

Constraint driven operation assignment for retargetable VLIW
compilers
Citation for published version (APA):
Bekooij, M. J. G. (2004). Constraint driven operation assignment for retargetable VLIW compilers. [Phd Thesis 1
(Research TU/e / Graduation TU/e), Electrical Engineering]. Technische Universiteit Eindhoven.
https://doi.org/10.6100/IR573284

DOI:
10.6100/IR573284

Document status and date:
Published: 01/01/2004

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://doi.org/10.6100/IR573284
https://doi.org/10.6100/IR573284
https://research.tue.nl/en/publications/b710da62-affc-445d-b6b9-45a208b7515c

Constraint Driven Operation
Assignment for Retargetable

VLIW Compilers

Marco Bekooij

Constraint Driven Operation Assignment
for Retargetable VLIW Compilers

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de
Technische Universiteit Eindhoven, op gezag van de

Rector Magnificus, prof.dr. R.A. van Santen, voor een
commissie aangewezen door het College voor

Promoties in het openbaar te verdedigen
op maandag 12 januari 2004 om 16.00 uur

door

Marco Jan Gerrit Bekooij

geboren te Doorn

Dit proefschrift is goedgekeurd door de promotoren:

prof.Dr.-Ing. J.A.G. Jess
en
prof.dr.ir. J.L. van Meerbergen

Cover: Layout of a VLIW processor which can execute 41 operations in parallel. Many of the
techniques applied in the compiler for this processor are described in this thesis. The VLIW
processor and the compiler are products of Silicon Hive.

CIP-DATA KONINKLIJKE BIBLIOTHEEK, DEN HAAG

Bekooij, Marco Jan Gerrit

Constraint Driven Operation Assignment for Retargetable VLIW Compilers
Marco Bekooij.-
Eindhoven: Eindhoven University of Technology
Thesis Eindhoven. - With ref. - With summary in Dutch
ISBN 90-74445-60-8
Subject heading: constraint analysis, constraint satisfaction, compiler technology, code gen-
eration, signal processor architectures, VLIW-processors.

The work described in this thesis has been carried out at the Philips Research Laboratories in
Eindhoven, The Netherlands, as part of the Philips Research programme.

c©Philips Electronics N.V. 2004
All rights are reserved. Reproduction in whole or in part is

prohibited without the written consent of the copyright owner.

Preface

The thesis in front of you is a result of my efforts at the Philips Research Laboratories.
In this unique laboratory I have had the possibility to do for 4 years research on the same
industrial relevant problem. This thesis would not be there without the contribution of fellow-
researchers which I like to thank personally.

The major part of the research has been done in the Core Compiler Codesign (COCOON)
project which was headed by Jeroen Leijten. I am grateful to him that he gave me the op-
portunity to work on constraint driven operation assignment techniques despite the large un-
certainty about their applicability and the potential benefits of this approach. Exchange of
valuable insights developed in the COCOON project have made a significant contribution to
the approach presented in this thesis.

Without Jef van Meerbergen I wouldn’t be able to obtain the same research success. He
established the right boundary conditions and put my research in a broader context. He also
urged me, often earlier then I wished, to apply the developed techniques on real-life design
cases.

I also like to thank professor Jochen Jess for given me the change to obtain my Ph.D. degree
from the Eindhoven University of Technology. He pushed me from the beginning in the right
direction with his remark that a Ph.D. thesis should preferably be about a single small in-
depth worked out problem. I would also like to thank Albert van der Werf for the opportunity
he gave to continue the research on constraint driven code generation in the Monarch project.

The presented operation assignment techniques are an essential extension of the constraint
driven scheduling techniques which were introduces by Adwin Timmer approximately 10
years ago. So called value lifetime serialization techniques were added by Bart Mesman.
Koen van Eijk implemented these scheduling and serialization techniques in the research tool
FACTS. This tool has been extended with an implementation of the in this thesis described
operation techniques.

I am also thankful for the development version of A|RT-designer that was provided by the
company Adelante Technologies. With this processor synthesis and compilation tool suite
I was able to do an extensive evaluation of the developed operation assignment techniques.
The animated discussions with Koen van Nieuwenhoven, André Collignon, Ivan Indinge and
Kurt Du Pont of Adelante Technologies were experienced as very valuable.

Finally, I would like to thank Reńee and her mother Clara Jacobs for their pleasant distraction

vi

during writing of this thesis and I would like to thank my father for supporting me through
the years.

Contents

Preface v

1 Introduction 1

1.1 Application domain specific VLIWs .1

1.2 Compiler flow . 3

1.3 Operation assignment challenges .3

1.4 Main contributions .5

1.5 Related work .7

1.6 Thesis organisation .9

2 Inputs of the Code Generator 11

2.1 Target processor .11

2.1.1 Data path template .11

2.1.2 Register file architecture .12

2.1.3 Network model of the data path .16

2.1.4 Instruction encoding .17

2.2 Intermediate representation of the application program20

2.2.1 Data flow graph .20

2.2.2 Flow graph representations .23

2.3 Timing constraints .26

2.4 Problem statement .28

3 Code Generation by Traversing the Search-Space 29

3.1 Code generation phases .29

viii Contents

3.1.1 Schedule search-space pruning .32

3.1.2 Operation assignment infeasibility detection33

3.2 Phase coupling .34

3.2.1 Phase coupling example .35

3.2.2 Schedule search-space pruning given a partial assignment of operations35

3.3 Constraint analysis strategy .37

3.3.1 The relation between combinatorial problems37

3.3.2 Search algorithm based on constraint analysis38

3.3.3 Releated work on constraint analysis40

3.3.4 Computational complexity of the assignment problem41

4 Assignment Search-Space Representation 49

4.1 Conflict graph concepts .49

4.2 Network model .51

4.3 Assignment search-space model .54

4.3.1 Modeling of interconnect constraints54

4.3.2 Modeling of hard resource conflicts55

4.3.3 The assignment conflict graph .56

4.3.4 Redundancy in the assignment conflict graph61

5 Assignment Search-Space Pruning 65

5.1 Pruning of colors of nodes in a clique. .65

5.2 Connectivety driven pruning .71

5.2.1 Pruning example .71

5.2.2 Communication path graph .71

5.2.3 Communication path graph pruning algorithm75

5.2.4 Communication path graphs for cyclic data flow graphs78

5.2.5 Data dependency chains .82

5.2.6 Diverging data dependencies .85

5.2.7 Converging data dependencies .90

5.2.8 Guarantees after pruning .91

Contents ix

6 Multi-casting 95

6.1 Multi-casting concept .95

6.2 Modeling of multi-casting in the ASCG. .96

6.3 Copy operations .98

6.4 Global write-back busses .99

6.4.1 Write-back bus assignment .99

6.4.2 Scalability considerations .100

7 Hierarchy, Operation Merging and the Decision Heuristic 103

7.1 Hierarchical data flow graphs .103

7.2 Operation merging .111

7.3 Decision heuristic applied during operation assignment112

8 Quantitative Evaluation 115

8.1 Experimental compiler flow .115

8.2 Evaluation of the operation assignment techniques116

8.2.1 Operation assignment examples .116

8.2.2 Assignment results .121

8.3 Lifetime serialization after operation assignment125

8.4 Scheduling results .126

9 Conclusion 129

A Constraint Graph Representation 131

Bibliography 137

Samenvatting 143

Curriculum Vitae 145

Chapter 1

Introduction

This thesis describes constraint driven operation assignment techniques. These techniques
are intended for application in a retargetable compiler that generates code for application
domain specific Very Long Instruction Word (VLIW) processors. Multiple register files and
an incomplete communication network in the data path are applied in these processors to
improve their power-efficiency and scalability. However the use of more than one register
file and an incomplete communication network make the assignment of operations to the
functional units in the processor an important but difficult subtask in the compiler.

To derive a proper operation assignment, we apply constraint analysis techniques. These
analysis techniques take explicitly the interconnect in the data path of the processor into
account and remove infeasible operation assignment options from the assignment search-
space. This way assignment decisions that would inevitably lead to violation of resource or
timing constraints are prevented.

The organization of the remaining part of this chapter is as follows. In Section 1.1 we moti-
vate why we focus on compilation techniques for application domain specific VLIWs. The
retargetable compiler flow is presented in Section 1.2. Why operation assignment is an impor-
tant but difficult subtask in the compiler is described in Section 1.3. The major contributions
of this work are listed in Section 1.4. In Section 1.5 the differences between this work and
operation assignment techniques known from the literature are indicated. Finally, Section 1.6
describes the organization of the thesis.

1.1 Application domain specific VLIWs

Today’s embedded systems typically contain several processors, memories and peripherals
that communicate with each other via an on chip network. Power dissipation usually limits
the functionality that can be offered by these systems. Approximately 100 mW is seen as
an acceptable power dissipation for battery supplied mobile systems, while the use of cheap
plastic IC-packages limits the power dissipation to approximately 1 W for wired systems.

2 Introduction

Specialization of processors towards their task can significantly improve their power-efficiency
[HMV]. Therefore event driven and control dominated tasks are usually executed on gen-
eral purpose processors such as offered by ARM [Fur96] or MIPS [MIP], while signal pro-
cessing tasks are often carried out on classical Digital Signal Processors (DSPs) like the TI
C54x [Lea97] or the R.E.A.L. [KLMW98].

Programming of general purpose processors is usually done in a high level language like C
which is translated by a compiler into micro-code. On the other hand classical DSPs are often
manually programmed in assembly code because the micro-code delivered by a compiler
is often of an insufficient quality for these processors [Leu97]. However, programming in
assembly code is a time-consuming and error-prone task which requires detailed knowledge
of the DSP’s instruction set.

For classical DSPs efficient code generation with a compiler is prohibited by the irregu-
larities in the data path of these processors and the non-orthogonality of their instruction
sets [ZVSM94]. Contrarily, for VLIW processors a compiler can generate high quality code
because these processors have a regular data path and an orthogonal instruction set. How-
ever these processors have, for embedded applications, an often unacceptably low power-
efficiency and micro-code density.

The code generation techniques described in this thesis are intended for the next generation
VLIW processors. Unlike the first generation VLIW processors, exhibiting a single register
file, the targetted VLIWs may contain several register files, an incomplete communication
network and a refined instruction set optimized for digital signal processing. These proces-
sors are more difficult compiler targets but are more power-efficient than the first generation
VLIW processors. On the other hand they are typically less power-efficient, yet significantly
more compiler friendly compared to classical DSPs.

embedded processor performance compiler friendliness
type

ILP m. RF rate. ILP c. RF o. enc rate.
general purpose low no - low yes yes ++
classical DSP medium yes + medium no no - -
first generation VLIW medium no + medium yes yes +
second generation
application domain high yes ++ high no yes -
specific VLIW

Table 1.1: Characteristics of processors in the case they are applied for DSP applications. In
this table stands the abbreviation “ILP” for instruction level parallelism, “m. RF” for multiple
register files, “c. RF” for central register file, “rate.” for rating and “o. enc” for orthogonal
instruction encoding.

Another important characteristic of VLIW processors with multiple register files is that the
number of parallel computation units in the data path is better scalable than the data path
of processors with a central register file. The data path of a processor is well scalable if an
increase of the number of parallel computation units in the data path does not result in a more
than proportional increase in silicon area or in a significant decrease in the power-efficiency of

1.2 Compiler flow 3

embedded processor power efficiency code size
type

ILP m. RF Iset rate. i. enc m. RF rate.
general purpose low no RISC - - medium no -
classical DSPs medium yes CISC + high yes ++
first generation VLIW medium no RISC - none no - -
second generation
application domain high yes CISC ++ low yes +
specific VLIW

Table 1.2: Continuation of Table 1.1 with characteristics of processors in the case they are
applied for DSP applications. In this table stands the abbreviation “ILP” for instruction level
parallelism, “m. RF” for multiple register files, “RISC” for Reduced instruction set, “CISC”
for complex instruction set, “Iset” for instruction set, “rate.” for rating and “i. enc” for
instruction encoding.

the processor. In processors with multiple register files the number of register fields and ports
per file is typically lower than in processors with a central register file. Register files with a
smaller number of ports and register fields are faster and more power-efficient than register
files with a large number of ports and register fields. Therefore, processors with multiple
register files are potentially more power-efficient and able to deliver a significantly higher
computational performance than processors with a central register file. The characteristics of
the processor types discussed above are summarized in Table 1.1 and Table 1.2.

1.2 Compiler flow

Our work is based on the retargetable compiler flow as shown in Figure 1.1. The algorithmic
description of the application, for example in the C++ language, is the input to the compiler
frontend. The frontend translates the description into an intermediate representation. During
this translation the functionality offered by the data path of the processor, is taken into ac-
count. The intermediate representation together with a description of the target processor and
a specification of the time constraints are the inputs of the code generator. The code generator
produces an executable program. The operation assignment techniques, that are described in
this thesis, are essential entities of the code generator.

1.3 Operation assignment challenges

Operation assignment is a difficult task in the case that processors are targeted with more than
one register file and an incomplete network. In this case, a functional unit can access only a
subset of the register files for reading or writing. Therefore, operations must be assigned to
the functional units in such a way that these units are able to access the Register Files (RFs)
in which their input values are stored. This is illustrated with a small example below.

4 Introduction

Intermediate
representation

(hierarchical DFG)

Time constraints

Executable
code

Frontend

Target
processor
description

Application
(C/C++) Code

generator

Figure 1.1: The applied compiler flow.

In Figure 1.2 a Data Flow Graph (DFG) and a data path of a processor are shown. The
resources in the data path are the Functional Units (FUs), the registers in the register files,
the interconnect in the connection network, and the input ports and output ports of those
building blocks. All these resources are controlled by VLIW-instruction bits and can be used
in parallel.

n1
+

n0
+

RF1RF0

(a) (b)

FU1

+
FU0

+

Figure 1.2: A DFG (a) and a data path instance (b).

A communication path is a path from the output port of a functional unit to the input port of
a functional unit. This path traverses the connection network and a register file. Assignment
of the operations in the DFG to the functional units of the target processor should be such
that the required communication paths exist. For the DFG and the architecture of Figure 1.2,
the requirement that a communication path from the producing FU to the consuming FU, has
consequences for the assignment of the operationsn0 andn1 to the functional units. For
example, if operationn0 is assigned to FU1 then also operationn1 must be assigned to FU1.

1.4 Main contributions 5

In the case that the DFG is folded then operationn0 andn1 of succeeding loop iterations are
executed in the same clock cycle. In this case those operations must be assigned to different
FUs. There must also be a communication path from the FU that executes operationn0 to
the FU that executes operationn1. These requirements can only be satisfied by assigning
operationn0 to FU0 and operationn1 to FU1.

This example illustrates that the assignment of operations is complicated by the use of an
incomplete communication network in the processor. Besides that the assignment should be
such that there is a communication path between the functional unit that produces a result
and the functional unit that consumes this result, this communication path should also be
available. The communication path should be available, that is, the same path should not be
used for the transfer of another result in the same clock cycle.

In the case that more than one register file is applied in the data path then the intermediate
results produced by a functional unit must also be assigned to a register file. A register file
has a limited capacity determined by the number of register fields it contains. The register
file assignment should be such that the data to be held in a file does not exceed its capacity.
The register file assignment is usually a result of the assignment of the operations and vice
versa. Therefore, these two problems are tightly interrelated.

Multi-casting allows a result of a functional unit to be stored in more than one register file.
With multi-casting it is often possible to generate an optimal schedule despite the use of many
small register files in the data path. Multi-casting complicates operation assignment, because
the number of used register file write ports depends on the assignment of the operations.
The in this thesis described assignment techniques are intended for processors that support
multi-casting.

Loop folding [Lam88] [Goo89] - which is also known as loop pipelining, or software pipelin-
ing - is supported because time critical parts in signal processing application are often en-
coded as for-loops. In folded loops successive for-loop iterations are executed simultane-
ously such that more instruction level parallelism can be exploited. An important challenge
for code-generators is that loop folding requires that the application can be represented in a
cyclic data flow graph.

We assume an hierarchical data flow graph [KMN+92] as the intermediate representation of
the application. Our techniques cover entire applications ranging over sets of basic blocks.

Another issue is that operations without a resource conflict may use the same hardware re-
source in the same cycle. This is called operation merging. An example of the absence of
a resource conflict is established by memory read operations that access the same memory
location. An often occurring case is a constant being fetched by multiple read operations
from the same memory location.

1.4 Main contributions

In this thesis constraint driven operation assignment techniques are described that effectively
cope with multiple register files and an incomplete network in the data path of VLIW pro-

6 Introduction

cessors. A tight coupling between operation assignment and scheduling (time assignment) is
obtained by making use of constraint analysis techniques [EMAP+00].

We introduce in this thesis a conflict graph model of the assignment search-space. The con-
sequences of an assignment decision are derived by pruning algorithms that operate on the
conflict graph. Pruning of the conflict graph prevents unfortunate assignment decisions that
could lead to a violation of resource or time constraints.

The assignment of the operations to the functional units was assumed as given, in pre-
vious work on constraint driven code generation for processors with an incomplete net-
work [Tim95] [Mes01]. Given this assumption accurate bounds of the earliest as possible
and the as late as possible start times of the operations could be derived with analysis tech-
niques. These bounds are also needed to derive an operation assignment for which there is
a schedule with a predefined schedule length or throughput. However, during the operation
assignment process, some of the operations are assigned and others not. Given this partial
assignment, similar analysis techniques are used to derived bounds on the start times of the
operations. For run-time efficiency reasons we introduce operations of which the type can be
adapted during the operation assignment process. After an operation is assigned, its type is
adapted which reflects that this operation can only be executed on a specific functional unit.

A global write-back bus has been introduced in the network of the processor in order to guar-
antee that there exists at least one connection from an output of any functional unit to the input
of any other functional unit. The bus eliminates the need for copy operations which simplifies
the assignment problem drastically. The process of storing values in the background memory
in case a register file capacity is exceeded is called “spilling”. The global write-back bus also
guarantees that every intermediate value can be spilled.

The global write-back bus also makes the assignment of operations in a basic block to a large
extend independent of the assignment of the operations in surrounding basic blocks. The
reason is that the bus always provides a communication path from a producing operation in a
surrounding basic block to a consuming operation in the inner basic block.

A so called block operation has been introduced which models a scheduled basic block. Block
operations are used during the assignment of operations that belong to a basic block that
surrounds other basic blocks. Value lifetime serialization of block operations and ordinary
operations is possible because the number of registers per register file that are used inside a
scheduled basic block is included in a block operation.

Most of the operation assignment techniques that are presented in this thesis have been im-
plemented in our research tool FACTS. Interfaces with the A|RT Designer VLIW-DSP de-
velopment environment [Ade] have been accomplished. This has allowed us to verify the
correctness of the assignment techniques and has enabled the evaluation of the assignment
techniques on industrially relevant examples.

1.5 Related work 7

1.5 Related work

A number of combined operation assignment and scheduling techniques are described in lit-
erature. An technique often used is list scheduling [Muc97] in which a priority function is
used to select an operation to be assigned to a functional unit and a clock cycle. Sometimes
“un-scheduling” of operations is applied [Goo89]. Close to optimal results are reported for
processor architectures with a regular data path and an orthogonal instruction encoding. Con-
trarily a poor schedule quality is reported [Leu97] for processors with irregular data paths or
a non-orthogonal instruction encoding.

Other assignment and scheduling techniques have been developed that generate high quality
code at the expense of long compilation times. Examples are [HD98] which uses branch
and bound techniques, [WLH00] which transforms the scheduling in an integer linear pro-
gramming formulation, [Bea91] which solves the scheduling problem by means of genetic
algorithms and [GFO92] which employs simulated annealing. Due to their time complexity,
these techniques cannot ensure optimality given a limited time budget, and are only applica-
ble to small code fragments and situations where long compilation times are acceptable.

The assignment technique described in this thesis is intended for VLIW processors with an
orthogonal instruction set and almost homogeneous data path. In a homogeneous data path
all functional units support the same data types. The described assignment techniques are
intended for processors with more than one register file and an incomplete communication
network.

Rather than optimizing cost according to a cost function, our assignment technique tries to
satisfy the constraints imposed by a completely specified data path and the specified timing
constraints. The technique searches for an assignment of operations that satisfies these con-
straints. The search-space is reduced by applying pruning algorithms that eliminate infeasible
cases. This makes it possible to derive an assignment and a schedule or to detect infeasibility
for DFG instances of a reasonable size (< 100 operations) and data paths with up to 50 FUs
in typically less than a minute compilation time.

A difference with the operation assignment techniques described in the literature as compared
to our techniques is that most other techniques insert so-called copy operations into the DFG.
Copy operations are used to copy a value from a register file into another register file such that
it is accessible by the appropriate functional unit. Usually the data path is designed in such a
way that a valid mapping of the DFG can always be obtained by insertion of copy operations
into the DFG. A disadvantage of the use of copy operations is that they can introduce a
significant number of additional cycles to execute the application on a processor with multiple
registers files compared to a processor with a single register file. It is also a difficult problem
to decide during code generation where to insert copy operations into the DFG such that the
performance penalty is minimized.

Our operation assignment techniques exploit multi-casting. Multi-casting implies storing of
an intermediate value produced by a functional unit in more than one register file simultane-
ously. By making use of multi-casting there is usually hardly any performance penalty for
the use of multiple register files in the processor. Also important is that the DFG does not
change during operation assignment if multi-casting is applied. This enables the use of pow-

8 Introduction

erful assignment search-space pruning algorithms. It also enables a computationally efficient
incremental update of the schedule search-space.

Table 1.3 gives an overview of relevant properties of the assignment techniques for VLIW
processors as described in the literature. The name of the first author of the article is in the first
column. In the second column it is indicated whether assignment is done in an independent
pre-processing step before scheduling (Y) or integrated with scheduling (N). A disadvantage
of an independent pre-processing step is that the effect of the assignment of operations on the
schedule cannot be taken into account, a situation that is avoided with our techniques. The
third column contains an ’Y’ if the technique is able to insert copy operations in the DFG.
Some evidence is provided in Chapter 2 that copy operations typically impair the quality of
the schedule. If the technique is intended for loops, an ’Y’ can be found in the fourth column.
The fifth column contains an ’Y’ if the assignment technique takes the interconnect in the
data path of the processor into account. Overall, a ’N’ is preferable in column 2 and 3, while
a ’Y’ is the entry to be preferred in columns 4 and 5.

Author Pre- Insert Loops Inter-
proc. copy ops. con.

Mattson [Ban98] N Y Y N
Banerjia [Ban98] N Y N Y
Bashford [BL99] N Y N Y
Desoli [Des98] Y Y N N
Ellis [Ell86] Y Y Y N
Kock [Koc95] Y Y Y Y
Nystorm [NE98] Y Y Y Y
this work N N Y Y

Table 1.3: Characteristics of the operation assignment technique.

This thesis describes operation assignment techniques which make use of constraint analy-
sis. Therefore, the techniques match seamlessly with the other constraint analysis based code
generation techniques [EMAP+00] which are implemented in our research tool FACTS. The
use of constraint analysis distinguishes this assignment technique from the operation assign-
ment techniques described in the literature. The premise is that with constraint analysis, high
quality schedules can be generated for processors that can execute many (> 10) operations
in parallel. The data paths of these processors may contain many small register files and a
sparsely connected network.

Processors with these characteristics are difficult compiler targets for which, as far as we
know, all other code generation techniques often produce inferior schedules. However, the
attractiveness of these processors is their superior power-efficiency.

Our code generation techniques can be re-targeted such that their effectiveness can be easily
evaluated for a variety of processors. Retargetability requires that the techniques are, to a
large extend, processor independent. Because the code generation techniques are intended
for DSP processors they should support complex operations which are operations with more
than two inputs and one output and can have several (pipeline) registers. An example of a
complex operation is the Multiply ACcumulate (MAC) operation. This operation has 3 inputs

1.6 Thesis organisation 9

of which one input is typically sampled one cycle after the other two. The accumulation
register can be considered as holding the state of the MAC-unit.

The described assignment techniques are intended to be applied on loops of which the sched-
ule has a large impact on the performance. Loop folding is applied to obtain an increase in
parallelism and performance at the cost of a slight increase in code size.

1.6 Thesis organisation

This thesis is organized as follows. Operation assignment implies that the operations of a
data flow graph are assigned to functional units in the processor. The data flow graph and
the target processors are defined in Chapter 2. In the same section the operation assignment
problem is formulated. The data flow graph and a description of the target processor are the
inputs of the code generator. The tasks performed by the code generation are described in
Chapter 3. These code generation tasks are based on the constraint analysis strategy. This
strategy requires that all possible assignments as well as the constraints are modeled in a
representation which is called the “assignment search-space”. The assignment search-space
is described in Chapter 4. It is pruned with the rules described in Chapter 5. Pruning prevents
decisions that lead to infeasibility and provides this way a kind of look-ahead. Multi-casting
is a very efficient way to distribute intermediate results into more than one register file. This
essential feature of the presented operation assignment techniques is described in Chapter 6.
How hierarchical dataflow graphs and merging of operations is supported is described in
Chapter 7. These features make it possible to test the operation assignment techniques on
processors and hierarchical data flow graphs generated with the A|RT-designer tool-suite.
The quantitative results obtained in this environment are presented in Chapter 8. Finally,
conclusions are drawn in Chapter 9.

Chapter 2

Inputs of the Code Generator

The inputs of the retargetable code generator are the intermediate representation of the appli-
cation, a description of the data path of the target VLIW processor and the timing constraints.
These three inputs are defined more precisely in this chapter.

The organization of this chapter is as follows. In Section 2.1 the characteristics of the class
of target VLIW-processors dealt with in this thesis are described. Section 2.2 describes the
intermediate representation of the application that will be mapped on the VLIW processor.
Section 2.3 describes the timing constraint which can be specified by the user or derived au-
tomatically. Given the description of the inputs of the code generator the addressed operation
assignment problem is restated in Section 2.4.

2.1 Target processor

The characteristics of the VLIW-processors, for which our operation assignment techniques
are intended, are described in this section. The organization of this section is as follows. First,
the characteristics of the processor’s data path are given in the form of a data path template.
This is followed by the motivation of the choice for processors with a distributed register file
architecture. Then the connection network of the processor is defined. Finally, the applied
instruction encoding is described.

2.1.1 Data path template

The template of the data path of the target VLIW processors is shown in Figure 2.1. Proces-
sors that adhere to this template have the following characteristics:

• Multiple Register Files (RFs). These register files can have more than one Write Port
(WP) and more than one Read Port (RP),

12 Inputs of the Code Generator

RPRPRPRPRPRP

FU0

WP WP WP WP

FU2 FUn

RF0 RFm

CN

FU1

RP

Figure 2.1: VLIW-processor data path template.

• Multiple Functional Units (FUs). These functional units can differ in the type of the op-
erations that they can execute. Examples of operation types are addition, multiplication
and memory load/store,

• A Connection Network (CN) between the outputs of the functional units and the write
ports of the register files. This connection network could be incomplete and may con-
tain shared busses. An example of a shared bus is the so-called “global communication
bus” which will be introduced in Section 3.2.1,

• An orthogonal instruction encoding. An instruction encoding is orthogonal if the en-
coding of the instructions allows all combinations of operations to be executed in par-
allel [Wul81].

The data path template does not prescribe the register file architecture nor does it specify the
internals of the connection network or the instruction encoding. The next subsection describe
the register file architecture, connection network and the instruction encoding scheme for
which our operation assignment technique is intended.

2.1.2 Register file architecture

From the data path template described in the previous section, processors with a central, a
clustered and a distributed register file architecture can be derived. In this section we mo-
tivate the distributed register file architecture as being the most suitable architecture for our
objectives.

For a processor with a central register file (see Figure 2.2) operation assignment is almost
trivial because every functional unit can access all register fields in the central register file. A
drawback of processors with a central register file is however the severely limited scalability
of the data path of such a processor. The reason is that if the number of functional units in the
data path is increased, in order to increase the peak performance of the processor, then the
number of register file ports must be increased. It is likely that the number of intermediate

2.1 Target processor 13

RF

FU0 FU1 FU3FU2 FU5FU4 FU7FU6

Figure 2.2: A VLIW-processor data path instance with a central register file architecture.

values that must be stored in the register file will also increase. Therefore, the number of
register fields in the register file must be increased. In each register field an intermediate value
can be stored. A larger number of ports and fields makes the register file slower and decreases
its power-efficiency [RDK+00]. Therefore, it is likely that additional functional units in the
data path reduce the power-efficiency and the maximal clock frequency of a processor with a
central register file. A reduction of the clock frequency decreases the processors performance
and makes the added functional units less effective.

