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Abstract 

This paper presents a taxonomy of keyword pattern matching algorithms, including the well
known Knuth-Morris-Pratt, Aho-Corasick, Boyer-Moore, and Commentz-Walter algorithms 
and a number of their variants. The taxonomy is based on the idea of ordering algorithms 
according to their essential problem and algorithm details, and deriving all algorithms from 
a common starting point by adding these details in a correctness preserving way. This way 
of presentation not only provides a complete correctness argument of each algorithm, but 
also makes very clear what algorithms have in common (the details of their nearest common 
ancestor) and where they differ (the details added after their nearest common ancestor). 
Moreover, the paper provides complete derivations of the intricate precomputation algorithms, 
some of which either can not be found in the literature (Commentz-Walter) or are given in 
several different versions (Boyer-Moore). 
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1 Introduction and related work 

Keyword pattern matching is one of the most extensively explored fields in computing science. 
Loosely stated, the problem is to find the set of all occurrences from a set of patterns in an input 
string. 

Just as the variety of applications has grown, so has the diversity of the solutions. Many of the 
solutions require a simplification of the problem such as "the patterns are regular languages," or 
"the patterns are finite languages." The myriad of variations on the problem, along with differing 
program design methodology, leads to solutions that are difficult to compare to one another. 

This report presents a taxonomy of keyword pattern matching algorithms. The main results 
are summarized in the taxonomy graph presented at the end of this section, and in the conclusions 
presented in Part III. The taxonomy strives for the following goals: 

• to present algorithms in a common framework to permit comparison of algorithms; such a 
framework is to be an easy to comprehend abstract presentation. 

• to emphasize the derivation of an algorithm as a series of refinements to either algorithms 
or to the problem. 

• to factor out common portions of well-known algorithms to facilitate comparison of these 
algorithms. 

This report systematically presents a number of variations of four well-known algorithms in a 
common framework. Two of the algorithms to be presented require that the set of patterns is a 
single keyword, while the other two require that the set of patterns is a finite set of keywords. The 
algorithms are 

• the Knuth-Morris-Pratt (KMP) algorithm as presented in [KMP77J. This algorithm matches 
a single keyword against the input string. Originally, the algorithm was devised to find only 
the first match in the input string. We will consider a version that finds all occurrences 
within the input string. 

• the Boyer-Moore (BM) algorithm as presented in [BM77J. This is also a single keyword 
matching algorithm. Several corrections and improvements to this algorithm have been 
published; a good starting point for these is the bibliographic section of [Ah090J. 

• the Aho-Corasick (AC) algorithm as presented in [AC75J. This algorithm can match a finite 
set of keywords in the input string. 

• the Commentz-Walter (CW) algorithm as presented in [Com79a, Com79bJ. This algorithm 
can also match a finite set of keywords in the input string. Few papers have been published on 
this algorithm, and its correctness, time complexity, and precomputation are ill-understood. 

These four algorithms are also presented in the overview of [Ah090J. 
The algorithms will be derived from a common starting point. The derivation proceeds by 

adding either problem or algorithm details. As a problem detail is added (that is, the problem 
is made more specific) a change may be possible in the algorithm - in particular, an improve
ment of efficiency may be possible. This is because the more specific problem may permit some 
transformation not possible in the more general problem. 

Algorithm details are of course added in a correctness-preserving way; they are usually made 
to improve the efficiency of the algorithm. They may be added to restrict nondeterminacy, or to 
make a change of representation; either of these changes to an algorithm gives a new algorithm 
meeting the same specification. A derivation should make clear the differences and similarities of 
these algorithms; the entire derivation can then be taken to be a taxonomy of the four algorithms 
(and other related algorithms). 

This type of taxonomy development and program derivation has been used in the past. One 
of the most notable is Broy's sorting algorithm taxonomy [Bro83]. In this taxonomy, algorithm 
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and problem details are also added, starting with a naive solution; the taxonomy arrives at all of 
the well-known sorting algorithms. A similar taxonomy (which predates the one of Broy) is by 
Darlington [Dar78]; this taxonomy also considers sorting algorithms. Our particular incarnation of 
the method of developing a taxonomy was developed in the thesis of Jonkers [Jon82], where it was 
used to give a taxonomy of garbage collection algorithms. Jonkers' method was then successfully 
applied to attribute evaluation algorithms by Marcelis in [Mar90]. 

The recent taxonomy of pattern matching algorithms presented by Hume and Sunday (in 
[HS91j) gives variations on the Boyer-Moore algorithm; the taxonomy concentrates on many of 
the practical issues, and provides data on the running time of the variations, and their respective 
precomputation. 

Two important aims of our derivations are clarity and correctness of presentation. Towards 
both aims, the traditional method of using indexed strings (for the input string and patterns) has 
been abandoned in this paper; we use a more abstract (but equivalent) presentation. In order 
to easily provide correctness arguments the guarded command language of [Dij76] is used, rather 
than a programming language such as Pascal or C. 

Part I contains the derivation of the four algorithms named above, along with several interme
diate algorithms that are bypro ducts of the derivation. 

Part II details the precomputation of functions necessary for each of the four algorithms. 

Part III presents the conclusions. 

Part IV contains the appendices. A program skeleton that we will often instantiate is detailed 
in Appendix A. Definitions and properties of operators and functions are provided in Ap
pendix B. 

The taxonomy graph that we arrive at after deriving the algorithms in Part I is shown in 
figure 1 on page 3. Each vertex corresponds to an algorithm. If the vertex is labeled with a 
number that number refers to an algorithm in this report. If it is labeled with a page number that 
page number refers to the page where the algorithm is first mentioned. Each edge corresponds to 
the addition of either a problem or algorithm detail and is labeled with the name of that detail (a 
list of detail names follows). Each of the algorithms will either be called by their algorithm number, 
by their name as found in the literature (for the well known algorithms), or by the parenthesized 
sequence of all labels along the path from the root to the algorithm's vertex. For example, the 
algorithm known as the optimized Aho-Corasick algorithm can also be called (P+, E, AC, OPT) (it 
is also algorithm 3.3 in this report). All of the well known algorithms appear as leaves in the tree. 
Due to its labeling the graph can be used as an alternative table of contents to this report. Four 
algorithm details (P+, s+, P_, and s-) are actually composed of two separate algorithm details. 
For example, detail (p +) is composed of details (p) and detail (+), however the second detail must 
always follow either detail (p) or detail (s) and so we treat them as a single detail. The edges 
labeled MO and SL in figure 1 represent generic algorithm details that still have to be instantiated. 
Possible instantiations are given by the two small trees at the bottom of figure 1. The details and 
a short description of each of them are as follows: 

P (§ 2) Examine prefixes of a given string in any order. 

p + Examine prefixes of a given string in order of increasing length. 

P_ As in (p+), but in order of decreasing length. 

s (§ 2) Examine suffixes of a given string in any order. 

s+ Examine suffixes of a given string in order of increasing length. 

s- As in (s+), but in order of decreasing length. 
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Figure 1: A taxonomy of pattern matching algorithms. An explanation of the graph and its 
labels is given in the text of this section. Algorithm 3.3 corresponds to the optimized Aho
CoraEick algorithm ([AC75], section 6). Algorithm 3.4 corresponds to the Aho-CoraEick algorithm 
using linear search ([AC75], section 2, algorithm 1). Algorithm 3.6 corresponds to the Knuth
Morris-Pratt algorithm ([KMP77], section 2, p.326). The algorithm of the vertex labeled p.24 and 
with incoming edge labeled NORM corresponds to the Commentz-Walter algorithm ([Com79aJ, 
section II, and [Com79bJ, sections 11.1 and II.2). The algorithm of the vertex labeled p.24 and 
with incoming edge labeled BM corresponds to the Boyer-Moore algorithm ([BM77], section 4). 
Algorithm 5.4 corresponds to the Boyer-Moore algorithm aE well ([BM77], sections 4 and 5). 
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RT (§ 2.1.1) Usage of the transition function of the reverse trie corresponding to the set of keywords 
to check whether a string which is a suffix of some keyword, preceded by a character is again 
a suffix of some keyword. 

FT (§ 2.2.1) Usage of the transition function of the forward trie corresponding to the set of key
words to check whether a string which is a prefix of some keyword, followed by a character 
is again a prefix of some keyword. 

E (§ 3) Matches are registered by their endpoint. 

AC (§ 3.1) A state variable is maintained while examining prefixes of the input string. The value 
of the variable is the longest string from the set of all suffixes of the current prefix of the 
input string, which are prefixes of some keyword. 

OPT (§ 3.2) A single "optimized" transition function is used to update the state variable in the 
Aho-Corasick algorithm. 

LS (§ 3.3) Use linear search to update the state variable in the Aho-Corasick algorithm. 

AC-FAIL (§ 3.3.1) Implement the linear search using the transition function of the extended forward 
trie and the failure function. 

KMP-FAIL (§ 3.3.2) Implement the linear search using the extended failure function. 

OKW (§ 3.3.2) The set of keywords contains one keyword. 

INDICES (§ 3.3.2) Represent substrings by indices into the complete strings, converting a string 
based algorithm into an indexing based algorithm 

NE (§ 4) The empty string is not a keyword. 

cw (§ 4.1) Consider any shift distance that does not lead to the missing of any matches. Such 
shift distances are called safe. 

NLA (§ 4.2) The lookahead character is not taken into account when computing a safe shift dis
tance. The computation of a shift distance is done by using two precomputed shift functions 
applied to the current longest partial match. 

LA (§ 4.3) The lookahead character is taken into account when computing a safe shift distance. 

NEAR-OPT (§ 4.3) Compute a shift distance using a single precomputed shift function applied to 
the current longest partial match and the lookahead character. 

NORM (§ 4.3) Compute a shift distance as in (NLA) but additionally using a third shift func
tion applied to the lookahead character. The shift distance obtained is that of the normal 
Commentz-Walter algorithm. 

BM (§ 4.4) Compute a shift distance using one shift function applied to the lookahead character, 
and another shift function applied to the current longest partial match. The shift distance 
obtained is that of the Boyer-Moore algorithm. 

RBM (§ 5) Introduce a particular program skeleton as a starting point for the derivation of the 
different Boyer-Moore variants. 

MO (§ 5) A match order is used to determine the order in which characters of a potential match 
are compared against the keyword. This is only for the one keyword case (OKW). Particular 
instances of match orders are 

FWD (§ 5) The forward match order is used to compare the (single) keyword against a 
potential match in a left to right direction. 
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REV (§ 5) The reverse match order is used to compare the (single) keyword against a potential 
match in a right to left direction. This is the original Boyer-Moore match order. 

OM (§ 5) The characters of the (single) keyword are compared in order of ascending probabil
ity of occurring in the input string. In this way mismatches will generally be discovered 
as early as possible. 

SL (§ 5.1) Before an attempt at matching a candidate string and the keyword a "skip loop" is 
used to skip portions of the input that cannot possibly lead to a match. Particular "skips" 
are 

NONE (§ 5.1) No "skip" loop is used. 

SFC (§ 5.1 The "skip loop" compares the first character of the match candidate and the 
keyword; as long as they do not match, the candidate string is shifted one character to 
the right. 

FAST (§ 5.1) As with (SFC), but the last character of the candidate and the keyword are 
compared, and, possibly, a larger shift distance is used. 

SLFC (§ 5.1) As with (FAST), but a low frequency character of the keyword is first compared. 

MI (§ 5.2) The information gathered during an attempted match is used (along with the particular 
match order used during the attempted match) to determine a safe shift distance. 

Part I 

The algorithm derivations 

2 The problem and some naive solutions 

The problem is to find all occurrences of any of a set of keywords in an input string. Formally, 
given an alphabet V (a non-empty finite set of symbols), an input string S E V*, and a finite 
non-empty pattern set P ~ V*, establish1 

R: O=(Ul,v,r:lvr=S:{I}x({v}np)x{r}). 

A trivial (but unrealistic) solution to this is 

Algorithm 2.1() 

0:= (U l,v,r: lvr = S: {I} x ({v} n P) x {r}) 
{R} 

The sequence of details describing this algorithm is the empty sequence (sequences of details are 
introduced in section 1). 

There are two basic directions in which to proceed while developing naive algorithms to solve 
this problem. Informally, a substring of S can be considered a "suffix of a prefix of S" Of a "prefix 
of a suffix of S". These two possibilities are considered separately below. 

Formally, we can consider "suffixes of prefixes of S" as follows: 

1 Throughout this paper we will adopt the convention that, unless stated otherwise, program variables and bound 
variables with names from the beginning of the Latin alphabet (i.e. a, b, c) will range over V, while varia.bles with 
names from the end of the Latin alphabet (i.e. l, q, r, U, v, w) will range over V"'. 
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(u I,v,r: Ivr = s: {I} x ({v} n P) x {r}) 

{introduce u : u = Iv} 

(u I, v, r, u : ur = S /\ Iv = u : {I} x ({v} n P) x {r}) 

{I, v only occur in the latter range conjunct, so restrict their scope} 

(u u,r: ur = S: (u I,v: Iv = u: {I} x ({v} np) x {r})) 

The method of implementing a computation of such a quantification is detailed in Appendix A. 
A simple non-deterministic' algorithm (the structure of which is discussed in Appendix A.I) 

is obtained by applying algorithm detail 

Detail (p): Examine prefixes of a given string in any order. D 

to input string S. It results in3 

Algorithm 2.2(p) 

W := (U u, r : ur = S : {u} x {r}); 0 := 0; 
for (u,r) : (u,r) E W do 

0:= 0 U (u I, v : Iv = u : {I} x ({v} n P) X {r}) 
rof {R} 

Again starting from algorithm 2.I() we can also consider "prefixes of suffixes of S" as follows: 

(u I, v, r : Ivr = S : {I} x ({v} n P) x {r}) 

{introduce w : w = vr } 

(u I, v, r, w : Iw = S /\ vr = w : {I} x ({v} n P) x {r}) 

{ V, T only occur in the latter range conjunct, so restrict their scope} 

(u I, w : Iw = S : (u v, r : vr = w : {I} x ({v} n P) x {r})) 

Introduction of algorithm detail 

Detail (5): Examine suffixes of a given string in any order. D 

yields the simple non-deterministic algorithm (5) which is analogous to algorithm 2.2(p). Hence, 
it is not presented here. 

The update of 0 (with another quantifier) in the inner repetitions of algorithms (p) and (5) 
can be computed with another non-deterministic repetition. In the case of (p) the inner repetition 
would consider suffixes of u to give algorithm (ps); similarly, in (5) the inner repetition would 
consider prefixes of u to give algorithm (sp). 

Each of (ps) and (sp) consists of two nested non-deterministic repetitions. In each case, the 
repetition can be made deterministic by considering prefixes (or suffixes as the case is) in increasing 
(called detail (+)) or decreasing (detail (-)) order of length. For each of (ps) and (sp) this gives 
two binary choices. Along with the binary choice between (ps) and (sp) this gives a 3-cube 
representing the three binary choices; the cube is depicted in figure 2 on page 7 with vertices 
representing the eight possible algorithms for the two nested repetitions. The edges marked '=' 
join algorithms which are symmetrical; for example, the order in which (P+L) considers Sand P 
is mirrored (with respect to string reversal of Sand P) by the order in which (5+ P _) considers S 
and P. Because of this symmetry, we present only four algorithms in this section: (p +5+), (p +L), 
(LP_), and (LP+). These algorithms were chosen because their outer repetitions examine S in 
left to right order. In subsection 2.1 algorithm 2.2(p) will be refined further and in subsection 2.2 
algorithm (5) will be refined. In section 3 algorithm (p+) will be developed into the Aho-Corasick 
and Knuth-Morris-Pratt algorithms, while in sections 4 and 5 algorithm (p+s+) will be developed 
into the Commentz-Walter and Boyer-Moore algorithms. 

