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Gaussian Scaling for the Critical Spread-out Contact Process
above the Upper Critical Dimension

Remco van der Hofstad1 and Akira Sakai2

Abstract: We consider the critical spread-out contact process in Zd with d ≥ 1, whose infection range
is denoted by L ≥ 1. The two-point function τt(x) is the probability that x ∈ Zd is infected at time t
by the infected individual located at the origin o ∈ Zd at time 0. We prove Gaussian behaviour for the
two-point function with L ≥ L0 for some finite L0 = L0(d) for d > 4. When d ≤ 4, we also perform a
local mean-field limit to obtain Gaussian behaviour for τtT (x) with t > 0 fixed and T → ∞ when the
infection range depends on T in such a way that LT = LT b for any b > (4− d)/2d.

The proof is based on the lace expansion and an adaptation of the inductive approach applied to
the discretized contact process. We prove the existence of several critical exponents and show that they
take on their respective mean-field values. The results in this paper provide crucial ingredients to prove
convergence of the finite-dimensional distributions for the contact process towards those for the canonical
measure of super-Brownian motion, which we defer to a sequel of this paper.

The results in this paper also apply to oriented percolation, for which we reprove some of the results
in [20] and extend the results to the local mean-field setting described above when d ≤ 4.
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1 Introduction and results

1.1 Introduction

The contact process is a model for the spread of an infection among individuals in the d-dimensional
integer lattice Zd. We suppose that the origin o ∈ Zd is the only infected individual at time 0, and that
every infected individual may infect a healthy individual at a distance less than L ≥ 1. We refer to this
model as the spread-out contact process. The rate of infection is denoted by λ, and it is well known that
there is a phase transition in λ (see e.g., [22]).

Sakai [26, 27] has proved that when d > 4, the sufficiently spread-out contact process has several
critical exponents which are equal to those of branching random walk. The proof by Sakai uses the
lace expansion for the time-discretized contact process, and the main ingredient is the proof of the so-
called infrared bound uniformly in the time discretization. Thus, we can think of his results as proving
Gaussian upper bounds for the two-point function of the critical contact process. Since these Gaussian
upper bounds imply the so-called triangle condition in [3], it follows that certain critical exponents take
on their mean-field values, i.e., the values for branching random walk. These values also agree with the
critical exponents appearing on the tree. See [22, Chapter I.4] for an extensive account of the contact
process on a tree.

Recently, van der Hofstad and Slade [20] proved that for all r ≥ 2, the r-point functions for sufficiently
spread-out critical oriented percolation with spatial dimension d > 4 converge to those of the canonical
measure of super-Brownian motion when we scale space by n1/2, where n is the largest temporal compo-
nent among the r points, and then take n ↑ ∞. That is, the finite-dimensional distributions of the critical
oriented percolation cluster when it survives up to time n converge to those of the canonical measure
of super-Brownian motion. The proof in [20] is based on the lace expansion and the inductive method
of [19]. Important ingredients in [20] are detailed asymptotics and estimates of the oriented percolation
two-point function. The proof for the higher-point functions then follows by deriving a lace expansion for
the r-point functions together with an induction argument in r.

In this paper, we prove the two-point function results for the contact process via a time discretization.
The discretized contact process is oriented percolation in Zd× εZ+ with ε ∈ (0, 1], and the proof uses the
same strategy as applied to oriented percolation with ε = 1, i.e., an application of the lace expansion and
the inductive method. However, to obtain the results for ε¿ 1, we use a different lace expansion from the
two expansions used in [20, Sections 3.1–3.2], and modify the induction hypotheses of [19] to incorporate
the ε-dependence. In order to extend the results from infrared bounds (as in [27]) to precise asymptotics
(as in [20]), it is imperative to prove that the properly scaled lace expansion coefficients converge to
a certain continuum limit. We can think of this continuum limit as giving rise to a lace expansion in
continuous time, even though our proof is not based on the arising partial differential equation. In the
proof that the continuum limit exists, we make heavy use of convergence results in [4] which show that
the discretized contact process converges to the original continuous-time contact process.

In a sequel to this paper [18], we use the results proved here as a key ingredient in the proof that the
finite-dimensional distributions of the critical contact process above four dimensions converge to those of
the canonical measure of super-Brownian motion, as was proved in [20] for oriented percolation.

1.2 The spread-out contact process and main results

We define the spread-out contact process as follows. Let Ct ⊂ Zd be the set of infected individuals at time
t ∈ R+, and let C0 = {o}. An infected site x recovers in a small time interval [t, t + ε] with probability
ε + o(ε) independently of t, where o(ε) is a function that satisfies limε→0 o(ε)/ε = 0. In other words,
x ∈ Ct recovers at rate 1. A healthy site x gets infected, depending on the status of its neighbours, at
rate λ

∑

y∈Ct
D(x − y), where λ ≥ 0 is the infection rate and D(x − y) represents the strength of the

interaction between x and y. We denote by Pλ the associated probability measure.

711



The function D is a probability distribution over Zd that is symmetric with respect to the lattice
symmetries, and satisfies certain assumptions that involve a parameter L ≥ 1 which serves to spread
out the infections and will be taken to be large. In particular, we require that there are L-independent
constants C,C1, C2 ∈ (0,∞) such that D(o) = 0, supx∈Zd D(x) ≤ CL−d and C1L ≤ σ ≤ C2L, where σ

2

is the variance of D:

σ2 =
∑

x∈Zd
|x|2D(x), (1.1)

where | · | denotes the Euclidean norm on Rd. Moreover, we require that there is a ∆ > 0 such that

∑

x∈Zd
|x|2+2∆D(x) ≤ CL2+2∆. (1.2)

See Section 5.1.1 for the precise assumptions on D. A simple example of D is the uniform distribution
over the cube of side length 2L, excluding its center:

D(x) =
� {0<‖x‖∞≤L}
(2L+ 1)d − 1

, (1.3)

where ‖x‖∞ = supi |xi| for x = (x1, . . . , xd).
The two-point function is defined as

τλt (x) = Pλ(x ∈ Ct) (x ∈ Zd, t ∈ R+). (1.4)

In words, τλt (x) is the probability that at time t, the individual located at x ∈ Zd is infected due to the
infection located at o ∈ Zd at time 0.

By an extension of the results in [4, 10] to the spread-out contact process, there exists a unique critical
value λc ∈ (0,∞) such that

χ(λ) =

∫ ∞

0
dt τ̂λt (0)

{

<∞, if λ < λc,

=∞, if λ ≥ λc,
θ(λ) ≡ lim

t↑∞
Pλ(Ct 6= ∅)

{

= 0, if λ ≤ λc,
> 0, if λ > λc,

(1.5)

where we denote the Fourier transform of a summable function f : Zd 7→ R by

f̂(k) =
∑

x∈Zd
f(x) eik·x (k ∈ [−π, π]d). (1.6)

We next describe our results for the sufficiently spread-out contact process at λ = λc for d > 4.

1.2.1 Results above four dimensions

We now state the results for the two-point function. In the statements, σ and ∆ are defined in (1.1)–(1.2),
and we write ‖f‖∞ = supx∈Zd |f(x)| for a function f on Zd.

Theorem 1.1. Let d > 4 and δ ∈ (0, 1 ∧∆ ∧ d−4
2 ). There is an L0 = L0(d) such that, for L ≥ L0, there

are positive and finite constants v = v(d, L), A = A(d, L), C1 = C1(d) and C2 = C2(d) such that

τ̂λct ( k√
vσ2t

) = Ae−
|k|2

2d
[

1 +O(|k|2(1 + t)−δ) +O((1 + t)−(d−4)/2)
]

, (1.7)

1

τ̂λct (0)

∑

x∈Zd
|x|2τλct (x) = vσ2t

[

1 +O((1 + t)−δ)
]

, (1.8)

C1L
−d(1 + t)−d/2 ≤ ‖τλct ‖∞ ≤ e−t + C2L

−d(1 + t)−d/2, (1.9)

with the error estimate in (1.7) uniform in k ∈ Rd with |k|2/ log(2 + t) sufficiently small.
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The above results correspond to [20, Theorem 1.1], where the two-point function for sufficiently spread-
out critical oriented percolation with d > 4 was proved to obey similar behaviour. The proof in [20] is
based on the inductive method of [19]. We apply a modified version of this induction method to prove
Theorem 1.1. The proof also reveals that

λc = 1 +O(L−d), A = 1 +O(L−d), v = 1 +O(L−d). (1.10)

In a sequel to this paper [17], we will investigate the critical point in more detail and prove that

λc − 1 =
∞
∑

n=2

D∗n(o) +O(L−2d), (1.11)

holds for d > 4, where D∗n is the n-fold convolution of D in Zd. In particular, when D is defined by (1.3),
we obtain (see [17, Theorem 1.2])

λc − 1 = L−d
∞
∑

n=2

U?n(o) +O(L−d−1), (1.12)

where U is the uniform probability density over [−1, 1]d ⊂ Rd, and U?n is the n-fold convolution of U in
Rd. The above expression was already obtained in [8], but with a weaker error estimate.

Let γ and β be the critical exponents for the quantities in (1.5), defined as

χ(λ) ∼ (λc − λ)−γ (λ < λc), θ(λ) ∼ (λ− λc)β (λ > λc), (1.13)

where we use “∼” in an appropriate sense. For example, the strongest form of χ(λ) ∼ (λc − λ)−γ is that
there is a C ∈ (0,∞) such that

χ(λ) = [C + o(1)] (λc − λ)−γ , (1.14)

where o(1) tends to 0 as λ ↑ λc. Other examples are the weaker form

∃C1, C2 ∈ (0,∞) : C1(λc − λ)−γ ≤ χ(λ) ≤ C2(λc − λ)−γ , (1.15)

and the even weaker form

χ(λ) = (λ− λc)−γ+o(1). (1.16)

See also [22, p.70] for various ways to define the critical exponents.
As discussed for oriented percolation in [20, Section 1.2.1], (1.7) and (1.9) imply finiteness at λ = λc

of the triangle function

O(λ) =

∫ ∞

0
dt

∫ t

0
ds

∑

x,y∈Zd
τλt (y) τ

λ
t−s(y − x) τλs (x). (1.17)

Extending the argument in [24] for oriented percolation to the continuous-time setting, we conclude that
O(λc) < ∞ implies the triangle condition of [1, 2, 3], under which γ and β are both equal to 1 in the
form given in (1.15), independently of the value of d [3]. Since these d-independent values also arise on
the tree [29, 34], we call them the mean-field values. The results (1.7)–(1.8) also show that the critical
exponents ν and η, defined as

1

τ̂λct (0)

∑

x∈Zd
|x|2τλct (x) ∼ t2ν , τ̂λct (0) ∼ tη, (1.18)
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take on the mean-filed values ν = 1/2 and η = 0, in the stronger form given in (1.14). The result η = 0
proves that the statement in [22, Proposition 4.39] on the tree also holds for sufficiently spread-out contact
process on Zd for d > 4. See the remark below [22, Proposition 4.39]. Furthermore, following from bounds
established in the course of the proof of Theorem 1.1, we can extend the aforementioned result of [3], i.e.,
γ = 1 in the form given in (1.15), to the precise asymptotics as in (1.14). We will prove this in Section 2.5.

So far, d > 4 is a sufficient condition for the mean-field behaviour for the spread-out contact process.
It has been shown, using the hyperscaling inequalities in [28], that d ≥ 4 is also a necessary condition for
the mean-field behaviour. Therefore, the upper critical dimension for the spread-out contact process is 4,
and one can expect log corrections in d = 4.

In [18], we will investigate the higher-point functions of the critical spread-out contact process for
d > 4. These higher-point functions are defined for ~t ∈ [0,∞)r−1 and ~x ∈ Zd(r−1) by

τλ~t (~x) = Pλ(xi ∈ Cti ∀i = 1, . . . , r − 1). (1.19)

The proof will be based on a lace expansion that expresses the r-point function in terms of s-point
functions with s < r. On the arising equation, we will then perform induction in r, with the results
for r = 2 given by Theorem 1.1. We discuss the extension to the higher point functions in somewhat
more detail in Section 2.2, where we discuss the lace expansion. In order to bound the lace expansion
coefficients for the higher point functions, the upper bounds in (1.7) for k = 0 and in (1.9) are crucial.

1.2.2 Results below and at four dimensions

We also consider the low-dimensional case, i.e., d ≤ 4. In this case, the contact process is believed not to
exhibit the mean-field behaviour as long as L remains finite, and Gaussian asymptotics are not expected
to hold in this case. However, we can prove local Gaussian behaviour when the range grows in time as

LT = L1T
b (T ≥ 1), (1.20)

where L1 ≥ 1 is the initial infection range. We denote by σ2T the variance of D in this situation. We
assume that

α = bd+
d− 4

2
> 0. (1.21)

Our main result is the following.

Theorem 1.2. Let d ≤ 4 and δ ∈ (0, 1∧∆∧α). Then, there is a λT = 1+O(T−µ) for some µ ∈ (0, α−δ)
such that, for sufficiently large L1, there are positive and finite constants C1 = C1(d) and C2 = C2(d)
such that, for every 0 < t ≤ log T ,

τ̂λTTt (
k√
σ2TTt

) = e−
|k|2

2d
[

1 +O(T−µ) +O(|k|2(1 + Tt)−δ)
]

, (1.22)

1

τ̂λTTt (0)

∑

x∈Zd
|x|2τλTTt (x) = σ2TTt

[

1 +O(T−µ) +O((1 + Tt)−δ)
]

, (1.23)

C1L
−d
T (1 + Tt)−d/2 ≤ ‖τλTTt ‖∞ ≤ e−Tt + C2L

−d
T (1 + Tt)−d/2, (1.24)

with the error estimate in (1.22) uniform in k ∈ Rd with |k|2/ log(2 + Tt) sufficiently small.

The upper bound on t in the statement can be replaced by any slowly varying function. However, we
use log T to make the statement more concrete. The proof of Theorem 1.2 follows the same steps as the
proof of Theorem 1.1.
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First, we give a heuristic explanation of how (1.21) arises. Recall that, for d > 4, O(λc) < ∞ is
a sufficient condition for the mean-field behaviour. For d ≤ 4, since O(λT ) cannot be defined in full
space-time as in (1.17), we modify the triangle function as

Old(λT ) =

∫ T log T

0
dt

∫ t

0
ds

∑

x,y∈Zd
τλTt (y) τλTt−s(y − x) τλTs (x). (1.25)

Using the upper bounds in (1.22) for k = 0 and in (1.24), we obtain

Old(λT ) ≤ C2
∫ T log T

0
dt

∫ t

0
ds (e−tT + C2L

−d
T T−d/2) ≤ O(T−2) +O(T 2−bd−d/2 log2 T ), (1.26)

which is finite for all T whenever bd > 4−d
2 . We can find a similar argument in [33, Section 14].

Next, we compare the ranges needed in our results and in the results of Durrett and Perkins [8], in
which the convergence of the rescaled contact process to super-Brownian motion was proved. As in (1.21)
we need bd > 4−d

2 , while in [8] bd = 1 for all d ≥ 3. For d = 2, which is a critical case in the setting of [8],
the model with range L2T = T log T was also investigated. In comparison, we are allowed to use ranges
that grow to infinity slower than the ranges in [8] when d ≥ 3, but the range for d = 2 in our results
needs to be larger than that in [8]. It would be of interest to investigate whether Theorem 1.2 holds when
L2T = T log T (or even smaller) by adapting our proofs.

Finally, we give a conjecture on the asymptotics of λT as T ↑ ∞. The role of λT is a sort of critical
value for the contact process in the finite-time interval [0, T log T ], and hence λT approximates the real
critical value λc,T that also converges to 1 in the mean-field limit T ↑ ∞. We believe that the leading
term of λc,T − 1, say cT , is equal to that of λT − 1. As we will discuss below in Section 5.4, λT satisfies a
type of recursion relation (5.41). We expect that, for d ≤ 4, we may employ the methods in [17] to obtain

λT = 1 + [1 +O(T−µ)]
∫ T log T

0
dt

∫

[−π,π]d

ddk

(2π)d
D̂2

T (k) e
−[1−D̂T (k)]t, (1.27)

where DT equals D with range LT . (In fact, the exponent µ could be replaced by any positive number
strictly smaller than α.) The integral with respect to t ∈ R+ converges when d > 2, and hence we may
obtain for sufficiently large T that

λT = 1 + [1 +O(T−µ)]

[
∫

[−π,π]d

ddk

(2π)d
D̂2

T (k)

1− D̂T (k)
+O(T−bd−

d−2
2 )

]

= 1 +
∞
∑

n=2

D∗nT (o) +O(L
−d−µ

b
∧ d−2
2b

T ), (1.28)

where we use (1.20) and the fact that the sum in (1.28) is O(L−dT ). Based on our belief mentioned above,
this would be a stronger result than the result in [8] when d = 3, 4, where cT =

∑∞
n=2D

∗n
T (o). However,

to prove this conjecture, we may require serious further work using block constructions used in [8].

2 Outline of the proof

In this section, we provide an outline of the proof of our main results. This section is organized as follows.
In Section 2.1, we explain what the discretized contact process is, and state the results for the discretized
contact process. These results apply in particular to oriented percolation, which is a special example of
the discretized contact process. In Section 2.2, we briefly explain the lace expansion for the discretized
contact process, and state the bounds on the lace expansion coefficients in Section 2.3. In Section 2.4, we
explain how to use induction to prove the asymptotics for the discretized contact process. In Section 2.5,
we state the results concerning the continuum limit, and show that the results for the discretized contact
process together with the continuum limit imply the main results in Theorems 1.1–1.2.
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Figure 1: Graphical representation of the contact process and the discretized contact process.

2.1 Discretization

By the graphical representation, the contact process can be constructed as follows. We consider Zd×R+ as
space-time. Along each time line {x}×R+, we place points according to a Poisson process with intensity
1, independently of the other time lines. For each ordered pair of distinct time lines from {x} × R+ to
{y} × R+, we place directed bonds ((x, t), (y, t)), t ≥ 0, according to a Poisson process with intensity
λD(y − x), independently of the other Poisson processes. A site (x, s) is said to be connected to (y, t) if
either (x, s) = (y, t) or there is a non-zero path in Zd × R+ from (x, s) to (y, t) using the Poisson bonds
and time line segments traversed in the increasing time direction without traversing the Poisson points.
The law of Ct defined in Section 1.2 is equivalent to that of {x ∈ Zd : (o, 0) is connected to (x, t)}. See
also [22, Section I.1].

Inspired by this percolation structure in space-time and following [27], we consider an oriented perco-
lation approximation in Zd × εZ+ to the contact process, where ε ∈ (0, 1] is a discretization parameter.
We call this approximation the discretized contact process, and it is defined as follows. A directed pair
b = ((x, t), (y, t + ε)) of sites in Zd × εZ+ is called a bond. In particular, b is a temporal bond if x = y,
otherwise b is a spatial bond. Each bond is either occupied or vacant independently of the other bonds,
and a bond b = ((x, t), (y, t+ ε)) is occupied with probability

pε(y − x) =
{

1− ε, if x = y,

λεD(y − x), if x 6= y,
(2.1)

provided that ‖pε‖∞ ≤ 1. We denote the associated probability measure by Pλε . It is proved in [4] that
Pλε weakly converges to Pλ as ε ↓ 0. See Figure 2.1 for a graphical representation of the contact process
and the discretized contact process. As explained in more detail in Section 2.2, we prove our main results
by proving the results first for the discretized contact process, and then taking the continuum limit when
ε ↓ 0.

We also emphasize that the discretized contact process with ε = 1 is equivalent to oriented percolation,
for which λ ∈ [0, ‖D‖−1∞ ] is the expected number of occupation bonds per site.

We denote by (x, s) −→ (y, t) the event that (x, s) is connected to (y, t), i.e., either (x, s) = (y, t) or
there is a non-zero path in Zd × εZ+ from (x, s) to (y, t) consisting of occupied bonds. The two-point
function is defined as

τλt;ε(x) = Pλε ((o, 0) −→ (x, t)). (2.2)
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Similarly to (1.5), the discretized contact process has a critical value λ(ε)c satisfying

ε
∑

t∈εZ+
τ̂λt;ε(0)

{

<∞, if λ < λ(ε)c ,

=∞, if λ ≥ λ(ε)c ,
lim
t↑∞

Pλε (Ct 6= ∅)

{

= 0, if λ ≤ λ(ε)c ,
> 0, if λ > λ(ε)c .

(2.3)

The main result for the discretized contact process with ε ∈ (0, 1] is the following theorem:

Proposition 2.1 (Discretized results for d > 4). Let d > 4 and δ ∈ (0, 1∧∆∧ d−4
2 ). Then, there is an

L0 = L0(d) such that, for L ≥ L0, there are positive and finite constants v(ε) = v(ε)(d, L), A(ε) = A(ε)(d, L),
C1(d) and C2(d) such that

τ̂λ
(ε)
c

t;ε ( k√
v(ε)σ2t

) = A(ε)e−
|k|2

2d
[

1 +O(|k|2(1 + t)−δ) +O((1 + t)−(d−4)/2)
]

, (2.4)

1

τ̂λ
(ε)
c

t;ε (0)

∑

x∈Zd
|x|2τλ

(ε)
c

t;ε (x) = v(ε)σ2t
[

1 +O((1 + t)−δ)
]

, (2.5)

C1L
−d(1 + t)−d/2 ≤ ‖τλ

(ε)
c

t;ε ‖∞ ≤ (1− ε)t/ε + C2L
−d(1 + t)−d/2, (2.6)

where all error terms are uniform in ε ∈ (0, 1]. The error estimate in (2.4) is uniform in k ∈ Rd with
|k|2/ log(2 + t) sufficiently small.

Proposition 2.1 is the discrete analog of Theorem 1.1. The uniformity in ε of the error terms is
crucial, as this will allow us to take the limit ε ↓ 0 and to conclude the results in Theorem 1.1 from the
corresponding statements in Proposition 2.1. In particular, Proposition 2.1 applied to oriented percolation
(i.e., ε = 1) reproves [20, Theorem 1.1].

The discretized version of Theorem 1.2 is given in the following proposition:

Proposition 2.2 (Discretized results for d ≤ 4). Let d ≤ 4 and δ ∈ (0, 1 ∧∆ ∧ α). Then, there is a
λT = 1+O(T−µ) for some µ ∈ (0, α− δ) such that, for sufficiently large L1, there are positive and finite
constants C1 = C1(d) and C2 = C2(d) such that, for every 0 < t ≤ log T ,

τ̂λTTt;ε(
k√
σ2TTt

) = e−
|k|2

2d
[

1 +O(T−µ) +O(|k|2(1 + Tt)−δ)
]

, (2.7)

1

τ̂λTTt;ε(0)

∑

x∈Zd
|x|2τλTTt;ε(x) = σ2TTt

[

1 +O(T−µ) +O((1 + Tt)−δ)
]

, (2.8)

C1L
−d
T (1 + Tt)−d/2 ≤ ‖τλTTt;ε‖∞ ≤ (1− ε)Tt/ε + C2L

−d
T (1 + Tt)−d/2, (2.9)

where all error terms are uniform in ε ∈ (0, 1], and the error estimate in (2.7) is uniform in k ∈ Rd with
|k|2/ log(2 + Tt) sufficiently small.

Note that Proposition 2.2 applies also to oriented percolation, for which ε = 1.

2.2 Expansion

The proof of Proposition 2.1 makes use of the lace expansion, which is an expansion for the two-point
function. We postpone the derivation of the expansion to Section 3, and here we provide only a brief
motivation. We also motivate why we discretize time for the contact process.

We make use of the convolution of functions, which is defined for absolutely summable functions f, g
on Zd by

(f ∗ g)(x) =
∑

y∈Zd
f(y) g(x− y). (2.10)
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We first motivate the basic idea underlying the expansion, similarly as in [20, Section 2.1.1], by
considering the much simpler corresponding expansion for continuous-time random walk. For continuous-
time random walk making jumps from x to y at rate λD(y−x) with killing rate 1−λ, we have the partial
differential equation

∂tq
λ
t (x) = λ (D ∗ qλt )(x)− qλt (x), (2.11)

where qλt (x) is the probability that continuous-time random walk started at o ∈ Zd is at x ∈ Zd at time
t. By taking the Fourier transform, we obtain

∂tq̂
λ
t (k) = −[1− λD̂(k)] q̂λt (k). (2.12)

In this simple case, the above equation is readily solved to yield that

q̂λt (k) = e−[1−λD̂(k)]t. (2.13)

We see that λ = 1 is the critical value, and the central limit theorem at λ = λc = 1 follows by a Taylor
expansion of 1− D̂(k) for small k, yielding

q̂1t
(

k√
σ2t

)

= e−
|k|2

2d [1 + o(1)], (2.14)

where |k|2 = ∑d
j=1 k

2
i (recall also (1.1)).

