

A taxonomy of keyword pattern matching algorithms

Citation for published version (APA):
Watson, B. W., & Zwaan, G. (1992). A taxonomy of keyword pattern matching algorithms. (Computing science
notes; Vol. 9227). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/1992

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/93008478-b70e-4d90-b4d7-b5a47510c821

Eindhoven University of Technology

Department of Mathematics and Computing Science

ISSN 0926-4515

All rights reselVed
editors: prof.dr. J.C.M. Baeten

prof.dr. M. Rem

A taxonomy of keyword pattern
matching algorithms

by

Bruce W. Watson and G. Zwaan
92/27

Computing Science Report 92{27
Eindhoven, January 1995

A taxonomy of keyword pattern
matching algorithms

B.W. Watson & G. Zwaan
Computing Science Note 92/27

Faculty of Mathematics and Computing Science
Eindhoven University of Technology

P.O. Box 513, 5600 MB
Eindhoven, The Netherlands

email: watson@win.tue.nlorwsinswan@win.tue.nl

December 24, 1992
Revised December 24, 1993

Abstract

This paper presents a taxonomy of keyword pattern matching algorithms, including the well
known Knuth-Morris-Pratt, Aho-Corasick, Boyer-Moore, and Commentz-Walter algorithms
and a number of their variants. The taxonomy is based on the idea of ordering algorithms
according to their essential problem and algorithm details, and deriving all algorithms from
a common starting point by adding these details in a correctness preserving way. This way
of presentation not only provides a complete correctness argument of each algorithm, but
also makes very clear what algorithms have in common (the details of their nearest common
ancestor) and where they differ (the details added after their nearest common ancestor).
Moreover, the paper provides complete derivations of the intricate precomputation algorithms,
some of which either can not be found in the literature (Commentz-Walter) or are given in
several different versions (Boyer-Moore).

Contents

1 Introduction and related work

I The algorithm derivations

2 The problem and some naive solutions
2.1 The (p+) algorithms

2.1.1 The (p+s+) algorithms
2.1.2 The (p+s-J algorithm.

2.2 The (L) algorithms
2.2.1 The (LP+) algorithms
2.2.2 The (LP_) algorithm

3 The Aho-Corasick algorithms
3.1 Algorithm detail AC
3.2 Method OPT
3.3 Linear search

3.3.1 The Aho-Corasick algorithm with failure function.
3.3.2 The Knuth-Morris-Pratt algorithm

4 The Commentz-Walter algorithms
4.1 Larger shifts.
4.2 Discarding the lookahead symbol .
4.3 Using the lookahead symbol
4.4 A derivation of the Boyer-Moore algorithm

5 The Boyer-Moore family of algorithms
5.1 Larger shifts without using Match information

5.2 Making use of Match information

II Pre computation

6 Precomputation for the Aho-Corasick algorithms

7 Precomputation for the Commentz-WaIter algorithms
7.1 Computation of d, and d2

7.2 Computation of dno

7.3 Computation of d3

7.4 Computation of db= and char.
7.5 Precomputation of 81, chaTI, and ChaT2

7.5.1 Forward matching .
7.5.2 Backward matching

III Conclusions

IV Appendices

1

5

5
7
7
9
9
9

10

10

11
15
16
17
18

21
21
22
23
24

25
27
29

31

31

36
36

39
39
40

41
41
42

44

46

A Calculating the value of a quantification
A.I A nondeterministic solution
A.2 A deterministic solution in the ascending direction .
A.3 A deterministic solution in the descending direction
A.4 Nested quantifications

B Definitions and properties

References

46
46
46
46
47

47

51

1 Introduction and related work

Keyword pattern matching is one of the most extensively explored fields in computing science.
Loosely stated, the problem is to find the set of all occurrences from a set of patterns in an input
string.

Just as the variety of applications has grown, so has the diversity of the solutions. Many of the
solutions require a simplification of the problem such as "the patterns are regular languages," or
"the patterns are finite languages." The myriad of variations on the problem, along with differing
program design methodology, leads to solutions that are difficult to compare to one another.

This report presents a taxonomy of keyword pattern matching algorithms. The main results
are summarized in the taxonomy graph presented at the end of this section, and in the conclusions
presented in Part III. The taxonomy strives for the following goals:

• to present algorithms in a common framework to permit comparison of algorithms; such a
framework is to be an easy to comprehend abstract presentation.

• to emphasize the derivation of an algorithm as a series of refinements to either algorithms
or to the problem.

• to factor out common portions of well-known algorithms to facilitate comparison of these
algorithms.

This report systematically presents a number of variations of four well-known algorithms in a
common framework. Two of the algorithms to be presented require that the set of patterns is a
single keyword, while the other two require that the set of patterns is a finite set of keywords. The
algorithms are

• the Knuth-Morris-Pratt (KMP) algorithm as presented in [KMP77J. This algorithm matches
a single keyword against the input string. Originally, the algorithm was devised to find only
the first match in the input string. We will consider a version that finds all occurrences
within the input string.

• the Boyer-Moore (BM) algorithm as presented in [BM77J. This is also a single keyword
matching algorithm. Several corrections and improvements to this algorithm have been
published; a good starting point for these is the bibliographic section of [Ah090J.

• the Aho-Corasick (AC) algorithm as presented in [AC75J. This algorithm can match a finite
set of keywords in the input string.

• the Commentz-Walter (CW) algorithm as presented in [Com79a, Com79bJ. This algorithm
can also match a finite set of keywords in the input string. Few papers have been published on
this algorithm, and its correctness, time complexity, and precomputation are ill-understood.

These four algorithms are also presented in the overview of [Ah090J.
The algorithms will be derived from a common starting point. The derivation proceeds by

adding either problem or algorithm details. As a problem detail is added (that is, the problem
is made more specific) a change may be possible in the algorithm - in particular, an improve
ment of efficiency may be possible. This is because the more specific problem may permit some
transformation not possible in the more general problem.

Algorithm details are of course added in a correctness-preserving way; they are usually made
to improve the efficiency of the algorithm. They may be added to restrict nondeterminacy, or to
make a change of representation; either of these changes to an algorithm gives a new algorithm
meeting the same specification. A derivation should make clear the differences and similarities of
these algorithms; the entire derivation can then be taken to be a taxonomy of the four algorithms
(and other related algorithms).

This type of taxonomy development and program derivation has been used in the past. One
of the most notable is Broy's sorting algorithm taxonomy [Bro83]. In this taxonomy, algorithm

1

and problem details are also added, starting with a naive solution; the taxonomy arrives at all of
the well-known sorting algorithms. A similar taxonomy (which predates the one of Broy) is by
Darlington [Dar78]; this taxonomy also considers sorting algorithms. Our particular incarnation of
the method of developing a taxonomy was developed in the thesis of Jonkers [Jon82], where it was
used to give a taxonomy of garbage collection algorithms. Jonkers' method was then successfully
applied to attribute evaluation algorithms by Marcelis in [Mar90].

The recent taxonomy of pattern matching algorithms presented by Hume and Sunday (in
[HS91j) gives variations on the Boyer-Moore algorithm; the taxonomy concentrates on many of
the practical issues, and provides data on the running time of the variations, and their respective
precomputation.

Two important aims of our derivations are clarity and correctness of presentation. Towards
both aims, the traditional method of using indexed strings (for the input string and patterns) has
been abandoned in this paper; we use a more abstract (but equivalent) presentation. In order
to easily provide correctness arguments the guarded command language of [Dij76] is used, rather
than a programming language such as Pascal or C.

Part I contains the derivation of the four algorithms named above, along with several interme
diate algorithms that are bypro ducts of the derivation.

Part II details the precomputation of functions necessary for each of the four algorithms.

Part III presents the conclusions.

Part IV contains the appendices. A program skeleton that we will often instantiate is detailed
in Appendix A. Definitions and properties of operators and functions are provided in Ap
pendix B.

The taxonomy graph that we arrive at after deriving the algorithms in Part I is shown in
figure 1 on page 3. Each vertex corresponds to an algorithm. If the vertex is labeled with a
number that number refers to an algorithm in this report. If it is labeled with a page number that
page number refers to the page where the algorithm is first mentioned. Each edge corresponds to
the addition of either a problem or algorithm detail and is labeled with the name of that detail (a
list of detail names follows). Each of the algorithms will either be called by their algorithm number,
by their name as found in the literature (for the well known algorithms), or by the parenthesized
sequence of all labels along the path from the root to the algorithm's vertex. For example, the
algorithm known as the optimized Aho-Corasick algorithm can also be called (P+, E, AC, OPT) (it
is also algorithm 3.3 in this report). All of the well known algorithms appear as leaves in the tree.
Due to its labeling the graph can be used as an alternative table of contents to this report. Four
algorithm details (P+, s+, P_, and s-) are actually composed of two separate algorithm details.
For example, detail (p +) is composed of details (p) and detail (+), however the second detail must
always follow either detail (p) or detail (s) and so we treat them as a single detail. The edges
labeled MO and SL in figure 1 represent generic algorithm details that still have to be instantiated.
Possible instantiations are given by the two small trees at the bottom of figure 1. The details and
a short description of each of them are as follows:

P (§ 2) Examine prefixes of a given string in any order.

p + Examine prefixes of a given string in order of increasing length.

P_ As in (p+), but in order of decreasing length.

s (§ 2) Examine suffixes of a given string in any order.

s+ Examine suffixes of a given string in order of increasing length.

s- As in (s+), but in order of decreasing length.

2

"
E

,., S

+
,.,

S E

+ ,.,
, ..

AC

RT
"

OPT LS ,.,
,.,

NE AC-FAI

" '"
'-..-'

CW AC

p.23 LA BM }
p.24 BM

NL

NEAR-OPT NORM
p.23 p.24

MO .
CW

~
FWD REV OM

+
'"
FT

,.,

OKW

P

KMP-FAIL

3.5

OKW

INDICES

'----.--'
KMP

NONE SFC

RBM

5.1

MO

'"

SL

,.,

MI

5.4

'----.--'
BM

SL

FAST SLFC

Figure 1: A taxonomy of pattern matching algorithms. An explanation of the graph and its
labels is given in the text of this section. Algorithm 3.3 corresponds to the optimized Aho
CoraEick algorithm ([AC75], section 6). Algorithm 3.4 corresponds to the Aho-CoraEick algorithm
using linear search ([AC75], section 2, algorithm 1). Algorithm 3.6 corresponds to the Knuth
Morris-Pratt algorithm ([KMP77], section 2, p.326). The algorithm of the vertex labeled p.24 and
with incoming edge labeled NORM corresponds to the Commentz-Walter algorithm ([Com79aJ,
section II, and [Com79bJ, sections 11.1 and II.2). The algorithm of the vertex labeled p.24 and
with incoming edge labeled BM corresponds to the Boyer-Moore algorithm ([BM77], section 4).
Algorithm 5.4 corresponds to the Boyer-Moore algorithm aE well ([BM77], sections 4 and 5).

