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Abstract: We present a global solution to the output regulation problem for a
class of nonlinear systems. The solution is based on the incremental stability
property. The question of existence of the proposed solution can be answered
by checking solvability of the regulator equations and feasibility of certain linear
matrix inequalities.

Keywords: Global output regulation, nonlinear systems, incremental stability,
LMI.

1. INTRODUCTION

In this paper we address the output regulation
problem, which includes the problems of tracking
reference signals and rejecting disturbances gen-
erated by an external autonomous system (ex-
osystem). For linear systems, this problem was
thoroughly investigated in 1970-s by (Francis and
Wonham, 1976; Davison, 1976) and others. For
nonlinear systems, intensive research started with
the papers (Isidori and Byrnes, 1990) and (Huang
and Rugh, 1990), which provided a solution to
the local output regulation problem for general
nonlinear systems. These papers were followed by
a number of results dealing with different aspects
of the output regulation problem for nonlinear
systems: approximate, robust, adaptive output
regulation, see (Byrnes et al., 1997; Byrnes and
Isidori, 2000) and references therein.

Most of the results are based on the assumption
of solvability of the so-called regulator equations,
which provide existence of a controlled-invariant
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manifold on which the regulated output equals to
zero. Existence of such (locally defined) manifold
proved to be necessary at least in the case of
neutrally stable exosystems (Isidori and Byrnes,
1990). If this assumption holds, the problem re-
duces to finding a controller that would make
this manifold invariant and asymptotically stable.
Depending on the region of attraction of this man-
ifold, one can distinguish local, semiglobal and
global solutions. In the local case, the dynamics
of the system near an equilibrium point is sim-
ilar to the dynamics of its linearization at this
point and the invariant output-zeroing manifold
can be locally stabilized with a linear controller.
Non-local results require more sophisticated ap-
proaches. Most of the semiglobal results make
use of certain types of high-gain controllers or
observers, see e.g. (Khalil, 2000). Only a few
global results exist and are mostly limited to sys-
tems which are linear in the unmeasured variables
(Serrani and Isidori, 2000; Ding, 2001). A recent
paper (Marconi and Serrani, 2002) addresses the
global robust output regulation problem for sys-
tems in lower-triangular form.



In this paper, we provide a global solution to the
output regulation problem based on the so-called
incremental stability property (Demidovich, 1961;
Angeli, 2002; Fromion et al., 1999). Roughly
speaking, every solution of a system with this
property is globally asymptotically stable. Rela-
tions between incremental stability and the out-
put regulation problem were outlined in (Pavlov
et al., 2002). In the present paper, we aim at
finding a controller that makes the output-zeroing
manifold invariant and the closed-loop system in-
crementally stable, which together imply global
asymptotic stability of the output-zeroing mani-
fold.
The paper is organized as follows. In Section 2,
we formulate the global output regulation prob-
lem and introduce some preliminary notions and
results. The main results on controller design are
given in Section 3. Section 4 contains an example
and Section 5 contains conclusions. All proofs are
given in the Appendix.

2. PROBLEM FORMULATION AND
PRELIMINARIES

Consider systems modelled by equations of the
form

ẋ = f(x, u, w) (1)

e = hr(x,w) (2)

y = hm(x,w), (3)

with state x ∈ R
n, input u ∈ R

p, regulated
output e ∈ R

l and measured output y ∈ R
k. The

exogenous signal w(t), which can be viewed as a
disturbance in equation (1) or as a reference signal
in (2), is generated by the exosystem

ẇ = s(w), w ∈ W, (4)

where W ⊂ R
m is an open positively invariant set.

It is assumed that
A1 every trajectory of (4) starting in W belongs
to some compact subset of W. For example, if
W = R

m then the last assumption implies that
all trajectories of (4) are bounded on t ∈ [0,+∞).
The functions f(x, u, w), hm(x,w) and s(w) are
assumed to be continuously differentiable.