The above solution is quite specific to continuous-time random walk. When we would have a more
difficult function on the right-hand side of (2.12), such as −[1 − λD̂(k)] q̂λt−1(k), it would be much more
involved to solve the above equation, even though one would expect that the central limit theorem at the
critical value still holds.

A more robust proof of central limit behaviour uses induction in time t. Since time is continuous, we
first discretize time. The two-point function for discretized continuous-time random walk is defined by
setting qλ0;ε(x) = δ0,x and (recall (2.1))

qλt;ε(x) = p∗t/εε (x) (t ∈ εN). (2.15)

To obtain a recursion relation for qλt;ε(x), we simply observe that by independence of the underlying
random walk

qλt;ε(x) = (pε ∗ qλt−ε;ε)(x) (t ∈ εN). (2.16)

We can think of this as a simple version of the lace expansion, applied to random walk, which has no
interaction.

For the discretized continuous-time random walk, we can use induction in n for all t = nε. If
we can further show that the arising error terms are uniform in ε, then we can take the continuum
limit ε ↓ 0 afterwards, and obtain the result for the continuous-time model. The above proof is more
robust, and can for instance be used to deal with the situation where the right-hand side of (2.12) equals
−[1−λD̂(k)]q̂λt−1(k). This robustness of the proof is quite valuable when we wish to apply it to the contact
process.

The identity (2.16) can be solved using the Fourier transform to give

q̂λt;ε(k) = p̂ε(k)
t/ε = [1− ε+ λεD̂(k)]t/ε = e−[1−λD̂(k)]t+O(tε[1−D̂(k)]

2). (2.17)

We note that the limit of [q̂t;ε(k) − q̂t−ε;ε(k)]/ε exists and equals (2.12). In order to obtain the central

limit theorem, we divide k by
√
σ2t. Then, uniformly in ε > 0, we have

q̂1t;ε
(

k√
σ2t

)

= e−
|k|2

2d
+O(|k|2+2∆t−∆)+O(ε|k|4t−1). (2.18)
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Therefore, the central limit theorem holds uniformly in ε > 0.
We follow Mark Kac’s adagium: “Be wise, discretize!” for two reasons. Firstly, discretizing time

allows us to obtain an expansion as in (2.11), and secondly, it allows us to analyse the arising equation.
The lace expansion, which is explained in more detail below, can be used for the contact process to
produce an equation of the form

∂tτ̂
λ
t (k) = −[1− λD̂(k)] τ̂λt (k) +

∫ t

0
ds π̂λs (k) τ̂

λ
t−s(k), (2.19)

where π̂λs are certain expansion coefficients. In order to derive the equation (2.19), we use that the
discretized contact process is oriented percolation, for which lace expansions have been derived in the lit-
erature [20, 24, 25, 26, 27]. Clearly, the equation (2.19) is much more complicated than the corresponding
equation for simple random walk in (2.11). Therefore, a simple solution to the equation as in (2.13) is
impossible. We see no way to analyse the partial differential equation in (2.19) other than to discretize
time combined with induction. It would be of interest to investigate whether (2.19) can be used directly.

We next explain the expansion for the discretized contact process in more detail, following the expla-
nation in [20, Section 2.1.1]. For the discretized contact process, we will regard the part of the oriented
percolation cluster connecting (o, 0) to (x, t) as a “string of sausages.” An example of such a cluster
is shown in Figure 2. The difference between oriented percolation and random walk resides in the fact
that for oriented percolation, there can be multiple paths of occupied bonds connecting (o, 0) to (x, t).
However, for d > 4, each of those paths passes through the same pivotal bonds, which are the essential
bonds for the connection from (o, 0) to (x, t). More precisely, a bond is pivotal for the connection from
(o, 0) to (x, t) when (o, 0) −→ (x, t) in the possibly modified configuration in which the bond is made
occupied, and (o, 0) is not connected to (x, t) in the possibly modified configuration in which the bond
is made vacant (see also Definition 3.1 below). In the strings-and-sausages picture, the strings are the
pivotal bonds, and the sausages are the parts of the cluster from (o, 0) in between the subsequent pivotal
bonds. We expect that there are of the order t/ε pivotal bonds. For instance, the first black triangle
indicates that (o, 0) is connected to (o, ε), and this bond is pivotal for the connection from (o, 0) to (x, t).

Using this picture, we can think of the oriented percolation two-point function as a kind of random
walk two-point function with a distribution describing the statistics of the sausages, taking steps in both
space and time. Due to the nature of the pivotal bonds, each sausage avoids the backbone from the
endpoint of that sausage to (x, t), so that any connected path between the sausages is via the pivotal
bonds between these sausages. Therefore, there is a kind of repulsive interaction between the sausages.
The main part of our proof shows that this interaction is weak for d > 4.

Fix λ ≥ 0. As we will prove in Section 3 below, the generalisation of (2.16) to the discretized contact
process takes the form

τλt;ε(x) =

t−ε
∑•

s=0

(πλs;ε ∗ pε ∗ τλt−s−ε;ε)(x) + πλt;ε(x) (t ∈ εN), (2.20)

where we use the notation
∑• to denote sums over εZ+ and the coefficients πλt;ε(x) will be defined in

Section 3. In particular, πλt;ε(x) depends on λ, is invariant under the lattice symmetries, and πλ0;ε(x) = δo,x
and πλε;ε(x) = 0. Note that for t = 0, ε, we have τλ0;ε(x) = δ0,x and τλε;ε(x) = pε(x), which is consistent
with (2.20).

Together with the initial values πλ0;ε(x) = δo,x and πλε;ε(x) = 0, the identity (2.20) gives an inductive

definition of the sequence πλt;ε(x) for t ≥ 2ε with t ∈ εZ+. However, to analyse the recursion relation

(2.20), it will be crucial to have a useful representation for πλt;ε(x), and this is provided in Section 3. Note

that (2.16) is of the form (2.20) with πλt;ε(x) = δo,xδ0,t, so that we can think of the coefficients πλt;ε(x) for
t ≥ 2ε as quantifying the repulsive interaction between the sausages in the “string of sausages” picture.
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Figure 2: (a) A configuration for the discretized contact process. Open triangles 4 denote occupied
temporal bonds that are not connected from (o, 0), while closed triangles N denote occupied temporal
bonds that are connected from (o, 0). The arrows denote occupied spatial bonds, which represent the
spread of the infection to neighbouring sites. (b) Schematic depiction of the configuration connecting
(o, 0) and (x, t) as a “string of sausages.”

Our proof will be based on showing that 1
ε2
πλt;ε(x) for t ≥ 2ε is small at λ = λ(ε)c if d > 4 and both t

and L are large, uniformly in ε > 0. Based on this fact, we can rewrite the Fourier transform of (2.20) as

τ̂λt;ε(k)− τ̂λt−ε;ε(k)
ε

=
p̂ε(k)− 1

ε
τ̂λt;ε(k) + ε

t−ε
∑•

s=ε

π̂λs;ε(k)

ε2
p̂ε(k) τ̂

λ
t−s−ε;ε(k) +

π̂λt;ε(k)

ε
. (2.21)

Assuming convergence of 1
ε2
π̂λs;ε(k) to π̂

λ
s (k), which will be shown in Section 2.5, we obtain (2.19). There-

fore, (2.19) is regarded as a small perturbation of (2.12) when d > 4 and LÀ 1, and this will imply the
central limit theorem for the critical two-point function.

Now we briefly explain the expansion coefficients πλt;ε(x). In Section 3, we will obtain the expression

πλt;ε(x) =
∞
∑

N=0

(−1)Nπ(N)t;ε (x), (2.22)

where we suppress the dependence of π(N)t;ε (x) on λ. The idea behind the proof of (2.22) is the following.
Let

π(0)t;ε(x) = Pλε ((o, 0) =⇒ (x, t)) (2.23)

denote the contribution to τλt;ε(x) from configurations in which there are no pivotal bonds, so that

τλt;ε(x) = π(0)t;ε(x) +
∑

b

Pλε
(

b first occupied and pivotal bond for (o, 0) −→ (x, t)
)

, (2.24)

where the sum over b is over bonds of the form b = ((u, s), (v, s+ ε)). We write b = (u, s) for the starting
point of the bond b and b = (v, s + ε) for its endpoint. Then, the probability on the right-hand side of
(2.24) equals

Pλε
(

(o, 0) =⇒ b, b occupied, b −→ (x, t), b pivotal for (o, 0) −→ (x, t)
)

. (2.25)
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We ignore the intersection with the event that b is pivotal for (o, 0) −→ (x, t), and obtain using the
Markov property that

τλt;ε(x) = π(0)t;ε(x) +

t−ε
∑•

s=0

∑

u,v∈Zd
π(0)s;ε(u) pε(v − u) τt−s−ε;ε(x− v)−R(0)t;ε(x), (2.26)

where

R(0)t;ε(x) =
∑

b

Pλε
(

(o, 0) =⇒ b, b occupied, b −→ (x, t), b not pivotal for (o, 0) −→ (x, t)
)

. (2.27)

We will investigate the error term R(0)t;ε(x) further, again using inclusion-exclusion, by investigating the

first pivotal bond after b to arrive at (2.22). The term π(1)t;ε(x) is the contribution to R(0)t;ε(x) where such a

pivotal does not exist. Thus, in π(0)t;ε(x) for t ≥ ε and in π(1)t;ε(x) for all t ≥ 0, there is at least one loop,
which, for L large, should yield a small correction only. In (2.22), the contributions from N ≥ 2 have at
least two loops and are thus again smaller, even though all N ≥ 0 give essential contributions to πλt;ε(x)
in (2.22).

There are three ways to obtain the lace expansion in (2.20) for oriented percolation models. We
use the expansion by Sakai [26, 27], as described in (2.23)–(2.27) above, based on inclusion-exclusion
together with the Markov property for oriented percolation. For unoriented percolation, Hara and Slade
[11] developed an expression for πλt;ε(x) in terms of sums of nested expectations, by repeated use of
inclusion-exclusion and using the independence of percolation. This expansion, and its generalizations to
the higher-point functions, was used in [20] to investigate the oriented percolation r-point functions. The
original expansion in [11] was for unoriented percolation, and does not make use of the Markov property.
Nguyen and Yang [24, 25] derived an alternate expression for π(N)t;ε (x) by adapting the lace expansion of
Brydges and Spencer [7] for weakly self-avoiding walk. In the graphical representation of the Brydges-
Spencer expansion, laces arise which give the “lace expansion” its name. Even though in many of the lace
expansions for percolation type models, such as oriented and unoriented percolation, no laces appear, the
name has stuck for historical reasons.

It is not so hard to see that the Nguyen-Yang expansion is equivalent to the above expansion us-
ing inclusion-exclusion, just as for self-avoiding walks [23]. Since we find the Sakai expansion simpler,
especially when dealing with the continuum limit, we prefer the Sakai expansion to the Nguyen-Yang
expansion. In [20], the Hara-Slade expansion was used to obtain (2.22) with a different expression for
π(N)t;ε (x). In either expansion, π(N)t;ε (x) is nonnegative for all t, x,N , and can be represented in terms of
Feynman-type diagrams. The Feynman diagrams are similar for the three expansions and obey similar
estimates, even though the expansion used in this paper produces the simplest diagrams.

In [20], the Nguyen-Yang expansion was also used to deal with the derivative of the lace expansion
coefficients with respect to the percolation parameter p. In this paper, we use the inclusion-exclusion
expansion also for the derivative of the expansion coefficients with respect to λ, rather than on two
different expansions as in [20].

We now comment on the relative merits of the Sakai and the Hara-Slade expansion. Clearly, the
Hara-Slade expansion is more general, as it also applies to unoriented percolation. On the other hand,
the Sakai expansion is somewhat simpler to use, and the bounding diagrams on the arising Feynman
diagrams are simpler. Finally, the resulting expressions for π(N)t;ε (x) in the Sakai expansion allow for a
continuum limit, where it is not clear to us how to perform this limit using the Hara-Slade expansion
coefficients.

In [18], we will adapt the expansion in Section 3 to deal with the discretized contact process and
oriented percolation higher-point functions. For this, we will need ingredients from the Hara-Slade ex-
pansion to compare occupied paths living on a common time interval, with independent paths. This
independence does not follow from the Markov property, and therefore the Hara-Slade expansion, which
does not require the Markov property, will be crucial. The “decoupling” of disjoint paths is crucial in
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the derivation of the lace expansion for the higher point functions, and explains the importance of the
Hara-Slade expansion for oriented percolation and the contact process.

To complete this discussion, we note that an alternative route to the contact process results is via
(2.19). In [5], an approach using a Banach fixed point theorem was used to prove asymptotics of the two-
point function for weakly self-avoiding walk. The crucial observation is that a lace expansion equation
such as (2.19) can be viewed as a fixed point equation of a certain operator on sequence spaces. By
proving properties of this operator, Bolthausen and Ritzman were able to deduce properties of the fixed
point sequence, and thus of the weakly self-avoiding walk two-point function. It would be interesting to
investigate whether such an approach may be used on (2.19) as well.

2.3 Bounds on the lace expansion

In order to prove the statements in Proposition 2.1, we will use induction in n, where t = nε ∈ εZ+. The
lace expansion equation in (2.20) forms the main ingredient for this induction in time. We will explain
the inductive method in more detail below. To advance the induction hypotheses, we clearly need to have
certain bounds on the lace expansion coefficients. The form of those bounds will be explained now. The
statement of the bounds involve the small parameter

β = L−d. (2.28)

We will use the following set of bounds:

|τ̂s;ε(0)| ≤ K, |∇2τ̂s;ε(0)| ≤ Kσ2s, ‖D̂2 τ̂s;ε‖1 ≤
Kβ

(1 + s)d/2
, (2.29)

where we write ‖f̂‖1 =
∫

[−π,π]d
ddk
(2π)d

|f̂(k)| for a function f̂ : [−π, π]d 7→ C. The bounds on the lace

expansion consist of the following estimates, which will be proved in Section 4.

Proposition 2.3 (Bounds on the lace expansion for d > 4). Assume (2.29) for some λ0 and all
s ≤ t. Then, there are β0 = β0(d,K) > 0 and C = C(d,K) <∞ (both independent of ε, L) such that, for
λ ≤ λ0, β < β0, s ∈ εZ+ with 2ε ≤ s ≤ t+ ε, q = 0, 2, 4 and ∆′ ∈ [0, 1 ∧∆], and uniformly in ε ∈ (0, 1],

∑

x∈Zd
|x|q |πλs;ε(x)| ≤

ε2Cσqβ

(1 + s)(d−q)/2
, (2.30)

∣

∣

∣
π̂λs;ε(k)− π̂λs;ε(0)−

a(k)

σ2
∇2π̂λs;ε(0)

∣

∣

∣
≤ ε2Cβ a(k)1+∆

′

(1 + s)(d−2)/2−∆′
, (2.31)

|∂λπ̂λs;ε(0)| ≤
ε2Cβ

(1 + s)(d−2)/2
. (2.32)

The main content of Proposition 2.3 is that the bounds on τ̂s;ε for s ≤ t in (2.29) imply bounds on
π̂s;ε for all s ≤ t + ε. This fact allows us to use the bounds on π̂s;ε for all arising s in (2.20) in order to
advance the appropriate induction hypotheses. Of course, in order to complete the inductive argument,
we need that the induction statements imply the bounds in (2.29).

The proof of Proposition 2.3 is deferred to Section 4. Proposition 2.3 is probably false in dimensions
d ≤ 4. However, when the range increases with T as in Theorem 1.2, we are still able to obtain the
necessary bounds. In the statement of the bounds, we recall that LT is given in (1.20).

Proposition 2.4 (Bounds on the lace expansion for d ≤ 4). Let α > 0 in (1.21). Assume (2.29),
with β replaced by βT = L−dT and σ2 by σ2T , for some λ0 and all s ≤ t. Then, there are L0 = L0(d,K) <∞
(independent of ε) and C = C(d,K) <∞ (independent of ε, L) such that, for λ ≤ λ0, L1 ≥ L0, s ∈ εZ+
with 2ε ≤ s ≤ t+ ε, q = 0, 2, 4 and ∆′ ∈ [0, 1 ∧∆], the bounds in (2.30)–(2.32) hold for t ≤ T log T , with
β replaced by βT = L−dT and σ2 by σ2T .
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The main point in Propositions 2.3–2.4 is the fact that we need to extract two factors of ε. One can
see that such factors must be present by investigating, e.g., π(0)t;ε(x), which is the probability that (o, 0) is
doubly connected to (x, t). When t > 0, there must be at least two spatial bonds, one emanating from
(o, 0) and one pointing into (x, t). By (2.1), these two spatial bonds give rise to two powers of ε. The
proof for N ≥ 1 then follows by induction in N .

2.4 Implementation of the inductive method

Our analysis of (2.20) begins by taking its Fourier transform, which gives the recursion relation

τ̂λt;ε(k) =

t−ε
∑•

s=0

π̂λs;ε(k) p̂ε(k) τ̂
λ
t−s−ε;ε(k) + π̂λt;ε(k) (t ∈ εN). (2.33)

As already explained in Section 2.3, it is possible to estimate π̂λs;ε(k), for all s ≤ t, in terms of ‖τλs;ε‖1 ≡
∑

x∈Zd τ
λ
s;ε(x) = τ̂λs;ε(0) and ‖τλs;ε‖∞ ≤ ‖τ̂λs;ε‖1 with s ≤ t − ε. Therefore, the right-hand side of (2.33)

explicitly involves τ̂λs;ε(k) only for s ≤ t − ε. This opens up the possibility of an inductive analysis of
(2.33). A general approach to this type of inductive analysis is given in [19]. However, here we will
need the uniformity in the variable ε, and therefore we will state a version of the induction in Section 5
that is adapted to the uniformity in ε and thus the continuum limit. The advancement of the induction
hypotheses is deferred to Appendix A.

Moreover, we will show that the critical point is given implicitly by the equation

λ(ε)c = 1− 1

ε

∞
∑•

s=2ε

π̂λ
(ε)
c
s;ε (0) p̂

λ
(ε)
c
ε (0), (2.34)

and that the constants A(ε) and v(ε) of Proposition 2.1 are given by

A(ε) =

1 +

∞
∑•

s=2ε

π̂λ
(ε)
c
s;ε (0)

1 +
1

ε

∞
∑•

s=2ε

s π̂λ
(ε)
c
s;ε (0) p̂

λ
(ε)
c
ε (0)

, v(ε) =

λ(ε)c −
1

σ2ε

∞
∑•

s=2ε

∇2
[

π̂λ
(ε)
c
s;ε (k) p̂

λ
(ε)
c
ε (k)

]

k=0

1 +
1

ε

∞
∑•

s=2ε

s π̂λ
(ε)
c
s;ε (0) p̂

λ
(ε)
c
ε (0)

, (2.35)

where we have added an argument λ(ε)c to emphasize that λ is critical for the evaluation of πλt;ε on the
right-hand sides. Convergence of the series on the right-hand sides, for d > 4, follows from Proposition 2.3.
For oriented percolation, i.e., for ε = 1, these equations agree with [20, (2.11-2.13)].

The result of induction is summarized in the following proposition:

Proposition 2.5 (Induction). If Proposition 2.3 holds, then (2.29) holds for s ≤ t+ε. Therefore, (2.29)
holds for all s ≥ 0 and (2.30)–(2.32) hold for all s ≥ 2ε. Moreover, the statements in Proposition 2.1
follow, with the error terms uniform in ε ∈ (0, 1].

There is also a low-dimensional version of Proposition 2.5, but we refrain from stating it.

2.5 Continuum limit

In this section we state the result necessary to complete the proof of Theorems 1.1–1.2 from Proposi-
tions 2.1–2.2. In particular, from now onwards, we specialize to the contact process.

Proposition 2.6 (Continuum limit). Suppose that λ(ε) → λ and λ(ε) ≤ λ(ε)c for ε sufficiently small.
Then, for every t > 0 and x ∈ Zd, there is a πλt (x) such that

lim
ε↓0

1

ε2
πλ
(ε)

t;ε (x) = πλt (x), lim
ε↓0

1

ε2
[∂`π

`
t;ε(x)]`=λ(ε) = ∂λπ

λ
t (x). (2.36)
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Consequently, for λ ≤ λc and q = 0, 2, 4,

∑

x∈Zd
|x|qπλt (x) ≤

Cβ

(1 + t)(d−q)/2
,

∑

x∈Zd
∂λπ

λ
t (x) ≤

Cβ

(1 + t)(d−2)/2
, (2.37)

and there exist A = 1 +O(L−d) and v = 1 +O(L−d) such that

lim
ε↓0

A(ε) = A, lim
ε↓0

v(ε) = v. (2.38)

Furthermore, ∂λπ
λ
t (x) is continuous in λ.

In Proposition 2.3, the right-hand sides of (2.30)–(2.32) are proportional to ε2. The main point in the
proof of Proposition 2.6 is that the lace expansion coefficients, scaled by ε−2, converge as ε ↓ 0, using the
weak convergence of Pλε to Pλ [4, Proposition 2.7].

In Section 6, we will show that 1
ε2
πλt;ε(x) and

1
ε2
∂λπ

λ
t;ε(x) both converge pointwise. We now show that

this implies that the limit of 1
ε2
∂λπ

λ
t;ε(x) equals ∂λπ

λ
t (x). To see this, we use

1

ε2
πλt;ε(x) =

∫ λ

0
dλ′

1

ε2
∂λ′π

λ′

t;ε(x). (2.39)

where we use 1
ε2
π0t;ε(x) = 0 for t > 0. By the assumed pointwise convergence, the left-hand side converges

to πλt (x), while the right-hand side converges to the integral of the limit of 1
ε2
∂λ′π

λ′
t;ε(x), denoted f

λ′
t (x)

for now, using the dominated convergence theorem. Therefore, for any λ ≤ λc,

πλt (x) =

∫ λ

0
dλ′ fλ

′

t (x), (2.40)

which indeed implies that fλt (x) = ∂λπ
λ
t (x).

Proof of Theorems 1.1–1.2 assuming Propositions 2.1–2.2 and 2.6. We only prove Theorem 1.1, since the
proof of Theorem 1.2 is identical. By [4, Proposition 2.7], we have that, for every (x, t) and λ > 0,

lim
ε↓0

τλt;ε(x) = τλt (x). (2.41)

Since τλt (x) is continuous in λ (see e.g., [22, pp.38–39]), we also obtain limε↓0 τλ
(ε)

t;ε (x) = τλt (x) for any

λ(ε) → λ. Since λ(ε)c → λc [27, Section 2.1], τλ
(ε)
c

t;ε (x) also converges to τλct (x). Using the uniformity in ε of
the upper and lower bounds in (2.6), we obtain (1.9).

Next, we prove limε↓0 τ̂
λ
(ε)
c

t;ε (k) = τ̂λct (k) for every k ∈ [−π, π]d and t ≥ 0. Note that the Fourier

transform involves a sum over Zd, such as

τ̂λ
(ε)
c

t;ε (k) =
∑

x∈Zd
τλ
(ε)
c

t;ε (x) eik·x. (2.42)

To use the pointwise convergence of τλ
(ε)
c

t;ε (x), we first show that the sum over x ∈ Zd in (2.42) can be
approximated by a finite sum. To see this, we note that

τλt;ε(x) ≤ p∗t/εε (x) =

t/ε
∑

n=0

(

t/ε

n

)

(1− ε)t/ε−n(λε)nD∗n(x). (2.43)
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For any fixed t, we can choose δR ≥ 0, which is ε-independent and decays to zero as R ↑ ∞, such that
∑

x∈Zd:‖x‖∞>R
τλt;ε(x) ≤ δR. (2.44)

Therefore, the same holds for τλt (x), and hence we can approximate both τ̂λ
(ε)
c

t;ε (k) and τ̂λct (k) by sums

over x ∈ Zd with ‖x‖∞ ≤ R, in which we use the pointwise convergence of τλ
(ε)
c

t;ε (x). Taking R ↑ ∞, we

obtain τ̂λct (k) = limε↓0 τ̂
λ
(ε)
c

t;ε (k).
Using the above, we obtain

τ̂λct
(

k√
vσ2t

)

= lim
ε↓0

τ̂λ
(ε)
c

t;ε

(

k√
vσ2t

)

= lim
ε↓0

τ̂λ
(ε)
c

t;ε

(

√
v(ε)√
v

k√
v(ε)σ2t

)

= lim
ε↓0

A(ε) e−
v(ε)

v
|k|2

2d
[

1 +O
(

v(ε)

v |k|
2(1 + t)−δ

)

+O((1 + t)−(d−4)/2)
]

= Ae−
|k|2

2d
[

1 +O(|k|2(1 + t)−δ) +O((1 + t)−(d−4)/2)
]

, (2.45)

which proves (1.7). Similar argument can be used for (1.8).