2 An algorithm is called non-deterministic if the order in which its statements a.re executed is not fixed. 
3The for-do-rofstatement is taken from [vdE92]' Statement for x : P do Sod amounts to executing statement 

list S once for each value of x that satisfies P initially. The order in which the values of x are chosen is arbitrary. 
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= = 

Figure 2: The 3-cube of naive pattern matching algorithms. 

2.1 The (p +) algorithms 

The (p) algorithm presented in the previous section can be made deterministic by considering 
prefixes of S in order of increasing length. The outer union quantifier in the required value of 0 
can be computed with a deterministic repetition. Instantiating the algorithm in Appendix A.2 
with W = V· X V', RANGE(u,r) == ur = S, (uo,ro) :s (Ul,rll == Uo :Sp Ul, Ell = U, and 
flu, r) = (u I, v : Iv = u : {I} x ({v} n P) x {r}) results in algorithm (p + )4: 

Algorithm 2.3(p+) 

u,r:=e,S;O:={e}X({e}np)x{S}; 
do rope -----> 

u,r:= u(rll),rJl; 
0:= 0 U (U I,v: Iv = u: {I} x ({v} n P) x {r}) 

od {R} 

This algorithm will be used in section 3 as a starting point for the Aho-Corasick and Knuth-Morris
Pratt algorithms. The inner union quantification in the required value of 0 can be computed with 
a non-deterministic repetition as outlined in Appendix A.I. This algorithm is called (p+s) but 
will not be given here. 

2.1.1 The (p+s+) algorithms 

Starting with algorithm (p+s) we make its inner repetition deterministic by considering suffixes of 
u in order of increasing length. In keeping with the form in Appendix A.2, a first such algorithm 
is 

4The operators 1) J, f, and l are defined in definition B.6 

7 



u,r:= 0,5;0:= {o} x ({o}np) x {S}; 
do r f 0 ----> 

u,r:= u(rl1),rJl; 
l,v:= u,o;O:= 0 U {u} x ({o} nP) x {r}; 
do If" ----> 

od 
od {R} 

l,v:= ill, (l[l)v; 
0:= OU {I} x ({v}np) x {r} 

This algorithm has running time 0(151'), assuming that intersection with P is a 0(1) operation. 
We will now improve the running time of this algorithm. Note that 

(lIw, a: w !/. suff(P) : aw !/. suff(P)). 

In other words, in the inner repetition when (In)v !/. suff(P) we need not consider any longer 
suffixes of u. The inner repetition guard can therefore be strengthened to 

If 0 cand (In)v E suff(P). 

Observe that v E suff(P) is an invariant of the inner repetition. This invariant is initially 
established by the assignment v := o. Direct evaluation of (ifl)v E suff(P) is expensive. 
Therefore it is done using the transition function of the reverse trie [Fre60) corresponding to 
P TP,r : suff(P) X V ----> suff(P) u {J.} defined by 

( ) _ {aw if aw E suff(P) 
TP,r W, a - .1 if aw !/. suff(P) (w E suff(P),a E V). 

Since we usually refer the trie corresponding to P we will write Tr instead of TP,ro Transition 
function Tr can be computed beforehand. The guard becomes If" cand Tr(V, ifl) f .1. This 
amounts to the introduction of algorithm detail 

Detail (RT): Usage of reverse trie function Tr to implement expression (l[l)v E suff(P). 0 

and yields 

u,r :=0,5;0:= {c} X ({c}np) X {S}; 
do r f E: ----> 

u,r:= u(rl1),rJl; 
I, v := u, 0; 0 := 0 U {u} x ({o} n P) x {r}; 
do I f 0 cand Tr(v,ln) f.l----> 

od 

l,v:= ill, (In)v; 
O:=Ou{l}x({v}np)x{r} 

{v E suff(P) 1\ (I = E: cor (In)v!/. suff(P))} 
od {R} 

This algorithm has 0(151' (MAXp : pEP: Ipl)) running time. The precomputation of Tr is 
similar to the precomputation of the transition function of the forward trie Tf (defined in 2.2.1) 
which is discussed in Part II, section 6. 
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2.1.2 The (p+s-) algorithm 

In the previous section we modified the inner repetition of algorithm (p+s) to consider suffixes 
of u in order of increasing length. In this section, we will make use of an inner repetition which 
considers them in order of decreasing length. The general form of such a repetition is given in 
Appendix A.3. This gives us the following 

Algorithm 2.6(p+s-) 

u,r:= 0,5;0:= {o} X ({o} n P) x {S}; 
do rio ----> 

u,r:= u(rll),rJl; 
l,v:=€,U; 
do v i 0 ----> 

ad; 

0:= 0 U {I} x ({v} n P) X {r}; 
I, v := l(vl1), vJl 

O:=OU{u} X ({o}np) x {r} 
od {R} 

This algorithm has running time that is 0(1512). 

2.2 The (s_) algorithms 

Algorithm (s) can be made deterministic by considering suffixes of 5 in order of decreasing length. 
Instantiating the algorithm in Appendix A.3 with W = V· x V', RANGE(I, w) '" Iw = 5, 
(10, wo) :,; (11, wtJ '" Wo :,;, WI, Ell = U, and 1(1, w) = (u v, r : vr = w : {I} x ({ v} np) x {r}) results 
in the deterministic algorithm (s-) which will not be given here. Furthermore, the assignment to 
o in the repetition can be written as a non-deterministic repetition (see Appendix A.l and also 
section 2.1) to give the algorithm (s-p) which will not be given here. 

2.2.1 The (s-p+) algorithms 

Starting with algorithm (s- p) we make the inner repetition deterministic by considering prefixes 
of each suffix of the input string in order of increasing length, in keeping with the algorithm in 
Appendix A.2. The algorithm is: 

Algorithm 2.7(s-p+) 

l,w:= €,S; 0:= 0; 
do wio-

v, r := c, w; 0 := 0 U {I} x ({o} n P) x {w}; 
do r i<-

v,r:= v(rl1),rJl; 
0:= OU {I} x ({v} np) x {r} 

od; 
I,w:= l(wl1),wJl 

ad; 
o := 0 U {S} x ({ o} n P) x {o} 
{R} 

This algorithm has 0(1512) running time like algorithm 2.4(p+s+). In a manner similar to the 
introduction of the reverse trie, in algorithm 2.4(p+s+), we can strengthen the inner repetition 
guard. Note that 

(I/u, a: u rt pref(P) : ua rt pref(P)). 
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So we can strengthen the guard ofthe inner repetition to r # 0 cand v(rl1) E pref(P). Conjunct 
v E pref(P) can be added to the invariant of this repetition. It is initially established by the 
assignment v := c. Efficient computation of this guard can be done by using the transition 
function of the forward trie corresponding to P 7j : pref( P) x V ---; (pref(P) U {-1} ), defined by 

7 (u a) = {ua if ua E pref(P) 
j, -1 if ua Ii" pref(P) (u E pref(P), a E V). 

Transition function 7j can be computed beforehand. The guard now becomes 

r # 0 cand 7j(v,r11) #-1. 

Detail (FT): Usage of forward trie function 7j to implement expression v(r11) E pref(P). 0 

The forward trie detail (FT) is defined and used symmetrically to the reverse trie detail (RT). 
Introducing algorithm detail (FT) yields 

Algorithm 2.8(LP+, FT) 

l,w:= £,8;0:= 0; 
dow#o---; 

v,r:= o,w;O:= 0 U {I} x ({o} n P) x {w}; 
do r # 0 cand 7j(v,rl1) # -1 ---; 

v, r := v(rl1), rJ 1; 
0:= 0 U {I} x ({v} n P) x {r} 

ad; 
I,w:= l(wl1),wJl 

ad; 
o := 0 U {S} x ({ o} n P) x {o} 
{R) 

This algorithm has O(ISI· (MAXp: pEP: Ipl» running time like algorithm 2.5(p+s+, RT). 

2.2.2 The (LP_) algorithm 

The inner repetition of algorithm (LP) can also be made deterministic by considering prefixes of 
w in order of decreasing length, as in Appendix A.3. This yields algorithm (LP _) which is not 
given here. Its running time is O(lSI2). 

3 The Aho-Corasick algorithms 

In this section, starting with algorithm 2.3(P+), we derive the Aho-Corasick and Knuth-Morris
Pratt algorithms. First, we make a preliminary step. The triple format of 0 used so far has been 
redundant. This redundancy can be removed by registering matches in S by their end-point; that 
is, the first component of the triple will be dropped. This modification is known as algorithm 
detail (E). 

Detail (E): Matches are registered by their end-point. 0 

In the following derivation we use the symbol", to indicate that the problem specification has 
been specialized (in this case, through projection). The postcondition of algorithm 2.3(p+) can 
be rewritten as follows: 

10 



(u u,r: ur = S: (u I,v: Iv = u: {I} x ({v} n P) x {r})) 

"" {introduction of detail (E) } 

(U u,r: ur = S: (U I,v: Iv = u: ({v} n P) x {r})) 

{ definition of suff, distributivity} 

(U u,r: ur = S: (suff(u) n P) x {r}) 

This yields a new postcondition 

Re: Oe = (U u,r: ur = S: (suff(u) n P) x {r}) 

which is established by a modified version of algorithm 2.3(p+) 

Algorithm 3.1(p+, E) 

u,r:=c,S;Oe:=({c}nP)x{S}; 
do r # c ----> 

u,r:= u(rl1),rJl; 
Oe := Oe U (suff(u) n P) x {r} 

od {Re} 

In the following sections, algorithm details unique to the Aho-Corasick and Knuth-Morris-Pratt 
algorithms will be introduced. 

3.1 Algorithm detail AC 

In order to facilitate the update of Oe in algorithm 3.1(p+, E) we introduce a new variable U and 
attempt to maintain invariant U = suff(u) n P. For the update of U we derive 

suff(ua) n P 

{suff(ua) = suff(u)a U {e}} 
(suff( u)a n P) U ( {c } n P) 

{suff(u)a n P <; pref(P)a} 

((suff(u) n pref(P))a n P) u ({c} n P) 

Therefore, in order to calculate the new of value of U we need the set suff(u) n pref(P) rather 
than the old value of U (suff( u) np). Formula suff( u) n pref(P) can be viewed as a generalization 
of formula suff( u) n P. Hence, we try to maintain invariant 

Potu, U) == (U = suff(u) n pref(P)) 

which is initially established by assignment u, U := c, {c}. Assuming Pot u, U) we derive 

suff( ua) n pref( P) 

{preceding derivation with pref(P) instead of P, pref is idempotent5 } 

«suff( u) n pref(P))a n pref(P)) U ({ c} n pref(P)) 

{Po(u,U), P#0} 

(Uanpref(P))U{c} . 

From Pot u, U) and P <; pref(P) it follows that suff( u) nP = U nP. This all leads to the following 
modification of algorithm 3.1(P+, E): 

5 A function f is called idempotent if f 0 f = f. 

11 



u,r:= €, 5; U:= {£}; Oe := ({e} n P) x {S}; 
{invariant: Potu, Un 
do r # € ----> 

U := (U(rll) n pref(P)) U {t}; {Po(u(rll), un 
u,r:= u(rll),rJl; {Po(u,U)} 
Oe := Oe U (U n P) x {r} 

od {R,} 

Since 5 and, therefore, u can be any string from V' it follows from invariant Potu, U) that the 
values that U can have constitute the finite set {suff(w)npref(P) I w E V'}. Hence, the preceding 
algorithm can be viewed as simulating the behavior of Moore machine[HU791 (or finite transducer) 
Mo = (QO,~Ol~Olbo'>"OISO) on input string S, where 

- state set Qo = {suff(w) n pref(P) I w E V'}, 

- input alphabet ~o = V, 

- output alphabet D.o = P(P), 

- transition function 50 : Qo x V ----> Qo is defined by 

50 (q,a) = (qanpref(P))U{e} (q E Qo,a E ~o), 

- output function AO : Qo ----> D.o is defined by 

AO(q) = q n P (q E Qo), 

and 

- start state So = {€}. 

Moore machine Mo can be viewed as a deterministic finite automaton without final states and 
with an additional output alphabet D.o and an additional output function Ao. If on reading 
input sequence w machine Mo goes through states SO,Ql,Q2, ... ,Qlwl it will emit output sequence 
AO(So)Ao(q,jAO(q2) ... Ao(qlwl). The set Oe can be viewed as an encoding of the output sequence of 
Moore machine M o-

The following intermezzo shows that Moore machine Mo can be obtained in a different way. 

An interesting solution to the pattern matching problem involves using an automaton for the lan
guage V* P. Usually, a nondeterministic finite automaton (NFA) is constructed. The automaton 
is then simulated, processing input string S, and considering all paths through the automaton. 
Whenever a final state is entered a keyword match has been found, and the match is registeredj see 
for example Aho, Hopcroft & Ullman in [AHU74]. 

The state graph for the NFA is simply the forward trie for P, augmented with a transition from 
state e to itself on all symbols in V. The NFA is defined as (QN, V,ON,SN,FN), where 

- state set QN = pref(P), 

- input alphabet V, 

- transition function ON: QN X V --+ P(QN) is defined by 

and 

{e,a} 
{£} 

liN(q,a) = { ~qa} 

if a E pref( P) 
otherwise 

if qa E pref(P) 
otherwise 

(a E V), 

(q E pref(P) \ {£},a E V). 

and is extended to oN: QN x V" --+ P(QN) in the obvious way, 
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- start state SN = E, and 

- final state set FN = P. 

The simulation of this automaton can proceed as follows: 

u,r:= E,SjqN := {E}j 
0.:= (qN n FN) x {r}; 
{invariant: qN = 0,,(0, u)} 
do r =j:. E ----+ 

qN := (u q: q E qN: oN(q,r11)); 
O. := O. U (qN n FN) x {r} 

od {R.} 

Strictly speaking, the NFA is being used as a nondeterministic Moore machine. Each path through 
the Moore machine is followed simultaneously; the output function is only defined for some of the 
states {FN to be precise}. The output alphabet !:::J.N can be written as !:::J. N = P U {l.N} {l.N is 
output in nonmatching states}. The output function is AN : Q N ----+ !:::J.N defined as 

if q E P 
if q ~ P 

The nondeterministic Moore machine is now IvfN = (QN, V,!:::J. N , ON, AN, SN). In the algorithm, the 
set Oe is only updated when the output is not l.N. 

The subset construction (see [RS59J) can be applied to the nondeterministic Moore machine, to 
give a deterministic Moore machine MD. In the following paragraphs, we will prove that this 
deterministic Moore machine {with unreachable states removed} is equal to Mo {presented above}. 

Under the subset construction, the state set is P{QN) = P(pref{P)). The set of reachable states is 
smaller, as will be shown below. A new output alphabet {under the subset construction} is defined 
as: !:::J.D = P(/l.N). The set of reachable states is 

QD 
{subset construction and reachability} 

{O,,(E,W) I w E V"} 

{definition of ON } 

{{q I qEpref(P)lIw E V"q} IwE V"} 

{w E V"q '" q E sUff(w)} 

{suff(w) n pref(P) I wE V"} 

{ definition of Qo } 

The deterministic output function AD : QD - P(i~"N) is 

AD(q) 

{subset construction} 

{AN(q') I q' E q II AN(q') # -LN} 

{ definition of AN } 

{q' I q' E q II q' E P} 

= { set calculus} 

qnp 

{ definition Ao } 

Ao(q) 
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Lastly, the deterministic transition function On : Qn x V - QD is 

OD(q, a) 
{subset construction} 

(U g': q' E q: oN(g',a» 

= { definition of DN, cEq} 

(Ug' :g' E q/\q'aE pref(P): {q'a})U{c} 

{ set calculus} 

(qan pref(P» U {oj 

{ definition of 00 } 

oo(q, a) 

From these derivations it follows that Mo = MD. 