The global output regulation problem is formu-
lated in the following way: find, if possible, a
feedback of the form

ξ̇ = η(ξ, y) (5)

u = θ(ξ, y) (6)

such that all solutions of the system

ẋ = f(x, θ(ξ, hm(x,w)), w) (7)

ξ̇ = η(ξ, hm(x,w)) (8)

ẇ = s(w); (9)

are bounded and ensure that e(t) = hr(x(t), w(t)) →
0 as t → ∞.

Quadratic stability

Prior to solving the problem, we give the following
definitions.
Definition 1. A matrix function A(z) ∈ R

n×n

is called quadratically stable over Z if for some
P = PT > 0 and Q = QT > 0

PA(z) + A(z)TP ≤ −Q ∀z ∈ Z. (10)

Definition 2. A pair of matrix functions A(z) ∈
R

n×n and B(z) ∈ R
n×p is said to be quadratically

stabilizable over Z if there exist a matrix K ∈
R

p×n such that A(z) + B(z)K is quadratically
stable over Z.
Definition 3. A pair of matrix functions A(z) ∈
R

n×n and C(z) ∈ R
k×n is said to be quadratically

detectable over Z if there exist a matrix L ∈ R
n×k

such that A(z)+LC(z) is quadratically stable over
Z.

Notice, that if A(z) ≡ A is constant, then
quadratic stability of A is equivalent to matrix A
being Hurwitz; quadratic stabilizability of (A,B)
and quadratic detectability of (A, C) are equiva-
lent to conventional stabilizability and detectabil-
ity of the pairs of constant matrices (A,B) and
(A, C), respectively. Similar to the case of constant
matrices, the pair (A(z),B(z)) is quadratically
stabilizable over Z if and only if (AT (z),BT (z))
is quadratically detectable over Z. This follows
from pre- and post-multiplication by P−1 of the
inequality

P(A(z) + B(z)K) + (A(z) + B(z)K)TP ≤ −Q.

The purpose of the notions introduced above
becomes clear from the following lemma, see
(Demidovich, 1961; Fromion et al., 1999).

Lemma 1. Consider the system

ż = F (z, v(t)), (11)

where z ∈ R
n, v(t) is a continuous input defined

on t ∈ [0,+∞) and taking its values in some
set V ⊂ R

k, and F is C1 with respect to z and
continuous with respect to v. Suppose ∂F

∂z
(z, v) is

quadratically stable over (z, v) ∈ R
n × V. Then,

for every continuous v(t) ∈ V every solution of
system (11) is globally exponentially stable.

The proof of this lemma is based on the algebraic
fact that under the conditions of Lemma 1 the
following relation holds (Demidovich, 1961):

(∆z)TP(F (z + ∆z, v) − F (z, v)) ≤ −ε|∆z|2 (12)

for some P = PT > 0, ε > 0 and all z, ∆z ∈ R
n,

v ∈ V.



In general, it is not an easy task to check quadratic
stability, stabilizability or detectability. Yet, in
some particular cases, this can be done efficiently,
as follows from the following lemma.

Lemma 2. Consider the matrix functions A(z) ∈
R

n×n, B(z) ∈ R
n×p and C(z) ∈ R

k×n.
i) Suppose, there exist matrices A1, . . .As such
that

A(z) ∈ co{A1, . . .As}, ∀z ∈ Z,

where co{. . .} denotes a convex hull, and the
linear matrix inequality (LMI)

P = PT > 0, PAi + AT
i P < 0, i = 1, . . . s, (13)

is feasible. Then, A(z) is quadratically stable over
Z.
ii) Suppose, there exist matrices A1, . . .As and
B1, . . .Bs such that

[A(z), B(z)] ∈ co{[A1,B1], . . . [As,Bs]}, ∀z ∈ Z

and the LMI

AiP + PAT
i + BiY + YTBT

i < 0, i = 1, . . . s,

P = PT > 0. (14)

is feasible. Then, the pair A(z),B(z) is quadrat-
ically stabilizable over Z with the matrix K =
YP−1, where Y and P satisfy (14).
iii) Suppose, there exist matrices A1, . . .As and
C1, . . . Cs such that

[A(z), C(z)] ∈ co{[A1, C1], . . . [As, Cs]}, ∀z ∈ Z

and the LMI

PAi + AT
i P + XCi + CT

i X T < 0, i = 1, . . . s,

P = PT > 0. (15)

is feasible. Then, the pair A(z), C(z) is quadrat-
ically detectable over Z with the matrix L =
P−1X , where X and P satisfy (15).

