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Abstract. For  a proper  description of growth by metal organic  vapour  phase 
epitaxy  the  three-dimensional Navier-Stokes partial  differential equations  need  to 
be solved  which  govern  the following  series of processes: (i) transport  by diffusion 
and  flow through the gas  phase, (ii) reactions  which  take place  in  this gas phase, 
(iii) reactions  which  take  place at the surface. For this paper we are  at  first 
interested in the  medium-  and  higher-temperature  regions,  which cover the growth 
determined by diffusion through the gas phase  (medium  temperature)  and  the 
growth  that is  determined  by the  desorption of growth species (higher 
temperature).  Using  a  number of well  justified assumptions  one can reduce  the 
problem to  a  two-dimensional one. For  the  diffusion-limited region (i.e. medium- 
temperature  region)  the effect of different flow  profiles  (plug  flow,  parabolic flow, 
linear increasing  velocity  and  combination of plug and linear  profile)  on the  growth 
rate  has  been  studied  under  isothermal  conditions.  It  was  found  that all  profiles 
yield the  same  growth rate  within a  few per cent, so that it suffices  to use the 
simple  plug  flow  profile  in  growth  rate calculations.  It is  also shown  that axial 
diffusion is  an  important effect only at the  end of long reactors.  Finally  a model  is 
derived  in which  surface reaction  kinetics  is combined with the  diffusion-limited 
model for the isothermal case. 

1. Introduction 

Metal  organic  vapour  phase  epitaxy (MOVPE) is at  pre- 
sent an  important epitaxy  technique for the  growth of 
111-V compound  semiconductor  materials [l,  23. Many 
electronic  and  optical devices after being demonstrated 
to work on a  laboratory scale are now  produced  com- 
mercially on  an industrial scale by MOVPE. Studies that 
have been performed over  the  past twenty years since the 
introduction of MOVPE by Manasevit [3] have dealt 
mainly with fundamental  and technical aspects. Flow 
dynamics,  reactor design and  depletion effects have re- 
ceived to  date only little attention,  but interest is growing 
[4-91. As flow dynamics of vapour  phase  epitaxy (VPE) 
processes are very complex, one is inclined to  study these 
phenomena with the  help of numerical  simulations [6-91. 
Although  the  graphical  presentations of results obtained 
by these simulations are certainly  instructive (e.g. the 
occurrence of rolls [7]) we concentrate  on analytical 
solutions because they give more  and direct insight in the 
physics and chemistry of the MOVPE process. 

To obtain  analytical  solutions  one  has to solve the 

three-dimensional Navier-Stokes  partial differential 
equations [lo]. As this is next to impossible in general a 
number of simplifications have to be  used. The assump- 
tions from which the simplifications originate  must be 
physically justified. Mathematical simplifications which 
are  made solely for the  purpose of obtaining differential 
equations  that  are simple to solve are not to be  used as 
they generally lead to unrealistic situations. 

The models that  are derived are in principle generally 
applicable, however, they are derived here using observa- 
tions  made of the  growth of  (A1)GaAs [ 1-4, 1 1 - 1  51. It is 
found that the  temperature dependence of the  growth of 
GaAs  can be divided in three  temperature regions: low, 
medium and high. In  the low- and  high-temperature 
regions the  growth  rate is strongly  temperature  depen- 
dent.  It  has been suggested that in the  low-temperature 
region surface reactions  (adsorption of  As and  Ga species 
[l l]) or gas-phase reactions (pyrolysis of  As and Ga 
species [12, 131) are  growth-rate limiting. In  the high- 
temperature region the Ga adsorption-desorption equi- 
librium is considered to be growth-rate limiting 
[ 1 1 ,  14,151. In the  medium-temperature region growth is 
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mass transport limited by the diffusion of Ga growth 
species towards the susceptor [l-4, 11, 141 and therefore 
does not show a  (or only a weak) temperature depen- 
dence. 

In this series of papers [16,  171 we are mainly inter- 
ested in the medium- and high-temperature regions. 
Before the different models are treated a  thorough analy- 
sis  is performed on the validity of the assumptions needed 
to simplify the three-dimensional Navier-Stokes partial 
differential equations. For the diffusion-limited  region 
(medium temperature) first the effect  of different flow 
profiles (namely, plug flow, parabolic flow, linear increas- 
ing  velocity) is studied in the isothermal case. In forth- 
coming papers [16,  171 a temperature gradient will  be 
introduced and the influence of the Soret or thermodiffu- 
sion effect  will be studied. For the high-temperature 
region,  where desorption of growth species  becomes 
important,  a similar analysis will be performed. The 
studies lead to  an analytical expression for the growth 
rate over the two temperature regions considered. The 
theoretical results are compared with experimental re- 
sults for the growth of Si, GaAs  and AlGaAs grown 
within the two temperature regions [17,  181. 

2. Problem  definition  and  assumptions 

2.1. Assumptions and  their justification 

In this section the assumptions made to simplify the 
solution of the three-dimensional Navier-Stokes partial 
differential equations  are physically justified. The analyti- 
cal  models will  be developed  for a horizontal rectangular 
reactor at atmospheric pressure as depicted in figure 1. 
The reactor is heated at the bottom  and cooled at the top. 
A Cartesian coordinate system is used,  with the x coor- 
dinate in the direction of the forced gas flow, the y 
coordinate perpendicular to the flow direction (figure 
2(a)) and the z coordinate in the direction of the width of 
the reactor (figure 2(b)). Heating starts at x = 0. The 
height of the reactor is h and the width is b. In the reactor 
a susceptor is placed on which substrates are positioned. 
The gas phase of such a reactor can be described by the 
velocity  profile u(x, y, z,  t), the temperature profile T(x,  y, 
z,  t )  and the concentration profile  for each (i, i = 1, . . . , n)  
gas-phase component Ci(x, y, z,  t), where t denotes the 
time dependence. These variables can be found by solv- 
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Figure 1. Schematic overview of the MOVPE reactor  cell; the 
gas is  coming  from the  left.  The reactor is resistance 
heated at  the bottom and water-cooled at  the top. 
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Figure 2. Definition of Cartesian coordinate  system: (a)  
side  view; (b)  cross section. 

ing the three-dimensional Navier-Stokes, continuity and 
diffusion partial differential equations [lo]. These can be 
simplified  using a number of assumptions, which are 
justified  keeping the growth of GaAs from trimethylgal- 
lium (TMG) and ASH, in mind. The formulation of the 
assumptions may  seem  extensive;  however,  in the past 
several authors were not as careful as they should have 
been  in formulating the assumptions on which their 
models  were  based. Therefore it is not always clear 
whether the derived  models are valid or not. In the 
derivation of the analytical models the following assump- 
tions are used. 