Notice that the number of states of the Moore machine does not grow during the subset construction. 
Perrin mentions the AC and KMP Moore machines as examples of ones which do not suffer from 
exponential blowup (i.e. the number of states grows exponentially) during the subset construction 
[Per90j. 

In subsection 3.2 it is shown that Moore machine Mo is minimal. 

We proceed by observing that for each v E V' the set suff(v) n prer(P) is nonempty, finite, 
and linearly ordered with respect to the suffix ordering :=;, (see Definition B.4) and therefore 
has a maximal element (MAX< .. w : w E suff(v) n prer(P) : w). Since suff is idempotent 
(suff(suff(u) = suff(u) we have by theorem B.5 

suff(v) n prer(P) = suff((MAX". w : w E suff(v) n prer(P) : w) n prer(P) 

so the states of machine Mo can be represented by their maximal elements. We replace variable 
U in the algorithm by variable q and maintain invariant 

PMu,q) == (q = (MAX". w: w E suff(u) nprer(P): w». 

Introduction of q is called algorithm detail (AC). 

Detail (AC): A variable q is introduced into algorithm 3.1(P+, E) such that 

q = (MAX". w : wE suff(u) n prer(P) : w) 

o 

We now have that suff(u) nP = suff(q)np. By introducing function Output: prer(P) ----> PcP), 
defined by 

Output(w) = suff(w) n P (w E prer(P)) 

the update of 0, can be done by assignment 0, := 0, U Output(q) X {r}. The precomputation of 
function Output is discussed in Part II, section 6. 

We now have obtained algorithm 

Algorithm 3.2(p+, E, AC) 

u, r := c, S; q := C; 0, := Output(q) x {S}; 
{invariant: PO( u, q)} 
do r oj £ ----> 

q:= (MAX<. w: w E suff(u(rl1)) n prer(P): w); 
u,r:= u(rl1),rJ1; {P6(u,q)} 
0, := 0, U Output(q) x {r} 

od {R,} 

{P6(u(rl1),q)} 

The next two sections are concerned with alternative ways of implementing assignment 

q := (MAX". w : W E suff(u(rl1» n pref(P) : w). 
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3.2 Method OPT 

Assuming P~ (u, q) we derive 

(MAX",. w : w E suff( ua) n pref( P) : w) 

{suff(ua) = suff(u)a u {E}, P '" 0} 
(MAX",. w : w E suff(u)a n pref(P) V w = 0 : w) 

{ theorem B.5 } 

(MAX"" w : w E suff((MAX",. w' : w' E suff(u) n pref(P) : w'))a n pref(P) V w = c: w) 

{P~(u,q)} 

(MAX",. w: w E suff(q)a n pref(P) V w = c : w) 

{suff(qa) = suff(q)a u {c}, P '" 0} 
(MAX"" w : W E suff(qa) n pref(P) : w) 

By introducing function6 "fl : pref(P) x V ~ pref(P), defined by 

"fl(q,a) = (MAX",. w: w E suff(qa) n pref(P): w) 

the assignment to q in algorithm 3.2(P+, E, AC) can be written as q := "fl(q,a). This is called 
algorithm 

Detail (OPT): Usage of function"fl to update variable q. 0 

and leads to algorithm (cf. [AC75], section 6) 

Algorithm 3.3(p+, E, AC, OPT) 

u,r:= c,S;q:= 0;0,:= Output(q) X {S}; 
{invariant: P~(u,q)} 

do r '" 0 ~ 
q:= "ff(q,rl1); {PO(u(rll),q)} 
u,r:= u(rll),rJl; {P~(u,q)} 
0, := 0, U Output(q) x {r} 

od {R,} 

Note that "fl is the transition function of Moore machine Ml = (pref(P), V, P(P), "fl' Output, 0). 
Machine Ml is isomorphic with machine Mo from section 3.1 since function enc : Qo ~ pref(P) 
defined by 

enc(q) = (MAX<::. q' : q' E q : q') 

is bijective. Furthermore Moore machine Ml corresponds to the automaton in the "optimized" 
version of the Aho-Corasick algorithm. 

Another interesting property of the Moore machine Ml is that it is in fact the minimal Moore 
machine for its language. This will be shown in the following intermezzo. 

For deterministic Moore machines we use the following definition of minimality: 

Minimal(Q, V, E, 6, >., s) :::: 
('iqO, ql : qo oF ql A qo E Q A ql E Q: (3w: wE V' : .\(0' (qO, w» oF '\(O'(ql, w»». 

Notice that this definition can be viewed as a generalization of the definition of minimality for 
deterministic finite automata (replace .\(6*(q,w» by tj*(q,w) E F in the definition where F is the 
set of final states of the finite automaton). 

6S ubscript / is used to indicate that If corresponds to the forward trie transition function Tf· 
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We now prove that the Moore machine Ml is minimal by contradiction. Assume that there are 

qo, q, : qo E pref(P) II ql E pref(P) II qo i' ql II Iqol 2: Iqd 

such that 

(Vw: w E V· : Output(-yj(qO,w)) = Output(-yj(q"W))). 

Choose Wo: qowo E P. Then l'j(qO,wo) = qowo and qowo E Output(l'j(qO,wo)). In this case (from 
the assumptions) 

qowo E Output(-Yj(q"WO)) 

=> { definition of 'Y f and Output} 

qowo:Sa l'j(ql,WO):Sa qlWO 

=<> { property of <;, } 

qo :Sa ql 

=<> {Iqol 2: Iqd} 

which is a contradiction. We conclude that Moore machine Ml is minimal and end this intermezzo. 

Provided evaluating "Ij(q, a) and Output(q) are 0(1) operations (for instance, if "If and Output 
are tabulated) algorithm 3.3(p+, E, AC, OPT) has O(ISI) run time complexity. Precomputation of 
"If is discussed in Part II, section 6. It involves the so-called failure function which is introduced 
in the next subsection. Precomputation takes O(lpref(P)1 'IVI) time. Storage of "If and Output 
takes O(lpref(P)I'IVI) space. 

3.3 Linear search 

In this subsection we give an alternative way of implementing assignment 

q:= (MAX,;, w: w E suff(u(rl1)) n pref(P) : w) 

involving linear search. We start with the following derivation, assuming P~(u, q), 

(MAX,;, w : w E suff(ua) n pref(P) : w) 

{ derivation in subsection 3.2 without last step} 

(MAX,;, w: w E suff(q)a n pref(P) V w = €: w) 

{suff(q)a n pref(P) ~ pref(P)a} 

(MAX,;, w : w E (suff(q) n pref(P))a n pref(P) V w = € : w) 

{domain split, introduction of ..is with ..is max:;~ w :;: w max~ .. ..is = w 
and (MAX,;, w : w E 0 : w) = -1, 7} 

(MAX,;, w : w E (suff(q) n pref(P))a n pref(P) : w) max,; .. € 

{ change of bound variable: w = w' a } 

(MAX,;, w' : w' E suff(q) n pref(P) II w'a E pref(P) : w'a) max,;, € 

{additional requirement on ..is : ..isw = w..is =..is (..is is zero of concatenation7 )} 

(MAX,;, w' : w' E suff(q) n pref(P) IIw'a E pref(P): w')amax,;, € 

In order to compute the value of the quantified subexpression in the last expression of the derivation 
we use a linear search on suff(q) n pref(P). This is called algorithm detail 

Detail (LS): Using linear search to update the state variable q. D 

In the next two subsections we present two slightly different methods of linear search; the first 
leads to the standard Aho-Corasick algorithm, the second to the Knuth-Morris-Pratt algorithm. 

7Like q representing suff(q) n pref(P), .Ls can be thought of as representing the empty set, provided we extend 
the definition of suff with suff(.Ls) = 0. 
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3.3.1 The Aho-Corasick algorithm with failure function 

Given a linearly ordered) non-empty, and finite set W we can define predecessor function pred : 
W \ {min(W)} ---+ W \ {max(W)} by 

pred(w) = (MAX w' : w' E W /\ w' < w: w') (w E W \ {min(W)}). 

Given a predicate B : W ---+ III linear search for the maximal element of W satisfying B can 
proceed as follows: 

w:= max(W); 
do w # min(W) /\ ,B(w) ---+ w := pred(w) od 
{(w = min(W) /\ ,(3w' E W:: B(w'))) Vw = (MAXw' E W: B(w'): w')} 

Taking 

~ W = suff(q) n pref(P) (linearly ordered under :0;" max(W) = q (P6(u, q)), min(W) = f), 

~ pred = ft".ff,,)np •• "p) 8 where ft : pref(P) \ {c} ---+ pref(P) is defined by 

ft(w) = (MAX". w': w' E suff(w) \ {w} npref(P): w') (w E pref(P) \ {e}) 

(function f t is the Aho-Corasick failure function corresponding to the forward trie [AC75]), 
and 

~ B(w) == wa E pref(P) (w E pref(P)) 

leads to the following update of variable q 

{P6(u,q)} 
q':= q; 
do q' # f /\ q'a if. pref(P) ---+ q' := ft(q') od; 
{(q' = e /\ ,(3w : w E suff(q) n pref(P) : wa E pref(P))) 

V q' = (MAX". w : w E suff(q) n pref(P) /\ wa E pref(P) : w)} 
if q' = f /\ a if. pref(P) ---+ q:= c 
~ q' # c V a E pref(P) ---+ q:= q'a 
Ii {P6(ua,q)} 

The second conjunct in the guard of the repetition can be evaluated using the forward trie Tf 
(q'a if. pref(P) == Tf(q',a) = .L). However, by introducing the extended forward trie T,f : 
pref(P) x V ---+ pref(P) U {.L,} defined by 

{ 

wc if wc E pref( P) 
T'f(w,c)= c ifw=c/\cif.pref(P) 

..is otherwise 
(w E pref(P),c E V) 

both conjuncts can be combined: 

q' # c /\ q'a if. pref(P) == T,f(q',a) = .L,. 

As a side effect of this introduction the if·1i statement can be replaced by the single assignment 
statement q:= T'f(q',a). 

8With JIA we denote the function that is equal to f with its domain restricted to set A. 

17 



By adding algorithm detail 

Detail (AC-FAIL): Introduction of the extended forward trie Tef and the failure function ff to 
implement the linear search updating state variable q. 0 

and eliminating variable q' we obtain algorithm (cf. [AC75J, section 2, algorithm 1) 

Algorithm 3.4(P+, E, AC, LS, AC-FAIL) 

u, r:= <,5; q:= <; Oe := Output(q) x {S}; 
{invariant: PM u, q)} 
do r oj < --; 

do Te!(q,rl1) = -L, --; q:= ff(q) od; 
q:= Tef(q,r1 1); {PMu(r11),q)} 
u,r:= u(rl1),rJl; {Po(u,q)} 
Oe := Oe U Output(q) x {r} 

od {Re} 

This algorithm still has 0(151) run time complexity [Aho90j but is less efficient than the algorithm 
3.3(p+l E, AC, OPT) in section 3.2. Function Tef can be stored more efficiently than function If 
by use of a default value (-L,) requiring O(lpref(P)I) space. Precomputation of extended forward 
trie Tef and failure function If is discussed in Part II, section 6. 

3.3.2 The Knuth-Morris-Pratt algorithm 

We now derive the Knuth-Morris-Pratt (KMP) algorithm, using a type of linear search different 
from that used for the Aho-Corasick algorithm with failure function. 

As in the previous subsection we define a predecessor function on a totally ordered set W. In 
this case, however, we have a total predecessor function predex' : W --; (W \ {max(W)}) U {-Lw} 
defined by 

{ 
pred(w) 

predex'(w) = -Lw 
if w oj min(W) 
if w = min(W) 

(w E W) 

where -Lw is such that -Lw max,; w = w max,; -Lw = wand (MAX,; w E W : w E 0 : w) = -Lw. 
Assuming a selection predicate B as in the previous section, linear search can proceed as 

follows: 

w := max(W); 
do w oj -Lw cand ,B(w) --; w:= predex'(w) od 
{w = (MAX<w' E W: B(w'): w')} 

Taking W = suff(q) n pref(P), -Lw = -L, (remember that -L, is also defined to be a zero of 
concatenation), pred", = fe! where fef : pref(P) --; pref(P) U {-L,} is defined by 

Il!Iuff('l)np .... f(P) 

fe (w) = { f( w) if w oj < 
f ..is Ifw=e: 

(w E pref(P» 

(Je! is called the extended failure function corresponding to the forward trie), and B(w) == wa E 
pref(P) leads to the following instantiation of the linear search: 
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{PJ(u,q)} 
q':= q; 
do q' # -1, cand q'a '1- pref(P) ~ q' := fet(q') od; 
{q' = (MAX"" w: wE su!f(q) n pref(P) /I wa E pref(P) : w)} 
q:= qfamax~~ c 
{q= (MAX<,w: w E su!f(q)npref(P)/lwa E pref(P): w)amax""c} 
{Po(ua,q)} -

Adding the algorithm detail 

Detail (KMP-FAIL): The extended failure function f" is introduced to implement the linear 
search for the update of q. 0 

and eliminating variable q' leads to algorithm 

Algorithm 3.5(p+, E, AC, LS, KMP-FAIL) 

u, r := 0, S; q := 0; 0, := Output(q) X {S}; 
{invariant: PJ(u, q)} 
do r #0 ~ 

do q # -1, cand q(rl1) '1- pref(P) ~ q := fe,(q) od; 
q := q(r11) max",. 0; {Po( u(r11), q)} 
u,r:= u(rjl),rJl; {Po(u,q)} 
Oe := 0, U Output(q) x {r} 

od {R,} 

Adding indices: Historically, the KMP algorithm was designed using indexing within strings; 
this stems from efficiency concerns. Some of the most common uses of the KMP algorithm are 
in file-search programs and text editors, in which pointers to memory containing a string are a 
preferable method of accessing strings. In order to show the equivalence of this more abstract 
version of KMP, and the classically presented version we will now convert the above algorithm to 
make use of indexing within strings. In order to facilitate the use of indexing, we have to restrict 
the problem to the one keyword case, as stated in problem detail 

Detail (OKW): P = {p} 0 

We now introduce three shadow variables, and invariants that are maintained between the shadow 
variables and the existing program variables. Most shadow predicates and functions will be "hat
ted" for easy identification. Variables i and j are so named to conform to the original publication 
of the algorithms. 

• i : q = Pl ... Pi-l where i = 1 :::::: q = t: and i = 0:::::: q = ..is. With this convention we mirror 
the coding trick from the original KMP algorithm. 

• j : u = S, ... Sj-l /I r = Sj ... Sisi. Also r11 = Sj if j S lSI. 

• Oe : Oe = (U x E Oe :: {(p, Sx··· Slsl)})· 

We must of course define new predicates and a new predecessor function Ie! on these shadow 
variables. 

• Define jet: [1, Ipi + 1[ ~ [0, Ipll as j,,(i) = Ifet(Pl .. ·Pi-Ill + 1 and define 1-1,1 = -l. 