Lemma 2 is a compilation of some standard results
from LMI applications to control (see, e.g. (Boyd
et al., 1993)). Another standard result that can
be useful for checking quadratic stability is based
on the circle criterion, see e.g. (Khalil, 1996).

Lemma 3. Consider a triple of matrices A ∈
R

n×n, B ∈ R
n×1 and C ∈ R

1×n. Suppose, the pair
(A,B) is controllable, (A,C) is detectable and for
some µ > 0, µ < +∞

Re
(

C(iωI − A)−1B
)

> −
1

µ
, ∀w ∈ R.

Then, any matrix function A(z) defined on some
set Z and satisfying A(z) ∈ co{A,A − µBC} for
all z ∈ Z is quadratically stable over Z.

3. MAIN RESULTS

The results in this section are formulated in terms
of Jacobians of the functions of system (1)-(3)
and exosystem (4). In the sequel, we will use the
following notations: z := (x, u, w) ∈ R

n+p ×W,

A(z) :=
∂f

∂x
(x, u, w), B(z) :=

∂f

∂u
(x, u, w),

P (z) :=
∂f

∂w
(x, u, w), C(z) :=

∂hm

∂x
(x,w)

Q(z) :=
∂hm

∂w
(x,w), S(z) :=

∂s

∂w
(w).

The basic assumption that we use is solvability of
the so-called regulator equations:
A2 There exist locally Lipschitz mappings π(w)
and c(w) defined on W and satisfying the relations

d

dt
π(w(t)) = f(π(w(t)), c(w(t)), w(t)), (16)

for all solutions w(t) ∈ W of the exosystem (4)
and

hr(π(w), w) = 0, ∀ w ∈ Ω(W), (17)

where Ω(W) consists of ω-limit points of trajec-
tories w(t) starting in w(0) ∈ W.
Remark 1. Since the set Ω(W) attracts all so-
lutions of system (4) starting in W, then (17)
implies that hr(π(w(t)), w(t)) → 0 as t → +∞
along any solution w(t) starting in w(0) ∈ W.

Let us first consider the state feedback case when
the states x and w are available for measurements,
i.e. y = (x,w).

Theorem 1. Consider system (1)-(3) with y =
(x,w) and exosystem (4). Suppose, assumptions
A1 and A2 hold and the pair (A(z), B(z)) is
quadratically stabilizable over z ∈ R

n+p × W.
Then, the global output regulation problem is
solved by a controller of the form

u = c(w) + K(x − π(w)), (18)

where the matrix K is such that the matrix
function A(z)+B(z)K is quadratically stable over
z ∈ R

n+p ×W and π(w), c(w) satisfy (16), (17).

Next, we consider the case when only a certain
output y is available for feedback. We assume that
W = R

m. This also implies that the mappings
π(w) and c(w) in Assumption A2 are globally de-
fined. The following theorem provides conditions
for solvability of the output regulation problem in
the case of output feedback.

Theorem 2. Consider system (1)-(3) and exosys-
tem (4). Suppose that assumptions A1 and A2
hold, the pair (A(z), B(z)) is quadratically sta-



bilizable over z ∈ R
n+p+m, the matrix B(z) is

uniformly bounded on z ∈ R
n+p+m and the pair

[

A(z) P (z)
0 S(z)

]

, [C(z) Q(z)] (19)

is quadratically detectable over z ∈ R
n+p+m.

Then, the global output regulation problem is
solved by a controller of the form

u = c(ŵ) + K(x̂ − π(ŵ)) (20)

˙̂x = f(x̂, u, ŵ) + L1(ŷ − y) (21)

˙̂w = s(ŵ) + L2(ŷ − y) (22)

ŷ = hm(x̂, ŵ), (23)

where the matrices K and L = [LT
1 , LT

2 ]T are such
that the matrix functions A(z) + B(z)K and

[

A(z) P (z)
0 S(z)

]

+ L[C(z) Q(z)]

are quadratically stable over z ∈ R
n+p+m.