Assumption 1. The amounts of hydrides and metal alkyls 
are small  (typically c 1 %) as compared with the amount 
of carrier gas (i.c.  H,). Therefore the flow dynamics are 
completely determined by the carrier gas. As the growth 
of GaAs is controlled in the diffusion-limited region by 
the diffusion of TMG towards the substrate only the 
concentration of one gas-phase component is considered. 
The concentration profile Ci(x, y, z ,  t )  can thus be 
simplified to C(x, y ,  z ,  t). 
Assumption 2. For all times t 2 0 the velocity  profile ~ ( x ,  
y, z,  t), temperature profile T(x,  y, z ,  t )  and concentration 
profile C(x, y, z ,  t )  at any position (x, y, z )  are indepen- 
dent of time, thus  a (quasi) stationary  situation is estab- 
lished. 
Assumption 3. Under all conditions and for any position 
(x, y, z )  the flow  is laminar and streamlines are horizontal 
and thus parallel to the susceptor. Choosing the right 
reactor dimensions and using H, (or He) as carrier gas it 
is simple to obtain laminar, metastable flows  for com- 
pletely  developed flow profiles [19]. When the gas is 
flowing  from the cold zone (x < 0) to the high-tempera- 
ture zone (x 2 0) it experiences a temperature shock, 
which  causes the gas to expand which can lead to 
unwanted return flows [20].  This can be prevented by 
using a low reactor ( G  2 cm) and sufficiently  high gas 
velocities (room temperature mean flow rate 10 cm 
S- l). Due  to the temperature shock the flow profile has 
to be re-established. The streamlines seem to recover 
quickly from this shock (within 1: 1 cm) [S]. However, 
the velocity and temperature profiles,  which are coupled, 
are re-established more slowly. Entrance lengths for  these 
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profiles have been calculated to be x ,  = 0.04 h Re and 
xT = 0.28 h Re [19], where x ,  and xT are  the  entrance 
lengths  for  the velocity and  temperature profile respec- 
tively, Re is the  Reynolds  number and h the  height of the 
reactor.  This  means  that  the  temperature profile deter- 
mines the  dimensions of the  entrance region. 
Assumption 4. At the  entrance of the  reactor,  up  to x = 0, 
the flow is laminar with an average velocity i7 and  input 
concentration of the  group I11 component C o .  Hence for 
all x < 0 the velocity profile u(x, y, z ,  t )  is independent of 
x ,  whereas  the  temperature profile T ( x ,  y,  z, t )  and  con- 
centration profile C ( x ,  y, z ,  t )  are  independent of ( x ,  y, z). 
Assumption 5. As  we are  not interested  in  the develop- 
ment of the flow but  in already fully developed flow 
profiles, it is assumed that  no  entrance region exists in 
which the profiles develop. Alternatively, one  can assume 
that  the  entrance lengths of the velocity and  temperature 
profiles are reduced to  an infinitesimal size. Hence  for  all 
x > 0 the velocity profile u(x, y,  z, t )  and  temperature 
profile T ( x ,  y,  z, t )  are  independent of x .  These profiles 
are  thus fully developed, which does  not  hold  for  the 
concentration profile C ( x ,  y,  z, t). 
Assumption 6. The  transport of growth species in the y 
direction  only  occurs as a result of gas phase diffusion 
(and thermodiffusion  for  the  non-isothermal case). This 
follows directly from  assumption 3. 
Assumption 7. For all x 2 0 the  susceptor  temperature is 
defined as T,  and  the  temperature at the top of the  reactor 
is defined as To. Owing  to  the heating up of the cold gas 
the  gas  temperature  at  the  beginning of the  susceptor will 
be less than T,. In practical  situations  one  can  correct  this 
effect using  pre-heating. In  the present  reactor  set-up  the 
susceptor  temperature slowly increases until x = 6 cm 
and  further remains constant.  The  entrance length of the 
temperature profile is of the  same  order, so that  no  extra 
errors  are  to be expected. The  top of the  reactor is water 
cooled so consequently the  temperature will  be practical- 
ly constant ( To). 
Assumption 8. For all x no deposition  occurs of growth 
species onto  the  top of the  reactor. In  the present  reactor, 
however, deposition  does  occur. Analysis of the  depo- 
sited layer  shows that it  mainly  consists of As. Assuming 
that  Ga growth species determine  the  growth rate (As  is 
present  in excess), this  assumption seems correct. 
Assumption 9. For all x and y  the velocity profile 
u(x, y, z, t), the  temperature profile T ( x ,  y,  z, t )  and  the 
concentration profile C ( x ,  y, z, t )  are  independent of z. 
This  means  that either a reactor is considered of infinite 
width or  that  no  deposition occurs at the side walls of the 
reactor.  This  assumption reduces the  problem to a two- 

- b / 2  0 bl2 

Figure 3. Flux of growth  species  in y-z plane. If no 
deposition on side  walls  occurs,  reflection  will  take  place. 

dimensional  one.  Figure 3 illustrates  the validity of this 
assumption.  The flux of growth species at y = 0 is 
determined by the  y-component of the diffusion in the 
y-z plane.  This flux  is in  general  a  function of z. If no 
deposition on side walls occurs, reflection will take place. 
From symmetry  considerations  it follows that  the flux of 
species towards  the  susceptor is independent of z. A more 
thorough  derivation is given in  appendix 1. In  practice 
deposition on side walls does take place. In  appendix 1 it 
is shown  that this effect is small; hence the  growth  rate 
over the largest part of the  width of the  reactor is 
constant.  A  much  stronger effect is seen in the  corners of 
the  reactor. For the  present  reactor  (width 5 cm, height 
2 cm, length 25 cm)  this effect only  extends  a few mm 
inwards  from  the edges of the  reactor.  The effect of side 
walls on the  temperature profile is much  more difficult to 
determine.  There will always  be  a  heat  loss through  the 
side walls. Taking  this effect into  account in designing the 
heater of the  reactor,  the effect can  be confined to a  small 
region near  the edges. Altogether  the effect of the  side 
walls is that over typically 90% of the  total  width of the 
reactor  the  growth  rate will  be constant. 
Assumption 10. For all x c 0 no deposition  occurs at the 
susceptor, while for x > 0 homogeneous  deposition  takes 
places on the  susceptor and  substrates.  To  obtain  homo- 
geneous  deposition  the whole susceptor  should be 
covered with substrates. Because of high substrate  costs 
this will not be possible (and is not  done) in  practical 
situations. As long  as  the surface does  not play an 
important role  in  the  crystal  growth process no devia- 
tions are expected. 
Assumption 11. Transport of growth  components  in  the x 
direction (axially) only  takes place because of convective 
( x  direction)  laminar (y-z plane) gas flow. Appendix 2 
treats  the effect of axial diffusion in  the case of a  simple 
isothermal  model.  It is concluded that  under  normal 
conditions only small effects are  to be expected [ S ] .  
Assumption 12. For all possible gas-phase  reactions  it is 
assumed that they are either very fast or very slow. Fast 
reactions  lead to a  gas  phase  in  equilibrium. Slow reac- 
tions do  not yield products of significance. If  such  a 
reaction is necessary for the  crystal  growth process, it will 
be surface catalysed. 

On the basis of the  above  assumptions  it follows that 
the velocity and  temperature profiles are only a  function 
of y: Y ( X ,  y ,  Z, t )  z u(y )  and T ( x ,  y, z,  t )  = V y ) .  The  con- 
centration profile for one gas phase  component is only  a 
function of x and y :  Ci(x ,  y, z, t )  C ( x ,  Y). 

2.2. Differential equations 

The  concentration profile C ( x ,  y) is found  from  the 
continuity  equation (mass  conservation) or diffusion 
equation  [lo], which can  be  written  in  its  general  form as 
(using  assumption  1) 

anctot + v [nClolv]  
at 
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where C,,, is the  total  gas-phase  concentration 
(= P/R,T), n E n(x ,   y ,  z, t )  the mole fraction of growth 
species y ,  z, t )  = n ( x ,   y ,  z ,  t)C,,,), C = W ,  Y ,  z, t )  
the  concentration of growth species, U u(x, y ,  z ,  t )  the 
flow velocity, D D ( T ( x ,   y ,  z, t ) )  the  binary diffusion 
coefficient of the group I11 component, aT the  thermal 
diffusion factor, T E ( x ,   y ,  z, t )  the  growth  temperature, 
P the  total pressure and R,  is the gas constant. 

Note  that  this expression is valid both in the mass- 
transport-limited  as well as in the kinetically limited 
regime, as surface reaction kinetics are introduced  as  a 
boundary  condition.  Gas-phase reactions can be includ- 
ed by adding at the  right-hand side terms that represent 
the generation and annihilation of species by chemical 
reactions; however, this is done elsewhere [21,22]. With 
the  assumptions described in  52.1 from which it also 
follows that the  total pressure P is constant (P = 1 atm in 
our case) equation (1) reduces to (rewriting to C ( x ,   y )  as 
variable, using n(x ,   y ,  z ,  t )  < 1  (assumption 1)) the fol- 
lowing partial differential equation 

with the  appropriate  boundary  conditions: 

C ( 0 ,   Y )  = (TO/T(Y))CO O < y < h  (3) 

J ( x ,  0)  = k c ( &   Y )  ly  = 0 x > o  (4) 

J ( x ,  h)  = 0 ( 5 )  

where the flux J ( x ,   y )  is  given by 

(6) 

The (aT + 1) terms in equations (2) and (6) originate 
from the fact that the  total pressure P is constant, 
whereas the  total  gas-phase  concentration C,,, is a func- 
tion of temperature  (and  thus of height). In  the  above 
equations k denotes  the  rate  constant for a  reaction that 
is limited by surface kinetics (assumption 12) and C ,  the 
input  concentration of the  group I11 component.  Bound- 
ary  condition  equation (3) represents the  sudden change 
in the  temperature profile at x = 0 (assumptions 3, 4, 5 
and 10). Boundary  condition  equation (4) is based on 
assumptions 10 and 12, boundary  condition  equation ( 5 )  
on assumption 8. Assumptions 1, 2 and 9 lead to  the 
following definition of the  growth  rate R ( x ) :  

R ( x )  = J ( x ,  0). (7) 

The  temperature profile is found from the general expres- 
sion for the  heat  balance 

where p is the density of gas, c p  the specific heat of gas, K 
the  heat transfer coefficient with temperature dependence 

K = K,(T(x,  Y)/T',)~ and To the  temperature at the top of 
the reactor (= T ( x ,  h)).  