• Po(j, i) == (PI ... Pi-l = (MAX",. w E V* : w E su!f(S, ... Sj-Il n pref(p) : w)). 
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• k == (0, = (u j : 1 50 j 50 lSI + 1 II P E suff(S, ... Sj_,) : {j})) 

We can also note the following equivalences and correspondences: 

• Since q E pref(p) then q(rll) '/. pref(p) == Sj # Pi when i < Ipi II j < lSI. Similarly 
q # -1, == 0 < i and q = P == i = Ipi + 1. 

• q:= q(rll) max", .. e corresponds to i := i + 1 

• u,r:= u(rll),rJl corresponds to j:= j + 1 

• role == j 50 lSI 

.0, := O,UOutput(q) x{r} corresponds to if Ipi <i---->O, :=O,U{jHi5o Ipl---->skipfi 

The complete algorithm (written without the invariants relating shadow to non-shadow variables) 
is now: 

u, r:= e, S; q:= e; 0, := Output(q) x {S}; 
i := 1; j := 1; 

if i = Ipi + 1 ----; 0, := {jH i # Ipl + 1 ----> 0, := 0 fi; 
{invariant: P~(u,q) II PMj,i)} 
do j 50 lSI ----; 

do 0 < i cand Sj # Pi ----; q := j'f(q); i := j'f(i) od; 
q := q(rll) max",,c; i := i+ 1; {PQ(u(rll), q) II P~(j + 1, i)} 
u,r:= u(rll),rJl; j:= j + 1; {PMu,q) II PW,i)} 
0, := 0, U Output(q) x {r}; 
if i = Ipi + 1 ----> 0, := 0, U {j} 
i i # Ipi + 1 ---+ skip 
fi 

od {R, II R,} 

We have introduced algorithm detail: 

Detail (INDICES): Represent substrings by indices into the complete strings. 0 

Removing the non-shadow variables leaves us with the classic KMP algorithm (cf. [KMP77], 
section 2, p.326): 

Algorithm 3.6(p+, E, AC, LS, KMP-FAIL, OKW, INDICES) 

i:=::::l;j:=l; 

if i = Ipi + 1 ---+ 0, := {jH i of. Ipl + 1 ---+ 6, := 0 fi; 
{invariant: P~(j, i)} 
do j 50 lSI ----> 

do 0 < i cand Sj # Pi ----> i := j'f(i) od; 
i:=i+1; {P6(j+1,i)} 
j:=j+1; {P~(j,i)} 
if i = Ipi + 1 ----> 0, := 0, U {j} 
~ i # Ipl + 1 ----> skip 
fi 

od {H,} 

This algorithm has O(lSI) running time. Storage of j'f requires O(lpl) space. Precomputation of 

function Jet can easily be derived by converting, in a similar way, the precomputation of function 
Jet (as discussed in Part II, section 6) into using indices. 
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4 The Commentz-Walter algorithms 

We now consider a derivation of the Commentz-Walter algorithms starting with algorithm 2.5 
(p+s+, RT). We will be exploring the possibility of (safely) making shifts of more than one 
symbol. 

To present an algorithm more closely matched to the one presented by Commentz-Walter we 
add the problem detail 

Detail (NE): € if. P 0 

Consequently, assignments 0 := {£} X ({o} np) x {S} and 0 := 0 U {u} x ({€} nP) x {r} become 
superfluous in algorithm 2.5(p+s+, RT). Our goal is to make shifts larger than one symbol in 
the assignment u,r:= u(rll),rJ1. In order to do this, an attempted match should occur before 
this assignment. In this case, information obtained during the attempted match can be used to 
determine an appropriate shift. Attempted matches are performed by the inner repetition of the 
algorithm. A phase shift of the outer repetition will place the inner repetition immediately before 
the shift assignment. Such a phase shift also places an extra copy of the inner repetition after the 
outer repetition. Let m = (MIN pEP :: Ipl). Since lui < m =;. suff(u) n P = 0 we also start 
with a different assignment to u, r. This phase shift and assignment to u, r are not considered 
algorithm details. This yields algorithm 

Algorithm 4.1(p+s+, RT, NE) 

u,r:= Slm,SJm;O:= 0; 
do r # €---> 

l,v:=u,c:; 
do 1# € cand T,(V, 1[1) #.1 ---> 

I, v := Ill, (lfl)v; 
0:= 0 U {I} x ({v} np) x {r} 

od; 
{v E suff(P) /\ (I = € cor (lrr)v if. suff(P))} 
u,r:= u(rll),rJl 

od; 
i,v:= S,€j 

do 1# € cand T,(V,m) #.1 ---> 

I,v:= Ill, {lfl)v; 
o := 0 U {I} x ({v} n P) x {E} 

od 
{v E suff(P) /\ (I = E cor (/i1)v if. suff(P))} 
{R} 

4.1 Larger shifts 

We now consider larger shifts than in the assignment 

u,r:= u(rll),rJl 

in the previous algorithm. 

Detail (cw): If k is such that 

1 ~ k ~ (MINn: 1 ~n ~ Irl /\suff(u(rln))np#0: n)minlrl 

then the assignment to u, r may be replaced by 

u,r:= u(rlk),rJk 

without missing any matches. 0 

21 



A number k satisfying the above condition is called a safe shift distance. Computing the upper
bound on k (the maximal safe shift) is essentially the same as the problem that we are trying to 
solve. Therefore, we will aim at easier to compute approximations of the upperbound. By weak
ening the predicate sulf( u( r1 n)) n P ,0 0 in the range of the quantified expression approximations 
of the upperbound from below are obtained. 

This method of predicate weakening proves to be extremely important both in the derivation of 
the Commentz-Walter algorithm and the Boyer-Moore algorithm variants. In both cases the value 
of a quantified minimum must be computed. The range predicate in the quantifier is initially too 
strong, amounting to a problem of similar difficulty to the one which we are trying to solve. A 
weakening of this predicate will lead to a conservative approximation of the quantified minimum, 
with less computational effort. 

In the following derivation we will assume the post-condition of the inner repetition in al
gorithm 4.1(p+s+, RT, NE): Iv = u II v E sulf(P) II (I = € cor (lrI)v '/. sulf(P)). In fact, 
this post-condition can be rewritten with non-conditional disjunction in place of the conditional 
disjunction since d1 = [ by definition. 

We now proceed to weaken the predicate, assuming 1 :S n :S ITI: 

sulf(u(r1n)) n Pi' 0 
{u = Iv} 

sulf(lv(T1n)) n Pi' 0 
=? {split, and discard most of I, do not lookahead at T, n :S Irl} 

sulf(V'(l[l)vvn) n Pi' 0 

Notice that we have obtained a weaker predicate that does not depend on T. After substituting 
this predicate in the upperbound the restriction n :S ITI can be removed due to the second operand 
of the min-operator, ITI. We continue the derivation, assuming n 2: 1: 

sulf(V'(l[1)vvn) n Pi' 0 
= {property B.2} 

V'(l n)vvn n V' P f' 0 

{ V' An V' B ,0 0 == V· An B # 0 V V' B n A ,0 0} 
v'(lrI)vvn n Pi' 0 V V' P n (l[l)vvn ,0 0 

=? { I = €: trivial; I ,0 c: property B.7} 

V'(l[l)vvn n Pi' 0 V V· P n vvn,o 0 

We now consider several further weakenings of this predicate. 

4.2 Discarding the lookahead symbol 

In the disjunct V'(l[l)vvn n Pi' 0 we discard (lfl): 

V'(lrI)vvn n Pi' 0 V V· P n vvn,o 0 
=? {monotonicity of n: V*(lrI) <;; V'} 

V'vvn n Pi' 0 V V· P n vvn ,0 0 

We now manipulate the MIN quantifier into a suitable form: 

(MIN n: 1 :S n:S ITIII sulf(u(T1n)) n Pi' 0: n) min ITI 

> { weakening of the range predicate using the preceding derivations} 

(MIN n : 1 :S n II (V'vvn n P ,0 0 V V' P n vvn ,0 0) : n) min ITI 

{ property of MIN with disjunctive range} 

(MINn: 1 :Snll V'vVn nP,00: n) 
min(MINn: 1 :Snll v'pnvvn,o 0 :n)minlrl 
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Since v E sulf( P) we can define two functions d1 , d, : sulf( P) ----; N by 

d1(x) = (MIN n: 1 :S n /I V'xvn n P", 0: n) (x E sulf(P)) 
d2 (x) = (MIN n: 1 :S n /I V' P n xvn", 0: n) (x E sulf(P)) 

Detail (NLA): The lookahead term Ifl is discarded. Functions d1 and d, can be precomputed 
and used to compute the no lookahead shift 

knlo = d1(v) mind,(v) min Irl 

D 

Using this detail gives a new algorithm (p+s+, RT, NE, CW, NLA). Precomputation of the two 
functions d1 and d2 is discussed in Part II, subsection 7.1. 

4.3 Using the lookahead symbol 

Instead of discarding the lookahead term I fl it can also be taken into account. 

Detail (LA): The lookahead term (l[1) is not discarded. D 

V'(lfl)vvn n P", 0 V V' P n vvn ",0 

{monotonicity of n: V· (l fl) C; V' } 

(V'(trl)vvn n P", 0/\ V'vvn n P", 0) V V' P n vvn ", 0 
=> {monotonicity of n: vV" C; vlvl+n} 

(V'(l[1)vn+ 1vl n P", 0/\ V'vvn n P", 0) V V' P n vvn ",0 

Detail (NEAR-OPT): Define function dno : sulf(P) x V ----; N by 

dno(x, a) = 
(MIN n : 1 :S n /I (V'aVn+lx l n P ", 0/\ V'xvn n P ", 0) V V' P n xvn ", 0 : n) 

for x E sulf(P), a E V, and use it to compute shift amount 

k _ { dno(v,l[l) minlrl 
no - d1(v)mind,(v)minlrl 

D 

Using shift amount kno yields algorithm (P+S+, RT, NE, CW, LA, NEAR-OPT). Precomputation of 
dno is discussed in Part II, subsection 7.2. 

Precomputation of dno is rather expensive both in space and time. Moreover, storage of dno 
requires O(lsulf(P)I·WI) space. Therefore, we derive another approximation, resulting in a more 
efficient precomputation, and less storage requirements. We derive 

dno(v, (tr1)) min ITI 

{definition of dno and d2 , disjunctive range in quantifier} 

((MIN n : 1 :S n /I V'(l [l)Vn+1vI n P ", 0/\ V'vvn n P ", 0 : n)) min d2 (v) min ITI 

> {conjunctive range in quantifier, definition of d1 } 

((MIN n : 1 :S n /I V'(tr1 )vn+lvl n P ", 0 : n) max d1 (v)) min d2 ( v) min ITI 

2:: { calculus} 

((MIN n: 1 :S n /I V'(l[l)Vn n P", 0: n -Ivl) maxd1(v)) mind2 (v) min Irl 
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Detail (NORM): Define d3 : N x V ---. N by 

d3(z, a) = (MIN n : I :0; n /\ V'aVn n P i 0 : n - z) (z E N,a E V), 

functions d1 and d2 as in subsection 4.2, and use them to compute shift amount 

k _ {(d3{1vl,ifl)maxdl(V»mind2(v)minlrl ifl if 
norm - d1(v) mind2(v) min Irl if I = f 

o 

Using shift distance knorm results in the normal Commentz-Walter algorithm (p+s+, RT, NE, CW, 
LA, NORM) (ef. [Com79a], section II, and [Com79b], sections 11.1 and 11.2). Precomputation of d, 
and d2 is discussed in Part II, subsection 7.1, and precomputation of d3 in Part II, subsection 7.3. 

4.4 A derivation of the Boyer-Moore algorithm 

We consider yet another weakening of the predicate - one that leads to a version of the regular 
Boyer-Moore algorithm. We derive, assuming n ~ 1, 

= 

suff(V'(ifl)vvn) n P i 0 
{property B.2} 

V'(lfl)vvn n V' Pi 0 
{monotonicity of n: V'(lfl) c;: V'} 

V'(lfl)vvn n V' Pi 0/\ V'vvn n V'P i 0 
{monotonicity of n: vvn c;: vn+lvl } 

V'(lfl)Vn+1v l n V' Pi 0/\ V'vvn n V' Pi 0 

We substitute this last predicate in the upper bound and derive 

(MIN n: I :0; n /\ V'(lfl)Vn+1v l n V' Pi 0/\ V'vvn n V' Pi 0 : n) 

> {(MIN n: Qo(n) /\ Q,(n) : n) 2: (MIN n: Qo(n) : n) maxiMIN n: Q,(n) : n)} 

(MIN n : I :0; n /\ V'(lrl)vn+lv l n V' Pi 0 : n) 
max (MIN n : I :0; n /\ V'vvn n V' Pi 0 : n) 

> { changing bound variable: n' = n + lvi, enlarging range to I :0; n' } 

(MIN n' : I :0; n' /\ V'(lfl)Vn' n V' Pi 0: n' -Ivl) 
maxiMIN n : I :0; n /\ V'vvn n V' Pi 0 : n) 

{V'(lfl)Vm n V' Pi 0, where m = (MIN pEP:: Ipl)} 
«MIN n : I :0; n /\ V'(l[l)Vn n V' Pi 0 : n) -Ivl) 
max(MIN n : I :0; n /\ V'vvn n V' Pi 0 : n) 

Detail (BM): Define functions char: V ---. Nand dbm : suff(P) ---. N by 

char(c) (MINn: I :0; n/\ V'cvn n V'P i 0: n) (c E V) 
dbm(X) (MIN n : I :0; n /\ V'xvn n V' Pi 0: n) (x E suff(P» 

and use them to compute the Boyer-Moore shift amount (ef. [BM77J, section 4) 

k _ {«Char(lfl)-lvl)maxdbm(V))minlrl ifl if 
bm - dbm(v) min Irl Ifl =, 

o 

Using shift amount kbm results in the Boyer Moore algorithm9 (P+S+ 1 RT, NE, CW, BM). Precom
putation of functions char and dbm is discussed in Part II, subsection 7.4. There it is also shown 
that knorm 2: kbm , meaning that the amount of shift in the normal Commentz-Walter algorithm 
(p+s+, RT, NE, CW, LA, NORM) is always at least the amount of shift in the Boyer-Moore algorithm 
(P+S+ 1 RT, NE, CW, BM). 

9The actual Boyer-Moore algorithm has the restriction of problem detail (OKW): P = {pl. 
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5 The Boyer-Moore family of algorithms 

The Boyer-Moore algorithm derivation in the previous section only accounted for one method of 
traversing the variable u, in increasing order of v. In practice, when P = {p} other methods of 
comparing v to keyword P can be used. We therefore introduce problem detail 

Detail (OKW): P = {p} 0 

and starting with the original problem specification derive the Boyer-Moore algorithm and its 
variants. 

We define a "perfect match" predicate 

PM({l,v,r» == (lvr = S 1\ v = p) 

and rewrite the postcondition into 

R': 0 = (U I,v,r: PM«/,v,r» : {(I, v, r)}). 

Define right shift function Sh : (V')3 x N ---> (V')3 by 

Sh(l,v,r,k) = (/(vrlk),(v(rlk»Jk,rJk). 

By introduction of the "regular Boyer-Moore" algorithm detail 

Detail (RBM): Use function Sh and maintain invariant 

P, (l, v, r) (lvr = S) 1\ (Ivl :s Ipl) 1\ (Ivl < Ipi '* r = 0) 
1\ (0 = (u I',v',r' : PM((l',v',r'») 1\ (/'v' <p Iv): {(/',v',r')}») 

o 

we obtain a first (deterministic) solution (which is a phase shifted version of the algorithm in 
Appendix A.2) 

Algorithm 5.1(OKW, RBM) 

I, v, r := 0, Sllpl, SJ Ipl; 0 := 0; 
{invariant: P,(/,v,r)} 
do Ivl = Ipi ---> 

if v = p ---> 0 := 0 U {(l, v, r)} 
~ v '" p ---> skip 
Ii; 
(/,v,r):= Sh(l,v,r,l) {P,(l,v, r)} 

od {R'} 

This algorithm does not take into account how we evaluate v = p. Define a "match order" to be 
a bijective function ma : [1, Ipll ---> [1, Ipl], i.e. a permutation of the integers j : 1 :s j :s Ipl. This 
function is used to determine the order in which the individual symbols of v and p are compared. 
We now have 

(v = p) == (iii: 1 :s i :s Ipl : Vmo(i) = Pmo(i). 