3

RT (§ 2.1.1) Usage of the transition function of the reverse trie corresponding to the set of keywords
to check whether a string which is a suffix of some keyword, preceded by a character is again
a suffix of some keyword.

FT (§ 2.2.1) Usage of the transition function of the forward trie corresponding to the set of key
words to check whether a string which is a prefix of some keyword, followed by a character
is again a prefix of some keyword.

E (§ 3) Matches are registered by their endpoint.

AC (§ 3.1) A state variable is maintained while examining prefixes of the input string. The value
of the variable is the longest string from the set of all suffixes of the current prefix of the
input string, which are prefixes of some keyword.

OPT (§ 3.2) A single "optimized" transition function is used to update the state variable in the
Aho-Corasick algorithm.

LS (§ 3.3) Use linear search to update the state variable in the Aho-Corasick algorithm.

AC-FAIL (§ 3.3.1) Implement the linear search using the transition function of the extended forward
trie and the failure function.

KMP-FAIL (§ 3.3.2) Implement the linear search using the extended failure function.

OKW (§ 3.3.2) The set of keywords contains one keyword.

INDICES (§ 3.3.2) Represent substrings by indices into the complete strings, converting a string
based algorithm into an indexing based algorithm

NE (§ 4) The empty string is not a keyword.

cw (§ 4.1) Consider any shift distance that does not lead to the missing of any matches. Such
shift distances are called safe.

NLA (§ 4.2) The lookahead character is not taken into account when computing a safe shift dis
tance. The computation of a shift distance is done by using two precomputed shift functions
applied to the current longest partial match.

LA (§ 4.3) The lookahead character is taken into account when computing a safe shift distance.

NEAR-OPT (§ 4.3) Compute a shift distance using a single precomputed shift function applied to
the current longest partial match and the lookahead character.

NORM (§ 4.3) Compute a shift distance as in (NLA) but additionally using a third shift func
tion applied to the lookahead character. The shift distance obtained is that of the normal
Commentz-Walter algorithm.

BM (§ 4.4) Compute a shift distance using one shift function applied to the lookahead character,
and another shift function applied to the current longest partial match. The shift distance
obtained is that of the Boyer-Moore algorithm.

RBM (§ 5) Introduce a particular program skeleton as a starting point for the derivation of the
different Boyer-Moore variants.

MO (§ 5) A match order is used to determine the order in which characters of a potential match
are compared against the keyword. This is only for the one keyword case (OKW). Particular
instances of match orders are

FWD (§ 5) The forward match order is used to compare the (single) keyword against a
potential match in a left to right direction.

4

REV (§ 5) The reverse match order is used to compare the (single) keyword against a potential
match in a right to left direction. This is the original Boyer-Moore match order.

OM (§ 5) The characters of the (single) keyword are compared in order of ascending probabil
ity of occurring in the input string. In this way mismatches will generally be discovered
as early as possible.

SL (§ 5.1) Before an attempt at matching a candidate string and the keyword a "skip loop" is
used to skip portions of the input that cannot possibly lead to a match. Particular "skips"
are

NONE (§ 5.1) No "skip" loop is used.

SFC (§ 5.1 The "skip loop" compares the first character of the match candidate and the
keyword; as long as they do not match, the candidate string is shifted one character to
the right.

FAST (§ 5.1) As with (SFC), but the last character of the candidate and the keyword are
compared, and, possibly, a larger shift distance is used.

SLFC (§ 5.1) As with (FAST), but a low frequency character of the keyword is first compared.

MI (§ 5.2) The information gathered during an attempted match is used (along with the particular
match order used during the attempted match) to determine a safe shift distance.

Part I

The algorithm derivations

2 The problem and some naive solutions

The problem is to find all occurrences of any of a set of keywords in an input string. Formally,
given an alphabet V (a non-empty finite set of symbols), an input string S E V*, and a finite
non-empty pattern set P ~ V*, establish1

R: O=(Ul,v,r:lvr=S:{I}x({v}np)x{r}).

A trivial (but unrealistic) solution to this is

Algorithm 2.1()

0:= (U l,v,r: lvr = S: {I} x ({v} n P) x {r})
{R}

The sequence of details describing this algorithm is the empty sequence (sequences of details are
introduced in section 1).

There are two basic directions in which to proceed while developing naive algorithms to solve
this problem. Informally, a substring of S can be considered a "suffix of a prefix of S" Of a "prefix
of a suffix of S". These two possibilities are considered separately below.

Formally, we can consider "suffixes of prefixes of S" as follows:

1 Throughout this paper we will adopt the convention that, unless stated otherwise, program variables and bound
variables with names from the beginning of the Latin alphabet (i.e. a, b, c) will range over V, while varia.bles with
names from the end of the Latin alphabet (i.e. l, q, r, U, v, w) will range over V"'.

5

(u I,v,r: Ivr = s: {I} x ({v} n P) x {r})

{introduce u : u = Iv}

(u I, v, r, u : ur = S /\ Iv = u : {I} x ({v} n P) x {r})

{I, v only occur in the latter range conjunct, so restrict their scope}

(u u,r: ur = S: (u I,v: Iv = u: {I} x ({v} np) x {r}))

The method of implementing a computation of such a quantification is detailed in Appendix A.
A simple non-deterministic' algorithm (the structure of which is discussed in Appendix A.I)

is obtained by applying algorithm detail

Detail (p): Examine prefixes of a given string in any order. D

to input string S. It results in3

Algorithm 2.2(p)

W := (U u, r : ur = S : {u} x {r}); 0 := 0;
for (u,r) : (u,r) E W do

0:= 0 U (u I, v : Iv = u : {I} x ({v} n P) X {r})
rof {R}

Again starting from algorithm 2.I() we can also consider "prefixes of suffixes of S" as follows:

(u I, v, r : Ivr = S : {I} x ({v} n P) x {r})

{introduce w : w = vr }

(u I, v, r, w : Iw = S /\ vr = w : {I} x ({v} n P) x {r})

{ V, T only occur in the latter range conjunct, so restrict their scope}

(u I, w : Iw = S : (u v, r : vr = w : {I} x ({v} n P) x {r}))

Introduction of algorithm detail

Detail (5): Examine suffixes of a given string in any order. D

yields the simple non-deterministic algorithm (5) which is analogous to algorithm 2.2(p). Hence,
it is not presented here.

The update of 0 (with another quantifier) in the inner repetitions of algorithms (p) and (5)
can be computed with another non-deterministic repetition. In the case of (p) the inner repetition
would consider suffixes of u to give algorithm (ps); similarly, in (5) the inner repetition would
consider prefixes of u to give algorithm (sp).

Each of (ps) and (sp) consists of two nested non-deterministic repetitions. In each case, the
repetition can be made deterministic by considering prefixes (or suffixes as the case is) in increasing
(called detail (+)) or decreasing (detail (-)) order of length. For each of (ps) and (sp) this gives
two binary choices. Along with the binary choice between (ps) and (sp) this gives a 3-cube
representing the three binary choices; the cube is depicted in figure 2 on page 7 with vertices
representing the eight possible algorithms for the two nested repetitions. The edges marked '='
join algorithms which are symmetrical; for example, the order in which (P+L) considers Sand P
is mirrored (with respect to string reversal of Sand P) by the order in which (5+ P _) considers S
and P. Because of this symmetry, we present only four algorithms in this section: (p +5+), (p +L),
(LP_), and (LP+). These algorithms were chosen because their outer repetitions examine S in
left to right order. In subsection 2.1 algorithm 2.2(p) will be refined further and in subsection 2.2
algorithm (5) will be refined. In section 3 algorithm (p+) will be developed into the Aho-Corasick
and Knuth-Morris-Pratt algorithms, while in sections 4 and 5 algorithm (p+s+) will be developed
into the Commentz-Walter and Boyer-Moore algorithms.

2 An algorithm is called non-deterministic if the order in which its statements a.re executed is not fixed.
3The for-do-rofstatement is taken from [vdE92]' Statement for x : P do Sod amounts to executing statement

list S once for each value of x that satisfies P initially. The order in which the values of x are chosen is arbitrary.

6

= =

Figure 2: The 3-cube of naive pattern matching algorithms.

2.1 The (p +) algorithms

The (p) algorithm presented in the previous section can be made deterministic by considering
prefixes of S in order of increasing length. The outer union quantifier in the required value of 0
can be computed with a deterministic repetition. Instantiating the algorithm in Appendix A.2
with W = V· X V', RANGE(u,r) == ur = S, (uo,ro) :s (Ul,rll == Uo :Sp Ul, Ell = U, and
flu, r) = (u I, v : Iv = u : {I} x ({v} n P) x {r}) results in algorithm (p +)4:

Algorithm 2.3(p+)

u,r:=e,S;O:={e}X({e}np)x{S};
do rope ----->

u,r:= u(rll),rJl;
0:= 0 U (U I,v: Iv = u: {I} x ({v} n P) x {r})

od {R}

This algorithm will be used in section 3 as a starting point for the Aho-Corasick and Knuth-Morris
Pratt algorithms. The inner union quantification in the required value of 0 can be computed with
a non-deterministic repetition as outlined in Appendix A.I. This algorithm is called (p+s) but
will not be given here.

2.1.1 The (p+s+) algorithms

Starting with algorithm (p+s) we make its inner repetition deterministic by considering suffixes of
u in order of increasing length. In keeping with the form in Appendix A.2, a first such algorithm
is

4The operators 1) J, f, and l are defined in definition B.6

7

u,r:= 0,5;0:= {o} x ({o}np) x {S};
do r f 0 ---->

u,r:= u(rl1),rJl;
l,v:= u,o;O:= 0 U {u} x ({o} nP) x {r};
do If" ---->

od
od {R}

l,v:= ill, (l[l)v;
0:= OU {I} x ({v}np) x {r}

This algorithm has running time 0(151'), assuming that intersection with P is a 0(1) operation.
We will now improve the running time of this algorithm. Note that

(lIw, a: w !/. suff(P) : aw !/. suff(P)).

In other words, in the inner repetition when (In)v !/. suff(P) we need not consider any longer
suffixes of u. The inner repetition guard can therefore be strengthened to

If 0 cand (In)v E suff(P).

Observe that v E suff(P) is an invariant of the inner repetition. This invariant is initially
established by the assignment v := o. Direct evaluation of (ifl)v E suff(P) is expensive.
Therefore it is done using the transition function of the reverse trie [Fre60) corresponding to
P TP,r : suff(P) X V ----> suff(P) u {J.} defined by

() _ {aw if aw E suff(P)
TP,r W, a - .1 if aw !/. suff(P) (w E suff(P),a E V).