From assumption 5 (fully developed temperature 
profile) it follows that the left-hand term of equation (8) 
is zero. Solving equation (8) for the case p = 0 (no 
temperature dependence of the  heat transfer coefficient K )  

yields a linear temperature  gradient in the y direction: 

T(Y) = T, - ( T ,  - To) h Y 
(9) 

where T, denotes  the  temperature of the  substrate. This 
temperature profile is not dependent on diffusion pro- 
cesses and velocity profile. The real profile does not differ 
much from this linear temperature  gradient,  as  has been 
found experimentally [ S ,  191. 

3. Diffusion-limited growth models 

In this section models are derived for the regime where 
the  growth is limited by diffusion of the  group I11 
component  in  the gas phase  towards  the  substrate. 
Surface reactions will  be treated in $4. Therefore the 
boundary  condition  equation (4) is  simplified to 
J ( x ,  0)  = 0. Furthermore  the models are derived in the 
isothermal case with T ( y )  = T =  constant.  The effect of a 
vertical temperature  gradient is treated elsewhere [16]. It 
follows that  thermal diffusion is automatically ignored as 
the  temperature-dependent term in  equations (2) and (6) 
equals zero ((slay) T ( y )  = 0). The velocity profile u ( y )  in 
this case is parabolic. It will  be shown that it  is possible to 
solve equation (2) with the  parabolic profile in the 
isothermal case. As this is rather complicated, we first 
derive simpler models that use increasingly better ap- 
proximations of the  parabolic profile. The six velocity 
profiles that  are used (plug flow, linear flow, combina- 
tions of plug and linear flow, parabolic flow) are surveyed 
in figure 4. It will  be shown in successive subsections that 
the  growth  rate  can be expressed in general terms for all 
models. From this expression an  important parameter 
can be deduced which  is a measure of the  amount of 
growth species that  are actually incorporated  and which 
is used as  a check of the validity of the models. Therefore 
this parameter will  be derived first. Next the various 
models are derived. 

The  equations concerning concentration C ( x ,   y )  and 
growth  rate R ( x )  as functions of ( x ,   y )  and x ,  respectively, 
will be written using a  number of dimensionless para- 
meters, such as x / h ,   y / h ,   D ( T ( y ) ) / u , h ,   C ( x ,   y ) / C ,  and 
R(x) /u ,C , ,  in order to  obtain results that  are  more 
generally applicable. 

3.1. General  properties  and  total  deposition check 
parameter o 

For all models it will be shown that the  growth  rate is 
expressed as  a  summation of terms, given by (note  the 
dimensionless parameters) 

m 

R ( x )  = 1 Ai exp( - ~ , x ) .  (10) 
i =  1 
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(equation (10)) an expression for W, can be derived, 
where the suffix n denotes the number of terms used: 

n 

W, = 1 AJB,.  (15) 

It should furthermore be noted that W, equals W by 
definition. The  total deposition check o is a useful tool in 
determining the validity of a model and will be used 
throughout this series of papers. 

i =  1 

Vn 

Veloclty 

Figure 4. Survey of the six  velocity profiles to be used in 
the models: (a) plug flow, constant  velocity v o ,  model 1;  (b)  
linear profile I ,  v ( y )  = 2v,, correct mass flux, model 2 ;  (c) 
linear profile II, v ( y )  = 4.5v0, approximation of parabolic 
profile in the region 0 ylh $, model 3 [ 4 ] ;  (d) 
asymmetric combination of adapted linear profile II and 
plug  flow  with correct mass flux, model 4 ;  (e) symmetric 
combination of adapted linear profile II and plug  flow  with 
correct mass flux, model 5; ( f )  parabolic profile v ( y )  = 
6v0(y /h) ( l  - ( y l h ) ) ,  model 6. The broken curve in (a)-(e) 
represents the parabolic profile. 

In most cases it suffices to use only one term, thus 

R(x) = A exp( - Bx).  (11) 

Furthermore  it will  be shown that A is proportional to 
the input concentration of the group I11 component C, 
and  that B is inversely proportional  to u,h: 

A = A'C, B = B'/v,h. (12) 

A model is  believed to be valid and correct if it meets the 
condition that all growth species are built into the crystal 
if a reactor of infinite length is used. The  'total deposition 
check' parameter o, defined as 

o = jomR(x)b dx/bhu,Co  (13) 

is a measure of the validity of the model: the total 
amount of input growth species ( N o  bhuoCo) must 
equal the total  amount of incorporated species. Therefore 
W should be equal to 1. Substituting the previous expres- 
sion for the growth rate  equation (1  1)  in equation (13) 
yields 

o = A'/B. (14) 

If the growth rate is expressed  with more than one term 

3.2. Model 1, plug-flow  profile 

The case of a  constant velocity  profile u ( y )  U,, see 
figure  4(a), also known as plug  flow, results in a  partial 
differential equation  that is a considerable simplification 
of equation (2). This equation can be  solved  using the 
separation of variables method. Introducing the coordin- 
ate p (p = y/h)  yields the following partial differential 
equation  to be solved: 

uoh2 W x ,  P) - a2C(x, P) 
D(T) ax W 

~~ - 

with the appropriate  boundary conditions: 

= 0. 

Substitution of C(x, p )  = X(x)P@) in the partial differen- 
tial equation (16), rearranging and equating to (with a 
modest amount of foresight) - I 2  yields: 

u,h2 1  dX(x)  1 d2P@) 
D(T) X(x) dx P@) dp2 

The solution of equation (20) can be  given as 

- - A 2 .  (20) 

P ( p )  = a sin(Ip) + f l  cos(Ap). (22) 

From boundary condition equation (18) it follows that 
/3 = 0; boundary condition equation (19) leads to 

The general solution of the partial differential equation 
(16) is found from a linear combination of all separate 
solutions: 

m 

C(x, p )  = CO C an sin - 
n = l  (,,, "P) 

1 ) W  D(T) ") (2n - 
" 

uoh h ' 

From boundary condition equation (17) a, can be calcu- 
lated: 

m C, = CO C a, sin(l  2n - 1 " p ) .  (24) 
n = l  
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l l This is a  Fourier series in p ,  transformation gives 

U, = 2 Jb'sin( 7 np) dp 
2n - 1 

1 

= - 2  
(2n - 1)n 0 

4 1  
n 2 n -  l '  

- 

Substitution of equation (25) into  equation (23) and back 
to (x, y) coordinates gives the  complete  solution of the 
partial differential equation (16) that  had  to be solved: 

( (2n - 1)2n2 D(T) x) 
uoh h * x exp - 4 
~- 

The  growth  rate R(x) is derived using its  definition 
equation (7): 

In figures 5 and  6  the dimensionless  function C(x,  y)/Co is 
shown as function of the  three  dimensionless  parameters 
(D(T)/o,h)(x/h), n and y/h. Figure 5 shows C(x,  y)/Co 
(dimensionless)  as  a  function of y/h with (D(T)/u,h)(x/h)  
as  parameter.  The  depletion of the  concentration is 
shown  in figure 6, where C(x,  y)/C, is plotted  as a 
function of (D(T)/o,h)(x/h) at different heights  in the 
reactor (ylh). From figures 5 and  6 it follows that for 
(D(T)/u,h)(x/h)  < 0.2  larger values of n yield better re- 
sults, i.e. a more realistic  concentration profile, and  that 
large  values (> 10) of n should be used for 
(D(T)/u,h)(x/h) < 0.2 in  the  calculation of the  concentra- 

1.51 

Y / h  

Figure 5. C(x,   y) lC,  as  a  function of ylh with (D(T)/v,h) 
(xlh) as parameter, The effect of different  values of 
(D(T)lv,h)(xlh) is  shown  for n = 1 (full  curves)  and n = 10 
(broken  curves). For (D(T)/v,h)(xlh) > 0.2 the differences 
between the n = 1 and the n = 10 curve  can safely be 
neglected: the sinusoidal fluctuations, present at 
(D(T)/v,h)(xlh) = 0.0, disappear  completely at values 
beyond 0.2. 

10-2 ' ' ' 
0.1 0.2 0 3 0 4 

[ D I T ) /  voh l  i x / h )  

Figure 6. C(x,  y) lC, as  a  function of (D(T)lv,h)(xlh) with ylh 
as parameter. The depletion of the  concentration at 
different heights (y lh )  is shown for n = 1 (full curves)  and 
n = 10 (broken  curves). 

k 
P 
I 

W + e 
f 
e 
m 

G 0 1  0 2  0 . 3  

i D i T ) / v o h )  i x / h )  

Figure 7. R(x)hlC,D(T) as a  function of (D(T)/v,h)(x/h) with 
n as parameter. For xlh > 0.2 it  suffices to use n = 1. 

tion profile and consequently  the  growth  rate. For 
(D(T)/u,h)(x/h) > 0.2 it suffices to use n = 1. If one 
examines (R(x)/u,  Co)(uoh/D( T ) )  (dimensionless) as a 
function of (D(T)/u,h)(x/h) with n as  parameter (figure 
7), it follows that in  the region (D(T)/u,h)(x/h) < 0.2  the 
effects of using large values of n is exhibited only in this 
region, which holds  for  the  concentration profile as well. 
The region (D(T)/o,h)(x/h) c 0.2  can  thus be considered 
as  the  entrance region. In practical  situations (x/h >, 4.0) 
using n = 1 will  yield good results. 