The match order detail is: 

Detail (MO): The characters of v and p are compared in a fixed order determined by a bijective 
function ma : [1, Ipll ---> [1, Ipll (i.e. a permutation of [1, Ipl]). 0 

The particular match order used in an algorithm determines the third position of the algorithm 
name. Three of the most common match orders, which represent particular instances of detail 
(MO), are 
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Detail (FWD): The forward (or identity) match order given by mo(i) = i. 0 

Detail (REV): The reverse match order given by mo(i) = Ipi - i + 1. This is the original 
Boyer-Moore match order. 0 

Detail (OM): Let Pr : [l,lpl] -----> [0,1] be the probability distribution of the symbols of 
P in input string S; the domain of function Pr consists of indices into p. Let an optimal 
mismatch match order be any permutation ma such that 

(Vi,j : 1 :s: i:S: Ipi A 1 :s: j :s: i: Pr(mo(j)) :s: Pr(mo(i))). 

This match order is described as "optimal" because it compares characters of p in order of 
ascending probability of occurring in S. In this way, the least probable characters of pare 
compared first, so on the average one can expect to find any mismatch as early as possible. 
o 

Comparing v and p using match order mo is done by procedure Match specified by 

{Ivl = Ipl} 
M atch(l v, 1 p, 1 rna, r i) 
{P2 (v,p,mo,i) : (1:S: i:S: Ipl + 1) A (i:S: Ipi =? vmo(') '" Pmo('») 

A (Vj : 1 :s: j < i : vmo(j) = Pmo(j»)} 

From P2 (v,p,mo,i) it follows that (v = p) == (i = Ipi + 1), and that if i :s: Ipi then vmo(') is the 
first (in the given order) mismatching character. An implementation of Match is 

i:= 1; 

do i :s: Ipi cand V mo(') = Pmo(') -----> i := i + 1 ad 

Adding mo, i, and Match to the algorithm 5.1(OKW, RBM) results in 

Algorithm 5.2(OKW, RBM, MO) 

l,v,r:= E,SllpI,SJlpl; 0:= 0; 
{invariant: P,{l,v,r)} 
do Ivl = Ipi -----> 

M atch(v,p, mo, i); 
{P2 (v,p,mo,i)} 
ifi = Ipl+l-----> 0:= OU {(l,v,r)} 

i i '" Ipi + 1 -----> skip 
fi; 
(l,v,r):= Sh(l,v,r,l) {P,{l,v,r)} 

od {R'} 

In some versions of the Boyer-Moore algorithms Match is only executed after a successful com
parison of a character of p which is least frequent in S, and the corresponding character of v. In 
the taxonomy in [HS91] this comparison is called the guard and the character of p involved the 
guard character. We do not consider it here since it can be viewed as additionally requiring that 
PTno(l) is a character of P with minimal frequency in S. 
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5.1 Larger shifts without using Match information 

It may be possible to make an additional shift (immediately before Match is performed) providing 
no matches are missed. A shift of not greater than (MINk: 0:'0 kIlPM(Sh{l,v,r,k)): k) will 
be safe. This can be done with the statement 

{Ivl = Ipl} 
(l, v, r) := Sh(/, v, r, (MIN k : 0 :'0 k II PM(Sh(/, v, r, k)) : k) min Irl) 
{Ivl = IpllI (r = E V PM{l,v,r))} 

The min Irl is used to ensure that Ivl = Ipi is maintained. Another implementation of the shift is 

{Ivl = Ipl} 
do 1:'0 Irlll ,PM{l,v,r)--> 

(I, v, r) := Sh{l, v, r, (MIN k : 1 :'0 k II PM(Sh{l, v, r, k)) : k) min Irl) 
od 
{Ivl = IpllI (r = E V PM{l, v, r))} 

This could have been implemented with an if-fi construct, however, the do-od construct will 
prove to be more useful when the shift distance is approximated from below. The do-od version 
is known as a skip loop in the taxonomy of Hume and Sunday [HS91]. 

Calculating the MIN quantification is essentially as difficult as the problem we are trying 
to solve. Since any smaller shift length suffices, we consider weakenings of predicate PM. Some 
weakenings are: Qo({l,v,r)) '" true, Q,({l,v,r)) '" (VI = PI), Q2((/,v,r)) '" (Vlpl = Plpl), and 
Q3{{l,v,r)) '" (Vj = Pj) (for some j : 1 :'0 j :'0 Ipl); the predicates Q" Q2 and Q3 require that 
polE. Predicates Q, and Q2 are special cases of Q3· We can of course take the conjunction of 
any of these weakenings and still have a weakening of PM. 

For each weakening of PM, we consider the shift length as calculated with the quantified 
MIN. In the case of Qo, the entire skip loop is equivalent to skip. 

We consider the shift length for Q3 before returning to Q, and Q2 as special cases. We need 
to compute 

(MINk: 1:'0 kIlPM(Sh(/,v,r,k)): k) 

In order to easily compute this we will weaken the range predicate, removing lookahead. Addi
tionally, it is known (from the do-od guard) that ,Q3((/, v, r)) holds. The derivation proceeds as 
follows (assuming 1:'0 k:'O Irl, ,Q3((/,v,r)) and fixed j: 1:'0 j :'0 Ipl): 

= 

PM(Sh(l, v, r, k)) 
{ definition of S h } 

P M{{l( vrl k), (v(rl k))J k, r J k)) 

{ definition of PM} 

(v(rlk))Jk =p 

{ definition of = on strings} 

(lfi: 1:'0 i:'O Ipi : ((v(rlk))Jk)i = Pi) 

{rewrite J into indexing} 

(lfi : 1 :'0 i:'O Ipi : (v(rlk))iH = Pi) 

{discard lookahead at r, Ivl = Ipi } 
(lfi : 1 :'0 i :'0 Ipi - k : ViH = Pi) 

{change of bound variable: i' = i + k. 'Q3((I, v, r)) } 
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(Vi' : 1 + k::; i' ::; Ipi : v; = Pi'-k) 1\ Vj # Pj 

=? { one point rule} 

1 + k ::; j =? Vj = pj-k 1\ Vj # Pj 

{transitivity of = } 

1 + k ::; j =? Vj = Pj-k 1\ Pj # Pj-k 

The final predicate is free of r, and so the upperbound of Irion k can be dropped. 
Given j : 1 ::; j ::; Ipi we can define a function and a constant 

sz. (a) 
Sl2 

= (MIN k: 1 ::; k 1\ (1 + k::; j =? a = Pj-k) : k) 
(MIN k: 1::; kf\(1 +k::;j =? pj '1'Pj-k): k) 

Functions sl, and Sl2 can be combined to give a shift of (sl,(vj) maxsl2) min Irl. In practice sz. 
and Sl2 are frequently combined into one function. In section 5.2 we will show how sl, and Sl2 
can be obtained from two functions computed for a different purpose. If a conjunct of any of Qo, 
Q" Q2, or Q3 is used as a weakening of PM, the appropriate skip length can be approximated as 
the max of the individual skip lengths. A particularly interesting skip length is that arising from 
predicate Q,. In this case, sl,(a) = 1 and Sl2 = 1 and a skip length of 1 is used. 

Assuming Q is a weakening of PM we introduce program detail 

Detail (SL): Comparison of v and P is preceded bye a skip loop based upon weakening Q of PM 
and some appropriate skip length. 0 

Assuming some fixed j : 1 ::; j ::; Ipi we use Q3 as an example of a weakening of PM in 

Algorithm 5.3(OKW, RBM, MO, SL) 

I,v,r:= £,S1Ipl,SJlpl; 0:= 0; 
{invariant: P,(l,v,r)} 
do Ivi = Ipi ---> 

{Ivl = Ipl} 
do 1::; Irl 1\ ~Q3((i,v,r)) ---> (l,v,r):= Sh(l,v,r, (S/l(Vj) lllaxsl2) min Irl) ad; 
{ivi = Ipi 1\ (Q3«(l,v,r)) V r = E)} 
Match(v,p,mo,i); {P2 (v,p,mo,i)} 
if i = Ipi + 1 ---> 0:= 0 U {(/,v,r)} 
I i # Ipi + 1 ---> skip 
Ii; 
(/,v,r):= Sh(l,v,r, 1) {P,(l,v,r)} 

od {R'} 

We proceed by presenting four instances of detail (SL) (each based on a weakening of PM)lO: 

Detail (NONE): The predicate Qo (true) is used as the weakening of PM in the skip loop. 
Notice that in this case the skip loop is equivalent to statement skip. 0 

Detail (SFC"): The predicate Q, is used as the weakening of PM in the skip loop. 0 

Detail (FAST): The predicate Q2 is used as the weakening of PM in the skip loop. 0 

Detail (SLFC'2): Let Pj be a character of P with minimal frequency in S. Predicate Q3, 
defined by 

Q3((l,v,r)) == Vj = Pj, 

is used as the weakening of PM in the skip loop. 0 

lOnames are taken from the taxonomy in [HS91] 
11 search first character 
12search least frequent character 
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5.2 Making use of Match information 

Up to now information from previous matching attempts was not used in the computation of the 
shift distance (in fact there was no computation and the shift distance defaulted to 1). In this 
subsection we will take into account the information from the immediately preceding matching 
attempt. 

With a shift of k symbols, P will be compared against (vrJ k)1Ipl. Ideally, we would like to 
select our shift k such that it is the smallest k satisfying 1 :s k :s Irl and 

(Vj : 1 :s j :s Ipi : (vrJk)j = Pj)· 

Again, we apply the technique of weakening such a predicate, thereby obtaining approximations 
of the optimal shift distance from below. The weakening of the predicate should, amongst others, 
include the removal of any reference to r (no lookahead). 

In the following calculations we assume k :s Irlll Ivl = Ipi and the postcondition of Match, 
namely P,(v,p,mo,i). We derive 

(Vj : 1 :s j :s Ipi : (vrJk)j = Pj) 

{Ivl = Ipl, k:S Irl, hence (vrJk)j = (vr)j+k} 

(Vj: 1:S j:S Ipi : (vr)j+k = Pj) 

{ change of bound variable: j' = j + k } 

(Vj' : 1 + k:S j' :s Ipi + k: (vr»)' = Pj'-k) 

{ Ivl = Ipl, remove references to characters of r} 

(Vj' : 1 + k :s l' :s Ipi : Vj' = Pj'-k) 

{ change of bound variable: j' = mo(j) } 

(Vj : 1 :s j :s Ipllli + k :s moU) : vmo(j) = Pmo(j)-k) 

{P,(v,p,mo,i) } 

(Vj : 1 :s j :s Ipllli + k :s moU) : vmo(j) = Pmo(j)-kl 

II (i :s Ipi '* Vmo(i) oF Pmo(i» II (Vj : 1 :s j < i: vmo(j) = Pmo(j» 
{ combine V quantifiers, with restricted range, since 1 :s i :s Ipi + 1 } 

(Vj : 1 :s j < i 111 + k :s mo(j) : Pmo(j) = Pmo(j)-k) 

II (i :s Ipi cand 1 + k :s mo(i) '* Vmo(i) = Pmo(i)-k II Pmo(i) oF Pmo(i)-k) 

The last predicate in the preceding derivation will be denoted by P3 (v, i, k) (here we have chosen 
to make parameters ma and p implicit). We now define the shift distance k based on previous 
match information by 

k= (MINj: l:Sj IIP3 (v,i,j) :j)min(lrl+ 1). 

Notice that this shift distance still depends on implicit parameter mo. The predicate P3 is fre
quently weakened further (most often the conjunct Pmo(i) oF Pmo(i)-k is discarded). In much of 
the literature, P3 is broken up into 

P~(i, k) 
Pj'(v,i,k) 
Pr'{i,k) 

= (Vj: 1 :s j < i 111 + k :s mo(j) : Pmo(j) = Pmo(j)-k) 
== (i:S Ipi cand 1 + k :s mo(i) '* Vmo(i) = Pmo(i)-kl 
- (i:S Ipi cand 1 + k :s mo(i) '* Pmo(i) oF Pmo(i)-k) 

This leads to three functions 8, : N ---> N, char, : V lpl x N ---> N, and char, : N ---> N defined by 

s, (i) 
char,(v, i) 
char, (i) 

(MIN k: 1:S kIlP;(i,k): k) 
(MIN k: 1:S k IIPj'(v,i,k): k) 
(MIN k: 1:S kIlP~"(i,k): k) 

(i E N) 
(v E Vlpl,i E N) 
(i E N) 

Applying these functions yields a new, possibly smaller, shift distance 

k = (sl(i) max char, (v, i) maxchar,(i)) min(lrl + 1). 

This is known as the match information detail 
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Detail (MI): Use information from the preceding match attempt by computing the shift distance 
using functions 81, charl1 and char2. 0 

Adding this detail results in the following Boyer-Moore algorithm skeleton (details (MO) and (SL) 
still have to be instantiated), for weakening Q3 of PM (cf. (HS91], section 4, p.1224): 

Algorithm 5.4(OKW, RBM, MO, SL, MI) 

I, v, r := e, Sllpl, SJ Ipl; 0 := 0; 
{invariant: PI (I, V, r)} 
do Ivl = Ipi ---> 

{Ivl = Ipl} 
do 1 :0; Irl A ,Q3((l, v, r» ---> (I, v, r) := Sh(l, v, r, (sh(v;) max sl,) min Irl) od; 
{Ivl = Ipi A (Q3((l, v, r» V r = e)} 
Match(v,p,mo,i); {P,(v,p,mo,i)} 
ifi = Ipi + 1 ---> 0:= 0 U {(I,v,r)} 
~ i I' Ipi + 1 ---> skip 
ft· , 
k := (SI (i) max chari (v, i) max char,(i)) min(lrl + 1); 
(I,v,r):= Sh(l,v,r,k) {PI(l,v,r)} 

od {R'} 

Precomputation of functions 81, charI) and char2 is discussed in Part II, subsection 7.5 for in
stantiations (FWD) and (REV) of algorithm detail (MO). 

Given fixed j : 1 :0; j :0; Ipi we can easily compute the function sll and constant sl, from 
section 5.1. This can be done for any particular mo. The functions are 

chari (v, mo- I (j» 
= char,(mo-I(j» 
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Part II 

Precomputation 
In this part we derive algorithms for the precomputation of the functions used in the pattern 
matching algorithms in Part 1. The algorithms are correct due to their formal derivation. This can 
not always be said about the algorithms found in the literature, mostly due to the absence of any 
formal derivation (see for instance the single keyword Boyer-Moore precomputation algorithms 
given in [BM77], [KMP77[, and [Ryt80], where each article shows the preceding article to give 
an incorrect precomputation algorithm). Moreover, we give the first formal derivation of the 
precomputation algorithms for the Commentz-Walter family of algorithms. They can, amongst 
others, be specialized to a correct precomputation algorithm for the single keyword Boyer-Moore 
algorithm. 