Since we usually refer the trie corresponding to P we will write Tr instead of TP,ro Transition
function Tr can be computed beforehand. The guard becomes If" cand Tr(V, ifl) f .1. This
amounts to the introduction of algorithm detail

Detail (RT): Usage of reverse trie function Tr to implement expression (l[l)v E suff(P). 0

and yields

u,r :=0,5;0:= {c} X ({c}np) X {S};
do r f E: ---->

u,r:= u(rl1),rJl;
I, v := u, 0; 0 := 0 U {u} x ({o} n P) x {r};
do I f 0 cand Tr(v,ln) f.l---->

od

l,v:= ill, (In)v;
O:=Ou{l}x({v}np)x{r}

{v E suff(P) 1\ (I = E: cor (In)v!/. suff(P))}
od {R}

This algorithm has 0(151' (MAXp : pEP: Ipl)) running time. The precomputation of Tr is
similar to the precomputation of the transition function of the forward trie Tf (defined in 2.2.1)
which is discussed in Part II, section 6.

8

2.1.2 The (p+s-) algorithm

In the previous section we modified the inner repetition of algorithm (p+s) to consider suffixes
of u in order of increasing length. In this section, we will make use of an inner repetition which
considers them in order of decreasing length. The general form of such a repetition is given in
Appendix A.3. This gives us the following

Algorithm 2.6(p+s-)

u,r:= 0,5;0:= {o} X ({o} n P) x {S};
do rio ---->

u,r:= u(rll),rJl;
l,v:=€,U;
do v i 0 ---->

ad;

0:= 0 U {I} x ({v} n P) X {r};
I, v := l(vl1), vJl

O:=OU{u} X ({o}np) x {r}
od {R}

This algorithm has running time that is 0(1512).

2.2 The (s_) algorithms

Algorithm (s) can be made deterministic by considering suffixes of 5 in order of decreasing length.
Instantiating the algorithm in Appendix A.3 with W = V· x V', RANGE(I, w) '" Iw = 5,
(10, wo) :,; (11, wtJ '" Wo :,;, WI, Ell = U, and 1(1, w) = (u v, r : vr = w : {I} x ({ v} np) x {r}) results
in the deterministic algorithm (s-) which will not be given here. Furthermore, the assignment to
o in the repetition can be written as a non-deterministic repetition (see Appendix A.l and also
section 2.1) to give the algorithm (s-p) which will not be given here.

2.2.1 The (s-p+) algorithms

Starting with algorithm (s- p) we make the inner repetition deterministic by considering prefixes
of each suffix of the input string in order of increasing length, in keeping with the algorithm in
Appendix A.2. The algorithm is:

Algorithm 2.7(s-p+)

l,w:= €,S; 0:= 0;
do wio-

v, r := c, w; 0 := 0 U {I} x ({o} n P) x {w};
do r i<-

v,r:= v(rl1),rJl;
0:= OU {I} x ({v} np) x {r}

od;
I,w:= l(wl1),wJl

ad;
o := 0 U {S} x ({ o} n P) x {o}
{R}

This algorithm has 0(1512) running time like algorithm 2.4(p+s+). In a manner similar to the
introduction of the reverse trie, in algorithm 2.4(p+s+), we can strengthen the inner repetition
guard. Note that

(I/u, a: u rt pref(P) : ua rt pref(P)).

9

So we can strengthen the guard ofthe inner repetition to r # 0 cand v(rl1) E pref(P). Conjunct
v E pref(P) can be added to the invariant of this repetition. It is initially established by the
assignment v := c. Efficient computation of this guard can be done by using the transition
function of the forward trie corresponding to P 7j : pref(P) x V ---; (pref(P) U {-1}), defined by

7 (u a) = {ua if ua E pref(P)
j, -1 if ua Ii" pref(P) (u E pref(P), a E V).

Transition function 7j can be computed beforehand. The guard now becomes

r # 0 cand 7j(v,r11) #-1.

Detail (FT): Usage of forward trie function 7j to implement expression v(r11) E pref(P). 0

The forward trie detail (FT) is defined and used symmetrically to the reverse trie detail (RT).
Introducing algorithm detail (FT) yields

Algorithm 2.8(LP+, FT)

l,w:= £,8;0:= 0;
dow#o---;

v,r:= o,w;O:= 0 U {I} x ({o} n P) x {w};
do r # 0 cand 7j(v,rl1) # -1 ---;

v, r := v(rl1), rJ 1;
0:= 0 U {I} x ({v} n P) x {r}

ad;
I,w:= l(wl1),wJl

ad;
o := 0 U {S} x ({ o} n P) x {o}
{R)

This algorithm has O(ISI· (MAXp: pEP: Ipl» running time like algorithm 2.5(p+s+, RT).

2.2.2 The (LP_) algorithm

The inner repetition of algorithm (LP) can also be made deterministic by considering prefixes of
w in order of decreasing length, as in Appendix A.3. This yields algorithm (LP _) which is not
given here. Its running time is O(lSI2).

3 The Aho-Corasick algorithms

In this section, starting with algorithm 2.3(P+), we derive the Aho-Corasick and Knuth-Morris
Pratt algorithms. First, we make a preliminary step. The triple format of 0 used so far has been
redundant. This redundancy can be removed by registering matches in S by their end-point; that
is, the first component of the triple will be dropped. This modification is known as algorithm
detail (E).

Detail (E): Matches are registered by their end-point. 0

In the following derivation we use the symbol", to indicate that the problem specification has
been specialized (in this case, through projection). The postcondition of algorithm 2.3(p+) can
be rewritten as follows:

10

(u u,r: ur = S: (u I,v: Iv = u: {I} x ({v} n P) x {r}))

"" {introduction of detail (E) }

(U u,r: ur = S: (U I,v: Iv = u: ({v} n P) x {r}))

{ definition of suff, distributivity}

(U u,r: ur = S: (suff(u) n P) x {r})

This yields a new postcondition

Re: Oe = (U u,r: ur = S: (suff(u) n P) x {r})

which is established by a modified version of algorithm 2.3(p+)

Algorithm 3.1(p+, E)

u,r:=c,S;Oe:=({c}nP)x{S};
do r # c ---->

u,r:= u(rl1),rJl;
Oe := Oe U (suff(u) n P) x {r}

od {Re}

In the following sections, algorithm details unique to the Aho-Corasick and Knuth-Morris-Pratt
algorithms will be introduced.

3.1 Algorithm detail AC

In order to facilitate the update of Oe in algorithm 3.1(p+, E) we introduce a new variable U and
attempt to maintain invariant U = suff(u) n P. For the update of U we derive

suff(ua) n P

{suff(ua) = suff(u)a U {e}}
(suff(u)a n P) U ({c } n P)

{suff(u)a n P <; pref(P)a}

((suff(u) n pref(P))a n P) u ({c} n P)

Therefore, in order to calculate the new of value of U we need the set suff(u) n pref(P) rather
than the old value of U (suff(u) np). Formula suff(u) n pref(P) can be viewed as a generalization
of formula suff(u) n P. Hence, we try to maintain invariant

Potu, U) == (U = suff(u) n pref(P))

which is initially established by assignment u, U := c, {c}. Assuming Pot u, U) we derive

suff(ua) n pref(P)

{preceding derivation with pref(P) instead of P, pref is idempotent5 }

«suff(u) n pref(P))a n pref(P)) U ({ c} n pref(P))

{Po(u,U), P#0}

(Uanpref(P))U{c} .

From Pot u, U) and P <; pref(P) it follows that suff(u) nP = U nP. This all leads to the following
modification of algorithm 3.1(P+, E):

5 A function f is called idempotent if f 0 f = f.

11

u,r:= €, 5; U:= {£}; Oe := ({e} n P) x {S};
{invariant: Potu, Un
do r # € ---->

U := (U(rll) n pref(P)) U {t}; {Po(u(rll), un
u,r:= u(rll),rJl; {Po(u,U)}
Oe := Oe U (U n P) x {r}

od {R,}

Since 5 and, therefore, u can be any string from V' it follows from invariant Potu, U) that the
values that U can have constitute the finite set {suff(w)npref(P) I w E V'}. Hence, the preceding
algorithm can be viewed as simulating the behavior of Moore machine[HU791 (or finite transducer)
Mo = (QO,~Ol~Olbo'>"OISO) on input string S, where

- state set Qo = {suff(w) n pref(P) I w E V'},

- input alphabet ~o = V,

- output alphabet D.o = P(P),

- transition function 50 : Qo x V ----> Qo is defined by

50 (q,a) = (qanpref(P))U{e} (q E Qo,a E ~o),

- output function AO : Qo ----> D.o is defined by

AO(q) = q n P (q E Qo),

and

- start state So = {€}.

Moore machine Mo can be viewed as a deterministic finite automaton without final states and
with an additional output alphabet D.o and an additional output function Ao. If on reading
input sequence w machine Mo goes through states SO,Ql,Q2, ... ,Qlwl it will emit output sequence
AO(So)Ao(q,jAO(q2) ... Ao(qlwl). The set Oe can be viewed as an encoding of the output sequence of
Moore machine M o-

The following intermezzo shows that Moore machine Mo can be obtained in a different way.

An interesting solution to the pattern matching problem involves using an automaton for the lan
guage V* P. Usually, a nondeterministic finite automaton (NFA) is constructed. The automaton
is then simulated, processing input string S, and considering all paths through the automaton.
Whenever a final state is entered a keyword match has been found, and the match is registeredj see
for example Aho, Hopcroft & Ullman in [AHU74].

The state graph for the NFA is simply the forward trie for P, augmented with a transition from
state e to itself on all symbols in V. The NFA is defined as (QN, V,ON,SN,FN), where

- state set QN = pref(P),

- input alphabet V,

- transition function ON: QN X V --+ P(QN) is defined by

and

{e,a}
{£}

liN(q,a) = { ~qa}

if a E pref(P)
otherwise

if qa E pref(P)
otherwise

(a E V),

(q E pref(P) \ {£},a E V).

and is extended to oN: QN x V" --+ P(QN) in the obvious way,

12

- start state SN = E, and

- final state set FN = P.

The simulation of this automaton can proceed as follows:

u,r:= E,SjqN := {E}j
0.:= (qN n FN) x {r};
{invariant: qN = 0,,(0, u)}
do r =j:. E ----+

qN := (u q: q E qN: oN(q,r11));
O. := O. U (qN n FN) x {r}

od {R.}

Strictly speaking, the NFA is being used as a nondeterministic Moore machine. Each path through
the Moore machine is followed simultaneously; the output function is only defined for some of the
states {FN to be precise}. The output alphabet !:::J.N can be written as !:::J. N = P U {l.N} {l.N is
output in nonmatching states}. The output function is AN : Q N ----+ !:::J.N defined as

if q E P
if q ~ P

The nondeterministic Moore machine is now IvfN = (QN, V,!:::J. N , ON, AN, SN). In the algorithm, the
set Oe is only updated when the output is not l.N.

The subset construction (see [RS59J) can be applied to the nondeterministic Moore machine, to
give a deterministic Moore machine MD. In the following paragraphs, we will prove that this
deterministic Moore machine {with unreachable states removed} is equal to Mo {presented above}.