The  growth  rate R(x) can be rewritten  in  a  more 
general  form as 

with, for  model 1 

A,, = 2 

B, = (2n - 1)2n2/4. 

The values of A,, and B,, are easily calculated and  are 
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Table 1. Parameters of model 1 ,  

n A n   B n  0, 

1 2 2.467 0.81 1 
2 2 22.207 0.901 
3 2 61.685 0.933 
4 2 120.903 0.950 
5 2 199.859 0.960 

given  in table 1. Taking  into account all terms it can be 
calculated that C231 

and some algebra based on recurrence formulas of  Bessel 
functions C241 it follows that 

a d[(3Ap312)113J1/3(5Ap3/2)] 

The roots 1, of equation (37) can be found numerically. 
The five smallest  values are given  in table 2. The concen- 
tration C(x, p )  is now  given  by 

When  only the first term is  used  in the calculation of the 
growth rate, we obtain 

so that o1 = (Al/Bl) = 0.811. 

3.3. Model 2, linear  velocity profile (I) 

The velocity  profile u(y)  is a linear function of y such that 
the total mass flux through the reactor equals the mass 
flux  in the case of the parabolic profile, or 

J ) Y )  dY = uoh. (31) 

The velocity at the substrate surface is zero, hence 
U(Y> = 2UOY/h. (32) 

This velocity  profile  is depicted in  figure  4(b). Coordinate 
transformation ( p  = y/h), substitution of C(x,  p )  = 
X(x)P(p )  in the partial differential equation (16) and use 
of the velocity  profile equation (32)  yields 

2Ud2 1 d m )  1 d2P(P) - -*2.  (33) 
D V )  X(X> dx QP)P dP2 

The left-hand term can be solved to yield 

X ( x )  = exp ( - X?;)- (34) 

The right-hand term can be solved  using Bessel func- 
tions; first this term must be rewritten as 

The solutions can be found in  [24]: 

P@) = p”2[aJ1i3(@p3’2)  + pJ- 113($Ap3i2)] (36) 

where J,(x)  is a Bessel function of the first kind of order n. 
The constants a and B are to be determined still  from 
boundary conditions equations (17)-(  19). From bound- 
ary condition equation (18) it follows that P(0) = 0, 
hence p = 0. From boundary condition equation (19) 

(38) 
The prefactor a, can be found by substituting equation 
(38)  in the boundary condition equation (17). This gives 

m 

CO = CO c C r , p 1 i 2 J l / 3 ( 5 A n P 3 i 2 ) .  (39) 
n = l  

Multiplication of both the  left- and right-hand terms with 
P J 1 & , , P 3 i 2 )  and integration with p3/’ as integration 
variable yields 

J ~ ’ P c O J ~ / ~ ( + ~ . P ) ” )  dP3’2 

(40) 
The right-hand term equals zero for n # m. For n = m 
the right-hand term equals 3a,Jfi3(3,4,) (see  [24]). Hence 
with 4 = 3 1 , ~ ~ ’ ~  it  follows that 

It can be derived that 

Table 2. Parameters of model 2. 

~ 

1 1.8646 1.604 1.738 0.923 
2 6.6437 1.012 22.069 0.969 
3 11.3692 0.844 64.629 0.982 
4 16.0871 0.751 129.397 0.988 
5 20.7995 0.704 216.310 0.991 
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so that 

Equation (44) can be written in its general form (equa- 
tion (28)) to yield: 

with 

B, = +A:. (47) 

Values  for A, and B, are given  in table 2 for n = 1 to 5. 
From these  values it is clear that already for  relatively 
small  values of x the first term of equation (45) gives a 
sufficiently good description for the growth rate, hence 

W )  
U0 CO U0 h 
- = 1.604 - exp - 1.738 - - D(T)  ( uoh h 

D(T)  '). (48) 

Performing the total deposition check of equation (48) 
yields W, = 0.923; values of W, for n = 1 to 5 are given  in 
table 2. 

3.4. Model 3, linear  velocity profile (11) 

In this model-previously  used  in our  group by van de 
Ven et a1 [4] -the velocity  profile o(y) is also a linear 
function of y in such a way,  however, that it gives a good 
approximation of the parabolic profile  for small values of 
the height y (see  figure 4(c)). For 0 < y < $h an  error of 
N 10% is made [4], if the following  velocity  profile is 
used : 

U ( Y )  = 4.5u0y/h.  (49) 

The derivation of the expression for the growth rate R(x)  
is analogous to the one of model 2, hence  (only the first 
term is given) 

" R(x) - 1.604 exp( -0.772 v,h D(T)  h "). (50) 
U0 CO U0 h 

The  total deposition check  yields m, = 2.08, which is an 
unrealistic figure, resulting from the fact that this velocity 
profile approximates the parabolic profile  only for small 
values of the height y (0 y < ah) and not for  all  values. 

The total mass flux through the reactor is more than 
twice the mass flux in the case of the parabolic profile. 

3.5. Model 4, asymmetric  combination of linear  velocity 
profile  and  plug flow 

To approximate the parabolic profile just above the 
susceptor (0 < y < ah) and at the same time to  obtain  a 
correct total mass flux, a linear velocity  profile is com- 
bined  with a plug-flow  profile to  obtain the following 
asymmetric velocity  profile (see figure 4(d)): 

N Y )  = +OY/h O < y < S h  

= $0, ah  < y < h. 
(51) 

The set of boundary conditions equations (17)-(19) is 
extended with two conditions that represent the contin- 
uity of the concentration profile C(x, y) at y = ah, thus 

C l y f h / 4  = Clylh/4 

Coordinate transformation (p = y/h), substitution of 
C(x, p )  = X(x)P(p) in the partial differential equation 
(16) and using the velocity  profile equation (51) yields  for 
the two regions: 

(i) 0 < p < (region 1). 
Analogous to 83.3 it follows 

$uoh2 1 dX,(x) "p="= d2Pl(p) -n2. (53) 
W )  xl(x) dx ~P,(P)P dp2 

From boundary condition equation (18) (p = 0) the 
concentration profile  in region 1 C,(x, y )  is obtained: 

m 

Cl(+% P) = CO c .nPl(p)Xl(x> (54) 
n = l  

with 

(ii) t p < 1 (region 2). 
Analogous to 83.2 it follows 

with the solutions 

(57) 

From boundary condition equation (19) (p = 1) it fol- 
lows 

a' = B' cot@) 

=. P,@)  = COSCP(1 - P)]. (58) 
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The concentration profile  in  region 2, C,(x, y), is then 
given as 

m 

C,b, P )  = CO 1 aP,@)X,(x)* (59) 
m =  1 

Using the extra boundary conditions equation (52) at 
p = a yields 

m 

= C a; cos(&,) exp 
m =  1 

The concentration profiles in both regions are coupled 
for  all x > 0; from this it  follows that all corresponding 
terms (n = m) of Cl(x, y) and C,(x, y )  are coupled. 
Hence,  for all n = 1,  2, 3, . . . it holds 

A n  = P,, (61) 
and therefore 

3a,,J1,3(&) = a: cos(tl,,) 

+ u , , J - Z / ~ ( ~ A , , )  = a: sin(&). 