6 Precomputation for the Aho-Corasick algorithms 

First, we consider the transition function of the forward trie corresponding to P TP,j : pref(P) x 
V ----> (pref(P) U {.1}) defined by 

{ 
ua if ua E pref(P) 

Tp,f(u,a) = .1 if ua \t pref(P) (u E pref(P), a E V). 

Since pref is idempotent and the definition of Tp,J only depends on pref(P), we have Tp,J 
Tpref(P),J· Set P being nonempty we also have pref(P) = {€} U pref(P) and, hence, Tpref(P),J = 
T{,}Upref(P),J· These observations lead to the following algorithm to compute Tp,J in which variable 
tau is used to calculate and store Tp,J (ef. [AC75], section 3, algorithm 2): 

{tau = T0,J} 
for a: a E V do tau(c, a) := ..1 rof; 
{tau = T{,},J} 
Pd1 Pr := 0, P; 
{invariant: Pd U P, = P /I Pd n P, = 0/\ tau = T{'}Upref(P,),J} 
do P, # 0 ----> 

p:pEP,; 
u,v:= €,pj 

{invariant: uv = P 1\ tau = T{~}uPf'ef(Pd)UPt'ef(u},f} 
do v # € ----> 

if tau(u,vl1) =.1----> 
tau(u,vll):= u(vll); 
for a: a E V do tau(u(vl1),a):=.1 rof 

tau(u,vl1) #.1----> skip 
Ii; 
u,v:= u(ul1),vJl 

ad; 
Pd,P,:= Pd + {p},P, - {p} 

od {tau = Tp,f} 

Notice that the algorithm does a depth first traversal of the forward trie. Also notice that variable 
Pd is only needed to formulate an invariant for tau, so it may safely be removed from the algorithm. 
Furthermore, the states of the forward trie are represented by strings. In practice, one can resort 
to a more suitable representation, for instance a representation by natural numbers. We will not 
elaborate this here. 
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The extended forward trie corresponding to P Tp"t : pref( P) x V -----> (pref( P) u {J.}) is 
defined by 

{ 

ua if ua E pref( P) 
Tp"t(u,a) = e ifu=u\ali'pref(P) 

J. if u i e 1\ ua li' pref(P) 
(u E pref(P), a E V), 

It can be computed by the algorithm obtained by adding statement 

for a : tau(e, a) = J. do tau(e, a) := e rof 

to the end of the algorithm computing Tp,[, 
Next, we focus on the computation of function "it : pref(P) x V -----> pref(P), defined by 

"it(q, a) = (MAX,;. w : w E suff(qa) n pref(P) : w) (q E pref(P), a E V), 

and it : pref(P) \ {e} -----> pref(P), defined by 

it(q) = (MAX<. w: w E (suff(q) \ {q}) npref(P): w) (q E pref(P) \ {e}), 

In order to arrive at an algorithm computing both "if and if we first derive (mutually) recursive 
definitions of "if and if' 

i. Let a E V, We derive 

"if(e,a) 

{ definition of "if } 

(MAX,;. w : w E suff(a) n pref(P) : w) 

{ case analysis} 

{
a if a E pref(P) 
e if a li' pref(P) 

ii. Let u E pref(P) \ {e} and a E V, We distinguish two cases, 

a. Assume ua E pref(P), Then by definition of "if we have "if(u,a) = ua, 

b. Assume ua li' pref(P), Let u = buo where b E V and Uo E V'. We derive 

"if(u, a) 

{ definition of "if } 

(MAX". w : w E suff(ua) n pref(P) : w) 

{ ua li' pref(P), suff( ua) \ {ua} = (suff( u) \ {u})a U {E}, Pi 0} 

(MAX,;. w : w E (suff(u) \ {u})a n pref(P) V w = £ : w) 

{u = buo, suff(u) \ {u} = suff(uo)} 

(MAX,;. w : W E suff(uo)a n pref(P) V w = e : w) 

= {suff is idempotent, Theorem B,5 } 

(MAX,;. w : w E suff((MAX,;. v: v E suff(uo) n pref(P) ; v))a n pref(P) 
Vw=c:w) 

{u = buo, suff(uo) = suff(u) \ {u} } 

(MAX,;" w: w E suff((MAX" .. v: v E (suff(u) \ {u}) n pref(P): v))a n pref(P) 
Vw=c:w) 

{definition of if } 

(MAX,;, w : w E sUff(ft(u))a n pfef(P) V w = e : w) 
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{suff(ft(u)a) = suff(ft(u))aU {£}, P # 0} 

(MAX,;. w: w E suff(ft(u)a) n pref(P): w) 

{ definition of "f f } 

"ff(ff(u),a) 

Observe that the need for function 1f arises naturally in this derivation. 

iii. Let a E V such that a E pref(P). We derive 

ft(a) 

{ definition of ft } 

(MAX,;. w : w E (suff(a) \ {a}) n pref(P) : w) 

= {suff(a)={£,a},P#0} 

iv. Let u E V' \ {£} and a E V such that ua E pref( P). We derive 

ft(ua) 

{ definition of ft } 

(MAX,;. w: w E (suff(ua) \ {ua}) n pref(P) : w) 

= {suff(ua) \ {ua} = (suff(u) \ {u})a U {e}, P # 0} 

(MAX,;. w : w E (suff(u) \ {u})a n pref(P) V w = £ : w) 

{ see derivation in ii. b. } 

"ff(ff(u), a) 

Summarizing, we have 

"ff(£, a) = {~ 
"ff(u, a) { ua 

"ff(ft(u),a) 

ft(a) £ 

ft(ua) "ff(ft(u),a) 

if a <;!. pref( P) 
if a E pref(P) 

if ua E pref( P) 
if ua rt pref(P) 

(a E V) 

(u E pref(P) \ {e},a E V) 

(a E V, a E pref(P)) 

(u E pref(P) \ {e},a E V,ua E pref(P)) 

Since (Vu: u E pref(P) \ {£}: Ift(u)1 < luI) the functions "ff and ft can be computed by the 
following algorithm that is based upon the preceding recursive definitions (notice the layer wise 
or breadth first traversal of pref(P); algorithm variables 9f and ff are used to calculate and store 
"ff and 1f, respectively; cf. [AC75], a combination of algorithm 3 from section 3 and algorithm 4 
from section 6): 
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for a: a E V do 
if a E pref(P) -----> gf(o, a) := a; fI(a) := 0 

~ art pref(P) -----> gf(c, a) := c 
fi 

rofj 
n:= 1; 
{invariant: 

(ltu,a: u E pref(P)" lui < n" a E V: gf(u,a) = I'f(u,a)) 
" (ltu: u E pref(P) \ {c} " lui :'0 n : fI(u) = ft(u))} 

do pref( P) n vn i' 0 -----> 

od 

for u : U E pref(P) n vn do 

rof; 

for a: a E V do 

rof 

if ua E pref(P) -----> gf(u,a) := ua; fI(ua) := gf(fI(u),a) 
~ ua rt pref(P) -----> gf(u,a) := gf(fI(u),a) 
fi 

n:= n+ 1 

If the forward trie Tf has already been computed and represented by tau, then the guard "ua E 

pref(P)" in the preceding algorithm can be replaced by "tau(u, a) i' -1". 
Next, we show how to compute failure function if without function "If using linear search. For 

u E pref(P) \ {c}, a E V, and ua E pref(P) we derive 

ft(ua) 

= { see derivation iv. } 

(MAX". w: wE (su!f(u) \ {u})an pref(P) V w = c: w) 

{ domain split, (sulf( u) \ {u})a n pref( P) <; pref(P)a } 

(MAXS;. w : w E (sulf(u) \ {u} n pref(P))a n pref(P) : w) maxS;. c 

{ change of bound variable: w = w' a, properties of -1, } 

(MAXS;. w': w' E sulf(u) \ {u} n pref(P)" w'a E pref(?): w')amax<. c 

As in 3.3.1 this expression can be computed using a linear search 

{(ltv: v E pref(P)" v <, u: fI(v) = ft(v))} 
u' :=fI(u); 
do Tef(u',a) = -1, -----> U' :=fI(u') od; 
fI(ua):= Tef(u',a) 

This leads to the following algorithm computing failnre function ff (notice the breadth first 
traversal of pref(P) \ {c}; cf. [AC75], section 3, algorithm 3): 
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{tau = T'f} 
for a: a E V do 

if a E pref(P) ----> ff(a) := e 
~ a <f- pref( P) ----> skip 
ft 

rof; 
n:= 1; 
{invariant: (Vu: u E pref(P) \ {e} II lui :s; n: ff(u) = ft(u))} 
do pref( P) n vn # 0 ----> 

od 

for u : u E pref(P) n vn do 
for a: a E V do 

rof 
rof; 

if ua E pref(P) ----> 

u' := ff(u); 
do tau(u',a) = 1-, ----> u' :=ff(u') od; 
ff(ua):= tau(u',a) 

~ ua <f- pref( P) ----> skip 
ft 

n :=n+ 1 

Finally, we consider the precomputation of function Output : pref(P) ----> P(P) defined by 
Output(u) = suff(u) n P. A recursive definition of Output is derived as follows: 

i. By definition we have Output(e) = {c} n P. 

ii. Let u E pref(P) \ {e}. Let u = buo where b E V and Uo E V'. We derive 

Output(u) 

{ definition of Output} 

suff(u) n P 

{suff(u) = (suff(u) \ {u}) u {u}} 
«suff(u)\{u})np)u({u}np) 

= {u = buo, suff(u) \ {u} = suff(uo), P <;; pref(P)} 

(suff(uo) n pref(P) n P) U ({ u) n P) 

{suff is idempotent, Theorem B.5 } 

(suff«MAX,s, w: W E suff(uo) npref(P) : w)) npref(P) n P) u ({u) n P) 

{P <;; pref(P), u = buo, suff(uo) = suff(u) \ {u}} 

(suff«MAX,s. w : w E (suff(u) \ {uj) n pref(P) : w)) n P) u ({u) n P) 

{definition of ff, u E pref(P) \ {ej, definition of Output} 

Output(ft(u)) U ({u) n P) 

By preceding the algorithm on page 34 with assignment "out(e) := {e} n P", and by adding 
assignment "out (a) := outre) U ({a} n P)" to the end of the first alternative of its first if-ft 
statement and assignment "out( ua) := out (ff ( ua)) U ({ ua) n P)" to the end of the first alternative 
of its second if -fi statement one obtains an algorithm computing function Output as well. 
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7 Precomputation for the Commentz-Walter algorithms 

In this section we will be using the reverse trie corresponding to P T, : suff(P) x V -----> suff(P) U 

{-L} defined by 

( ) _ {au if au E suff(P) 
T, u, a - -1 if au rf- suff(P) (u E suff(P), a E V), 

its optimal transition function 'Y, : suff(P) x V -----> suff(P) defined by 

'Y,(q,a) = (MAX"" w: W E pref(qa) nsuff(P): w) (q E suff(P),a E V), 

and its failure function I, : suff(P) \ {e} -----> suff(P) defined by 

I,(q) = (MAX"" w: W E (pref(q) \ {q}) nsuff(p): w) (q E suff(P) \ {e}). 

These functions are the mirror image of the functions corresponding to the forward trie and can 
be computed by algorithms that are the mirror images of the algorithms in the previous section. 

7.1 Computation of d j and d2 

Next, we consider the computation of function dl : suff(P) -----> ]\/ defined by 

dl(x) = (MINn: n 2: 1A V'xV n nP i' 0: n) 

Let x E suff(P). We derive 

(x E suff(P». 

Note 

(MIN n : n 2: 1 A V'xV n n Pi' 0 : n) 

{property B.2} 

(MIN n : n 2: 1 A (xvn) n suff(P) i' 0 : n) 

{change of bound variable: n = lsi} 
(MIN s : S E V+ A xs E suff(P) : lsi) 

{ change of bound variable: t = xs } 

(MIN t: t E suff(P) \ {e} A x <p t: Itl-Ixl) 
{x, t E suff(P), t i' e, lemma B.8} 

(MINt: t E suff(P) \ {e} Ax Sp I,(t): Itl-Ixl) 
{ domain split} 

(MIN t : t E suff(P) \ {£} 1\ x = I,(t) : Itl-Ixl) 
min(MIN t : t E sulf(P) \ {f} A x <p I,(t) : Itl-Ixl) 

{ see following note} 

(MINt: tE suff(P) \ {£}Ax= I,(t): Itl-Ixl) 

In order to show that the second operand of the min-operator can be omitted we distinguish two 
cases: 

i. Assume ,(3t : t E suff(P) \ {f} : x <p I,(t». The second operand now equals the unity of 
the min-operator. 

ii. Assume (3t: t E suff(P) \ {f}: x <p I,(t». We derive 

(MINt: t E suff(P) \ {flAX <p I,(t): Itl-Ixl) 
> {(3t: t E suff(P) \ {e}: x <p I,(t», t E suff(P) \ {e} =? II,(t)1 < It I } 

(MIN t : t E suff(P) \ {e} A x <p I,(t) : II,(t)1 -Ixl) 
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{fr(t) E suff(P), x <p fr(t) '* fr(t) # e} 

(MIN t: t E suff(P) \ {e} A fr(t) E suff(P) \ {e} A x <p fr(t) : Ifr(t)I-lxl) 

::0: {omitting first predicate in domain, change of bound variable: t' = fr(t) } 

(MIN t' : t' E suff(P) \ {e} A x <p t' : WI-Ix!) 
{ see first part of the previous derivation} 

d,(x) 

Since a = b min cAe> a ~ a = b the second operand of the min-operator can be omitted 
in this case as well. 

(End of Note) 

Summarizing, we have 

d,(x) = (MINt: t E suff(P) \ {e}Ax = fr(t): Itl-Ix!) (x E suff(P)). 

(ef. [Com79a], sections I and III, and [Com79b), sections ILl and III, functions shift1, set1, 
and set1'). Function d, can be computed during the computation of "Ir and fr without having 
to compute the (generalized) inverse of fr explicitly. 

Before giving an algorithm demonstrating this we will first deal with the computation of 
function d2 : suff( P) --+ N defined by 

d2 (x) = (MINn: n::O: 1 A V'pnxVn # 0: n) (x E suff(P)). 

We will show that d2 can also be expressed in terms of fro We distinguish two cases:: 

i. Let x = e. We derive 

(MIN n : n ::0: 1 A V' P n x vn # 0 : n) 

{x = e, property B.2} 

(MIN n: n::O: 1 A P n suff(vn) # 0: n) 

{t: C/. P (NE), n ~ 1,* suff(vn) \ suff(Vn-') = vn} 

(MIN n : n ::0: 1 A P n vn # 0 : n) 

{e C/. P} 
(MIN p : pEP: Ip!) 

ii. Let x E suff(P) \ {e}. We derive 

(MINn:n::O: IA V'Pnxvn #0 :n) 

{property B.2} 

(MINn: n::O: 1 APnsuff(xVn ) #0 :n) 

{x # e, suff(xvn) = xV" + suff((xJ l)Vn), domain split} 

(MIN n : n ::0: 1 A P n xV" # 0 : n) 
min(MIN n : n ::0: 1 A P n suff((xJ I)V") # 0 : n) 

= {change of bound variable: n = lsi, definition of d2 } 

(MIN s: s E V+ Axs E P: Isl)mind2 (xU) 

{ change of bound variable: p = xs } 

(MIN p: pEP A x <p p: Ipl-Ix!) mind2 (xU) 
{e C/. P, hence p E suff(P) \ {,,}, x E suff(P), definition E.9, corollary B.12} 

(MIN p: pEP A (3i : 0 < i ::; v(p) : x = f:(p)) : Ipl-Ixl) mind2 (xU) 

The result in case i. can be made to look more like the result in case ii.: 
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(MIN P : pEP: Ipl) 

{f:(p) (p) = 0, 0 rt P, hence v(p) > 0, 101 = 0) 

(MIN p : pEP t\ (3i : 0 < i :'0 vip) : 0 = f;(p» : Ipl-Iol) 

Summarizing, we have, for x E suff(P) \ {o), 

d,(o) = (MIN p: pEP t\ (3i : 0 < i:'O vip) : 0 = f:(p)) : Ipl- 101) 
d,(x) = (MIN p : pEP t\ (3i : 0 < i :'0 vip) : x = f;(p» : Ipl-Ixl) min d2 (xJ 1). 