Proof of (1.14) assuming (2.19) and Proposition 2.6. We now prove that, in the current setting, χ(λ) =
∫∞
0 dt τ̂λt (0) satisfies the precise asymptotics in (1.14), assuming (2.19) and Proposition 2.6.

Let λ < λc. Since τ̂
λ
0 (0) = 1 and τ̂λ∞(0) = 0, using (2.19) we obtain

−1 =

∫ ∞

0
dt ∂tτ̂

λ
t (0) =

∫ ∞

0
dt

[

(λ− 1) τ̂λt (0) +

∫ t

0
ds π̂λs (0) τ̂

λ
t−s(0)

]

=

[

λ− 1 +

∫ ∞

0
ds π̂λs (0)

]
∫ ∞

0
dt τ̂λt (0), (2.46)

so that

χ(λ) =

[

1− λ−
∫ ∞

0
ds π̂λs (0)

]−1
. (2.47)

By (2.34) and Proposition 2.6, λc must satisfy

λc = 1−
∫ ∞

0
ds π̂λcs (0), (2.48)

so that we can rewrite (2.47) as

χ(λ) = [f(λc)− f(λ)]−1, (2.49)

where f(λ) = λ +
∫∞
0 ds π̂λs (0), since, by (2.48), f(λc) = 1. By the mean-value theorem, together with

the fact that |∂λπ̂λs (0)| is integrable with respect to s > 0, there is a λ∗ ∈ (λ, λc) such that

χ(λ) = [(λc − λ) f ′(λ∗)]−1. (2.50)

By the continuity in λ of ∂λπ
λ
t (x) and its summability in (x, t) ∈ Zd × R+ for λ ≤ λc due to (2.37),

f ′(λ) = 1 +
∫∞
0 ds ∂λπ̂

λ
t (0) is also continuous in λ ≤ λc. Therefore, we obtain (1.14) with C = f ′(λc)−1.

Finally, we note that the above proof, where the integral is replaced with a sum over n ∈ Z+, also
shows that the stronger version of γ = 1 holds for oriented percolation.

The proofs of Theorems 1.1–1.2 are now reduced to the proof of Propositions 2.1–2.2 and 2.6. Propo-
sition 2.6 will be proved in Section 6. The proof of Propositions 2.1–2.2 is reduced to Propositions 2.3–2.5,
which will be proved in Sections 4–5. The advancement of the induction hypotheses is deferred to Ap-
pendix A. We start in Section 3 by deriving the lace expansion (2.20).
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3 Lace expansion

In this section, we derive the lace expansion in (2.20). The same type of recursion relation was used
for discrete models, such as (weakly) self-avoiding walk in Zd [7, 12, 15, 19, 21, 30, 31, 32] and oriented
percolation in Zd × Z+ [19, 20, 24, 25].

From now on, we will suppress the dependence on ε and λ when no confusion can arise, and write,
e.g., πt(x) = πλt;ε(x). In Section 3.1, we obtain (3.28), which is equivalent to the recursion relation in
(2.20), and the expression (3.26) for πt(x). In Section 3.2, we obtain the expressions (3.34)–(3.35) for
∂λπt(x).

3.1 Expansion for the two-point function

In this section, we derive the expansion (3.28). We will also write Λ = Zd × εZ+, and use bold letters
o,x, . . . to represent elements in Λ, such as o = (o, 0) and x = (x, t), and write τ(x) = τt(x), π

(N)(x) =
π(N)t (x), and so on.

We recall that the two-point function is defined by

τ(x) = P(o −→ x). (3.1)

Before starting with the expansion, we introduce some definition:

Definition 3.1. (i) For a bond b = (u,v), we write b = u and b = v. We write b −→ x for the event
that b is occupied and b −→ x.

(ii) Given a configuration, we say that v is doubly connected to x, and we write v =⇒ x, if there are
at least two bond-disjoint paths from v to x consisting of occupied bonds. By convention, we say
that x =⇒ x for all x.

(iii) A bond is said to be pivotal for v −→ x if v −→ x in the possibly modified configuration in which
that bond is made occupied, whereas v is not connected to x in the possibly modified configuration
in which that bond is made vacant.

We split, depending on whether there is a pivotal bond for o −→ x, to obtain

τ(x) = P(o =⇒ x) +
∑

b

P(o =⇒ b, b occupied & pivotal for o −→ x). (3.2)

We denote

π(0)(x) = P(o =⇒ x), (3.3)

so that we can rewrite (3.2) as

τ(x) = π(0)(x) +
∑

b

P(o =⇒ b, b −→ x, b pivotal for o −→ x). (3.4)

Define

R(0)(x) =
∑

b

P(o =⇒ b, b −→ x, b not pivotal for o −→ x), (3.5)

then, by inclusion-exclusion on the event that b is pivotal for o −→ x, we arrive at

τ(x) = π(0)(x) +
∑

b

P(o =⇒ b, b −→ x)−R(0)(x). (3.6)
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The event o =⇒ b only depends on bonds with time variables less than or equal to the one of b, while the
event b −→ x only depends on bonds with time variables larger than or equal to the one of b. Therefore,
by the Markov property, we obtain

P(o =⇒ b, b −→ x) = P(o =⇒ b)P(b occupied)P(b −→ x) = π(0)(b) p(b) τ(x− b), (3.7)

where we abuse notation to write

p(b) = p(b− b). (3.8)

Therefore, we arrive at

τ(x) = π(0)(x) + (π(0) ?p ?τ)(x)−R(0)(x), (3.9)

where we use “ ?” to denote convolution in Λ, i.e.,

(f ?g)(x) =
∑

y∈Λ
f(y) g(x− y). (3.10)

This completes the first step of the expansion, and we are left to investigate R(0)(x). For this, we need
some further notation.

Definition 3.2. (i) Given a configuration and x ∈ Λ, we define C(x) to be the set of sites to which x

is connected, i.e., C(x) = {y ∈ Λ : x −→ y}. Given a bond b, we also define C̃b(x) to be the set of
sites to which x is connected in the (possibly modified) configuration in which b is made vacant.

(ii) Given a site set C, we say that v is connected to x through C, if every occupied path connecting v

to x has at least one bond with an endpoint in C. This event is written as v
C−→ x. Similarly, we

write {b C−→ x} = {b occupied} ∩ {b C−→ x}.

We then note that

{v −→ b, b −→ x, b not pivotal for v −→ x} =
{

v −→ b, b
C̃b(v)−−−−→ x

}

. (3.11)

Therefore,

R(0)(x) =
∑

b

P
(

o =⇒ b, b
C̃b(o)−−−→ x

)

. (3.12)

The event {v C−→ x} can be decomposed into two cases depending on whether there is or is not a pivotal

bond b for v −→ x such that v
C−→ b. Let

E′(v,y;C) = {v C−→ y} ∩
{

@ b pivotal for v −→ y s.t. v
C−→ b

}

, (3.13)

E(b,y;C) = {b occupied} ∩ E ′(b,y;C). (3.14)

See Figure 3 for a schematic representation of the event E(b,x;C). If there are pivotal bonds for v −→ x,

then we take the first such pivotal bond b for which v
C−→ b. Therefore, we have the partition

{v C−→ x} = E′(v,x;C) ∪̇ ˙⋃

b

{

E′(v, b;C) ∩ {b occupied & pivotal for v −→ x}
}

. (3.15)

Defining

π(1)(y) =
∑

b

P
(

{o =⇒ b} ∩ E(b,x; C̃b(o))
)

, (3.16)

727



b

x

C

Figure 3: Schematic representation of the event E(b,x;C).

we obtain

R(0)(x) = π(1)(x) +
∑

b1,b2

P
(

{o =⇒ b1} ∩ E(b1, b2; C̃
b1(o)) ∩ {b2 occupied & pivotal for b1 −→ x}

)

.

(3.17)

To the second term, we apply the inclusion-exclusion relation

{b occupied & pivotal for v −→ x} = {v −→ b, b −→ x} \
{

v −→ b, b
C̃b(v)−−−−→ x

}

. (3.18)

We define

R(1)(x) =
∑

b1,b2

P
(

{o =⇒ b1} ∩ E(b1, b2; C̃
b1(o)) ∩

{

b2
C̃b2 (b1)−−−−−→ x

})

, (3.19)

so that we obtain

R(0)(x) = π(1)(x) +
∑

b1,b2

P
(

{o =⇒ b1} ∩ E(b1, b2; C̃
b1(o)) ∩ {b2 −→ x}

)

−R(1)(x), (3.20)

where we use that

E′(v, b;C) ∩ {v −→ b, b −→ x} = E ′(v, b;C) ∩ {b −→ x}. (3.21)

The event {o =⇒ b1}∩E(b1, b2; C̃
b1(o)) depends only on bonds before b2, while {b2 −→ x} depends only

on bonds after b2. By the Markov property, we end up with

R(0)(x) = π(1)(x) +
∑

b2

π(1)(b2) p(b2) τ(x− b2)−R(1)(x)

= π(1)(x) + (π(1) ?p ?τ)(x)−R(1)(x), (3.22)

so that

τ(x) = π(0)(x)− π(1)(x) +
(

(π(0) − π(1)) ?p ?τ
)

(x) +R(1)(x). (3.23)

This completes the second step of the expansion.
To complete the expansion for τ(x), we need to investigate R(1)(x) in more detail. Note that R(1)(x)

involves the probability of a subset of
{

b2
C̃b2 (b1)−−−−−→ x

}

.
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π(0)(x)

x

o

π(1)(x)

x

o

π(2)(x)

x

o

⋃

x

o

Figure 4: Schematic representations of π(0)(x), π(1)(x) and π(2)(x).

For this subset, we will use (3.15) and (3.18) again, and follow the steps of the above proof. The
expansion is completed by repeating the above steps indefinitely. To facilitate the statement and the
proof of the expansion, we make a few more definitions. For ~bN = (b1, . . . , bN) with N ≥ 1, we define

Ẽ(N)~bN
(x) = {o =⇒ b1} ∩

N−1
⋂

i=1

E
(

bi, bi+1; C̃
bi(bi−1)

)

∩ E
(

bN ,x; C̃
bN (bN−1)

)

, (3.24)

where we use the convention that b0 = o and that the empty intersection, arising when N = 1, is the
whole probability space. Also, we let

Ẽ(0)~b0
(x) = {o =⇒ x}. (3.25)

Using this notation, we define

π(N)(x) =
∑

~bN

P
(

Ẽ(N)~bN
(x)

)

, (3.26)

and denote the alternating sum by

π(x) =

∞
∑

N=0

(−1)Nπ(N)(x). (3.27)

Note that the sum in (3.27) is a finite sum, as long as tx is finite, where tx denotes the time coordinate
of x, since each of the bonds b1, . . . , bN eats up at least one time-unit ε, so that π(N)(x) = 0 for Nε > tx.
The result of the expansion is summarized as follows.

Proposition 3.3 (The lace expansion). For any λ ≥ 0 and x ∈ Λ,

τ(x) = π(x) + (π ?p ?τ)(x). (3.28)

Proof. By (3.22), we are left to identify R(1)(x). For N ≥ 1, we define

R(N)(x) =
∑

~bN

P
(

Ẽ(N−1)~bN−1
(bN) ∩

{

bN
C̃bN (bN−1)−−−−−−−→ x

})

. (3.29)
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We prove below

R(N)(x) = π(N)(x) + (π(N) ?p ?τ)(x)−R(N+1)(x). (3.30)

The equation (3.28) follows by repeated use of (3.30) until the remainder R(N+1)(x) vanishes, which must
happen at least when Nε > tx. To complete the proof of Proposition 3.3, we are left to prove (3.30),
which is a generalization of (3.22).

First we rewrite bN
C̃bN (bN−1)−−−−−−−→ x in (3.29). As in (3.15), this event can be decomposed into two cases,

depending on whether there is or is not a pivotal bond b for bN −→ x such that bN
C̃bN (bN−1)−−−−−−−→ b. The

contribution where there is no such a bond equals E(bN ,x; C̃
bN (bN−1)). If there are such pivotal bonds,

then we take the first bond b among these bonds and obtain (cf., (3.15))

{

bN
C̃bN (bN−1)−−−−−−−→ x

}

= E(bN ,x; C̃
bN (bN−1))

∪̇ ˙⋃

b

{

E(bN , b; C̃
bN (bN−1)) ∩ {b occupied & pivotal for bN −→ x}

}

. (3.31)

By (3.26), the contribution from E(bN ,x; C̃
bN (bN−1)) in the right-hand side is π(N)(x), which is the first

term in the right-hand side of (3.30). For the contribution from the remaining event in (3.31), we use
(3.18) to arrive at
∑

~bN ,b

P
(

Ẽ(N)~bN
(b) ∩ {b occupied & pivotal for bN −→ x}

)

=
∑

~bN ,b

P
(

Ẽ(N)~bN
(b) ∩ {b −→ x}

)

−R(N+1)(x). (3.32)

The last term in the above expression is the last term in the right-hand side of (3.30). Again by the
Markov property and (3.26), the first term in the right-hand side of (3.32) equals the second term in the
right-hand side of (3.30). This completes the proof of (3.30) and thus the proof of Proposition 3.3.

3.2 Representation for the derivative

In this section, we derive a formula for ∂λπ(x). To state the result below, we define

piv[v,x] = {b : b pivotal for v −→ x}. (3.33)

Proposition 3.4. For λ > 0 and x ∈ Λ,

∂λπ(x) =
1

λ

∞
∑

N=1

(−1)N Π(N)(x), (3.34)

where Π(N)(x) =
∑N

n=1Π
(N ;n)(x) with

Π(N ;n)(x) =
∑

~bN ,b:
b spatial

P
(

Ẽ(N)~bN
(x) ∩

{

b ∈ {bn} ∪̇ piv[bn, bn+1]
})

, (3.35)

and where bN+1 is defined to be x.

By the same reason as in (3.27), the sum in (3.34) is a finite sum. We prove (3.34) by differentiating
the expression (3.28) for τ(x) and comparing it with the expression for ∂λτ(x) obtained by using Russo’s
formula, rather than differentiating ∂λπt(x) directly. Possibly, one can also use direct differentiation of
the expressions (3.26) for π(x), but this is cumbersome because of the complex combination of increasing
and decreasing events consisting of π(N)(x), where an increasing (respectively, decreasing) event is an
event that is more (respectively, less) likely to occur as λ increases. We note that, instead of a difference
of two terms due to the pivotals for the increasing and decreasing events, we only obtain a single sum
over pivotals. Thus, an intricate cancellation takes place. This is further demonstrated by the fact that
there is no contribution from N = 0. In particular, it is not true that ∂λπ

(N)(x) = 1
λΠ

(N)(x).
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Proof. In the proof it will be convenient to split

Π(N,n)(x) = Π(N ;n,1)(x) + Π(N ;n,2)(x), (3.36)

where Π(N ;n,1)(x) is the contribution from b = bn in (3.35), whereas Π(N ;n,2)(x) is the contribution from
b ∈ piv[bn, bn+1].

To obtain an expression for ∂λτ(x), we use Russo’s formula [4, 9]. Let E be an increasing event that
depends only on finitely many spatial bonds. Then

∂λP(E) =
1

λ

∑

b spatial

P(E occurs, b is pivotal for E), (3.37)

where we use the fact that only spatial pivotal bonds for E are responsible to the differentiation with
respect to λ. Let ¤R = [−R,R]d ∩Zd. We apply (3.37) to E = ER(x) ≡ {o −→ x in ¤R × [0, tx]}, which
is the set of bond configurations whose restriction on bonds (u,v) ⊂ ¤R × [0, tx] are in {o −→ x}. Note
that limR→∞ P(ER(x)) = τ(x), and that, for any λ0 ∈ [0,∞),

lim
R→∞

∂λP(ER(x)) =
1

λ

∑

b spatial

P(o −→ x, b is pivotal for o −→ x), (3.38)

uniformly in λ ∈ [0, λ0], which we will show at the end of this section. Therefore, we can exchange the
order of limR→∞ and ∂λ, and obtain

∂λτ(x) =
1

λ

∑

b spatial

P(o −→ x, b is pivotal for o −→ x). (3.39)

We follow the same strategy as in Section 3.1 to obtain a recursion relation, now for ∂λτ(x) rather
than for τ(x). Then, (3.39) equals

∂λτ(x) =
1

λ

∑

b spatial

[

P(o =⇒ b, b occupied & pivotal for o −→ x)

+
∑

b1<b

P(o =⇒ b1, b1 and b occupied & pivotal for o −→ x)

]

, (3.40)

where
∑

b1<b
is the sum over bonds b1 with tb1 < tb. The first and second terms in the brackets of

the right-hand side correspond respectively to when b is or is not the first element of piv[o,x]. The
contribution from the first term is the same as (3.2), apart from the factor 1

λ and the restriction that b
has to be a spatial bond. Thus, the first term equals

(π(0) ?εD ?τ)(x) +
1

λ

∞
∑

N=1

(−1)N
[

Π(N ;1,1)(x) + (Π(N ;1,1) ?p ?τ)(x)
]

, (3.41)

where we abuse notation to write

D((y, s)) = D(y) δs,ε. (3.42)

For the second term in (3.40), we use

{b1 and b occupied & pivotal for o −→ x}
= {b1 occupied & pivotal for o −→ x} ∩ {b ∈ piv[b1,x]}. (3.43)
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We ignore the condition that b1 is pivotal for o −→ x and use inclusion-exclusion in the form (3.18) to
make up for the arising error. Using the Markov property, the contribution from the second term in (3.40)
is

1

λ

∑

b1,b:
b spatial

P
(

o =⇒ b1, b1 −→ x, b ∈ piv[b1,x]
)

−Q(1)(x) = (π(0) ?p ?∂λτ)(x)−Q(1)(x), (3.44)

where we define Q(n)(x) by

Q(n)(x) =
1

λ

∑

~bn,b:
b spatial

P
(

Ẽ(n−1)~bn−1
(bn) ∩

{

bn
C̃bn (bn−1)−−−−−−→ x

}

∩ {b ∈ piv[bn,x]}
)

, (3.45)

and we recall that Ẽ(0)(b1) = {o =⇒ b1} and b0 = o. Note that Q(n)(x) is similar to R(n)(x) in (3.29),
except for the factor 1

λ , the sum over spatial bonds b, and the extra condition b ∈ piv[bn,x]. Therefore,
by (3.40)–(3.41) and (3.44), we have

∂λτ(x) = (π(0) ?εD ?τ)(x) + (π(0) ?p ?∂λτ)(x)−Q(1)(x)

+
1

λ

∞
∑

N=1

(−1)N
[

Π(N ;1,1)(x) + (Π(N ;1,1) ?p ?τ)(x)
]

. (3.46)

Below, we will use inclusion-exclusion to prove that, for n ≥ 1,

Q(n)(x) = (π(n) ?εD ?τ)(x) + (π(n) ?p ?∂λτ)(x)−Q(n+1)(x)

+
1

λ

∞
∑

N=n+1

(−1)N−n
[

Π(N ;n+1,1)(x) + (Π(N ;n+1,1) ?p ?τ)(x)
]

+
1

λ

∞
∑

N=n

(−1)N−n
[

Π(N ;n,2)(x) + (Π(N ;n,2) ?p ?τ)(x)
]

. (3.47)

Before proving (3.47), we complete the proof of (3.34) assuming (3.47). By repeated applications of (3.47)
to (3.46) until the remainder term Q(n)(x) vanishes, we obtain

∂λτ(x)− (π ?εD ?τ)(x) + (π ?p ?∂λτ)(x)

=
1

λ

∞
∑

N=1

(−1)N
[

Π(N ;1,1)(x) + (Π(N ;1,1) ?p ?τ)(x)
]

+
1

λ

∞
∑

n=1

(−1)n
∞
∑

N=n+1

(−1)N−n
[

Π(N ;n+1,1)(x) + (Π(N ;n+1,1) ?p ?τ)(x)
]

+
1

λ

∞
∑

n=1

(−1)n
∞
∑

N=n

(−1)N−n
[

Π(N ;n,2)(x) + (Π(N ;n,2) ?p ?τ)(x)
]

=
1

λ

∞
∑

N=1

(−1)N
[

Π(N)(x) + (Π(N) ?p ?τ)(x)
]

. (3.48)

Differentiating both sides of (3.28) and comparing with the above expression, we obtain

∂λπ(x) + (∂λπ ?p ?τ)(x) =
1

λ

∞
∑

N=1

(−1)N
[

Π(N)(x) + (Π(N) ?p ?τ)(x)
]

. (3.49)
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Using this identity, we prove (3.34) by induction on tx/ε. Since π((x, 0)) = δo,x and Π(N)((x, 0)) = 0
for all N ≥ 1, we obtain (3.34) for tx/ε = 0. Suppose that (3.34) holds for all tx/ε ≤ m. Then the
contribution from the second term in the brackets of (3.49) equals the second term on the left-hand side
of (3.49), and thus (3.34) for tx/ε = m+ 1 holds. This completes the inductive proof of (3.34).

In order to complete the proof of Proposition 3.4, we prove (3.47). Because of the condition bn
C̃bn (bn−1)−−−−−−→

x in (3.45), either the event E(bn,x; C̃
bn(bn−1)) occurs or there is an occupied bond bn+1 ∈ piv[bn,x] for

which the event E(bn, bn+1; C̃
bn(bn−1)) occurs. The contribution from the former case to Q(n)(x) is

1

λ

∑

~bn,b:
b spatial

P
(

Ẽ(n−1)~bn−1
(bn) ∩ E(bn,x; C̃

bn(bn−1)) ∩ {b ∈ piv[bn,x]}
)

=
1

λ
Π(n;n,2)(x). (3.50)

The contribution from the latter case is, as in (3.40),

1

λ

∑

~bn,b:
b spatial

[

P
(

Ẽ(n)~bn
(b) ∩ {b occupied & pivotal for bn −→ x

)

+
∑

bn+1<b

P
(

Ẽ(n)~bn
(bn+1) ∩ {bn+1 and b occupied & pivotal for bn −→ x}

)

+
∑

bn+1>b

P
(

Ẽ(n)~bn
(bn+1) ∩ {b and bn+1 occupied & pivotal for bn −→ x}

)

]

, (3.51)

where the first, second and third terms in the brackets correspond respectively to when bn+1 = b, when
bn+1 is between bn and b, and when bn+1 is between b and x. The first term is similar to that in (3.40),
and its contribution equals, as in (3.41),

(π(n) ?εD ?τ)(x) +
1

λ

∞
∑

N=n+1

(−1)N−n
[

Π(N ;n+1,1)(x) + (Π(N ;n+1,1) ?p ?τ)(x)
]

. (3.52)

For the second term in (3.51), we apply (3.43), with b1 and o being replaced respectively by bn+1 and
bn, and use the inclusion-exclusion relation (3.18) and the Markov property. Then, the contribution from
the second term equals, as in (3.44),

1

λ

∑

~bn+1,b:
b spatial

P
(

Ẽ(n)~bn
(bn+1) ∩ {bn+1 occupied & pivotal for bn −→ x} ∩ {b ∈ piv[bn+1,x]}

)

=
1

λ

∑

~bn+1,b:
b spatial

P
(

Ẽ(n)~bn
(bn+1) ∩ {bn+1 −→ x} ∩ {b ∈ piv[bn+1,x]}

)

−Q(n+1)(x)

= (π(n) ?p ?∂λτ)(x)−Q(n+1)(x). (3.53)

For the third term in (3.51), we use

{b and bn+1 occupied & pivotal for bn −→ x}
= {b ∈ piv[bn, bn+1]} ∩ {bn+1 occupied & pivotal for bn −→ x}. (3.54)
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By the inclusion-exclusion relation (3.18), the contribution from the third term equals

1

λ

∑

~bn+1,b:
b spatial

P
(

Ẽ(n)~bn
(bn+1) ∩ {b ∈ piv[bn, bn+1]} ∩ {bn+1 occupied & pivotal for bn −→ x}

)

=
1

λ

∑

~bn+1,b:
b spatial

[

P
(

Ẽ(n)~bn
(bn+1) ∩ {b ∈ piv[bn, bn+1]} ∩ {bn+1 −→ x}

)

− P
(

Ẽ(n)~bn
(bn+1) ∩ {b ∈ piv[bn, bn+1]} ∩ {bn+1

C̃bn+1 (bn)−−−−−−→ x}
)

]

, (3.55)

where the first term equals, by the Markov property,

1

λ
(Π(n;n,2) ?p ?τ)(x). (3.56)

For the second term in (3.55), we use the same argument as above (3.31). Because of the condition

bn+1
C̃bn+1 (bn)−−−−−−→ x, either the event E(bn+1,x; C̃

bn+1(bn)) occurs or there is an occupied bond bn+2 ∈
piv[bn+1,x] such that E(bn+1, bn+2; C̃

bn+1(bn)) occurs. By repeated use of inclusion-exclusion and the
Markov property, as above (3.31), the contribution from the second term in (3.55) equals

1

λ

∞
∑

N=n+1

(−1)N−n
[

Π(N ;n,2)(x) + (Π(N ;n,2) ?p ?τ)(x)
]

. (3.57)

Combining (3.50), (3.52)–(3.53) and (3.56)–(3.57), we obtain (3.47). This completes the proof of
Proposition 3.4, assuming the uniformity of (3.38).