The roots A,, and the ratio ad.: can be found numerically. 
The five smallest  values are given  in table 3. The  bound- 
ary condition equation (1 7)  gives 

(62) 

m 

CO = CO 1 a,,p1~ZJ1,3(4A,,p3/2) 0 < p < *  

= CO 1 a: cos[A,,(l - p)] + < p a .  

n =  1 
m (63) 

n =  1 

From  equation (63)  in principle a,, and a: can be found. 
This is a complicated procedure, however. Therefore a 
least-squares fit ( F )  procedure is  used to obtain reason- 
able estimates of a,, and a',. First  a limited number of 
terms (k) is  used  in calculating equation (63). Then for a 
large number of values  for p (e.g.  100) the relative 
difference (Ccalc(O, p i )  - CO) is calculated. Subsequently 
the square of this difference is minimised  with the k 
parameters a; (or a,,): 

F: = x( Ccalc(o' p i )  - ")' to be  minimised.  (64) 
i CO 

Table 3. Parameters of model 4. 

n An ZL2 E n  a,la:, 

1 1.5757 2.172 1.3501 
2 4.8196 20.32 - 2.4399 
3 8.2126 59.02 2.9472 
4 11.6818 119.4 -3.3754 
5 15.1524 200.9 3.8864 

The result of this procedure for U; is shown in table 4, for 
1 < k < 5. From this it is clear that F ;  goes to zero very 
fast  for increasing k; consequently the values for a; 
converge rapidly. The values  for a, can be found now 
using the already calculated (table 3) ratio .,,/a',. This is 
done in table 5. The growth rate R(x)  is now  given  as 

-=- 

or, in a general form 

with 

B,, = $vi.,'. (68) 

The values of A,, and B,, are given  in table 5 for n = 1 to 5. 
Already  for  relatively  small  values of x the first term of 
equation (65)  gives a sufficiently good description for the 
growth rate, hence 

" - 1.899 3 exp(  -2.172 D(T) v,h h "). (69) 
v0  CO v0 h 

Performing the total deposition check of equation (69) 
yields w1 = 0.874;  values of U,, for n = 1  to  5  are given  in 
table 5. 

Table 4. Least-squares fit of a:, of model 4. 

k a; a; a$ a; ab F: 

1 1.2074  5.6373 
2 1.2222  -0.2939  0.7706 
3 1.2286  -0.3131  0.1139  0.1448 
4 1.2332  -0.3238  0.1289  -0.0515  0.0326 
5 1.2358  -0.3314  0.1386  -0.0624  0.0258  0.0080 

Table 5. Parameters of model 4. 

n 1, a"  a:, A n  B n  a n  

1 1.5757 1.668 1.2358 1.899 2.172 0.874 

3 8.2126 0.408 0.1386 0.806 59.02 0.952 

5 15.1524 0,100 0.0258 0.243 200.9 0.957 

2 4.8196  0.809  -0.3314  1.336  20.32  0.940 

4 11.6818  0.211  -0.0624  0.468  119.4  0.956 
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3.6. Model 5, symmetric  combination of linear  velocity 
profile  and  plug flow 

The linear velocity  profile can be combined with  plug 
flow in such a way that one obtains  a symmetric profile. 
This is done to approximate the parabolic profile as well 
as possible. The velocity  profile  is  divided into three 
regions, as follows  (see  figure *e)): 

4Y) = a,voY/h O < y < 6  
= b,uO 6 G y G h - 6  (70) 

= a,uo( 1 - x) h - b < y < h .  

The parameters a, and b, are found to be (the  total mass 
flux equals uoh): 

b, = a,6/h. 

In the special  case that a, is approximated by the slope of 
the tangent of the parabolic profile at y = 0 (i.e. U, = 6)  it 
follows that dparabolic = 0.211h and b, = 1.268. 

The set of boundary conditions equations (17)-(19) is 
extended with four conditions that represent the contin- 
uity of the concentration profile C(x, y) at y = 6 and 
y = h - 6 thus 

ClyT6 = C l y l d  

ac ac - 
lyT6 = / I j d  (72) 

C l y t h - d  = C l y J h - d  

ay /*?h-6  - l y l h - d .  

ac - ac - 

Coordinate transformation ( p  = y/h), substitution of 
C(x, p )  = X(x)P(p) in the partial differential equation 
(16) and using the velocity  profile equation (70) yields  for 
the three following  regions. 

(i) 0 < p < 6/h (region 1). 
Analogous to 43.3 it follows 

From  boundary condition equation (18) (p = 0) the 
concentration profile  in  region 1, C,(x, y) ,  is obtained: 

m 

Cl(x, P) = CO 1 anP1@)Xl(X) (74) 
n = l  

with 

= 

(75) 

Analogous to 53.2 it follows 

X,(x) = exp - - p i  - - ( ;” :: f). 
(iii) 1 - 6/h < p < 1 (region 3). 
It is more convenient to use the coordinate 

p’( = 1 - p )  instead of p in this region. It follows 

u,uOh2 1 dX3(x) 1 d2P3(p’) 
D(T) X,(x) dx P,(p’)p‘ dp” 
”” ”“ - -v2 (79) 

so that the concentration profile in region 3, C,(x, y), is 
given as 

m 

C&, P’) = CO 1 a;P,(p’)x,(x) (80) 
k = l  

with 

X,(x) = exp - - v i  - - ( :, :: f). 
From boundary condition equation (19) (p’ = 0) it fol- 
lows that B; = 0, therefore: 

P 3 ( P )  = ( l  - p)”2[J- 1/3(5vk(1 - P)3/2)l* (82) 
The extra boundary conditions equation (72) at p = 6/h 
and p’ = 6/h couple the concentration profiles  in the 
three regions for all x 2 0; therefore all corresponding 
terms (n = m = k) of C,(x, y) ,  C2(x, y )  and C,(x, y) are 
coupled. Hence,  for  all n = 1,2,3, . . . , it follows 

Furthermore one obtains for  every It: 

(ii) 6/h < p < l - S/h (region 2). 
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with 

Some algebra  then yields 

tan[p,( 1 - 2 $1 = 

(86) 

For every 6(0 6 )h) the  roots p, can be found using 
equation  (86);  the  other  parameters  are  determined using 
the  boundary  condition at the beginning of the  reactor 
(equation (17)). In table  6  the  parameters p,, a,, U:, B:,, 
a:, are calculated using 6 = dparabolic = 0.211h. The 
growth  rate R(x)  can now be  given as 

W )  W )  ac,(x, P) 
ooc, uoh aP p = o  

-=- 

or, in a general form 

The values of A ,  and B, are given in table  6 for n = 1 to 5 
using 6 = dparabolic = 0.21 1 h. Already for relatively small 
values of x the first term of equation (87) gives a 
sufficiently good  description of the  growth  rate, hence 

Performing  the  total  deposition check of equation (91) 
using 6 = bparabolic = 0.211h  yields o1 = 0.882; values of 
on for n = 1 to 5 are given in table 6. 

The dependence of the  parameters A ,  and B, on the 
value of 6/h  is depicted in figure 8. For 6 + 0 the 
parameters A ,  and B, approach the values calculated in 
the case of plug flow, which is to be expected. Note  that 
the  change in the  exponential  parameter B, is only  1 % 
with respect to the B, as calculated for 6 = 6parabolic - - 
0.21 1 h. 

3.7. Model 6, parabolic  velocity  profile 

The  exact velocity profile in the diffusion-controlled 
regime in the  isothermal case is parabolic [lo] (see figure 
4(f 1) : 

Table 6. Parameters of model 5 (6 = 6parabcl,c = 0.211h). 

6 / h  

Figure 8. Parameters A ,  and B ,  of model 5 as a function of 
6lh. The broken line indicates where 6 = SDarabolic = 0.211h. 

n P n  an a:, 1 @ P n  a:: A" B n  Wn 

1 1.7605 1.776 1.252 5.271 1.849 2.157 2.444 0.882 
2 5.3582 0.960 0.369 34.46 -0.832 1.689 22.65 0.957 
3 9.0650 0.610 0.185 60.26 0.567 1.278 64.84 0.977 
4 12.7941 0.443 -0.102 71.22 -0.451 1.041 129.2 0.985 
5 16.4808 0.397  0.061 77.79 0.420 1.015 214.3 0.989 
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and  the following partial differential equation is to be 
solved : 

Coordinate  transformation ( p  = y /h)  and substitution of 
C(x, p )  = X(x)P(p) in the  partial differential equation 
(93) yields 

6o0h2 1 dX(x) 1 d2P(P) __~-  - - 
W )  X(X> dx P(P)P(l - P) dP2 

- = - I 2 .  (94) 

The left-hand term of equation (94) results in 

The  right-hand term can be solved using parabolic 
cylinder functions [25]; first this term must be rewritten 
as 

Equation (96) can be solved after a  coordinate  transfor- 
mation q = &(p - i) which  gives 

The  solutions of equation (97) can be found  in [25]: 

P(q) = uyl(q)  + PY2(q) (98) 
with 

( : ) (: 16’2’Zq2) 
I 1 1  Yl(q) = exp - - q2 M - - - *  -. - 

A 3 1  (99) 
Y,(q) = q exp - - q2 M - - - ( ) (i 16; i ;?q2)*  

Here M ( a ;  b; z )  are  the confluent hypergeometric func- 
tions [25], which can be generated with Kummer’s 
function [25] : 

where (a), and (b), are defined as 

Boundary  condition  equation (18) becomes after the 
coordinate  transformation 

P(q)  l 4  = - ( l / 2 ) J E  = 0 

which leads to 

Boundary  condition  equation (19) becomes 

leading to 

From equations (102) and (103) the  roots 2 and the  ratio 
/3/u can be found numerically. Results are given in table 7. 
The  concentration profile is now given by 

x exp( - 12 t). 
With boundary  condition  equation (17) at  the beginning 
of the reactor (x = 0) a, can be found, using the least- 
squares fit as described in 53.5. Results are given in table 
8. From this it  is clear that F: goes to zero for increasing 
k; consequently the values for U, converge. The values for 
P, can be found now using the  already calculated (table 
7) ratio &/an. This is done in table 9. The  growth  rate 

Table 7. Parameters of model 6. 