Remark 2. As follows from the proofs of The-
orem 1 and Theorem 2, the solutions x(t) =
π(w(t)), in the state feedback case, and (x, x̂, ŵ) =
(π(w(t)), π(w(t)), w(t)), in the output feedback
case, are uniformly globally asymptotically stable.
If the exosystem admits the solution w(t) ≡ 0
and π(0) = 0 and {0} ∈ W, then for w(t) ≡ 0
the closed-loop dynamics resulting from the con-
trollers (18) and (20)-(23) are globally asymptot-
ically stable at the origin.

4. EXAMPLE

Consider the system

ẋ1 = x2 (24)

ẋ2 = x3 − x2 − cos(x2)

ẋ3 = u

e = y = x1 − w1

and the exosystem

ẇ1 = w2, ẇ2 = −w1. (25)

The control goal is to find an output feedback
controller such that all solutions of the closed-
loop system and the exosystem are bounded and
e(t) → 0, as t → +∞.

Every solution of (25) is bounded on t ≥ 0. The
regulator equations admit the solution π1(w) =
w1, π2(w) = w2, π3(w) = w2 − w1 + cos(w2),
c(w) = −w1−w2+w1 sin(w2). The mappings π(w)
and c(w) are defined globally and continuously
differentiable. Hence, assumptions A1 and A2
hold. Let us apply Theorem 2. In our case, z =
(x1, x2, x3, u, w1, w2)

T ,

A(z) =





0 1 0
0 (sin(x2) − 1) 1
0 0 0



 , S(z) ≡

[

0 1
−1 0

]

,

B(z) ≡ [0 0 1]T , P (z) ≡ 0, C(z) ≡ [1 0 0],
Q(z) ≡ [−1 0].

Notice, that A(z) ∈ co{A1, A2}, where

A1 :=





0 1 0
0 −2 1
0 0 0



 , A2 :=





0 1 0
0 0 1
0 0 0



 .

Thus, by Lemma 2 we can check quadratic stabi-
lizability of the pair (A(z), B(z)) by checking fea-
sibility of the matrix inequality (14) with Ai = Ai

and Bi = B, i = 1, 2. In a similar way, quadratic
detectability of the pair (19) can be checked by
checking feasibility of the LMI (15) with

Ai =

[

Ai P
0 S

]

, Ci = [C Q], i = 1, 2.

Numeric computations show that both LMIs
(14) and (15) are feasible and, for example,
the matrices K = [−6 − 11, −6]T and L =
[−153, −78, −13, −132, 52] ensure quadratic
stability of the matrix functions A(z) + B(z)K
and

[

A(z) P (z)
0 S(z)

]

+ L[C(z) Q(z)]

over z = (x, u, w) ∈ R
6. The fact that these K

and L ensure quadratic stability of these matrix
functions, can be also checked using the circle
criterion from Lemma 3.

Thus, all conditions of Theorem 2 are satisfied. By
this theorem, controller (20) with π(w), c(w), K
and L specified above and the functions f(x, u, w),
hm(x,w) and s(w) corresponding to the system
equations (24), (25), solves the output regulation
problem globally. In Fig. 1 one can see simulation
results of the closed-loop dynamics.
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Fig. 1. Closed-loop dynamics: e(t) for different
initial conditions of the closed-loop system
and the exosystem.

5. CONCLUSIONS

We have presented a state-feedback and an
output-feedback solution to the global output reg-
ulation problem for a class of nonlinear systems.
The controller design is based on the prelimi-
nary assumption of the solvability of the regulator
equations in the class of locally Lipschitz func-
tions and on the assumption of boundedness of



the exosystem’s solutions. In the state-feedback
case, the proposed controller makes the closed-
loop system incrementally stable and guarantees
the existence of a solution along which the regu-
lated output tends to zero. This incremental sta-
bility, in turn, implies global asymptotic stability
of the desired solution. In the output-feedback
case, this state-feedback controller is coupled with
an observer, which is also incrementally stable.
Quadratic stabilizability and detectability condi-
tions, which are sufficient for the existence of the
proposed controllers, extend, in a certain way, the
conventional stabilizability and detectability con-
ditions to the nonlinear case. In some cases, these
conditions can be efficiently checked by solving
certain LMIs. This opens a wide range of LMI-
and robust control methods for solving the output
regulation problem. Robustness issues, which are
not addressed in this work, are the next step in
our research.
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APPENDIX