(ef. [Com79a], sections I and III, and [Com79b], sections 11.1 and III, functions shift2, set2, and 
set2 J; the restriction from set2 to set2' for the computation of shift2 is not explained there 
and seems, in view of our results for d2 , to be incorrect). 

The expressions derived for d, and dz lead to the following algorithm computing 'Yro fro d" 
and d2 in program variables gr, fT, dl, and d2, respectively: 

for u: u E suff(P) do d1(u),d2(u):= +inf,+inf rof; 
for a: a E V do 

if a E suff(P) ---> 

gr(o, a) := a; 
fr(a) := E; 
d1(0) := d1(0) min 1; 
if a E P ---> d2(0) := d2(0) min 1 
i a rt P ---> skip 
Ii 

~ art suff(P) ---> gr(o, a) := 0 

Ii 
rof; 
n:= 1; 
{ invariant: 

} 

(Vu, a: u E suff(P) 1\ lui < n 1\ a E V: gr(u, a) = ,,(u, a» 
t\ (lIu: u E suff(P) \ {o) t\ lul:'O n: fr(u) = f,(u» 
1\ (lIu: u E suff(P) : d1(u) = (MIN t: t E suff(P) \ {o} 1\ It I :s; n 1\ u = f,(t) : It I -lui» 
t\ (lIu: u E suff(P) : d2(u) = (MIN p: pEP t\ Ipi :'0 n t\ (3i : 0 < i:'O vip) : u = f;(p» : Ipl-Iul» 

do suff(P) n vn oj 0 ---> 

for u : u E suff(P) n vn do 
for a: a E V do 

if au E suff( P) ---> 

gr(u,a):= au; 
fr(au):= gr(fr(u),a); 

Ii 

d1(fr(au» := d1(fr(au» min(laul-lfr(au)I); 
if au E P---> 

v := fr(au); i := 1; 
{ invariant: v = fri(au) t\ 0 < i :'0 v(au) ) 
do v oj 0 ---> 

ad; 

d2(v) := d2(v) min(laul-Ivl); 
v := fr( v); i := i + 1 

d2(0) := d2(0) min laul 
I au rt P ---> skip 
Ii 

au rt suff( P) ---> 

gr(u,a) := gr(fr(u),a) 
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rof 
rofj 
n :=n+ 1 

ad; 
{ (ltu,a :uE suff(P)lIa E V: gr(u,a) ='Yr(u,a» 

II (ltu: u E suff(P) \ {e} : fr(u) = fr(u» 
II (ltu: u E suff(P) : dl(u) = d,(u» 
II (ltu: u E suff(P) : d2(u) = (MIN p: pEP II (3i : 0 < i :s lI(p) : U = f:(p» : Ipl-Iul» 

} 
n:::::::; 1; 
{ invariant: 

(ltu: U E suff(P) II lui < n: d2(u) = d2 (u» 
II (ltu: u E suff(P) II lui 2' n: d2(u) = (MIN p: pEP II (3i : 0 < i :s lI(p) : u = f:(p» : Ipl-Iul» 

} 
do suff( P) n vn # 0 -----> 

ad 

for u: u E suff(P) n vn do d2(u):= d2(u)mind2(uJl) rof; 
n :=n + 1 

7.2 Computation of dna 

Let x E suff(P) and a E V. We derive 

dno(x, a) 

{ definition of dna} 

(MIN n: n 2' 111 ((V'avn+1x l n P # 011 V'xvn n Pol 0) V V' P n (xvn) # 0) : n) 

{ domain split, definition of d, } 

(MIN n: n 2' 111 V'avn+lxl n Pol 011 V'xvn n P # 0: n) mind,(x) 

{ property B.2 } 

(MIN n: n 2' 111 avn+lxl n suff(P) # 011 xvn n suff(P) # 0 : n) mind,(x) 

{ change of bound variable: lsi = n} 

(MIN s: s E V+ lIaVI"1 nsuff(p) #011xs E suff(P): Isl)mind2 (x) 

{ change of bound variable: t = xs } 

(MINt: t E suff(P)\ {E}lIaV lt l nsuff(P) # 011x <p t: Itl-lxl)mind2 (x) 

{x, t E suff(P), tolE, corollary B.12, definition of DCCr (after derivation)} 

(MINt: t E suff(P) \ {E} II It I E Dccr(a) II (3i: 0 < i:S lI(t): x = I:(t»: Itl-Ixl) 
mind,(x) 

where DCCr : V --> P(Nl is defined by 

Dccr(a) = {n I n E Nil aVn n suff(P) # 0} (a E V). 

Observe that DCCr can easily be computed beforehand, e.g. during the computation of T r . There
after, the computation of the first operand of the min-operator is similar to the first part of the 
computation of d,. Finally, function dna can be computed during the second and final part of the 
computation of d,. We do not give an algorithm here since with these observations the reader 
may easily adapt the preceding algorithm to also compute dna. 

7.3 Computation of d3 

Function d3 : N x V -----> N can be expressed in terms of function (13 : V --> N, defined by 

(13(a) = (MIN n: n 2' 111 V'aVn n P # 0: n) (a E V), 
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a.'l follows 

{ 
+inf ifd3 (a) = +inf 

d3 (z, a) = d3 (a) _ z if d
3
(a) oj +inf 

Let a E V. We derive 

d3 (a) 
{ definition of d3 } 

(MIN n : n ;:0: 1/\ V'avn n P oj 0 : n) 

{ property B.2 } 

(MIN n: n;:O: 1/\ avn n suff(P) oj 0: n) 

{ definition of aCCr } 

(MIN n : n ;:0: 1/\ n E accr(a) : n). 

(zEN,aEV). 

This derivation shows that (13 can be computed at the same time as DeCr . 

7.4 Computation of dbm and char 

Let x E suff( P). We derive 

dbm(x) 

{ definition of dbm } 

(MIN n : n ;:0: 1 /\ V· x vn n V· P oj 0 : n) 

{V' An V· B oj 0 '" V' An B oj 0 V A n V· B oj 0, domain split} 

(MIN n : n ;:0: 1/\ V'xvn n P oj 0 : n) min(MIN n : n ;:0: 1/\ xvn n V' P oj 0 : n) 

{ definition of d, and d2 } 

d, (x) mind2 (x). 

Hence, we have 

(x E suff(P)), 

showing that dbm can be computed from d, and d2. 

Let a E V. We derive 

charta) 

{ definition of char} 

(MIN n : n ;:0: 1/\ V'aVn n V· P oj 0 : n) 

= {V' An V· B oj 0 '" V' An B oj 0 V A n V+ B oj 0, domain split} 

(MIN n : n ;:0: 1 /\ V· a vn n P oj 0 : n) min (MIN n : n ;:0: 1 /\ a vn n V+ P oj 0 : n) 

{ definition of d3 , P oj 0, c '/. P, a vn n v+ P oj 0 '" n ;:0: (MIN p : pEP: Ipl) } 
d3 (a) min (MIN p : pEP: Ipl) 

Defining 

mp = (MIN p: pEP: Ipl) 
we have 

charta) = d3 (a) min mp (a E V), 

showing that char can be computed from d3 . 

Having derived expressions for dbm and char in terms of d11 d21 and d3 we are able to compare 
the amount of shift for the normal Commentz-Walter algorithm, knorm , to the amount of shift for 
the Boyer-Moore algorithm, kbmo First, we derive 
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chaT(l[l) -Ivl 
{ preceding derivation} 

(d3(1[1) minmp) -Ivl 
{ case analysis , +inf unity of min, distributivity} 

if d3 (l[1) = +inf -----; mp -Ivl 
~ d3(l[1) t- +inf -----; (d3(l[1) -Ivl) min(mp -Ivl) 
fi 

{relation between d3 and d3 } 

d3(lvl, l[1) min(mp -Ivl). 
Next, we derive 

{ definition of kbm } 

((chaT(l [1) - Ivl) max dbm(v)) min ITI 
{preceding derivation, dbm expressed in d, and d2 } 

((d3 (lvi, 1[1) min(mp - Ivl)) max(d, (v) min d2 ( v))) min ITI 
{ distributivity} 

((d3(1vl, 1[1) min(mp -Ivl)) maxd1(v)) 

min((d3 {1vl, 1[1) min(mp - Ivl)) maxd2 (v)) min ITI 
{(lfn: 1 :s; n < mp -Ivl : V' P n vvn = 0), definition of d2 , hence mp -Ivl :s; d2 (v)} 

((d3(lvl, I [1) min(mp - Ivl)) max dl (v)) min d2 ( v) min ITI 
:s; { calcul us } 

(d3 (lvi, 1[1) max d1 (v)) min d2 ( v) min ITI 
= { definition of knDTm } 

k norm ) 

showing that the amount of shift in the normal Commentz-Walter algorithm is at least the amount 
of shift in the Boyer-Moore algorithm. 

7.5 Precomputation of 8" char" and char2 

Here we discuss the precomputation of functions 81, chaTI, and char2 for the variants of the 
one keyword Boyer-Moore algorithm obtained by instantiating detail (MO) by (FWD) and (REV), 
respectively. 

7.5.1 Forward matching 

In the forward matching scheme (algorithm detail (FWD)) we have mo(i) = i. In this case P3 can 
be manipulated further: 

P3 (v,i,k) 

= { definition of P3 and mo} 

(lfj : 1 :s; j < i 111 + k :s; j : Pj = pj-kl 

II (i :s; Ipllli + k :s; i => Vi = Pi-k II Pi t- Pi-k) 

= {simplifying ranges, 1 :s; i :s; Ipi + 1 } 

(lfj : 1 + k:S; j < i: Pj = Pj-k) 

II (1 + k :s; i :s; Ipi => Vi = Pi-k II Pi t- Pi-k) 

We continue with only the first conjunct, assuming 1 + k ~ i: 
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= 

(Vj : 1 + k:S j < i : Pj = Pj-k) 

{ rewrite using 1 and J } 
(pHi - 1))Jk = pHi - 1 - k) 

{set calculus} 

{(p1(i -1))Jk} n {pHi -1- k)} oF 0 

{ {xJj} n Y '" 0 == {x} n vjy '" 0 (O:S j :s lxI), k:S i-I} 

{pHi - I)} n V k (p1(i - 1 - k)) '" 0 
{X n Y(xjj) '" 0 == Xvlxl-j n Yx '" 0 (O:S j :s Ixl), k:S i-I, i :s Ipi + I} 

(p1(i - 1))VlpIH-i+1 n Vkp '" 0 

{('Ix, y : x E X 1\ Y E Y : Ixl = Iyl) =;. (X n Y '" 0 == V' X n V'Y '" 0)} 
V*(pl (i - 1))VlpIH-i+l n V'p '" 0 

Notice that this predicate is similar to the predicate in the definition of function db= (see subsec
tion 4.4). Precomputation of functions 81, charl, and char2 is similar to the precomputation for 
the Boyer-Moore variant derived from the Commentz-Walter algorithm (Part II, subsection 7.4). 
For this reason we do not elaborate the precomputation any further. 

7.5.2 Backward matching 

With backward matching (algorithm detail (REV)), p is compared to v from right to left, i.e. we 
have mo(i) = Ipl- i + 1, the reverse permutation of the integers from 1 to Ipl. Predicate P3 can 
be manipulated further. We have 

P3 (v,i,k) 

= { definition of P3 and mo} 

(Vj : 1 :s j < i 1\ j :s Ipl- k : PlpH+l = Plpl-j-k+1) 

1\ (i :s Ipi - k =;. vlpl-i+1 = Plpl-i-k+l 1\ Plpl-Hl '" Plpl-i-k+l) 

We concentrate on the first conjunct and distinguish three cases. If i :s Ipi - k the first conjunct 
becomes 

(Vj : 1 :s j < i : Plpl-J+l = Plpl-j-k+l) 

{ rewrite using rand l} 
pr(i - 1) = (pr(k + i-I)) lk 

= { set calculus} 

{pr(i - I)} n {(pr(k + i - Illlk} '" 0 

= {X n {yU} '" 0 == xVj n {y} oF 0 (0 :s j :5 Iyl), i +k :s Ipi } 

(pr(i - 1))Vk n {pr(k + i-I)} '" 0 
{X n {y rj} oF 0 == vlyH X n {y} '" 0 (0 :s j :s Iyl)' k + i-I < Ipi } 

Vlpl-k-i+1(pr(i - 1))Vk n {p} '" 0 

{('Ix, y : X E X 1\ Y E Y : Ixl = Iyl) =? (X n Y '" 0 == V' X n V'Y '" 0)} 

V'(pr(i - 1))Vk n V'p '" 0 

If i > Ipl - k and k :s Ipl the first conjunct becomes 

(Vj : 1 :s j :s Ipl- k : PlpH+l = PlpH-k+1) 

{ rewrite using J and l} 

pJk = plk 

{ set calculus} 

{pJk} n {plk} '" 0 
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{{xJj}nY #0 =0 {x}nvjy #0 (O::S:j::S: Ixl), k::S: Ipl} 
{p}nVk(plk) # 0 

{XnY(ylj) #0 =oXVjnYy #0 (o::S:j::S: Iyl), k::S: Ipl} 
pv k nv·p# 0 

{(\Ix, y : x E X /I Y E Y : Ixl = Iyl) ~ (X n Y # 0 =0 V' X n V'Y # 0)} 
v'pV k n v'p # 0 

If i > Ipi - k and k > Ipi the first conjunct holds by definition. Notice that in this case V'pV k n 
V'p # 0 holds as well, so the last two cases can combined. From these derivations and the definition 
of dbm (see subsection 4.4, P = {p}) it follows that 81(i) = dbm(pf(i -1)) for i 2: l. Notice that 
pf(i - 1) E suff(P). Precomputation of function 8, is therefore equal to the precomputation of 
dbm (see Part II, subsection 7.4). 

In a similar way one can derive 

char,(v,i) = (MIN k: i::S: k /I V'Vl p !-i+1 Vk n V'p # 0: k) - (i -1) 

in which the quantified expression can approximated from below by chart Vlp l_i+1) (see subsec
tion 4.4, P = {p}) by enlarging the range to 1 ::s: k. Precomputation of char, is similar to the 
precomputation of char (see Part II, subsection 7.4). 