1 3.8187 2.430 0.5161 
2 11.897 23.59 -2.0381 
3 19.924 66.16 0.9580 
4 27.938 130.1 -3.1499 
5 35.947 215.4 1.2610 

Table 8. Least-squares  fit of U, of model 6. 

k U7 512 x3  514 515 F: 

1 0.9497  16.6373 
2 1.0253  0.1811  9.4987 
3 0.9747  0.1953  -0.1808  6.8048 
4 0.9867  0.1702  -0.1920  -0.0789  5.3842 
5 0.9769  0.1743  -0.1595  -0.0829  0.1054  4.4926 
9 0.9762  0.1681  -0.1525  -0.0647  0.0816  2.7836 

Table 9. Parameters of model 6. 

n in En Bn A n  B n   W n  

1 3.8187 0.9762  0.504  2.177  2.430  0.896 
2 11.897 0.1681  -0.343  1.446  23.59  0.957 
3 19.924 -0.1525 -0.146 1.218 66.16 0.976 
4 27.938 -0.0647 0.204 1.143 130.1 0.984 
5 35.947 0.0816 0.103 1.057 215.4 0.989 
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with 

A, = a n p i  - 2 (1 - $ ) M 3  

+ 1.. 2 (1 - k) 2 M 4 ]  exp(+) 

1 
6 B, = - A:. (109) 

The values of A, and B, are given  in table 9 for n = 1 to 5. 
For relatively small values of x the first term of equation 
(106) gives a sufficiently good description for the growth 
rate, hence 

R(x)  
" - 2.177 - exp -2.430 - - 

D ( T )  ( uoh h U0 CO 00 h 
D ( T )  x). (1  10) 

Performing the total deposition check of equation (1 11) 
yields w1 = 0.896;  values of CO, for n = 1  to 5 are given  in 
table 9. 

3.8. Comparison  between  models  1, 2, 4, 5 and 6 

From the previous subsections it follows that the growth 
rate R ( x )  can always be written in the general form 

where the constants A, and B, are determined by the 
velocity  profile  used. In nearly all cases the first term 

contributes more than 90%  to the complete expression. 
Therefore it can be stated that in good approximation the 
growth rate can be described by 

as was already assumed in $3.1. Deviations appear to be 
small ( 10 %) and  are caused mainly by the entrance 
region. In figure 9 the concentration profiles of models 1, 
2'4'5 (6 = Bparabolic) and  6  are plotted as a function of y / h  
at (D(T)/uoh)(x/h)  = 0.5. For all  models  only the first 
term is  used  in the calculation. Taking into account 
models 1'5 and 6, it is clear that the concentration curves 
differ  only a few per cent. This stems  from the fact that 
the velocity  profile of these  models is symmetric around 
y / h  = 0.5. The same effect can be  seen in figure  10,  where 
the growth rate is shown as function of (D(T)/u, h)(x/h) 
for  models 1'2'4, 5 and 6 .  Here also the first term is used 
in the calculation only. The  important conclusion that 
follows  from  these  figures  is that the parabolic velocity 

- 
0 0.5 1 0  

Y / h  

Figure 9. C(x,  y)/C, as a function of y/h  for  the models 1, 2, 
4, 5 (6 = 8parabollc) and 6 at (D(T)/v,h)(x/h) = 0.5. The 
calculation is done using  only  the  first term. Note that the 
results for models 1, 5 and 6 are roughly the same. 

I " " " " ' 1  

(D (T ) /V ,h )  L x / h )  

Figure 10. R(x)h/C,D(T) as a function of (D(T)/v,h)(x/h) for 
the models 1, 2, 4, 5 (6 = 8pa,abo,ic) and 6. The calculation 
is done using  only the first term. Note the close 
correspondence between models 5 (8 = 6Darabo,,c) and 6. 
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profile is  best approximated using  model 5 with 6 = 
Bparabolic = 0.211h. Furthermore it is clear that in the case 
of models 1, 5 and 6 the results are approximately the 
same (within - 10 x). This is an  important observation, 
because it suggests that the plug-flow  profile  may  be  used 
instead of the parabolic profile to derive concentration 
profiles and growth rates. This facilitates the calculations 
considerably. The fact that the growth rate as calculated 
with  models 1 (plug flow) and 5 agrees so well with the 
one as calculated with  model 6 (parabolic flow) origin- 
ates from the small differences of the first exponential 
terms B , .  This is due to the fact that these models possess 
a symmetric velocity  profile. For convenience these terms 
( B )  are listed again in table 10, where also the constant A 
is given  for the models 1,2,4,5 and 6. In conclusion it can 
be stated that  although small errors  are introduced in the 
calculations using the plug-flow  profile, we still favour 
the use  of this profile  because of its simple, though 
realistic results. Therefore in  following publications 
116-183 the plug-flow  profile  will  be  used instead of the 
parabolic profile to derive concentration profiles and 
growth rates. 

4. Influence  of  surface  klnetlcs 

In this section a model is derived for the regime  where the 
growth is limited by a surface reaction. This model is then 
combined with the above described model for the diffu- 
sion-controlled regime  (i.e.  model 1, plug flow). Both 
models are derived  in the isothermal case  with T(y) = 
T constant. 

4.1. Model 7, growth  limited by surface  kinetics 

If the gas-phase diffusion is  very  fast  in comparison with 
the surface reaction a homogeneous gas phase results: 
the concentration C(x, y) has become independent of y 
(thus C(x, y) = C(x)). If a first-order surface reaction or 
adsorption is assumed, with reaction rate  constant k, the 
following  differential equation results in 

dC(x) k 
dx h 00 - = - - C(X). 

The rate  constant k is a function of the substrate temper- 
ature T,  as follows: 

Table 10. Comparison of parameters A, B and W, of 
models 1, 2, 4, 5 (S = 6parabo,ic) and 6. 

Model A B W1 

2.000 2.467 0.81 1 
1.604 1.738 0.923 
1.899 2.172 0.874 
2.157  2.444  0.882 
2.177 2.430 0.896 

where k, is the Boltzmann constant, h, the Planck 
constant  and E ,  the activation energy  for the rate limiting 
step. Solving equation (1 13) using boundary condition 
equation (3) yields 

The growth rate R(x)  then is given as (note  that 
R(x)/uo CO is dimensionless) 

R ( x )  k C(x) k 
voce v0 CO v0 

It will  be clear that this model is (nearly) independent of 
the velocity and temperature profile of the gas phase. 
This model can be applied for the description of pro- 
cesses that  are completely  surface catalysed, e.g. MOVPE of 
GaAs at T,  < 500 "C. 

4.2. Combination  of  growth  limited by surface  kinetics 
and  diffusion-controlled  growth,  model 8 

The two extreme cases,  i.e. growth limited by surface 
kinetics (model 7) on the one hand  and diffusion-con- 
trolled growth (model 1, plug  flow) on the other, can 
easily be combined. The partial differential equation  that 
is to be  solved is the same as in previous sections (i.e. 
equation (16)). Note  that the plug-flow  profile  is  used. 
The only difference is that the boundary condition equa- 
tion (18) (the concentration of growth species equals zero 
at the substrate surface)  must  be changed. Assuming a 
first-order reaction with reaction rate  constant k the 
boundary condition now  becomes (using p = y/h): 

This can be rewritten using the well-known dimension- 
less CVD number 126,271 

so as to yield 

The separation of variables method (C(x, p )  = X(x)P(p)) 
gives, as before  (see §3.2.), 

X(x) = exp - A 2  - - ( :y;) 
P@) = a sin(Ap) + B cos(lp). (121) 

From  boundary condition equation (19) it  is obtained 
that 

m )  = B COSCA(1 - P ) ] .  (122) 
The general solution then is 
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The constant A,, can be found using boundary condition 
equation (1 19): 

A, tan in = NcvD. (124) 

Boundary condition equation (17)  yields 
m 

CO = CO C B n  cOsCAn(1 - P)]. (125) 
n =  1 

For a range of values of NcvD (0-00) the A,, and p,, can be 
found by the previously described least-squares fitting 
method (see  $3.5). The growth rate R ( x )  is now: 