Proof of Theorem 1: Consider the closed-loop
system

ẋ = f(x, c(w) + K(x − π(w)), w) =: F (x,w). (26)

Due to assumption A2, for any solution w(t) of
the exosystem (4) starting in w(0) ∈ W, system
(26) has a solution x̄w(t) := π(w(t)) along which
e(t) → 0, as t → +∞. Since w(t) belongs to a
compact subset of W (due to assumption A1) and
π(w) is continuous on W, π(w(t)) is bounded for
t ≥ 0. Notice, that by the choice of K the Jacobian
∂F
∂x

(x,w) = A(x, u(x,w), w) + B(x, u(x,w), w)K
is quadratically stable over (x,w) ∈ R

n ×W. By
Lemma 1, the solution x̄w(t) = π(w(t)) is globally
exponentially stable. Hence, all solutions of (26)
are bounded and x(t) → x̄w(t) as t → +∞ and
thus

e(t) = hr(x(t), w(t)) → hr(π(w(t)), w(t)) ≡ 0,

as t → +∞.2

Proof of Theorem 2: Consider the closed-loop
system

ẋ = f(x, u, w), (27)

ẇ = s(w), (28)
(

˙̂x
˙̂w

)

=

(

f(x̂, u, ŵ)
s(ŵ),

)

+ L(ŷ − y), (29)

ŷ = hm(x̂, ŵ), y = hm(x,w), (30)

u = c(ŵ) + K(x̂ − π(ŵ)). (31)

Denote ∆x = x − π(w),

ξ :=

(

x
w

)

, ∆ξ =

(

∆ξx

∆ξw

)

:=

(

x̂
ŵ

)

−

(

x
w

)

.

Then, the dynamics of ∆x and ∆ξ can be written
as



∆ẋ = F (π(w) + ∆x,w) − F (π(w), w) (32)

+ρ(ξ,∆ξ)

∆ξ̇ = G(ξ + ∆ξ, u) − G(ξ, u) (33)

u = U(ξ + ∆ξ), (34)

where

U(ξ) = U(x,w) := c(w) + K(x − π(w)),

F (x,w) := f(x, U(x,w), w),

ρ(ξ,∆ξ) := f(x, U(ξ + ∆ξ), w) − f(x, U(ξ), w),

G(ξ, u) :=

[

f(x, u, w)
s(w)

]

+ Lhm(x,w).

In order to obtain equation (32), we have used
(16) and the fact that U(π(w), w) = c(w).

Since ρ(ξ, 0) ≡ 0, (∆x,∆ξ) = (0, 0) is an equi-
librium point of (32)-(34). We will show that for
every solution w(t) of the exosystem (4), this
equilibrium is uniformly globally asymptotically
stable (UGAS). To that end, we will show that
for every w(t), a) ∆x = 0 is a globally expo-
nentially stable equilibrium of (32) with ∆ξ ≡ 0;
b) ∆ξ = 0 is a globally exponentially stable
equilibrium of (33); c) system (32) is input to
state stable (ISS) with respect to the input ∆ξ.
Then, system (32)-(34), treated as a cascade, has a
UGAS equilibrium (∆x,∆ξ) = (0, 0) (see Lemma
5.6 in (Khalil, 1996)).

Notice, that due to the choice of the matrices
K and L, ∂F

∂x
(x,w) is quadratically stable over

(x,w) ∈ R
n+m and ∂G

∂ξ
(ξ, u) is quadratically

stable over (ξ, u) ∈ R
n+m+p. Thus, by virtue of

Lemma 1 (see formula (12)), there exist positive
definite matrices Pc, Po and numbers εc > 0,
εo > 0 such that

∆xTPc(F (x + ∆x,w) − F (x,w)) ≤ −εc|∆x|2,(35)

∆ξTPo(G(ξ + ∆ξ, u) − G(ξ, u)) ≤ −εo|∆ξ|2, (36)

for all x,∆x ∈ R
n, w ∈ R

m, ξ,∆ξ ∈ R
n+m and

u ∈ R
p. Consider the functions

Vc(∆x) :=
1

2
(∆x)TPc∆x,

Vo(∆ξ) :=
1

2
(∆ξ)TPo∆ξ.