This is confirmed by the results of our own experiments which are shown in Table 2.1. This
table presents the critical path length and the logic cell area obtained with logic synthesis of
register files with a varying number of data input and output ports and a varying number of
register fields of 32 bits in an CMOS 0.18µm technology at 1.5V and 125Co. Given that the
total number of registers in the processor is kept the same, these experiments confirm that it is
likely that the use of register files with a larger number of ports will have a negative effect on
the processor’s clock frequency. The reduction in clock frequency becomes more significant
if it is taken into account that the actual critical path length after layout is approximately
twice as long. This increase in critical path length is due the fact that the estimate of the
critical path length made by the synthesis tool is based on a typical wire density in standard
cell blocks while the wire density in register files is typically much higher. If we assume the
validity of the rule of thumb that the power dissipation is proportional with the area, then the
results also indicate that the power-efficiency of the processors is reduced if the number of
register file ports is increased.

data ports register critical path logic cell area total logic cell area
fields/file (32 fields)

ns µm2 µm2

2 4 4.5 12550 100400
4 8 4.3 39326 157304
8 16 7.0 122065 244130
16 32 8.3 205005 205005

Table 2.1: Characteristics of synthesized register files with 32 bit/field in 0.18µm CMOS.

Multiple register files are applied in processors with a clustered register file architecture (see
Figure 2.3) in order to improve the scalability of the data path. In such an architecture a
register file together with the functional units that can read input data from this file and can

14 Inputs of the Code Generator

FU
copy

FU
copy

FU
copy

FU
copy

RF2 RF3RF1RF0

FU4 FU5 FU6FU3FU2 FU7

CN

FU0 FU1

Figure 2.3: A VLIW-processor data path instance with a clustered register file architecture.

R
F

R
F

R
F

R
F

R
F

R
F

R
F

R
F

R
F

R
F

R
F

R
F

R
F

R
F

R
F

R
F

FU3FU2FU1FU0 FU4 FU6 FU7FU5

CN

Figure 2.4: A VLIW-processor data path instance with a distributed register file architecture.

write the results to this file is called a cluster. The communication of data between clusters
is performed by copy operations that are executed on the copy functional units which are
indicated as “copy FU” in Figure 2.3 .

A major disadvantage of the clustered register file architecture, compared to a processor with
the same functional units but a central register file, is the performance loss caused by the
copy operations. The performance loss reported by Faraboschi et.al. [FDF98] is 15-20% in
terms of clock cycles for a data path with 2 clusters and 25-30% in terms of clock cycles
for a data path with 4 clusters. Similar results are reported by Gageldonk [Gag01]. These
results were obtained for processors with a sufficient number of fields in the register files and
a modest utilization of the copy units. Therefore, these results indicate that the performance
loss is primarily caused by the latency of the copy operations. Because the performance loss
increases significantly with the number of clusters we conclude that the scalability of the data
path of a clustered architecture is limited.

A processor with a distributed register file architecture (see Figure 2.4) can become more

2.1 Target processor 15

favorable in the case a large number of functional units is applied in the data path of the pro-
cessor. By applying multi-casting it is possible to store an intermediate value produced by a
functional unit in more than one register file without any additional operations for communi-
cation purposes. A performance loss of only 2% for processors with a distributed register file
architecture that support multi-casting compared to a processor with a central register file is
reported by Mattson et.al. [MDR+00]. We have obtained similar results with A|RT designer.

Also the width of the VLIW instruction word is affected by the register file architecture of
the processor. The reason is that, with a central register file, every functional unit can access
all the registers in the processor. Therefore, the number of bits per source or destination
field in the VLIW instruction word equalsd2log(fields)e. However, the number of fields
per file tend to be much smaller in a processor with a distributed register file architecture
and thus also the number of bits per source and destination field. This reduction in bits is
partially compensated by the fact that besides the register field also the producing functional
unit output port and the destination register file must be specified in the destination field. If
the connection network in the data path is sparsely connected then only a few functional unit
output ports are connected to a register file write port. In this case only a few additional bits
are needed in the destination field to specify one of these ports. For these processors it is
plausible that the instruction width is smaller than for a processor with a central register file.
This is supported by the figures in Table 2.2. This table contains the instruction width and
the number of instructions for three applications that are mapped on an application specific
VLIW processors with a central or a distributed register file architecture. The same functional
units are applied in the processors with a central register file as in the processors with the
distributed register file architecture. The processors were generated and programmed with
A|RT designer.

design central RF distributed RF
instruction number of instruction number of
width (bits) instructions width (bits) instructions

fir 37 19 30 16
fft 72 61 64 60

ray-tracing 619 50 420 51

Table 2.2: Instruction code size of VLIW processors with a central and a distributed register
file architecture.

It is likely that the instruction word size for a distributed register file architecture with a
dedicated register file per input port is sub-optimal. The reason is that there are approximately
twice the number of write ports as there are functional unit output ports in this architecture. A
reduction in the number of write ports could possibly reduce the number of destinations fields
in the VLIW instruction word. A reduction of the number of write ports can be achieved by
merging several register files in one register file.

Our operation assignment techniques are intended for processors with a distributed register
architecture because multi-casting can be relatively easily supported by our constraint analy-
sis based code generation techniques while insertion of copy operation seems to be virtually
impossible. Also the data path of a processors with a distributed register file architecture
scales well and the usage of a large number of small register file reduces the instruction word

16 Inputs of the Code Generator

OP→WB

WB→WP

WP→ RP

RP→ IP

wb1

wp1wp0

rp1rp0

ip1ip0

←−Write Ports (WPs)

←− Read Ports (RPs)

←− Input Ports (IPs)

←−Write back Busses (WBs)

rpq

ipr

wbm

wpn

wb0

op1op0 opt

←− Output Ports (OPs)op1op0 opt

IP→ FU

FU→ OP

←− Functional Units (FUs)FU0 FU1 FUs

Figure 2.5: Generic network model of the data path template of Figure 2.1.

width and the code size.

2.1.3 Network model of the data path

There can be several communication paths in a processor from an output port of a functional
unit, to an input port of a functional unit, through the connection network and a register file.
All possible paths through the data path template of Figure 2.1 are captured in a network
model which is shown in Figure 2.5. In Chapter 4 it is described how the assignment search-
space is constructed by making use of this network model.

The network model of Figure 2.5 contains several sub-networks which are represented by
boxes. These sub-networks are non-blocking in the sense of [Clo53]. That is, simultaneous
data transport through this network from idle network input ports to idle network output ports
can be performed if a connection can been made between these ports in the network. Within
these networks not all possible connections may actually exist.

Every sub-network output port is in Figure 2.5 connected to one input port of another sub-
network. Also, every sub-network input port is connected to one network output port. The
input port of one sub-network has the same label as the output port of another sub-network
to which it is connected.

2.1 Target processor 17

(a) (b)

wb0 wb1 wb2

op2op1op0

ip1 ip2 ip3 ip4ip0

rp4rp2

wp0 wp1 wp2

wb1

op0

rp3

wb2

ip4ip2ip0

rp0rp0 rp3

wp0 wp1

op1 op2

RF1RF0

wb0

op0 op2op1

FU2FU1FU0FU1 FU2FU0

rp1 rp2

wp2

ip1 ip3

Figure 2.6: Processor data path (a) and corresponding network model (b).

An example of a network model of a data path is shown in Figure 2.6. This example illustrates
how the shared bus wb0 can be included in the network model. This is a shared bus inside
the connection network of the processor. Figure 2.6 also illustrates the possibility that more
than one functional unit can obtain it’s input data via the same register file read port.

The sub-network “WP→RP” is incomplete if more than one register file is applied in the data
path. Therefore routing problems and network port conflicts should be taken into account
during code generation even if all other networks are fully connected. These routing and port
conflicts complicate operation assignment.

2.1.4 Instruction encoding

In this section we introduce “data-stationary instruction encoding” and “time-stationary in-
struction encoding”.

In the data-stationary encoding [LBSL94] every instruction controls a complete sequence of
operations that have to be executed on a specific data item, as it traverses the data pipeline. To

18 Inputs of the Code Generator

sh
ift

RF RF

SS

src dstsrcopc src dstsrcopc

FU1

RF RF

SS

FU0 sh
ift

Figure 2.7: Control of the data path by the fields in a data-stationary encoded instruction.

achieve this, the opcode, which specifies the operation type to be executed, and the register
source and destination addresses are located in the same instruction word. Once the instruc-
tion word has been fetched from program memory and decoded, the controller makes sure
that the destination addresses become available in the correct clock cycle. Therefore, if an
operation has a latency of two cycles then the destination address needs to be available one
clock cycle later.

The data path and instruction word of a processor that uses a data stationary instruction en-
coding is shown in Figure 2.7. The dashed lines in these figures indicate how the bits in the
fields are connected to the data path elements. In the destination field the destination register
and the destination register file are specified. The content of this field is send to a shift regis-
ter. If the latency of the functional unit is N cycles then the destination is delayed N-1 cycles
by the shift register. After the destination field is delayed, it is send to the select units (S).
These units determine whether the result should be stored in the register file and extract from
the destination the control bits for the switches in the network as well a the destination register
field.

An important disadvantage of the data-stationary instruction-encoding is that no efficient en-
coding scheme is known that supports multi-casting. The reason is that multi-casting requires
the option to specify a variable number of destination addresses per opcode. If the length of
the instruction word is fixed then the worst-case number of destinations, which equals the
number of register file write ports in the data path, must be specified for every opcode. This
increases the instruction word size more than necessary because in the typical case there is
only one destination per opcode. For the same reason it is virtually impossible to encode
efficiently, operations that consume in a time multiplexed fashion several input values via
the same input port or that produce multiple output values. Modeling of this complex in-

2.1 Target processor 19

RF RF

FU1

RF RF

srcopc src srcsrc opc dstdst dstdst

FU0

Figure 2.8: Control of the data path by the fields of a time-stationary encoded instruction.

put/output behavior with ordinary operation such that traditional scheduling techniques can
be applied, is described in [BWB00]. Another drawback of the data-stationary instruction-
encoding is that operations with a long latency require a lot of memory bits in the data path
because the destinations are needed several cycles after the start of the operation and are
delayed by a shift register in the processor. Multi-casting and operations with complex time-
shapes and multiple destinations can be efficiently supported by applying a time-stationary
instruction encoding [GPL+97]. This encoding scheme is described below.

Figure 2.8 shows how the data path is controlled by the fields of a time-stationary encoded
instruction. The opcode (opc) field in the instruction determines the operation type that is
executed on a functional unit. The source (src) fields determine the registers, from which the
operands are retrieved. A destination field (dst) is associated with every register file write
port. The destination field determines in which register a result is stored and from which
functional unit output port this result is read. The dashed lines in Figure 2.8 indicate which
data path elements are controlled by a field in the VLIW instruction. The bits in a field of a
VLIW instruction word control these data path elements directly. Directly means that only
wires are used to connect the bits to the right data path elements and that the content of the
fields are not temporarily stored. Therefore, if an operation has a latency larger than one then
the register destination is specified in a instruction word different from the one holding the
corresponding opcode.

For time-stationary instruction encoded processors it is highly desirable that the scheduler
schedules beyondbasic blockboundaries. A basic block is a maximal sequence of in-
structions that can be entered only at the first of them and exited only from the last of
them [Muc97]. Without scheduling beyond basic block boundaries the pipeline registers

20 Inputs of the Code Generator

in the functional units must be empty at the end of a basic block. With deeply pipelined
functional units this could lead to many extra instructions at the end of a basic block.

The operation assignment techniques described in this report are able to exploit multi-casting
and are therefore intended for time-stationary encoded processors with a distributed register
file architecture. The performance and code size penalty due to the time-stationary instruction
encoding is in our case negligible because most of the functional units in the processors that
we target are not deeply pipelined. Another reason is that the time critical for-loops in DSP
applications are typically folded which is a form of scheduling of operations beyond basic
block boundaries.

A data transport from a functional unit output port to a register file write port is encoded with
a mix of bus-programming and socket-programming [Cor95]. Per write port it is encoded
from which bus the data should be read (socket-programming) and per bus it is encoded from
which functional unit output port the data should be read (bus-programming).

2.2 Intermediate representation of the application program

The second input of the code generator is a representation of the application program. This
representation describes one basic block, which is a fragment of the application, in the form
of a data flow graph. The complete application is represented in a hierarchical data flow
graph. Executable code for complete applications is generated, by applying the operation
assignment and scheduling techniques on all the basic blocks in the hierarchical data flow
graph.

The organization of this section is as follows. First, the characteristics of the data flow graph
representation of a basic block are described. Then, the characteristics of a flow graph and
a hierarchical data flow graph representation of an application are described. For the case
of processors with multiple register files it is motivated why a hierarchical data flow graph
representation is likely to be a more suitable then a flow graph.

2.2.1 Data flow graph

Operation assignment is the assignment of operations in a data flow graph to resources in the
processor. The data flow graph [KM92] represents the operations and the data and sequence
dependencies of a basic block. Our data flow graph is defined as follows:

Definition 2.1 (Data Flow Graph.)
The tuple(V,Ed ∪ El ∪ Es, we, id, ti, to) defines a Data Flow Graph (DFG), where

• V is the set of nodes (operations),

• Ed ⊆ V × V is the set of data dependency edges,

• El ⊆ V × V is the set of loop carried data dependency edges,

2.2 Intermediate representation of the application program 21

e2

e1
e4

e3e0

sink

1

1

source

0

1 1

legend

Sequence precedence edge
Loop carried data dependency edge

Operation

source

*
0

const

0

0

0

sink

e0, e1
e2, e3
e4, e5

Data dependency edge

Operation type

Data dependency edge labels

*,INCINC

Figure 2.9: An arbitrary Data Flow Graph (DFG).

• Es ⊆ V × V is the set of sequence precedence edges,

• we : Es ∪ Ed ∪ El → Z is a function describing the timing delay (in clock cycles)
associated with each sequence precedence edge and data dependency edge. The timing
delaywe associated with an edgee ∈ Ed is 1 and the timing delaywe associated with
an edgee ∈ El is 0.

• id : Es∪Ed∪El → {0, 1} is a function describing the iteration distance. The iteration
distance of a loop carried data dependency edgee ∈ El is 1. The iteration distance of
the other edges is 0,

• ti : Ed → N is a function describing the operation input port number of the succeeding
node, and

• to : Ed → N is a function describing the operation ouput port number of the preceding
node.

A DFG example is shown in Figure 2.9. An operation in this DFG has a type and can be
executed on data path resources that support this type. Examples of data path resources are
functional units and network ports. When an operation is executed it uses a data path resource.

Operations in a basic block can consume values produced by operations outside the basic
block. The operations outside the basic block are represented in the DFG by source opera-
tions. Conversely, a value produced in a basic block can be consumed by an operation that
does not belong to the basic block. These consuming operations are represented in the DFG
by sink operations.

22 Inputs of the Code Generator

The data dependency edges in the DFG specify that an operation can only be executed after
its input values are produced. Data edges might be labeled with a unique label. These labels
are used to refer to a specific data edge. The input and output port associated with a data
dependency edge are respectively specified at the head and the tail of the edge. Source and
sink operations have dummy ports. All input and output ports, except dummy ports, are
respectively mapped on input and output ports of a functional unit. The convention is used
that operation input port0 is mapped on the left most functional unit input port. Operation
input port1 is mapped on the next functional unit input port to the right, and so on. Operation
output ports are mapped in a similar way to functional unit output ports. If the mapping of
operation ports is irrelevant or trivial for a problem that is discussed then the port labels are
left implicit.

If the DFG is executed repeatedly then a value produced in one iteration can be consumed
by an operation executed in the next iteration. This type of data dependency is called a loop
carried data dependency and is represented in Figure 2.9 with a dashed edge.

Multiple data precedence edges leave the same output port of an operation if this operation
produces a result that is consumed by multiple operations. However, typically only one data
edge enters an input port of an operation. Only in the case that the execution of produc-
ing operations is mutually exclusive then the data dependency edges that leave these mutual
exclusive operations can enter the same input port of an operation.

Sequence precedence edges are depicted in Figure 2.9 with dotted edges. A timing delaywe
is specified in the middle of a sequence precedence edge.

A data dependency edge has a weigth of 1. Operations with a latency larger than one clock
cycle are modelled as a chain of operations in the DFG. Sequence precedence edges are used
to enforce that operations in the chain must start in consecutive clock cycles. This way of
modeling typically results in modest increase of the run-time of the scheduler.

The iteration distance id defines a weight of an edge in multiples of the initiation interval (II)
of the schedule. The total weight of an edgee ∈ Es∪Ed∪El isw(e) = −II× id(e)+we(e).
The iteration distance id(e) is 1 for loop carried data dependency edges and 0 for the other
edges.

The task of the scheduler is to assign each operationv ∈ V a start times(v). The start
times are constrained by the available resources and the data dependencies and sequence
precedences. A data dependency edge or sequence precedence edge(vi, vj) states that:

s(vj) ≥ s(vi) + w(vi, vj) (2.1)

The weightw of an edge can be negative. In this case equation 2.1 can be rewritten in the form
of equation 2.2 to make the interpretation easier. Equation 2.2 states that ifw(vi, vj) < 0
thenvi may not start more than|w(vi, vj)| cycles after the start ofs(vj). Negative sequence
edges are used for example to model pipelined operations. An example of a pipelined op-
eration is a multiply accumulate operation in which the addition must start one cycle after
the multiplication. A fragment of a DFG with a multiply accumulate operation is shown in
Figure 2.10.

2.2 Intermediate representation of the application program 23

*

1-1

+ 2

10

0

Figure 2.10: A fragment of a DFG with a multiply accumulate operation.

s(vi) ≤ s(vj) + |w(vi, vj)| if w(vi, vj) < 0 (2.2)

Before we define the distance between two operation, the notion of a path is introduced:

Definition 2.2 (Path)
A pathP of lengthd from operationvi to operationvj is a chain of precedences
vi → vk → ...→ vl → vj that impliess(vj) ≥ s(vi) + d with d =

∑
e∈P w(e).

Definition 2.3 (distance)
The distanced(vi, vj) ∈ Z ∪ −∞ from operationvi to vj is the length of the longest path
from vi to vj . If there is no path fromvi to vj then the distanced(vi, vj) = −∞. The distance
d(vi, vi) is per definition 0.

2.2.2 Flow graph representations

Application programs can be represented in a flow graph [ASU86], in which edges indicate
the flow of control and nodes represent basic blocks. In these graphs there is a directed edge
from basic block B1 to block B2 if B2 can immediate follow B1 in some execution sequence,
that is if:

1. there is a conditional or unconditional jump from the last statement of B1 to the first
statement of B2, or

2. B2 immediate follows B1 in the order of the program, and B1 does not end in an
unconditional jump.

A C-source code fragment is shown in Figure 2.11. The corresponding flow graph is shown
in Figure 2.12.

24 Inputs of the Code Generator

t=0;
for(i=0; i<10; i++){

t+=a[i]*b[i];
}
x[0]=t;

Figure 2.11: C-source code fragment.

The values that are alive at the end of a basic block are typically transferred into background
memory. In order to reduce the number of store and corresponding load operations, it is
possible to save some of the values in registers. Because these registers hold values across
basic block boundaries they are called global registers and the values saved in these registers
are called global values.

t += a[i]*b[i];
i++;
if(i <10) goto B2

B3

B2

B1

x[0]=t;

t=0;
i=0;

Figure 2.12: Flow graph of a C-source code fragment.

The assignment of a fixed number of global values to the global registers is typically per-
formed by the compiler frontend. This approach has a couple of drawbacks. First, the avail-
able number of global registers is not always the best. It can, for example, be desirable to
use fewer global registers because a larger number of registers is required to hold the local
intermediate values of the basic block. Another drawback of this approach is that unfortunate
global variable assignments made by the compiler frontend could lead to the situation that
global values must first be copied into another register file before they can be accessed by the
appropriate functional unit. It is likely that these copies will significantly impair the schedule
quality in the case of processors with a large number of register files.

An alternative representation of an application is a hierarchical data flow graph [Lam88].
In this hierarchical data flow graph, control-flow primitives such as branching and iteration
are modeled by means of the hierarchy [Mic94]. The edges in such a graph represent data
dependencies or sequence precedence constraints and the nodes represent ordinary operations
or block operations. Block operations can be expanded in operations and precedence edges.

2.2 Intermediate representation of the application program 25

const const

+

const

0 0

+

-11

+1

load load

*

+

store

0

<10

0

0

0

0

0

0

1

0

0

0

0

const

00

CTRL

0
0

1
0

0

0

0
0

0
0

0 0

1

0

10

0

2

0

1

0

Figure 2.13: Hierarchical data flow graph of the C-source code fragment in Figure 2.11.

A hierarchical data flow graph can be scheduled by making use of hierarchical reduction
[Lam88]. In this technique, the operations in the deepest nested block operation are sched-
uled first. Then this block operation is scheduled together with the other operations of the
surrounding block operation. This is repeated until all operations in the block operations are
scheduled.

An example of a hierarchical data flow graph is shown in Figure 2.13. This graph is the
intermediate representation of the C-source code fragment shown in Figure 2.11. In this graph
the comparison operation produces an output value which signals the controller whether the
loop should be terminated.

During the hierarchical reduction all values are implicitly assigned to register files during
operation assignment. There is no difference between values that are local to one basic block

26 Inputs of the Code Generator

and values that cross basic block boundaries. The operation assignment routines take the
communication paths in the network into account and can be made aware of the register file
pressure. Also complete basic blocks, which are represented as block operations, and other
operations can be serialized [Mes01] in order to adapt the lifetimes of variables such that the
values that are alive across basic blocks fit in the register files. Therefore hierarchical data
flow graphs seem to be a more suitable intermediate representation for our purpose.

2.3 Timing constraints

The timing constraints are specified as the latency and the initiation interval of the schedule.
The Latency (L) of a schedule is the number of clock cycles after which all the operations
in the DFG are executed. For loops an initiation interval can be specified. The Initiation
Interval (II) of a schedule is the number of clock cycles after which the next execution of the
same DFG is started. If II< L then the loop is folded. The user can specify these timing
constraints or a shell around the code generator can be used to determine sharp lower bounds
of these timing constraints.

The steps performed in this shell, are shown in Figure 2.14. In the first step, a lower-bound
estimate of the initiation interval is calculated. A lower bound on II can be derived from
the number of available resources of a certain type and the number of operations of the same
type in the DFG. This resource lower bound IIres ignores the data dependencies and sequence
precedences in the DFG. Another lower bound on II can be derived from the length of the
loops in the DFG. This lower bound IIloop ignores the number of available resources. A more
accurate lower bound on II is the maximum of IIres and IIloop, so

II = max(IIres, II loop) (2.3)

With equation 2.4 the resource lower bound is derived. In this equation rsu is the number of
operations of typeτi and rsa the number of available resources of that type.

IIres = max
τi∈τ
d rsu(τi)

rsa(τi)
e (2.4)

According to definition 2.2 implies a pathP in the DFG from operationvi to operationvj
that:

s(vj) ≥ s(vi) +
∑
e∈P

we(e)− II ×
∑
e∈P

id(e) (2.5)

For a loopc in the DFG, for whichs(vj) = s(vi), equation 2.5 can be rewritten as:

II ≥
∑
e∈c we(e)∑
e∈c id(e)

(2.6)

2.3 Timing constraints 27

Calculate lower bound
II and L

Constraint analyzer

infeasibility
detected?

Latency = minimal L
II = II+1

no

yes

yes

nomaximal increase
latency?

Latency=Latency + 1

Start code generation

Figure 2.14: Procedure to determine sharp lower bounds for the Latency (L) and Initiation
Interval (II) constraint of the schedule.

Because this must hold for every loopc ∈ C in the DFG, a lower bound on II due to loops in
the DFG becomes:

II loop = max
c∈C
d
∑
e∈c we(e)∑
e∈c id(e)

e (2.7)

The longest path in the DFG from which the loop carried data dependencies are removed is
used as the lower bound on the latency of the schedule.

Given the initial timing constraints the schedule search-space is pruned by the constraint
analyzer which is described in more detail in Section 3.1.1. If the schedule search-space is
empty after pruning then infeasibility is reported and the latency constraint is increased with 1
cycle. If the latency constraint is increased a predefined number of times and still infeasibility
is reported then the initiation interval is increased with 1 cycle and the latency constraint is
reset to the longest path in the DFG. This process is repeated until constraint analysis stops
reporting infeasibility. In this process the latency is increased before the initiation interval is
increased because the initiation interval determines to a large extend the execution time of a
folded loop.

During the process, which is described in the previous paragraph, the timing constraints are
relaxed. Another approach would be to start from a situation with a feasible schedule and
then tightening the timing constraints. This approach was not chosen because our benchmark

28 Inputs of the Code Generator

results indicate (see Chapter 8) that often solutions can be found close to the lower bound
timing constraints. Therefore, it takes less compilation time when the search process is started
from the lower bound timing constraints.

The lower bound timing constraints are derived given a DFG and a target processor. These
lower bounds are used as initial timing constraints. In the case a schedule is found that
respects these initial timing constraints, then this schedule is also an (performance wise) op-
timal schedule. However in the case the compiler frontend generates for the same C-program
another DFG then it could be that for this DFG a schedule exists for even tighter timing con-
straints. Another example is that in the compiler frontend, the selection of the operation input
ports is performed. If this input port selection is left undefined for commutative operations
then this additional freedom could be exploited in order to obtain a better schedule. Our
assignment techniques do not exploit this freedom.

2.4 Problem statement

Given the definition of the target processor and the intermediate representation of the appli-
cation, the operation assignment problem can be stated as follows:

Problem 1: Given a DFG, find an assignment of operations to functional units and intermedi-
ate values to register files such that a schedule can be established which satisfies the specified
initiation interval and latency constraints.

If the initiation interval is smaller than the latency then loop-folding should be applied. It
is assumed that the assignment of operation ports to functional unit ports is specified be-
forehand. It is also assumed that the assignment of memory read and write operations to a
memory is specified. Each memory is modeled as a functional unit in the data path. Schedul-
ing of operations together with block operations should be possible. It is assumed that the
VLIW-processors have a distributed register file architecture, a potentially incomplete com-
munication network, and that they support multi-casting.

Chapter 3

Code Generation by Traversing
the Search-Space

During code generation a DFG is mapped on the data path of a target VLIW processor. The
code generation task is split is several subtasks which are performed after each other in order
to obtain high quality schedules in a reasonable compilation time. These subtasks, which
are also called phases in literature, are described in Section 3.1. The phases are mutually
dependent, that is, decisions in one phase potentially affect the decisions in another phase.
How dependencies between phases are handled, is described in Section 3.2. All code gener-
ation phases are based on constraint analysis. The basic principles of constraint analysis are
described in more general terms in the last section of this chapter.

3.1 Code generation phases

Our code generator gets as input a DFG, an abstract description of the target processor and
timing constraints and produces executable code (see Figure 1.1). The code generation task
is partitioned in subtasks, which are called phases because they are successively executed.
These subtasks are supposed to be easier to handle individually. This procedure should lead
to a better result than solving the problem in one piece. In every phase, only one type of
decision is made by an algorithm, which is special for this phase. An example of a decision
type is the assignment of operations to functional units.

In the code generator there is an operation assignment phase, a value lifetime serialization
phase, a scheduling phase, and finally a register binding phase (see Figure 3.1). During the
operation assignment phase, operations are assigned to functional units. During the lifetime
serialization phase, operations are ordered in time in such a way that a valid register binding
exists after the scheduling phase. During the scheduling phase, the start times of operations
are determined. After scheduling, the register binder selects a register for every intermediate
value.

30 Code Generation by Traversing the Search-Space

Schedule &
Register binding

Operation assignment

Lifetime serialisation

Scheduling

Register binder

Constraint
analyzer

Time assignment
search space

Serialization
search space

Operation assignment
search space

Timing
constraints &
Processor
description

Data flow graph

Figure 3.1: Code generation phases.

The assignment of operations to functional units determines implicitly the register files in
which the input values of these operations must be stored. The assignment of values to
register files is called the register file binding. Register file binding is performed before
lifetime serialization because the lifetime serialization techniques require that the register file
binding is defined. Lifetime serialization takes place before scheduling because this allows
the schedule freedom to be used to satisfy the register file capacity constraints.

The decisions that are taken in the different phases are interdependent. Unfortunate decisions
can remove all feasible options in a succeeding phase. Therefore, the code generation phases
interact with the constraint analyzer. The constraint analyzer queries and updates the search-
space representations of the phases. In the search-space of a phase all feasible values of
the decision variables are represented as well as the most relevant constraints for that phase.
The most relevant constraints for the operation assignment phase are the routing constraints.
However, also the known resource conflicts are modeled in this search-space. The most
relevant constraints for the serialization phase are the number of registers per register file.
For the scheduling phase are the precedence constraints the dominant constraints.