W )  ' ( K )  0) 
voce V0 CO 
-=" 

The two limiting cases  (1) NcvD = 0 and (2) NcvD = CO 

yield an exponential factor of (k(T,)/u,)(x/h) and $71' 
(D(T,) /v ,h)(x/h)  (first  term),  respectively,  which  was to be 
expected (cf model 7  and 1)). The transition from kineti- 
cally to diffusion-controlled growth occurs at NCVD = 
n2/4, which  is  easily calculated by equating the exponen- 
tial factors in the two limiting cases and using the 
definition of the CVD number. In figure  11 the exponential 
factor A: is shown as a function of NcvD. It follows that 
for NcvD > &' the growth is diffusion controlled (thus 
independent of NcvD), whereas  for NCvD < an' the 
growth is controlled by surface kinetics (NcvD dependen- 
cy). Figure 12 shows the NcvD dependency of the total 
deposition check parameter W, for n = 1, 5  and 10. It 
follows that for NcvD > &* the growth is diffusion 
controlled (one term is not enough to describe the 
growth), whereas  for NcvD < an' the growth is con- 

X: 10" 1 
t 

10-3 v 10-2 1 

Ncvo 

Figure 11. Exponential  factor 1: as  a  function of N,,,. Note 
that for NcvD > an2 the  growth  is  diffusion  controlled  (thus 
independent of NcvD), whereas  for N,,, < ana the growth  is 
controlled by  a reaction  limited by  surface kinetics (NcvD 
dependency). 

l n 

On 0 . 9 0  i 

l , , ,  , , , & ,  ,,l , , , / . ,  , b  , I I I ,  ,' , , I . ,  , , m  , , , l  

1 1 o 2  
N c v o  

Figure 12. Total deposition  parameter m, as a function of 
NcvD for n = 1, 5 and 10. Note  that  for NcvD > az2 the 
growth  is diffusion controlled  (more  terms  are needed to 
describe  the growth), whereas for NcvD < an2 the growth is 
controlled by  a reaction  limited by surface  kinetics (one 
term only ( n  = 1) is sufficient). 

+ W- 

e l- - 
0 0.1 0 2  0 3  0 4 0 . 5  

~ ( T I / v , ~ I  ( x / ~ I  

Figure 13. R(x)hlC,D(T) as  a  function of (D(T)lv,h) (xlh) for 
N,,, = 0.1, 1.0 and 10.0 using n = 1 (full curves) and n = 
10 (broken curves). Note  that higher NcvD increases the 
growth  rate, but at the  same time the depletion  is  stronger. 

trolled by surface kinetics (one term only (n = 1) is 
sufficient). 

In figure  13 the growth rate R(x)h/C,D(T)  is plotted 
as a function of (D(T)/u,h)(x/h)  for three values of NCVD, 
i.e.  0.1,  1.0 and 10. For small NcvD no depletion occurs, 
but the growth rate is small. Higher NCVD yields a higher 
growth rate, but also an increased depletion effect. 

5. Conclusion 

It is found that for  all models an expression for the 
growth rate can be derived,  which is a summation over a 
number of terms. The first term contributes in nearly all 
cases more than 90 % to the complete expression. There- 
fore the growth rate can be  described-in good approxi- 
mation-by 
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where the  constants A and B are determined by the 
velocity profile used. Because of the  correspondence of 
the results obtained for the  concentration profile and 
growth  rate between model 1 (plug flow) and model 6 
(parabolic profile) the plug-flow profile may be used in 
the  calculation of the  concentration profile and growth 
rate in future models [16-181. A model in which growth 
limited by surface kinetics (model 7) and diffusion- 
controlled growth (model 1, plug flow) are combined is 
derived (model 8) using CVD number NcvD. In  the 
limiting cases (1) NcvD = 0 and (2) NcvD = cc this model 
converges to model 7 and model 1, respectively, with a 
cross-over point at NCvD $r2. In a  forthcoming  paper 
[l61 a  temperature  gradient will  be introduced and  the 
effect of thermodiffussion will be studied.  The derived 
models will then be applied  to  the  growth of  Si [17], 
GaAs [17, 181 and AlGaAs [l81 and confronted with 
experimental growth results as  found in e.g. [14]. 
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Appendix 1. Effect of deposition  on reactor side walls 

All the models treated so far are based on the  assumption 
that  the  reactor is of infinite width (assumption g), so as 
to reduce the  problem  to  a two-dimensional one. This 
assumption  has been made plausible above (52.1) in the 
sense that only a small error is made using the  assump- 
tion. This appendix  treats  the effect of the presence of 
reactor side walls using model 1 (isothermal, diffusion- 
controlled  growth, plug flow). Two cases can be distin- 
guished: (i) no deposition occurs upon  the side walls and 
(ii) deposition  does occur upon  the side walls. In  both 
cases the following partial differential equation  has  to be 
solved: 

U0 ax 

The two cases can be distinguished 
boundary  conditions. 

(Al.l) 

in terms of their 

A.1.1. No deposition  upon  side walls 

If no deposition  occurs  upon  the side walls, the following 
boundary  conditions are valid: 

C(x, 0, z) = 0 (cf equation (18)) (A1.2) 

m y Y .  z) /Y_n = 0 (cf equation (19))  (A1.3) 

(A1.4) 

(A1.5) 

C(0, y, z) = C,  (cf equation (17)). (A1.6) 

The  method of solving equation (Al.l) is analogous to 
the one  that is  used for model 1 (see 53.2). Introducing  the 
coordinate p ( p  = D(T>x/u,) and using the  separation of 
variables method (C(x, y, z) = P@)Y(y)Z(z)) one  ob- 
tains: 

1 dP(p) - 1 dZY(y) 1 d22(z) ~- 
P(P> dP Y(Y)  dY2 ZW dz2 

- - A 2 .  

(A1.7) 

Solving the left-hand term yields: 

~ ( p )  = exp( - A2p). (A1.8) 

Rearranging  the  right-hand  term and equating it to a 
new constant ( - p 2 )  results in the following partial 
differential equation  to be solved: 

The  solution is: 

Y(Y> = a sinby) + P COS(PY) (A1.lO) 
Z(z) = y sin(@z) + 6 cos(@z) (Al . l l )  

with v = - ( A 2  - p'). From the  boundary  conditions 
equations (A1.2)-(A1.5) it is obtained  that 

P = O  
2 n - 1 n  p=-- 

2 h  
n =  1,2 ,3  ... 

y = o  v = m -  
b 

m = 0 , 1 , 2  . . . .  71 

The complete solution  then is obtained by summing all 
separate solutions, yielding: 

(A1.13) 

The factor urn," is determined using boundary  condition 
equation (A1.6) and  a  double  Fourier  transformation; 
this gives 

u0,n = j dz. 
(2n - 1)bn , 

It follows that urn,n = 0 for all m # 0, hence the expres- 
sion for the  growth  rate is exactly the same as derived 
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previously for model 1 (equation (27)): 

R ( x ) = 2 D ( T )  f exp( -  (2n - 1 ) W  D(T) x )  voce voh n = l  4 v,h h ' 

__- 

(A1.15) 

The  conclusion is that the  growth  rate is independent of 
the z coordinate in the case that no deposition  occurs at 
the side walls, which was made plausible above in $2.1 
(see figure 3). 

A.1.2. Deposition  upon  side walls 

In the case of deposition  upon  the side walls the  deriva- 
tion goes analogous  to  the previous one  in SA.1.1. How- 
ever, boundary  conditions  equations (A1.4) and (A1.5) 
must be replaced by: 

C(& y ,  0) = 0 (A1.16) 

C ( X ,  y, b)  = 0. (A1.17) 

It should be remarked that it is assumed that  the 
deposition  upon  the side walls  is the  same as on the 
susceptor.  This will not be true in practice, because of the 
strong  temperature  gradient in the  gas phase, which 
results in a  strong  temperature  gradient  that exists at the 
side walls in the y direction. The result of the  derivation 
is : 

" m  

c ( x ,  y ,  z )  = c, 1 C a,,,, ,, sin( n h) sin( mn 5 )  2 n - 1  y 

m = l  n = l  

x exp{ - [ m','( X) 2 

+ 4  
(2n - 1 ) W  D(T) x 

] T i ]  
with 

16 
(2n - l)mn2 am, n = m odd 

(A1.18) 

(A1.19) 

a m , "  = 0 m even, 

Using a new summation  parameter k (m = 2k - 1) the 
growth  rate  can be written as: 

R ( x ,  z )  8 D(T) 1 .f 

x exp{ - [(2k - 1)'n2( a) 
u,C, 71 ooh k = l  , ,=l  2k - 1 

2 

+ 4  
(A  1.20) 

