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The Travel Time in Carousel Systems under the 
Nearest Item Heuristic 

Nelly Litvak and Ivo Adan 

June 15, 2000 

Abstract 

A carousel is an autolnated warehousing systern consisting of a large nUlnber of 
drawers rotating in a closed loop. In this paper we study the travel time n"",ded 
to pick a list of items when the carousel operates under the Nearest Item heuristic. 
\Ve find a closed form expression for all moments and the distribution of the travel 
time. \Ve also analyz,e the asymptotic behavior of the travel time when the number 
of items tends to infinity. All results follow from probabilistic arguments based on 
properties of uniform order statistics. 

1 Introduction 

A carousel is an automated warehousing system consisting of a large number of drawers 
rotating in a closed loop in either direction. Such systems are mostly used for storage and 
retrieval of small and medium sized goods, which are requested moderately often. The 
picker has a fixed position in front of the carousel, which rotates the required items to 
the picker. Fm' a recent review of literature on carousels, as part of a general overview of 
planning and control of warehousing systems, we refer to Van den Berg [2J. 

An important performance characteristic is the total time needed to pick a list of items. 
This consists of the pure pick time plus the travel time. Only the latter depends on the 
pick strategy. In this paper we consider the :-1earest Item (:-11) heuristic, where the next 
item to be picked is always the nearest one. \Ve will study the statistical properties of the 
travel time under this heuristic. 

\Ve model the carousel as a circle of length L Fm' ease of presentation, we act as if 
the picker travels to the items, instead of the other way around. The picker travels at unit 
speed and has to pick n(> 0) items under the :-11 heuristic. Their positions are uniformly 
distributed on the circle. Using probabilistic arguments based on properties of uniform 
order statistics we derive closed form expressions for all moments and the distribution of 
the travel time needed to pick n items. \Ve also investigate the asymptotic behavior of the 
travel time as n tends to infinity. 
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The performance of the :-11 heuristic has also been investigated by Bartoldi and Platz­
man [1 J. They prove that the travel time under the :-11 heuristic is never greater than one 
rotation of the carousel. Litvak et 01. [5J improve this upper bound and show that the new 
upper bound is tight. Using an analytical approach, they find the mean and variance of the 
remaining travel time under the :-11 heuristic, i.e., the travel time, when there is an empty 
space at one side of the picker's position. They also introduce a probabilistic approach 
to determine the mean total travel time. In fact, in the present paper we elaborate this 
probabilistic approach and we show that it enables us to completely analyze the travel 
time. 

The paper is organized as follows. In Section 2 we prove that the travel time under the 
:-11 heuristic can be represented as a sum of independent normalized exponential random 
variables. In Section 3 we use this representation to obtain all moments of the travel time. 
Further, in Section 4 we derive a closed form expression for the distribution of the travel 
time. Finally, in Section 5 we give an exhaustive analysis of the limiting behavior of the 
travel time distribution. 

2 The travel time as a sum of exponentials 

Let the random variable Uo be the picker's starting point and the random variable Ui , where 
i = 1,2, ... , n, be the position of the ith item. \Ve suppose that the U;'s, i = 0,1, ... , n, are 
independent and uniformly distributed on the interval [0,1). Let UO,n+l, [hn+l,"" Un,n+l 
denote the order statistics of the random variables Uo, ... , Un on [0,1). These order statis­
tics partition the circle into n + 1 spacings with lengths 

... , 

To find the distribution of the travel time under the :-11 heuristic we use the following very 
useful property of these spacings. If Y1, ••• , }~+ I are independent exponentials with the 
same mean, then the random vectors (D1, ... ,Dn +1) and (YI/L7:11};, ... ,}~+I/L7:11};) 
are indentically distributed (cf. Pyke [6, 7], or Sec. 13.1 in Karlin and Taylor [4]). Hence 
the spacings are normalized exponentials. 