Under the subset construction, the state set is P{QN) = P(pref{P)). The set of reachable states is
smaller, as will be shown below. A new output alphabet {under the subset construction} is defined
as: !:::J.D = P(/l.N). The set of reachable states is

QD
{subset construction and reachability}

{O,,(E,W) I w E V"}

{definition of ON }

{{q I qEpref(P)lIw E V"q} IwE V"}

{w E V"q '" q E sUff(w)}

{suff(w) n pref(P) I wE V"}

{ definition of Qo }

The deterministic output function AD : QD - P(i~"N) is

AD(q)

{subset construction}

{AN(q') I q' E q II AN(q') # -LN}

{ definition of AN }

{q' I q' E q II q' E P}

= { set calculus}

qnp

{ definition Ao }

Ao(q)

13

Lastly, the deterministic transition function On : Qn x V - QD is

OD(q, a)
{subset construction}

(U g': q' E q: oN(g',a»

= { definition of DN, cEq}

(Ug' :g' E q/\q'aE pref(P): {q'a})U{c}

{ set calculus}

(qan pref(P» U {oj

{ definition of 00 }

oo(q, a)

From these derivations it follows that Mo = MD.

Notice that the number of states of the Moore machine does not grow during the subset construction.
Perrin mentions the AC and KMP Moore machines as examples of ones which do not suffer from
exponential blowup (i.e. the number of states grows exponentially) during the subset construction
[Per90j.

In subsection 3.2 it is shown that Moore machine Mo is minimal.

We proceed by observing that for each v E V' the set suff(v) n prer(P) is nonempty, finite,
and linearly ordered with respect to the suffix ordering :=;, (see Definition B.4) and therefore
has a maximal element (MAX< .. w : w E suff(v) n prer(P) : w). Since suff is idempotent
(suff(suff(u) = suff(u) we have by theorem B.5

suff(v) n prer(P) = suff((MAX". w : w E suff(v) n prer(P) : w) n prer(P)

so the states of machine Mo can be represented by their maximal elements. We replace variable
U in the algorithm by variable q and maintain invariant

PMu,q) == (q = (MAX". w: w E suff(u) nprer(P): w».

Introduction of q is called algorithm detail (AC).

Detail (AC): A variable q is introduced into algorithm 3.1(P+, E) such that

q = (MAX". w : wE suff(u) n prer(P) : w)

o

We now have that suff(u) nP = suff(q)np. By introducing function Output: prer(P) ----> PcP),
defined by

Output(w) = suff(w) n P (w E prer(P))

the update of 0, can be done by assignment 0, := 0, U Output(q) X {r}. The precomputation of
function Output is discussed in Part II, section 6.

We now have obtained algorithm

Algorithm 3.2(p+, E, AC)

u, r := c, S; q := C; 0, := Output(q) x {S};
{invariant: PO(u, q)}
do r oj £ ---->

q:= (MAX<. w: w E suff(u(rl1)) n prer(P): w);
u,r:= u(rl1),rJ1; {P6(u,q)}
0, := 0, U Output(q) x {r}

od {R,}

{P6(u(rl1),q)}

The next two sections are concerned with alternative ways of implementing assignment

q := (MAX". w : W E suff(u(rl1» n pref(P) : w).

14

3.2 Method OPT

Assuming P~ (u, q) we derive

(MAX",. w : w E suff(ua) n pref(P) : w)

{suff(ua) = suff(u)a u {E}, P '" 0}
(MAX",. w : w E suff(u)a n pref(P) V w = 0 : w)

{ theorem B.5 }

(MAX"" w : w E suff((MAX",. w' : w' E suff(u) n pref(P) : w'))a n pref(P) V w = c: w)

{P~(u,q)}

(MAX",. w: w E suff(q)a n pref(P) V w = c : w)

{suff(qa) = suff(q)a u {c}, P '" 0}
(MAX"" w : W E suff(qa) n pref(P) : w)

By introducing function6 "fl : pref(P) x V ~ pref(P), defined by

"fl(q,a) = (MAX",. w: w E suff(qa) n pref(P): w)

the assignment to q in algorithm 3.2(P+, E, AC) can be written as q := "fl(q,a). This is called
algorithm

Detail (OPT): Usage of function"fl to update variable q. 0

and leads to algorithm (cf. [AC75], section 6)

Algorithm 3.3(p+, E, AC, OPT)

u,r:= c,S;q:= 0;0,:= Output(q) X {S};
{invariant: P~(u,q)}

do r '" 0 ~
q:= "ff(q,rl1); {PO(u(rll),q)}
u,r:= u(rll),rJl; {P~(u,q)}
0, := 0, U Output(q) x {r}

od {R,}

Note that "fl is the transition function of Moore machine Ml = (pref(P), V, P(P), "fl' Output, 0).
Machine Ml is isomorphic with machine Mo from section 3.1 since function enc : Qo ~ pref(P)
defined by

enc(q) = (MAX<::. q' : q' E q : q')

is bijective. Furthermore Moore machine Ml corresponds to the automaton in the "optimized"
version of the Aho-Corasick algorithm.

Another interesting property of the Moore machine Ml is that it is in fact the minimal Moore
machine for its language. This will be shown in the following intermezzo.

For deterministic Moore machines we use the following definition of minimality:

Minimal(Q, V, E, 6, >., s) ::::
('iqO, ql : qo oF ql A qo E Q A ql E Q: (3w: wE V' : .\(0' (qO, w» oF '\(O'(ql, w»».

Notice that this definition can be viewed as a generalization of the definition of minimality for
deterministic finite automata (replace .\(6*(q,w» by tj*(q,w) E F in the definition where F is the
set of final states of the finite automaton).

6S ubscript / is used to indicate that If corresponds to the forward trie transition function Tf·

15

We now prove that the Moore machine Ml is minimal by contradiction. Assume that there are

qo, q, : qo E pref(P) II ql E pref(P) II qo i' ql II Iqol 2: Iqd

such that

(Vw: w E V· : Output(-yj(qO,w)) = Output(-yj(q"W))).

Choose Wo: qowo E P. Then l'j(qO,wo) = qowo and qowo E Output(l'j(qO,wo)). In this case (from
the assumptions)

qowo E Output(-Yj(q"WO))

=> { definition of 'Y f and Output}

qowo:Sa l'j(ql,WO):Sa qlWO

=<> { property of <;, }

qo :Sa ql

=<> {Iqol 2: Iqd}

which is a contradiction. We conclude that Moore machine Ml is minimal and end this intermezzo.

Provided evaluating "Ij(q, a) and Output(q) are 0(1) operations (for instance, if "If and Output
are tabulated) algorithm 3.3(p+, E, AC, OPT) has O(ISI) run time complexity. Precomputation of
"If is discussed in Part II, section 6. It involves the so-called failure function which is introduced
in the next subsection. Precomputation takes O(lpref(P)1 'IVI) time. Storage of "If and Output
takes O(lpref(P)I'IVI) space.

3.3 Linear search

In this subsection we give an alternative way of implementing assignment

q:= (MAX,;, w: w E suff(u(rl1)) n pref(P) : w)

involving linear search. We start with the following derivation, assuming P~(u, q),

(MAX,;, w : w E suff(ua) n pref(P) : w)

{ derivation in subsection 3.2 without last step}

(MAX,;, w: w E suff(q)a n pref(P) V w = €: w)

{suff(q)a n pref(P) ~ pref(P)a}

(MAX,;, w : w E (suff(q) n pref(P))a n pref(P) V w = € : w)

{domain split, introduction of ..is with ..is max:;~ w :;: w max~is = w
and (MAX,;, w : w E 0 : w) = -1, 7}

(MAX,;, w : w E (suff(q) n pref(P))a n pref(P) : w) max,; .. €

{ change of bound variable: w = w' a }

(MAX,;, w' : w' E suff(q) n pref(P) II w'a E pref(P) : w'a) max,;, €

{additional requirement on ..is : ..isw = w..is =..is (..is is zero of concatenation7)}

(MAX,;, w' : w' E suff(q) n pref(P) IIw'a E pref(P): w')amax,;, €

In order to compute the value of the quantified subexpression in the last expression of the derivation
we use a linear search on suff(q) n pref(P). This is called algorithm detail

Detail (LS): Using linear search to update the state variable q. D

In the next two subsections we present two slightly different methods of linear search; the first
leads to the standard Aho-Corasick algorithm, the second to the Knuth-Morris-Pratt algorithm.

7Like q representing suff(q) n pref(P), .Ls can be thought of as representing the empty set, provided we extend
the definition of suff with suff(.Ls) = 0.

16

3.3.1 The Aho-Corasick algorithm with failure function

Given a linearly ordered) non-empty, and finite set W we can define predecessor function pred :
W \ {min(W)} ---+ W \ {max(W)} by

pred(w) = (MAX w' : w' E W /\ w' < w: w') (w E W \ {min(W)}).

Given a predicate B : W ---+ III linear search for the maximal element of W satisfying B can
proceed as follows:

w:= max(W);
do w # min(W) /\ ,B(w) ---+ w := pred(w) od
{(w = min(W) /\ ,(3w' E W:: B(w'))) Vw = (MAXw' E W: B(w'): w')}

Taking

~ W = suff(q) n pref(P) (linearly ordered under :0;" max(W) = q (P6(u, q)), min(W) = f),

~ pred = ft".ff,,)np •• "p) 8 where ft : pref(P) \ {c} ---+ pref(P) is defined by

ft(w) = (MAX". w': w' E suff(w) \ {w} npref(P): w') (w E pref(P) \ {e})

(function f t is the Aho-Corasick failure function corresponding to the forward trie [AC75]),
and

~ B(w) == wa E pref(P) (w E pref(P))

leads to the following update of variable q

{P6(u,q)}
q':= q;
do q' # f /\ q'a if. pref(P) ---+ q' := ft(q') od;
{(q' = e /\ ,(3w : w E suff(q) n pref(P) : wa E pref(P)))

V q' = (MAX". w : w E suff(q) n pref(P) /\ wa E pref(P) : w)}
if q' = f /\ a if. pref(P) ---+ q:= c
~ q' # c V a E pref(P) ---+ q:= q'a
Ii {P6(ua,q)}

The second conjunct in the guard of the repetition can be evaluated using the forward trie Tf
(q'a if. pref(P) == Tf(q',a) = .L). However, by introducing the extended forward trie T,f :
pref(P) x V ---+ pref(P) U {.L,} defined by

{

wc if wc E pref(P)
T'f(w,c)= c ifw=c/\cif.pref(P)

..is otherwise
(w E pref(P),c E V)

both conjuncts can be combined:

q' # c /\ q'a if. pref(P) == T,f(q',a) = .L,.

As a side effect of this introduction the if·1i statement can be replaced by the single assignment
statement q:= T'f(q',a).

8With JIA we denote the function that is equal to f with its domain restricted to set A.