The consequences of a decision in a phase are evaluated by pruning the search-space represen-
tation of that phase. After pruning, additional constraints are derived from this search-space
that are incorporated in the search-spaces of other phases. The pruning proceeds consecu-
tively through the subsequent search-spaces. This pruning process is continued until pruning
does not result in any new constraints. This way the effects of a decision on future decisions
in succeeding phases is taken into account. In other words, the pruning techniques are applied
in order to achieve a tight coupling of the phases.

3.1 Code generation phases 31

yes

no

no

no

yes

backtrack

yes

yes

no

timing
constraints
&
processor
description

report that
backtracking
is stopped.

infeasibility
detected?

backtrack
limit

exceeded?

next decision

Constraint Analyzer

Decision maker

continue with next phase report infeasibility

all
decisions

made?

remaining
options?

Figure 3.2: Flow-diagram of the steps taken in a phase.

The entire process of code generation is essentially a backtracking scheme proceeding through
the search-spaces. The steps taken in any one of the phases is shown in the flow diagram of
Figure 3.2. The first step in this diagram is performed by the decision-maker, which decides
to add a certain additional constraint based on some priority function. An example of such a
constraint is that a particular operation must be executed on a specific functional unit out of
a set of equivalent functional units.

After a decision is taken, the consequences on the search-space are evaluated by the constraint
analyzer. In case the constraint analyzer detects that the search-space is empty after pruning,
then infeasibility is reported. If infeasibility is reported, then a backup step is performed.
This step removes the last decision and recovers the situation as it was just before the last
decision. The backtracking process is aborted if the number of backtracks, which is equal
to the number of backup steps, exceeds a predefined value. In this case, it is reported to the
user that no solution was found but that it is not guaranteed that no solution exists. In the
case that the backtrack limit is not exceeded and that there are still variables to which more
than one value can be assigned then the next decision is taken. In the case that all options are
examined without detecting a feasible solution then infeasibility it is reported to the user.

The coupling of the phases is an essential property of our code generator. Some basic knowl-
edge about the schedule search-space representation and the most essential schedule search-
space pruning rule makes it possible to understand the techniques used to achieve this cou-
pling. The schedule search-space representation and the pruning rule are described in the
next subsection. The phase coupling techniques are described in Section 3.2.

32 Code Generation by Traversing the Search-Space

0

0 0

1

(a)

-L=-4
C

A B

D

Sink

Source

Figure 3.3: An example DFG of which the distance matrix before and after pruning is shown
in respectively Figure 3.4 and Figure 3.5.

3.1.1 Schedule search-space pruning

The schedule search-space is represented in a distance matrix [Mes01] in which the distance
is stored between every pair of operations in the DFG. These distances are derived with an
all-pairs shortest path algorithm [CLR90] as is described in [Mes01]. The distance matrix for
the DFG in Figure 3.3 is shown in Figure 3.4a. The latency (L) of the schedule is assumed
to be constrained to 4 clock cycles. This constraint is captured with the sequence edge from
the sink to the source. The initiation interval (II) is constrained to be 5 clock cycles. The
distanced(vi, vj) is stored in location rowi, columnj of the distance matrix. A schedule
interval representation can be derived from the distance matrix. The boundaries of an interval
are the distancesd(source, vi) and−d(vi, source). For a feasible schedule the start times(vi)
of operationvi must be in the intervald(source, vi) ≤ s(vi) ≤ −d(vi, source).

A pair of operations may have a “soft” or a “hard” resource conflict. They have a “soft”
conflict if they claim the same resource. They have a “hard” resource conflict if they both
use a resource of the same type in the same clock cycle. Soft conflicts can be resolved
by scheduling the operations in different clock cycles. Hard conflicts can be resolved by
assigning the operations to different resources.

If we assume that operationA andB in Figure 3.3 have a soft resource conflict then rule 1
from [MSTM97], which is for convience repeated below, derives that operationB must be
scheduled after operationA. This is the case because the sequence precedence edge between
operationA andB in the DFG prevents that operationB can be scheduled before operation
A and the soft resource conflict forbids to schedule them in the same cycle.

3.1 Code generation phases 33

(a) (b)

A B C D
0
1
2
3

↓
t

So A B C D Si
So 0 0 0 1 2 3
A −1 0 0 1 2 3
B −1 −1 0 1 2 3
C −2 −2 −2 0 1 2
D −3 −3 −3 −2 0 1
Si −4 −4 −4 −3 −2 0

Figure 3.4: The distance matrix (a) and schedule intervals (b) for the DFG in Figure 3.3
before applying rule 1.

(a) (b)

A B C D
0
1
2
3

↓
t

So A B C D Si
So 0 0 1 2 3 4
A 0 0 1 2 3 4
B −1 −1 0 1 2 3
C −2 −2 −1 0 1 2
D −3 −3 −2 −1 0 1
Si −4 −4 −3 −2 −1 0

Figure 3.5: Distance matrix (a) and schedule intervals after applying rule 1.

Rule 1 If d(vi, vj) modII = 0 and there is a soft resource conflict between operationvi and
vj then a sequence edge(vi, vj) with weightd(vi, vj) + 1 is added.

The updated distance matrix and schedule intervals, after the sequence edge with a weigth
we(vA, vB) = 1 is introduced by rule 1, are shown in Figure 3.5.

Backtracking of the last assignment decision occures in case infeasibility is detected by the
constraint analyzer. A computationally efficient way to detect infeasibility during the assign-
ment phase is described in the next subsection. This approach is explained in more detail in
the rest of this thesis.

3.1.2 Operation assignment infeasibility detection

The assignment search-space is updated by the constraint analyzer after every assignment
decision made in the assignment phase. In this search-space all assignment options, routing
constraints and the hard resource conflicts are modeled. The assignment search-space is
modeled in a conflict graph. The details of this model are described in Chapter 4.

The assignment search-space allows to select an operation and to determine it’s assignment
freedom, represented by the set of functional units on which it can be executed. For such
an operation it is decided to which functional unit it will be assigned. These decisions are

34 Code Generation by Traversing the Search-Space

modeled as additional constraints in the conflict graph. Infeasibility can be detected by an
attempt to color this conflict graph with a selected set of colors. The success of this attempt
indicates feasibility, while failure entails backtracking. The legalization of this procedure is
supplied by the assertion that this graph can be colored with a selected set of colors if and
only if there exists an assignment that satisfies the routing constraints as well as the known
hard resource conflicts.

After every assignment decision an updated conservative estimate of the execution times of
operations is calculated by the constraint analyzer and therefore new hard resource conflicts
might pop-up which will be incorporated in the conflict graph. Detection whether the last
assignment decision is feasible or not would require that the updated conflict graph is colored
after every operation assignment decision. However, because coloring of the conflict graph is
to computationally intensive, it is replaced by pruning. During pruning infeasible operation
assignment options are detected and removed from the search-space with algorithms that
have a polynomial-time computation complexity. The pruning algorithms are described in
Chapter 5. The improvement in compilation time, by making use of pruning, comes at the cost
of weaker guarantees. With pruning the guarantee is restricted to, that given the assignment of
all operations infeasibility will be detected if a routing constraint or a hard resource conflict
is violated. Given this weaker guarantee it can occur that the violation of a routing constraint,
as a consequence of an assignment decision, is detected after many subsequent assignment
decisions which leads to a lot of backtracking. However, by making use of pruning it is still
possible to guarantee that all routing constraints are respected when the assignment phase is
finished and all operations are assigned.

One of the pruning rules in Section 5.1, operates directly on the conflict graph. Because
it operates on the conflict graph it takes all routing constraints as well as the hard resource
conflicts into account. However with this pruning rule we can not guarantee that given the
assignment ofall operations, infeasibility will be detected, if a routing constraint is violated.
This must be guaranteed because lifetime serialization and scheduling can not resolve routing
constraint violations. Therefore, another pruning algorithm is applied which gives this guar-
antee. This algorithm is described in Section 5.2. It operates on its own internal model but the
results are incorporated in the conflict graph. This algorithm takes only routing constraints
into account and does not account for the hard resource conflicts, therefore the pruning rules
in Section 5.1 and 5.2 are repetitively applied till no additional infeasible assignment options
are detected by these rules.

3.2 Phase coupling

In this section the mutual dependency between the assignment and the schedule phase is
illustrated with an example. This is followed by a description of the technique used to achieve
coupling of the assignment and the schedule phase.

3.2 Phase coupling 35

RF

FU0

RF

FU1

RF

FU2

RF

FU3

global write-back bus
local write-back bus

Figure 3.6: Data path used to illustrate the mutual dependency between operation assignment
and scheduling.

3.2.1 Phase coupling example

The data path in Figure 3.6 and the DFG in Figure 3.7 are used to illustrate the effect of the
assignment of the operations on the schedule. In this data path a global write-back bus is
applied that provides a connection from every functional unit output port to every register
file.

Assume that the objective is to map the data flow graph of Figure 3.7 on the data path of
Figure 3.6 such that the initiation interval II=1. All intermediate values can be transported via
the local write-back busses if the operationsn0, n1, n2, andn3 are assigned to the functional
units FU0, FU1, FU2, and FU3 respectively. Alternatively, if the operationsn0, n1, n2 and
n3 are respectively assigned to functional units FU1, FU0, FU3, and FU2 then the global
write-back bus should transport two intermediate values. However, the global write-back bus
can transport only one intermediate value per clock cycle. Therefore, an initiation interval of
1 clock cycle can not be obtained given this assignment.

After every assignment decision we evaluate the use of resources. If the number of required
resources in a cycle exceeds the number of available resources then the last assignment deci-
sion is undone and another assignment is examined.

3.2.2 Schedule search-space pruning given a partial assignment of op-
erations

After pruning of the assignment search-space, there potentially remain less functional units
on which an operation can be executed. If after pruning it becomes clear that an operation

36 Code Generation by Traversing the Search-Space

n0

n1 n3

n2

Figure 3.7: DFG used to illustrate that it is desirable that during operation assignment the
usage of the global write-back bus is taken into account.

n0’n0
0

0

Given:
n0 is of type MULT
n0′ is of type MULT1

Assumed resource constraints:
4 resources MULT
1 resource MULT1

Figure 3.8: The resource usage of operationn0 is specialized by adding operationn0′.

must be executed on a particular unit then this knowledge is used to restrict the schedule
search-space.

For example if after pruning it is known that operationn0 must be executed on multiplier 1
(MULT1) then a virtual operation is added that models this additional constraint in the DFG.
This operation is virtual because it is introduced merely for modeling purposes. Only one
resource is made available that has the same type as the added operation. Because a new
operation that uses a resource was added during assignment, it is called a dynamic resource
usage.

How the virtual operation is added in a DFG, is shown in Figure 3.8. The sequence edges
enforce that operationn0 and the virtual operationn0′ are scheduled in the same cycle.
Therefore is it possible to use the same entries in the distance matrix forn0 as well as forn0′

which results in a smaller distance matrix.

The selection of a resource out of a set of equivalent resources, has been given the name “re-
source usage specialization”. Which resource is selected is modeled in the DFG with a virtual
operation. Specialization of a resource restricts the schedule search-space. A restriction of
the schedule search-space is implemented with an run-time efficient algorithm that performs
an incremental update of the distance matrix (see [Mes01]).

The resource usage of the added virtual resources is evaluated by the constraint analyzer. This
constraint analyzer applies the in Section 3.1.1 described rule 1 which potentially results in a
restriction of the schedule search-space.

In a similar way the resource usage of network ports and functional unit ports is specialized.

3.3 Constraint analysis strategy 37

Additional constraints are also derived from the schedule search-space and modeled in the
assignment search-space. The rule used to derive these constraints is described in Section
4.3.2.

3.3 Constraint analysis strategy

All code generation phases in our scheduler are based on the constraint analysis strategy.
This section describes the constraint analysis strategy in more general terms. This provides
insight in the strengths and weaknesses of the strategy. It also indicates the applicability of
this strategy for problems other than code generation.

In subsection 3.3.1 we describe the relation between combinatorial optimization, search and
decision problems and constraint satisfaction problems. The operation assignment problem
is a combinatorial search problem which is formulated as a constraint satisfaction problem.
In subsection 3.3.2 we describe the applied constraint analysis strategy used to find a solu-
tion of this constraint satisfaction problem. We prove in subsection 3.3.4 that the operation
assignment problem isNP-hard.

3.3.1 The relation between combinatorial problems

Many abstract problems can be formulated as combinatorial optimization problems [CCPS98].
An instance of a combinatorial optimization problem can be defined as the problem of finding
a solution that is optimal with respect to a given objective functionf , in a finite set of solu-
tionsS. Theobjective functionf : S → R determines thecostof a solution. An optimization
problem is either a minimization or a maximization problem. Without loss of generality we
restrict ourselves to treating minimization problems which are formally defined as:

Definition 3.1
An instance of acombinatorial minimization problemis a pair(S, f), whereS is a finite
set ofcandidate solutionsandf : S → R is theobjective function. One is asked to find a
solutions ∈ S for whichf(s) is minimal, i.e.,f(s) = mins′∈Sf(s′)

The objective of a combinatorial search problem is to find a solutions ∈ S for which a
condition addressed as the goal predicate is true. A combinatorial search problem is formally
defined as:

Definition 3.2
An instance of acombinatorial search problemis a pair(S, g), whereS is a finite set of
candidate solutionsandg : S → {true, false} is thegoal predicate. One is asked to find a
solutions ∈ S, if one exists, for whichg(s) is true.

Combinatorial minimization problems with an integral objective functionf : S → N

can be solved by making use of a corresponding combinatorial search problem. In this corre-
sponding search problem the cost is defined in advance and is checked by the goal predicate.

38 Code Generation by Traversing the Search-Space

A solution for the combinatorial minimization problem is then obtained by solving the com-
binatorial search problem for a cost of0. This cost is increased with one until a solution
s ∈ S is found for whichg(s) is true.

An instance of a combinatorial decision problem can be associated with an instance of a
combinatorial search problem. A combinatorial decision problem is defined as:

Definition 3.3
An instance of acombinatorial decision problemis a pair(S, h), whereS is a finite set of
candidate solutionsandh : S → {true, false} is thegoal predicate. One is asked if there
exists a solutionsolutions ∈ S for whichh(s) is true.

In a combinatorial decision problem the question is answered whether there is a solution
while in combinatorial search problem the solution is also derived if it exists. Therefore a
combinatorial search problem is at least as difficult as the associated combinatorial decision
problem.

The theory ofNP-completeness [GJ79] formalizes the difference between “hard” and “easy”
decision problems. “Easy” decision problems are solvable in polynomial time. For the “hard”
problems, there are no polynomial time algorithms known that solve these problems despite
considerable research effort.

The most difficult decision problems belong to the class ofNP-complete problems. If the
decision variant of a combinatorial search problem isNP-complete then the search problem
is said to beNP-hard. In Section 3.3.4 it will be shown that our operation assignment
problem belongs to the class ofNP-hard problems. Many combinatorial search problems,
including our operation assignment problem, can be formulated as Constraint Satisfaction
Problems (CSP) [Mon74]. A constraint satisfaction problem consists of the following:

• A set ofn variables{x1, ..., xn} in the discrete, finite domainsD1, ..., Dn

• A set ofm constraints{c1, ..., cm} which are predicatesck(xi, ..., xj) defined on the
search-spacewhich is the Cartesian productDi × ... × Dj . If ck is TRUE, then the
assignment of values to the variables is said to be consistent with respect tock.

The question is to find an assignmenta of values to the variables such that all constraints are
satisfied, i.e.,∀1≤i≤mci(a). The assignmenta specifies for each variablexi a valuevi from
the domainDi.

In the next section a variant of the backtracking algorithm is described that is used to find a
solution for our combinatorial search problem which is formulated as a constraint satisfaction
problem.

3.3.2 Search algorithm based on constraint analysis

As described in the previous section, the constraint analysis strategy can be applied if the
original optimization problem is rewritten as a combinatorial search problem which can be

3.3 Constraint analysis strategy 39

formulated as a constraint satisfaction problem. In order to solve the combinatorial search
problem a search-space is constructed. This search-space contains the discrete, finite set of
options that are considered as potential solutions to the decision problem. All these options
are considered one by one. In the case an option is found that satisfies all the constraints then
the search process is stopped and a solution is returned. In the case all options are considered
but there is no one that satisfies the constraints then obviously there is no solution.

In practical implementations, the result of the combinatorial search problem should be de-
rived within a finite amount of time. Because we often have to deal withNP-hard problems,
the run time can be exceptionally long. Therefore the answer “May be a solution exists” is
returned in the cases when the maximum run-time is exceeded and the search is aborted. If
this occurs, searching for a solution is continued for relaxed constraints.

Exploration of all options in a search-space can be performed with a backtracking algo-
rithm [LP98]. A backtracking algorithm is shown in Figure 3.9. In line 2 the problemP
is split in the subproblemsp1, ..., pr. These subproblems can be created by adding an addi-
tional constraint. An additional constraint can for example be included by selecting a value
vi ∈ Di for variablexi. Each of these subproblemspi ∈ Pb is tested in line 5 of the back-
tracking algorithm. Thetest(pi) function can returnOK or Continue. If the test replies
that the subproblem is a solution thentest(pi) returnsOK and the backtracking algorithm is
halted and returns the valueOK which indicates that a solution was found. If test(pi) equals
Continue then the subproblem is included in the pending set of problemsP .

BACKTRACK(P)
1 branch out of P in Pb = {p1, p2, ..., pr}
2 if Pb = ∅
3 then return OK
4 else foreach pi ∈ Pb
5 do testResult = test(pi)
6 if testResult = OK
7 then return OK
8 else iftestResult = Continue
9 then if Backtrack(pi) = OK

10 then return OK
11 return Infeasible

Figure 3.9: Backtracking algorithm.

The backtracking algorithm splits a problem in smaller subproblems till it detects that one of
the subproblems is a feasible solution. In this case the Backtrack(P) algorithm returnsOK.
If all subproblemspi ∈ Pb are infeasible then no solution exists and the algorithm returns
in this caseInfeasible. In the constraint analysis strategy several techniques are applied in
order to improve the average run-time of this algorithm. The applied techniques are pruning,
symmetry detection and bottleneck identification.

Pruning techniques remove infeasible cases from the search-space that can easily be derived.
Easily means in this case that the infeasible cases are identified with algorithms exhibiting a

40 Code Generation by Traversing the Search-Space

polynomial-time computational complexity. These infeasible cases do often not satisfy the
constraints of a relaxation of the original problem.

Another technique that reduces the search-space is symmetry analysis [EMT99]. This analy-
sis derives equivalent options. Because the options are equivalent, all options except one can
be removed from the search-space.

Bottleneck identification determines the order in which the options in the search-space are
selected. In other words, bottleneck identification is a heuristic which selects the most “criti-
cal” variablexi and the valuevi for variablexi for which it is “most likely” that this choice
does not result in infeasibility. Bottleneck identification is applied after every decision be-
cause then an updated representation of the search-space is obtained in which new bottlenecks
might pop-up. The bottleneck identification heuristics used during lifetime serialization are
extensively described in [Mes01] and in [AP02]. The heuristic used during operation assign-
ment is described in Section 7.3.

The structure of an algorithm which is based on the constraint analysis strategy is shown in
Figure 3.10. In line 1 of this algorithm, the problemP is split into a set of subproblems
Pb. The problemP is split in subproblems by selecting with a bottleneck identification
heuristic a valuevi for variablexi. If the problem cannot be split in subproblems then the
algorithm CA returnsOK otherwise the actual search-space given the selected subproblempi
is pruned by the functionanalyze()in line 5. This function returnsInfeasibleif the search-
space is empty after pruning. If there remain options in the search-space after pruning then
the subproblempi is split in new subproblems in a recursive call of algorithm CA in line
7. If infeasibility is detected after pruning or the recursive call of the algorithm CA in line
7 did not returnOK then there are two options depending on whether the backtrack limit is
exceeded. In case the backtrack limit is not exceeded then the search-space before selecting
pi in line 4 is calculated by therecoverSearchSpace() function. After the search-space is
recovered another subproblem inPb is evaluated. If all the subproblems inPb are infeasible
thenInfeasibility is returned by the algorithm CA. In the other case, in which the backtrack
limit is exceeded, the valueContinueis returned by the CA algorithm. This value indicates
that no solution was found by the CA algorithm but that it cannot be excluded that a solution
exists.

A nice feature of constraint analysis is that tight constraints often improve pruning and help
this way to find a solution. A drawback of constraint analysis is that the implementation is
usually more complex and slower than a greedy algorithm. The additional complexity must be
justified by the quality of the solution derived by the constraint analysis algorithm compared
to the quality of the solutions derived with a greedy algorithm given a fixed run-time budget.

3.3.3 Releated work on constraint analysis

Time and Resource Constraint Scheduling Problems (TRCSP) are solved as special cases of
a Constraint Satisfaction Problem (CSP) in [Nui94]. The objective of a time and resource
constraint scheduling problem is the derivation of the start time and the set of resources used
by the operations such that all constraints are satisfied. The CSP problem is solved with
a tree search algorithm which is to a large extend similar to the search algorithm in Fig-

3.3 Constraint analysis strategy 41

CA(P)
1 branch out of P in Pb = {p1, p2, ...pr}
2 if Pb = ∅
3 then return OK
4 else foreach pi ∈ Pb
5 do analyseResult = analyze()
6 if analyseResult 6= Infeasible
7 then caResult = CA(pi)
8 if caResult = OK
9 then return OK

10 if (analyseResult = Infeasible) ∨ (caResult 6= OK)
11 then if backtracks ≤ backtrackLimit
12 then backtracks = backtracks+ 1
13 recoverSearchSpace()
14 else return Continue
15 return Infeasible

Figure 3.10: Search algorithm based on constraint analysis.

ure 3.10. Different terminology is used for pruning and bottleneck identification. Pruning is
called consistency checking and bottleneck identification is called variable and value selec-
tion. An important difference with our work is that we focus on the operation assignment
and scheduling for VLIW processors. Our restricted scope enables exploitation of problem
specific knowledge which results in problem specific pruning and bottleneck identification al-
gorithms. An example are the constraints which are a result of an incomplete network. In the
TRCSP problem formulation these constraints are treated as additional constraints. However
we model routing constraints in a problem specific search-space representation. This repre-
sentation is pruned with a generic pruning algorithm as well as pruning rules which are based
on the fact that the constraints are a consequence of an incomplete communication network.

In [BL99] the Constraint Logic Programming (CLP) platform ECLIPSe [WNS97] is used to
solve the operation assignment and scheduling problem for classical DSPs. The problem is
described as a minimization problem with as cost function the latency of the schedule. The
applied tree search technique is based on the branch and bound strategy. A basic technique in
CLP is constraint propagation which is a different name for pruning. Despite that no problem
specific pruning rules for code generation were applied, the same code quality was produced
as in the case of the hand written code for some examples of the DSPStone [ZVSM94] bench-
mark set. No result were reported for DFGs with more than 20 operations.

3.3.4 Computational complexity of the assignment problem

In this section we will prove that the decision variant of the operation assignment problem
belongs to the class ofNP-complete problems and thus the operation assignment search
problem isNP-hard. The proof is based on a reduction from theNP-complete subgraph

42 Code Generation by Traversing the Search-Space

ALU

ip0 ip1

op0
R

F 1

value Ry

RyRx

-

(a) (b)

0

0

1

R
F 0

Figure 3.11: Functional unit with input and output ports (a) and an operation with input and
ouput ports (b).

isomorphism problem. First some observations about the our operation assignment problem
are made which make the proof easier to understand.

The first observation is that an operation input port label and operation output port label is
associated with respectively every head and tail of a data edge in the DFG. Also the ports of
the functional units in our target VLIW architecture are labelled. These ports are introduced
and labelled because the input ports of a functional unit do not need to be equivalent as is
for example the case if the functional unit can perform a mathematical operation which is not
commutative. Another reason is that the used functional unit input port determines in which
register file the input value will be stored. For example if the minus operation in Figure 3.11b
is executed on the function unit in Figure 3.11a then the result depends on the assignment of
the operation input ports to the functional unit input ports. Also the register file binding of
the values Rx and Ry depend on this port assignment. However for architectures in which all
values that are input values of a functional unit are fetched from the same register file then
the port assignment can be adapted as required after the assignment of all the operations in
the DFG to the functional units.

The data path, shown in Figure 3.12 can be represented as a graph shown in Figure 3.13
in which vertices represent functional units and every edge a communication path from an
output port of a functional unit through the network and a register file to an input port of a
functional unit. Labels are associated with the head and tail of these edges which indicate
respectively the input and output ports of the functional unit.

All the communication paths between the functional units in a time interval can be captured
in a similar graph. The graph in Figure 3.14 captures all communication paths between the
functional units given a time interval of 2 clock cycles.

The operations and edges of the DFG in Figure 3.15 can be mapped to the vertices and edges
of a subgraph of the graph in Figure 3.14. This mapping must be such that an operation
input port labelx of an edge in the DFG corresponds to the label ipx of an edge in the graph
of Figure 3.14. Such a mapping is shown in Figure 3.16. This mapping correspond to a
valid assignment of the operations in the DFG, given a latency constraint of the schedule of

3.3 Constraint analysis strategy 43

ALU1

op0

ALU0

ip0 ip1

op0

R
F 1

ip0

R
F 2

R
F 0

Figure 3.12: An example of a data path.

ALU1ALU0

1 0

0 00

0

Figure 3.13: Graph representation of the communication paths in the data path of Figure 3.12.

0

0

00

0 0

t=0

t=1

0

0 0

10

1

ALU0 ALU1

ALU0 ALU1

Figure 3.14: Graph representation of the available communication paths during 2 clock cycles
in the data path of Figure 3.12.

44 Code Generation by Traversing the Search-Space

+

0

0

0

1

+

+

0

0

Figure 3.15: DFG which is a subgraph of the graph in Figure 3.14.

01

00

0 00

ALU0 ALU1

ALU0 ALU1

0

0
1 0

0

Figure 3.16: Graph representation of the available communication paths during 2 clock cy-
cles. The fat lines indicate a subgraph which is equal to the DFG in Figure 3.15.

2 cycles. This mapping respects the constraints which are a result of the incomplete network.
Also the resource constraints are respected because the mapping corresponds to the situation
that maximal one operation per clock cycles is executed on a functional unit.

Also the operations and edges of the DFG in Figure 3.17 can be mapped to the vertices and
edges of the graph in Figure 3.18. In this case the DFG is folded given an initiation interval
of 1 clock cycle.

In the proof of Theorem 3.1 an algorithm is applied that runs in polynomial-time and com-
putes a functionf . This functionf maps every instancei of the subgraph isomorphism prob-
lem (π) to an instancei′ of the operation assignment decision problem (π’). This algorithm
is hopefully easier to understand given the observations made in the previous paragraphs.

Theorem 3.1
The problem of deriving an assignment of operations in a DFG to functional units such that

3.3 Constraint analysis strategy 45

+

00

0

+

1

Figure 3.17: DFG with only loop-carried data dependencies which is a subgraph of the graph
in Figure 3.14.

0 0

ALU1ALU0

0

01

t=0

0

Figure 3.18: Graph representation of the available communication paths during 1 clock cy-
cles. The fat lines indicate a subgraph which is equal to the folded version of the DFG in
Figure 3.17.

46 Code Generation by Traversing the Search-Space

the required communication paths are available in the data path isNP-hard, even if all func-
tional units in the data path are equivalent.

Proof:

For an given assignment of operations to functional units we can verify in polynomial time
whether the required communication paths between the functional units can be made in the
data path. Hence, the problem is inNP.

We will describe a polynomial time algorithm that computes a functionf that maps instances
i of the subgraph isomorphism problemπ in instancesi′ of the decision variant of the opera-
tion assignment problemπ′. That the function f exists proves that the decision variant of the
operation assignment isNP-complete because the subgraph isomorphism decision problem
belongs to the class ofNP-complete problems [GJ79]. Therefore the operation assignment
search problem isNP-hard.

Let the directed graphG′(V ′g , E
′
g) representing a DFG instance and the graphH ′(V ′h, E

′
h)

an architecture instance of the problemπ′. Let also the directed graphG(Vg, Eg) and the
directed graph aH(Vh, Eh) instances of the problemπ.

The algorithm that computes the functionf is defined as follows. LetV ′h = Vh andE′h = Eh.
Let all the edgese′h ∈ E′h be loop carried data dependencies. With every tail of an edge
e′h ∈ E′h the output port op0 is associated. With every head of an edgee′h ∈ E′h incident
to a nodev′h ∈ V ′h an unique input port ipx with a consecutive numbering starting from
0 is associated. All verticesv′h ∈ V ′h correspond to operations of the same type. Similar
procedure is applied for the graphGh, i.e.,V ′g = Vg andE′g = Eg, Also with every tail of an
edgee′g ∈ E′g the output port mumber 0 is associated and with every head of an edgee′g ∈ E′g
incident to a nodev′g ∈ V ′g an unique input port with numberx is associated. The input ports
v′g are consecutive numbered starting from 0. All verticesv′g ∈ V ′g correspond to a functional
unit which can execute operation of an arbitrary type.