Under the :-11 heuristic the picker does not have to know all spacings at once. He 
first considers the two spacings adjacent to his starting position and then travels to the 
nearest item. :-1ext he also looks at the other spacing adjacent to that item and compares 
the distance to the item located at the endpoint of that spacing and the distance to the 
first item in the other direction, which is the sum of the spacings previously considered. 
Then he travels again to the nearest item, and so OIl. Furthermore, we may act as if the 
picker faces non-normalized exponential spacings, and afterwards divide the travel time 
by the sum of all spacings. Then it is clear that each new spacing faced by the picker is 
independent of the ones already observed. :-1ow let Xi, where i = 1, ... ,n + 1, denote the 
i-th non-normalized exponential spacing faced by the picker. So the spacings are numbered 
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_ \11 heuristic 

, , 
Figure 1: The :-11 route of the picker facing 5 exponential spacings. 

as observed by the picker operating under the :-11 heuristic (see Fig. 1). Denote 

Si = :L Xj, i = 1,2, ... 
j=l 

and let the random variable Tn denote the travel time needed to pick n items under the 
:-11 heuristic. Then Tn can be expressed as 

(1) 

In this section we introduce a quite simple random variable, which has the same distribution 
as the right-hand side of (1). Further, we shall use the common notation 

X~Y 

to indicate that the random variables X and Y have the same distribution. :-1ow we are 
going to prove the following theorem, which is crucial to the rest of the paper. 

Theorem 2.1 Let Xl, X 2, ... be independent exponential., wdh mean It. Then d hold" faT 
all n = 1,2, ... that 

Proof. Let YI, Y2, ... be independent exponentials with mean It. \Ve will use the Y; 's to 
subsequently consider all minima in the left-hand side of (2). Fm' the first minimum, i.e., 
min(SI,X2) = min(XI,X2) there are two cases. If Xl < X 2 , then we can put Xl = ~YI' 
The overshoot of X 2 is again an independent exponential with mean It, so we can put 
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X 2 = ~YI + Y2. The same arguments can be used when X 2 < XI' Then we can put 
X 2 = ~YI and XI = ~YI + Y2. Hence, in both cases we have 

Further, since we have not made extra assumptions about X:h X 4 , ... ,Xn+" we can say 
that Xl = Yl, I = 3,4, ... , n + 1. Also, note that for any i = 2,3, ... n + 1 we have 

1 1 
-YI + -YI + Y2 + Yj + ... + y 2 2 . 1 

YI + Y2 + ... + Y; . 

From the arguments above it follows that 

~ min(LJ=1 Yj, Y;+I) 
+L.,v v' 

i=2 II+"'+In+1 
(3) 

Since X I, X 2, ... ,Xn+ I and YI, Y2, ... , Y~+ I are just two sets of independent exponentials 
with the same mean, expression (3) may, of course, be rewritten as 

(4) 

:\fow, let us assume that for some i = 2,3, ... , n it holds that 

(5) 

By virtue of (4), we know that it indeed holds for i = 2. Below we show, by expanding 
min(Si' X i + I ), that if equality (5) is valid for i, then it is also valid for i + 1. 

Given the event 
Ei+l,k = [Sk-I < X i+1 < .'hJ , 

for some k = 1, ... , i, the random variables XI"'" X n+ 1 can be coupled as 

1 . 
Xl = :2 Yl, I = 1, ... , k - 1; 

1 
X k = :2 Yi + Yi+l; 

k 1 
X i +1 = L:2 Yl; 

1=1 
X I =YI+I,I=k+1, ... ,i; 

Xl = Yl, I = i + 2, ... , n + 1, 

where Y I , Y2, ... are independent exponentials with mean It. This follows by observing 
that, given Ei+l,b the random variable XI is the minimum of XI and X i+ l , and thus it is 
exponential with mean II/2. Since the overshoot of X i+1 is again exponential with mean 
II we can repeat the argument for X 2 and so OIL Eventually X i+ I - .'h-, is less than 

4 



X2 Xk+l x , 
• I • ., , , , ,., _0---... ,'-.... --,"---.,.., "~ .0-----;.-.. . .. ... \.o---..~ 

:' ___ .... " '..' I 

,. 

I }'A;+l 

1!2Y1 : 1!2Y2 : , , , 1!2Y'~1 : 1!2Y, , , 
I... .... I .... - -, I 
,(~ 'J," \, 

... ---- I .... -- .... I 
1,'" .... ,,~.. ;J 

Figure 2: Coupling of the random variables XI"'" X n+1 under event Ei+l,k. 

Xb so it is exponential with mean II/2. The random variable X k is then the sum of two 
exponentials, one with mean II/2 and the other part (i.e., the overshoot) with mean II (see 
also Fig. 2). Since the event Ei+l,k does not provide any information on the other random 
variables, they remain exponential with mean It. 