17

By adding algorithm detail

Detail (AC-FAIL): Introduction of the extended forward trie Tef and the failure function ff to
implement the linear search updating state variable q. 0

and eliminating variable q' we obtain algorithm (cf. [AC75J, section 2, algorithm 1)

Algorithm 3.4(P+, E, AC, LS, AC-FAIL)

u, r:= <,5; q:= <; Oe := Output(q) x {S};
{invariant: PM u, q)}
do r oj < --;

do Te!(q,rl1) = -L, --; q:= ff(q) od;
q:= Tef(q,r1 1); {PMu(r11),q)}
u,r:= u(rl1),rJl; {Po(u,q)}
Oe := Oe U Output(q) x {r}

od {Re}

This algorithm still has 0(151) run time complexity [Aho90j but is less efficient than the algorithm
3.3(p+l E, AC, OPT) in section 3.2. Function Tef can be stored more efficiently than function If
by use of a default value (-L,) requiring O(lpref(P)I) space. Precomputation of extended forward
trie Tef and failure function If is discussed in Part II, section 6.

3.3.2 The Knuth-Morris-Pratt algorithm

We now derive the Knuth-Morris-Pratt (KMP) algorithm, using a type of linear search different
from that used for the Aho-Corasick algorithm with failure function.

As in the previous subsection we define a predecessor function on a totally ordered set W. In
this case, however, we have a total predecessor function predex' : W --; (W \ {max(W)}) U {-Lw}
defined by

{
pred(w)

predex'(w) = -Lw
if w oj min(W)
if w = min(W)

(w E W)

where -Lw is such that -Lw max,; w = w max,; -Lw = wand (MAX,; w E W : w E 0 : w) = -Lw.
Assuming a selection predicate B as in the previous section, linear search can proceed as

follows:

w := max(W);
do w oj -Lw cand ,B(w) --; w:= predex'(w) od
{w = (MAX<w' E W: B(w'): w')}

Taking W = suff(q) n pref(P), -Lw = -L, (remember that -L, is also defined to be a zero of
concatenation), pred", = fe! where fef : pref(P) --; pref(P) U {-L,} is defined by

Il!Iuff('l)np f(P)

fe (w) = { f(w) if w oj <
f ..is Ifw=e:

(w E pref(P»

(Je! is called the extended failure function corresponding to the forward trie), and B(w) == wa E
pref(P) leads to the following instantiation of the linear search:

18

{PJ(u,q)}
q':= q;
do q' # -1, cand q'a '1- pref(P) ~ q' := fet(q') od;
{q' = (MAX"" w: wE su!f(q) n pref(P) /I wa E pref(P) : w)}
q:= qfamax~~ c
{q= (MAX<,w: w E su!f(q)npref(P)/lwa E pref(P): w)amax""c}
{Po(ua,q)} -

Adding the algorithm detail

Detail (KMP-FAIL): The extended failure function f" is introduced to implement the linear
search for the update of q. 0

and eliminating variable q' leads to algorithm

Algorithm 3.5(p+, E, AC, LS, KMP-FAIL)

u, r := 0, S; q := 0; 0, := Output(q) X {S};
{invariant: PJ(u, q)}
do r #0 ~

do q # -1, cand q(rl1) '1- pref(P) ~ q := fe,(q) od;
q := q(r11) max",. 0; {Po(u(r11), q)}
u,r:= u(rjl),rJl; {Po(u,q)}
Oe := 0, U Output(q) x {r}

od {R,}

Adding indices: Historically, the KMP algorithm was designed using indexing within strings;
this stems from efficiency concerns. Some of the most common uses of the KMP algorithm are
in file-search programs and text editors, in which pointers to memory containing a string are a
preferable method of accessing strings. In order to show the equivalence of this more abstract
version of KMP, and the classically presented version we will now convert the above algorithm to
make use of indexing within strings. In order to facilitate the use of indexing, we have to restrict
the problem to the one keyword case, as stated in problem detail

Detail (OKW): P = {p} 0

We now introduce three shadow variables, and invariants that are maintained between the shadow
variables and the existing program variables. Most shadow predicates and functions will be "hat
ted" for easy identification. Variables i and j are so named to conform to the original publication
of the algorithms.

• i : q = Pl ... Pi-l where i = 1 :::::: q = t: and i = 0:::::: q = ..is. With this convention we mirror
the coding trick from the original KMP algorithm.

• j : u = S, ... Sj-l /I r = Sj ... Sisi. Also r11 = Sj if j S lSI.

• Oe : Oe = (U x E Oe :: {(p, Sx··· Slsl)})·

We must of course define new predicates and a new predecessor function Ie! on these shadow
variables.

• Define jet: [1, Ipi + 1[~ [0, Ipll as j,,(i) = Ifet(Pl .. ·Pi-Ill + 1 and define 1-1,1 = -l.

• Po(j, i) == (PI ... Pi-l = (MAX",. w E V* : w E su!f(S, ... Sj-Il n pref(p) : w)).

19

• k == (0, = (u j : 1 50 j 50 lSI + 1 II P E suff(S, ... Sj_,) : {j}))

We can also note the following equivalences and correspondences:

• Since q E pref(p) then q(rll) '/. pref(p) == Sj # Pi when i < Ipi II j < lSI. Similarly
q # -1, == 0 < i and q = P == i = Ipi + 1.

• q:= q(rll) max", .. e corresponds to i := i + 1

• u,r:= u(rll),rJl corresponds to j:= j + 1

• role == j 50 lSI

.0, := O,UOutput(q) x{r} corresponds to if Ipi <i---->O, :=O,U{jHi5o Ipl---->skipfi

The complete algorithm (written without the invariants relating shadow to non-shadow variables)
is now:

u, r:= e, S; q:= e; 0, := Output(q) x {S};
i := 1; j := 1;

if i = Ipi + 1 ----; 0, := {jH i # Ipl + 1 ----> 0, := 0 fi;
{invariant: P~(u,q) II PMj,i)}
do j 50 lSI ----;

do 0 < i cand Sj # Pi ----; q := j'f(q); i := j'f(i) od;
q := q(rll) max",,c; i := i+ 1; {PQ(u(rll), q) II P~(j + 1, i)}
u,r:= u(rll),rJl; j:= j + 1; {PMu,q) II PW,i)}
0, := 0, U Output(q) x {r};
if i = Ipi + 1 ----> 0, := 0, U {j}
i i # Ipi + 1 ---+ skip
fi

od {R, II R,}

We have introduced algorithm detail:

Detail (INDICES): Represent substrings by indices into the complete strings. 0

Removing the non-shadow variables leaves us with the classic KMP algorithm (cf. [KMP77],
section 2, p.326):

Algorithm 3.6(p+, E, AC, LS, KMP-FAIL, OKW, INDICES)

i:=::::l;j:=l;

if i = Ipi + 1 ---+ 0, := {jH i of. Ipl + 1 ---+ 6, := 0 fi;
{invariant: P~(j, i)}
do j 50 lSI ---->

do 0 < i cand Sj # Pi ----> i := j'f(i) od;
i:=i+1; {P6(j+1,i)}
j:=j+1; {P~(j,i)}
if i = Ipi + 1 ----> 0, := 0, U {j}
~ i # Ipl + 1 ----> skip
fi

od {H,}

This algorithm has O(lSI) running time. Storage of j'f requires O(lpl) space. Precomputation of

function Jet can easily be derived by converting, in a similar way, the precomputation of function
Jet (as discussed in Part II, section 6) into using indices.

20

4 The Commentz-Walter algorithms

We now consider a derivation of the Commentz-Walter algorithms starting with algorithm 2.5
(p+s+, RT). We will be exploring the possibility of (safely) making shifts of more than one
symbol.

To present an algorithm more closely matched to the one presented by Commentz-Walter we
add the problem detail

Detail (NE): € if. P 0

Consequently, assignments 0 := {£} X ({o} np) x {S} and 0 := 0 U {u} x ({€} nP) x {r} become
superfluous in algorithm 2.5(p+s+, RT). Our goal is to make shifts larger than one symbol in
the assignment u,r:= u(rll),rJ1. In order to do this, an attempted match should occur before
this assignment. In this case, information obtained during the attempted match can be used to
determine an appropriate shift. Attempted matches are performed by the inner repetition of the
algorithm. A phase shift of the outer repetition will place the inner repetition immediately before
the shift assignment. Such a phase shift also places an extra copy of the inner repetition after the
outer repetition. Let m = (MIN pEP :: Ipl). Since lui < m =;. suff(u) n P = 0 we also start
with a different assignment to u, r. This phase shift and assignment to u, r are not considered
algorithm details. This yields algorithm

Algorithm 4.1(p+s+, RT, NE)

u,r:= Slm,SJm;O:= 0;
do r # €--->

l,v:=u,c:;
do 1# € cand T,(V, 1[1) #.1 --->

I, v := Ill, (lfl)v;
0:= 0 U {I} x ({v} np) x {r}

od;
{v E suff(P) /\ (I = € cor (lrr)v if. suff(P))}
u,r:= u(rll),rJl

od;
i,v:= S,€j

do 1# € cand T,(V,m) #.1 --->

I,v:= Ill, {lfl)v;
o := 0 U {I} x ({v} n P) x {E}

od
{v E suff(P) /\ (I = E cor (/i1)v if. suff(P))}
{R}

4.1 Larger shifts

We now consider larger shifts than in the assignment

u,r:= u(rll),rJl

in the previous algorithm.

Detail (cw): If k is such that

1 ~ k ~ (MINn: 1 ~n ~ Irl /\suff(u(rln))np#0: n)minlrl

then the assignment to u, r may be replaced by

u,r:= u(rlk),rJk

without missing any matches. 0

21

A number k satisfying the above condition is called a safe shift distance. Computing the upper
bound on k (the maximal safe shift) is essentially the same as the problem that we are trying to
solve. Therefore, we will aim at easier to compute approximations of the upperbound. By weak
ening the predicate sulf(u(r1 n)) n P ,0 0 in the range of the quantified expression approximations
of the upperbound from below are obtained.

This method of predicate weakening proves to be extremely important both in the derivation of
the Commentz-Walter algorithm and the Boyer-Moore algorithm variants. In both cases the value
of a quantified minimum must be computed. The range predicate in the quantifier is initially too
strong, amounting to a problem of similar difficulty to the one which we are trying to solve. A
weakening of this predicate will lead to a conservative approximation of the quantified minimum,
with less computational effort.

In the following derivation we will assume the post-condition of the inner repetition in al
gorithm 4.1(p+s+, RT, NE): Iv = u II v E sulf(P) II (I = € cor (lrI)v '/. sulf(P)). In fact,
this post-condition can be rewritten with non-conditional disjunction in place of the conditional
disjunction since d1 = [by definition.