Their derivatives along solutions ∆x(t) and ∆ξ(t)
satisfy

dVc

dt
= (∆x)TPc(F (π(w) + ∆x,w) − F (π(w), w))

+(∆x)TPcρ(ξ,∆ξ)

≤−εc|∆x|2 + ‖Pc‖|∆x||ρ(ξ,∆ξ)|, (37)

dVo

dt
= (∆ξ)TPo(G(ξ + ∆ξ, w) − G(ξ, w))

≤−εo|∆ξ|2. (38)

In these inequalities, we have used formulas (35)
and (36). As follows from (38), the origin ∆ξ = 0
is globally exponentially stable. Since ρ(ξ, 0) ≡ 0,
we conclude from formula (37) that system (32)
for ∆ξ ≡ 0 has a globally exponentially stable
equilibrium ∆x = 0. Let us show that system
(32) is ISS with respect to the input ∆ξ. To that
end, we estimate the term ρ(ξ,∆ξ). Since B(z) =
∂f
∂u

(x, u, w) is uniformly bounded over R
n+p+m,

the function f(x, u, w) is globally Lipschitz with
respect to u uniformly over (x,w) ∈ R

n+m, i.e.
there exists CL > 0 such that

|f(x, u1, w) − f(x, u2, w)| ≤ CL|u1 − u2|,

for all (x,w) ∈ R
n+m and u1, u2 ∈ R

p. Thus,

|ρ(ξ,∆ξ)| ≤ CL|U(ξ + ∆ξ) − U(ξ)|. (39)

Notice, that

U(ξ + ∆ξ) − U(ξ)

= c(ŵ) + K(x̂ − π(ŵ)) − c(w) − K(x − π(w))

= K∆ξx + α(w + ∆ξw) − α(w), (40)

where α(w) := c(w) − Kπ(w). Hence,

|ρ(ξ,∆ξ)| ≤CL‖K‖|∆ξx| (41)

+ CL sup
t≥0

|α(w(t) + ∆ξw) − α(w(t))|

≤CL‖K‖|∆ξ| + δ(|∆ξ|) =: σ(|∆ξ|),

where

δ(r) := sup
t≥0, |∆ξw|≤r

|α(w(t) + ∆ξw) − α(w(t))|.

Recall, that by the properties of exosystem (4),
every solution w(t) belongs to some compact
set on t ∈ [0,+∞). Thus, the function δ(r) is
a well-defined continuous nondecreasing function
satisfying δ(0) := 0. Hence, σ(r) = CL‖K‖r +
δ(r) is a continuous strictly increasing function
satisfying σ(0) = 0, i.e. σ(r) is a K-function.
Thus, dVc/dt ≤ εc|∆x|(−|∆x|+ ‖Pc‖σ(|∆ξ|)/εc).
Hence, for |∆x| > 2‖Pc‖σ(|∆ξ|)/εc we obtain
dVc/dt ≤ −εc/2|∆x|2. Application of Theorem
5.2 from (Khalil, 1996) proves ISS stability of (32)
with respect to the input ∆ξ.

Thus, application of Lemma 5.6 from (Khalil,
1996) proves that the solution (∆x,∆ξ) = (0, 0)
is UGAS equilibrium of system (32)-(34). For
the closed-loop system in the original coordinates
(x, x̂, ŵ) this implies that the solution

(x(t), x̂(t), ŵ(t)) = (π(w(t)), π(w(t)), w(t))

is UGAS. Hence, since w(t) and π(w(t)) are
bounded, every solution of the closed-loop system
is also bounded and

e(t) = hr(x(t), w(t)) → hr(π(w(t)), w(t)) → 0,

as t → +∞. 2