:-low, given the event Ei+l,b it follows that 

and for any .i = i + 1, ... ,n + 1 we have 

Hence, given Ei+l,b we can replace the Xi's by rj's in the right-hand side of (5), yielding 

~ ( __ 1_) rj .:;-., min(LL rl, rj+l) 
L 1 2'+1" Y Y + L Y y' , • 1 -J I + ... + +1 " I + ... + +1 
J=l n J=1+1 n 

(6) 

:-lote that expression (6) does not depend on k. 
Along the same lines, it can be verified that, given the event [Xi+ I > Si], the right-hand 

side of (5) has again the same distribution as (6). :-low it immediately follows from the 
law of full probability that 

~ ~ (1 __ , ,_1_,) Xj + .:;-., min(Sj, X j+ l ) 

L 2,+I-J C' L C' 
j=l ,,In+l )=1+1 ,,In+l 

where the r;'s in (6) are replaced again by Xis. Thus, by subsequently expanding 
min(SI,X2), min(S2' X:)), ... , min(Sn,Xn+l ) we finally obtain: 

d .:;-., ( 1) Xj 
= L 1 - 2n+l-j -C;-' 

j=l ~n+l 

which is exactly (2). D 
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3 Moments of the travel time 

In this short section we shall use representation (2) to directly calculate the moments of 
the travel time Tn- From (2) we obtain for the k-th moment of the travel time, 

kj )k2; .. )kn 2:0 

kJ+k2+ .. +kn=k 

To determine the expectation 

(X
kl Xk2 Xkn) I 2'" n 

E C;k ' 
" n+l 

first recall that the random variables X;j Sn+' = Di, i = 1, 2, ... , n+ 1 are uniform spacings. 
Under the condition that D:) = Ii:), ... , Dn+, = lin+, the random variable D, is uniform 
on the interval [0,1 - Ii:) - ... - lin+d (cf. Sec. 13.1 in Karlin and Taylor [4]). Hence, by 
conditioning and partial integration we obtain 

By symmetry and repeatedly applying this equality we find 

E -'- __ 2_ ... ~ = E c-;--'-' ---;----:-0 

(

Dkl D,k2 Dkn+l) . ( Dkl+-·+kn+l ) 

k,! k2! kn+,! (k, + ... + kn+,)! 

Using E(D}/k!) = n!/(n + k)! and substituting Di = X;jSn+, yields 

(X
kl Xk2 Xkn+l) k 'k' k L' E I 2'" n+l = I- 2-··· n+l· H . 

c<k,+k2+··+kn+1 (n + k + k, + ... + k )" ,,In+l I 2 n+l . 

which is valid for any collection k" k2, ... , kn+' of nonnegative integers. Hence, (7) becomes 

kj )k2; .. )kn 2:0 

kj +k2+·+kn =k 

For example, for k = 1 we have: 

E(Tn) = _n _ __ 1_ (1-~). 
n+1 n+1 2n (8) 

This formula has already been derived in Litvak et 0.1. [5J. 
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4 The distribution of the travel time 

:-low we are going to determine the distribution of Tn- Due to Theorem 2.1 we have: 

Pr(T < x) = PI' (.:;-., (1 - ~) X < xS ) n L- 21 1 n+l 
1=1 

(9) 

So we need to find an expression for the right-hand side of (9). First note that it immedi­
ately follows from (9) that 

Pr(Tn < x) = 1, 
1 

x> 1--- 2n ' 
(10 ) 

which automatically yields the upper bound of Litvak et 01. [5J (see Corollary 3.4). Also, 
we will have different expressions for the distribution function in the intervals (0,1/2]' 
(1/2,3/4]' ... , (1 - 1/2n -

l ,1 - 1/2n J. :-lamely, for 1 - 1/2k
-

l < X S; 1 - 1/2k, where 
k = 1,2, ... ,n, we have 

PI' (~(1 - ~i) Xi < XSn+l) 

( 
n ( 1 ) k- I ( 1 ) ) = PI' " 1 - c-c - X X. <" x-I + c-c X. + xX +1 . L., 2J JL., 2J J n 

j=k j=l 

(11) 

Equation (11) can be rewritten as 

Pr(Tn < x) (12) 

where Xl, X 2 , ••• , Yl , Y2,'" are again independent exponentials with the same mean. To 
obtain a closed-form expression for Pr(Tn < x) we need the following lemma. 