The algorithm that computes the functionf belongs to the class of polynomial time algo-
rithms because this algorithm adds|Eg| functional unit output port labels and adds|Eh|
operation output port labels. There are also|Eg| functional unit input port labels and|Eh|
operation input port labels added.

Now we prove that if instancei of π is a ’yes’ instance theni′ is a ’yes’ instance. With the
functionf a valid instance of a DFG and a data path can be derived fromi. This data path
graph corresponds to instances of our template in which all input operands are read from the
same register file via register read ports which are not shared. This register file has the same
number of write ports as read port such that no resource conflicts occur. The register files in
the data path also have a sufficient number of registers. Also for everyeg ∈ Eg there is a
conflict free communication path in the processor. NowH ′ is subgraph inG′ because adding
labels to the edges inH andG does not change the topology ofH andG. ThisH ′ subgraph
in G′ correspond to a valid operation assignment given a timing constraint that specifies an
initiation interval of 1 cycle.

Now we prove if instancei′ of π′ is a ’yes’ instance theni of π is a ’yes’ instance. Ifi′ is
’yes’ instance then theH ′ is a subgraph inG′ andG′ corresponds to a data path in which all

3.3 Constraint analysis strategy 47

input operands are read from the same register file. If we drop all input port and output port
labels from the edges the we obtain the graphH and the graphG. The graphH is a subgraph
of G because the removal of labels does not change the topology of a graph. �

Chapter 4

Assignment Search-Space
Representation

All combinations in which operations can be assigned to functional units and the constraints
due to an incomplete communication network and resource conflicts are modelled in an as-
signment search-space representation. Some combinations of operation assignments are not
feasible as a consequence of the incomplete network in the processor or as a consequence of
resource conflicts. During the assignment decision process some of the infeasible operation
assignment options are removed from this search-space by pruning algorithms.

This chapter describes the operation assignment search-space representation. The outline of
this section is as follows. First a conflict graph and the conflict graph coloring problem is
defined in Section 4.1. Then in Section 4.2 it is described how an incomplete network can
be modeled in such a conflict graph. In Section 4.3 the Assignment Conflict Graph (ASCG)
is introduced in which all operation assignment options and the constraints imposed by the
network are modelled. How the number of nodes and edges in the ASCG can be reduced, is
described in Section 4.3.4

4.1 Conflict graph concepts

In this section we define a conflict graph, an annotated conflict graph and the coloring of
these graphs. Subsequent sections describe the modeling of the assignment search-space in
an annotated conflict graph.

50 Assignment Search-Space Representation

A conflict graph is defined as follows:

Definition 4.1 (Conflict Graph.)
A Conflict Graph (CG) is an undirected graph represented by a tuple(V,E), where

• V is the set of vertices

• E ⊆ V × V is the set of edges. An edgee ∈ E indicates a conflict.

Colors are assigned to the vertices during coloring of a conflict graph. Every vertex is colored
with only one color during coloring. Aproper coloring[Gri94] of CG occurs when we color
the vertices ofCG such the vertices adjacent to the edge(a, b) are colored with different
colors. Thechromatic numberχ(CG) is the minimum number of colors needed to properly
colorCG. An exact coloringis a proper coloring that usesχ(CG) colors.

In the assignment search-space model, a conflict graph is used in which a color out of a
restricted set of colors can be assigned to a node. We have given such a conflict graph the
name “annotated conflict graph”. The annotated conflict graph is defined as follows:

Definition 4.2 (Annotated Conflict Graph.)
An Annotated Conflict Graph (ACG) is an undirected graph represented by a tuple(V,E,Z),
where

• V is the set of vertices

• E ⊆ V × V is the set of edges.

• Z is the set of colors. To every vertexv ∈ V a set of colors is associated:
colors(v) ⊆ Z. Such a set is given the nameColor Set.

The annotated conflict graph can be transformed into an ordinary conflict graph with the
same properties. This is illustrated with an example in Figure 4.1. As this figure shows, after
conversion a graph is obtained in which a clique of nodes is added to the original conflict
graph. The size of the clique is the cardinality of the set Z. Edges incident to the nodes in
this clique impose the same restrictions as the color sets in the annotated conflict graph if this
graph is colored with|Z| colors. Because an annotated conflict graph can be transformed
in an ordinary conflict graph, it can be seen as a short hand notation of the conflict graph
obtained after transformation.

The conflict graph of Figure 4.1b models the same restrictions as the annotated conflict graph
in Figure 4.1a. This can be seen as follows: Assume that node c0, c1 and c2 in Figure 4.1b
are colored with respectively color 0, 1 and 2. The edge in this figure between node c1 and n2
guarantees that n2 cannot be colored with color 1. This edge is introduced to model that color
1 is a color that is not present in the color set of node n2 in Figure 4.1a. The edge between
node n0 and node c2 and the edge between node n1 and node c2 in Figure 4.1b models in

4.2 Network model 51

c1

transform

n2

{0,1}

{0,2}

{0,1}

n2

−→ c0

n1n0 n0 n1 c2

(a) (b)

Figure 4.1: Transformation of an annotated conflict graph (a) into a ordinary conflict graph
(b).

a similar way that color 2 is not present in the color sets of the node n0 and n1. Therefore
given that node c0, c1 and c2 in Figure 4.1b are colored with respectively 0, 1 and 2 then
the same combination of colors can be assigned to node n1, n2 and n3 in Figure 4.1b as it is
the case for the nodes n1, n2, n3 in Figure 4.1a. In the case that other colors then 0, 1 and
2 are assigned by the coloring algorithm to respectively node c0, c1, c2 then after coloring
the colors can be renamed such that the desired color assignment of these nodes is obtained.
After renaming of the colors, also a correct coloring of the other nodes is obtained.

The graph K-colorability decision problem [GJ79] answers the question wheter a conflict
graph can be colored with maximal K colors, whereK ≤ |V | andK ≥ 3. This deci-
sion problem is NP-complete and therefore no algorithm is known with a polynomial time
complexity that derives a proper coloring for every possible conflict graph. In other words,
coloring of a conflict graph can be computational intensive as a consequence of the exponen-
tial increase of the complexity of the coloring problem with the size of the conflict graph.
Coloring of the graph may therefore take a long time. However Coudert [Cou97] found that
for many practical conflict graph instances, an exact coloring can be computed in a reason-
able amount of time. For the moment the assumption is made that the conflict graph instances
considered during assignment have similar properties as the instances that where considered
by Coudert and can therefore be colored in a reasonable amount of time.

4.2 Network model

All communication paths in the data path of a processor can be captured in a network model,
as is described in Section 2.1.3. In Figure 2.6 of that section a data path instance is shown
along with the corresponding network model. In this network model every output of a sub-
network is connected to only one input of another network. The selection of an input port
of a sub-network determines the network output ports through which a result can be routed.
The other way around is also true, that is, the selection of an output port of a sub-network

52 Assignment Search-Space Representation

2 3

0Input Ports (IPs)

Output Ports (OPs)

Network

1

Figure 4.2: Network without a connection between input port0 and output port3.

through which a result must be routed determines through which ports the input data can be
provided. These mutual dependencies between input ports and output ports can be modeled
in a conflict graph.

Figure 4.2 depicts a network in which there is no connection between input port0 and output
port3. If output port3 is selected then input port0 can not serve as input port. This restriction
is modeled in the conflict graph shown in Figure 4.3. The IP and OP node in this graph are
associated with respectively the input ports and the output ports of the network. The numbers
in the sets next to a node indicate the colors that can be assigned to that node. These colors
correspond one to one to the network ports. The third node in the graph, which is labeled
with CN, enforces the restriction that if the IP node is colored with color 0 that then the OP
node cannot be colored with color 3. All other combinations of colors can be assigned by a
coloring algorithm. The restriction on the colors that can be assigned to the IP and OP node
is enforced by the CN node in the following way. In the case, the IP node is given color 0
then the edge between the IP and the CN node enforces that color 0 cannot be assigned to
the CN node. Because only color 0 and 3 can be assigned to the CN node, the CN node must
be colored with 3. If the CN node is colored with 3 then the edge between the CN node and
the OP node enforces that color 2 is the only color that can be assigned to the OP node. In a
similar way the assignment of color 3 to the OP node has as consequence that, color 0 cannot
be assigned to the IP node. The CN nodes can be used in a similar way to model in a conflict
graph restrictions imposed by networks with an arbitrary interconnection pattern between
input ports and output ports. A CN node is needed for every combination of an input port
and an output port for which there is no connection in the network. Therefore, the worst-case
number of CN nodes in the conflict graph per network equals #IP×#OP where #IP and #OP
are respectively the number of input ports and output ports of the network.

Formally a network and the ACG which capture the routing constraints are defined as:

Definition 4.3 (Network)
A network can be represented by a tuple(IP,OP, k), where

• IP is the set representing the network input ports,

• OP is the set representing the network output ports,

• k : IP × OP → {true, false} is a function. It defines the connections that can be

4.2 Network model 53

{2,3}

CN

{0,1}

IP OP

{0,3}

Figure 4.3: Conflict graph in which the restrictions of the network of Figure 4.2 are modeled.

made between input and output ports. If ip∈ IP can be connected with op∈ OP then
k(ip,op) is true. Otherwisek(ip,op) is false.

Definition 4.4 (network ACG)
A network Annotated Conflict Graph (network-ACG) can be represented by a tuple
(vIP , vOP , VCN , ECN), where

• vIP is a vertex representing the set of network input portsIP . With the vertexvIP
a set colors(vIP) is associated. Every color in the set colors(vIP) corresponds one to
one to an input port ip∈ IP ,

• vOP is a vertex representing the set of network output portsOP . With vertexvOP a
set colors(vOP) is associated. Every color in the set colors(vOP) corresponds one to
one to an output port op∈ OP . The colors in the set colors(vOP) are different from
the colors in the set colors(vIP), i.e., colors(vOP) ∩ colors(vIP) = ∅,

• VCN is a set of vertices. There is a vertexvcn ∈ VCN for every input port ip∈ IP and
output port op∈ OP pair for whichk(ip,op) is false. A set colors(vCN) is associated
with everyvcn ∈ VCN that contains two colors. One color correspond to the input port
ip and one to the output port op,

• ECN is a set of undirected edges. There is an edgee1 ∈ ECN with e1 = (vIP , vCN)
and an edgee2 ∈ ECN with e2 = (vOP , vCN) for every vertexvCN ∈ VCN

The network model of the data path, which is described in Section 2.1.3, consist of 6 non-
blocking sub networks. Each sub network is represented by a network ACG. The network
ACG of a sub network with for example write ports (WP) as input ports and read ports (RP)
as output ports is denoted in the next sections byGWPRP . The function that defines the
connections that can be made between input and output ports of this sub network is denoted
by kWPRP (ip,op).

54 Assignment Search-Space Representation

(b)(a)

10

n1
+

n0
+

RF1RF0

NW1

NW2
0 1

32

FU0

+
FU1

+

Figure 4.4: A DFG example (a) and a data path instance (b) to illustrate modeling of the
assignment search-space in a conflict graph.

4.3 Assignment search-space model

In Section 4.3.1 it is described how the constraints imposed by the incomplete networks in
the data path together with the data dependencies of a DFG can be modeled in a so called
ASsignment Conflict Graph (ASCG). Section 4.3.2 describes how the usage of resources can
be modeled in the same ASCG. The ASCG is formally defined in Section 4.3.3.

4.3.1 Modeling of interconnect constraints

The assignment search-space for the DFG and data path shown in Figure 4.4 is modeled
in the conflict graph of Figure 4.5. This conflict graph is called the ASsignment Conflict
Graph (ASCG). The nodesn0 andn1 in the ASCG correspond to operationsn0 andn1
in the DFG. The numbers in the sets depicted above these nodes correspond to the output
ports of network NW2 in Figure 4.4. Because an output port of NW2 is connected to only
one functional unit, these numbers correspond one to one to the functional unitsFU0 and
FU1. The data produced by operationn0 should, according to the data edge in the DFG,
be consumed by operationn1. A value produced by the functional unit which executesn0
should pass network NW1 to reach one of the write ports2 or 3 of register filesRF0 andRF1.
In the conflict graph there is a node labeled “WP” that corresponds with these write ports.
The CN nodes in the conflict graph model the inhibited connections in the networks. The CN
nodes that model the inhibited connections of one network are surrounded by a dashed box.

An important property of the ASCG is that a valid coloring of this graph exists, if and only
if there exists an assignment that satisfies the constraints imposed by the interconnect in the
data path. From a valid coloring of the graph, the assignment of the operations can be derived.

4.3 Assignment search-space model 55

CN

{1,2}

CN

{0,3}

CN

{1,2}

{0,1}

n1

{0,1}

n0

WP

{2,3}

NW1

NW2

Figure 4.5: Assignment conflict graph in which the communication paths in the data path of
the target processor are modeled.

A color assigned to a node, except for the CN nodes, corresponds to the usage of a specific
data path resource.

4.3.2 Modeling of hard resource conflicts

A conservative estimate of the distances between every pair< vi, vj > of operations in the
DFG is calculated by the timing constraint analysis techniques. Two operations are executed
in the same cycle if the distance between these operations satisfies equation 4.1. If these
operations have the same type and are executed in the same cycle then they are not allowed
to use the same resource. This can be modeled with an edge between the nodes in the ASCG
that correspond to operationvi and vj . This edge assures that these nodes will obtain a
different color when the graph is colored. The different colors correspond to an assignment
of operations to different resources.

d(vi, vj) = −d(vj , vi) and d(vi, vj) mod II = 0 (4.1)

In the case the DFG in Figure 4.4 is the body of a loop thenn0 andn1 are executed in the
same cycle if the initiation interval is 1 cycle. If II=1 then the operations that are executed in
the same cycle are from two successive iterations of the loop. Because they are executed in
the same cycle an edge is added in the ASCG between noden0 andn1 as shown in Figure 4.6.
In the only feasible coloring of this graph the colors0, 1 and3 are respecitively assigned to
noden0, n1 andWP in the ASCG. This correspond to the assignment of operationn0 and
n1 of the DFG to respectively functional unitFU0 andFU1 and the usage ofWP number3.

56 Assignment Search-Space Representation

{0,1}

n1

CN

{1,2}

CN

{0,3}

CN

{1,2}

{0,1}

n0

WP

{2,3}

NW1

NW2

Figure 4.6: Assignment conflict graph in which a resource conflict is modeled.

4.3.3 The assignment conflict graph

In the previous paragraph, a description is given how interconnect and resource constraints
can be modeled in the ASCG. It is now time to give a formal definition of the assignment
conflict graph. The tuple(Va, Ea) defines the ASCG. This graph is defined given a DFG
(V,Ed ∪ El ∪ Es, we, id, ti, to) with the set of data edgesEde = Ed ∪ El.

Definition 4.5 (Immediate predecessors)
pred(e) = {v | e = (v, w)}

Definition 4.6 (Immediate successors)
succ(e) = {w | e = (v, w)}

Definition 4.7 (mapping of DFG operation on functional units vertex)
FU : V → Va is the functionFU(v) = vFU that gives for each DFG operationv the one to
one corresponding vertexvFU .

Definition 4.8 (mapping a data edge on a output port vertex)
OP : Ede → Va is the functionOP (e) = vOP gives for each data edgee a vertexvOP .
There is a set colors(vOP) associated withvOP . Every color in the set corresponds one to
one to a functional unit output port in the data path that can be used to transport the result.

Definition 4.9 (mapping a data edge on a write back port vertex)
WB : Ede → Va is the functionWB(e) = vWB that gives for each data edgee the one
to one corresponding vertexvWB . There is a setcolors(vWB) associated withvWB . Every
color in this set corresponds one to one to a write back bus in the data path. Every write back
bus is represented by a color.

4.3 Assignment search-space model 57

Definition 4.10 (mapping a data edge on a write port vertex)
WP : Ede → Va is the functionWP (e) = vWP that gives for each data edgee the one
to one corresponding vertexvWP . There is a setcolors(vWP) associated withvWP . Every
color in this set corresponds one to one to a write port in the data path. Every write port is
represented by a color.

Definition 4.11 (mapping a data edge on a read port vertex)
RP : Ede → Va is the functionRP (e) = vRP that gives for each data edgee the one to one
corresponding vertexvRP . There is a setcolors(vRP) associated withvRP . Every color in
this set corresponds one to one to a read port in the data path. Every read port is represented
by a color.

Definition 4.12 (mapping a data edge on a write port vertex)
IP : Ede → Va is the functionIP (e) = vIP that gives for each data edgee a vertexvIP .
There is a setcolors(vIP) associated withvIP . Every color in the set corresponds one to one
to a functional unit input port in the data path that can be used to transport the result.

Definition 4.13 (Network port type)
TY PE(v) = type gives the port type for each ASCG vertexv. The port types of the network
model of the data path are defined in Section 2.1.3. Examples of a port types are read port
and functional unit input port.

Definition 4.14 (Operation)
OPR : Va → V is the functionOPR(va) = v that gives for an ASCG vertexva the
corresponding operationv.

Definition 4.15 (Subgraph inclusion function)
χ(vI , vO, GNW) = (VCN1, ECN1) with GNW = {VIP , VOP , VCN , ECN} where
ECN1 = {(vI , vCN), (vCN , vO) | ∃vCN (vIP , vCN) ∈ ECN ∧ (vCN , vOP) ∈ ECN},
VCN1 = VCN .

Definition 4.16 (Data edge to ASCG function)
χ′ : Ede → Va × Va × Ea is the functionχ′(e) = (V 1, VCN , E) where
n1 = pred(e)
vFU1 = FU(n1)
vOP = OP (e)
vWB = WB(e)
vWP = WP (e)
vRP = RP (e)
vIP = IP (e)
n2 = succ(e)
vFU2 = FU(n2)
(VCN1, E1) = χ(vFU1, vOP , GFUOP)
(VCN2, E2) = χ(vOP , vWB , GOPWB)
(VCN3, E3) = χ(vWB , vWP , GWBWP)
(VCN4, E4) = χ(vWP , vRP , GWPRP)
(VCN5, E5) = χ(vRP , vIP , GRPIP)
(VCN6, E6) = χ(vIP , vFU2, GIPFU)

58 Assignment Search-Space Representation

VCN = VCN1 ∪ VCN2 ∪ VCN3 ∪ VCN4 ∪ VCN5 ∪ VCN6

V 1 = vFU1 ∪ vOP ∪ vWB ∪ vWP ∪ vRP ∪ vIP ∪ vFU2

E = E1 ∪ E2 ∪ E3 ∪ E4 ∪ E5 ∪ E6

Definition 4.17 (ASCG)
The assignment conflict graph for the DFG and data path is:
χ′′(Ede) = (Va, Ea) where
V 1 = {V 1 | e ∈ Ede, (V 1, C1, E1) = χ′(e)}
V 2 = {C1 | e ∈ Ede, (V 1, C1, E1) = χ′(e)}
Va = V 1 ∪ V 2
E1 = {E1 | e ∈ Ede, (V 1, C1, E1) = χ′(e)}
E2 = {(v1, v2) | v1 ∈ V 1, v2 ∈ V 1, v1 6= v2 ∧ TY PE(v1) = TY PE(v2) ∧
d(OPR(v1), OPR(v2)) = −d(OPR(v1), OPR(v2)) ∧
d(OPR(v1), OPR(v2)) mod II = 0}. (see equation 4.1).
Ea = E1 ∪ E2

An example of an ASCG which is constructed according definition 4.17 for the data path
and DFG in Figure 4.7 in the case that there aren’t any hard resource conflicts (condition
expressed by equation 4.1 is not satisfied) is shown in Figure 4.9. The network model of
the data path is shown in Figure 4.8. The nodes labelled with “OP” and “WB” in these
ASCG correspond respectively with the functional unit output port and a write-back bus via
which the result of operation n0 is conveyed. The node “IP” at the left side in Figure 4.9,
corresponds to the functional unit input port number 0 via which the result is consumed by
operation n1. The ports of the functional units are numbered from left to right in increasing
order. Therefore input port number 0 corresponds to the ports which are labelled with ip0
and ip2 in the network model. The node “IP” at the right side in Figure 4.9 corresponds to
the functional unit input port number 1 via which the result is consumed by operation n1 as
is specified in the DFG. Input port number 1 of the functional units is labelled with ip1 and
ip3 in the network model.

This ASCG has the following useful property:

Theorem 4.1
An assignment of operations to resources which respects the interconnect constraints of the
data path corresponds to a feasible coloring of the ASCG and vice versa.

Proof:

Given the construction of an ASCG which complies definition 4.17 then every feasible as-
signment of operations to functional units which respects the interconnect constraints of the
data path can be represented with colors that are assigned to ASCG nodes. Because the inter-
connect constraints are respected, one of the two colors in the color set of a CN node is not
assigned to one of the two adjacent nodes. This color can be assigned to the CN node. The
colors assigned to the nodes in the ASCG is a feasible coloring because every adjacent node
is assigned a different color.

4.3 Assignment search-space model 59

0 0

0 1

FU1FU0

(b)(a)

n1 n2

RF2 RF3RF1RF0

op1

ip2

wp2 wp3

ip1ip0 ip3

op0

wp0 wp1

wb1wb0
n0

Figure 4.7: A data flow graph (a) and a data path (b) for which the ASCG is shown in
Figure 4.9.

FU→ OP

IP→ FU

RP→ IP

WP→ RP

WB→WP

OP→WB

op0 op1

op0 op1

ip3ip2ip1

rp3rp2rp1rp0

wp0 wp1

FU1FU0

wp3wp2

ip0

wb0 wb1

Figure 4.8: Network model of the data path shown in Figure 4.7b.

60 Assignment Search-Space Representation

FU:n0

OP

CN CN

CN CN

{FU0,FU1}

{FU0,op1}{FU1,op0}
{op0,op1}

{wb0,wb1}
{op0,wb1} {op1,wb0}

WB

CN

CN {wb1,wp0}

{wb1,wp1}

{wb1,wp3}

CN

IP

RP

WP

FU
n2

{wp0,wp1,wp2,wp3}

{rp0,rp1,
 rp2,rp3}

{wp0,rp1}

{wp0,rp2}

{wp0,rp3}

{wp1,rp0}

{wp1,rp2}

{rp0,ip1}

CN

CN

CN

CN

CN

CN CN

CN

CN

CN

CN

CN

{wp2,rp0}

{wp2,rp1}

{wp2,rp3}

{wp3,rp0}

{wp3,rp1}

{wp3,rp2}

CN

CN

CN

CN

CN

CN

CN CN

CN

CN

CN

CN

CN

CN

{ip1,ip3}

{rp0,ip2}

{rp0,ip3}

{rp1,ip0}

{rp1,ip2}

{rp1,ip3} {rp3,ip2}

{rp3,ip1}

{rp3,ip0}

{rp2,ip3}

{rp2,ip1}

{rp2,ip0}

{FU0,FU1}

{ip0,FU1}

CN CN {ip1,FU1}

{ip2,FU0}

{ip3,FU0}

{wp1,rp3}

CN

CN

CN

{wb1,wp0}

{wb1,wp1}

{wb1,wp3}

IP

RP

WP

FU
n1

{wp0,wp1,wp2,wp3}

{rp0,rp1,
 rp2,rp3}

{wp0,rp1}

{wp0,rp2}

{wp0,rp3}

{wp1,rp0}

{wp1,rp2}

{rp0,ip1}

CN

CN

CN

CN

CN

CN CN

CN

CN

CN

CN

CN

{wp2,rp0}

{wp2,rp1}

{wp2,rp3}

{wp3,wp0}

{wp3,wp1}

{wp3,wp2}

CN

CN

CN

CN

CN

CN

CN CN

CN

CN

CN

CN

CN

CN

{ip0,ip2}

{rp0,ip2}

{rp0,ip3}

{rp1,ip0}

{rp1,ip2}

{rp1,ip3} {rp3,ip2}

{rp3,ip2}

{rp3,ip0}

{rp2,ip3}

{rp2,ip1}

{rp2,ip0}

{FU0,FU1}

{ip0,FU1}

CN CN {ip1,FU1}

{ip2,FU0}

{ip3,FU0}

{wp1,rp3}

Figure 4.9: Assignment conflict graph for the DFG and data path in Figure 4.7.

But also the other way around is true, that is, every feasible coloring of the ASCG represents
an assignment of operations and ports to functional units and network ports. The required
connections can be made in the data path because the CN nodes exclude combinations of
colors that correspond to ports of a network that cannot be connected. �

4.3 Assignment search-space model 61

If the time assignment of the all operations is known then all the resource conflicts can be
modeled with edges in the ASCG. This ASCG has the following property:

Theorem 4.2
Given the time assignment of all operations in the DFG then a coloring of the ASCG cor-
responds to a valid assignment of operations to resources which respects the resource and
interconnect constraints of the data path.

Proof:

In the case the time assignment is known then it is also known which pairs of operations
are scheduled in the same clock cycle. Between the pair of vertices in the ASCG that cor-
respond to this pair of operations there is an edge. This edge prevents that these vertices
will be colored with the same color. Different colors correspond to the assignment to dif-
ferent resources. At the same time the interconnect constraints are also respected because
Theorem 4.1 still holds. �

4.3.4 Redundancy in the assignment conflict graph

A disadvantage of the modeling a network in the way as described in Section 4.3.1 is that the
number of nodes and edges in the assignment conflict graph rapidly grows with the number
of date edges in the DFG and the number of functional units in the processor. The worst case
growing factor of the number of nodes in the conflict graph isO(#IPs×#OPs×|Ede|) with
#IPs and#OPs the largest number of input and output ports of a network in the data path
and|Ede| = |Ed ∪ El| the number of data edges in the DFG. The size of the conflict graph
determines to a large extend the memory usage during compilation. The number of nodes
and edges of the conflict graph also affect the time it takes to prune the colors in the conflict
graph. In practice this has as a consequence that the excessive long compilation time makes it
impractical to handle DFGs with more than 100 nodes and target processors with more than
20 functional units. In order to improve the compilation time it is desirable to reduce the size
of the assignment conflict graph. A reduction can be achieved by removing nodes and edges
that are redundant.

If an assignment conflict graph is constructed according definition 4.17 then every connection
that cannot been made between a network input port and a network output port is modeled
with a CN node and two edges in this graph. This CN node and these edges are redundant if
the network input or output port is excluded by other constraints. For example, according to
the DFG in Figure 4.7a consumes operationn1 a result via input port 0. From the interconnect
in the data path of Figure 4.7b it follows directly that this result can never be transported via
the ports ip1, ip3, rp1, rp3. Therefore these ports can be removed from the sets of the nodes
“RP” and “WP” at the left side in Figure 4.9. Now the nodes labelled with CN that could
disable one of these ports are redundant. The ASCG after removal of redundant CN nodes
and edges is shown in Figure 4.10.

An alternative representation for the assignment conflict graph is a constraint graph represen-
tation which is presented in Appendix A. We have put this description in an appendix because
it was discovered when this thesis was almost completed and the use of this model influences

62 Assignment Search-Space Representation

the results. It is likely that the pruning algorithms that operate on a constraint graph have
a lower run-time because the constraint graph is typically a more compact representation of
the assignment search space than a conflict graph. Because, additional information is explicit
in the constraint graph also the number infeasible assignment options that is detected will be
different, which results also in a lower run-time.

FU
n0

OP

CN CN

CN CN

{FU0,FU1}

{FU0,op1}{FU1,op0}
{op0,op1}

{wb0,wb1}
{op0,wb1} {op1,wb0}

CN

CN

{wb1,wp0}

{wb1,wp1}

WB

IP

RP

WP

FU
n1

{wp0,wp2}

{rp0,rp2}

{wp0,rp2} CN

CN

{wp2,rp0}

CN

CN CN

CN

{ip0,ip2}

{rp0,ip2}

{rp2,ip0}

{FU0,FU1}

{ip0,FU1}

CN CN {ip1,FU1}

{ip2,FU0}

{ip3,FU0}

CN

{wb1,wp1}

{wb1,wp3}

CN

IP

RP

WP

FU
n2

{wp1,wp3}

{rp1,rp3}

CN

CN

{wp3,rp1}

CN

CN CN

CN

{ip1,ip3}

{rp1,ip3}

{rp3,ip1}

{FU0,FU1}

{ip0,FU1}

CN CN {ip1,FU1}

{ip2,FU0}

{ip3,FU0}

{wp1,rp3}

Figure 4.10: Assignment conflict graph after removal of unreachable ports and redundant CN
nodes.