The  growth  rate  can be rewritten as a  product of two 
functions f(s, t )  and g ( x ) :  

(A1.21) 

x exp[ - (2k - 1)2n2t]  (A1.22) 

g ( x )  = 2 g exp[ - 
(2n - 1 ) W  D(T) x 

00h n = l  4 - v,h -1 h 

(A1.23) 

with 

Z D ( T ) x  h 
S = -  t = -- 

b v,h h (b) * 
(A1.24) 

The  function g(x) is equal to the expression for the 
growth  rate if no deposition  occurs at the side walls 
(equation (27) in $3.2 and  equation (A.15) in gA.1.1). The 
dimensionless functions f(s, t )  varies between 1 and 0 
and can be seen as  a  correction to g(x) .  For t = 0 ( x  = 0 
or b + 00) f ( s ,  t )  reaches its  maximum (1) and is inde- 
pendent of S. In figures 14 and 15 the  correction  function 
f(s, t )  is depicted as function of the  lateral ( S )  and axial ( t )  
position, respectively. It  appears  that the  correction 
function f(s, t )  is independent of the height h of the 
reactor, whereas the surface on to which crystal  growth 
occurs (i.e. the side walls) does  depend on h. The width b 
of the reactor  has  a  strong influence on  f(s, t ) .  For 
sufficiently small values of t it follows that there exists a 
region in the middle of the  reactor where f(s, t )  is nearly 
independent of S. In table 1 1  some values of s and t are 
listed for which f(s, t )  equals 0.99 and 0.9, respectively. 

Although  the expression for the  growth  rate with the 
correction  function f(s, t )  has been derived for a relative- 
ly simple model  (isothermal, diffusion-controlled growth, 
plug flow), it is expected that also for more complex 
models the growth  rate  can be described as  a  product of a 
growth  rate and a  correction  function similar to f(s, t). 
Therefore it is concluded that the  growth  rate is nearly 
independent of the z coordinate in the case that deposi- 
tion occurs at the side walls (see $2.1). 

1 . o  

- 
+. 
v; 0 5 - 
x 

0 0.5 1 0  

S 

Figure 14. The dimensionless  correction function f(s, t )  as 
a function of lateral (S) position. 
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with 
2 

p* =" + p - )  + l2  
2D( T) - 2D( T) 

f 

Figure 15. The dimensionless  correct function f(s, t )  as a 
function of axial ( t )  position. 

Table 11. Boundary values for f(s, t )  

t 

S f(s, t) = 0.99 f(s, t) = 0.9 

0.5 
0.4 
0.3 
0.2 
0.1 

0.0158 
0.0120 
0.0067 
0.0030 
0.0001 

0.0325 
0.0276 
0.0166 
0.0074 
0.0018 

Appendix 2. Effect of axial diffuslon 

To study the influence of diffusion of growth components 
in the axial direction (x) model 1 (isothermal, diffusion- 
controlled growth, plug  flow)  is  used. The following 
partial differential equation  has to be solved: 

(A2.1) 

The boundary conditions are the same as in $3.2,  i.e. 
equations (17)-(19). Separation of variables (C(x, y) = 
X(x)Y(y)) yields 

uo 1  dX(x)  1  d2X(x) 1  d2Y(y) 
D(T) X(x) dx X(x) dx2 Y(y) dy2 

- -l2. 

(A2.2) 

Analogous to $3.2 (equation (22)) solution of the right- 
hand term gives 

Y(y) = c1 sin(ly) + /l cos(ly) (A2.3) 

with 

It follows that y = 0, because p > 0 is physically not 
valid. Therefore the growth rate can be  expressed as 

The square root can be approximated with the first term 
of its Taylor expansion, if 

(A2.6) 

Under this condition equation (A2.5) equals the expres- 
sion for the growth rate as derived  in $3.2 (equation (27)), 
however, this condition cannot always be met. The exact 
ratio r(x) of the growth rate without and with axial 
diffusion,  respectively, is  given  by 

r(x) = Rwithout(X) 
Rwith(X) 

with 

The ratio r(x) is shown in  figure  16. For small t the ratio 
r(x) is nearly independent oft and r(x) reaches 1 fast  with 
increasing S. For large t the ratio r(x) depends strongly 
on t and decreases  fast to 0. It should be noted that S and 
t  are coupled variables through D(T), uo and x.  Effects 
related to axial diffusion  may safely  be neglected in cases 
where S > 30 and t < 1. In  a reactor with h = 2 cm and 

The solution of the left-hand term is 

X(x) = y exp( - p  + x) + 6 exp( - p  - x) (A2.4) 

t 
Figure 16. The  ratio r ( x )  indicating  the  importance of axial 
diffusion as a function of t with S as parameter. 
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T = 700 "C we typically use uo = 10 cm S- l ,  which must 
be corrected to roughly twice its value [16]. With 
D(T) = Do(T/To)l.' and D ,  = 0.6 cm2 s - l  (TMG) C281 
we then  arrive at r (x)  = 0.97 for x = 8 cm and r (x)  = 
0.95 for x = 16 cm. A velocity U,, of 5 cm S- results in 
r (x)  = 0.92 and 0.83 for x = 8 and 16 cm, respectively. 
Therefore it  appears  that the effect of axial diffusion 
becomes stronger  towards  the  end of the  susceptor, 
which is to be expected as the  axial diffusion term in 
equation (A2.1) increases with x .  

The  corrected  expression for the  growth  rate  has been 
derived for a relatively simple model  (isothermal, diffu- 
sion-controlled  growth, plug flow); it is nevertheless 
expected that the small deviations  found  are similar for 
more complex models. Therefore  it is concluded that the 
growth  rate is nearly  independent of axial diffusion of the 
growth  components,  as is also  concluded in [8], provided 
that a  susceptor is used which is not  too long. 
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List of symbols 

a,b parameters  in  Kummer's 

a", b" parameters in u ( y )  (model 5 )  
An, Ai,  A ,  A' pre-exponential  factor in growth 

function M ( a ;  b; z) 

rate 
b width of reactor 
Bn, B, ,   B ,  B' exponential  factor in growth  rate 
C P  specific heat 
C(X, y ,  z, 0 ,  C(X, Y ) ,  
C(X> concentration of growth species 
Ci(x, Y ,  Z, t )  concentration of ith  growth 

CO input  concentration of the group 

c,,, total gas phase  concentration 
D( T )  binary diffusion coefficient of the 

DO binary diffusion coefficient at 

E a  activation energy 
f(s, t )  correction  function of growth 

Fk' minimalisation  function 
g ( x )  growth  rate 

h P  

J ( x ,  Y )  diffusional flux 
Jn(x) Bessel function of first kind of 

species 

I11 component 

group I11 component 

T = To 

rate 

h height of reactor 
Planck  constant 

i summation  parameter 

order n 

summation  parameter 

m summation  parameter 
M ( a ;  b ;  z )  confluent hypergeometric 

n summation  parameter 
n(x, Y ,  z ,  0 mole fraction of growth species 
No total  amount of input  growth 

species 
N C V D  dimensionless CVD number 
P, P' help  coordinate 
P total  pressure 
P(P> y-dependent part of C ( x ,  y )  
4 help  coordinate 

k reaction  rate of surface reaction, 

k, Boltzmann  constant 

function  (Kummer) 

34 



Isothermal analytical MOVPE growth models 

ratio of growth rates 
growth rate 
Reynolds number 
gas constant 
help parameter 
time, help parameter 
temperature 
temperature profile 
temperature at  top of reactor 
substrate  temperature 
velocity  profile 
plug-flow  velocity 
average velocity 
axial coordinate 
entrance length velocity  profile 
entrance length temperature 
profile 
x-dependent part of C(x, y )  
vertical coordinate 
y-dependent part of C(x, y )  
y-dependent parts of C(x, y )  
lateral coordinate 
z-dependent part of C(x, y, z )  

help parameter, pre-exponential 
factor 

a', a;, a; 

B, 
P', P'm, B:, 

B", B;: 
Y 

help parameter, pre-exponential 
factor 
pre-exponential factor 
thermal diffusion factor 
help parameter, pre-exponential 
factor, factor in temperature 
dependence of K 
pre-exponential factor 
help parameter, pre-exponential 
factor 
pre-exponential factor 
help parameter, factor in 
temperature dependence of D( T) 
gamma function 
help parameter, height (model 5 )  
heat transfer coefficient 
heat transfer coefficient at 
T = To 
roots of equation 
roots of equation 
roots of equation 
roots of equation 
density of gas 
total deposition check parameter 
total deposition check 
parameter, using n, 1 term(s) 
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