Lemma 4.1 Let Xl, X 2 , ••• , Yl , Y2,' .. be independent exponentio1., wdh the 80me mean. 
and let 111,112, ... ,b l , b2 , ••• be p08dive rwmbeT8. Then faT any ,VI, N > 0 we have 

(13) 

Proof. The proof is based on the memory less property of the exponential distribution. 
Let us say that Il j X j 'beats" bly;, if Il j X j is greater than bIY;. :-low consider 1l 1X l 'competing" 
with bl Yl . If III Xl wins (which happens with probability 1lI/(1l1 + bl )), then the overshoot 
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of Il IX I has again the same distribution as Il IX I, and it will compete with b2Y2. If, on 
the other hand, blYI wins (with probability bI/(Il, + b,)), then the overshoot of blYI IS 

distributed as bl YI, and it will compete with 1l2X2. Formally, 

PI' (t Ilj X j > t blY;) = . III PI' (t Ilj X j > t bly;1 Il IX I > bl YI) 
j=1 1=1 III + bl j=1 1=1 

+ b
l 
I PI' (tlljxj > tblY;IIlIXI < bIYI) 

III + )1 j=1 1=1 

= III PI' (t Ilj X j > t blY;) + b
l 

PI' (t Ilj X j > t blY;) . 
III + bl j=1 1=2 III + bl j=2 1=1 

:-low we can repeat the arguments to reduce the two sums in the right-hand side. This 
results in the following process: Il IX I beats the first kl terms of L;~I bly;, where kl may 
be zero. If kl < N, then it means that bkl+IYk,+1 beats Il I X I and proceeds to compete 
with 1l2X2. Then, 1l2X2 beats the following k2 - kl terms of L;~kl+1 bly;, where k2 - kl 
may again be zero. If k2 < N, then it means that bk2+1 Yk2+ 1 beats 1l2X2 and further 
competes with Il:lX;h and so OIl. :-low the 'X-player' wins if eventually, IlmXm beats IhiY'" 
for some m S; ,VI. :-lote that km - km- I > 0, because IlmXm clearly wins at least once. 
Formally applying the law offull probability, as shown above for Il IX I and bIYI, we obtain 
formula (13). D 

:-low we can derive closed-form expressions for the distribution function of T" in the 
sequence ofintervals (0,1/2]' (1/2,3/4]' ... , (1-1/2"- I ,1-1/2"J. The expression in (0, 1/2J 
is the simplest one: 

4 2" 
Pr(T < x) = 2 . - . . . x" 

" 3 2"-1 ' ° < x S; 1/2. 

In the next interval we get one additional term: 

4 2" 4 2,,-1 
Pr(T < x) = 2 . - . . . x" - 2· - . . . (2x - 1)" 

" 3 2" - 1 3 2,,-1 - 1 ' 1/2 < x S; 3/4. 

In fact an extra term appears in each of the following intervals. This is formulated in the 
theorem below. 

Theorem 4.2 FOT all n = 1,2, ... 'it hold., that 

Pr(T" < x) (14) 

wheTe the coefficient., (;n aTe defined a., 

4 2m 
(;n = 2 . - ... -::---:-

3 2m -1' 
m;::>l. (15) 
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Proof. We first combine (12) and (13) to obtain 

Pr(Tn < x) 
k 

= L 
( 

m k- kj 2k+I-)) '" IT (2)- 1 x - (2)-1 - 1)) J IT _ 
L _ 2k+I-] - 1 

m=l O=ko:::; .. :::;km~j<km=n+l-k J=l J+l 

m-I ( 2k+kj-)+1 ) 
x IT 1 - (2)-I X - (2)-1 - 1)) ,1 - 1/2k- 1 <_ X < 1 - 1/2k (16) 

_ 2k+kj-)+1 - 1 
J=l 

Putting k = 1 in (16) gives 

() < x S; 1/2, 

which coincides with (14). Let us show that for 1/2 < x S; 3/4 the formulas (16) and (14) 
are again the same. For k = 2 formula (16) gives 

Pr(Tn < x) 

The first term in the right-hand side of (17) can be rewritten as 

:-low adding it to the second term gives 

c xn - - . - . . . x n- 2 (2x - 1) x-I - x 4 8 2n- 1 , {2n ( 2n) 
n 3 7 2n- 1 - 1 2n - 1 2n - 1 

4 8 2n - 1 2n - 1 

= c xn _ - . - . . . - n-2 (2 1)2 
n 3 7 2n-1 _ 1 x 2n-1 _ 1 x - , 

SInce 
21- 1 

-II (2x-l), 2 - -1 
I> 1. (18) 

Subsequently adding the terms in the right-hand side of (17) and using (18) we finally 
obtain: 

1/2 < x S; 3/4. 