We now proceed to weaken the predicate, assuming 1 :S n :S ITI:

sulf(u(r1n)) n Pi' 0
{u = Iv}

sulf(lv(T1n)) n Pi' 0
=? {split, and discard most of I, do not lookahead at T, n :S Irl}

sulf(V'(l[l)vvn) n Pi' 0

Notice that we have obtained a weaker predicate that does not depend on T. After substituting
this predicate in the upperbound the restriction n :S ITI can be removed due to the second operand
of the min-operator, ITI. We continue the derivation, assuming n 2: 1:

sulf(V'(l[1)vvn) n Pi' 0
= {property B.2}

V'(l n)vvn n V' P f' 0

{ V' An V' B ,0 0 == V· An B # 0 V V' B n A ,0 0}
v'(lrI)vvn n Pi' 0 V V' P n (l[l)vvn ,0 0

=? { I = €: trivial; I ,0 c: property B.7}

V'(l[l)vvn n Pi' 0 V V· P n vvn,o 0

We now consider several further weakenings of this predicate.

4.2 Discarding the lookahead symbol

In the disjunct V'(l[l)vvn n Pi' 0 we discard (lfl):

V'(lrI)vvn n Pi' 0 V V· P n vvn,o 0
=? {monotonicity of n: V*(lrI) <;; V'}

V'vvn n Pi' 0 V V· P n vvn ,0 0

We now manipulate the MIN quantifier into a suitable form:

(MIN n: 1 :S n:S ITIII sulf(u(T1n)) n Pi' 0: n) min ITI

> { weakening of the range predicate using the preceding derivations}

(MIN n : 1 :S n II (V'vvn n P ,0 0 V V' P n vvn ,0 0) : n) min ITI

{ property of MIN with disjunctive range}

(MINn: 1 :Snll V'vVn nP,00: n)
min(MINn: 1 :Snll v'pnvvn,o 0 :n)minlrl

22

Since v E sulf(P) we can define two functions d1 , d, : sulf(P) ----; N by

d1(x) = (MIN n: 1 :S n /I V'xvn n P", 0: n) (x E sulf(P))
d2 (x) = (MIN n: 1 :S n /I V' P n xvn", 0: n) (x E sulf(P))

Detail (NLA): The lookahead term Ifl is discarded. Functions d1 and d, can be precomputed
and used to compute the no lookahead shift

knlo = d1(v) mind,(v) min Irl

D

Using this detail gives a new algorithm (p+s+, RT, NE, CW, NLA). Precomputation of the two
functions d1 and d2 is discussed in Part II, subsection 7.1.

4.3 Using the lookahead symbol

Instead of discarding the lookahead term I fl it can also be taken into account.

Detail (LA): The lookahead term (l[1) is not discarded. D

V'(lfl)vvn n P", 0 V V' P n vvn ",0

{monotonicity of n: V· (l fl) C; V' }

(V'(trl)vvn n P", 0/\ V'vvn n P", 0) V V' P n vvn ", 0
=> {monotonicity of n: vV" C; vlvl+n}

(V'(l[1)vn+ 1vl n P", 0/\ V'vvn n P", 0) V V' P n vvn ",0

Detail (NEAR-OPT): Define function dno : sulf(P) x V ----; N by

dno(x, a) =
(MIN n : 1 :S n /I (V'aVn+lx l n P ", 0/\ V'xvn n P ", 0) V V' P n xvn ", 0 : n)

for x E sulf(P), a E V, and use it to compute shift amount

k _ { dno(v,l[l) minlrl
no - d1(v)mind,(v)minlrl

D

Using shift amount kno yields algorithm (P+S+, RT, NE, CW, LA, NEAR-OPT). Precomputation of
dno is discussed in Part II, subsection 7.2.

Precomputation of dno is rather expensive both in space and time. Moreover, storage of dno
requires O(lsulf(P)I·WI) space. Therefore, we derive another approximation, resulting in a more
efficient precomputation, and less storage requirements. We derive

dno(v, (tr1)) min ITI

{definition of dno and d2 , disjunctive range in quantifier}

((MIN n : 1 :S n /I V'(l [l)Vn+1vI n P ", 0/\ V'vvn n P ", 0 : n)) min d2 (v) min ITI

> {conjunctive range in quantifier, definition of d1 }

((MIN n : 1 :S n /I V'(tr1)vn+lvl n P ", 0 : n) max d1 (v)) min d2 (v) min ITI

2:: { calculus}

((MIN n: 1 :S n /I V'(l[l)Vn n P", 0: n -Ivl) maxd1(v)) mind2 (v) min Irl

23

Detail (NORM): Define d3 : N x V ---. N by

d3(z, a) = (MIN n : I :0; n /\ V'aVn n P i 0 : n - z) (z E N,a E V),

functions d1 and d2 as in subsection 4.2, and use them to compute shift amount

k _ {(d3{1vl,ifl)maxdl(V»mind2(v)minlrl ifl if
norm - d1(v) mind2(v) min Irl if I = f

o

Using shift distance knorm results in the normal Commentz-Walter algorithm (p+s+, RT, NE, CW,
LA, NORM) (ef. [Com79a], section II, and [Com79b], sections 11.1 and 11.2). Precomputation of d,
and d2 is discussed in Part II, subsection 7.1, and precomputation of d3 in Part II, subsection 7.3.

4.4 A derivation of the Boyer-Moore algorithm

We consider yet another weakening of the predicate - one that leads to a version of the regular
Boyer-Moore algorithm. We derive, assuming n ~ 1,

=

suff(V'(ifl)vvn) n P i 0
{property B.2}

V'(lfl)vvn n V' Pi 0
{monotonicity of n: V'(lfl) c;: V'}

V'(lfl)vvn n V' Pi 0/\ V'vvn n V'P i 0
{monotonicity of n: vvn c;: vn+lvl }

V'(lfl)Vn+1v l n V' Pi 0/\ V'vvn n V' Pi 0

We substitute this last predicate in the upper bound and derive

(MIN n: I :0; n /\ V'(lfl)Vn+1v l n V' Pi 0/\ V'vvn n V' Pi 0 : n)

> {(MIN n: Qo(n) /\ Q,(n) : n) 2: (MIN n: Qo(n) : n) maxiMIN n: Q,(n) : n)}

(MIN n : I :0; n /\ V'(lrl)vn+lv l n V' Pi 0 : n)
max (MIN n : I :0; n /\ V'vvn n V' Pi 0 : n)

> { changing bound variable: n' = n + lvi, enlarging range to I :0; n' }

(MIN n' : I :0; n' /\ V'(lfl)Vn' n V' Pi 0: n' -Ivl)
maxiMIN n : I :0; n /\ V'vvn n V' Pi 0 : n)

{V'(lfl)Vm n V' Pi 0, where m = (MIN pEP:: Ipl)}
«MIN n : I :0; n /\ V'(l[l)Vn n V' Pi 0 : n) -Ivl)
max(MIN n : I :0; n /\ V'vvn n V' Pi 0 : n)

Detail (BM): Define functions char: V ---. Nand dbm : suff(P) ---. N by

char(c) (MINn: I :0; n/\ V'cvn n V'P i 0: n) (c E V)
dbm(X) (MIN n : I :0; n /\ V'xvn n V' Pi 0: n) (x E suff(P»

and use them to compute the Boyer-Moore shift amount (ef. [BM77J, section 4)

k _ {«Char(lfl)-lvl)maxdbm(V))minlrl ifl if
bm - dbm(v) min Irl Ifl =,

o

Using shift amount kbm results in the Boyer Moore algorithm9 (P+S+ 1 RT, NE, CW, BM). Precom
putation of functions char and dbm is discussed in Part II, subsection 7.4. There it is also shown
that knorm 2: kbm , meaning that the amount of shift in the normal Commentz-Walter algorithm
(p+s+, RT, NE, CW, LA, NORM) is always at least the amount of shift in the Boyer-Moore algorithm
(P+S+ 1 RT, NE, CW, BM).

9The actual Boyer-Moore algorithm has the restriction of problem detail (OKW): P = {pl.

24

5 The Boyer-Moore family of algorithms

The Boyer-Moore algorithm derivation in the previous section only accounted for one method of
traversing the variable u, in increasing order of v. In practice, when P = {p} other methods of
comparing v to keyword P can be used. We therefore introduce problem detail

Detail (OKW): P = {p} 0

and starting with the original problem specification derive the Boyer-Moore algorithm and its
variants.

We define a "perfect match" predicate

PM({l,v,r» == (lvr = S 1\ v = p)

and rewrite the postcondition into

R': 0 = (U I,v,r: PM«/,v,r» : {(I, v, r)}).

Define right shift function Sh : (V')3 x N ---> (V')3 by

Sh(l,v,r,k) = (/(vrlk),(v(rlk»Jk,rJk).

By introduction of the "regular Boyer-Moore" algorithm detail

Detail (RBM): Use function Sh and maintain invariant

P, (l, v, r) (lvr = S) 1\ (Ivl :s Ipl) 1\ (Ivl < Ipi '* r = 0)
1\ (0 = (u I',v',r' : PM((l',v',r'») 1\ (/'v' <p Iv): {(/',v',r')}»)

o

we obtain a first (deterministic) solution (which is a phase shifted version of the algorithm in
Appendix A.2)

Algorithm 5.1(OKW, RBM)

I, v, r := 0, Sllpl, SJ Ipl; 0 := 0;
{invariant: P,(/,v,r)}
do Ivl = Ipi --->

if v = p ---> 0 := 0 U {(l, v, r)}
~ v '" p ---> skip
Ii;
(/,v,r):= Sh(l,v,r,l) {P,(l,v, r)}

od {R'}

This algorithm does not take into account how we evaluate v = p. Define a "match order" to be
a bijective function ma : [1, Ipll ---> [1, Ipl], i.e. a permutation of the integers j : 1 :s j :s Ipl. This
function is used to determine the order in which the individual symbols of v and p are compared.
We now have

(v = p) == (iii: 1 :s i :s Ipl : Vmo(i) = Pmo(i).

The match order detail is:

Detail (MO): The characters of v and p are compared in a fixed order determined by a bijective
function ma : [1, Ipll ---> [1, Ipll (i.e. a permutation of [1, Ipl]). 0

The particular match order used in an algorithm determines the third position of the algorithm
name. Three of the most common match orders, which represent particular instances of detail
(MO), are

25

Detail (FWD): The forward (or identity) match order given by mo(i) = i. 0

Detail (REV): The reverse match order given by mo(i) = Ipi - i + 1. This is the original
Boyer-Moore match order. 0

Detail (OM): Let Pr : [l,lpl] -----> [0,1] be the probability distribution of the symbols of
P in input string S; the domain of function Pr consists of indices into p. Let an optimal
mismatch match order be any permutation ma such that

(Vi,j : 1 :s: i:S: Ipi A 1 :s: j :s: i: Pr(mo(j)) :s: Pr(mo(i))).