Chapter 5

Assignment Search-Space Pruning

Infeasible operation assignment options are removed from the assignment search-space by
pruning algorithms. These algorithms must have a low computational complexity because
pruning is repeated after every assignment decision. Therefore, the pruning algorithms re-
move only infeasible assignment options that can be easily identified. In this chapter, two as-
signment search-space pruning algorithms are presented. The first pruning algorithm, which
is described in Section 5.1, is based on the fact that different colors must be assigned to nodes
of a clique in the assignment conflict graph. The other pruning algorithm derives infeasible
operation assignment options by explicitly taking the connections in the network of the pro-
cessor into account. This algorithm is described in Section 5.2. At the end of this section the
guarantee that can be given by this algorithm is stated.

5.1 Pruning of colors of nodes in a clique.

A different color must be assigned to every node in a clique in a conflict graph. The colors
that can not be assigned to a certain node because they must be assigned to adjacent nodes
can be removed. A bipartite graph is used to derive the colors that can be removed. This
graph has been given the name “bipartite clique pruning graph” and is defined as follows:

Definition 5.1 (Bipartite Clique Pruning Graph.)
Consider a clique of nodesV ⊆ Va in the ASCG. Then the Bipartite Clique Pruning Graph
(BCPG) is represented by the tuple (N,A), where:

• N = W ∪ R is the set of nodes with the nodew ∈ W corresponding one to one to a
nodev ∈ Va in the clique in the ASCG. The noder ∈ R corresponds one to one to a
color in the union of the color sets (∪v∈Vacolors(v)) of the nodes in the clique.

66 Assignment Search-Space Pruning

n1n0

n2

{A,B}{A,B}

{A,B,C}

Figure 5.1: A clique of the ASCG used to illustrate pruning of colors with a Bipartite Clique
Pruning Graph (BCPG). With the BCPG it can be derived that colorA andB can be removed
from the color set ofn2.

• A = W × R is the set of undirected edges; there is an edge(w, r) ∈ A if the color
represented by the noder ∈ R is in the color set of the ASCG node represented by the
nodew ∈W .

Assume that the edge(w, r) does not belong to the set of irreducible components of this
bipartite graph. In this case corresponds the noder to a color that can not be assigned to
nodew because there is a one to one correspondence between the set of proper colorings
and the set of complete matchings. This color can be removed from the allowed color set of
the nodew in the annotated conflict graph. This pruning method is given the name “Clique-
Pruning”. The computational intensive part of this method is the derivation of the irreducible
components. The irreducible components can be derived inO(| N |1/2· | A |) [SV76].

In Figure 5.1 a clique and in Figure 5.2 the corresponding Bipartite Clique Pruning Graph
is shown. The solid lines in the bipartite graph correspond to edges that belong to the set of
irreducible components of this graph. The dashed lines correspond to the edges that do not
belong to the set of irreducible components. These dashed edges indicate that color A and B
can not be assigned to node n2. These colors can therefore be removed from the color set of
node n2.

The pruning is likely to be more successful for larger cliques. However deriving a covering of
the edges in a graph with a minimal number of cliques is the so called “covering by cliques“
problem which is NP-hard [GJ79]. Therefore, the pruning algorithm is only applied for
cliques that can easily be identified.

Cliques with 2 nodes are easily identified because they correspond to adjacent nodes in the
conflict graph. For adjacent nodes the above described pruning algorithm reduces to rule 2,
which is stated as follows:

Rule 2 Let u andv be adjacent nodes in a ASCG andc be the only color in the color set of
nodeu thenc can be removed from the color set of nodev.

5.1 Pruning of colors of nodes in a clique. 67

n2

n1

n0 A

C

B

Figure 5.2: A Bipartite Clique Pruning Graph (BCPG) used to prune the ASCG in Figure 5.1.

n1n0

{A,B}{A}

Figure 5.3: Pruning of colors of adjacent nodes.

An example of an assignment conflict graph that illustrates pruning with rule 2 is shown in
Figure 5.3. Color A can be removed from the color set of node n1 because color A is the only
color that can be assigned to the adjacent node n0.

This pruning rule is embedded in the Prune-Adjacent algorithm, which is shown below. In
line 2 of this algorithm, every node in the graph is checked for the number of colors in its
color set. If only one color is in the color set then this color is removed from the color sets
of the adjacent nodes ofu in the Prune-Neighbors function. If after removal only one color
remains in the color set of an adjacent nodev then this color is removed from the color sets
of the nodes that are adjacent tov. Line 2 in the Prune-Neighbors function checks if indeed
a color is removed and prevents an endless recursive call of the Prune-Neighbors function.
The Prune-Neighbors function is called recursively such that all colors that can be removed
according to rule 2, are removed from the color sets in the ASCG after applying the Prune-
Adjacent algorithm. The computational complexity of this algorithm isO(|Z| · |V |2) because
ever node has at most V neighbors and is visited at most|Z| times. With|Z| the number of
different colors in the union of the color sets in the ASCG.

68 Assignment Search-Space Pruning

0

0

ip0

rp0

ip2

rp2

n1

n0

RF0

FU0

RF2

FU2

RF1

FU1

ip1

rp1

(b)(a)

wp1wp0 wp2

op2op1op0

wb0

wb2
wb1

wb3

wp3

Figure 5.4: An example DFG (a) and a data path (b) used to illustrate a limitation of the
Prune-Adjacent algorithm.

PRUNE-ADJACENT(ASCG)
1 for each vertexu ∈ V [ASCG]
2 do if |colors(u)| = 1
3 then Prune-Neighbors(u, colors(u))

PRUNE-NEIGHBORS(u, c)
1 for eachv ∈ Adj[u]
2 do if c ∈ colors(v)
3 then colors(v) = colors(v)\c
4 if |colors(v)| = 1
5 then Prune-Neighbors(v, C)

Pruning of the ASCG with the Prune-Adjacent algorithm does not guarantee that it derives all
infeasible network ports even if all operations are assigned to a functional unit. An unsuitable
backtrack criterium during operation assignment is therefore the detection of an empty color
set after pruning with the Prune-Adjacent algorithm.

That the Prune-Adjacent algorithm does not allways derive all infeasible network ports is
illustrated with the DFG and data path that are shown in Figure 5.4. The network model of
this data path is shown in Figure 5.5. In this example it is assumed that operation n0 and n1
are both assigned to FU0. The ASCG for this network and data path after the Prune-Adjacent
algorithm is applied is shown in Figure 5.4. In this case the Prune-Adjacent algorithm didn’t

5.1 Pruning of colors of nodes in a clique. 69

FU→ OP

IP→ FU

RP→ IP

WP→ RP

WB→WP

OP→WB

ip1

rp1

wb2

FU1

wp2

op1

ip2

rp2

wb3

FU2

wp3

op2

ip0

rp0

wp0

wb1wb0

FU0

wp1

op0

Figure 5.5: The network model of the data path in Figure 5.4.

detect that the assignment of color wp0 or wp1 to the WP node and the color wb2 or wb3 to
the WB node is infeasible. The reason is as follows. The assignment of the color op0 to the
OP node has as a consequence that the color wb2 as well as wb3 are an option for the WB
node. Because there is more than one option for the WB node the Prune-Adjacent algorithm
is unable to detect colors that can not be assigned to the WP node. On the other hand, the
assignment of the color rp0 to the RP node has as a consequence that the color wp0 as well
as wp1 are an option for the WP node. Because more than one color can be assigned to the
WP node the Prune-Adjacent algorithm is unable to detect colors that can not be assigned to
the WB node.

In the next section another pruning algorithm is described which is able to derive all infeasible
network ports if all operations are assigned to a functional unit.

70 Assignment Search-Space Pruning

FU
n0

OP

{FU0,FU1,FU2}

WP

{FU0,op1} CN CN {FU1,op2}

{FU1,op0} CN

CN {FU2,op0}

CN {FU2,op1}

{FU0,op2} CN

WB

{wp0,wp1,
 wp2,wp3}

{wb0,wp1} CN
CN {wb2,wp0}

{wb1,wp0} CN

CN {wb2,wp1}

CN {wb3,wp0}

{wb0,wp3} CN

{wb1,wp2} CN
CN {wb3,wp1}

{wb1,wp3} CN
CN {wb3,wp2}

removed due to an
assignment decision

removed by Prune-Adjacent
algorithm

legend

{wb0,wb1,
 wb2,wb3}

{op0,wb0} CN
CN {op1,wb2}

{op1,wb1} CN

CN {op2,wb0}

CN {op2,wb2}

{op0,wb1} CN

{wp0,rp1} CN CN {wp2,rp0}

CN {wp2,rp2}{wp0,rp2} CN

IP

RP

FU
n1

{ip0,ip1,
 ip2}

{FU0,FU1,
 FU2}

{rp0,rp1,
 rp2}{wp1,rp2} CN CN {wp3,rp1}

{rp0,ip1} CN CN {rp1,ip2}

{rp1,ip0} CN

CN {rp2,ip0}

CN {rp2,ip1}

{rp0,ip2} CN

{ip0,FU1} CN CN {ip1,FU2}

{ip1,FU0} CN

CN {ip2,FU0}

CN {ip2,FU1}

{ip0,FU2} CN

CN {wp3,rp0}{wp1,rp1} CN

{op0,op1,
 op2 }

CN {wb2,wp3}

Figure 5.6: ASCG for the DFG and data path in Figure 5.4.

5.2 Connectivety driven pruning 71

5.2 Connectivety driven pruning

This section describes a pruning algorithm which derives infeasible operation assignment op-
tions which are only a consequence of the use of an incomplete network in the data path. The
pruning algorithm is explained in the following steps. First a simple example that illustrates
how the interconnect in the networks affect the assignment of operations is described in Sec-
tion 5.2.1. Then in Section 5.2.2 a graph is introduced in which the communication paths
between functional units can be modeled that execute the operations in the data flow graph.
This graph is the input of a pruning algorithm which is described in Section 5.2.3. How cyclic
data flow graphs can be handled by this pruning algorithm is described in Section 5.2.4. In
Section 5.2.5, Section 5.2.6 and Section 5.2.7 several extensions of the pruning algorithm
are described that can be used to derive infeasible operation assignment options which are a
consequence of a combination of constraints.

5.2.1 Pruning example

The data path and DFG in Figure 5.7 and the corresponding data path network model in
Figure 5.8 are used to illustrate how operation assignment is affected by the use of an in-
complete network in the data path. Assume that it is decided that operationn0 is assigned to
functional unit FU0. This decision has as a consequence that the result of operationn0 can
not be stored in RF0 because there is no communication path through theOP → WB and
theWB → WP network to this register file. This result must therefore be stored in RF1. A
result stored in RF1 is not accessible by FU0 and FU1. Therefore the assignment of operation
n1 to FU0 or FU1 is infeasible and the corresponding colors can be removed from the color
set of the ASCG nodeFU(n0) (see definition 4.7).

5.2.2 Communication path graph

In this section a graph is introduced in which the communication paths between functional
units are modeled that potentially execute the operations in the data flow graph. This graph
is the input of a pruning algorithm which is described in Section 5.2.3.

In the network model Figure 5.8 the functional units are represented as output ports of the
IP→ FU network. This makes it possible to use the same pruning algorithm for the derivation
of infeasible operation assignment options as well as for the derivation of infeasible network
ports and functional unit ports.

The infeasible operation assignment options are derived with a pruning algorithm that oper-
ates on a directed graph. The graph has been given the name “Communication Path Graph
(CPG)”. In this graph all possible communication paths between a producing and a consum-
ing functional unit are modeled.

The CPG for the data path and the DFG shown in respectively Figure 5.7 is depicted in
Figure 5.9. This graph is constructed as follows. For every operation in the DFG the same
number of nodes as there are functional units are created in the CPG. Therefore there are

72 Assignment Search-Space Pruning

0

0

e0

FU0 FU1 FU2

(b)(a)

RF0 RF1

FU3

n1

n0

op0 op1 op2 op3

ip0 ip1 ip2 ip3

wp0 wp1 wp2

wb2 wb3wb1 wb0wb3

Figure 5.7: A data flow graph (a) and a data path (b) which are used to illustrate that the
interconnect in the networks affect the assignment of operations to the functional units.

FU→ OP

IP→ FU

RP→ IP

WP→ RP

WB→WP

OP→WB

op0 op1 op2 op3

fu0 fu1 fu2 fu3

ip3ip2ip1ip0

rp3rp2rp1rp0

wp2wp0 wp1

wb2 wb3wb1wb0

Figure 5.8: A data path network model in which all communication networks and ports of
the data path in Figure 5.7b are made explicit and labeled.

5.2 Connectivety driven pruning 73

four nodes created in the CPG in Figure 5.9 for operation n0 as well as for operation n1. For
every data edge in the DFG there are as many nodes created in the CPG as there are network
ports in the data path. Every node that is created corresponds to one specific network port.
Therefore there are four nodes created in the CPG for respectively the output ports (ops), the
write-back busses (wbs) the read ports (rps) and the input ports (ips). Because there are three
write ports in the data path there are also only three nodes created in the CPG. Directed edges
are added between the nodes in the CPG if there exist a connection in the network in the data
path between the corresponding network input port and network output port. In addition, a
source and a sink node are included in the CPG. Directed edges are added from the source
node to all nodes in the CPG that correspond to functional units that execute operations that
do not have any incoming data edge in the DFG. There are also directed edges to the sink
node added. These edges leave the nodes in the CPG that correspond to functional units that
potentially execute operations that do not have outgoing data edges.

The communication path graph, which is described by the tuple(W,E), is defined below.
This graph is defined given a DFG(V,Ed ∪ El ∪ Es, we, id, ti, to) (see Definition 2.1) with
the set of data edgesEde = Ed ∪ El. In the definition of the communication path graph the
functionk(ip,op) is used. This function describes a network in the data path and is defined
in Section 4.2.

Definition 5.2 (mapping of DFG operation on functional unit vertices)
FUs : V → W is the functionFUs(v) = VFU that gives for a DFG operationv ∈ V a set
of verticesVFU . There is for every functional unit in the data path a one to one corresponding
vertexvFU ∈ VFU .

Definition 5.3 (mapping of a DFG operation on functional unit output port vertices)
OPs : Ede → W is the functionOPs(e) = Vop that gives for a data edgee a set of vertices
Vop. There is for every functional unit output port in the data path a one to one corresponding
vertexvop ∈ Vop.

Definition 5.4 (mapping of a DFG operation on write back bus vertices)
WBs : Ede → W is the functionWBs(e) = Vwb that gives for a data edgee a set of
verticesVwb. There is for every write back bus in the data path a one to one corresponding
vertexvwb ∈ Vwb.

Definition 5.5 (mapping of a DFG operation on write port vertices)
WPs : Ede → W is the functionWPs(e) = Vwp that gives for a data edgee a set of
verticesVwp. There is for every write port in the data path a one to one corresponding vertex
vwp ∈ Vwp.

Definition 5.6 (mapping of a DFG operation on read port vertices)
RPs : Ede → W is the functionRPs(e) = Vrp that gives for a data edgee a set of vertices
Vrp. There is for every read port in the data path a one to one corresponding vertexvrp ∈ Vrp.

Definition 5.7 (mapping of a DFG operation on input port vertices)
IPs : Ede → W is the functionIPs(e) = Vip that gives for a data edgee a set of vertices
Vip. There is for every input port in the data path a one to one corresponding vertexvip ∈ Vip.

74 Assignment Search-Space Pruning

Definition 5.8 (Network port)
P (v) = port gives for a CPG vertex the one to one corresponding network port in the data
path network model.

Definition 5.9 (Source vertex)
source() = vsource gives the source vertex of the CPG.

Definition 5.10 (Sink vertex)
sink() = vsink gives the sink vertex of the CPG.

Definition 5.11 (Communication Path Graph for a data edge)
ψ : Ede →W ×W ×W × E is the functionψ(e) = (VFUp, Vp, VFUc, E) where
n1 = pred(e)
VFUp = FUs(n1)
Vop = OPs(e)
Vwb = WBs(e)
Vwp = WPs(e)
Vrp = RPs(e)
Vip = IPs(e)
n2 = succ(e)
VFUc = FUs(n2)
E1 = {(vFU , vop) | vFU ∈ VFUp, vop ∈ VOP , kFUOP (P (vFU), P (vop)) = 1}
E2 = {(vop, vwb) | vop ∈ Vop, vwb ∈ VWB , kOPWB(P (vop), P (vwb)) = 1}
E3 = {(vwb, vwp) | vwb ∈ Vwb, vwp ∈ VWP , kWBWP (P (vwb), P (vwp)) = 1}
E4 = {(vwp, vip) | vwp ∈ Vwp, vip ∈ VIP , kWPIP (P (vwp), P (vip)) = 1}
E5 = {(vip, vFU) | vip ∈ Vip, vFU ∈ VFUc, kIPFU (P (vip), P (vFU)) = 1}
E = E1 ∪ E2 ∪ E3 ∪ E4 ∪ E5
Vp = Vop ∪ Vwb ∪ Vwp ∪ Vrp ∪ Vip

Definition 5.12 (Communication Path Graph.)
Given a data path of a processor and a DFG. Then the Communication Path Graph (CPG) is
represented by the directed graph(W,E), where:
ψ′(Ede) = (W,E)
vsource = source()
vsink = sink()
W1 = {V p | e ∈ Ede, (V p, V a, V c,Ea) = ψ(e)}
W2 = {V a | e ∈ Ede, (V p, V a, V c,Ea) = ψ(e)}
W3 = {V c | e ∈ Ede, (V p, V a, V c,Ea) = ψ(e)}
E1 = {Ea | e ∈ Ede, (V p, V a, V c,Ea) = ψ(e)}
E2 = {(vsource, v) | e ∈ Ede, (V p, V a, V c,Ea) = ψ(e), v ∈ V p, pred(e) = ∅}
E2 = {(v, vsink) | e ∈ Ede, (V p, V a, V c,Ea) = ψ(e), v ∈ V c, succ(e) = ∅}
W = W1 ∪W2 ∪W3 ∪ vsource ∪ vsink
E = E1 ∪ E2 ∪ E3

5.2 Connectivety driven pruning 75

available

available and connected

unavailable

legend

sink

source

wp0

e0

wb0

e0

wp1

e0
wp2

e0

rp2

e0

ip1

e0

rp3

e0

ip3

e0
ip2

e0

FU2

n1
FU1

n1
FU0

n1
FU3

n1

FU1

n0
FU2

n0
FU3

n0

wb1

e0
wb2

e0
wb3

e0

op1

e0
op2

e0
op3

e0

ip0

e0

FU0

n0

op0

e0

rp1

e0
rp0

e0

Figure 5.9: The Communication Path Graph (CPG) for the DFG and data path shown in
Figure 5.7. This graph is used to derive infeasible operation and port assignment options.

5.2.3 Communication path graph pruning algorithm

The pruning algorithm that operates on the CPG has been given the name “Prune-CPG”. This
algorithm is described below.

All the nodes in the CPG that correspond to ports and functional units that can be used for

76 Assignment Search-Space Pruning

the execution of the operations are marked as available before the Prune-CPG algorithm is
applied. A functional unit is unavailable if the type of the operation is different from the type
the functional unit can execute. Another reason is that a decision has been made to assign
the operation to another functional unit. In addition, the colors in the ASCG can indicate
that a functional unit or a port can not be used. Because, in this example we assume that the
decision was made that operation n0 is executed on FU0 all nodes in the CPG in Figure 5.9
will be marked as available except the nodes that are labeled with “FU1 n0” and “FU2 n0”
and “FU3 n0”. The nodes which are unavailable are drawn with dashed lines in Figure 5.9.

The Prune-CPG algorithm is used to derive infeasible operation assignment options. In order
to derive these infeasible assignment options, it derives the nodes in the CPG that lie on paths
from the source node to the sink node through nodes that are marked as available. All nodes
that are not on a path from the source to the sink node correspond to ports or functional
units that are infeasible assignment options because they do not lie on a communication path
from a functional unit that can execute the producing operation to a functional unit that can
execute the consuming operation. The CPG for the DFG and data path in Figure 5.7 is shown
in Figure 5.9. The nodes and edges that lie on a path from source to sink through nodes that
are marked as available and connected are drawn with fat lines in Figure 5.10.

The Prune-CPG algorithm, which is shown below, finds the nodes on the paths from the
source node to the sink node by traversing the CPG graph in a depth-first-search manner
from the source to the sink node. Before the traversal starts the nodes are marked in line 2 of
the Prune-CPG algorithm as not visited (visited[u] = false) and in line 3 as not connected
to the sink (connected[u] = false). In line 4 thesource node is taken as a starting point of
the depth-first-search traversal. If during the traversal a node is discovered which is available
and not already visited then this node is marked as visited in line 7. All other neighbor nodes
are visited in order to derive whether they are on a path to the sink. If during the traversal
thesink node is discovered then all the nodes on its way back to the source node are marked
as nodes that are connected to thesink node (connected[u] = true). In the case a node is
discovered that was already visited then it is known if this node is connected to thesink. The
reason for this is that the CPG graph is acyclic. Because the CPG is acyclic a node in the CPG
can only be visited again after all nodes that are “further away” from thesource node and
“closer” to thesink node have been explored. In the case that a visited node is discovered
that is marked as connected then all the nodes on its way back to the source node are marked
as nodes that are connected to thesink node.

5.2 Connectivety driven pruning 77

available

available and connected

unavailable

legend

sink

source

wp0

e0

wb0

e0

wp1

e0
wp2

e0

rp2

e0

ip1

e0

rp3

e0

ip3

e0
ip2

e0

FU2

n1
FU1

n1
FU0

n1
FU3

n1

FU1

n0
FU2

n0
FU3

n0

wb1

e0
wb2

e0
wb3

e0

op1

e0
op2

e0
op3

e0

ip0

e0

FU0

n0

op0

e0

rp1

e0
rp0

e0

Figure 5.10: A communication path graph after the Prune-CPG algorithm has been applied.

78 Assignment Search-Space Pruning

PRUNE-CPG(CPG)
1 for each vertexu ∈ V [CPG]
2 do visited[u]← false
3 connected[u]← false
4 V isit(source)

V ISIT(u)
1 if u = sink
2 then return true
3 if available[u] = false
4 then return false
5 if visited[u] = true
6 then return connected[u]
7 visited[u]← true
8 retval← false
9 for eachv ∈ Adj[u]

10 do if V isit(v) = true
11 then connected[u]← true
12 retval← true
13
14 return retval

The Prune-CPG algorithm is a adapted version of a depth-first-search algorithm which is de-
scribed in for example [CLR90]. The Prune-CPG algorithm has a computational complexity
of O(| V | + | E |) because it visits every node and edge in the graph maximal once.

5.2.4 Communication path graphs for cyclic data flow graphs

This section describes how cyclic DFG can be modeled in the CPG such that the Prune-CPG
algorithm can be used for the derivation of infeasible assignment options.

A DFG with a loop-carried data precedence edge is shown in Figure 5.11. This loop-carried
data precedence edge is replaced by an ordinary data precedence edge by introducing a
dummy operation for every operation that has an incoming loop-carried data precedence
edge. This results in the DFG’ shown in Figure 5.12 in which the dummy operation n0’ is
introduced which has an incoming data precedence edge from operation n0. Because DFG’
is acyclic a CPG can be constructed according to definition 5.12.

A constraint that can not be modeled in the CPG is that the operations n0 and n0’ must
be assigned to the same functional unit. For example if after applying the Prune-CPG it is
detected that a functional unit that is an option for the execution of operation n0 is not marked
connected, then also the same functional unit for the execution of operation n0’ should be
marked as unavailable. After an update of the CPG the Prune-CPG algorithm is applied once
again.

With the above described procedure, some but not all infeasible operation assignment op-

5.2 Connectivety driven pruning 79

0

0

e0 n0

Figure 5.11: Example DFG with a loop-carried data dependency.

0

0
e0

n0

n0’

Figure 5.12: DFG’ in which the loop-carried data dependency of the DFG in Figure 5.11 is
removed.

tions can be derived by making use of the Prune-CPG algorithm. A data path is shown in
Figure 5.13 for which there does not exist a feasible assignment of the operations in the DFG
of Figure 5.11. The corresponding CPG after pruning is shown in Figure 5.15. All func-
tional units lie on a path from the source to the sink and are marked as connected. Thus, they
are marked as potentially feasible assignment options while there is no feasible operation
assignment possible.

80 Assignment Search-Space Pruning

RF1RF0

FU1FU0

op0 op1

ip0 ip1

wp0 wp1

rp0 rp1

Figure 5.13: A data path used to illustrate that the Prune-CPG does not derive all infeasible
operation assignment options for the cyclic DFG in Figure 5.11.

FU0 FU1

ip1ip0

rp1rp0

wp0 wp1

wb1wb0

op0 op1

FU→ OP

IP→ FU

RP→ IP

WP→ RP

WB→WP

OP→WB

Figure 5.14: A data path network model of the data path in Figure 5.13.

5.2 Connectivety driven pruning 81

ip1

e0

source

sink

FU1

n0

FU0

n0’

wb0

e0

rp1

e0

FU1

n0’

op1

e0

wb1

e0

ip0

e0

op0

e0

rp0

e0

FU0

n0

wp1

e0
wp0

e0

Figure 5.15: CPG for the acyclic DFG’ shown in Figure 5.12 and the data path of Figure 5.13.

82 Assignment Search-Space Pruning

RF0 RF1 RF2 RF3

FU0

+,&,*
FU1

+
FU3

+
op0 op1 op2 op3

ip0 ip1 ip2 ip3

wp0 wp1 wp2 wp3

FU2

*

Figure 5.16: Data path used to illustrate that a combination of interconnect constraint can
make operation assignment options infeasible.

So far, CPGs are described for two operations with a data precedence edge between them.
These CPGs were used to prune the assignment search-space based on interconnect con-
straints between functional units that can executed these operations. However, the pruning
techniques should be extended to derive infeasible assignment options based on a combina-
tions of interconnect constraints. These extensions are described in the next sections.

5.2.5 Data dependency chains

In typical DFGs most of the operations consume values that are produced by other operations
and produce results that are the input values of other operations. Therefore, the assignment
of an operation to a functional unit must be such that a communication path exists from the
functional units that produce the input values for this functional unit. At the same time a com-
munication path must exist from this functional unit to the functional units that consumes its
result. An example data path and DFG is used to explain the derivation of infeasible operation
assignment options with the Prune-CPG algorithm for DFGs with more than two operations
that are data dependent. The data path and DFG are shown in respectively Figure 5.16 and
Figure 5.18. The data path network model is depicted in Figure 5.17.

The infeasible assignment options can be derived by making use of the CPG in Figure 5.19.
The fat line in this CPG is the only path from source to sink through the nodes that are marked
as available. All the functional units and ports which are not on this path are infeasible
assignment options.

5.2 Connectivety driven pruning 83

FU→ OP

IP→ FU

RP→ IP

WP→ RP

WB→WP

OP→WB

op0 op1 op2 op3

FU1 FU3

ip3ip2ip1ip0

rp3rp2rp1rp0

wp0 wp1

wb2 wb3wb1wb0

FU0 FU2

wp3wp2

Figure 5.17: The network model of the data path in Figure 5.16.

0

0

0

0

0

0

e1

e2

e0

n0
+

n3
&

n2
+

n1
*

Figure 5.18: Example DFG of which the operations are assigned to the functional units in the
data path of Figure 5.16.

84 Assignment Search-Space Pruning

op0

e0

source

wb0

e0

sink

op1

e0

FU1

n0
FU2

n0

wb2

e0

wp2

e0

rp1

e0
rp2

e0
rp0

e0

wp1

e0

ip1

e0

FU2

n1

op2

e1

wb3

e1
wb0

e1

FU1

n1

op3

e2
op0

e1

wp3

e1

FU0

n0
rp3

e1

op0

e2
op3

e2

wb3

e2

ip2

e0

wb0

e2
wb1

e2
wb2

e2

wp0

e2

FU3

n1
rp0

e2

FU0

n3
FU1

n3
FU2

n3
FU3

n3

FU2

n2

FU3

n0

ip0

e1
op3

e0

FU0

n2
FU1

n2
wb1

e0

ip3

e1

FU3

n2
wb3

e0

rp3

e0

ip3

e0

rp1

e1

ip2

e1

op1

e2
op2

e2
wp3

e0
wp0

e0

wp1

e2
wp2

e2
wp3

e2

rp3

e2
rp2

e2
rp1

e2

ip1

e2
ip2

e2

wp1

e1
wp0

e1
wp2

e1

ip1

e1

ip0

e0

wb1

e1
wb3

e1

ip3

e2

rp0

e1
rp2

e1

op2

e0

op1

e1
ip0

e2

FU0

n1

Figure 5.19: CPG for the data path in Figure 5.16 and the DFG in Figure 5.18.

5.2 Connectivety driven pruning 85

RF0 RF1 RF2 RF3

FU0 FU1 FU3

op0 op1 op2 op3

ip0 ip1 ip2 ip3

wp0 wp1 wp2 wp3

rp0 rp1 rp2 rp3

FU2

Figure 5.20: Data path used to illustrate pruning caused by a combination of connectivity
constraints.