9 



Similarly we can rewrite (16) for arbitrary k = 1,2"", n, To do this we use the equalities 

2m 1 .. 2rn
-

l 
( 2m 

. . ) 
-:------:-' -- (2Jx - 2J + 1) - 1 - (2Jx - 2J + 1) 
2m - 1 21 - 1 2m - 1 - 1 2m - 1 

2m - 1 1 
-~- , -- (2J+1x - 2J+1 + 1) Tn > I ::> 1, ,';::> 0, (19) 
2m - 1 - 1 21 - 1 ' I 

and 

(
. .)1 ( . 1 . 1 )1 1 ( . 2 . 2 )1 

I.;" 2Jx -2J+l -(;,,-1 21+ x-21+ +1 +3(;,,-2 21+ x-21+ +1 

(

m 1 ) 1 _"'+(_I)m IT I' (2J+mx_2J+m +l) =1 . 2m _ 1 -0 , 
1=1 

(20) 

Tn ::> I ::> 0, .i::> 0, 

where Co = 1 by convention, Equality (19) is a generalization of (18) and it can be checked 
directly, Equality (20) can be established in the following way, Let us consider the function 

122
m 

(. .)1 
f(~x)- 82Jx-82J+l, " -1-8'2-8"'2m -8 

For I S; Tn it has the following expansion in rational fractions of 8: 

f(X,8) ( . . )1 1 (. .)1 2 
C 2Jx - 2J + 1 -- - C -I 2, 2Jx - 2 ' 2J + 1 --
in 1-8 "in 2-8 

1 (. .)1 4 + - C 2 4, 2J X - 4 ' 2J + 1 --
3 m

- 4 - 8 

( 

m 1 ) (. .)1 2
m 

"'+(_I)m IT. Co 2m ,2Jx-2m ,2J +l 
.2ln-l 2m-s' 
1=1 

Tn ::> I ::> 0, .i::> 0, 

Putting 8 = 0 we get (20), 
Combining the terms of (16), starting with the ones containing powers of (2k- 1x -

2k- 1 + 1), we subsequently apply (20) and then (19), This finally leads to 

Pr(T" < x) = 
1 

I.nX" - I.n-I (2x _1)" + - I.n-2 (4x - 3)" 
3 

( )k_Il 1 1 , (,k-I (,k-I ))" , ,,+ -1 - , - " , ,( -k'+1 2 x - 2 - 1 3 7 2k- 1 _ In , 

1 - 1/2k- 1 < X S; 1 - 1/2k, 

which coincides with (14), D 

Hmllula (20) holds in particular for 0 < x S; 1, .i = 0 and I = Tn = n, This means that 
(10) and (14) can be combined as follows: 

Pr(T" < x) = " ( k 1 ) "'( )k IT '(' k. ' k )" 6 -1 i=1 2k - 1 I.n -k 2x-2 +1 l{x>l-
x'
d' (21) 

O<xS;L 
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For x > 1 - 1/2n the right-hand side of (21) just adds up to 1, according to (20). Also, 
note that due to (20) the distribution of Tn can be written in another form: 

It gives a simpler expression for 1 - 1/2k- 1 < X S; 1 - 1/2k, when k is greater than n/2. 
In Fig. 3 we show the distribution of the travel time for several values of n. 

,/<~~r:; 
/ n=Jo ··f···· 

/ '! 
/ ! , , 

0.8 

" i ; ! 
! ! 

0.6 
/ ! 

/ ! 
/ ! 

0.4 
/ 

0.2 

/1 
a L-== __ --'-_~='---'-__ ="'= __ ~ ..... "' .. ~ .. '_ ...... _'__ ___ __' 

a 0.2 0.4 0.6 0.8 

Figure 3: The distribution of Tn for n = 2,5,10, 20. 

5 Asymptotic results 

In this section we analyze the distribution of the travel time under the :-11 heuristic, when 
the number of items n tends to infinity. In fact, we consider 1 - Tn, which is the difference 
between the travel time under the :-11 heuristic and a complete rotation of the carousel. It 
is clear that 1 - Tn converges in distribution to zero as n --t ;)(). However, since (8) gives 

2 ( 1) E (1 - 7: ) - -- 1 - -
n - n + 1 2n+1' 

one may expect that (n + 1)(1 - Tn) has a proper limiting distribution. 