Proof of the uniformity of (3.38). Given λ0 ∈ [0,∞), we prove that ∂λP(ER(x)) converges to the right-
hand side of (3.38), uniformly in λ ∈ [0, λ0].

Recall that ER(x) = {o −→ x in ¤R× [0, tx]}. The difference between ∂λP(ER(x)) and the right-hand
side of (3.38) is bounded by

1

λ

∑

b spatial
b⊂¤R×[0,tx]

P
(

b occupied & pivotal for ER(x), but not pivotal for o −→ x
)

+
1

λ

∑

b spatial
b6⊂¤R×[0,tx]

P(b occupied & pivotal for o −→ x). (3.58)

First, we bound the second term, using {b occupied & pivotal for o −→ x} ⊂ {o −→ b} ∩ {b −→ x} as
well as the Markov property and (2.43), by

ε
∑

b6⊂¤R×[0,tx]
p ? tb/ε(b) D(b− b) p ? (tx−tb)/ε(x− b) ≤ ε

tx/ε
∑

j=1

(1− ε+ λε)tx/ε−j
∑

y∈Zd:‖y‖∞≥R
p∗(j−1)ε (y), (3.59)

where we take the sum over the spatial component of x to obtain the bound. Similarly to (2.44), this
is further bounded, uniformly in λ and ε, by cδ′R where c = c(λ0, tx) and δ′R = δ′R(λ0) are some finite
constants satisfying limR→∞ δ′R = 0.

Next, we consider the first term in (3.58). Note that, if b is pivotal for ER(x), but not pivotal for
o −→ x, then there must be a detour from some y ∈ ¤R × [0, tb] to another z ∈ ¤R × [tb, tx] that passes
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through (Zd \¤R)× [0, tx] without traversing b. Therefore, the event in the first term of (3.58) is a subset
of

⋃

y,z,u∈¤R×[0,tx]
v/∈¤R×[0,tx]

{o −→ y} ∩
{

{y −→ b, b −→ z} ◦ {y −→ u, (u,v) −→ z}
}

∩ {z −→ x}, (3.60)

where (u,v) is the first bond along the detour that crosses the boundary of ¤R × [0, tx], so that it is a
spatial bond, and E1 ◦ E2 is the event that E1 and E2 occur disjointly, i.e., there is a bond set B such
that E1 occurs on B and E2 occurs on the complement of B. By the Markov property, the three events
joined by ∩ are independent of each other. For the middle event, we use the van den Berg-Kesten (BK)
inequality [9], which asserts that P(E1 ◦ E2) ≤ P(E1)P(E2) when both E1 and E2 are increasing events,
i.e., E1 and E2 are more likely to occur as λ increases, as in (3.60). Sometimes, we also make use of the
van den Berg-Kesten-Reimer (BKR) inequality [6], which proves P(E1 ◦E2) ≤ P(E1)P(E2) for any events
E1 and E2. Then, we use (2.43) as in (3.59) and obtain that the first term in (3.58) (even when we sum
over the spatial component of x) is bounded by c′δ′′R, where c

′ = c′(λ0, tx, ε) and δ′′R = δ′′R(λ0) are some
finite constants satisfying limR→∞ δ′′R = 0. This completes the proof of the uniformity in λ of (3.38).

In the above proof, we did not care about the uniformity in ε, since it has been fixed and positive in
this section. In fact, the above constant c′ is of order O(ε−2) and diverges as ε→ 0. This is because the
contribution from (3.60) involves the sums over tb(= tb + ε), ty, tz, tv(= tu + ε) ∈ εZ+ that give rise to
the factor ε−4. However, the factor ε−2 is cancelled by the bond occupation probabilities of the spatial
bonds b and (u,v), and therefore c′ = O(ε−2). We could improve this to c′ = O(1) by using the ideas in
Section 4.1, and hence obtain the uniformity in ε as well, though this is not necessary here.

4 Bounds on the lace expansion

In this section, we prove Propositions 2.3–2.4. By (3.26)–(3.27) and (3.34)–(3.35), it suffices to prove the
following bounds on π(N)t (x) and Π(N ;n)t (x) in order to prove these propositions.

Lemma 4.1. Suppose that (2.29) holds for some λ0 and all s ≤ t.
(i) Let d > 4. Then, there are β0 > 0 and CK < ∞ such that, for λ ≤ λ0, β < β0, s ∈ εZ+ with

2ε ≤ s ≤ t+ ε, and q = 0, 2, 4,

∑

x

|x|q π(N)s (x) ≤ ε2(CKβ)
1∨NσqN q/2

(1 + s)(d−q)/2
, for N ≥ 0, (4.1)

∑

x

Π(N ;n)s (x) ≤ ε2(CKβ)
N

(1 + s)(d−2)/2
, for N ≥ n ≥ 1. (4.2)

(ii) Let d ≤ 4 with α = bd− 4−d
2 > 0, µ ∈ (0, α) and t ≤ T log T . Then, there are β0 > 0 and CK <∞

such that, for λ ≤ λ0, β1 < β0, s ∈ εZ+ with 2ε ≤ s ≤ t+ ε, and q = 0, 2, 4,

∑

x

|x|q π(N)s (x) ≤ ε2CKβT (CKβ̂T )
0∨(N−1)σqTN

q/2

(1 + s)(d−q)/2
, for N ≥ 0, (4.3)

∑

x

Π(N ;n)s (x) ≤ ε2CKβT (CKβ̂T )
N−1

(1 + s)(d−2)/2
, for N ≥ n ≥ 1, (4.4)

where βT = β1T
−bd and β̂T = β1T

−µ.

Proof of Propositions 2.3–2.4 assuming Lemma 4.1. The inequalities (2.30) and (2.32) follow from (3.26)–
(3.27), (3.34)–(3.35) and (4.1)–(4.2), if β is sufficiently small. The proof of (2.31) is the same as that of
Proposition 2.2(ii) in [20, Section 4.3], together with (2.30). This completes the proof of Proposition 2.3.

Proposition 2.4 is proved by using (4.3)–(4.4) instead of (4.1)–(4.2), if β̂T is sufficiently small.
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Lemma 4.1 is proved in Sections 4.1–4.3. In Section 4.1, we first introduce certain diagram functions
P (N)t (x) and P̃ (N ;n)t (x) that are defined in terms of two-point functions, and prove that these diagram
functions are upper bounds on π(N)t (x) and Π(N ;n)t (x), respectively. Then, we bound these diagram func-
tions assuming the bounds in (2.29) on the two-point function, for d > 4 in Section 4.2 and for d ≤ 4 in
Section 4.3. Finally, in Section 4.4, we use these diagram functions to obtain finite-volume approximations
of π(N)t (x) and Π(N ;n)t (x), which will be used in Section 6 to prove the continuum limit ε ↓ 0.

4.1 Bounds in terms of the diagram functions

In this section, we prove that π(N)t (x) and Π(N ;n)t (x) are bounded by certain diagram functions P (N)t (x)
and P̃ (N ;n)t (x) that are defined below in terms of two-point functions.

The strategy in this section is similar to [20, Section 4.1] for oriented percolation in Zd × Z+, where
bounds on π(N)t (x) were proved by using some diagram functions arising from the Hara-Slade lace expan-
sion. Since the expansion used in this paper is somewhat simpler, we can use simpler diagram functions.
However, to consider the case ε¿ 1 as in [27], extra care is needed to obtain the factor ε2 in (4.36)–(4.54).

4.1.1 Preliminaries

Before defining the diagram functions, we start by some preliminaries. For v = (v, s) ∈ Λ and a bond b,
we write v+ = (v, s+ε) and {v −→ b} = {v −→ b}∩{b occupied} (cf., Definition 3.1(i)). For convenience,
we will also use abbreviations, such as

{v −→ b −→ x} = {v −→ b} ∩ {b −→ x}. (4.5)

Let I ′(v,x,x) = {v −→ x}, and define, for y 6= x,

I ′(v,y,x) =

{

⋃

b spatial:
b=y

{v −→ b −→ x}
}

∪
{

⋃

b spatial:
b=y

{v −→ (b, b+) −→ x, b occupied}
}

. (4.6)

We note that I ′(v,y,x) for y 6= x equals I ′(v,x,x) with an extra spatial bond b being embedded (or
added) along the connection from v to x. Denoting

I(b,y,x) = {b occupied} ∩ I ′(b,y,x), (4.7)

we define

M(b,v;x,y) =
{

I(b,y,x) ◦ {v −→ x}
}

∪
{

{b −→ x} ◦ I ′(v,y,x)
}

. (4.8)

Note that, when neither b nor v is x, the event M(b,v;x,y) equals {b −→ x} ◦ {v −→ x} with an
extra spatial bond being embedded either between b and x due to I(b,y,x), or between v and x due to
I ′(v,y,x). In addition, we define M+(b, b′,v;x,y) to be M(b,v;x,y) with the connection from b to x

being replaced by b −→ b′ −→ x. For example, the second event {b −→ x} ◦ I ′(v,y,x) in (4.8) is simply
replaced by {b −→ b′ −→ x} ◦ I ′(v,y,x) in the definition of M+(b, b′,v;x,y). Replacing the first event
I(b,y,x) ◦ {v −→ x} in (4.8) is more complicated, due to the three possibilities of embedding b′ into
v −→ b −→ x in (4.6) and the other three possibilities of embedding b′ into v −→ (b, b+) −→ x in (4.6),
and therefore we refrain from giving a formula for M+(b, b′,v;x,y).

Recall (3.26) and (3.35) for the definitions of π(N)(x) and Π(N ;n)(x) that involve the event Ẽ(N)~bN
(x).

Our first claim is that Ẽ(N)~bN
(x) satisfies the following successive relations:
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Lemma 4.2. For N ≥ 1,

Ẽ(N)~bN
(x) ⊂ Ẽ(N−1)~bN−1

(bN) ∩M(bN , bN−1;x,x), (4.9)

Ẽ(N−1)~bN−1
(bN) ∩M(bN , bN−1;x,y)

⊂
⋃

v∈Λ

{

{

Ẽ(N−2)~bN−2
(bN−1) ∩M(bN−1, bN−2; bN ,v)

}

◦M(bN ,v;x,y)
}

, (4.10)

Ẽ(N−1)~bN−1
(bN) ∩M(bN , bN−1;x,y) ∩ {b ∈ piv[bN , bN+1]}

⊂
⋃

v∈Λ

{

{

Ẽ(N−2)~bN−2
(bN−1) ∩M(bN−1, bN−2; bN ,v)

}

◦M+(bN , b,v;x,y)
}

, (4.11)

and for N > n ≥ 1,

Ẽ(N−1)~bN−1
(bN) ∩M(bN , bN−1;x,y) ∩ {b ∈ piv[bn, bn+1]}

⊂
⋃

v∈Λ

{

{

Ẽ(N−2)~bN−2
(bN−1) ∩M(bN−1, bN−2; bN ,v) ∩ {b ∈ piv[bn, bn+1]}

}

◦M(bN ,v;x,y)
}

, (4.12)

where b0 = b−1 = o, M(b0, b−1; b1,v) = {o =⇒ b1} ∩ I ′(o,v, b1), Ẽ(0)~b0 (b1) = {o =⇒ b1} and Ẽ(−1)~b−1
(b0)

equals the whole probability space.

We note that the left-hand side of (4.12) is the same as that of (4.11), except that b is pivotal for
bn −→ bn+1 with n < N .

Proof. The relation (4.9) follows immediately from (3.24) and

E(bN ,x; C̃
bN (bN−1)) ⊂ {bN −→ x} ◦ {bN−1 −→ x} =M(bN , bN−1;x,x). (4.13)

We only prove (4.10), since (4.11)–(4.12) can be proved similarly. First, we use (4.9) to obtain
Ẽ(N−1)~bN−1

(bN) ⊂ Ẽ(N−2)~bN−2
(bN−1) ∩ M(bN−1, bN−2; bN , bN). Since Ẽ(N−2)~bN−2

(bN−1) depends only on bonds before

bN−1, it suffices to prove

M(bN−1, bN−2; bN , bN) ∩M(bN , bN−1;x,y) ⊂
⋃

v∈Λ

{

M(bN−1, bN−2; bN ,v) ◦M(bN ,v;x,y)
}

. (4.14)

Recall that M(bN−1, bN−2; bN , bN) = {bN−1 −→ bN} ◦ {bN−2 −→ bN}. The event in the left-hand side of
(4.14) implies existence of v ∈ C(bN−1) such that v −→ bN andM(bN ,v;x,y) occur disjointly. Therefore,

M(bN−1, bN−2; bN , bN) ∩M(bN , bN−1;x,y)

⊂
⋃

v∈Λ

{

{

{bN−1 −→ v −→ bN} ◦ {bN−2 −→ bN}
}

∪
{

{bN−1 −→ bN} ◦ {bN−2 −→ v −→ bN}
}

}

◦M(bN ,v;x,y). (4.15)

We investigate the vicinity of v ∈ Λ in (4.15), where there are two disjoint connections, v −→ bN and
v −→ x. Since there is at most one temporal bond growing out of each vertex in Λ, at least one of the
two connections has to use a spatial bond at v. Therefore,

{v −→ bN} ◦ {v −→ x} ⊂
⋃

b spatial:
b=v

{

{

{b −→ bN} ◦ {b −→ x}
}

∪
{

{(b, b+) −→ bN} ◦ {b −→ x}
}

}

. (4.16)

Substituting this relation into (4.15) and relabelling b = v in the latter event {(b, b+) −→ bN}◦{b −→ x},
we obtain (4.14), and thus (4.10). This completes the proof.
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4.1.2 Diagrammatic bounds

Inspired by the successive relations (4.9)–(4.12), we inductively construct the diagram functions P (N)t (x)
and P̃ (N ;n)t (x) as follows. For b = (u,v) with u = (u, s) and v = (v, s + ε), we abuse notation to write
p(b) or p(v − u) for pε(v − u), and D(b) or D(v − u) for D(v − u). Let

ϕ(x− u) = δu,x + (p ?τ)(x− u), (4.17)

and

L(u,v;x) =

{

ϕ(x− u) (τ ?λεD)(x− v) + (ϕ ?λεD)(x− u) τ(x− v), if u 6= v,

(D ?τ)(x− u) (τ ?λεD)(x− u) + (D ?τ ?λεD)(x− u) τ(x− u), if u = v.
(4.18)

We define

P (0)(x) = δo,x + λεL(o,o;x), (4.19)

and define the zeroth admissible lines to be the two lines from o to x in each diagram of λεL(o,o;x).
With lines, we mean here (λεD ?τ)(x) and (τ ?λεD)(x) for the contribution from the first term in (4.18)
with u = v = o, and (λεD ?τ ?λεD)(x) and τ(x) for the contribution from the second term in (4.18)
with u = v = o.

Given an admissible line ` from v to x of a diagram function, say τ(x − v) for simplicity, and given
y 6= x, Construction B`

spat(y) is defined to be the operation in which τ(x− v) is replaced by

τ(y − v) (λεD ?τ)(x− y), (4.20)

and Construction B`
temp(y) is defined to be the operation in which τ(x− v) is replaced by

∑

b:b=y

τ(b− v) λεD(b) P((b, b+) −→ x). (4.21)

We note that (4.20)–(4.21) are inspired by (4.6). The sum of the results of Construction B`
spat(y) and

Construction B`
temp(y) is simply said to be the result of Construction B`(y). We define Construction B`(s)

to be the operation in which Construction B`(y, s) is performed and then followed by summation over
y ∈ Zd. Construction B`

spat(s) and Construction B`
temp(s) are defined similarly.

We denote the result of applying Construction B`(y) to a diagram function f(x) by f(x, B`(y)), and
define f(x, B`

spat(y)) and f(x, B
`
temp(y)) similarly. We construct P (N)(x) from P (N−1)(x) by

P (N)(x) = 2λε
∑

v∈Λ
P (N−1)(v) L(v,v;x) +

∑

`

∑

v,y∈Λ
v 6=y

P (N−1)(v, B`(y)) L(v,y;x), (4.22)

where
∑

` is the sum over the (N − 1)st admissible lines in each diagram. We define

∑

`

P (N−1)(v, B`(v)) = 2λεP (N−1)(v). (4.23)

Then, (4.22) equals

P (N)(x) =
∑

`

∑

v,y∈Λ
P (N−1)(v, B`(y)) L(v,y;x). (4.24)

We call the newly added lines, contained in L(v,y;x), the N th admissible lines.
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P (0)t (x) =

(x, t)

(o, 0)

P (1)t (x) =

(x, t)

(o, 0)

P (2)t (x) =

(x, t)

(o, 0)

+

(x, t)

(o, 0)

Figure 5: Graphical representations of P (0)t (x), P (1)t (x) and P (2)t (x). Lines indicate two-point functions,
and small bars indicate a convolution with pε. Spatial bonds that are present at all vertices in the
diagrams are left implicit.

Finally, for N ≥ n ≥ 1, we define

P̃ (N ;n)(x) =
∑

`

∑

y∈Λ
P (N)(x, B`

spat(y)), (4.25)

where
∑

` is the sum over the nth admissible lines.
Thanks to the construction in terms of two-point functions, the diagram functions can be estimated

by using (2.29), and this will be done in Sections 4.2–4.3. The following is the main statement of this
section:

Lemma 4.3. For λ ≥ 0 and N ≥ n ≥ 1,

π(N−1)t (x) ≤ P (N−1)t (x), Π(N ;n)t (x) ≤ P̃ (N ;n)t (x). (4.26)

Proof. We begin with proving π(0)(x) ≤ P (0)(x). The first term in (4.19) is the contribution from the
case of o = x. If o 6= x, there are at least two nonzero disjoint occupied paths from o to x. As explained
below (4.15), at least one of two nonzero disjoint occupied paths from o has to use a spatial bond at o.
That is,

π(0)(x) ≤
∑

b spatial:
b=o

P({b −→ x} ◦ {o −→ x}) =
∑

b spatial:
b=o

P(M(b,o;x,x)). (4.27)

We use the same observation at x: at least one of the two nonzero disjoint connections, b −→ x and
o −→ x, has to use another spatial bond at x. Therefore, we can bound the right-hand side of (4.27) by
λεL(o,o;x) using the BK inequality. This completes the proof of π(0)(x) ≤ P (0)(x).

Next, we consider π(N)(x) for N ≥ 1. Let

π(n)(x,y) =
∑

~bn

P
(

Ẽ(n−1)~bn−1
(bn) ∩M(bn, bn−1;x,y)

)

. (4.28)

By the convention in Lemma 4.2, π(0)(x,y) = P({o =⇒ x} ∩ I ′(o,y,x)). We prove below by induction
that

π(n)(x,y) ≤ (2λε)−δx,y
∑

`

P (n)(x, B`(y)) (4.29)
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holds for all n ≥ 0, where
∑

` is the sum over the nth admissible lines. The inequality π(N)(x) ≤
P (N)(x) for N ≥ 1 follows from (4.9) and (4.29) for y = x, together with the convention in (4.24), i.e.,
2λεP (N)(x) =

∑

` P
(N)(x, B`(x)).

For n = 0, we can assume y 6= x, since π(0)(x) = π(0)(x,x) ≤ P (0)(x) has already been proved. By
the equivalence {o =⇒ x} ∩ I ′(o,y,x) = {o −→ x} ◦ I ′(o,y,x) and by (4.6), we obtain

π(0)(x,y) ≤
∑

b spatial:
b=y

P({o −→ x} ◦ {o −→ b −→ x})

+
∑

b:b=y

λεD(b) P({o −→ x} ◦ {o −→ (b, b+) −→ x}), (4.30)

where we use the BK inequality to derive λεD(b) in the second sum.
We only prove that the first sum in (4.30) is bounded by

∑

` P
(0)(x, B`

spat(y)), by investigating the
vicinity of o and x in the diagram functions, as in the proof of π(0)(x) ≤ P (0)(x). The second sum in
(4.30) can be proved similarly to be bounded by

∑

` P
(0)(x, B`

temp(y)). In the first sum in (4.30), there

are three contributions: (i) y = o, (ii) b = (y,x) and (iii) y 6= o and b 6= x. The contribution due to
y = o is bounded by

λεL(o,o;x) =
∑

`

P (0)(x, B`
spat(o))− 2(λεD ?τ)(x) (λεD ?τ ?λεD)(x), (4.31)

while the contribution due to b = (y,x) is bounded by

P({o −→ x} ◦ {o −→ y}) λεD(x− y) ≤ [(λεD ?τ)(x) τ(y) + (λεD ?τ)(y) τ(x)] λεD(x− y)

=
∑

`

P (0)(x, B`
spat(y))− [(λεD ?τ)(y) (τ ?λεD)(x) + (λεD ?τ ?λεD)(x) τ(y)] λεD(x− y). (4.32)

We can estimate the case (iii) similarly, and obtain a bound which is λεL(o,y;x) with one of the two
τ ’s in each product τ · τ in (4.18) replaced by (4.20). Summarizing these bounds, we conclude that the
first sum in (4.30) is bounded by

∑

` P
(0)(x, B`

spat(y)). This completes the proof of (4.29) for n = 0, and
initializes the inductive proof for n ≥ 1.

To advance the induction hypotheses, we assume that (4.29) holds for n = N − 1, and that

∑

b:b=u

P(M(b,v;x,y)) ≤ (2λε)δu,v−δx,y
∑

`

L(u,v;x, B`(y)) (4.33)

holds, where we write
∑

` L(u,v;x, B
`(x)) = 2λεL(u,v;x), similarly to the convention used in (4.24).

We will prove (4.33) below. By (4.10) and the BKR inequality, together with (4.24), (4.29) and (4.33),
we obtain

π(N)(x,y) ≤
∑

u,v

π(N−1)(u,v)
∑

bN :bN=u

P(M(bN ,v;x,y))

≤ (2λε)−δx,y
∑

`,`′

∑

u,v

P (N−1)(u, B`′(v)) L(u,v;x, B`(y))

= (2λε)−δx,y
∑

`

P (N)(x, B`(y)). (4.34)

This advances the induction hypotheses, and hence completes the proof of (4.29), assuming that (4.33)
holds.

It thus remains to prove (4.33). We only consider the case of u = v and x = y, since it explains why
the factor 2λε is in the definition of the diagram functions. The case of u = v and x 6= y can be proved
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similarly to (4.29) for n = 0, and the proof of the remaining case is simpler because extracting the factors
of ε at u 6= v is unnecessary. Let u = o in (4.33), by translation invariance. Then, the left-hand side of
(4.33) equals the rightmost expression in (4.27), except for the condition that b is a spatial bond. By the
same observation at o as in (4.27), we obtain

∑

b:b=o

P(M(b,o;x,x)) =
∑

b spatial:
b=o

P(M(b,o;x,x)) + P(M((o,o+),o;x,x))

≤
∑

b spatial:
b=o

P(M(b,o;x,x)) +
∑

b spatial:
b=o

P({(o,o+) −→ x} ◦ {b −→ x})

≤ 2
∑

b spatial:
b=o

P(M(b,o;x,x)) ≤ 2λεL(o,o;x). (4.35)

This completes the proof of (4.33), and hence the proof of the first inequality in (4.26).
To prove the second inequality in (4.26), we recall that Π(N,n)(x) = Π(N ;n,1)(x)+Π(N ;n,2)(x), where the

first and second terms are the contributions to (3.35) from b = bn and from b ∈ piv[bn, bn+1], respectively.
There are two nth admissible lines terminating at bn+1, one from bn and the other from some vertex w.
We can bound Π(N ;n,1)(x) by P (N)(x) with the nonzero admissible line from bn, say (p ?τ)(bn+1 − bn),
replaced by (λεD ?τ)(bn+1 − bn); if w = bn, we replace the factor p in one of the two admissible lines
by λεD as above, and add both contributions. For Π(N ;n,2)(x), we use (4.11)–(4.12) to obtain the bound
∑

`

∑

b6=bn P
(N)(x, B`

spat(b)), where
∑

` is the sum over the nth admissible lines. Together with the bound
on Π(N ;n,1)(x), we obtain (4.25). This completes the proof the second inequality in (4.26), and hence the
proof of Lemma 4.3.