This match order is described as "optimal" because it compares characters of p in order of
ascending probability of occurring in S. In this way, the least probable characters of pare
compared first, so on the average one can expect to find any mismatch as early as possible.
o

Comparing v and p using match order mo is done by procedure Match specified by

{Ivl = Ipl}
M atch(l v, 1 p, 1 rna, r i)
{P2 (v,p,mo,i) : (1:S: i:S: Ipl + 1) A (i:S: Ipi =? vmo(') '" Pmo('»)

A (Vj : 1 :s: j < i : vmo(j) = Pmo(j»)}

From P2 (v,p,mo,i) it follows that (v = p) == (i = Ipi + 1), and that if i :s: Ipi then vmo(') is the
first (in the given order) mismatching character. An implementation of Match is

i:= 1;

do i :s: Ipi cand V mo(') = Pmo(') -----> i := i + 1 ad

Adding mo, i, and Match to the algorithm 5.1(OKW, RBM) results in

Algorithm 5.2(OKW, RBM, MO)

l,v,r:= E,SllpI,SJlpl; 0:= 0;
{invariant: P,{l,v,r)}
do Ivl = Ipi ----->

M atch(v,p, mo, i);
{P2 (v,p,mo,i)}
ifi = Ipl+l-----> 0:= OU {(l,v,r)}

i i '" Ipi + 1 -----> skip
fi;
(l,v,r):= Sh(l,v,r,l) {P,{l,v,r)}

od {R'}

In some versions of the Boyer-Moore algorithms Match is only executed after a successful com
parison of a character of p which is least frequent in S, and the corresponding character of v. In
the taxonomy in [HS91] this comparison is called the guard and the character of p involved the
guard character. We do not consider it here since it can be viewed as additionally requiring that
PTno(l) is a character of P with minimal frequency in S.

26

5.1 Larger shifts without using Match information

It may be possible to make an additional shift (immediately before Match is performed) providing
no matches are missed. A shift of not greater than (MINk: 0:'0 kIlPM(Sh{l,v,r,k)): k) will
be safe. This can be done with the statement

{Ivl = Ipl}
(l, v, r) := Sh(/, v, r, (MIN k : 0 :'0 k II PM(Sh(/, v, r, k)) : k) min Irl)
{Ivl = IpllI (r = E V PM{l,v,r))}

The min Irl is used to ensure that Ivl = Ipi is maintained. Another implementation of the shift is

{Ivl = Ipl}
do 1:'0 Irlll ,PM{l,v,r)-->

(I, v, r) := Sh{l, v, r, (MIN k : 1 :'0 k II PM(Sh{l, v, r, k)) : k) min Irl)
od
{Ivl = IpllI (r = E V PM{l, v, r))}

This could have been implemented with an if-fi construct, however, the do-od construct will
prove to be more useful when the shift distance is approximated from below. The do-od version
is known as a skip loop in the taxonomy of Hume and Sunday [HS91].

Calculating the MIN quantification is essentially as difficult as the problem we are trying
to solve. Since any smaller shift length suffices, we consider weakenings of predicate PM. Some
weakenings are: Qo({l,v,r)) '" true, Q,({l,v,r)) '" (VI = PI), Q2((/,v,r)) '" (Vlpl = Plpl), and
Q3{{l,v,r)) '" (Vj = Pj) (for some j : 1 :'0 j :'0 Ipl); the predicates Q" Q2 and Q3 require that
polE. Predicates Q, and Q2 are special cases of Q3· We can of course take the conjunction of
any of these weakenings and still have a weakening of PM.

For each weakening of PM, we consider the shift length as calculated with the quantified
MIN. In the case of Qo, the entire skip loop is equivalent to skip.

We consider the shift length for Q3 before returning to Q, and Q2 as special cases. We need
to compute

(MINk: 1:'0 kIlPM(Sh(/,v,r,k)): k)

In order to easily compute this we will weaken the range predicate, removing lookahead. Addi
tionally, it is known (from the do-od guard) that ,Q3((/, v, r)) holds. The derivation proceeds as
follows (assuming 1:'0 k:'O Irl, ,Q3((/,v,r)) and fixed j: 1:'0 j :'0 Ipl):

=

PM(Sh(l, v, r, k))
{ definition of S h }

P M{{l(vrl k), (v(rl k))J k, r J k))

{ definition of PM}

(v(rlk))Jk =p

{ definition of = on strings}

(lfi: 1:'0 i:'O Ipi : ((v(rlk))Jk)i = Pi)

{rewrite J into indexing}

(lfi : 1 :'0 i:'O Ipi : (v(rlk))iH = Pi)

{discard lookahead at r, Ivl = Ipi }
(lfi : 1 :'0 i :'0 Ipi - k : ViH = Pi)

{change of bound variable: i' = i + k. 'Q3((I, v, r)) }

27

(Vi' : 1 + k::; i' ::; Ipi : v; = Pi'-k) 1\ Vj # Pj

=? { one point rule}

1 + k ::; j =? Vj = pj-k 1\ Vj # Pj

{transitivity of = }

1 + k ::; j =? Vj = Pj-k 1\ Pj # Pj-k

The final predicate is free of r, and so the upperbound of Irion k can be dropped.
Given j : 1 ::; j ::; Ipi we can define a function and a constant

sz. (a)
Sl2

= (MIN k: 1 ::; k 1\ (1 + k::; j =? a = Pj-k) : k)
(MIN k: 1::; kf\(1 +k::;j =? pj '1'Pj-k): k)

Functions sl, and Sl2 can be combined to give a shift of (sl,(vj) maxsl2) min Irl. In practice sz.
and Sl2 are frequently combined into one function. In section 5.2 we will show how sl, and Sl2
can be obtained from two functions computed for a different purpose. If a conjunct of any of Qo,
Q" Q2, or Q3 is used as a weakening of PM, the appropriate skip length can be approximated as
the max of the individual skip lengths. A particularly interesting skip length is that arising from
predicate Q,. In this case, sl,(a) = 1 and Sl2 = 1 and a skip length of 1 is used.

Assuming Q is a weakening of PM we introduce program detail

Detail (SL): Comparison of v and P is preceded bye a skip loop based upon weakening Q of PM
and some appropriate skip length. 0

Assuming some fixed j : 1 ::; j ::; Ipi we use Q3 as an example of a weakening of PM in

Algorithm 5.3(OKW, RBM, MO, SL)

I,v,r:= £,S1Ipl,SJlpl; 0:= 0;
{invariant: P,(l,v,r)}
do Ivi = Ipi --->

{Ivl = Ipl}
do 1::; Irl 1\ ~Q3((i,v,r)) ---> (l,v,r):= Sh(l,v,r, (S/l(Vj) lllaxsl2) min Irl) ad;
{ivi = Ipi 1\ (Q3«(l,v,r)) V r = E)}
Match(v,p,mo,i); {P2 (v,p,mo,i)}
if i = Ipi + 1 ---> 0:= 0 U {(/,v,r)}
I i # Ipi + 1 ---> skip
Ii;
(/,v,r):= Sh(l,v,r, 1) {P,(l,v,r)}

od {R'}

We proceed by presenting four instances of detail (SL) (each based on a weakening of PM)lO:

Detail (NONE): The predicate Qo (true) is used as the weakening of PM in the skip loop.
Notice that in this case the skip loop is equivalent to statement skip. 0

Detail (SFC"): The predicate Q, is used as the weakening of PM in the skip loop. 0

Detail (FAST): The predicate Q2 is used as the weakening of PM in the skip loop. 0

Detail (SLFC'2): Let Pj be a character of P with minimal frequency in S. Predicate Q3,
defined by

Q3((l,v,r)) == Vj = Pj,

is used as the weakening of PM in the skip loop. 0

lOnames are taken from the taxonomy in [HS91]
11 search first character
12search least frequent character

28

5.2 Making use of Match information

Up to now information from previous matching attempts was not used in the computation of the
shift distance (in fact there was no computation and the shift distance defaulted to 1). In this
subsection we will take into account the information from the immediately preceding matching
attempt.

With a shift of k symbols, P will be compared against (vrJ k)1Ipl. Ideally, we would like to
select our shift k such that it is the smallest k satisfying 1 :s k :s Irl and

(Vj : 1 :s j :s Ipi : (vrJk)j = Pj)·

Again, we apply the technique of weakening such a predicate, thereby obtaining approximations
of the optimal shift distance from below. The weakening of the predicate should, amongst others,
include the removal of any reference to r (no lookahead).

In the following calculations we assume k :s Irlll Ivl = Ipi and the postcondition of Match,
namely P,(v,p,mo,i). We derive

(Vj : 1 :s j :s Ipi : (vrJk)j = Pj)

{Ivl = Ipl, k:S Irl, hence (vrJk)j = (vr)j+k}

(Vj: 1:S j:S Ipi : (vr)j+k = Pj)

{ change of bound variable: j' = j + k }

(Vj' : 1 + k:S j' :s Ipi + k: (vr»)' = Pj'-k)

{ Ivl = Ipl, remove references to characters of r}

(Vj' : 1 + k :s l' :s Ipi : Vj' = Pj'-k)

{ change of bound variable: j' = mo(j) }

(Vj : 1 :s j :s Ipllli + k :s moU) : vmo(j) = Pmo(j)-k)

{P,(v,p,mo,i) }

(Vj : 1 :s j :s Ipllli + k :s moU) : vmo(j) = Pmo(j)-kl

II (i :s Ipi '* Vmo(i) oF Pmo(i» II (Vj : 1 :s j < i: vmo(j) = Pmo(j»
{ combine V quantifiers, with restricted range, since 1 :s i :s Ipi + 1 }

(Vj : 1 :s j < i 111 + k :s mo(j) : Pmo(j) = Pmo(j)-k)

II (i :s Ipi cand 1 + k :s mo(i) '* Vmo(i) = Pmo(i)-k II Pmo(i) oF Pmo(i)-k)

The last predicate in the preceding derivation will be denoted by P3 (v, i, k) (here we have chosen
to make parameters ma and p implicit). We now define the shift distance k based on previous
match information by

k= (MINj: l:Sj IIP3 (v,i,j) :j)min(lrl+ 1).

Notice that this shift distance still depends on implicit parameter mo. The predicate P3 is fre
quently weakened further (most often the conjunct Pmo(i) oF Pmo(i)-k is discarded). In much of
the literature, P3 is broken up into

P~(i, k)
Pj'(v,i,k)
Pr'{i,k)

= (Vj: 1 :s j < i 111 + k :s mo(j) : Pmo(j) = Pmo(j)-k)
== (i:S Ipi cand 1 + k :s mo(i) '* Vmo(i) = Pmo(i)-kl
- (i:S Ipi cand 1 + k :s mo(i) '* Pmo(i) oF Pmo(i)-k)

This leads to three functions 8, : N ---> N, char, : V lpl x N ---> N, and char, : N ---> N defined by

s, (i)
char,(v, i)
char, (i)

(MIN k: 1:S kIlP;(i,k): k)
(MIN k: 1:S k IIPj'(v,i,k): k)
(MIN k: 1:S kIlP~"(i,k): k)

(i E N)
(v E Vlpl,i E N)
(i E N)

Applying these functions yields a new, possibly smaller, shift distance

k = (sl(i) max char, (v, i) maxchar,(i)) min(lrl + 1).