\Ve will use the common notation Zn -~ Z, if the sequence Zl, Z2,' .. converges in 
distribution to Z. The limiting distribution of (n + 1) (1 - Tn) is presented in the following 
theorem. 
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Theorem 5.1 Let XI. X 2 • ••• be independent exponential., wdh mean 1. Then 

d 00 1 
(n + 1) (1 - Tn) -+ :L 2i- 1 Xi, 

1=1 

and the hmding di.,tribntion i., given by 

where Coo i., defined a., (cf. (15)) 

Proof: Denote 

00 2j 

Coo = IT -:-2J~' -----:-1 • 
J=l 

n 1 
c = "-X 
I..,n L- 21- 1 l' 

1=1 

00 1 
I:. = "-. '-1 Xi' L., 2'-

1=1 

x> 0, 

(22) 

(23) 

According the lVlonotone Convergence Theorem we have E(f.) = limn -+oo E(l:.n) = 2, which 
in particular implies Pr(1:. < :)()) = 1. 

To prove (22) we only need to rewrite (2) as 

(n + 1)(1 _ Tn) 4 (n ~ l)l:.n+1 . 
" n+l 

By definition the sequence {I:.n} converges a.s. to (. Further, according to the strong law 
of large numbers, the sequence {Sn/n} converges a.s to 1. Thus, the sequence {nl:.n/Sn} 
converges a.s. to C which immediately gives (22). 

The distribution of I:. can be determined via inversion of its Laplace-Stieltjes transform 
n(8), which is given by 

_ 00 21 
n(8) = E(c-s<) = IT-. -, i . 

i=O'> + 2 

It is readily verified that n(8) is a meromorphic function with simple poles IIi 

i = 0,1, ... The residues bi at these poles are given by 

. (ITi 1). bi = Coo ( -1)' 2k _ 1 2', 
k=1 

i=O,l, ... 

_2i , 

To invert n(8) we first expand this function in rational fractions of 8, by following the 
approach in Whittaker and Watson [8], Sec. 7.4. This approach requires that In(8) 1 is 
uniformly bounded on a sequence of circles Cj , with centre at ° and radius R j , not passing 
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through any poles, and such that Rj -t :)() as j -t:)(). In this case we can take Rj 

-(l1j + I1j+I)/2 = 2j -
1 + 2j and it is straightforward to show that for all 8 E Cj, 

00 22+k 
In(8)1 S; In(-Rj)1 S; 2· I1 22+k _ 3' 

k=O 

Since this upper bound does not depend on j, the function In(8)1 is indeed uniformly 
bounded on the sequence of circles Cj • :-low we can conclude from Sec. 7.4 in [8J that 

00 [1 1] n(8) = n(O) + Lbi -. - +-
1=0 ,I) - (Ii (Ii 

From Litvak et 01. [5], Remark 10.3, it follows that 

f b, = 1'00(-1)'+1 f (II, k ~ ) = -1 = -n(O), 
i=O II, i=O k=1 2 1 

which implies that 
00 b. 

n(8) = L -. -'-. 
1=0,1) - (Ii 

Inversion of this expression yields (23). D 

Fllrther note that for any k = 1,2, ... we have 

E ([(n + 1)(1 - Tn)Jk) 

= (n + l)k L 
kj )k2; .. )kn+l 2:0 

kj +k2+··+kn+J =k 

kj )k2; .. )kn+l 2:0 

kj +k2+·+kn+J =k 

k!(n+l)k (1 l)k.k < 1 + - + ... + - < k!2 . 
(n+l)(n+2)···(n+k) 2 2n -

Hence (see e.g. Chung [3], Sec. 4.5) for any k = 1,2, ... it holds that 
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In Fig. 4 we demonstrate the rate at which the distribution of (n + 1)( 1 - Tn) converges 
to its limiting distribution. 

Figure 4: The distribution of (n + 1)( 1-Tn) for n = 2, 5, 10, 20 and the limiting distribution 
as n -t ;)(). 

To find E ((k) we use (23) and then change the order of integration and summation. 
This yields: 

(24) 

Changing the order of integration and summation is allowed, since the sum above is abso­
lutely convergent. Expression (24) can be simplified by using the equality 

00 ( 1) 00 '(i 1) 1 1- - = _I' ---,rr 2) I:() rr 2) _ 1 2ki' 
J=k+ I 1=0 J= I 

which holds for k = 0,1,.... For k = 0 the proof of this equality is given in Litvak et 
01. [5], Remark 10.3. The case k > 0 can be proved along the same lines. Substituting this 
equality into (24) gives the simple expression: 

E ((k) = k! Ilk ~. 
, 2J - 1 
J=l 
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