5.2.6 Diverging data dependencies

In the previous example the assignment was derived for a DFG with operations that con-
sume at most one input value and produce at most one output value. In this case, infeasible
operation assignment options were derived by applying the Prune-CPG algorithm on the cor-
responding CPG. This section describes the derivation of infeasible options for the case that
a result of an operation is consumed by several operations. In this case, not one communica-
tion path but several paths must exist from the producing functional unit output port to several
consuming functional unit input ports.

A data path and a DFG are shown in respectively Figure 5.20 and Figure 5.22. Operationn0
in the DFG produces a value that is consumed by two other operations. The assignment of
these operations must be such that a communication paths exist to the functional units that
execute the consuming operations. In this example we will assume that operationn1 can be
executed on FU0 or FU3 and operationn2 can only be executed on FU2. Notice that under
these assumptions the only feasible assignment option for operationn0 is FU0.

The corresponding CPG, after applying the Prune-CPG algorithm once, is shown in Fig-
ure 5.23. All the nodes that are draw with thin lines correspond to functional units or ports
that are infeasible assignment options. However the nodes labeled with “FU0 n0” and “FU3

n0” are drawn with fat lines because they lie on a path from the source to the sink node. This
indicates that both units are marked as potentially feasible assignment options for operation
n0 while only FU0 is indeed feasible.

To be able to detect that FU3 is infeasible it should be taken into account that nodes in the
CPG can correspond to the same functional unit or the same port in the data path. If one
of these nodes in the CPG are not marked as available and connected by the Prune-CPG
algorithm then the other nodes that correspond to the same functional unit or port should be
marked as unavailable.

86 Assignment Search-Space Pruning

FU→ OP

IP→ FU

RP→ IP

WP→ RP

WB→WP

OP→WB

op0 op1 op2 op3

wp2 wp3

FU0 FU1 FU2 FU3

ip3ip2ip1ip0

rp3rp2rp1rp0

wp0 wp1

wb2 wb3wb1wb0

Figure 5.21: Network model of the data path of Figure 5.20.

e0 e1

n0

00

n2n1

00

Figure 5.22: DFG used to illustrate pruning.

5.2 Connectivety driven pruning 87

In the CPG of Figure 5.23 the nodes labeled with “op3 e0” and “op3 e1” correspond to
exactly the same functional unit output port. The node “op3 e1” is not marked as connected
and therefore the node labeled with “op3 e0” should be marked as unavailable. The resulting
CPG, after applying the Prune-CPG algorithm a second time, is shown in Figure 5.24. In this
CPG the node labelled with “FU3 n0” is not marked as connected which indicates that it is
indeed an infeasible assignment option for operation n0.

88 Assignment Search-Space Pruning

available and connected unavailable available

legend

wb3

e0
wb2

e0
wb1

e0
wb0

e0

wp3

e0
wp2

e0
wp1

e0
wp0

e0

rp3

e0
rp2

e0
rp1

e0

ip3

e0

FU3

n1
FU2

n1
FU1

n1

source

FU3

n0

op0

e0
op3

e0
op2

e0
op1

e0
op0

e1

wp2

e1

sink

ip2

e1

rp2

e1

FU2

n2
FU1

n2

FU2

n0

op1

e1
op3

e1

wb3

e1

wp1

e1
wp0

e1
wp3

e1

rp3

e1
rp1

e1
rp0

e1

ip3

e1

FU0

n2

ip1

e0
ip1

e1
ip0

e1

FU1

n0

ip2

e0
ip0

e0

FU0

n0

wb0

e1
wb1

e1
wb2

e1

FU0

n1
FU3

n2

op2

e1

rp0

e0

Figure 5.23: The Communication Path Graph (CPG) for the data path in Figure 5.20 and the
DFG in Figure 5.22 on which the Prune-CPG algorithm has been applied.

5.2 Connectivety driven pruning 89

available and connected unavailable available

legend

wb3

e0
wb2

e0
wb1

e0
wb0

e0

wp3

e0
wp2

e0
wp1

e0
wp0

e0

rp3

e0
rp2

e0
rp0

e0
rp1

e0

ip3

e0

FU3

n1
FU2

n1
FU1

n1

source

FU3

n0

op0

e0
op3

e0
op2

e0
op1

e0
op0

e1

wp2

e1

sink

ip2

e1

rp2

e1

FU2

n2
FU1

n2

FU2

n0

op1

e1
op3

e1

wb3

e1

wp1

e1
wp0

e1
wp3

e1

rp3

e1
rp1

e1
rp0

e1

ip3

e1

FU0

n2

ip1

e0
ip1

e1
ip0

e1

FU1

n0

ip2

e0
ip0

e0

FU0

n0

wb0

e1
wb1

e1
wb2

e1

FU0

n1
FU3

n2

op2

e1

Figure 5.24: The Communication Path Graph (CPG) after the CPG algorithm has been ap-
plied twice.

90 Assignment Search-Space Pruning

e1e0

n0 n1

0 0

n2

0 1

Figure 5.25: DFG used to explain how the CPG pruning techniques should be extended such
that it can be derived which functional units can not read the required input values.

RF1RF0

FU1FU0

wp0 wp1

ip0 ip1 ip2 ip3

op0 op1

Figure 5.26: Data path used to explain how the pruning techniques should be extended such
that it can be derived which functional units can not read the required input values.

5.2.7 Converging data dependencies

In this section the problem is addressed that the assignment of operations to functional units
must be such that communication paths exist from several producing operations to an opera-
tion that consumes the results. The DFG and data path used to explain the addressed problem
is shown in Figure 5.25 and Figure 5.26 respectively. The corresponding data path network
model is shown in Figure 5.27. In this example the assumption is made that operation n0 is
executed on FU0 and that operation n1 is executed on FU1. Notice that in this case operation
n2 can only be executed on FU0.

The CPG that corresponds to the DFG and the data path of respectively Figure 5.25 and
Figure 5.26 is shown in Figure 5.28. The nodes labeled with “FU0 n2” and “FU1 n2” are
marked as connected and therefore as an option for execution of operation n2. However to be
able to execute an operation on a functional unit there must exist a communication path to all
functional unit input ports that are used. In the example this is not the case for FU1 that must
consume a value produced by n0 through functional unit input port ip2. Because “ip2 e0” is
not marked as connected we must mark the node “ip3 e1” as unavailable. After updating the

5.2 Connectivety driven pruning 91

FU→ OP

IP→ FU

RP→ IP

WP→ RP

WB→WP

OP→WB

wp1wp0

ip3ip2ip1ip0

rp3rp2rp1rp0

FU0

op0 op1

wb0 wb1

FU1

Figure 5.27: Network model of the data path in Figure 5.26.

CPG the Prune-CPG algorithm is applied again. The resulting CPG is shown in Figure 5.29
in which node “FU1 n2” is not marked as connected.

5.2.8 Guarantees after pruning

Pruning algorithms typically remove some but usually not all infeasible options from a search-
space. However, the applied pruning algorithms give some guarantees about which infeasible
assignment options will certainly be removed. Why these guarantees are essential is described
in this section.

After the operation assignment phase all operations should be assigned to a functional unit
such that the required communication paths can be made in the data path of the processor.
The CPG-algorithm is an essential pruning algorithm because it has the following property:

Theorem 5.1
Given that every operation in the DFG is assigned to a functional unit then infeasibility is
detected with the prune-CPG algorithm if a required communication path can not be made in
the data path of the processor.

92 Assignment Search-Space Pruning

available and connected unavailable available

legend

op1

e0

sink

wp0

e0

rp1

e1

wp0

e1

FU1

n2

ip3

e1

rp0

e1
rp2

e1

wp1

e1

rp3

e1

wb1

e1

op0

e1
op1

e1

FU0

n1

source

ip1

e0
ip2

e0
ip3

e0
ip0

e1
ip1

e1
ip2

e1

FU0

n2

FU1

n0

wb1

e0
wb0

e1

op0

e0

FU0

n0
FU1

n1

wb0

e0

ip0

e0

wp1

e0

rp1

e0
rp2

e0
rp3

e0
rp0

e0

Figure 5.28: The Communication Path Graph (CPG) used to detect the functional units and
ports which are infeasible operation assignment options.

5.2 Connectivety driven pruning 93

available and connected unavailable available

legend

op1

e0

sink

wp0

e0

rp1

e1

wp0

e1

FU1

n2

ip3

e1

rp0

e1
rp2

e1

wp1

e1

rp3

e1

wb1

e1

op0

e1
op1

e1

FU0

n1

source

ip1

e0
ip2

e0
ip3

e0
ip0

e1
ip1

e1
ip2

e1

FU0

n2

FU1

n0

wb1

e0
wb0

e1

op0

e0

FU0

n0
FU1

n1

wb0

e0

ip0

e0

wp1

e0

rp1

e0
rp2

e0
rp3

e0
rp0

e0

Figure 5.29: The same Communication Path Graph (CPG) as in Figure 5.28 but after the
CPG is updated and CPG algorithm is applied a second time.

94 Assignment Search-Space Pruning

proof:

A data edge in the DFG implies data transport of a result from a producing FU to the FU
that consumes the results. All possible communication paths in the data path between these
FUs are modeled in the CPG because for a single data edge there is a one to one mapping
of FUs and network ports in the data path and nodes in the CPG. There is also a one to one
mapping of connections between network input ports and network output ports and directed
edges between the corresponding nodes in the CPG. Therefore, if and only if there is a com-
munication path in the data path from the producing FU to the consuming FU then there is
also a corresponding path in the CPG. If there is such a path in the CPG it will be detected
with the CPG-algorithm because the CPG-algorithm traverses all paths from the source to
the sink node. The situation that is described in Section 5.2.4, in which there is a path in the
CPG while there is no feasible communication path in the data path, can not occure because
all operations are assigned. �

The CPG-algorithm can replace coloring of the ASCG after every operation assignment de-
cision because the CPG-algorithm can according to Theorem 5.1 be used to detect that a re-
quired communication path does not exist. Pruning is prefered above coloring of the ASCG
because the pruning algorithm has a polynomial time complexity.

After the operation assignment phase not only the operations should be assigned but it should
also be known which network ports are used. This makes is possible to take all the resource
conflicts into account during serialization and scheduling.

That the ports that are used are a consequence of the operation to functional unit assignment
can be seen as follows. The used functional unit input ports and output ports follow directly
from the assignment of the operations and the functional unit port specification in the DFG.
For every functional unit input port a unique register file read port can be derived because
according to the VLIW data path template there is only one register file read port connected to
every functional unit input port. If a functional unit output port is connected to a local write-
back bus and this bus is part of the required communication path then this bus is selected
otherwise the global write-back bus is selected. The used read port determines in which
register file the intermediate value must be stored. The used write port of this register file can
be derived from the selected write-back bus if every register file write port is connected to to
maximal one write-back bus. We restrict ourselves to this type of data paths.

Chapter 6

Multi-casting

The processors that are considered in this report support multi-casting. Multi-casting allows
a result of a functional unit to be stored in multiple register files. This chapter describes the
issues related to the exploitation of multi-casting by our operation assignment techniques.

The outline of this chapter is as follows. Section 6.1 explains in more detail what multi-
casting is and why it is useful. Section 6.2 explains the issues related to modeling of mul-
ticasting in the ASCG. Copy operations that must be inserted in the DFG before it can be
mapped on a data path, is the topic of Section 6.3. Modification of the data flow graph is
highly undesirable because it usually requires a computational expensive recalculation of the
distance matrix. Section 6.4 describes the issues related to the use of global write-back bus in
the data path. The use of a global write-back bus in combination with multi-casting makes it
always possible to map the DFG on the data path without copy operations. If a global write-
back bus is applied then there can be several communication paths from a functional unit
output port to a register file write port. How the proper write-back busses are selected during
operation assignment, is described in Section 6.4.1. The last section of this chapter describes
how the scalability of the data path can be enhanced by making use of pipeline registers in
the global write-back busses.

6.1 Multi-casting concept

In Figure 6.1a a DFG is shown in which an intermediate result is consumed by two operations.
If these operations are executed on functional units that do not have access to the same register
file then the intermediate result must be stored in two register files. A processor is said to
support multi-casting if an intermediate result can be stored in more than one register file in
the same clock cycle.

Multi-casting becomes a difficult problem if the number of register files in which an interme-
diate result must be stored depends on the assignment of the consuming operations. In this
case the number of used register file write ports depends on the assignment of the consuming

96 Multi-casting

00

1 1

ip3

op1

wp3wp2wp0 wp1

ip0 ip1 ip2

op0

FU1FU0

(b)(a)

n2

n0

n1

RF2 RF3RF1RF0

Figure 6.1: Example DFG (a) and data path (b) used to illustrate modeling of multicating in
the ASCG.

operations to the functional units. The use of a larger number of write ports can increase the
latency and the initiation interval of the schedule. Also, the number of intermediate values
and the lifetimes of the values in the registers can be affected, which can have an effect on
the schedule.

For example, if the consuming operationsn1 andn2 in Figure 6.1a are assigned to respec-
tively functional unit FU0 and FU1 in Figure 6.1b then multi-casting must be applied and two
write ports must be used to store the intermediate result in a register in register file RF1 and
RF3. This differs from the case that both consuming operations are assigned to one functional
unit. In that case the intermediate result is stored in only one register file and only one write
port is used. How the dependency between the assignment of operations and the write ports
that must be used is modeled in the ASCG is explained in the next section.

6.2 Modeling of multi-casting in the ASCG.

Multi-casting is handled by our operation assignment technique as follows. In the case a
result is consumed byN operations thenN nodes of the type WP are introduced in the
ASCG. These WP nodes are potentially colored with the same color. If the nodes have the
same color then the same register file write port is used. The same write port can be used in
the same cycle because one intermediate value is stored in the register file.

Figure 6.2 shows the ASCG for the DFG and data path in Figure 6.1. If operationn1 and
n2 are both executed on FU1 then it is case that the color “wp3” must be assigned to both
WP nodes in this ASCG. In this case the result of operationn0 is stored in register file RF3.
If operationn1 andn2 are respespectively assigned to FU0 and FU1 then the CN nodes in

6.2 Modeling of multi-casting in the ASCG. 97

the ASCG will enforce that the only valid colors for left and right WP node in Figure 6.2 are
“wp1” and “wp3” respectively. In this case the result of operation n0 is stored in register file
RF1 as well as in RF3.

FU:n0

OP

CN CN

CN CN

{FU0,FU1}

{FU0,op1}{FU1,op0}
{op0,op1}

{wb0,wb1}
{op0,wb1} {op1,wb0}

WB

CN

CN {wb1,wp0}

{wb1,wp1}

{wb1,wp3}

CN

IP

RP

WP

FU
n2

{wp0,wp1,wp2,wp3}

{rp0,rp1,
 rp2,rp3}

{wp0,rp1}

{wp0,rp2}

{wp0,rp3}

{wp1,rp0}

{wp1,rp2}

{rp0,ip1}

CN

CN

CN

CN

CN

CN CN

CN

CN

CN

CN

CN

{wp2,rp0}

{wp2,rp1}

{wp2,rp3}

{wp3,rp0}

{wp3,rp1}

{wp3,rp2}

CN

CN

CN

CN

CN

CN

CN CN

CN

CN

CN

CN

CN

CN

{ip1,ip3}

{rp0,ip2}

{rp0,ip3}

{rp1,ip0}

{rp1,ip2}

{rp1,ip3} {rp3,ip2}

{rp3,ip1}

{rp3,ip0}

{rp2,ip3}

{rp2,ip1}

{rp2,ip0}

{FU0,FU1}

{ip0,FU1}

CN CN {ip1,FU1}

{ip2,FU0}

{ip3,FU0}

{wp1,rp3}

CN

CN

CN

{wb1,wp0}

{wb1,wp1}

{wb1,wp3}

IP

RP

WP

FU
n1

{wp0,wp1,wp2,wp3}

{rp0,rp1,
 rp2,rp3}

{wp0,rp1}

{wp0,rp2}

{wp0,rp3}

{wp1,rp0}

{wp1,rp2}

{rp0,ip1}

CN

CN

CN

CN

CN

CN CN

CN

CN

CN

CN

CN

{wp2,rp0}

{wp2,rp1}

{wp2,rp3}

{wp3,wp0}

{wp3,wp1}

{wp3,wp2}

CN

CN

CN

CN

CN

CN

CN CN

CN

CN

CN

CN

CN

CN

{ip1,ip3}

{rp0,ip2}

{rp0,ip3}

{rp1,ip0}

{rp1,ip2}

{rp1,ip3} {rp3,ip2}

{rp3,ip2}

{rp3,ip0}

{rp2,ip3}

{rp2,ip1}

{rp2,ip0}

{FU0,FU1}

{ip0,FU1}

CN CN {ip1,FU1}

{ip2,FU0}

{ip3,FU0}

{wp1,rp3}

Figure 6.2: Assignment conflict graph for the DFG and data path in Figure 6.1.

The number of write ports that are used, depend on the assignment of the operations. There-
fore, the schedule search-space is first pruned given the best-case assumption that there is

98 Multi-casting

RF2RF1RF0

FU0

+
FU1

*
FU2

/

Figure 6.3: Data path example used to demonstrate the necessity of copy operation.

00
/∗

Figure 6.4: DFG which can not be executed on the data path shown Figure 6.3 because there
is no connection between the output of functional unit FU1 and the write port of register file
RF2.

one write port used per intermediate result. If after some operation assignment decisions it
is detected that multi-casting must be applied then the usage of the additional write ports is
taken into account during pruning of the schedule search-space.

6.3 Copy operations

In Figure 6.3 a data path is shown with an incomplete network. The DFG shown in Figure 6.4
can not be executed on this data path. The reason is the following: in this example the
multiply operation can only be executed on functional unit FU1 and the division operation
must be executed on functional unit FU2. Therefore, the result produced by functional unit
FU1 must be stored in register file RF2 such that functional unit FU2 can read the result.
However, the network misses the appropiate connection.

The DFG shown in Figure 6.5 results in the same behavior as the DFG shown in Figure 6.4
but can be executed on the data path of Figure 6.3. A so-called copy operation is used to copy
a value from a register file into another register file.

Copy operations are in the literature also called move or pass operations. We think that the
name copy operation is more appropriate because it is possible that the value remains alive in
the register file from which the value is copied. Opcode space can be saved by implementing
copy operations with operations effectively just passing the input value. For example, the
copy operation in the DFG of Figure 6.3 must be implemented as an operation that adds zero

6.4 Global write-back busses 99

to the input value.

00 0 0
∗ copy /

Figure 6.5: The DFG of Figure 6.4 but now with a copy operation such that this DFG can be
executed on the data path shown in Figure 6.3.

A disadvantage of the use of copy operation is that they introduce an additional latency of
at least one clock cycle and also occupy a functional unit during a clock cycle. This can
lead to a schedule with a lower throughput or a longer latency. The next section describes an
alternative for the copy operations.

6.4 Global write-back busses

An alternative for the use of copy operations is the use of a global write-back bus. A global
write-back bus is a bus that provides a path from every functional unit output port to every
register file. A data path with such a bus is shown in Figure 6.6. The combination of multi-
casting and the use of a global write-back bus makes it always possible to store a result which
is produced by a functional unit inall the register files from which the result is read.

Care should be taken that the global write-back bus does not become the critical resource.
Therefore, a network should be applied that contains the appropriate local write-back busses.
A local write-back bus is a bus that provides a path for only one functional output port to at
least one register file write port.

6.4.1 Write-back bus assignment

During operation assignment, it is decided on which functional units the operations are exe-
cuted. The assignment of operations determines implicitly which communication paths can
be used for the transportation of the intermediate values from the functional unit output ports
to the register file write ports. If there are several equivalent paths available then it must be
decided which bus will be used. This decision problem is given the namewrite-back bus
assignment. Write-back bus assignment is in general a difficult problem because the bus
assignment determines the used resources, which potentially affects the schedule.

If there is only one global write-back bus in the data path then this bus must be used, if there
is no communication path via a local write-back bus. In all other cases, a local write-back bus
should be used. It is therefore simple to derive the communication bus assignment from the
assignment of operations in the case only one global write-back bus is applied in the data path
of a processor. Only this option is supported by assignment techniques that are implemented
in FACTS.

100 Multi-casting

RF2RF1RF0

FU0

+
FU1

*
FU2

&

global write-back
bus

local write-back
busses

Figure 6.6: Processor with a global write-back bus. This bus guarantees that a communication
path exists from every functional unit output port to every functional unit input port.

If there are several global write-back busses in the data path then also a choice must be made
which global write-back bus should be used. Because all global write-back busses provide
the same functionality, the write-back bus assignment can be postponed till the assignment of
the operation to functional units is completed.

These write-back busses are not equivalent if a different subsets of the functional units can
put a result on these busses. The subsets considered contain more than one functional unit
and less than all the functional units in the data path. Write-back bus assignment becomes a
difficult problem if there are several busses in the data path, which are not equivalent. In this
case, several communication paths via different write-back busses can exist from a functional
unit output port to a functional unit input port. In this case, a decision must be made about
which bus will be used. An unfortunate decision can prohibit that another result is send in the
same cycle to the appropriate register file. Therefore, unfortunate write-back bus assignment-
decisions can cause violation of the timing constraints.

6.4.2 Scalability considerations

A potentially important disadvantage of the use of global write-back busses is that it limits the
scalability of the data path of a processor. If the number of functional units in the data path is
increased then at a certain point the delay of the global write-back bus will become dominant
and will, to a large extend, determine the maximum clock frequency of the processor. The
scalability of the data path can be enhanced by introducing a pipeline register into the global
write-back busses. In this case, it should be taken into account that a result will be stored
one cycle later in the register file if a global write-back bus is used. This communication
latency can be modeled during operation assignment with sequence precedence edges. These

6.4 Global write-back busses 101

sequence precedence edges can be derived with the following rules:

Rule 3 If a global write-back bus must be used for the transport of a result from operationvi
to operationvj then a sequence precedence edge(vi, vj) must be added with weight2.

The following rules can be used for pruning of the assignment search-space:

Rule 4 If distance−d(vj , vi) is 1 then a local bus must be used for the communication of a
result fromvi to vj .

Pipelined write-back busses are currently not supported in our implementation.

Chapter 7

Hierarchy, Operation Merging
and the Decision Heuristic

In the previous paragraphs, only the techniques for the assignment of operations of inner basic
blocks of a hierarchical DFG have been described. That more than one operation can use the
same resource, if they do not have a resource conflict, has also not been considered. The
applied heuristics, which determine which operation is assigned first during the assignment
decision process, have not been described in the previous chapters. These issues are the topic
of this chapter.

The organization of this chapter is as follows. First, in Section 7.1 we describe how hier-
archical data flow graphs are handled. The techniques used to support operations that have
the same type but do not have a resource conflict is described in Section 7.2. The applied
decision heuristics are described in the last section of this chapter.

7.1 Hierarchical data flow graphs

Hierarchical reduction [Lam88] is the technique that is used to handle hierarchical data flow
graphs. In this technique, the inner basic blocks are scheduled first. Then each inner basic
block is represented as a block operation in the surrounding basic block. A block operation
is an object similar to an operation in a basic block. The operations in the surrounding basic
blocks are scheduled together with the block operations. This is repeated until all blocks have
been collapsed in one block operation.

To be able to support hierarchical reduction a compact representation of a scheduled basic
block as a block operation is needed. The applied representation is illustrated with the C-
program in Figure 7.1. A data flow graph that represents the behavior of this C-program is
shown in Figure 7.2. The edges drawn with dashed lines are loop carried data dependencies.
A loop carried data dependency enters the same operation input port as an initialization value
that is produced by an operation that belongs to a surrounding basic block.

104 Hierarchy, Operation Merging and the Decision Heuristic

void macloop(int x[100], int y[10], int z[10]){
loopj:for(int j=0; j<10; j++){

loopi:for(int i=0; i<100; i++){
z[j]+=y[j]*x[i];

}
}

}

Figure 7.1: C program which is used to illustrate the representation of a scheduled inner basic
block.

The operations that belong to a basic block are surrounded by a dashed box in Figure 7.2.
The inner basic block BB1 corresponds to “loopi” in the C program. This basic block re-
ceives several initialization values from the surrounding basic block BB2. Basic block BB2
corresponds to “loopj” in the C program. After execution of “loopi” the result is stored in
memory by the operation with the type “ST”.

After basic block BB1 is scheduled it can be collapsed in a block operation which is labeled
in Figure 7.3 with “BB1”. This block operation should represent all constraints that should
be taken into account during operation assignment, serialization and scheduling of the sur-
rounding basic block BB2. These constraints are modeled with several dummy operations.
The dummy operations occupy all the functional units in the data path during one cycle such
that other operations can not be scheduled in parallel. The data edges which were connected
to the block operation are connected to the dummy operations in such a way that the inter-
connect constraints are correctly modeled. Figure 7.4 shows a data flow graph in which the
block operation of Figure 7.3 is replaced by dummy operations.

During the execution of the operations of an inner basic block, intermediate values are stored
in registers. The number of registers that are used can not be captured in the model of a block
operation that is shown in Figure 7.4. Figure 7.5 shows an example DFG in which the block
operation is expanded in 2 times 4 dummy operations. This model allows that the usage of
registers can be captured with data edges between dummy operations that are executed in
two consecutive cycles. The 3 data edges between the dummy operations in this example
model that 3 values are used during the execution of the basic block BB1. Two values are
stored in register file RF1 and 1 value in register file RF2. This modeling technique enables
reuse of the value lifetime serialization techniques. Serialization of an ordinary operation
and a dummy operation in a block operation is equivalent to the serialization of an ordinary
operation and all operations in the same nested basic block.

In the case dummy operations are used to model the inner loop then the schedule of the outer
loop is adapted after scheduling. A gap is created at the place were the dummy operations
of a block operation are located in the schedule. The size of this gap is equal to the number
of potentialsof the schedule of the block operation. This number of potentials is equal to
the initiation interval of the schedule of the block operation if the schedule is folded and
otherwise equal to the latency of this schedule.

A gap of the right size can be created in the schedule if all sequence edges do not have a

7.1 Hierarchical data flow graphs 105

LDLD

+

constconst

+

ST

*

LD

constconst const

0

0

1

0

1 0

0

0

0 00

1

0

0

0 0

10

1

0 0

0

const

+

00

1
1

0

0 0

0

+1

CTRL

0

0

0

1

0

const

BB1

BB2

0

BB3

<100

+1

<10

0

CTRL

0

0

0

0

1

0

0

0

0

0

Figure 7.2: Hierarchy of nested basic blocks in a hierarchical data flow graph.

106 Hierarchy, Operation Merging and the Decision Heuristic

weight less then -1. In this case, a pair of operations that is constraint by a sequence edge
with a negative weight is scheduled before or after the dummy operations. In this case the
negative sequence constraints can never be violated by stretching of the schedule at the place
of the dummy operations. Also sequence edges with a weight larger than one are not allowed
because this could lead to violation of a sequence constraint if the schedule is shortened at
the place of the dummy operations.

7.1 Hierarchical data flow graphs 107

constconstconst

constconst

BB1

ST

LD

const

00

0

0

0

1

0

1

0

+

0

0 00

0

0

BB2

BB3

+1

<10

CTRL

0

0

0

0

1

0

0

0

Figure 7.3: Hierarchy of nested basic blocks in which a basic block (BB1) is represented as
a block operation.

108 Hierarchy, Operation Merging and the Decision Heuristic

The use of an incomplete network without a global write-back bus complicates operation
assignment. It complicates assignment because during operation assignment it must be guar-
anteed that there is a communication path from a producing operation that belongs to a sur-
rounding basic block to a consuming operation that belongs to a nested basic block. However,
if the operations of the nested basic block are assigned and scheduled before the operations
of the outer basic block then it is impossible to guarantee that the operations of the nested
basic block are assigned such that the required communication paths exist. A similar problem
occurs if the operations of a surrounding basic block are assigned before the operations are
assigned of a nested basic block.

This problem is circumvented by the use of a global write-back bus in the connection net-
work. This bus guarantees that at least one communication path exists in the data path from a
producing operation in a surrounding basic block to a consuming operation in a nested basic
block. This way unfortunate assignment decisions do not lead to infeasibility but only lead
to a suboptimal schedule.

A similar to the above described problem occurs for the values that are produced by oper-
ations that belong to a nested basic block and are consumed by operations that belong to
a surrounding basic block. Therefore, during the assignment of operations that belong to a
nested basic block it is taken into account that the results of this nested basic block is stored
in register files of which the read ports are connected to the input ports of functional units
that executed the consuming operations. The existence as well as the availability of the used
communication paths is taken into account during the assignment of the operations of the
nested basic block. This is achieved by assigning the operations that belong to a surrounding
basic block but consume results that are produced by operations that belong to the nested
basic block together with the operations that belong to nested basis block. For example, for
the assignment of the operations of basic block BB1 in Figure 7.2 a DFG is used that also
includes the store operation (ST) that belongs to basic block BB2. Also the data edge from
the plus operation to the store operation is included in this DFG.