4.2 Estimate of the diagram functions above four dimensions

In this section, we bound the diagram functions for d > 4 as follows:

Lemma 4.4. Let d > 4 and suppose that (2.29) holds for some λ0 and all s ≤ t. Then, there are β0 > 0
and CK <∞ such that, for λ ≤ λ0, β < β0, s ∈ εZ+ with 2ε ≤ s ≤ t+ ε, and q = 0, 2, 4,

∑

x

|x|q P (N)s (x) ≤ ε2(CKβ)
1∨NσqN q/2

(1 + s)(d−q)/2
, for N ≥ 0, (4.36)

∑

x

P̃ (N ;n)s (x) ≤ ε2(CKβ)
N

(1 + s)(d−2)/2
, for N ≥ n ≥ 1. (4.37)

Lemma 4.1(i) is an immediate consequence of Lemmas 4.3–4.4. To prove Lemma 4.4, we will use the
following three lemmas.

Lemma 4.5. Assume (2.29) for s ≤ t = nε and λ ∈ In. Then, there is a CK = CK(d, λ) < ∞ such that
the following bounds hold for s ≤ t, q = 0, 2 and for that λ:

∑

x

|x|q (τs ∗D)(x) ≤ CKσq(1 + s)q/2, (4.38)

sup
x
|x|q (τs ∗D)(x) ≤ CKσ

qβ

(1 + s)(d−q)/2
, (4.39)

sup
x
|x|q τs(x) ≤ (1− ε)s/εδq,0 +

CKσ
qβ

(1 + s)(d−q)/2
. (4.40)

Lemma 4.6. Assume (2.29) for s ≤ t. Let ft(x) be a diagram function that satisfies
∑

x ft(x) ≤ F (t) by
assigning l1 or l∞ norm to each diagram line and using (2.29) to estimate those norms. Then, there is a
CK = CK(d, λ) <∞ such that

∑

x ft(x,B
`(s)) ≤ εCKF (t) for every s ≤ t and every admissible line `.
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Lemma 4.7. Let a, b ∈ R, and let κ be a positive number if a or b is 2, and zero otherwise. Then, there
exists a C = C(a, b, κ) <∞ such that

t
∑•

s1=0

ε

(1 + s1)a

t
∑•

s2=t−s1

ε

(1 + s2)b
≤ C

(1 + t)a∧b∧(a+b−2)−κ
. (4.41)

Lemmas 4.5 and 4.6 correspond respectively to Lemmas 4.3 and 4.6(a) in [20], and Lemma 4.7 cor-
responds to [19, Lemma 3.2]. The result of applying Lemma 4.7 is the same as [20, (4.26)] when d > 4
(see also the proof of Lemma 4.6(b) in [20]), but Lemma 4.7 can be applied to the lower dimensional
case as well. We will use Lemmas 4.5–4.6 again in Sections 4.3–4.4, and Lemma 4.7 in Section 4.3 and
Appendix A.

First, we prove Lemma 4.4 assuming Lemmas 4.5–4.7, and then prove these lemmas. We will use c to
denote a finite positive constant whose exact value is unimportant and may change from line to line.

Proof of Lemma 4.4 assuming Lemmas 4.5–4.7. For (4.36), we only consider q = 0, since the other cases
in (4.36) are proved along the same line of argument as in the last paragraph of [20, Section 4.2].

For s′ ≤ s < t, we use Lemma 4.5 to obtain

sup
u,v

∑

x

L((u, s), (v, s′); (x, t)) ≤ cβε

(1 + t− s′)d/2 . (4.42)

Since P (0)t (x) = λεL(o,o; (x, t)) for t ≥ 2ε, this implies (4.36) with q = N = 0. By Lemma 4.6, we also
obtain

∑

`

∑

x P
(0)

t (x,B`(s)) ≤ cε[δ0,t + ε2β (1 + t)−d/2], where δ0,t is the contribution from the first term
in (4.19).

For N ≥ 1, we note that, by (4.24) we have

∑

x

P (N)t (x) ≤
∑•

s,s′

[

∑

`

∑

u,v

P (N−1)((u, s), B`(v, s′))

][

sup
u,v

∑

x

L((u, s), (v, s′); (x, t))

]

, (4.43)

where
∑

` is the sum over the (N − 1)st admissible lines in P (N−1)s (u). Therefore,
∑

x P
(1)

t (x) satisfies
(4.36), and

∑

`

∑

x P
(1)

t (x,B`(s)) is bounded by cε3CKβ (1+ t)−d/2. This initializes the inductive proof of
(4.36) for N ≥ 1 with q = 0. Suppose that

∑

x P
(N−1)

t (x,B`(s)) is bounded by cε3(CKβ)
N−1(1 + t)−d/2.

Then, by (4.42) and Lemma 4.7,
∑

x P
(N)

t (x) is bounded by ε2(CKβ)
N (1+ t)−d/2 if CK is sufficiently large.

Note that the factor ε2 is used in applying Lemma 4.7, to approximate ε
∑•

s∈εZ+ by the Riemann sum.

Using Lemma 4.6, we then obtain
∑

x P
(N)

t (x,B`(s)) ≤ cε3(CKβ)
N (1 + t)−d/2. This completes the proof

of (4.36).
To prove (4.37), we first use Lemma 4.6 to obtain

∑

x P
(N)

t (x,B`
spat(s)) ≤ cε3(CKβ)

N (1 + t)−d/2 for

every s ≤ t, where ` is an nth admissible line. Then, we sum the bound over s ∈ [0, t]∩ εZ+ to obtain the
desired bound in (4.37). Note that the factor ε is used in an approximation by the Riemann sum. This
completes the proof.

Proof of Lemma 4.5. The inequality (4.38) immediately follows from (2.29) and the properties of D. To
prove (4.39)–(4.40), we use

(τs ∗D)(x) ≤ (1− ε)s/εD(x) + λε

s/ε
∑

j=1

(1− ε)j−1(D ∗ τs−jε ∗D)(x), (4.44)

and

τs(x) ≤ (1− ε)s/εδo,x + λs(1− ε)s/ε−1D(x) + λ2ε

s/ε
∑

j=2

(j − 1)ε (1− ε)j−2(D ∗ τs−jε ∗D)(x). (4.45)
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where (1− ε)n is the probability that (o, 0) is connected to (o, nε) along the temporal axis. Since the first
term in (4.44) and the second term in (4.45), multiplied by |x|q, are both bounded by cσqβ (1+s)−(d−q)/2

for any x ∈ Zd, we only need to consider the last terms in (4.44)–(4.45).
We fix r ∈ (0, 1) and use (2.29) to bound the second term in (4.44) by

λε

rs/ε
∑

j=1

Kβ (1− ε)j−1
(1 + s− jε)d/2 + λε

s/ε
∑

j=rs/ε

Kβ (1− ε)j−1
(1 + s− jε)d/2 ≤

cβ

(1 + s)d/2
. (4.46)

By the same argument, the third term in (4.45) can be bounded by cβ (1 + s)−d/2. This completes the
proof of (4.39)–(4.40) for q = 0.

For |x|2 times the second term in (4.44) or the third term in (4.45), we have

|x|2(D ∗ τs ∗D)(x) ≤ 2
∑

y

(|y|2 + |x− y|2) (D ∗ τs/2)(y) (τs/2 ∗D)(x− y)

≤ 4‖D ∗ τs/2‖∞
∑

x

|x|2(τs/2 ∗D)(x). (4.47)

Applying (4.44) to ‖D ∗ τs/2‖∞, using (2.29), and then separating the sum over j as in (4.46), we obtain
(4.39)–(4.40) for q = 2. This completes the proof of Lemma 4.5.

Proof of Lemma 4.6. By the convention used in (4.24), for s = t we have

∑

x,y

ft(x,B
`(y, t)) =

∑

x

ft(x,B
`(x, t)) ≤

∑

x

∑

`

ft(x,B
`(x, t)) =

∑

x

2λεft(x) ≤ 2λεF (t), (4.48)

where
∑

` is the sum over the admissible lines arriving at (x, t). For s < t, Construction B`(s) replaces
the diagram line `, say τt(x), by λε(τs ∗ D ∗ τt−s−ε)(x) + λε(1 − ε)(τs ∗ τt−s−ε)(x). By Lemma 4.5 and
(2.29), we obtain

λε‖τs ∗D ∗ τt−s−ε‖1 = λε‖τs ∗D‖1 ‖τt−s−ε‖1 ≤ λεC4.5K, (4.49)

λε‖τs ∗D ∗ τt−s−ε‖∞ ≤ λε‖τs∨(t−s−ε) ∗D‖∞ ‖τs∧(t−s−ε)‖1 ≤ λε
2d/2C4.5K

(1 + t)d/2
, (4.50)

where C4.5 is the constant in Lemma 4.5, and we use s ∨ (t − s − ε) ≥ t/2 to obtain the last inequality.
The l1 and l∞ norms of λε(1− ε)(τs ∗ τt−s−ε)(x) can be estimated in the same way. Therefore, the effect
of Construction B`(s) is to obtain, at worst, an additional constant CKε = 21+d/2C4.5λε in a bound. This
completes the proof.

Proof of Lemma 4.7. We prove (4.41) for a ∧ b ≥ 0 and for a ∧ b < 0 separately.
Let a∧ b ≥ 0. Separating the sum over s1 into

∑•
0≤s1≤t/2 and

∑•
t/2<s1≤t, and using s2 ≥ t− s1 ≥ t/2

in the former sum, we can bound the left-hand side of (4.41) by

c

(1 + t)b

t/2
∑•

s1=0

ε

(1 + s1)a−1
+

c

(1 + t)a

t
∑•

s1=t/2

t
∑•

s2=t−s1

ε2

(1 + s2)b
, (4.51)

where the first term is bounded by c′(1 + t)−b−(a−2)∧0+κa , where κa is an arbitrarily small but positive
number if a = 2, otherwise κa = 0. Also, the double sum in (4.51) is

t
∑•

s2=0

ε

(1 + s2)b

t
∑•

s1=t/2∨(t−s2)
ε ≤

t
∑

s2=0

ε

(1 + s2)b−1
≤ c

(1 + t)(b−2)∧0−κb
, (4.52)
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where κb is an arbitrarily small but positive number if b = 2, otherwise κb = 0. This completes the proof
of (4.41) for a ∧ b ≥ 0.

Next, we consider the case a ∧ b < 0. Due to the symmetry of the left-hand side of (4.41) in terms of
s1, s2, we suppose b < a ∧ 0. Then, we use the trivial inequality (1 + s2)

−b ≤ (1 + t)−b. The remaining
term equals ε

∑•
0≤s1≤t s1 (1 + s1)

−a and is bounded by c (1 + t)−(a−2)∧0+κa . This completes the proof of
(4.41) for a ∧ b < 0, and hence the proof of Lemma 4.7.

4.3 Estimate of the diagram functions at and below four dimensions

In this section, we bound the diagram functions for d ≤ 4 by using their inductive construction in (4.19)
and (4.24)–(4.25) as well as Lemmas 4.5–4.7, as in the proof of Lemma 4.4 in Section 4.2, but we replace
σ and β in Lemma 4.5 by σT and βT , respectively.

Lemma 4.1(ii) is an immediate consequence of Lemma 4.3 and the following lemma:

Lemma 4.8. Let d ≤ 4 with α = bd− 4−d
2 > 0, µ ∈ (0, α) and t ≤ T log T , and suppose that (2.29) holds

for some λ0 and all s ≤ t. Then, there are β0 > 0 and CK <∞ such that, for λ ≤ λ0, β1 < β0, s ∈ εZ+
with 2ε ≤ s ≤ t+ ε, and q = 0, 2, 4,

∑

x

|x|q P (N)s (x) ≤ ε2CKβT (CKβ̂T )
0∨(N−1)σqTN

q/2

(1 + s)(d−q)/2
, for N ≥ 0, (4.53)

∑

x

P̃ (N ;n)s (x) ≤ ε2CKβT (CKβ̂T )
N−1

(1 + s)(d−2)/2
, for N ≥ n ≥ 1, (4.54)

where βT = β1T
−bd and β̂T = β1T

−µ.

Proof. The proof is almost the same as that of Lemma 4.4. The only difference arises when we apply
Lemma 4.7. Let N ≥ 1 and suppose that the quantity in the first brackets in (4.43) is bounded by
cε3CKβT (Cβ̂T )

N−1(1 + t)−d/2, where β̂T = β1T
−µ with µ ∈ (0, α). Then, by Lemma 4.7 and (4.42) with

β replaced by βT , the right-hand side of (4.43) for d ≤ 4 is bounded by

cε2CKβ
2
T (CKβ̂T )

N−1

(1 + t)
d
2
∧(d−2)−κ

= cβ1T
−bd(1 + t)(4−d)/2+κ

ε2CKβT (CKβ̂T )
N−1

(1 + t)d/2
, (4.55)

where κ is an arbitrarily small but positive number if d = 4, otherwise κ = 0. Since t ≤ T log T and
−bd + 4−d

2 = −α < −µ, the factor in front of the fraction in the right-hand side is bounded by CKβ̂T if
CK is sufficiently large, and thus we obtain (4.53) with q = 0.

For (4.53) with q = 2 and (4.54), we use Lemma 4.7 as in (4.55), with (a, b) = ( d2 ,
d−2
2 ), to obtain the

factor

βT

(1 + t)(d−2)/2∧(d−3)−κ
=
β1T

−bd(1 + t)(4−d)/2+κ

(1 + t)(d−2)/2
≤ cβ̂T

(1 + t)(d−2)/2
. (4.56)

To prove (4.53) for q = 4, we apply Lemma 4.7 as above, with (a, b) = ( d2 ,
d−4
2 ) and (d−22 , d−22 ). This

completes the proof.

4.4 Finite containment

In this section, we prove that π(N)t (x) can be approximated by

π(N)t (x |R) =
∑

~bN

P
(

Ẽ(N)~bN
(x) ∩ {C[0,t] ⊂ ¤R}

)

, (4.57)
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where x = (x, t), ¤R = [−R,R]d ∩ Zd and

C[0,t] =

t
⋃

s=0

Cs(o), Cs(y) = {z ∈ Zd : y −→ (z, s)}. (4.58)

We will also use the abbreviation Cs = Cs(o). More precisely, we prove below that

π(N)t (x) = π(N)t (x |R) + o(1) ε2, (4.59)

where o(1) is independent of ε and decays to zero as R → ∞, by using the estimates for the diagram
functions in Sections 4.1–4.3. This is a refined version of the finite containment argument used in proving
the uniformity of (3.38), and will be useful in dealing with the continuum limit in Section 6.

Proof. First, we note that

0 ≤ π(N)t (x)− π(N)t (x |R) ≤
∑

~bN

t
∑•

s=ε

P
(

Ẽ(N)~bN
(x) ∩ {C[0,s−ε] ⊂ ¤R, Cs 6⊂ ¤R}

)

≤
∑

~bN

t
∑•

s=ε

∑

u∈¤R
v/∈¤R

P
(

Ẽ(N)~bN
(x) ∩ {o −→ ((u, s− ε), (v, s))}

)

. (4.60)

Note that ((u, s − ε), (v, s)) is a spatial bond, since u ∈ ¤R and v /∈ ¤R. The event in the rightmost
expression is included in the union of two events: (i) o −→ ((u, s−ε), (v, s)) −→ x, or (ii) there is a vertex
(w, r) ∈ ¤R × [0, s) such that o −→ (w, r) −→ x and that (w, r) −→ ((u, s − ε), (v, s)) disjointly from
Ẽ(N)~bN

(x). The contribution from the case (i) and from the case (ii) with (w, r) = (u, s−ε) can be bounded

by
∑

`

∑•
s

∑

v/∈¤R P
(N)(x, B`(v, s)), where

∑

` is the sum over all admissible lines (i.e., the sum over

n = 1, . . . , N of the sum over the nth admissible lines), and where we modified Construction B`
spat(v, s)

by fixing the second endpoint (v, s), instead of fixing the first endpoint (u, s−ε) as defined in (4.20). This
bound, divided by ε2, decays as R → ∞ uniformly in ε, since the sum over x ∈ Zd of the unrestricted
sum

∑

`

∑•
s P

(N)(x, B`(s)) is bounded, by using Lemma 4.6, by cε2t (1 + t)−d/2.
The contribution from the case (ii) with (w, r) 6= (u, s− ε) can be bounded by

∑

`

t
∑•

s=ε

s−ε
∑•

r=0

∑

w∈¤R
P (N)(x, B`(w, r))

∑

v/∈¤R

(τs−ε−r ∗ λεD)(v − w), (4.61)

where we relabelled the second endpoint of the spatial bond in (4.21) as (w, r). For w ∈ ¤R/2, we use
∑

w∈¤R/2

P (N)(x, B`(w, r))
∑

v/∈¤R

(τs−ε−r ∗D)(v − w) (4.62)

≤ P (N)(x, B`(r)) sup
w∈¤R/2

∑

v/∈¤R

(τs−ε−r ∗D)(v − w) ≤ P (N)(x, B`(r))
∑

z /∈¤R/2

(τs−ε−r ∗D)(z),

and for w ∈ ¤R \¤R/2, we use
∑

w/∈¤R/2

P (N)(x, B`(w, r))
∑

v/∈¤R

(τs−ε−r ∗D)(v − w) ≤ ‖τs−ε−r ∗D‖1
∑

w/∈¤R/2

P (N)(x, B`(w, r)). (4.63)

By Lemma 4.5, we have ‖τs−ε−r ∗D‖1 ≤ CK , so that
∑

z /∈¤R/2(τs−ε−r ∗D)(z) decays to zero as R→∞,

independently of ε. In addition, by Lemma 4.6, we have
∑

` P
(N)(x, B`(r)) ≤ cε3(1 + t)−d/2, so that

∑

`

∑

w/∈¤R/2 P
(N)(x, B`(w, r)) ≤ o(1) ε3(1 + t)−d/2. Since there is another factor of ε in the summand of

(4.61), while there are two summations over εZ+ in (4.61), we conclude that (4.61) is o(1) ε2t2(1+ t)−d/2.
This completes the proof of (4.59).
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5 Inductive argument

In this section, we prove Proposition 2.1 by applying the inductive method of [19] for self-avoiding walk
in Zd and for oriented percolation in Zd × Z+, to the recursion equation (5.1) for oriented percolation in
Zd × εZ+. To consider the case of ε ¿ 1, we will modify the induction hypotheses to incorporate the
dependence on ε. We expect that a similar method could be used for continuous-time weakly self-avoiding
walk above its upper critical dimension.

First, we consider d > 4 in Sections 5.1–5.3. In Section 5.1, we give the modified version of the
induction hypotheses. In Section 5.2, we show several consequences of the induction hypotheses, mainly
the bounds in (2.29). In Section 5.3, we prove Proposition 2.1. We complete this section by proving the
results for d ≤ 4 in Section 5.4. Since a similar strategy applies to the lower-dimensional case, we only
discuss the necessary changes.

5.1 Induction hypotheses

5.1.1 General assumptions

In Section 3.1, we derived the recursion equation (3.28) for the two-point function. Taking the Fourier
transform with respect to the spatial component, we obtain (2.33), i.e.,

τ̂t+ε(k) =

t
∑•

s=0

π̂s(k) p̂ε(k) τ̂t−s(k) + π̂t+ε(k). (5.1)

The probability distribution D : Zd 7→ [0, 1] satisfies the assumptions in Section 1.2. In addition, we
assume that there exists η > 0 such that

a(k) ≡ 1− D̂(k)

{

³ L2|k|2, if ‖k‖∞ ≤ L−1,
> η, if ‖k‖∞ > L−1,

a(k) < 2− η ∀k ∈ [−π, π]d, (5.2)

where a ³ b means that the ratio a/b is bounded away from zero and infinity. These assumptions
correspond to Assumption D in [19].

If we replace t by nε, and write

fn(k) = τ̂nε(k), en(k) = π̂nε(k), gn+1(k) = π̂nε(k) p̂ε(k), (5.3)

where the dependence on λ is left implicit, then (5.1) equals

fn+1(k) =
n
∑

m=0

gm+1(k) fn−m(k) + en+1(k), (5.4)

with f0(k) = 1. This is equivalent to the recursion relation (1.1) in [19]. The only difference is

f1(k) = g1(k) = p̂ε(k) = 1− ε+ λεD̂(k), (5.5)

whereas in [19], f1(k) = g1(k) = λD̂(k). This change leads to a modification of the induction hypotheses
in [19], the main reason being that we need to prove uniformity in ε. Further technical changes are
explained in Section 5.1.2.

5.1.2 Statement of the induction hypotheses

Fix γ, δ and ρ according to

−(2 + ρ) < 0 < d
2 − (2 + ρ) < γ < γ + δ < 1 ∧∆ ∧ d−4

2 . (5.6)
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We define λn recursively by λ0 = λ1 = 1 and, for n ≥ 2,

λn = 1− 1

ε

n
∑

l=2

gl(0;λn−1), (5.7)

where we explicitly write the dependence on λn−1 of gl(0). Let

In = λn +
K1β

(1 + nε)(d−2)/2
[−1, 1], (5.8)

and define vn = vn(λ) by v0 = v1 = λ and, for n ≥ 2,

vn =
λ− 1

σ2ε

∑n
l=2∇2gl(0)

1 +
∑n

l=2(l − 1) gl(0)
. (5.9)

Let K1, . . . ,K5 be some positive and finite constants that are independent of β and ε, and are related by

K3 À K1 À K4 À 1, K2,K5 À K4. (5.10)

The induction hypotheses are that the following (H1)–(H4) hold for all λ ∈ In and m = 1, . . . , n.

(H1)–(H2)

|λm − λm−1| ≤
εK1β

(1 +mε)d/2
, |vm − vm−1| ≤

εK2β

(1 +mε)(d−2)/2
, (5.11)

(H3) For k ∈ Am ≡ {k : a(k) ≤ γ log(2+mε)1+mε }, fm(k) can be written in the form

fm(k) =

m
∏

l=1

[1− εvl a(k) + ε rl(k)], (5.12)

where rl(k) obeys the bounds

|rl(0)| ≤
K3β

(1 + lε)(d−2)/2
, |rl(k)− rl(0)| ≤

K3β a(k)

(1 + lε)δ
. (5.13)

(H4) For k /∈ Am, fm(k) obeys the bounds

|fm(k)| ≤
K4 a(k)

−2−ρ

(1 +mε)d/2
, |fm(k)− fm−1(k)| ≤

εK5 a(k)
−1−ρ

(1 +mε)d/2
. (5.14)

Instead of (5.12), we can alternatively write fm(k) as

fm(k) = fm(0)
m
∏

l=1

[1− εvl a(k) + ε sl(k)], (5.15)

where

fm(0) =
m
∏

l=1

[1 + ε rl(0)], sl(k) =
εvl rl(0) a(k) + [rl(k)− rl(0)]

1 + ε rl(0)
. (5.16)

The induction hypothesis (H3) implies

|sl(k)| ≤
εvl|rl(0)|a(k) + |rl(k)− rl(0)|

1− ε|rl(0)|
≤ (1 + εvl)K3β a(k)

(1− εK3β)(1 + lε)δ
. (5.17)

In some cases, we will use (5.15)–(5.17), instead of (5.12)–(5.13). Moreover, by (5.15) and spatial sym-
metry, we obtain

∇2fm(0) = fm(0) ε
m
∑

l=1

[−vlσ2 +∇2sl(0)
]

. (5.18)

The advancement of the induction hypotheses is a small modification of that in [19], which we add to
keep this paper self-contained. The advancement is deferred to Appendix A.
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5.2 Consequences of the induction hypotheses

We assume β ¿ 1 and use c to denote a positive and finite constant that may depend on d, γ, δ, ρ, but
not on Ki, k, n, β, ε. The value of c may change from line to line.