The expression for char2(i) becomes 

(MIN k : i ::s: k ::s: Ipl- 1/\ V'Plpl-i+1 Vk n V'p = 0 : k - i + 1) min(lpl- i + 1) 

Equivalence 

indicates that the precomputation of char2 is analogous to the precomputation of chaTI and char. 
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Part III 

Conclusions 
The taxonomy presented in Parts I and II has achieved the goals set out in the introduction. The 
highlights of this taxonomy fall into two categories: general results of the derivation method and 
specific results of the taxonomy. The general results can be summarized as: 

• The method of refinement used in each of the derivations presented the algorithms in an 
abstract, easily digested format. This presentation allows a correctness proof of an algorithm 
to be developed simultaneously with the algorithm itself. 

o The presentation method proves to be more than just a method of deriving algorithms: the 
derivations themselves serve in the classification (in the taxonomy) of the algorithms. This 
is accomplished by dividing the derivation at points which involve the introduction of either 
problem or algorithm details. A sequence of such details serves to identify an algorithm. By 
prefix-factoring these sequences, common parts of two algorithm derivations can be presented 
simultaneously. 

o The taxonomy of all algorithms considered can be depicted as a graph (in our particular case a 
tree); the root represents the original solution 0 := (U I, v, r : Ivr = S : {I} x ({v} np) x {r}), 
edges represent the addition of a detail, and the internal vertices and leaves represent derived 
algorithms. This graph is shown in Figure 1. The utility of this graph is that it can be used 
as an "alternative table of contents" to the taxonomy. Being interested in only a subset of 
the algorithms, for example the Aho-Corasick (AC) algorithms, does not necessitate reading 
all of the derivations; only the root-leaf paths that lead to the AC algorithms need to be 
read for a complete view of these algorithms . 

• The presentation was also more than just a taxonomy. Instead of using completed derivations 
of known algorithms, which are possibly in different styles of derivation, all of the algorithms 
were derived in a common framework. This made it easy to see what the algorithms have 
in common (or where they differ) for the purposes of classifying them. 

o The pattern matching overview presented in [Ah090J is an excellent introduction to many of 
the algorithms presented in this paper. Unfortunately, it does not present all variants of the 
algorithms, or present them in a fashion that allows one to contrast the algorithms with one 
another. OUf taxonomy accomplished precisely this goal, of presenting algorithms in one 
framework for comparison. In deriving the algorithms for this taxonomy every attempt was 
made to thoroughly explore all of the possible variants. Our taxonomy should be a thorough 
introduction to all variants of the four principal pattern matching algorithms presented in 
[Ah090J. 

Results concerning particular algorithms can be summarized as follows: 

o As stated in [AC75], the AC algorithm is intended to be a generalization of the original 
Knuth-Morris-Pratt (KMP) algorithm - making use of automata theory. The classical 
derivations of the two (using automata and indices, respectively) do not serve to highlight 
their similarities, or differences. 

When derived in the same framework, it becomes apparent that the AC algorithm cannot 
be specialized to arrive at KMP; this can be seen from the derivation of the AC algorithm 
subtree of the taxonomy tree. The linear search (introduced in subsection 3.3) used in the 
failure function AC algorithm (algorithm 3.4) is quite different from the linear search used 
in the abstract KMP algorithm (algorithm 3.5). Indices could have been introduced in 
algorithm 3.4, although this does not yield the classically presented KMP algorithm. The 
AC-KMP relationship is in fact that they have a common ancestor algorithm (p +, E, AC, 

LS). 
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• The abstract intermediate KMP algorithm (algorithm 3.5) is in fact a new algorithm, albeit 
a variant of the AC algorithm. The running time of this new algorithm does not appear to be 
any better than algorithm 3.4. The transformation (by adding indices) of algorithm 3.5 into 
the classically presented KMP algorithm (algorithm 3.6) was demonstrated to be straight
forward. 

• The origin·al Aho-Corasick article [AC75j presented the "optimal" version of the algorithm 
after the failure function version of the algorithm. The optimal algorithm was explained 
as using a transition function If which is a composition of the extended forward trie Ie! 

and failure function ff. While this is indeed the case, our derivation proceeded much more 
smoothly by deriving an algorithm which is a common ancestor of both the optimal and the 
failure function algorithms. 

• "Predicate weakening" (of sections 4 and 5) was instrumental in deriving various algorithms 
(and their correctness proofs) from the Commentz-Walter (CW) algorithm, in particular 
the Boyer-Moore (BM) algorithm. The CW algorithm has not emerged as a popular string 
pattern matching algorithm partly due to the difficulty in understanding it. The derivation 
presented in Part I arrives at the CW algorithm through a series of smaIl transformations, 
starting with a naive (quadratic ruuning time) algorithm. This derivation makes the CW 
algorithm considerably easier to understand. Predicate weakening was also heavily used in 
deriving the "match-order" variant of the BM algorithm. 

• Commentz-Walter's intention was to combine the BM algorithm with automata theory, to 
produce an algorithm dealing with multiple keywords. The relationship between the two 
algorithms has previously remained obscured by the styles of presentation of the two algo
rithms (indices in BM, and automata in OW). As seen from section 4 the BM algorithm 
can indeed be arrived at in the same framework (as the CW algorithm) as a special case. 
The publication of the Hume-Sunday taxonomy [HS91j motivated us to also derive the BM 
algorithm in an entirely different manner ~ making lise of the concept of "match-orders" . 

• In both papers by Commentz-Walter describing her algorithm (in particular [Com79a]), the 
differences between methods of determining a safe shift amount were not made explicit. 
Indeed, that some of these shift functions were distinct was not mentioned in all cases. OUI 

derivation of the CW algorithm clearly defines the differences between the shift functions. 
The (NEAR-OPT) shift function was only mentioned in passing in the original paper; this 
derivation provides a definition of this function; Part II provides the only fuIl derivation of 
a precomputation algorithm for this function. 

• In the BM algorithm the functions contributing to a shift have been presented in several 
separate papers since the introduction of the original algorithm. Until the publication of the 
taxonomy by [HS91j it was difficult to examine the contribution of each shift function. Both 
section 5 and [HS91j present a shift as consisting of components that can be readily replaced 
by an equivalent component, for example: the "skip" loops, or the "match-orders". [HS91] 
emphasized effects on running-time of each component. Our taxonomy has emphasized the 
derivation of each of these components from a common specification. 

• The precomputation of the BM shift functions has been troublesome; many solutions were 
published, corrected, and re-published (for a good bibliography of these see [Ah090J). The 
precomputation presented in Part II provides an understandable derivation of a correct 
precomputation algorithm. 
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Part IV 

Appendices 

A Calculating the value of a quantification 

The problem is, given an associative, commutative operator E9 on set U with unit e$) a set W, a 
range predicate RANGE: W --> $, and a function f : W --> U on W, calculate: 

w = (EIlx E W: RANGE(x) : f(x)) 

We now present three solutions. 

A.1 A nondeterministic solution 

This can be done with the following nondeterministic repetition: 

RW:= {x I x E W A RANGE(x)}; w:= e$; 
for x : x E RW do w := w Ell f(x) rof 
{w = (EIlx E W: RANGE(x) : f(x))} 

A.2 A deterministic solution in the ascending direction 

Given the set RW = {x I x E W A RANGE(x)} and a linear order :<:; on RW we can define a 
function next: RW --> (RW U {T}) as: 

next(v) = (MIN~x E RW: v < x: x) 

Function next is extended to map the maximum element of RW to fictitious element T (to make 
next total). Assume RW oF 0. 

This allows us to implement a deterministic algorithm which processes RW in :s-ascending 
order: 

v:= (MIN< x E RW:: x); w:= f(v); 
{invariant: ; Ell (EIlx E RW: v < x: f(x)) = (EIlx E W: RANGE(x) : f(x)) } 
do next( v) oF T ---> 

od 

v:= next(v); 
w:=WEllf(v) 

{w = (EIlX E W : RANGE(x) : f(x))} 

A.3 A deterministic solution in the descending direction 

Given the set RW defined above in Appendix A.2, we define a function prev : RW --> (RWU{ -L}) 
as: 

prev(v) = (MAX <x E RW:x <v: x) 

extended to map the minimum element in RW to . .1. We can now implement a deterministic 
algorithm which processes RW in :<:;-descending order. Assume RW oF 0. The following algorithm 
is symmetrical to that presented above in Appendix A.2, with the exception that the repetition is 
phase shifted, leaving an additional assignment after the repetition: 
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v:= (MAX", x E RW:: x); w:= eEll; 
{invariant: wEB (EBx E RW: x:O; v : f(x)) = (EBx E W : RANGE(x) : f(x)) } 
do prev(v) # -L ----> 

w:=WEBf(v); 
v:= prev(v) 

od; 
w:=wEBf(v) 
{w = (EBx E W: RANGE(x) : f(x))} 

AA Nested quantifications 

Nested quantifications can similarly be dealt with using nested repetitions. When two operators 
of nested quantifications are in fact the same, the accumulation variable (in the above programs 
w) of the two corresponding nested repetitions can be identified. This is useful in our case, where 
most of the quantifications will consist of two nested union quantifications. 

For example, given the requirement to compute: 

W = (EBx E W: RANGE(x) : (EBy E W': RANGE'(x,y): fry))) 

we can make the following first nondeterministic solutionI3 : 

RW:= {x I x E W /\ RANGE(x)};w:= eEll; 
for x : x E RW do 

rof 

RW' := {y lyE W' /\ RANGE'(x, y)}; w' := eEll; 
for y: y E RW' do w':= w' EB fry) rof; 
{w' = (EBy E W' : RANGE'(x,y): fry))) 
w;== wEBw' 

{w = (EBx E W: RANGE(x): (EBy E W': RANGE'(x,y): f(y)))) 

The program variable w' in the inner repetition is not needed, and w can instead be updated 
directly. The (slightly) shortened version is nOw: 

RW:= {x I x E W /\ RANGE(x)}; w := eEll; 
for x : x E RW do 

rof 

RW' := {y lyE W' /\ RANGE'(x,y)}; 
for y : y E RW' do w:= wEB f(y) rof 

{w = (EBx E W: RANGE(x): (EBy E W': RANGE'(x,y) : fry)))} 

B Definitions and properties 

This section provides a series of definitions and properties which are used throughout this paper. 
For any language L, we take LR to denote the reversal of the language. For a string w E V*, 

we take wR to denote the reversal of w. 

Definition B.1 Let V be an alphabet. Define pref : P(V') ----> P(V') and suff : P(V') ----> 

P(V') as pref(L) = {w I w E V' /\ (3x : x E V' : wx E L)} and suff(L) = (pref(LR))R 0 

13The deterministic solution follows similarly. 
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For w E V' we will write pref(w) (suff(w)) instead ofpref({w}) (suff({w})). 

Property B.2 Let A, B <:;; V'. Then pref(A) n B oj 0 == An BV' oj 0 and suff(A) n B oj 0 == 
An V'B oj 0.0 

The following two theorems are used in the derivation of the Aha-Corasick precomputation algo
rithm. 

Theorem B.3 Let V be an alphabet, A, B, C <:;; V', and V·C n B = BC n B. Then 

suff(A)C n B = suff(suff(A) n B)C n B. 

Proof 

o 

suff(A)C n B 

{suff(A) <:;; V', distributivity} 

suff(A)C n V·C n B 

{V'C n B = BC n B} 

suff(A)C n BC n B 

{ distributivity } 

(suff(A) n B)C n B 

c {X <:;; suff(X) for all X <:;; V', monotanicity} 

suff(suff(A) n B)C n B 

C {suff(A) n B <:;; suff(A), monotonicity} 

suff(suff(A))C n B 

{suff is idempotent, since :Ss is transitive} 

suff(A)C n B 

If C = {o} or B = pref(B) then condition V·C n B = BC n B is satisfied. 

Definition B.4 Define the relations :O,p and :0" over V' x V' as u :O,p v == U E pref(v) and 
u:O" v == u E suff(v). 0 

Theorem B.5 Let V be an alphabet, A, B, C <:;; V', V·C n B = BC n B, and A is nonempty, 
finite, and linearly ordered with respect to :0". Then 

suff(A)C n B = suff((MAX,;, w : w E suff(A) n B : w))C n B. 

Proof 

suff(A)C n B 

:J {(MAX,;. w : w E suff(A) n B: w) E suff(A), monotonicity, A oj 0} 

suff((MAX,;, w : w E suff(A) n B: w))C n B 

:J {suff(A) n B:O" (MAX,;, w: w E suff(A) n B: w), monotonicity} 

suff(suff(A) n B)C n B 

{Theorem B.3 } 

suff(A)C n B 

o 
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Definition B.6 The infix operators 1, J, [, l : V' x N ---> V' are defined by 

vl0 [ (v E V*) 
e1(k + 1) [ (k 2: 0) 

(aw)1(k + 1) a( wl k) (k 2: O,a E V,w E V') 
vjO v (v E V*) 

ej(k + 1) [ (k 2: 0) 
(aw)j(k + 1) wjk (k 2: O,a E W,w E V') 

Define [ as v[k = (v Rlk)R and l as vlk = (vRjk)R The operators 1,j, [, and l are called "lelt 
take," "left drop," llright take," and "right drop 11 respectively. 0 

For A <; V' and k 2: a we define Alk = (Uw: w E A: wlk) and Ajk = (Uw : w E A: wjk), and 
likewise for [ and l. 

Property B.7 Let V be an alphabet, A, B <; V', A # 0, and e ~ A. Then 

V' An B # 0 V V' B n A # 0 =? V' An B # 0 V V' B n (Aj 1) # 0 

Proof 

o 

V' A n B # 0 V V* B n A # 0 
{split second disjunct: V' = v+ U {e} } 

V* A n B # 0 V B n A # 0 V V+ B n A # 0 
=? {A <; (All)(AJl); BnA1'0=? V'AnB # 0) 

V' An B # 0 V VV' B n (All)(AJl) # 0 
=? {(All) <; V} 

V'AnB # 0vVV'BnV(AJl) # 0 
{ left factoring of V } 

V' An B # 0 V V' B n (AJl) # 0 

We continue with some properties of the failure function that are used in the derivation of the 
Com mentz-Walter precomputation algorithm. 

Lemma B.8 For x, Y E suff(P) and y # e we have 

x <p y == x:Sp Ir(Y)· 

Proof 
Let x,y E suff(P) and Y # e. We derive 

= 

o 

x <p Y 
{ definition of <p and pref} 

x E pref(y) \ {V} 
{x E suff(P)} 

x E pref(y) \ {y} n suff(P) 

{pref(y) \ {V} n suff(P) is finite and linearly ordered W.r.t. :Sp} 

x :Sp (MAX<:p w : w E pref(y) \ {V} n suff(P) : w) 

{ y # e, definition of Ir } 

x :Sp Ir(Y) 

{y # e, Ir(Y) <p Y (by definition of Ir), transitivity of <p} 

x <p Y 
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Definition B.9 We define v : suff(P) --+ N by 

V(E)=O 

and 

v(y) = v(fr(Y)) + 1 (y E suff(P) \ {E}). 

o 

Property B.IO We have lor all y E suff(P) \ {E} 

g(Y)(y) = E; 1\ ('In: 0::; n < v(y) : I::(y) # E). 

o 

Lemma B.ll For x, y E suff(P) and y # E we have 

('In: 0::; n ::; v(y) : x <p y == (3i : 0 < i::; n: x = I;(y)) V x <p I::(y)) 

Proof 
Let x, y E suff(P) and y # E. We proceed by induction on n. 

base Let n = O. Observe that v(y) > 0 = n. The equivalence is satisfied trivially. 

step Let n = k + 1 for some k : 0 ::; k < v(y). Assume 

o 

We derive 

x <p Y 

= {induction hypothesis} 

(3i : 0 < i ::; k: x = I;(y)) V x <p I:(y) 

{O::; k < v(y), hence by property B.lO I:(y) # E, lemma B.B} 

(3i : 0 < i ::; k: x = I;(y)) V x::;p 1:+1(y) 

= {x::;p 1:+1(y) == x = 1:+1(y) V x <p I:+l(y)} 

(3i : 0 < i S k + 1 : x = I; (y)) V x <p 1:+1 (y) 

By instantiating n with v(y) in this lemma we obtain 

Corollary B.I2 For x, y E suff(P) and y # E we have 

x <Py== (3i:0 < i::; v(y): x = I;(y)) 

o 
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