An operation that belongs to a surrounding basic block can consume several results which
are potentially produced by operations that belong to different nested basic blocks. Such an
operation is assigned together with the operations ofoneof these nested blocks. During this
assignment, only the existence and availability of a communication paths from the producing
operations in one of the nested basic blocks are taken into account. However, the global write-
back bus in the processor guarantees that there is at least one connection to the input ports of a
functional unit on which the operation of the surrounding basic block is executed. Therefore,
there is always a valid assignment of the operations of the other nested basic blocks.

7.1 Hierarchical data flow graphs 109

const const

+

const

ST

0

0

1

dummy
const

dummy
LD

dummy
*

dummy
+

LDconstconstconst

1

0

0 0 00

0

0 0 0

00

00

1

0

1 1
1

0

0

0

0

BB3

+1

<10

CTRL

0

0

0

0

1

0

BB2

0

0

Figure 7.4: Use of several operations instead of a block operation to model basic block (BB1).

110 Hierarchy, Operation Merging and the Decision Heuristic

constconst

ST

dummy
const

dummy
LD

dummy
*

dummy
+

const

0

0

1

LDconst

0

0 0 00

1 -1 RF1 RF1 RF2

constconst

0

1

0 0 0

000

0 0 0

0

dummy
const

dummy
LD

dummy
*

dummy
+ 00

00

+

0

0

1

1

1 1 0

0

+1

<10

0

CTRL

0
0

0

0

0

1

0

0

0

BB2

BB3

Figure 7.5: Modeling of the register usage in an inner basic block (BB1) with data depen-
dency edges between dummy operations.

7.2 Operation merging 111

7.2 Operation merging

Operations are merged if they are executed in the same clock cycle on the same resource.
Operations can be merged if they do not have a soft resource conflict. Merging of operation
can reduce the schedule length or initiation interval. An example of operations that do not
have a resource conflict are two read operations that read the same value from the same
memory address. Another example is that two operations fetch the same value from a register
file via the same register file read port.

Operation merging is handled with three different techniques. Each technique is suitable for
a particular situation. These techniques are:

1. derivation of soft resource conflicts before operation assignment.

2. addition of virtual operations in the DFG.

3. adaptation of the type of the operations during operation assignment.

Soft resource conflicts between pairs of operations can be derived before operation assign-
ment in the case that these operations must be executed on one specific functional unit in the
data path. The derived soft resource conflicts are used by pruning rule 1 which is described in
Section 3.1.1. The soft resource conflicts that we derive before assignment are the conflicts
between the memory read operations that are executed on the same functional unit. These
conflicts can be derived because the assignment of memory read operations is defined before
operation assignment. All pairs of read operations that access the same addresses and are
executed on the same functional unit do not have a soft resource conflicts.

The assignment of memory read as well as memory write operations is defined before oper-
ation assignment because the assignment of variables like arrays to memory banks must be
defined before a DFG can be extracted from the C-description of the algorithm. A different
assignment of an array to a memory bank can result in a different DFG because the opera-
tions needed to calculate the memory addresses can change. The assignment of an array to
a memory bank forces usually that a set of memory read and write operations from different
basic blocks accesses that particular memory bank.

In some cases it is possible to model resource conflicts by including virtual operations in the
DFG before operation assignment, as is described in [Bra99] [Tim95] [ECR99] and [ZBJ+01].
This is possible only in the case that the assignment of operations to functional units can be
permuted after scheduling because the connections to and from the functional units are equiv-
alent. This is often not the case for processors with a distributed register file architecture and
an incomplete network. Another necessary condition is that the existence of a resource con-
flict between a pair of operations may not depend on the assignment of the operations. An
example in which this condition is not respected is shown in Figure 7.6. In this example a
potential write port resource conflict prohibits that both ALU operations can be executed in
parallel, if both RAM operations, which are executed in a different cycle, are assigned to the
same RAM unit.

Another situation in which operation merging can occur, is illustrated with the DFG and the
data path in Figure 7.7. The register file read port is used once if both operations in the

112 Hierarchy, Operation Merging and the Decision Heuristic

0

ip1

op1op0

ip0

0

0 0

(b)

RFRF

ALURAMRAMALU
RAM RAM

ALUALU

(a)

Figure 7.6: A DFG (a) and a data path snipped (b). If the RAM operations of the DFG
are assigned to the same RAM unit in the data path then a soft write port resource conflict
prohibits that both ALU operations can be executed in parallel.

DFG are executed in the same cycle, otherwise the read port is used twice. After operation
assignment it is known which operations make use of the same read port. These potential
resource conflicts are modeled by adding virtual operations after operation assignment in the
DFG.

If multicasting is supported then the number of write ports that are used depend on the as-
signment of the operations as is illustrated with the DFG and the data path in Figure 7.8. A
larger number of used write ports can result in additional resource conflicts. These write port
resource conflicts cannot be modeled in advance with virtual resources because whether there
are resource conflicts depend on the assignment of the operations. Merging of write port op-
erations is supported by adapting the types of the operations during operation assignment as
is described in Section 3.2.2. Adaptation of the type of the operations is possible because the
number of used write ports depend only on the assignment of the operations and not on the
schedule.

7.3 Decision heuristic applied during operation assignment

Operation assignment decisions are made during the operation assignment phase. Assign-
ment decisions are taken for every operation for which there is after pruning more than one
assignment option left.

During the operation assignment decision process the operations with the highest number of
input ports and output port are assigned first. The motivation for this criterion is that these
operations are relatively difficult to assign because they require the availability of the largest
number of communication paths.

7.3 Decision heuristic applied during operation assignment 113

RAM

(b)

ACU

(a)

00

0 ACU

RF

op0

ip0 ip1

0

RAM

Figure 7.7: A DFG (a) and a data path snipped (b). If the ACU and RAM operation of the
DFG read their input value in the same clock cycle then the read port is used only once,
otherwise it is used twice.

ALURAM ALU

RF RF

(b)(a)

op0

ip0 ip1

RAM
00

00

ALU ALU

Figure 7.8: A DFG (a) and a data path snipped (b). If the ALU operations of the DFG
are assigned to different ALUs then the result value of the RAM operation is stored in two
register files and two write ports are used. If the ALU operations are assigned to the same
ALU then one write port is used.

114 Hierarchy, Operation Merging and the Decision Heuristic

During the operation assignment decision process the functional units that are first selected
are the units with the minimal number of operations already assigned to it. The motivation
for this criterion is that this balances the computational load of the functional units. This is
desirable because the initiation interval and the latency is equal or larger than the maximal
number of operations that are assigned to the same functional unit.

Chapter 8

Quantitative Evaluation

In this chapter the results that are obtained with our code generator FACTS are presented.
The outline of this chapter is as follows. In Section 8.1 the experimental compiler flow is pre-
sented. With this flow, the operation assignment techniques in FACTS were tested on realistic
applications and processor data path instances. The results can be found in Section 8.2. The
results that indicate whether given an operation assignment also a serialization and a sched-
ule can be found, are described in Section 8.3. The schedules generated with FACTS are
compared with the schedules generated with the A|RT-scheduler in Section 8.4. These re-
sults indicate the quality of the schedules that can be obtained after operation assignment and
lifetime serialization.

8.1 Experimental compiler flow

The experiments were carried out with the compiler flow shown in Figure 8.1. This flow has
been set up around the A|RT-designer tool suite of Adelante Technologies [Ade]. In this flow,
C++-code is compiled into micro-code for a predefined VLIW processor. This flow provides
a user-friendly way to generate test cases for FACTS. The flow also provides means to verify
the results produced by FACTS.

In this flow C++ code according to the System-C [Sys] standard is translate by the A|RT
compiler frontend into a hierarchical DFG which is stored in a file with the name “alg.rtg”.
Another input of the A|RT compiler frontend is the “architecture.pra” file. This file contains
a description of the data path of the VLIW processor. This description is also put by the
compiler frontend into the “alg.rtg” file.

The “alg.rtg” is read in by a tool called “RT2DFG” which extracts a basic block. The ex-
tracted basic block has the name “basic block name”. The operations of this basic block
together with the (loop-carried) data dependencies and sequence precedence edges are mod-
eled in a DFG. This DFG is stored in the file “rt2dfg.dfg”.

A tool called RT2MD extracts from the “alg.rtg” file a description of the processor and writes

116 Quantitative Evaluation

RT2DFG

RT2MD

mdf.md
(processor
description)

alg.rtg
FACTS

schedule.praassignment.pra

A|RT
backend

”basic block name”

rt2dfg.dfg

Micro code

Application
(C/C++) A|RT

frontend

architecture.pra

Figure 8.1: Experimental compiler flow.

it in the machine description file “mdf.md”.

The DFG in the “rt2dfg.dfg” file together with a description of the target processor in the
“mdf.md” is read in by FACTS. An operation assignment and a schedule is generated by
FACTS and stored in two files. In the “assignment.pra” file the assignment of operations is
stored and in the “schedule.pra” file the start moments of the operations relative to the start
of the basic block are stored. The register binding can be computed in a straightforward way
from the assignment and the schedule in the A|RT backend.

The “assignment.pra” and “schedule.pra” file together with the “alg.rtg” are processed by
the A|RT backend. In the A|RT backend the operations are assignment as specified in the
“assignment.pra” file and the basic block is scheduled as specified in the “schedule.pra” file.

8.2 Evaluation of the operation assignment techniques

The operation assignment techniques have been tested on various algorithms and architec-
tures. Before the quantitative results are presented in Section 8.2.2, two operation assignment
experiments are described in more detail. The focus in the first experiments is on assignment
in combination with hierarchy in the data flow graph. The second example illustrates that
operation assignment can even be difficult for processors with a fully connected network and
a distributed register file architecture.

8.2.1 Operation assignment examples

The C++ program in Figure 8.2 describes an algorithm that computes an Inverse Modified
Discrete Cosine Transform (IMDCT) [Nol97]. This algorithm is translated by the compiler

8.2 Evaluation of the operation assignment techniques 117

frontend into a hierarchical DFG and mapped on the data path that is depicted in Figure 8.3.

The data path of Figure 8.3 contains 20 functional units of which 3 are equivalent ALUs, 4
are equivalent MAC units, and 5 are equivalent ACUs. The incomplete connected network
was obtained by synthesis with A|RT-designer. The global write-back bus was added after
synthesis was completed.

The objective of the experiment was to test whether an assignment and a schedule could be
found for this data path with an incomplete network. Therefore all information about the
assignment of the operations, which was specified by the programmer, was deleted afer the
processor was synthesized. The throughput of the schedule should at least be the same as the
throughput of schedule obtained with A|RT-designer.

During code generation, the operations of the deepest nested basic block in the hierarchical
DFG are assigned and scheduled before operations of surrounding basic blocks are assigned
and scheduled. In the C++ program the deepest nested basic block is the for-loop with the
label “inner”. During the assignment of the operations of this loop care is taken that the
results t0, t1, s0, s1 are stored in a register file such that these results can be, without any
additional copy operations, used outside the inner basic block. This is achieved by assigning
the operations that implement the statements r0 = s0 + t0 and the r1 = s1 + t1, together with
the other operations of the loop “inner”.

After the inner basic block is assigned and scheduled, the operations of the surrounding basic
block “outer” are assigned and scheduled. Then the operations of the function “imdct36” are
assigned and scheduled.

The resulting schedule is shown in Figure 8.4. The for-loop “inner” is folded with an initiation
interval of 2 cycles. An initiation interval of one cycle is not possible because some of the
functional units, like for example inport1, must be used twice. This load diagram also shows
that the global write-back bus was used two times in the for-loop “inner”. Therefore this
assignment is different than the assignment used during synthesis of the processor because
this bus is added after synthesis. The outer-loop and the imdct function are not folded in the
schedule of Figure 8.4.

In the second example a Viterbi algorithm is mapped on a data path with a fully connected
network which is shown in Figure 8.5. Such a fully connected network is also assumed
during processor synthesis in A|RT-designer. There are 4 equivalent Add Compare Select
(ACS) functional units in the data path. Each ACS-unit has four output ports.

The obtained schedule is shown in Figure 8.6. All ASCs units are fully utilized during the
inner-loop. During operation assignment there were 24 assignment decisions and 5 back-
tracks made. That 5 backtracks were needed indicates that even for a processor with a fully
connected network operation assignment is difficult. The backtracks can not be a result of
a missing connection in the network but must a result of resource conflicts, like register file
write port conflicts, which were detected by constraint analysis.

118 Quantitative Evaluation

#define N 36
#define M 18

typedef Fix<32, 28> T_IN;
typedef Fix<64, 56> T_OUT;

T_IN imdct_cos0[N*M], imdct_cos1[N*M], imdct_cos2[N*M],
imdct_cos3[N*M];

void imdct36(const T_IN in0[M], const T_IN in1[M],
T_IN out[N])

{
int i0 = 0, i1 = 18*M, i2 = 1, i3 = i1+i2;
int p0 = 0, p1 = 18, p2 = 17, p3 = 35;

outer: for (int l1 = 0; l1 < 9; l1++)
{

int m0 = 0, m1 = 9;
T_OUT s0 = 0, s1 = 0, t0 = 0, t1 = 0;
T_IN x0, x1;

inner: for (int l0 = 0; l0 < 9; l0++)
{

x0 = in0[m0];
T_IN c1=imdct_cos0[i0];
T_IN c2=imdct_cos1[i1];
s0 += x0*c1; s1 += x0*c2;

x1 = in1[m1];
T_IN c3=imdct_cos2[i2];
T_IN c4=imdct_cos3[i3];
t0 += x1*c3; t1 += x1*c4;

m0++; i0++; i1++; m1++; i2++; i3++;
}

T_IN r0, r1;
r0 = s0 + t0;
r1 = s1 + t1;
T_IN r2 = -r0;

out[p0] = r0; out[p1] = r1; out[p2] = r2; out[p3] = r1;
p0++; p1++; p2--; p3--;

}
}

Figure 8.2: C++ description of an IMDCT algorithm.

8.2 Evaluation of the operation assignment techniques 119

c
t
r
l
i
n
-

p
o
r
t

o
u
t
-

p
o
r
t

a
l
u

1

a
l
u

2

a
l
u

3

m
a
c

1

m
a
c

2

m
a
c

3

m
a
c

4

r
o
m

c
t
r
l

a
c
u

1

a
c
u

2

a
c
u

3

a
c
u

4

a
c
u

5

r
o
m

1

r
o
m

2

r
o
m

3

r
o
m

4

R
F

Figure 8.3: Data path of a VLIW-processor optimized for the IMDCT function.

120 Quantitative Evaluation

3 5 7 91

→
FU-name

0
11 13 15 17 19

10 12 14 16 18 206 842

→ PC

inner-loop
outer-loopimdct36

rom 4
global-bus

rom 3
rom 2
rom 1
acu5
acu4
acu3
acu2
acu1

romctrol 1
mac34
mac33
mac32
mac31

alu 3
alu 2
alu 1

outport1
inport 1

Figure 8.4: Schedule of the IMDCT algorithm of Figure 8.2 mapped on the data path of
Figure 8.3.

for acs1 acs2 acs3 acs4 ipb opb alu rom-
ctrl

acuctrl split

fully connected network

RF

Figure 8.5: Data path of an VLIW processor which is optimized for a Viterbi algorithm.

8.2 Evaluation of the operation assignment techniques 121

3 5 7 91

romctrl
acu

alu
opb
ipb

acs4
acs3
acs2
acs1

for
split

→

FU-name

0
11 13 15 17 19 21 23 25 27 29 31 33 35 37

10 12 14 16 18 20 22 24 26 28 30 32 34 36 386 842

inner-loop viterbi

→ PC

Figure 8.6: Schedule of the Viterbi algorithm.

8.2.2 Assignment results

Quantitative results of operation assignment experiments are presented in this section. The
results of these experiments can be found in Table 8.1, Table 8.2 and Table 8.3. For each
algorithm in Table 8.1 the number of operations (V) and data edges (Ed) of an inner basic
block are presented. Each inner basic block is a loop that is mapped on a processor that
was synthesized for the same algorithm with A|RT-Designer. These processors contain an
incomplete network and do not have a global write-back bus. In all cases an assignment and
a schedule were found with an initiation interval (II) equal to the lower bound of the initiation
interval (l.b. II). Less than 8 decisions (d.) and 1 backtrack (b.) were needed to obtain an
assignment of all the operations in a basic block. The time needed to obtain these assignments
was for all test cases less than 30 seconds on a 500 MHz Pentium III processor.

These results indicate that with the constraint driven operation assignment techniques high
quality schedules can be obtained. The run time indicates that construction and pruning of
the assignment conflict graph which has potentially a large number of nodes (> 1000) does
not lead to excessive run times.

The results in Table 8.2 show how many assignment decisions and backtracks were needed
to map the same DFGs of Table 8.1 on similar data paths with the same functional units but
with a fully connected network. For convenience the number of operations (V) and data edges
(Ed) in the DFGs, and the number of decisions and backtracks in the case of an incomplete
network are repeated in this table.

The results in Table 8.2 indicate that fewer operation assignment decisions and backtracks
are needed in the case a processor with an incomplete network instead of a complete network
is targeted. From this is can be concluded that there is less assignment freedom in the case
processors with an incomplete network are targetted and that pruning removes in this case
a larger number of infeasible operation assignment options from the operation assignment
search-space.

122 Quantitative Evaluation

no. algoritm | V | | Ed | II II d. b. time
name l.b. s

1 andblock 5 6 2 2 0 0 0.02
2 ASU-ex 7 8 1 1 0 0 0.01
3 fir2 8 10 2 2 0 0 0.08
4 mac-loop0 10 12 2 2 0 0 0.1
5 mac-loop2 14 18 2 2 4 0 0.5
6 biquad 14 19 7 7 0 0 0.3
7 bit-packer 14 22 1 1 0 0 0.1
8 imdct 23 41 4 4 0 0 0.9
9 viterbi 49 117 4 4 3 1 28
10 FFT-radix4 53 56 8 8 8 0 5

Table 8.1: Operation assignment results for data paths with an incomplete connection network
without global write-back bus.

The operation assignment results in Table 8.3 are for processors with an incomplete network
with a global write-back bus. Note that this global write-back bus is a fallback. It should only
be used as little as possible.

The first 3 basic blocks in the table are from the IMDCT program which is described in
Section 8.2.1 and are mapped on the data path of Figure 8.3. The other basic blocks are
from an MPEG2 layer III audio encoding algorithm. This algorithm is mapped on a VLIW
processor with 34 functional units including 6 MAC-units, 6 dual port memories, 4 Address
Calculation Units (ACUs) and 2 Arithmetic and Logic Units (ALUs). All functional unit
consume 32 bit integer values.

From Table 8.3 it can be concluded that basic blocks with up to 287 operations (|V |) can be
assigned on a VLIW with a highly parallel data path in less 300 seconds run time. Pruning
seems to be quite effective because the number of backtracks is small (< 15) and the number
of assignment decisions is usually much less than the number of operations in the basic
blocks. A schedule can be obtained, in all test cases, with a Initialization Interval (II) equal
to the lower bound (l.b.) II and a Latency (L) which is maximally 3 cycles longer than the
lower bound latency L.

The in Table 8.1, 8.2 and 8.3 presented results are for the case that after operation assignment
the schedule search-space is updated with information from the assignment search-space and
vice versa. Table 8.4 presents also results for the situation that operation assignment and
scheduling are performed completely independent of each other.

The results in the Table 8.4 indicate that the number of assignment decisions and backtracks
increases in the case that the phases are treated independently of each other. In this case,
for three out of four benchmarks no schedule was found. An explanation for the results of
test cases number 2 an 3 in Table 8.4 is that an initiation interval of 1 cycle implies that all
operations are scheduled in the same clock cycle. In the case the assignment and schedule
phases are coupled then an edge (see Section 4.3.2) is included in the ASCG between all pairs
of nodes that correspond to operations of the same type. These edges improve the pruning of

8.2 Evaluation of the operation assignment techniques 123

no. algorithm | V | | Ed | d. b. d. b.
name i.n. i.n. f.c.n f.c.n

1 andblock 5 6 0 0 0 0
2 ASU-ex 7 8 0 0 0 0
3 fir2 8 10 0 0 3 0
4 mac-loop0 10 12 0 0 0 0
5 mac-loop2 14 18 4 0 4 0
6 biquad 14 19 0 0 0 0
7 bit-packer 14 22 0 0 3 1
8 imdct 23 41 0 0 14 0
9 viterbi 49 117 3 1 24 5
10 FFT-radix4 53 56 8 0 8 0

Table 8.2: Comparison of the number of operation assignment decisions and backtracks for
data paths with an incomplete network (i.n.) and for data paths with a fully connected network
(f.c.n.).

the assignment search-space significantly. An explanation for the fact that no schedule could
be obtained after operation assignment for test case number 4 in Table 8.4 is that the applied
bound on the latency is usually too tight.

124 Quantitative Evaluation

no. basic block | V | d. b. II L II L run time
name l.b. l.b. (s)

1 inner 24 12 4 2 6 2 6 9
2 outer 82 5 0 - 12 - 12 11
3 wrapper 49 0 0 - 10 - 10 0
4 sbaiunroll1 fold 22 8 7 1 3 1 3 27
5 sbaidct loop 147 15 13 - 16 - 16 269
6 sbabutterfly loop 20 7 5 - 5 - 7 10
7 sbawunroll1 fold 31 5 0 1 5 1 5 12
8 encsbawouter 193 8 6 - 16 - 16 177
9 loop2 43 3 5 - 6 - 6 6
10 if6 287 6 0 - 36 - 36 55
11 if6 2 0 0 - 2 - 2 0
12 if5 72 0 0 - 7 - 7 0
13 mdct writebackfold 18 0 0 1 2 1 2 0
14 loop1 27 8 5 - 8 - 8 22
15 mdct alias reduction 70 8 2 - 8 - 8 2
16 mdctmunroll1 fold 30 15 0 3 3 3 5 34
17 mdct main loop 153 17 15 - 15 - 15 197
18 mdct preproloop 22 13 0 - 9 - 9 85
19 if5 285 8 0 - 26 - 29 65
20 if4 68 0 0 - 7 - 7 0
21 loop0 21 7 0 - 7 - 7 0
22 if4 64 0 0 - 6 - 6 1
23 cop 65 0 0 - 8 - 8 0

Table 8.3: Operation assignment results for target processors with a global write-back bus.

no. basic block II L d. b. run time d. b. run time schedule
name c. c. c. dec. dec. dec.

(s) (s)
1 inner 2 1000 12 7 10 34 108 17 Y
2 sbai 1 1000 2 2 16 16 54 68 N
3 sbaw 1 1000 1 0 6 14 34 52 N
4 sba - 16 13 3 64 13 0 46 N

Table 8.4: Comparison of operation assignment decisions (d.) and backtracks (b.) for the
case that operation assignment is performed coupled (c.) with or decoupled (dec.) from the
schedule phase.

8.3 Lifetime serialization after operation assignment 125

8.3 Lifetime serialization after operation assignment

The assignment of an operation to a functional unit determines implicitly the register file
read ports through which its input values are read. Because these read ports belong to a
register file also the register file binding is implicitly determined by the assignment of the
operations. This register file binding determines which values are stored in the register file.
An unfortunate register file binding can prohibit that a serialization of the value lifetimes
is found which guarantees a correct value to register binding after scheduling. Therefore
experiments were carried out, with the objective to test how often sufficient schedule freedom
remains for lifetime serialization given the operation assignment and register file binding.

The results of the lifetime serialization experiments are presented in Table 8.5. The data path
of the target processors, including the number of registers in each register file, were obtained
by synthesizing a processor for the same algorithm with A|RT designer. For each algorithm,
the number of operation (V) and data edges (Ed) of the tested inner loop are specified. Also
the timing constraints are specified in the form of the initiation interval (II) and the latency
(L) given this initiation interval. Whether a lifetime serialization and a schedule given the
assignment of the operations was found, is specified in the 7th and 8th column in the table.
The sum of the registers in all the register files needed after processor synthesis with A|RT is
given in the 9th column. The total number of registers needed after lifetime serialization is
given 10th column. The number of serialization decisions and backtracks and the run-time of
the serialization algorithm are given in the last 3 columns of the table.

The results in this Table 8.5 indicate that often, but not always, a serialization and a schedule
could be found. In the case no serialization and schedule can be found, some values must
be temporarily saved in the background memory by spill and restore operations. A strategy
for the insertion of spill and restore operations, as described in for example [Cha82] and
[BDEO97], has not yet been implemented in FACTS.

In example no 11 of Table 8.5 a serialization of the lifetimes was derived but no schedule
could be found. A reason could be that the conservative estimate of the schedule, which is
used during serialization, was not accurate enough. In this case it could be that there does not
exist a schedule given the sequence constraints introduced by serialization.

The results in Table 8.5 also indicate that usually the same number of registers after serializa-
tion as after synthesis were needed. An explanation is that the capacity constraints obtained
with synthesis are tight. Another explanation is that the objective of serialization is satis-
faction of the register file capacities and not minimization of the number of used registers.
Therefore no additional sequence edges are introduced by serialization as soon as it is guar-
anteed that the register file capacities will be respected after scheduling.

126 Quantitative Evaluation

no. algo. | V | | Ed | II L ser. sch. regs regs d. b. time
name A|RT FACTS (s)

1 andblock 5 6 2 2 Y Y 7 7 0 0 0.0
2 ASU-ex 7 8 1 3 Y Y 9 9 0 0 0.0
3 fir2 8 10 2 2 Y Y 12 12 0 0 0.0
4 macloop 10 12 2 2 Y Y 10 10 1 0 0.1
5 biquad 14 19 7 9 Y Y 19 18 0 0 0.0
6 bitpack 14 22 1 1 Y Y 11 11 0 0 0.0
7 adapt 25 30 8 8 Y Y 20 20 2 0 0.2
8 crashL0 29 29 14 15 Y Y 7 7 34 23 27
9 viterbi 49 117 4 4 Y Y 56 56 2 0 2.1
10 FFT- 53 56 4 14 Y Y 33 33 8 0 5.0

R4-l0
11 FFT- 83 105 8 19 Y N 58 15 0 16

R4-l3

Table 8.5: Register serialization results for register file capacities derived during synthesis
with A|RT-designer.

8.4 Scheduling results

In this section the throughput or latency of the schedules obtained by FACTS are compared
with the schedules obtained with the scheduler in A|RT-Designer. The results give an indi-
cation of the quality of the schedules that can be obtained after operation assignment and
lifetime serialization with the scheduler in FACTS.

The comparison is made with the scheduler in A|RT which operates as a list scheduler, with
some backtracking capabilities in the case the latency is minimized. The scheduler makes
use of an iterative folding technique [Goo89] in the case the initiation interval is minimized.

Schedules were generated for 7 signal processing applications that were mapped on an appli-
cation domain specific VLIW processors. The signal processing applications are an MPEG2
layer III audio encoder and decoder, a 256 point FFT, a Viterbi error corrector, a Turbo de-
coder, and a bitpacker for MPEG2 video encoding. These applications are highly parallel,
and have an average ILP of 32 operations in the inner loops. However, there are on average
only 3 operations scheduled in a VLIW instruction in the basic blocks of these applications.
The throughput of the with the FACTS scheduler folded inner loops of the 7 applications in
the benchmark set is in 88% the same as the throughput obtained with the A|RT-scheduler.
The initiation interval of the other 12% of the folded loops is 1 cycle shorter. The latency of
the schedules generated with FACTS is in 16% of the cases a few cycles shorter and 11% of
the cases a few cycles longer than the schedules generated with A|RT.

The presented scheduling results are for the basic blocks in a hierarchical DFG representation
of the application. The assignment of the operations to the functional units was assumed
as given and an infinite register file capacity was assumed. Lower bound timing estimates

8.4 Scheduling results 127

were used as initial timing constraints. These timing constraints were relaxed in the case the
FACTS scheduler couldn’t find a valid schedule within 100 scheduling decision backtracks.

Operations that read the same memory location can be scheduled in the same cycle on the
same resource by the FACTS scheduler. All other operations have a resource conflict in
FACTS. The A|RT scheduler may schedule also other operations in the same cycle on the
same resource if this does not cause a resource conflict. An example is that the same values
are added by two addition operations in the DFG. In this case the add operations might be
scheduled in the same cycle by the A|RT scheduler. The FACTS as well as the A|RT scheduler
support that a value can be retrieved from a register file and used as an input in the same cycle
by more than one functional unit.