The following four lemmas, corresponding respectively to [19, Lemmas 2.1, 2.2, 2.4, 2.3], are conse-
quences of the induction hypotheses (H1)–(H4) for d > 4.

Lemma 5.1. Assume (H1) for m = 1, . . . , n. Then, I0 ⊃ I1 ⊃ · · · ⊃ In.

Lemma 5.2. Let λ ∈ In and assume (H2)–(H3) for m = 1, . . . , n. For k ∈ Am,

|fm(k)| ≤ ecK3βe−mε[1−c(K1+K2+K3)β] a(k). (5.19)

Lemma 5.3. Let λ ∈ In and assume (H2)–(H3) for m = 1, . . . , n. Then,

|∇2fm(0)| ≤ [1 + c (K1 +K2 +K3)β]σ
2mε. (5.20)

Lemma 5.4. Let λ ∈ In and assume (H2)–(H4) for m = 1, . . . , n. Then,

‖D̂2fm‖1 ≤
c (1 +K4)β

(1 +mε)d/2
. (5.21)

The bounds (2.29) for s ≤ nε follow from Lemmas 5.2–5.4, if K À K4. The proofs of Lemmas 5.1–5.4
are almost identical to those of [19, Lemmas 2.1–2.4], and are deferred to Appendix A.

By Lemma 5.1, if λ ∈ Im for some m ≥ 0, then λ ∈ I0 and hence, by (5.8),

|λ− 1| ≤ K1β. (5.22)

It also follows that I∞ =
⋂∞
m=0 Im is a singleton λ∞. As discussed in [19, Theorem 1.2], we obtain

λ∞ = λ(ε)c . Moreover, it follows from the second inequality of (5.11) that, for λ ∈ Im,

|vm − 1| ≤
m
∑

l=1

|vl − vl−1|+ |v0 − 1| ≤
m
∑

l=1

εK2β

(1 + lε)(d−2)/2
+ |λ− 1| ≤ (cK2 +K1)β. (5.23)

We note that the factor ε in the numerator is necessary to approximate the sum by the Riemann sum
when ε is small. The factors of ε in (5.11)–(5.14) are incorporated for the same reason.

5.3 Proof of Proposition 2.1

Fix λ = λ(ε)c , so that the induction hypotheses (H1)–(H4) and Lemmas 5.1–5.4 hold for all m ∈ N. From
now on, we suppress the dependence on ε and write λc = λ(ε)c , A = A(ε) and v = v(ε).

Note that, by (5.11)–(5.13), we have that, for n < m,

|fn(0)− fm(0)| =
n
∏

l=1

[1 + εrl(0)]

∣

∣

∣

∣

1−
m
∏

l=n+1

[1 + εrl(0)]

∣

∣

∣

∣

≤ cK3β

(1 + nε)(d−4)/2
, (5.24)

|vn − vm| ≤
m
∑

l=n+1

|vl − vl−1| ≤
cK2β

(1 + nε)(d−4)/2
, (5.25)

so that {fn(0)}∞n=1 and {vn}∞n=1 are Cauchy sequences. Therefore, the limits A = limn→∞ fn(0) and
v = limn→∞ vn exist, and satisfy

|fn(0)−A| ≤
cK3β

(1 + nε)(d−4)/2
, |vn − v| ≤

cK2β

(1 + nε)(d−4)/2
. (5.26)
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In particular, by Lemma 5.2 and (5.23), both A and v are equal to 1 +O(β).

Let t = nε and k̃ = k√
vσ2t
∈ An. By (1.2), a(k̃) = |k|2

2dvt +O(|k|2+2∆t−1−∆). Using (5.15), (5.17), (5.26)

and δ < 1 ∧ d−4
2 , we obtain

fn(k̃) =

[

A+
O(β)

(1 + t)(d−4)/2

] n
∏

l=1

[

1− ε
[

v +
O(β)

(1 + lε)δ

]

a(k̃)

]

=

[

A+
O(β)

(1 + t)(d−4)/2

][

1− vt a(k̃)

n

]n n
∏

l=1

[

1− εO(β) a(k̃)

(1 + lε)δ

]

=

[

A+
O(β)

(1 + t)(d−4)/2

]

e−
|k|2

2d
+O(|k|2+2∆t−∆)+O(ε|k|4t−1)

[

1 + ε

t/ε
∑

l=1

O(β|k|2t−1)
(1 + lε)δ

]

= Ae−
|k|2

2d

[

1 +
O(β)

(1 + t)(d−4)/2
+O(|k|2+2∆t−∆) +O(ε|k|4t−1) + O(β|k|2)

(1 + t)δ

]

, (5.27)

where the last error term follows from

ε

t/ε
∑

l=1

O(t−1)
(1 + lε)δ

= O(t−1)
[

(1 + t)1−δ − 1
]

= O((1 + t)−δ), (5.28)

for δ < 1. Using |k|2
t ≤ c

log(2+t)
1+t for small k̃ ∈ An and δ < 1 ∧∆, we have

O(|k|2+2∆t−∆) ≤ O(|k|2)
[ log(2 + t)

1 + t

]∆
≤ O(|k|2)

(1 + t)δ
, (5.29)

O(ε|k|4t−1) ≤ O(ε|k|2) log(2 + t)

1 + t
≤ O(ε|k|2)

(1 + t)δ
. (5.30)

By (5.27)–(5.30), we obtain (2.4).
Let e1, . . . , ed denote the standard basis vectors in Rd. Then, by (5.17),

|∇2sl(0)| =
∣

∣

∣

∣

d
∑

i=1

lim
h→0

sl(hei)− sl(0)
h2

∣

∣

∣

∣

≤ cK3β

(1 + lε)δ

∣

∣

∣

∣

d
∑

i=1

lim
h→0

a(hei)

h2

∣

∣

∣

∣

=
cK3σ

2β

(1 + lε)δ
. (5.31)

Since δ < 1 ∧ d−4
2 , it follows from (5.18), (5.26), (5.28) and (5.31) that

−∇
2fn(0)

fn(0)
= vσ2t [1 +O(β) (1 + t)−δ], (5.32)

which is (2.5).
The upper bound in (2.6) is an immediate consequence of (4.40). For the lower bound, we consider

the case of t ≥ 1 and the case of t < 1, separately. When t ≥ 1, we follow the proof of [19, Corollary 1.4]
for oriented percolation. In this case, we use (2.4) and obtain the lower bound of the form cL−dt−d/2.
When t < 1, we use the trivial inequality

‖τt‖∞ ≥ ‖pε‖t/ε∞ ≥ [(1− ε) ∨ (λε‖D‖∞)]t/ε, (5.33)

which can be bounded from below by an ε-independent multiple of L−d(1 + t)−d/2. This completes the
proof of Proposition 2.1.

Finally, we derive the expressions (2.34)–(2.35) for λc, A and v. Recall (5.3). The expressions for
λc and v immediately follow from (5.7), (5.9) and the fact that λc = λ∞. To derive the expression for
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A = limn→∞ fn(0), we follow the same strategy as in [19, p.424]. Let FN = ε
∑N

n=0 fn(0), which can be
approximated by ANε as N → ∞. Summing the recursion equation (5.4) with k = 0, multiplied by ε,
over n = 0, . . . , N − 1, and using f0(0) = 1, e1(0) = 0, g1(0) = 1+ (λc− 1)ε and the expression for λc, we
have

FN = g1(0)FN−1 +
N
∑

n=2

gn(0)FN−n + ε
N
∑

n=2

en(0) + ε

= FN−1 −
∞
∑

n=2

gn(0)FN−1 +
N
∑

n=2

gn(0)FN−n + ε
N
∑

n=2

en(0) + ε. (5.34)

Taking the limit N →∞ of fN(0) =
FN−FN−1

ε , with the help of the bound (2.30), we obtain

A = −A
∞
∑

n=2

(n− 1)gn(0) +
∞
∑

n=2

en(0) + 1. (5.35)

which, with the help of (5.3), gives the expression for A in (2.35). This completes the derivation of
(2.34)–(2.35).

5.4 Discussion on changes below and at four dimensions

In dimensions d ≤ 4, the induction analysis in Sections 5.1–5.3 no longer works as long as the infection
range is fixed, and we need to incorporate the factor LT = L1T

b into the induction hypotheses.
Recall α = bd− 4−d

2 > 0, and let ω ∈ (δ, 1 ∧ α) and β̂T = β1T
−µ with µ ∈ (0, α− ω). We again define

λn = λn(T ) and vn = vn(λ) by (5.7) and (5.9), respectively, where we emphasize the dependence on T of
λn. However, we replace (5.6), (5.8), (5.11) and (5.13), respectively, by

−(2 + ρ) < 0 < d
2 − (2 + ρ) < γ < γ + δ < ω ∧∆, (5.36)

In = λn +
K1β̂T

(1 + nε)1+ω
[−1, 1], (5.37)

|λm − λm−1| ≤
εK1β̂T

(1 +mε)2+ω
, |vm − vm−1| ≤

εK2β̂T
(1 +mε)1+ω

, (5.38)

|rm(0)| ≤
K3β̂T

(1 +mε)1+ω
, |rm(k)− rm(0)| ≤

K3β̂T
(1 +mε)δ

a(k). (5.39)

The induction hypotheses are that (H1)–(H4) hold for all λ ∈ In and m = 1, . . . , n, where we assume that
nε ≤ T log T . It suffices to prove the main statement for sufficiently small β1 > 0, i.e., for sufficiently
large initial infection ranges L1.

We now discuss the induction hypotheses. One of the key ingredients in the induction is the fact that
the intervals In are decreasing in n ≤ T

ε log T . This implies that we can use the bounds following from
(H1)–(H4) in the advancement of the induction hypotheses. One would expect that one could choose
In = λn +K1βT (1 + nε)−(d−2)/2[−1, 1], i.e., by simply replacing β in (5.8) by βT . However, to obtain a
decreasing sequence of In, it is required for the power exponent (d− 2)/2 in the width of In to be greater
than 1, and it is not the case when d ≤ 4 (cf., the proof of Lemma 5.1 in Appendix A). To satisfy this
requirement, we transfer some power exponent of βT as

βT

(1 + nε)(d−2)/2
=
β1T

−db(1 + nε)(4−d)/2+ω

(1 + nε)1+ω
≤ cβ1T

−µ

(1 + nε)1+ω
, (5.40)

for T ≥ 1, where we use nε ≤ T log T and −bd + 4−d
2 + ω = −(α − ω) < −µ. This is the motivation of

the changes in (5.37)–(5.39).
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By the above changes, (5.22)–(5.23) are modified by replacing β with β̂T . We have that λ and vm(λ)
are both 1+O(β̂T ) for λ ∈ Im andm = 1, . . . , n with nε ≤ T log T . Similarly, we replace β in Lemmas 5.2–
5.3 and Lemma 5.4 by β̂T and βT , respectively, although the proofs of these lemmas remain unchanged.
However, the proof of the main result does change, due to the fact that the constants A and v for d > 4
are replaced by 1, and the fact that there is no unique limit of

⋂n
m=1 Im.

Proof of Proposition 2.2. Let n ≤ T
ε log T and λ ∈ In. In particular, the following results hold at λ = λT ,

which is defined as

λT = λT
ε log T

(T ) = 1− 1

ε

T
ε
log T
∑

l=2

gl(0;λT
ε log T−1

(T )). (5.41)

By (5.39), we can bound |fn(0)− 1| by
∣

∣

∣

∣

n
∏

m=1

[1 + εrm(0)]− 1

∣

∣

∣

∣

≤ ε
n
∑

m=1

|rm(0)|
n
∏

l=m+1

[1 + ε|rl(0)|] ≤ ε
n
∑

m=1

K3β̂T e
ε

∑n
l=m+1 |rl(0)|

(1 +mε)1+ω
≤ cK3β̂T , (5.42)

which proves that the asymptotic expected number of infected individuals is 1. Also, using (5.23) and
(5.38), we have vn = 1 +O(β̂T ), which means that the asymptotic diffusion constant is 1.

Let n = Tt/ε with t ≤ log T and k̃ = k√
σ2TTt

∈ An. By (1.2), a(k̃) = |k|2
2dT t + O(|k|2+2∆(Tt)−1−∆).

Therefore,

fn(k̃) = [1 +O(β̂T )]

[

1− [1 +O(β̂T )]
Tt a(k̃)

n

]n

= e−
|k|2

2d
[

1 +O(β̂T ) +O(|k|2+2∆(Tt)−∆) +O(ε|k|4(Tt)−1)
]

. (5.43)

By (5.29)–(5.30) for small k̃, the last two error terms can be replaced by O(|k|2(1 + Tt)−δ). This proves
(2.7).

Using (5.18) and (5.31) as well as vn = 1+O(β̂T ), we obtain (2.8). The proof of (2.9) does not depend
on d, and is the same as in Section 5.3. This completes the proof of Proposition 2.2.

6 Continuum limit

In this section, we compute the limit of the lace expansion coefficients as ε ↓ 0, and prove Proposition 2.6.
We prove below convergence of 1

ε2
πλt;ε(x) for t/ε ∈ [2,∞) ∩ Z+ with a fixed λ ≤ λc, and then extend

this to 1
ε2
∂λπ

λ
t;ε(x). The proof of the continuity in λ of ∂λπ

λ
t (x) = limε↓0

1
ε2
∂λπ

λ
t;ε(x) is more or less

immediate from its finite containment property that is similar to the one for the discretized contact
process in Section 4.4, and this will be discussed briefly at the end of this section. These statements
imply convergence of 1

ε2
πλ
(ε)

t;ε (x) whenever λ(ε) → λ such that λ(ε) ≤ λ(ε)c for ε sufficiently small. Indeed,
for any λ0 < λ ≤ λc, we can write

∣

∣

∣

∣

1

ε2
πλ
(ε)

t;ε (x)− πλ0t (x)

∣

∣

∣

∣

≤ 1

ε2
∣

∣πλ
(ε)

t;ε (x)− πλ0t;ε(x)
∣

∣+

∣

∣

∣

∣

1

ε2
πλ0t;ε(x)− πλ0t (x)

∣

∣

∣

∣

. (6.1)

The second term in (6.1) converges to zero by assumption, while we estimate the first term by

1

ε2
∣

∣πλ
(ε)

t;ε (x)− πλ0t;ε(x)
∣

∣ ≤
∫ λ(ε)

λ0

dλ′
1

ε2
∣

∣∂λ′π
λ′

t;ε(x)
∣

∣, (6.2)

where we use λ0 ≤ λ(ε)c for sufficiently small ε, which is due to the fact that λ(ε)c converges to λc > λ0.
Since the integrand is uniformly bounded (even when we sum over x) by Cβ(1 + t)−(d−2)/2, the limsup
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of the integral when ε ↓ 0 is bounded by a multiple of λ − λ0. By taking the limit λ0 ↑ λ and using the
fact that ∂λπ

λ
t (x) is continuous in λ, the first expression in (2.36) follows. Therefore, we are left to prove

convergence of 1
ε2
πλt;ε(x) and

1
ε2
∂λπ

λ
t;ε(x) for every λ ≤ λc and the continuity in λ of ∂λπ

λ
t (x).

We prove below that, for every N ≥ 0, λ ≤ λc and (x, t), there is a π(N)t (x) such that

lim
ε↓0

1

ε2
π(N)t;ε (x) = π(N)t (x), (6.3)

where we suppress the dependence on λ. That is, we will deal with pointwise convergence, rather than
the uniform bounds in Section 4 which are valid for all (x, t) and ε ≤ 1, and hence all terms which are
o(1) as ε ↓ 0 will be estimated away. By this pointwise convergence, together with the uniform bounds in
Section 4 and the dominated convergence theorem, we have

lim
ε↓0

1

ε2
πλt;ε(x) = lim

ε↓0

∞
∑

N=0

(−1)N 1

ε2
π(N)t;ε (x) =

∞
∑

N=0

(−1)Nπ(N)t (x) = πλt (x). (6.4)

This completes the proof of the pointwise convergence of 1
ε2
πλt;ε(x). The proof of the convergence of

1
ε2
∂λπ

λ
t;ε(x) is similar, and we will only discuss the necessary changes.

The proof of (6.3) is divided into several steps.

Statement of the induction hypothesis. Given a site set C ⊂ Zd (which may be an empty set), we
define

π(N)t;ε (x; C) =
∑

~bN

Pλε
(

Ẽ(N)~bN
(x, t) ∩

{

Ct(bN) \ {x} = C
})

, (6.5)

where we recall Ẽ(0)~b0
(x, t) = {(o, 0) =⇒ (x, t)}, b0 = (o, 0) and the notation (4.58) for Ct(bN). We will use

induction in N to prove that, for every t > 0, there is a π(N)t (x; C) such that

lim
ε↓0

1

ε2
π(N)t;ε (x; C) = π(N)t (x; C). (6.6)

The claim for π(N)t;ε (x) in (6.3) then follows by summing over C ⊂ Zd, together with the fact that the main
contribution comes from C ⊂ ¤R by the finite containment property in Section 4.4.

Initialization of the induction. First, we investigate N = 0. For S1,S2,A ⊂ Zd × εZ+, we denote

{S1 −→ S2} =
⋃

s1∈S1
s2∈S2

{s1 −→ s2}, {S1 =⇒ S2} =
⋃

s1,s′1∈S1
s2,s′2∈S2

{s1 −→ s2} ◦ {s′1 −→ s′2}, (6.7)

and define

Ct(A) = {x ∈ Zd : A −→ (x, t)} =
⋃

a∈A
Ct(a), C(A) =

⋃

t≥0
Ct(A). (6.8)

Using the Markov property at time ε, we arrive at

π(0)t;ε(x; C) =
∑

A⊂Zd:|A|≥2

[

∏

a∈A
pε(a)

][

∏

a/∈A
[1− pε(a)]

]

× Pλε
(

∃ a, a′(6= a) ∈ A : {(a, ε) −→ (x, t)} ◦ {(a′, ε) −→ (x, t)}
Ct(A× {ε}) \ {x} = C

)

, (6.9)
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Since every pε(a) for a 6= o gives rise to a factor of ε, we immediately see that the main contribution
comes from A = {o, y} for some y 6= o. Therefore, we obtain

1

ε
π(0)t;ε(x; C) =

∑

y∈Zd
λD(y) Pλε

(

{(o, ε) −→ (x, t)} ◦ {(y, ε) −→ (x, t)}
Ct({(o, ε), (y, ε)}) \ {x} = C

)

+ o(1)

=
∑

y∈Zd
λD(y) Pλε

(

{(o, 0) −→ (x, t)} ◦ {(y, 0) −→ (x, t)}
Ct({(o, 0), (y, 0)}) \ {x} = C

)

+ o(1)

=
∑

y∈Zd
λD(y) Pλε

(

{(o, 0), (y, 0)} =⇒ (x, t)
Ct({(o, 0), (y, 0)}) \ {x} = C

)

+ o(1), (6.10)

where the second equality is due to the fact that ((o, 0), (o, ε)) or ((y, 0), (y, ε)) is vacant (with probability
(2 − ε)ε) in the symmetric difference between the events on both sides of the equality, and the third
equality is due to the fact that the double connection from (o, ε) or (y, ε) gives rise to an extra factor of
ε.

We repeat the same observation around (x, t) and obtain that, for every y ∈ Zd and C ⊂ Zd,

1

ε
Pλε

(

{(o, 0), (y, 0)} =⇒ (x, t)
Ct({(o, 0), (y, 0)}) \ {x} = C

)

=
∑

z∈Zd
λD(x− z) Pλε

(

{(o, 0), (y, 0)} =⇒ {(x, t), (z, t)}
Ct({(o, 0), (y, 0)}) \ {x} = C

)

+ o(1). (6.11)

Substituting (6.11) into (6.10) and using the weak convergence of Pλε towards Pλ as formulated in [4,
Proposition 2.7], we obtain

lim
ε↓0

1

ε2
π(0)t;ε(x; C) =

∑

y,z∈Zd
λ2D(y)D(x− z) Pλ

(

{(o, 0), (y, 0)} =⇒ {(x, t), (z, t)}
Ct({(o, 0), (y, 0)}) \ {x} = C

)

. (6.12)

Here and in the rest of this section, we use “−→” and “=⇒” to denote connections in Zd × R+, via the
graphical representation in Section 2.1. This completes the proof of (6.6) for N = 0, with π(0)t (x; C) for
t > 0 defined to be the right-hand side of (6.12).

Preliminaries for the advancement. To advance the induction hypothesis, we first note that, by
using the finite containment property of Section 4.4 and the Markov property at the time component of
bN , we have

1

ε2
π(N)t;ε (x; C) =

1

ε2

∑

~bN

Pλε
(

Ẽ(N−1)~bN−1
(bN) ∩ E(bN , (x, t); C̃

bN (bN−1)) ∩
{

Ct(bN) \ {x} = C
}

)

=
1

ε2

t
∑•

s=ε

∑

y∈Zd

∑

~bN :bN=(y,s−ε)

∑

C′⊂¤R:C′3y
Pλε

(

Ẽ(N−1)~bN−1
(y, s− ε) ∩ {Cs−ε(bN−1) = C′}

)

× Pλε
(

E
(

bN , (x, t); C̃
bN (C′ × {s− ε})

)

∩
{

Ct(bN) \ {x} = C
}

)

+ o(1), (6.13)

where, similarly to (6.8), we write C̃bN (C′ × {s− ε}) = ⋃

v∈C′ C̃
bN (v, s− ε), and o(1) is independent of ε

and decays to zero as R → ∞. We now investigate the second probability in (6.13) when C ′ = {y} and
when C′ ) {y}, separately.
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When C′ = {y}, we recall the definitions (3.13)–(3.14) and use the Markov property at time s, similarly
to the discussion around (6.9)–(6.10), to obtain that

∑

bN :bN=(y,s−ε)

1

ε
Pλε

(

E(bN , (x, t); C̃
bN (y, s− ε)) ∩

{

Ct(bN) \ {x} = C
}

)

=
∑

y′∈Zd\{y}
λD(y′ − y)

[

Pλε
(

E′
(

(y, s), (x, t);C(y′, s)
)

∩
{

Ct(y, s) \ {x} = C
}

)

+ Pλε
(

E′
(

(y′, s), (x, t);C(y, s)
)

∩
{

Ct(y
′, s) \ {x} = C

}

)

]

+ o(1), (6.14)

where o(1) decays to zero as ε ↓ 0, and the first probability in the brackets is the contribution from the
case in which bN is the temporal bond ((y, s− ε), (y, s)), while the second probability is the contribution
from the case in which bN is the spatial bond ((y, s− ε), (y′, s)). In (6.14), we also use the fact that, with
probability 1− o(1), C̃bN (y, s− ε)∩ (Zd× [s,∞)) equals C(y′, s) when bN = ((y, s− ε), (y, s)), and equals
C(y, s) when bN = ((y, s− ε), (y′, s)).

