large value of A. Since
the step size h should not depend upon A, the product Ah may also be very large. The
discretization of (4.2a) is

(4.3) Y/h+l
Ah 0

[Y) + hfih+l]

where

(1 A) e ik ]f)=
(l-ae

and if Ah is large the discrete fundamental solution set is approximately

(4.4)
_(Ah)_ (_Ah)_

One of the difficulties of shooting is clearly absent, as there is no growth of either of
the discrete fundamental modes, which might swamp other modes or the particular
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1052 R. ENGLAND AND R. M. M. MATTHEIJ

solution. However, at t--ih 1, and as h, [[cbhll-*0, and it can be seen that the
second of the boundary conditions (4.2b) fails to control either of the discrete funda-
mental modes, unless the step size h is also reduced so that hh remains of order unity.
For large values of hh, the discrete problem is ill conditioned, and so the step size h
is highly dependent upon h.

In this example, the eigenvalues of the Jacobian matrix J were +/-h. Methods with
A-stability, such as the Backward Euler method, are very useful for stiff initial value
problems, but their treatment of eigenvalues with positive real parts is very bad. This
is also true of any one-step method whose growth factor r(z) is a Pad6 approximant
to the exponential e with the degree of the numerator smaller than that of the
denominator. For large positive eigenvalues h, lack of di-stability forces the step size
down in order to recover a well-conditioned discrete problem, in much the same way
as lack of stiff stability does for problems with large negative eigenvalues.

Example 4.5. Consider the same continuous problem (4.2); but now it is discretized
with the trapezoidal rule (3.19) which is di-stable on the whole of the complex plane
C. The discretization is

] [[’]-- 1 hh1

o
1 01] [0 A0h] 1 0] [0 ]]yi+hgi }AhAh

where g)=1/2(f)+fL1), and if lh is large the discrete fundamental solution set is
approximately

(4.7) ,h[ (--1) (-1)]-(-1) (-1)’

For such large values of Ah, these discrete fundamental modes do not provide a good
approximation to the continuous fundamental modes, but they are good enough for
the boundary conditions to control them. It is straightforward to see that the resulting
discrete problem is well conditioned. Given any tolerance (TOL), the maximum step
size h, such that the global error is bounded by TOL, depends only upon the particular
solution of (4.2), and not upon A. Furthermore, there is no difficulty associated with
the solution of the discrete problem by simple shooting.

It may be noted that dichotomic stability is not a sufficient condition to guarantee
well conditioning of the discrete problem although it is a necessary condition, at least
when the eigenvalues A of the Jacobian matrix become large, whether with positive
or negative real parts. If boundary conditions (4.2b) were replaced with

[1 00] [0 00] [1](4.8)
0

y(0)+ y(1)
1 e

both the solution, and the conditioning of the continuous problem would remain
unchanged. However, the boundary conditions (4.8) would not actually control the
discrete fundamental modes of (4.7), and the resulting discrete problem would be ill
conditioned, in spite of the di-stability of the trapezoidal rule. The difference between
(4.2b) and (4.8) is similar to that occurring with the central difference scheme when
the number N of subintervals is changed from an odd to an even value.

5. Conclusion. A problem with fast growing and decaying fundamental modes
may be, if appropriate boundary conditions are given, a very well-posed problem, and
this would be reflected in a small condition number [18]. If a discretization is used
which does not approximate the fundamental modes of the continuous problem by
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similar (growing or decaying) modes of the discrete problem, then boundary conditions
that control the continuous modes cannot control the discrete modes. The resulting
discrete problem would then be ill conditioned, with a large condition number [11],
and small discretization errors would give rise to large global errors. Even if care is
taken in the boundary layers, with accurate approximations obtained by using
sufficiently small steps, the use of larger steps outside the boundary layers could change
the nature of some fundamental modes, from growing to decaying, or vice versa. The
resulting discrete problem would not have the correct dichotomy, and large errors
could result.

Dichotomic stability, as defined in Definition 2.8 or 2.10, is a property of the
global discretization method for a boundary value problem. It guarantees that the
fundamental modes of the continuous problem are approximated by the proper type
(growing or decaying) of mode for the discrete problem. It appears to be a necessary
condition to ensure that the conditioning of the discrete problem is not worse than
that of the continuous problem. It is not, in itself, a sufficient condition, without any
consideration of the boundary conditions. It is not impossible for a di-stable discretiz-
ation to produce an ill-conditioned discrete problem from a well-conditioned con-
tinuous problem. This can happen if the fundamental modes, while having the correct
type (growth or decay) of behaviour, are nevertheless distorted (in the n-space of the
dependent variables y) in such a way that the BCs, while being correct in number, do
not actually control the discrete modes at the correct end of the interval.

In the context of marching, or multiple shooting, type methods, the requirement
for dichotomic stability of the global discretization implies the same property for the
basic discretization scheme, which is used in a marching mode to solve IVPs. A(c)-
stability and A(y)-instability (3.25) then jointly contribute toward an unbounded region
of distability, but are not of themselves sufficient, since A(y)-instability does not place
any condition upon the spurious modes (if any) of the basic, discretization. R(/3)-
stability is also defined (3.24), but is of interest principally for IVPs, and does not
contribute towards the di-stability of a discretization for a BVP.
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