That all precedence and resource constraints were respected in the FACTS schedules is veri-
fied by importing the schedule as specified in the “schedule.pra” file in A|RT.

The scheduling results of all the basic blocks of the MPEG2 layer III decoder application are
presented in Table 8.6. This table contains for each basic block of the decoder application
it’s name, whether it is folded or not, the number of operation in the basic block, the runtime
of the FACTS scheduler, and the obtained initiation interval (II) in the case folding is applied
and otherwise the latency (L) of the schedule of the FACTS and the A|RT scheduler. The
indentation of the basic block names in the table reflects the nesting of the basic blocks. The
number of operations include ordinary operations which are executed on a functional unit and
block operations that represent nested basic block. The reported latency includes the latency
of nested block operations.

basic block folded | V | runtime II/L II/L
name (s) FACTS A|RT
cop N 14 7 85 81

switch0 N 6 6 74 74
switch0 N 318 274 58 59
imdct loop outer N 156 47 10 11
imdct loop inner Y 50 7 2 2

switch0 N 44 6 72 72
switch0 N 4 5 1 1
switch0 N 60 10 70 70
loop1 N 58 9 61 61
loop2 N 325 409 55 55
sbsdct outer N 142 142 8 8
sbsdct inner Y 42 15 1 1

sbswin outer N 169 7 11 11
sbswin inner Y 51 59 1 1

sbswb N 47 7 7 7
switch0 N 6 7 9 7
loop0 N 14 6 3 3

Table 8.6: Scheduling results of the FACTS scheduler and the A|RT scheduler for an MPEG2
layer III decoder application.

128 Quantitative Evaluation

The average runtime as function of number of operations in the basic block is presented in
Table 8.7. The results in this table indicate that the runtime of the FACTS scheduler grows
rapidly with the size of a basic block.

Number of operations Average runtime
in basic block (s)
0 .. 49 4
50 .. 99 15
100 .. 199 125
200 .. 400 341

Table 8.7: Average run time of the FACTS scheduler for different basic block sizes.

Chapter 9

Conclusion

This thesis describes code generation techniques -and in particular operation assignment
techniques- for embedded application domain specific VLIW processors. The characteris-
tics of the data paths of these VLIW processors are defined by means of a data path template.
Processors with multiple register files and an incomplete communication network are sup-
ported because these processors are power efficient as well as scalable.

Our code generation techniques make use of constraint analysis. Constraint analysis is pre-
ferred because traditional code generation techniques require too much help of the program-
mer to satisfy all relevant constraints simultaneously. By using the constraints to prune the
search-space of the code generator, the consequences of a decision for future decisions are
made visible and provide a kind of look-ahead. Pruning is based on relatively simple rules.
Accumulation and interaction of these rules can result in a large reduction of the search-space.
After every decision, new constraints are added which potentially lead to additional pruning.
The search-space is, for run-time efficiency reasons, incrementally updated by the pruning
algorithms instead of being recomputed from scratch.

Most of the described techniques have been integrated in the research code generation tool
FACTS [EMT99]. FACTS has been interfaced with the commercial VLIW processor syn-
thesis and programming tool suite A|RT-designer from Adelante Technologies [Ade]. This
coupling enabled evaluation of the code generation techniques on industrially relevant bench-
marks.

The main focus of this thesis is on operation assignment techniques. Operation assignment
is a difficult task in the code generator because an incomplete communication network and
multiple register files are supported by the VLIW-processors template. A global write-back
bus has emerged as an indispensable item. This bus connects every functional unit output
port with every register file. Also multi-casting must be supported, which allows distribution
of a result value into multiple register files. The global write-back bus in combination with
multi-casting eliminates the need for operations that copy a value from one register file into
another register file. This simplifies operation assignment significantly and is essential for
the described operation assignment techniques.

130 Conclusion

The entire set of operation assignment options is modeled in one conflict graph. If a coloring
of this conflict graph with a predetermined number of colors exists then the required con-
nections are available in the network of the processor. Colors which can not be assigned to
conflict graph nodes because of a combinations of constraints, are removed by pruning rules.

Code generation is split in an operation assignment phase, a lifetime serialization phase and
a schedule phase. A tight coupling between these phases is obtained by pruning the schedule
search-space after every operation assignment decision and after every serialization decision.
The effect of an assignment decision on the schedule search-space is taken into account with
dynamic resources. The type of these resources is potentially adapted after every assignment
decision. Adaptation of a resource type can result in a reduction of the schedule search-space.

A machine description file contains an abstract description of the target VLIW-processor.
This file constitutes the first input to the code generator. The other input of the code generator
is the description of the application in the form of a hierarchical data flow graph.

Complete applications can be handled with the described code generation techniques. The
behavior of these applications is expressed in a hierarchical data flow graph. After the oper-
ations of a nested basis block are assigned and scheduled this basic block is represented as
a block operation in the surrounding basic block. The applied block operation model repre-
sents all the data routing, timing and storage constraints that should be satisfied during the
assignment and scheduling of the operations of the surrounding basic block.

The results obtained showed, for our benchmark sets, that in most cases an assignment, a
lifetime serialization and a schedule were obtained in a few minutes. Some cases failed
because of the imperfect coupling of the code generation phases. An insufficient number of
registers in a register file was another important cause of failure. This should be solved in the
future by “spilling” some values temporarily in the background memory.

With the emergence of constraint driven code generation techniques the scheduling results
have become more predictable and easier to analyze. We expect therefore that it will become
more rewarding for the programmer to rewrite his program in such a way that the schedule
quality improves. An example of such a program transformation is the removal of unneces-
sarily long value life times which prevent more aggressive folding of inner loops. In the future
we expect that also these behavior preserving program transformations will be automatically
performed by the compiler frontend.

Currently, techniques to cope with instruction encoding constraints are under development
at Eindhoven University of Technology and will be integrated into the FACTS tool. The
FACTS tool has already been used to program VLIW processors in the ERC and Champ
project in Philips Research. The FACTS tool will be reengineerd in a new organizational
entity in Philips Research which will hopefully become a new company. Support of a global
write-back bus, which is proposed in this thesis, has already been added to the A|RT-designer
tool suite.

Appendix A

Constraint Graph Representation

An annotated conflict graph can be represented in a constraint graph [Mac77] [DP88]. There-
fore, an assignment conflict graph which is a special case of an annotated conflict can also be
represented in a constraint graph. This constraint graph representation can be made extremely
compact compared to the original assignment conflict graph by making use of a special prop-
erties of the assignment conflict graph. Besides that, the constraint graph representation also
enables additional pruning. The constraint graph representation is presented in an appendix
because the thesis was almost finished when this representation was found in literature.

The structure of this appendix is as follows. First, the constraint graph is defined and it is
presented how an annotated conflict graph can be modeled in a constraint graph. Then it
is shown how the number of nodes and edges of a constraint graph can be reduced while
preserving the essential information in the constraint graph. Finally, the addition pruning
rule is described.

A constraint graph is defined in as follows:

Definition A.1 (Constraint Graph.)
A constraint graph is an undirected graph represented by a tuple(Vcg, Ecg, R), where

• Vcg is a set of vertices which represent variables. With every vertexvp ∈ V a finite list
Lp of values is associated which is the domain of the variable.

• Ecg ⊆ Vcg × Vcg is a set of edges.

• R is a set of relations. With every edgee = (vq, vs) ∈ Ecg a relationRq,s is associated.
The relationRk,lq,s = 1 iff the kth value ofLq for variableq and thelth value ofLs for
variables can be selected simultaneously. In this case, it is said that thekth value ofLq
for variableq is consistent with thelth value ofLs for variables. OtherwiseRk,lq,s = 0.
A relation can be represented in a matrix with dimensions|Lq| × |Ls|.

In Figure A.1 a conflict between two nodes in a conflict graph is represented in a constraint

132 Constraint Graph Representation

{A,B,C}{A,B}

(a)

{A,B}

(b)

{A,B,C}

v1v1

Rv1,v2 =
[

0 1 1
1 0 1

]
= RTv2,v1

Rv1,v2

Figure A.1: Constraints of a conflict graph (a) modelled in a contraint graph (b).

graph. Assignment of the same value to variablev1 as well as tov2 is prevented by the zeros
in the relationRv1,v2.

Intersection of two relations allows only pairs that are allowed by both. Intersection of two
relations is defined as:Rq,s = R′q,s & R′′q,s with Rk,lq,s = R′

k,l
q,s ∧ R′′

k,l
q,s. The∧ operator

denotes the boolean AND function.

Composition of two relations,Rq,r andRr,s, induces a relationRq,s as follows: A pair
(x1, x3) is allowed byRq,s if there is at least one valuex2 such that(x1, x2) ∈ Rq,r and
(x2, x3) ∈ Rr,s. In matrix notation the induced relationRq,s can be obtained by a bitwise
matrix multiplicationRq,s = Rq,r ·Rr,s with:

Rk,lq,s = (Rk,0q,r ∧R0,l
r,s) ∨ (Rk,1q,r ∧R1,l

r,s) ∨ ... ∨ (R|Lr|,lq,r ∧R|Lr|,lr,s) (A.1)

The∨ operator in equation A.1 denotes the boolean OR function.

The intersection and composition operations can be applied to the relations in a constraint
graph, in order to reduce the number of nodes in this graph. This is illustrated with the as-
signment conflict graph representation shown in Figure A.3 for the network in Figure A.2.
The assignment conflict graph of Figure A.3 is converted in the constraint graph of Fig-
ure A.4. From this constraint graph the CN1 and CN2 nodes are removed by applying the
composition operation twice. This results in the constraint graph of Figure A.5. The compact
constraint graph of Figure A.6 is obtained by applying the intersection operation.

op0 op1

ip2ip1ip0

Figure A.2: Communication network example.

In Chapter 2 it was shown that all communication paths for data through the data path of a
VLIW processor can be represented with 5 non-blocking networks. These networks can be

133

CN1

CN2

IP OP

{ip0,ip1,ip2} {op0,op1}

{ip1,op1}

{ip2,op0}

Figure A.3: An assignment conflict graph model of the network in Figure A.2.

134 Constraint Graph Representation

CN1

RIP,CN1 =
[

1 1
1 0

]

RIP,CN2 =

 1 1
1 1
0 1

 RCN2,OP =
[

1 1
0 1

]

RIP,CN1 =

 1 1
0 1
1 1



CN2

IP OP

{op0,op1}{ip0,ip1,ip2}

{ip2,op0}

{ip1,op1}

Figure A.4: A onstraint graph graph representation of the conflict graph in Figure A.3.

IP OP

{op0,op1}{ip0,ip1,ip2}

R′IP,OP = RIP,CN1 ·RCN1,OP =

 1 1
1 1
0 1


R′′IP,OP

R′IP,OP

R′IP,OP = RIP,CN1 ·RCN1,OP =

 1 1
1 0
1 1



Figure A.5: The contraint graph after the composition operation have been applied twice on
the relations of the constraint graph of Figure A.4.

135

RIP,OP

{op0,op1}{ip0,ip1,ip2}

RIP,OP = R′IP,OP & R′′IP,OP =

 1 1
1 0
0 1



OPIP

Figure A.6: The contraint graph after the intersection operation have been applied on the
relations of the the constraint graph of Figure A.5.

modelled with 5 different relation matrices. Because there is also one relation matrix needed
to model a resource conflict there are in total 6 different relations matrices present in a com-
pact constraint graph representation of an assignment conflict graph. In our implementation
only these 6 relation matrices are stored in memory and pointers are used to associate an edge
with a relation matrices. The pruning rules are defined such that the content of the relation
matrices remains unchanged.

The additional pruning rule is illustrated with the network instance in Figure A.7. If we as-
sume that the input portip2 of this network cannot be used then the output portop2 cannot
be reached. The network of Figure A.7 is modelled in the assignment conflict graph of Fig-
ure A.8. The pruning rules described in Section 5.1 are not able to derive thatop2 should be
removed from the domain of the OP node. However, thatop2 is only an option for the vari-
able OP ifip2 is an option for the variable IP can easily be derived from the third column of
theRIP,OP relation in Figure A.9. In other words, in the relation matrixRx,y it is explicitely
visible which values of a domain of variablex can be removed if a value of the domain of
variabley is removed. These infeasible case can be derived with an arc consistency algo-
rithm [Mac77] which has a computational complexity of O(|L|3 ∗ |Vcg| ∗ |Ecg|) [MF85] with
L = max(|Lq|, |Ls|).

op1

ip2ip1ip0

op0 op2

as a consequence

Figure A.7: In this network there is only one connection possible from an input port to output
port op3. Therefore if input portip2 is not available in this network then output portop3 is
not reachable.

136 Constraint Graph Representation

CNCN

CN CN

CN

OPIP

{ip0,ip1,ip2}
?

{ip0,op2}

{ip1,op2}{ip0,op0}

{ip2,op1}{ip2,op0}

{op0,op1}

Figure A.8: Assignment conflict graph in which the network of Figure A.7 is modelled.

RIP,OP

{op0,op1,op2}{ip0,ip1,ip2}

OPIP

RIP,OP =

 0 1 0
1 1 0
0 0 1



Figure A.9: Constraint graph in which the network of Figure A.7 is modelled.

Bibliography

[Ade] http://www.adelantetech.com.

[AP02] C.A. Alba Pinto,Storage constraint satisfaction for embedded processor com-
pilers, Ph.D. thesis, Eindhoven University of Technology, 2002.

[ASU86] A.V. Aho, R. Sethi and J.D. Ullman,Compilers principles, techniques, and
tools, Addison-Wesley, 1986.

[Ban98] S. Banerjia,Instruction scheduling and fetch mechanisms for clustered VLIW
processors, Ph.D. thesis, North Carolina State University, 1998.

[BDEO97] P. Bergner, P. Dahl, D. Engebretsen and M. O’Keefe,Spill code minimiza-
tion via interference region spilling, Proceedings of the 1997 ACM SIGPLAN
conference on Programming language design and implementation, May 1997,
pp. 287–295.

[Bea91] S.J. Beaty,Genetic algorithms and instruction scheduling, (Albuquerque, New
Mexico), Proc. of the 24th Annual International Workshop on Microprogram-
ming, 1991, pp. 206–211.

[BL99] S. Bashford and R. Leupers,Constraint driven code selection for fixed-point
DSPs, (New Orleans, USA), Proceedings Design Automation Conference,
1999, pp. 817–22.

[Bra99] R. Braspenning,Modeling issue slot constraints with resources, Tech. report,
Eindhoven University of Technology, 1999.

[BWB00] N. Buśa, A. van der Werf and M. Bekooij,Scheduling coarse grain operations
for VLIW processors, (Madrid, Spain), Poc. Int. Symp. on System Synthesis,
2000.

[CCPS98] W.J. Cook, W.H. Cunningham, W.R. Pulleyblank and A. Schrijver,Combina-
torial optimization, John Wiley & Sons, 1998.

[Cha82] C. Chaitin, Register allocation & spilling via graph coloring, Proceedings
of the ACM SIGPLAN Symposium on Compiler Construction, June 1982,
pp. 98–105.

138 Bibliography

[Clo53] C. Clos,A study of non-blocking switching networks, Bell System Technical
Journal32 (1953), no. 2, 406–424.

[CLR90] T. Cormen, C. Leierson and R. Rivest,Introduction to algorithms, MIT Press,
1990.

[Cor95] H Corporaal,Transport triggered architectures: Design and evaluation, Ph.D.
thesis, Delft University of Technology, 1995.

[Cou97] O. Coudert,Exact coloring for real-life graphs is easy, Proceedings of the 34th
ACM/IEEE Design Automation Conference., 1997.

[Des98] G. Desoli,Instruction assignment for clustered VLIW DSP compilers: A new
approach, Tech. report, HP-98-13, 1998.

[DP88] R. Dechter and J. Pearl,Network-based heuristics for constraint-satisfaction
problems, Artificial Intelligence (1988), no. 34, 1–38.

[ECR99] C. Eisenbeis, Z. Chamski and E. Rohou,Flexible issue slot assignment for
VLIW architectures, In 4th International Workshop on Software and Compilers
for Embedded Systems, St. Goar, Germany, 1999.

[Ell86] J.R. Ellis,Bulldog: A compiler for VLIW architectures, ACM Doctor Disserta-
tion Awards, MIT, Cambridge, 1986.

[EMAP+00] C.A.J. van Eijk, B. Mesman, C. Alba-Pinto, Q. Zhao, M. Bekooij, J. van Meer-
bergen and J. Jess,Constraint analysis for code generation: Basic techniques
and applications in FACTS, ACM Transactions on Design Automation of Elec-
tronic Systems, vol. 5, 2000, pp. 774–793.

[EMT99] C.A.J. van Eijk, B. Mesman and A. Timmer,Identification and exploitation of
symmetry in DSP algorithms, Proc. IEEE conf. on Design Automation and Test
in Europe, 1999, pp. 602–608.

[FDF98] P. Faraboschi, G. Desoli and J.A. Fisher,Clustered instruction-level parallel
processors, Tech. report, HPL-98-13, 1998.

[Fur96] Steve Furber,ARM system architecture, Addison-Wesley, 1996.

[Gag01] J.S.H. van Gageldonk,Instruction scheduling for COCOON, Technical Note
194, Philips Research, July 2001.

[GFO92] A. De Gloria, P. Faraboschi and M. Olivieri,A non-deterministic scheduler for
a software pipelining compiler, Proceedings of the 25th Annual International
Symposium on Microarchitecture, 1992.

[GJ79] M.R. Garey and D.S. Johnson,Computers and intractability - a guide to the
theory of NP-completeness, W.H. Freeman and company, 1979.

[Goo89] G. Goossens,Optimisation techniques for automated synthesis of application-
specific signal-processing architectures, Ph.D. thesis, Katholieke Universiteit
Leuven, 1989.

Bibliography 139

[GPL+97] G. Goossens, J. van Praet, D. Lanneer, W. Geurts, A. Kifli, C. Liem and
P. Paulin,Embedded software in real-time signal processing systems: Design
technologies, Proceedings of the IEEE, vol. 85, March 1997, pp. 436–454.

[Gri94] R.P. Grimaldy, Discrete and Combinatorial Mathematics, ch. 11, pp. 588–598,
Addison Wesley, 1994, pp. 588–598.

[HD98] S. Hanono and S. Devadas,Instruction selection, resource allocation, and
scheduling in the AVIV retargetable code generator, Proc. Design Automation
Conference, ACM Press, 1998, pp. 510–515.

[HMV] D. Hwang, C. Mittelsteadt and I. Verbauwhede,Low power showdown: Com-
parision of five DSP platforms implementing a LPC speech codec.

[KLMW98] P. Kievits, E. Lambers, C. Moerman and R. Woudsma,R.E.A.L. DSP technol-
ogy for telecom baseband processing, CDROM Proc. International Conference
on Signal Processing Applications & Technology, 1998.

[KM92] D.C. Ku and G. De Micheli,High-level synthesis of ASICs under timing and
synchronization constraints, Kluwer Academic Publishers, 1992.

[KMN +92] T. Krol, J. van Meerbergen, C. Niessen, W. Smits and J. Huisken,The SPRITE
input language: An intermediate format for high level synthesis, European De-
sign Automation Conference (EDAC) (Brussels, Belgium), March 1992.

[Koc95] E. de Kock,Video signal processor mapping, Ph.D. thesis, Eindhoven Univer-
sity of Technology, 1995.

[Lam88] M. Lam, Software pipelining: An effective scheduling technique for VLIW ma-
chines, Proceedings of the SIGPLAN, June 1988, pp. 318–328.

[LBSL94] P. Lapsley, J. Bier, A. Shaham and E.A. Lee,DSP processor fundamentals,
Berkeley Design Technology, Inc., 1994.

[Lea97] W. Lee et al.,A 1-v programmable DSP for wireless communications, IEEE
Journal of Solid-State circuits32 (1997), no. 11, 1766–1776.

[Leu97] R. Leupers,Retargetable code generation for digital signal processors, Kluwer
Academic Publishers, 1997.

[LP98] H.R. Lewis and C.H. Papadimitriou,Elements of the theory of computation,
Prentice Hall, 1998.

[Mac77] A.K. Mackworth,Consistency in networks of relations, Artificial Intelligence
(1977), no. 8, 99–118.

[MDR+00] P. Mattson, W. Dally, S. Rixner, U. Kapasi and J. Owens,Communication
scheduling, Proceedings of the International Conference on Architectural Sup-
port for Programming Languages and Operating Systems, November 2000.

[Mes01] B. Mesman,Constraint analysis for DSP code generation, Ph.D. thesis, Eind-
hoven University of Technology, 2001.

140 Bibliography

[MF85] A.K. Mackworth and E.C. Freuder,The complexity of some polynomial net-
work consistency algorithms for constraint satisfaction problems, Artificial In-
telligence (1985), no. 25, 65–74.

[Mic94] G. De Micheli, Synthesis and optimization of digital circuits, McGraw-Hill,
1994.

[MIP] http://www.mips.com.

[Mon74] U. Montanari,Networks of constraints: Fundamental properties and applica-
tions to picture processing., Information Sciences7 (1974), 95–132.

[MSTM97] B. Mesman, M. Strik, A. Timmer and J. van Meerbergen,Constraint analysis
for DSP code generation, Proc. Int. Symp. on System Synthesis, 1997, pp. 33–
40.

[Muc97] S. Muchnick,Advanced compiler design and implementation, Morgan Kauf-
mann Publishers, 1997.

[NE98] E. Nystrom and A. Eichenberger,Effective cluster assignment for modulo
scheduling, 31st Annual ACM/IEEE International Symposium on Microarchi-
tecture, Dallas, USA, 1998, pp. 103–14.

[Nol97] P. Noll, ISO/MPEG audio coding, International Journal of High Speed Elec-
tronics and Systems8 (1997), no. 1, 69–118.

[Nui94] W.P.M. Nuijten,Time and resource constrained scheduling, Ph.D. thesis, Eind-
hoven University of Technology, 1994.

[RDK+00] S. Rixner, W.J. Dally, B. Khailany, P Mattson, U.J. Kapasi and J.D. Ownes,
Register organization for media processing, Proc. of the 6th International Sym-
posium on High-Performance Computer Architecture, 2000, pp. 375–386.

[SV76] A. Sangiovanni-Vincentelli,A note on bipartite graphs and pivot selection in
sparse matrices, vol. 23, IEEE Transactions on Circuits & Systems, 1976.

[Sys] http://www.systemc.org.

[Tim95] A. Timmer, From design space exploration to code generation, Ph.D. thesis,
Eindhoven University of Technology, 1995.

[WLH00] K. Wilken, J. Liu and M. Heffernan,Optimal instruction scheduling using in-
teger programming, 2000, pp. 121–133.

[WNS97] M. Wallace, S. Novello and J. Schimpf,ECLiPSe: A platform for constraint
logic programming, Tech. report, IC-Parc, Imperial College, London, 1997.

[Wul81] W.A. Wulf, Compilers and computer architecture, IEEE Computer14 (1981),
no. 7, 41–47.

[ZBJ+01] Q. Zhao, T. Basten, J. Jess, B. Mesman and C.A.J. van Eijk,Static resource
models of instruction sets, (Montréal, Canada), Proc. Int. Symp. on System
Synthesis, September 2001, pp. 159–164.

Bibliography 141

[ZVSM94] V. Zivojnovic, J.M. Velarde, C. Schlager and H. Meyr,DSPSTONE:a DSP-
oriented benchmarking methodology, CDROM Proc. International Conference
on Signal Processing Applications & Technology, 1994.

142 Bibliography

Samenvatting

In veel consumenten elektronica producten worden processoren toegepast voor het bewerken
van gedigitaliseerde signalen. Deze processoren zijn gewoonlijk ingebed in een systeem en
moeten wat rekenkracht, vermogensverbruik en fabricage kosten aan stringente eisen vol-
doen.

Door het optimaliseren van een processor voor een specifieke taak, of een kleine verzameling
van taken, kan er aan strengere eisen worden voldaan. Deze specialisatie heeft een grotere
diversiteit aan processor types tot gevolg. Door het toepassen van geautomatiseerde processor
ontwerp en programmeer systemen wordt er getracht om de ontwikkelkosten in de hand te
houden.

Een processor kan onder andere geoptimaliseerd worden door het toepassen van een incom-
pleet communicatie netwerk in de processor. Daarnaast is het wenselijk om meerdere register
files toe te passen in een processor met een groot aantal parallelle bewerkingseenheden. Deze
optimalisaties hebben tot gevolg dat er veel hulp en expertise van programmeur nodig is om
hoogwaardige microcode te genereren met behulp van traditionele code generatie technieken
in een compiler. Met de in dit proefschrift beschreven code generatie methode is het in veel
gevallen wel mogelijk om hoogwaardige microcode volledig automatisch te genereren.

Het toepassen van een incompleet netwerk in de processor maakt het toekennen van basis be-
werkingen aan bewerkingseenheden een moeilijke taak voor de code generator. Een toeken-
ning moet namelijk zo plaatsvinden dat voor iedere bewerking die uitgevoerd wordt op een
bewerkingseenheid er een kanaal in het netwerk van de processor is, dat gebruikt kan wor-
den om het resultaat naar de bewerkingseenheid toe te sturen die de resultaat consumerende
bewerking uitvoerd. Dit communicatiekanaal en de bewerkingseenheid moeten tevens op het
gewenste tijdstip beschikbaar zijn.

In de voorgestelde code generatie methode wordt er gezocht naar een oplossing. Na het
nemen van een bewerkings toekenningsbelissing wordt er geanalyseerd welke toekomstige
beslissings opties niet tot een oplossing kunnen behoren gegeven de reeds gemaakte beslis-
singen. Deze gevallen worden verwijderd uit de zoekruimte zodat tijdens toekomstige beslis-
singen andere toekenningsbeslissingen zullen worden geprobeerd. Indien er gedetecteerd
wordt dat er gegeven de gemaakt beslissingen geen oplossing bestaat, dan worden er beslis-
singen ongedaan gemaakt en andere opties geprobeerd. Het verwijderen van zoveel mogelijk
beslissings opties die niet tot een oplossing behoren, verminderd het aantal keer dat er op een
beslissing terug gekomen moet worden en de tijd die nodig is om een oplossing te vinden.

144

Voor het bewerking aan bewerkingseenheid toekenings probleem wordt er een conflict graaf
opgesteld waarin alle opties en combinatie van niet toegestane opties gerepresenteerd worden.
Gevallen die zeker niet tot een oplossing behoren worden gevonden met algoritmes die reken-
tijd efficiënt zijn. Indien door analyse wordt vastgesteld dat twee bewerkingen op hetzelfde
tijdstip uitgevoerd moeten worden dan wordt er een kant in de conflict graaf toegevoegd. Deze
kant sluit uit dat deze beide bewerkingen aan dezelfde bewerkingseenheid wordt toegekend.
Indien er wordt vast gesteld dat een bewerking op een specifieke bewerkingseenheid moet
worden uitgevoerd dan wordt deze informatie gebruikt om nauwkeuriger het tijdsinterval te
bepalen waarin de operatie uitgevoerd kan worden.

De voorgestelde toekenningstechnieken zijn ge-implementeerd in een prototype codegenera-
tor FACTS. Deze code generator is gekoppeld aan de processor synthese omgeving A|RT-de-
signer. Door het koppelen van FACTS aan A|RT-designer kunnen processoren, die bevroren
zijn na synthese, hergeprogrammeerd worden. Deze omgeving is gebruikt om de codegenera-
tie technieken in FACTS te evalueren voor industrieel relevante applicatie domein specifieke
processor ontwerpen. De resultaten tonen aan dat er met deze technieken in veel gevallen mi-
crocode gegenereerd kan worden die de opslag capaciteit van de register files en de beschik-
bare verbindingen in de VLIW-processor respecteert en aan stringente eisen wat betreft de
rekentijd voldoet.

Curriculum Vitae

Marco Bekooij was born on March 26, 1968 in Doorn, The Netherlands. From 1989 he
studied Electrical Engineering at the Hogeschool Utrecht. After his graduation in 1992 he
continued his study in Electrical Engineering at the Twente University of Technology. In
1995 he graduated on the subject of verification of digital circuits.

Since May 1995, Marco Bekooij is working as a research scientist at the Philips Research
Laboratories Eindhoven. From December 1998, he has been working towards a Ph.D. degree.
He has published several papers on various aspects of digital signal processing, hardware-
software codesign, and code generation for re-programmable VLIW processors.

	Preface
	Contents
	1 Introduction
	2 Inputs of the Code Generator
	3 Code Generation by Traversing the Search-Space
	4 Assignment Search-Space Representation
	5 Assignment Search-Space Pruning
	6 Multi-casting
	7 Hierarchy, Operation Merging and the Decision Heuristic
	8 Quantitative Evaluation
	9 Conclusion
	Appendix A
	Bibliography
	Samenvatting
	Curriculum Vitae