When C′ ) {y}, we again use the Markov property at time s, and then we use the fact that, with
probability 1− o(1), every temporal bond growing from each site in C ′ × {s− ε} is occupied, and all the
spatial bonds growing from the sites in C ′ × {s− ε} are vacant. Therefore, with probability 1− o(1), the
subset of C̃bN (C′ × {s− ε}) after time s equals C

(

(C′ \ {y})× {s}
)

, and we have

∑

bN :bN=(y,s−ε)
Pλε

(

E
(

bN , (x, t); C̃
bN (C′ × {s− ε})

)

∩
{

Ct(bN) \ {x} = C
}

)

= Pλε
(

E′
(

(y, s), (x, t);C
(

(C′ \ {y})× {s}
))

∩
{

Ct(y, s) \ {x} = C
}

)

+ o(1). (6.15)

To deal with the event E ′((y, s), (x, t);A× {s}) for A ⊂ Zd \ {y} in (6.14)–(6.15), we introduce some
notation. We define the set of sites that are connected from (y, s) via a path which does not go through
v by

C̃v(y, s) =
⋂

b=( · ,v)
C̃b(y, s). (6.16)

We also define

Es,t(y, x;A) =
⋃

v

{

{

v /∈ C(A× {s})
}

∩
{

(y, s) −→ v =⇒ (x, t) ∈ C(A× {s}) \ C̃v(y, s)
}

}

, (6.17)

Rs,t(y, x;A) =
⋃

v

{

{

A× {s} −→ v
}

◦
{

(y, s) −→ v =⇒ (x, t)
}

}

. (6.18)

By this notation, it is not hard to see that E ′((y, s), (x, t);A× {s}) is rewritten as

E′((y, s), (x, t);A× {s}) = Es,t(y, x;A) ∪̇ Rs,t(y, x;A). (6.19)

The contribution from Rs,t(y, x;A) has an extra factor of ε, due to the fact that there are at least two
spatial bonds at v (one before and one after v), which leads to an error term as ε ↓ 0. Therefore, we only
need to focus on the contribution from Es,t(y, x;A), i.e.,

Pλε
(

Es,t(y, x;A) ∩
{

Ct(y, s) \ {x} = C
})

. (6.20)

Generalizing the definition (6.17) from a single end (x, t) to a pair {(x, t), (z, t)} with x 6= z as

Es,t(y, {x, z};A) (6.21)

=
⋃

v

{

{

v /∈ C(A× {s})
}

∩
{

(y, s) −→ v =⇒ {(x, t), (z, t)} ⊂ C(A× {s}) \ C̃v(y, s)
}

}

,
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and following the argument in (6.11) (see also the discussion around (6.9)–(6.10)), we obtain

1

ε
Pλε

(

Es,t(y, x;A) ∩
{

Ct(y, s) \ {x} = C
})

=
∑

z∈Zd
λD(x− z) Pλε

(

Es,t(y, {x, z};A) ∩
{

Ct(y, s) \ {x} = C
})

+ o(1). (6.22)

Advancement of the induction hypothesis. Now we advance the induction hypothesis in N ≥ 1
by using (6.13)–(6.15) and (6.22).

First, we consider the contribution from C ′ = {y} in (6.13), which equals

t
∑•

s=ε

∑

y∈¤R

∑

bN=( · ,(y,s−ε))
π(N−1)s−ε;ε (y;∅)

1

ε2
Pλε

(

E(bN , (x, t); C̃
bN (y, s− ε)) ∩

{

Ct(bN) \ {x} = C
})

= δN,1
∑

b=(o, · )

1

ε2
Pλε

(

E(b, (x, t); C̃b(o)) ∩
{

Ct(b) \ {x} = C
})

(6.23)

+ ε2
t

∑•

s=2ε

∑

y∈¤R

1

ε2
π(N−1)s−ε;ε (y;∅)

∑

b=((y,s−ε), · )

1

ε2
Pλε

(

E(b, (x, t); C̃b(y, s− ε)) ∩
{

Ct(b) \ {x} = C
})

,

where we use π(N−1)0;ε (y;∅) = δN,1 δo,y to obtain the first term in the right-hand side. We note that, by
using the induction hypothesis, as well as (6.14) and (6.22), the second term is O(ε) = o(1). Therefore,
the first term is the main contribution. By using (6.14) and (6.22) again, as well as the weak convergence
of Pλε , the limit in R ↑ ∞ of the continuum limit of (6.23) equals

δN,1
∑

y,z∈Zd
λ2D(y)D(x− z)

[

Pλ
(

E0,t(o, {x, z}; {y}) ∩
{

Ct(o) \ {x} = C
})

+Pλ
(

E0,t(y, {x, z}; {o}) ∩
{

Ct(y, 0) \ {x} = C
})

]

. (6.24)

Next, we consider the contribution from C ′ ) {y} in (6.13), which equals

ε

t
∑•

s=2ε

∑

y∈¤R

∑

A⊂¤R\{y}:A6=∅

1

ε2
π(N−1)s−ε;ε (y;A)

×
∑

z∈Zd
λD(x− z) Pλε

(

Es,t(y, {x, z};A) ∩
{

Ct(y, s) \ {x} = C
})

+ o(1), (6.25)

where we use (6.15) and (6.22), as well as π(N−1)0;ε (y;A) = 0 for A 6= ∅ (so that the sum over s starts
from s = 2ε). By the dominated convergence theorem, as well as the induction hypothesis and the weak
convergence of Pλε , the limit in R ↑ ∞ of the continuum limit of (6.25) equals

∫ t

0
ds

∑

y,z∈Zd
λD(x− z)

∑

A⊂Zd\{y}
A6=∅

π(N−1)s (y;A) Pλ
(

Es,t(y, {x, z};A) ∩
{

Ct(y, s) \ {x} = C
})

. (6.26)

Therefore, the limit π(N)t (x; C) for t > 0 exists and equals the sum of (6.24) and (6.26). This advances
the induction hypothesis.
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Bounds on πλt in (2.37) and convergence of A(ε) and v(ε). The bound on
∑

x∈Zd |x|qπλt (x) follow
immediately from the pointwise convergence of 1

ε2
πλt;ε(x), together with the uniform bounds in Proposi-

tion 2.3 and dominated convergence for the sum over x.
To prove convergence of A(ε) and v(ε), we first note that by [27, Section 3.1], λ(ε)c → λc. Convergence of

A(ε) and v(ε) follows by dominated convergence, together with the identification of A(ε) and v(ε) in (2.35).
Thus, we obtain that

A =

[

1 +

∫ ∞

0
dt t π̂λct (0)

]−1
, v = A

[

λc −
1

σ2

∫ ∞

0
dt ∇̂2πλct (0)

]

. (6.27)

Convergence of 1
ε2
∂λπ

λ
t;ε(x) and the bound on ∂λπ

λ
t in (2.37). The only difference between 1

ε2
∂λπ

λ
t;ε(x)

and 1
ε2
πλt;ε(x) is the occurrence of the sum over spatial bonds b and the indicator of the event b ∈

{bn} ∪ piv[bn, bn+1]. Clearly, the main term in the above comes from b ∈ piv[bn, bn+1]. The extra in-
clusion of this event gives rise to an extra integral over the time variable r′ and an indicator that the
arrow ((w, r′), (w′, r′)) is pivotal for the connection from bn to bn+1 (see [22, p.61] for the definition of
a pivotal arrow). Apart from this minor modification, the proof remains unchanged. The bound on
∑

x∈Zd |∂λπλt (x)| in (2.37) follows immediately from the pointwise convergence of 1
ε2
∂λπ

λ
t;ε(x), together

with the uniform bounds in Proposition 2.3 and dominated convergence for the sum over x ∈ Zd.

Continuity in λ of ∂λπ
λ
t (x). Following the same strategy as above, we may obtain an explicit expression

for ∂λπ
λ
t (x), similar to the expression obtained for πλt (x) from (6.12), (6.24) and (6.26). Let ∂λπ

λ
t (x |R)

be equal to ∂λπ
λ
t (x) with the extra condition {C[0,t] ⊂ ¤R} being imposed, as in (4.57) for the discretized

contact process. Note that, as explained above, ∂λπ
λ
t (x) = ∂λπ

λ
t (x |R) + o(1), where o(1) decays to zero

as R→∞, and that ∂λπ
λ
t (x |R) is continuous in λ since it depends only on events in the finite space-time

box ¤R × [0, t]. Therefore, ∂λπ
λ
t (x) is also continuous in λ. This completes the proof.

A Advancement of the induction hypotheses

In this appendix, we prove Lemmas 5.1–5.4 and we advance the induction hypotheses. We discuss the
case of d > 4 in Appendix A.1, which is quite similar to the argument in [19]. The main difference is due
to the required uniformity in ε. We will explain in detail how to use the factors of ε contained in the
induction hypotheses and in the bounds (2.30)–(2.32), in order to obtain this uniformity. The argument
for d ≤ 4 is almost identical, except for modifications due to the factors βT and β̂T in (4.53)–(4.54) and
(5.37)–(5.39). We discuss the necessary changes for d ≤ 4 in Appendix A.2.

A.1 Advancement above four dimensions

A.1.1 Proofs of Lemmas 5.1–5.4

Recall the induction hypotheses (H1)–(H4) and the definitions of λn, In and vn in Section 5.1.2. We now
prove Lemmas 5.1–5.4 using the induction hypotheses.

Proof of Lemma 5.1. We prove λ ∈ Im−1 assuming λ ∈ Im. By (5.8) and (5.11),

|λ− λm−1| ≤ |λ− λm|+ |λm − λm−1| ≤ K1β
1 + (m+ 1)ε

(1 +mε)d/2
≤ K1β

[1 + (m− 1)ε](d−2)/2
, (A.1)

where the last inequality is due to the fact that f(ε) = (c+ ε)(c− ε)a is decreasing in ε ≥ 0 if c > 0 and
a ≥ 1, so that f(ε) ≤ f(0) = c1+a (in the above inequality, c = 1+mε and a = d−2

2 ). This completes the
proof of Im ⊂ Im−1.
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Proof of Lemma 5.2. By (5.12)–(5.13) and the trivial inequality 1 + x ≤ ex,

|fm(0)| =
∣

∣

∣

∣

m
∏

l=1

[1 + εrl(0)]

∣

∣

∣

∣

≤ eε
∑m
l=1 |rl(0)| ≤ ecK3β . (A.2)

By (5.15)–(5.17) and (5.23), |fm(k)/fm(0)| is bounded by
∣

∣

∣

∣

m
∏

l=1

[1− εvl a(k) + ε sl(k)]

∣

∣

∣

∣

≤ e−ε
∑m
l=1[vla(k)−|sl(k)|] ≤ e−mε[1−c (K1+K2+K3)β] a(k). (A.3)

This completes the proof.

Proof of Lemma 5.3. This is an immediate consequence of (5.18), (5.23), (5.31) and (A.2).

Proof of Lemma 5.4. Recalling Am ≡ {k : a(k) ≤ γ log(2+mε)1+mε }, we define

R1 = {k ∈ Am : ‖k‖∞ ≤ L−1}, R2 = {k ∈ Am : ‖k‖∞ > L−1},
R3 = {k /∈ Am : ‖k‖∞ ≤ L−1}, R4 = {k /∈ Am : ‖k‖∞ > L−1},

where R2 is empty if mÀ 1. Then,

‖D̂2fm‖1 =
4

∑

i=1

∫

Ri

ddk

(2π)d
D̂(k)2|fm(k)|. (A.4)

On R1, we consider the cases of mε < 1 and mε ≥ 1 separately. If mε < 1, we use Lemma 5.2 and
obtain

∫

R1

ddk

(2π)d
D̂(k)2|fm(k)| ≤ c

∫

R1

ddk

(2π)d
D̂(k)2 ≤ cβ

(1 +mε)d/2
. (A.5)

If mε ≥ 1, we use the inequality D̂2(k) ≤ 1, Lemma 5.2, and then the assumption a(k) ³ L2|k|2 for
‖k‖∞ ≤ L−1, and obtain

∫

R1

ddk

(2π)d
D̂(k)2|fm(k)| ≤ c

∫

R1

ddk

(2π)d
e−cmεL

2|k|2 ≤ cβ

(1 +mε)d/2
. (A.6)

Summarizing both cases, we obtain the desired bound on the contribution from R1.
On R2, we use Lemma 5.2 and the assumption a(k) > η for ‖k‖∞ > L−1 to conclude that there exists

an r > 1 independently of β such that
∫

R2

ddk

(2π)d
D̂(k)2|fm(k)| ≤ c

∫

R2

ddk

(2π)d
D̂(k)2r−mε ≤ cβ r−mε. (A.7)

Since r−mε ≤ c (1 +mε)−d/2, we obtain the desired bound on the contribution from R2.
On R3 and R4, we use (H4). Then, the contribution from these two regions is bounded by

K4

(1 +mε)d/2

4
∑

i=3

∫

Ri

ddk

(2π)d
D̂(k)2

a(k)2+ρ
. (A.8)

It thus suffices to bound the integral by cβ. On R3, we use the inequality D̂(k)2 ≤ 1 and the assumption
a(k) ³ L2|k|2 for ‖k‖∞ ≤ L−1. Since d > 2(2 + ρ) (cf., (5.6)), we obtain

∫

R3

ddk

(2π)d
D̂(k)2

a(k)2+ρ
≤ c

L4+2ρ

∫

‖k‖∞≤L−1

ddk

|k|4+2ρ ≤ cβ. (A.9)

On R4, we use the assumption a(k) > η for ‖k‖∞ > L−1 and the fact that
∫

ddk
(2π)d

D̂(k)2 ≤ β, to obtain

the desired bound cβ on the integral over R4. This completes the proof.
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A.1.2 Initialization and advancement of the induction hypotheses

First we verify that the induction hypotheses hold for n = 1.

(H1)–(H2) By definition, |λ1 − λ0| = |v1 − v0| = 0.

(H3) By (5.5) and (5.12), r1(k) ≡ λ− 1 and thus |r1(k)− r1(0)| ≡ 0. Together with λ ∈ I1, we obtain
|r1(0)| ≤ K1β/(1 + ε)(d−2)/2. Therefore, (H3) holds, if K3 ≥ K1.

(H4) By (5.5), |f1(k)| ≤ 1 + 3ε and |f1(k) − f0(k)| ≤ 3ε for β ¿ 1. Together with the trivial bound
a(k) ≤ 2, (H4) is proved to hold, if K4 ≥ (1 + 3ε)22+ρ(1 + ε)d/2 and K5 ≥ 3 · 21+ρ(1 + ε)d/2.

Next we advance the induction hypotheses for λ ∈ In+1 under the assumption that (H1)–(H4) hold
for all m ≤ n. As mentioned below Lemma 5.4, this assumption implies (2.29) for all s ≤ nε if K À K4,
and thus implies (2.30)–(2.32) for all s ≤ nε+ ε. By (5.3), these bounds are translated into the following
bounds for all m ≤ n+ 1: there is a CK <∞ such that

|em(k)| ≤
ε2CKβ

(1 +mε)d/2
, |em(k)− em(0)| ≤

ε2CKβ a(k)

(1 +mε)(d−2)/2
, (A.10)

|gm(k)| ≤
ε2CKβ

(1 +mε)d/2
, |∇2gm(0)| ≤

ε2CKσ
2β

(1 +mε)(d−2)/2
, (A.11)

∣

∣

∣
gm(k)− gm(0)−

a(k)

σ2
∇2gm(0)

∣

∣

∣
≤ ε2CKβ a(k)

1+∆′

(1 +mε)(d−2)/2−∆′
, (A.12)

|∂λgm(0)| ≤
ε2CKβ

(1 +mε)(d−2)/2
. (A.13)

We note that CK depends on K and that, by Lemmas 5.2–5.4, K depends only on K4 when β ¿ 1.
Therefore, we can choose CK large depending only on K4 when β ¿ 1.

Advancement of (H1). By (5.7) and the mean-value theorem,

λn+1 − λn = −1

ε
gn+1(0;λn)−

1

ε

n
∑

m=2

[gm(0;λn)− gm(0;λn−1)]

= −1

ε
gn+1(0;λn)−

λn − λn−1
ε

n
∑

m=2

∂λgm(0;λ∗), (A.14)

for some λ∗ between λn and λn−1. Since λn−1 ∈ In (cf., (5.8) and (5.11)), λ∗ is also in In. By (A.11),
(A.13) and (H1),

|λn+1 − λn| ≤
εCKβ

[1 + (n+ 1)ε]d/2
+ |λn − λn−1|ε

n
∑

m=2

CKβ

(1 +mε)(d−2)/2
≤ εCK(1 + cK1β)β

[1 + (n+ 1)ε]d/2
. (A.15)

Therefore, (H1) holds for n+ 1, if β ¿ 1 and K1 > CK .

Advancement of (H2). Let 1 +Mn be the denominator of (5.9), and let Nn be the numerator of
(5.9). Then,

vn+1 − vn =
−1
σ2ε
∇2gn+1(0)

1 +Mn+1
− Nn n gn+1(0)

(1 +Mn+1)(1 +Mn)
. (A.16)
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By (A.11), we obtain that, for m ≤ n+ 1,

|Mm| ≤ ε
m
∑

l=2

(l − 1)εCKβ

(1 + lε)d/2
≤ cCKβ, |Nm − λ| ≤ ε

m
∑

l=2

CKβ

(1 + lε)(d−2)/2
≤ cCKβ, (A.17)

and

∣

∣

∣

−1
σ2ε
∇2gn+1(0)

∣

∣

∣
≤ εCKβ

[1 + (n+ 1)ε](d−2)/2
, |n gn+1(0)| ≤

nε2CKβ

[1 + (n+ 1)ε]d/2
. (A.18)

Therefore,

|vn+1 − vn| ≤
εCKβ

(1− cCKβ)[1 + (n+ 1)ε](d−2)/2
+

(λ+ cCKβ)nε
2CKβ

(1− cCKβ)2[1 + (n+ 1)ε]d/2
(A.19)

=
1− cCKβ + (λ+ cCKβ)

nε
1+(n+1)ε

(1− cCKβ)2
εCKβ

[1 + (n+ 1)ε](d−2)/2
≤ 1 + λ

(1− cCKβ)2
εCKβ

[1 + (n+ 1)ε](d−2)/2
.

Since λ ∈ In+1, (H2) holds for n+ 1, if β ¿ 1 and K2 > 2CK .

Advancement of (H3). First, we derive expressions for rn+1(0) and rn+1(k) − rn+1(0). By dividing
both sides of (5.4) by fn(k) and using g1(k) = 1− ε+ λεD̂(k),

fn+1(k)

fn(k)
= g1(k) +

n
∑

m=1

gm+1(k)
fn−m(k)
fn(k)

+
en+1(k)

fn(k)

= 1− εvn+1a(k) + ε

[

vn+1a(k)− 1 + λD̂(k) +
1

ε

n
∑

m=1

gm+1(k)
fn−m(k)
fn(k)

+
en+1(k)

εfn(k)

]

. (A.20)

Therefore, rn+1(k) equals the expression in the above brackets. In particular,

rn+1(0) = −1 + λ+
1

ε

n
∑

m=1

gm+1(0)
fn−m(0)
fn(0)

+
en+1(0)

εfn(0)

=

[

λ− 1 +
1

ε

n+1
∑

m=2

gm(0)

]

+
1

ε

n+1
∑

m=2

gm(0)

[

fn+1−m(0)
fn(0)

− 1

]

+
en+1(0)

εfn(0)
(A.21)

= r(1)n+1(0) + r(2)n+1(0) + r(3)n+1(0),

where we denote the first, second and third terms in (A.21) by r(1)n+1(0), r
(2)

n+1(0) and r
(3)

n+1(0), respectively.
Similarly, we can obtain an expression for rn+1(k)− rn+1(0). To do so, we note that, by (5.9),

vn+1 = λ− 1

σ2ε

n+1
∑

m=2

∇2gm(0)− vn+1
n+1
∑

m=2

(m− 1) gm(0). (A.22)
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Using this identity, we obtain

rn+1(k)− rn+1(0) = (vn+1 − λ) a(k) +
1

ε

n+1
∑

m=2

[gm(k)− gm(0)]
fn+1−m(k)
fn(k)

+
1

ε

n+1
∑

m=2

gm(0)

[

fn+1−m(k)
fn(k)

− fn+1−m(0)
fn(0)

]

+
1

ε

[

en+1(k)

fn(k)
− en+1(0)

fn(0)

]

=
1

ε

n+1
∑

m=2

[

[gm(k)− gm(0)]
fn+1−m(k)
fn(k)

− a(k)

σ2
∇2gm(0)

]

+
1

ε

n+1
∑

m=2

gm(0)

[

fn+1−m(k)
fn(k)

− fn+1−m(0)
fn(0)

− εvn+1 (m− 1) a(k)

]

+
1

ε

[

en+1(k)

fn(k)
− en+1(0)

fn(0)

]

(A.23)

= ∆r(1)n+1(k) + ∆r(2)n+1(k) + ∆r(3)n+1(k),

where we denote the first, second and third terms in (A.23) by ∆r(1)n+1(k), ∆r(2)n+1(k) and ∆r(3)n+1(k),
respectively.

Therefore, to advance (H3), we are left to investigate r(i)n+1(0) and ∆r(i)n+1(k) for i = 1, 2, 3.

Advancement of the first inequality in (5.13). We recall that rn+1(0) has been decomposed, as in (A.21),
into r(i)n+1(0) for i = 1, 2, 3. First, we investigate r(1)n+1(0). By (5.7) and the mean-value theorem, we have

|r(1)n+1(0)| ≤ |λ− λn|+ |λn − λn+1|+
∣

∣

∣

∣

λn+1 − 1 +
1

ε

n+1
∑

m=2

gm(0;λ)

∣

∣

∣

∣

= |λn − λn+1|+ |λ− λn|+
∣

∣

∣

∣

1

ε

n+1
∑

m=2

[gm(0;λ)− gm(0;λn)]
∣

∣

∣

∣

≤ |λn − λn+1|+ |λ− λn|
[

1 +
1

ε

n+1
∑

m=2

|∂λgm(0;λ∗)|
]

, (A.24)

for some λ∗ between λ and λn. Since λ ∈ In+1 ⊂ In, λ∗ is also in In. By (5.11), (5.8) and (A.13),

|r(1)n+1(0)| ≤
εK1β

[1 + (n+ 1)ε]d/2
+

K1β

(1 + nε)(d−2)/2

[

1 +
n+1
∑

m=2

εCKβ

(1 +mε)(d−2)/2

]

≤ cK1β

[1 + (n+ 1)ε](d−2)/2
.

(A.25)

Therefore, we need K3 À K1.
Next we investigate r(2)n+1(0). We will use the following results of Taylor’s theorem applied to h(t) =

∏

i(1 + cit)
−1 with |ci| < 1 for all i:

|h(1)− h(0)| ≤ sup
t∈(0,1)

|h′(t)| ≤
∑

i

|ci|
1− |ci|

e
∑

j

|cj |

1−|cj | , (A.26)

|h(1)− h(0)− h′(0)| ≤ 1

2
sup
t∈(0,1)

|h′′(t)| ≤
(

∑

i

|ci|
1− |ci|

)2

e
∑

j

|cj |

1−|cj | , (A.27)

By (5.16), (A.11) and (A.26),

|r(2)n+1(0)| ≤
1

ε

n+1
∑

m=2

|gm(0)|
∣

∣

∣

∣

n
∏

l=n+2−m
[1 + ε rl(0)]

−1 − 1

∣

∣

∣

∣

≤
n+1
∑

m=2

εCKβ

(1 +mε)d/2
φm e

φm , (A.28)
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where, by (5.13),

φm =
n
∑

l=n+2−m

ε|rl(0)|
1− ε|rl(0)|

≤ ε
n
∑

l=n+2−m

cK3β

(1 + lε)(d−2)/2
, (A.29)

and thus eφm ≤ ecK3β for all m ≤ n + 1. Substituting (A.29) into (A.28) and using Lemma 4.7 with
(a, b) = (d2 ,

d−2
2 ), we obtain

|r(2)n+1(0)| ≤
cCKK3β

2

[1 + (n+ 1)ε](d−2)/2
. (A.30)

Finally, we investigate r(3)n+1(0). As in (A.28), |fn(0)−1 − 1| is bounded by

∣

∣

∣

∣

n
∏

l=1

[1 + εrl(0)]
−1 − 1

∣

∣

∣

∣

≤ φn+1 eφn+1 ≤ cK3β. (A.31)

Using (A.10), we obtain

|r(3)n+1(0)| ≤
εCK(1 + cK3β)β

[1 + (n+ 1)ε]d/2
. (A.32)

The advancement of the first inequality in (5.13) is now completed by (A.21), (A.25), (A.30) and
(A.32), if β ¿ 1 and K3 À K1 ∨ CK .

Advancement of the second inequality in (5.13). Recall that k ∈ An+1, and that rn+1(k) − rn+1(0) has
been decomposed, as in (A.23), into ∆r(i)n+1(k) for i = 1, 2, 3.

First, we investigate ∆r(1)n+1(k), which is bounded as

|∆r(1)n+1(k)| ≤
1

ε

n+1
∑

m=2

∣

∣

∣

∣

gm(k)− gm(0)−
a(k)

σ2
∇2gm(0)

∣

∣

∣

∣

+
1

ε

n+1
∑

m=2

|gm(k)− gm(0)|
∣

∣

∣

∣

fn+1−m(0)
fn(0)

− 1

∣

∣

∣

∣

+
1

ε

n+1
∑

m=2

|gm(k)− gm(0)|
∣

∣

∣

∣

fn+1−m(k)
fn(k)

− fn+1−m(0)
fn(0)

∣

∣

∣

∣

. (A.33)

By (A.12) with δ < ∆′ < d−4
2 , the first sum is bounded by

ε
n+1
∑

m=2

CKβ a(k)
1+∆′

(1 +mε)(d−2)/2−∆′
≤ cCKβ a(k)

[

log[2 + (n+ 1)ε]

[1 + (n+ 1)ε]

]∆′

≤ cCKβ a(k)

[1 + (n+ 1)ε]δ
, (A.34)

while the second sum in (A.33) is first bounded similarly to (A.28), and then bounded, by using (A.12)
with ∆′ = 0 and (A.29), as well as Lemma 4.7 with a = b = d−2

2 , by

n+1
∑

m=2

2εCKβ a(k)

(1 +mε)(d−2)/2

n
∑

l=n+2−m

εcK3β

(1 + lε)(d−2)/2
≤ cCKK3β

2a(k)

[1 + (n+ 1)ε](d−2)/2∧(d−4)
≤ cCKK3β

2a(k)

[1 + (n+ 1)ε]2δ
, (A.35)

where we use d−2
2 ∧ (d − 4) = d−4

2 + 1 ∧ d−4
2 ≥ 2δ. By using (A.12) with ∆′ = 0 again and (A.26), the

third sum in (A.33) is bounded similarly to (A.28) by

n+1
∑

m=2

2εCKβ a(k)

(1 +mε)(d−2)/2

∣

∣

∣

∣

fn+1−m(0)
fn(0)

∣

∣

∣

∣

∣

∣

∣

∣

n
∏

l=n+2−m
[1− εvl a(k) + εsl(k)]

−1 − 1

∣

∣

∣

∣

≤
n+1
∑

m=2

2εCKβ a(k)

(1 +mε)(d−2)/2
(

1 + φm e
φm

)

ψm(k) e
ψm(k), (A.36)
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where φm e
φm ≤ cK3β as discussed below (A.29), and

ψm(k) =

n
∑

l=n+2−m

ε[vla(k) + |sl(k)|]
1− ε[vla(k) + |sl(k)|]

. (A.37)

By (5.17) and (5.23),

vla(k) + |sl(k)| ≤
[

vl +
(1 + εvl)K3β

(1− εK3β)(1 + lε)δ

]

a(k) ≤ [1 + c (K1 +K2 +K3)β] a(k) ≡ q a(k). (A.38)

Since k ∈ An+1, ψm(k) is bounded by

ψm(k) ≤
(m− 1)εq a(k)

1− εq a(k) ≤ [1 + cε a(k)](m− 1)εq a(k), (A.39)

which is further bounded by γq
[

1 + cε log[2+(n+1)ε]1+(n+1)ε

]

log[2 + (n+ 1)ε], and hence

eψm(k) ≤ c eγq log[2+(n+1)ε] ≤ c [1 + (n+ 1)ε]γq. (A.40)

Substituting (A.39)–(A.40) into (A.36), and using a(k) ≤ γ log[2+(n+1)ε]1+(n+1)ε and γq + δ < 1 ∧ d−4
2 for β ¿ 1

(cf., (5.6) and (A.38)), we can bound (A.36) by

cCKβ a(k)
log[2 + (n+ 1)ε]

[1 + (n+ 1)ε]1−γq
ε
n+1
∑

m=2

(m− 1)ε

(1 +mε)(d−2)/2
≤ cCKβ a(k)

[1 + (n+ 1)ε]δ
. (A.41)

By (A.33)–(A.35) and (A.41), if β ¿ 1 and K3 À CK , we obtain

|∆r(1)n+1(k)| ≤
1
3K3βa(k)

[1 + (n+ 1)ε]δ
. (A.42)

Next, we investigate |∆r(2)n+1(k)|, which is bounded, by using (A.11) and (A.28), as

|∆r(2)n+1(k)| ≤
1

ε

n+1
∑

m=2

|gm(0)|
∣

∣

∣

∣

fn+1−m(0)
fn(0)

∣

∣

∣

∣

∣

∣

∣

∣

n
∏

l=n+2−m
[1− εvla(k) + εsl(k)]

−1 − 1− (m− 1)εvn+1a(k)

∣

∣

∣

∣

+
1

ε

n+1
∑

m=2

|gm(0)|
∣

∣

∣

∣

fn+1−m(0)
fn(0)

− 1

∣

∣

∣

∣

(m− 1)εvn+1a(k)

≤ ε
n+1
∑

m=2

CKβ(1 + φme
φm)

(1 +mε)d/2

∣

∣

∣

∣

n
∏

l=n+2−m
[1− εvla(k) + εsl(k)]

−1 − 1− (m− 1)εvn+1a(k)

∣

∣

∣

∣

+ ε
n+1
∑

m=2

CKβvn+1a(k) (m− 1)ε

(1 +mε)d/2
φme

φm . (A.43)

Using (5.23), (A.29), Lemma 4.7 with a = b = d−2
2 and δ < 1 ∧ d−4

2 , we can bound the second sum by
cCKβa(k)[1 + (n+ 1)ε]−2δ. The first sum in (A.43) is bounded, by using (A.27), by

ε
n+1
∑

m=2

cCKβ

(1 +mε)d/2

[

∣

∣

∣

∣

n
∏

l=n+2−m
[1− εvla(k) + εsl(k)]

−1 − 1−
n
∑

l=n+2−m
ε[vla(k)− sl(k)]

∣

∣

∣

∣

+

∣

∣

∣

∣

n
∑

l=n+2−m
ε[(vl − vn+1)a(k)− sl(k)]

∣

∣

∣

∣

]

≤ ε
n+1
∑

m=2

cCKβ

(1 +mε)d/2

[

ψm(k)
2eψm(k) +

n
∑

l=n+2−m
ε

[ n+1
∑

j=l+1

|vj − vj−1|a(k) + |sl(k)|
]

]

. (A.44)
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Similarly to (A.41), the contribution from ψm(k)
2eψm(k) is bounded by cCKβa(k)[1+(n+1)]−δ. By (5.11),

(5.17) and Lemma 4.7 with a = d
2 and b = δ(< d−4

2 ), the other contribution is bounded by

ε
n+1
∑

m=2

cCKβ

(1 +mε)d/2

n
∑

l=n+2−m
ε

[

cK2βa(k)

(1 + lε)(d−4)/2
+
cK3βa(k)

(1 + lε)δ

]

≤ cCK(K2 +K3)β
2a(k)

[1 + (n+ 1)ε]δ
. (A.45)

Therefore, if β ¿ 1 and K3 À CK , we obtain

|∆r(2)n+1(k)| ≤
1
3K3βa(k)

[1 + (n+ 1)ε]δ
. (A.46)

Finally, we investigate |∆r(3)n+1(k)|, which is bounded as

|∆r(3)n+1(k)| ≤
∣

∣

∣

∣

en+1(k)

εfn(0)

∣

∣

∣

∣

∣

∣

∣

∣

fn(0)

fn(k)
− 1

∣

∣

∣

∣

+

∣

∣

∣

∣

en+1(k)− en+1(0)
εfn(0)

∣

∣

∣

∣

. (A.47)

By (A.31), |fn(0)| ≥ 1 − cK3β. As in (A.36),
∣

∣

fn(0)
fn(k)

− 1
∣

∣ is bounded, by using (A.39)–(A.40), by

ψn+1(k)e
ψn+1(k) ≤ c[1 + (n + 1)ε]1+γqa(k). Therefore, using (A.10) and taking β sufficiently small such

that γq + δ < d−4
2 (cf., (5.6) and (A.38)), we obtain

|∆r(3)n+1(k)| ≤
cεCKβa(k)

[1 + (n+ 1)ε](d−2)/2−γq
≤ cεCKβa(k)

[1 + (n+ 1)ε]δ+1
≤

1
3K3βa(k)

[1 + (n+ 1)ε]δ
, (A.48)

if K3 À CK .
The advancement of the second inequality in (5.13) is now completed by (A.42), (A.46) and (A.48),

if β ¿ 1 and K3 À CK .

Advancement of (H4). To advance (H4), we rewrite (5.4) as

fn+1(k) =

[

g1(k) +

n+1
∑

m=2

gm(k)

]

fn(k) +Wn+1(k) + en+1(k), (A.49)

where

Wn+1(k) =
n+1
∑

m=2

gm(k)[−fn(k) + fn+1−m(k)] =
n+1
∑

m=2

gm(k)
n
∑

l=n+2−m
[fl−1(k)− fl(k)]. (A.50)

Furthermore, using g1(k) = 1− ε+ λεD̂(k) = 1− λεa(k) + (λ− 1)ε, we have

g1(k) +
n+1
∑

m=2

gm(k) = 1−
[

λ− 1

σ2ε

n+1
∑

m=2

∇2gm(0)
]

εa(k) + ε

[

λ− 1 +
1

ε

n+1
∑

m=2

gm(0)

]

+
n+1
∑

m=2

[

gm(k)− gm(0)−
a(k)

σ2
∇2gm(0)

]

(A.51)

= 1−Nn+1εa(k) + εr(1)n+1(0) +Xn+1(k),

where we recall Nn and r(1)n+1(0) in (A.16) and (A.21), respectively, and denote the last sum in (A.51) by
Xn+1(k). Therefore,

fn+1(k) = fn(k)
[

1−Nn+1 ε a(k) + εr(1)n+1(0) +Xn+1(k)
]

+Wn+1(k) + en+1(k). (A.52)
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We have already obtained |Nn+1 − λ| ≤ cCKβ in (A.17) and |r(1)n+1(0)| ≤ cK1β[1 + (n + 1)ε]−(d−2)/2

in (A.25), while Xn+1(k) equals ε times the first sum of (A.33) and is bounded, by using the leftmost
expression of (A.34) with ∆′ < d−4

2 , by cεCKβ a(k)
1+∆′ . We prove below that, for k /∈ An+1,

|Wn+1(k)| ≤ ε
cCK(1 +K3β +K5)β a(k)

−1−ρ

[1 + (n+ 1)ε]d/2
. (A.53)

Assuming (A.53), we first advance the second inequality in (5.14), and then advance the first inequality
in (5.14). To advance these inequalities, we will use the first inequality in (5.14) for m = n in the extended
region Acn+1 = Acn ∪̇ (An \ An+1). We now verify the use of this inequality for k ∈ An \ An+1. When
nε ≤ T for some large T , we can choose K4 À 1 (depending on T ) such that, for all k ∈ [−π, π]d,

|fn(k)| ≤ ‖τnε‖1 ≤ ‖p∗nε ‖1 = (1− ε+ λε)n ≤ e(λ−1)nε ≤ 2−2−ρK4

(1 + nε)d/2
≤ K4a(k)

−2−ρ

(1 + nε)d/2
. (A.54)

When nε > T , we use Lemma 5.2 and k ∈ An \An+1 (so that γ log[2+(n+1)ε]1+(n+1)ε < a(k) ≤ γ log(2+nε)1+nε ) to obtain

|fn(k)| ≤ ce−nεqa(k) ≤ c(2 + nε)
− nε
1+(n+1)ε

log[2+(n+1)ε]
log(2+nε)

qγ

≤ c(1 + nε)−q
′γ =

c

(1 + nε)d/2
(1 + nε)2+ρ

(1 + nε)q
′γ−[ d

2
−(2+ρ)]

≤ K4a(k)
−2−ρ

(1 + nε)d/2
, (A.55)

if K4 À 1, where we use q′γ > d
2 − (2 + ρ) for β ¿ 1 and T À 1 (cf., (5.6) and (A.38)).

Therefore, by using the first inequality in (5.14) with m = n for k /∈ An+1, together with (5.22) and
(A.52)–(A.53), we obtain

|fn+1(k)− fn(k)| ≤ ε
K4a(k)

−2−ρ

(1 + nε)d/2

[

(λ+ cCKβ)a(k) +
cK1β

[1 + (n+ 1)ε](d−2)/2
+ cCKβa(k)

1+∆′
]

+ ε
cCK(1 +K3β +K5)βa(k)

−1−ρ

[1 + (n+ 1)ε]d/2
+

ε2CKβ

[1 + (n+ 1)ε]d/2

≤ εcK4[1 +O(β)] a(k)−1−ρ

[1 + (n+ 1)ε]d/2
+ ε

O(β) a(k)−1−ρ

[1 + (n+ 1)ε]d/2
+ ε2

O(β) a(k)−1−ρ

[1 + (n+ 1)ε]d/2
, (A.56)

where we use [1+ (n+1)ε]−(d−2)/2 ≤ a(k)(d−2)/2 ≤ 2(d−4)/2a(k) to obtain the first term, and use 2−1−ρ ≤
a(k)−1−ρ for the third term. This completes the advancement of the second inequality in (5.14), if β ¿ 1
and K5 À K4, under the hypotheses that (A.53) holds for k /∈ An+1.

Since (A.54) holds for n ≤ T/ε independently of k, it remains to advance the first inequality of (H4)
for n > T/ε. Similarly to (A.56), we have

|fn+1(k)| ≤
K4a(k)

−2−ρ

(1 + nε)d/2

[

|1−Nn+1εa(k)|+
cεK1β

[1 + (n+ 1)ε](d−2)/2
+ cεCKβa(k)

1+∆′
]

+
cεCK(1 +K3β +K5)βa(k)

−1−ρ

[1 + (n+ 1)ε]d/2
+

ε2CKβ

[1 + (n+ 1)ε]d/2
. (A.57)

Again, by a(k) ≤ 2, the sum of the last two terms is bounded by εO(β) a(k)−2−ρ[1 + (n + 1)ε]−d/2. To
prove the first inequality in (5.14) with m = n+ 1, it thus suffices to show that

[

1 + (n+ 1)ε

1 + nε

]d/2[

|1−Nn+1εa(k)|+
cεK1β

[1 + (n+ 1)ε](d−2)/2
+ cεCKβa(k)

1+∆′
]

< 1. (A.58)

To achieve this inequality uniformly in ε ≤ 1, we consider the case in which a(k) ≤ 1/2 and the other
case in which a(k) > 1/2 separately.
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When a(k) ≤ 1/2, since Nn+1 = 1 + O(β) (cf., (5.22) and (A.17)), we have |1 − Nn+1εa(k)| =
1−Nn+1εa(k) for β ¿ 1. Using a(k)∆

′ ≤ 2∆
′
and then a(k) > γ log[2+(n+1)ε]1+(n+1)ε , we can bound (A.58) by

(

1 +
cε

1 + nε

)

[

1− (1− cβ)εa(k) + cεβ

[1 + (n+ 1)ε](d−2)/2

]

(A.59)

≤ 1− ε
[

(1− cβ)γ log[2 + (n+ 1)ε]

1 + (n+ 1)ε
− c

1 + nε
−
(

1 +
cε

1 + nε

) cβ

[1 + (n+ 1)ε](d−2)/2

]

< 1,

if β ¿ 1 and T À 1.
Since the above argument also applies to the case in which 1− εa(k) > 1− (2− η)ε > 0 (and β ¿ 1,

depending on η), it thus remains to consider the other case in which 1− (2− η)ε ≤ 0 and a(k) > 1/2. In
this case, since ε ≤ 1, we have

|1− ε a(k)| ≤ [(2− η)ε− 1] ∨
(

1− ε

2

)

≤ 1−
(

η ∧ ε
2

)

. (A.60)

Since Nn+1 = 1 +O(β), (A.58) is bounded by

(

1 +
cε

1 + nε

)

[

1−
(

η ∧ ε
2

)

+ cεβa(k) +
cεβ

[1 + (n+ 1)ε](d−2)/2

]

≤ 1−
[

(

η ∧ ε
2

)

− cε

1 + nε
−
(

1 +
cε

1 + nε

)

cεβ

]

< 1, (A.61)

if β ¿ 1 and T À 1, depending on η. This completes the proof of (A.58), and hence the advancement of
the first inequality in (5.14), if β ¿ 1, T À 1 and K4 À 1, under the hypotheses that (A.53) holds for
k /∈ An+1.

Proof of (A.53). Given k /∈ An+1, let µ = µ(k) = max{l ∈ N : k ∈ Al}. For l ≤ µ, fl is in the domain
of (H3), while for µ < l ≤ n, fl is in the domain of (H4). We separate the sum over l in (A.50) into two
parts, corresponding respectively to l ≤ µ and µ < l ≤ n, yielding Wn+1(k) =W≤

n+1(k)+W
>
n+1(k), where

|W≤
n+1(k)| ≤

n+1
∑

m=n+2−µ

ε2CKβ

(1 +mε)d/2

µ
∑

l=n+2−m
|fl−1(k)− fl(k)|, (A.62)

|W>
n+1(k)| ≤

n+1
∑

m=2

ε2CKβ

(1 +mε)d/2

n
∑

l=µ∨(n+1−m)+1
|fl−1(k)− fl(k)|. (A.63)

By (H4) and Lemma 4.7 with a = b = d
2 , we easily obtain

|W>
n+1(k)| ≤

n+1
∑

m=2

ε2CKβ

(1 +mε)d/2

n
∑

l=n+2−m

εK5 a(k)
−1−ρ

(1 + lε)d/2
≤ εcCKK5β a(k)

−1−ρ

[1 + (n+ 1)ε]d/2
. (A.64)

It remains to consider |W≤
n+1(k)|. By (5.13), (5.23) and Lemma 5.2, we have

|fl−1(k)− fl(k)| = |fl−1(k)|
∣

∣

∣
1−

[

1− εvla(k) + ε[rl(k)− rl(0)] + εrl(0)
]

∣

∣

∣

≤ ce−(l−1)εqa(k) ε
[

a(k) +
K3β

(1 + lε)(d−2)/2

]

, (A.65)

where q = 1 − O(β). We fix a small r > 0 and separate the sum over m in (A.62) into
∑

m>r(n+1) and
∑

m≤r(n+1) (the latter sum may be empty depending on µ). The contribution due to the former sum is
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bounded by

ε2CKβ

[1 + (n+ 1)ε]d/2

n+1
∑

m=r(n+1)+1

µ
∑

l=n+2−m
ce−(l−1)εqa(k) ε

[

a(k) +
K3β

(1 + lε)(d−2)/2

]

≤ ε2CKβ

[1 + (n+ 1)ε]d/2

n+1
∑

m=r(n+1)+1

ce−(n+1−m)εqa(k)(1 +K3β)

≤ εcCK(1 +K3β)βa(k)
−1

[1 + (n+ 1)ε]d/2
≤ εcCK(1 +K3β)βa(k)

−1−ρ

[1 + (n+ 1)ε]d/2
. (A.66)

To investigate the contribution from
∑

m≤r(n+1), we use the inequality

e−(l−1)εqa(k)
[

a(k) +
K3β

(1 + lε)(d−2)/2

]

≤ c(1 +K3β)a(k)
−1−ρ

(1 + lε)d/2
, (A.67)

which we will prove below. Assuming this inequality and using Lemma 4.7 with a = b = d
2 , we obtain

that the contribution from
∑

m≤r(n+1) is bounded by

r(n+1)
∑

m=n+2−µ

ε2CKβ

(1 +mε)d/2

µ
∑

l=n+2−m
ε
c(1 +K3β)a(k)

−1−ρ

(1 + lε)d/2
≤ εcCK(1 +K3β)βa(k)

−1−ρ

[1 + (n+ 1)ε]d/2
. (A.68)

This, together with (A.64) and (A.66), completes the proof of (A.53) for k /∈ An+1.
It remains to prove (A.67). First, we note that, by m ≤ r(n+ 1) and n+ 2−m ≤ l ≤ µ ≤ n, as well

as a(k) > γ log[2+(µ+1)ε]1+(µ+1)ε , we have

(1 + lε)−(d−2)/2 ≤ [1 + (1− r)(n+ 1)ε]−(d−2)/2 ≤ (1− r)−(d−2)/2
[1 + (µ+ 1)ε]1+(d−4)/2

≤ c a(k). (A.69)

Therefore, the left-hand side of (A.67) is bounded by c(1 + K3β)a(k) e
−(l−1)εqa(k). Similarly to (A.55),

we have

e−(l−1)εqa(k) ≤ (2 + lε)
− (l−1)εqγ
1+(µ+1)ε

log[2+(µ+1)ε]
log(2+lε)

qγ ≤ (1 + lε)−q
′γ , (A.70)

where q′ = (1−r)(n+1)ε
1+(n+1)ε q. To bound (A.70), we fix T À 1 and consider the case in which nε ≤ T and the

other case separately. When nε ≤ T , since l ≤ n, a(k) ≤ 2 and 2 + ρ > 0, (A.70) is bounded as

(1 + lε)d/2−q
′γ

(1 + lε)d/2
≤ (1 + T )d/2

(1 + lε)d/2
≤ 22+ρ(1 + T )d/2

(1 + lε)d/2
a(k)−2−ρ. (A.71)

When nε > T , since a(k) ≤ γ log(2+lε)1+lε , (A.70) is bounded as

1

(1 + lε)d/2
(1 + lε)2+ρ

(1 + lε)q
′γ−[ d

2
−(2+ρ)]

≤ c

(1 + lε)d/2
a(k)−2−ρ, (A.72)

where we use q′γ > d
2 − (2 + ρ) for β ¿ 1, T À 1 and r ¿ 1. This completes the proof.

Finally, we summarize the relations among the constants K1, . . . ,K5 that have been necessary in
advancing the induction hypotheses. We have taken β ¿ 1 and have chosen the constants K1, . . . ,K5

such that

K1 > CK , K2 > 2CK , K3 À K1, K5 À K4, (A.73)

where, as stated below (A.13), CK depends only on K4 (when β ¿ 1). This gives (5.10).
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A.2 Advancement below and at four dimensions

The proofs of Lemmas 5.1–5.4 and the advancement of the induction hypotheses for d ≤ 4 remain almost
unchanged, except for the factors βT and β̂T in (4.53)–(4.54) and (5.37)–(5.39). We simply replace β by
β̂T in the proofs of Lemmas 5.1–5.3, and by βT in the proof of Lemma 5.4 (we also replace d/2 by 2 + ω
in the proof of Lemma 5.1). In the advancement of the first inequality in (5.38), we use (A.14) together
with (A.11) and (A.13) with β replaced by βT . Since nε ≤ T log T , we obtain

|λn+1 − λn| ≤
εCKβT

[1 + (n+ 1)ε]d/2
+

εK1β̂T
(1 + nε)2+ω

n
∑

m=2

εCKβT

(1 +mε)(d−2)/2
≤ εcCK(1 +K1β̂T )β̂T

[1 + (n+ 1)ε]2+ω
, (A.74)

where we use µ ∈ (0, α − ω). Similarly, we can advance the second inequality in (5.38) and the first
inequality in (5.39).

We need a little more care in advancing the second inequality in (5.39) and the inequalities in (5.14).
The second inequality in (5.39) is rewritten as in (A.23), and each term is bounded as in (A.42), (A.46)
and (A.48) when d > 4. We can follow the same line when d ≤ 4, except that, e.g., the factor β2 in
(A.35) is replaced by βT β̂T , and that we use βT to control the convolution in (A.35), where the power of
1 + lε is replaced by 1 + ω. If we have only one factor β as in (A.41), then we use q = 1 + O(β̂T ) with
β1 = L−d1 ¿ 1, as well as γ + δ < ω and µ < α− ω, to obtain

cCKβTa(k)
log[2 + (n+ 1)ε]

[1 + (n+ 1)ε]1−γq
[1 + (n+ 1)ε]

6−d
2

≤ cCKβ̂Ta(k)

[1 + (n+ 1)ε]δ
T−bd+µ[1 + (n+ 1)ε]

4−d
2
+γq+δ log[2 + (n+ 1)ε]

≤ cCKβ̂Ta(k)

[1 + (n+ 1)ε]δ
T−(α−µ−ω) ≤ cCKβ̂Ta(k)

[1 + (n+ 1)ε]δ
. (A.75)

A similar argument applies to the advancement of the inequalities in (5.14). However, since −ρ >
4−d
2 ≥ 0 (cf., (5.36)), we cannot use the trivial inequality a(k) ≤ 2 to obtain, e.g., the low-dimensional

version of (A.66). To overcome this difficulty, we use the factor βT in the bound on gm(k) and a(k) ≤
γ log[2+(n+1)ε]1+(n+1)ε in (A.66), as well as µ < α− ω = bd+ d−4

2 − ω and d
2 − (2 + ρ) < γ < ω, to obtain

βT ≤ β1T−bd
[

a(k)

γ log[2+(n+1)ε]1+(n+1)ε

]−ρ
≤ cβ̂TTα−ω−bd−ρa(k)−ρ ≤ cβ̂TT−(ω−γ)a(k)−ρ ≤ cβ̂Ta(k)−ρ. (A.76)

This completes the advancement of the induction hypotheses for d ≤ 4.
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