This is known as the match information detail

29

Detail (MI): Use information from the preceding match attempt by computing the shift distance
using functions 81, charl1 and char2. 0

Adding this detail results in the following Boyer-Moore algorithm skeleton (details (MO) and (SL)
still have to be instantiated), for weakening Q3 of PM (cf. (HS91], section 4, p.1224):

Algorithm 5.4(OKW, RBM, MO, SL, MI)

I, v, r := e, Sllpl, SJ Ipl; 0 := 0;
{invariant: PI (I, V, r)}
do Ivl = Ipi --->

{Ivl = Ipl}
do 1 :0; Irl A ,Q3((l, v, r» ---> (I, v, r) := Sh(l, v, r, (sh(v;) max sl,) min Irl) od;
{Ivl = Ipi A (Q3((l, v, r» V r = e)}
Match(v,p,mo,i); {P,(v,p,mo,i)}
ifi = Ipi + 1 ---> 0:= 0 U {(I,v,r)}
~ i I' Ipi + 1 ---> skip
ft· ,
k := (SI (i) max chari (v, i) max char,(i)) min(lrl + 1);
(I,v,r):= Sh(l,v,r,k) {PI(l,v,r)}

od {R'}

Precomputation of functions 81, charI) and char2 is discussed in Part II, subsection 7.5 for in
stantiations (FWD) and (REV) of algorithm detail (MO).

Given fixed j : 1 :0; j :0; Ipi we can easily compute the function sll and constant sl, from
section 5.1. This can be done for any particular mo. The functions are

chari (v, mo- I (j»
= char,(mo-I(j»

30

Part II

Precomputation
In this part we derive algorithms for the precomputation of the functions used in the pattern
matching algorithms in Part 1. The algorithms are correct due to their formal derivation. This can
not always be said about the algorithms found in the literature, mostly due to the absence of any
formal derivation (see for instance the single keyword Boyer-Moore precomputation algorithms
given in [BM77], [KMP77[, and [Ryt80], where each article shows the preceding article to give
an incorrect precomputation algorithm). Moreover, we give the first formal derivation of the
precomputation algorithms for the Commentz-Walter family of algorithms. They can, amongst
others, be specialized to a correct precomputation algorithm for the single keyword Boyer-Moore
algorithm.

6 Precomputation for the Aho-Corasick algorithms

First, we consider the transition function of the forward trie corresponding to P TP,j : pref(P) x
V ----> (pref(P) U {.1}) defined by

{
ua if ua E pref(P)

Tp,f(u,a) = .1 if ua \t pref(P) (u E pref(P), a E V).

Since pref is idempotent and the definition of Tp,J only depends on pref(P), we have Tp,J
Tpref(P),J· Set P being nonempty we also have pref(P) = {€} U pref(P) and, hence, Tpref(P),J =
T{,}Upref(P),J· These observations lead to the following algorithm to compute Tp,J in which variable
tau is used to calculate and store Tp,J (ef. [AC75], section 3, algorithm 2):

{tau = T0,J}
for a: a E V do tau(c, a) := ..1 rof;
{tau = T{,},J}
Pd1 Pr := 0, P;
{invariant: Pd U P, = P /I Pd n P, = 0/\ tau = T{'}Upref(P,),J}
do P, # 0 ---->

p:pEP,;
u,v:= €,pj

{invariant: uv = P 1\ tau = T{~}uPf'ef(Pd)UPt'ef(u},f}
do v # € ---->

if tau(u,vl1) =.1---->
tau(u,vll):= u(vll);
for a: a E V do tau(u(vl1),a):=.1 rof

tau(u,vl1) #.1----> skip
Ii;
u,v:= u(ul1),vJl

ad;
Pd,P,:= Pd + {p},P, - {p}

od {tau = Tp,f}

Notice that the algorithm does a depth first traversal of the forward trie. Also notice that variable
Pd is only needed to formulate an invariant for tau, so it may safely be removed from the algorithm.
Furthermore, the states of the forward trie are represented by strings. In practice, one can resort
to a more suitable representation, for instance a representation by natural numbers. We will not
elaborate this here.

31

The extended forward trie corresponding to P Tp"t : pref(P) x V -----> (pref(P) u {J.}) is
defined by

{

ua if ua E pref(P)
Tp"t(u,a) = e ifu=u\ali'pref(P)

J. if u i e 1\ ua li' pref(P)
(u E pref(P), a E V),

It can be computed by the algorithm obtained by adding statement

for a : tau(e, a) = J. do tau(e, a) := e rof

to the end of the algorithm computing Tp,[,
Next, we focus on the computation of function "it : pref(P) x V -----> pref(P), defined by

"it(q, a) = (MAX,;. w : w E suff(qa) n pref(P) : w) (q E pref(P), a E V),

and it : pref(P) \ {e} -----> pref(P), defined by

it(q) = (MAX<. w: w E (suff(q) \ {q}) npref(P): w) (q E pref(P) \ {e}),

In order to arrive at an algorithm computing both "if and if we first derive (mutually) recursive
definitions of "if and if'

i. Let a E V, We derive

"if(e,a)

{ definition of "if }

(MAX,;. w : w E suff(a) n pref(P) : w)

{ case analysis}

{
a if a E pref(P)
e if a li' pref(P)

ii. Let u E pref(P) \ {e} and a E V, We distinguish two cases,

a. Assume ua E pref(P), Then by definition of "if we have "if(u,a) = ua,

b. Assume ua li' pref(P), Let u = buo where b E V and Uo E V'. We derive

"if(u, a)

{ definition of "if }

(MAX". w : w E suff(ua) n pref(P) : w)

{ ua li' pref(P), suff(ua) \ {ua} = (suff(u) \ {u})a U {E}, Pi 0}

(MAX,;. w : w E (suff(u) \ {u})a n pref(P) V w = £ : w)

{u = buo, suff(u) \ {u} = suff(uo)}

(MAX,;. w : W E suff(uo)a n pref(P) V w = e : w)

= {suff is idempotent, Theorem B,5 }

(MAX,;. w : w E suff((MAX,;. v: v E suff(uo) n pref(P) ; v))a n pref(P)
Vw=c:w)

{u = buo, suff(uo) = suff(u) \ {u} }

(MAX,;" w: w E suff((MAX" .. v: v E (suff(u) \ {u}) n pref(P): v))a n pref(P)
Vw=c:w)

{definition of if }

(MAX,;, w : w E sUff(ft(u))a n pfef(P) V w = e : w)

32

{suff(ft(u)a) = suff(ft(u))aU {£}, P # 0}

(MAX,;. w: w E suff(ft(u)a) n pref(P): w)

{ definition of "f f }

"ff(ff(u),a)

Observe that the need for function 1f arises naturally in this derivation.

iii. Let a E V such that a E pref(P). We derive

ft(a)

{ definition of ft }

(MAX,;. w : w E (suff(a) \ {a}) n pref(P) : w)

= {suff(a)={£,a},P#0}

iv. Let u E V' \ {£} and a E V such that ua E pref(P). We derive

ft(ua)

{ definition of ft }

(MAX,;. w: w E (suff(ua) \ {ua}) n pref(P) : w)

= {suff(ua) \ {ua} = (suff(u) \ {u})a U {e}, P # 0}

(MAX,;. w : w E (suff(u) \ {u})a n pref(P) V w = £ : w)

{ see derivation in ii. b. }

"ff(ff(u), a)

Summarizing, we have

"ff(£, a) = {~
"ff(u, a) { ua

"ff(ft(u),a)

ft(a) £

ft(ua) "ff(ft(u),a)

if a <;!. pref(P)
if a E pref(P)

if ua E pref(P)
if ua rt pref(P)

(a E V)

(u E pref(P) \ {e},a E V)

(a E V, a E pref(P))

(u E pref(P) \ {e},a E V,ua E pref(P))

Since (Vu: u E pref(P) \ {£}: Ift(u)1 < luI) the functions "ff and ft can be computed by the
following algorithm that is based upon the preceding recursive definitions (notice the layer wise
or breadth first traversal of pref(P); algorithm variables 9f and ff are used to calculate and store
"ff and 1f, respectively; cf. [AC75], a combination of algorithm 3 from section 3 and algorithm 4
from section 6):

33

for a: a E V do
if a E pref(P) -----> gf(o, a) := a; fI(a) := 0

~ art pref(P) -----> gf(c, a) := c
fi

rofj
n:= 1;
{invariant:

(ltu,a: u E pref(P)" lui < n" a E V: gf(u,a) = I'f(u,a))
" (ltu: u E pref(P) \ {c} " lui :'0 n : fI(u) = ft(u))}

do pref(P) n vn i' 0 ----->

od

for u : U E pref(P) n vn do

rof;

for a: a E V do

rof

if ua E pref(P) -----> gf(u,a) := ua; fI(ua) := gf(fI(u),a)
~ ua rt pref(P) -----> gf(u,a) := gf(fI(u),a)
fi

n:= n+ 1

If the forward trie Tf has already been computed and represented by tau, then the guard "ua E

pref(P)" in the preceding algorithm can be replaced by "tau(u, a) i' -1".
Next, we show how to compute failure function if without function "If using linear search. For

u E pref(P) \ {c}, a E V, and ua E pref(P) we derive

ft(ua)

= { see derivation iv. }

(MAX". w: wE (su!f(u) \ {u})an pref(P) V w = c: w)

{ domain split, (sulf(u) \ {u})a n pref(P) <; pref(P)a }

(MAXS;. w : w E (sulf(u) \ {u} n pref(P))a n pref(P) : w) maxS;. c

{ change of bound variable: w = w' a, properties of -1, }

(MAXS;. w': w' E sulf(u) \ {u} n pref(P)" w'a E pref(?): w')amax<. c

As in 3.3.1 this expression can be computed using a linear search

{(ltv: v E pref(P)" v <, u: fI(v) = ft(v))}
u' :=fI(u);
do Tef(u',a) = -1, -----> U' :=fI(u') od;
fI(ua):= Tef(u',a)

This leads to the following algorithm computing failnre function ff (notice the breadth first
traversal of pref(P) \ {c}; cf. [AC75], section 3, algorithm 3):

34

{tau = T'f}
for a: a E V do

if a E pref(P) ----> ff(a) := e
~ a <f- pref(P) ----> skip
ft

rof;
n:= 1;
{invariant: (Vu: u E pref(P) \ {e} II lui :s; n: ff(u) = ft(u))}
do pref(P) n vn # 0 ---->

od

for u : u E pref(P) n vn do
for a: a E V do

rof
rof;

if ua E pref(P) ---->

u' := ff(u);
do tau(u',a) = 1-, ----> u' :=ff(u') od;
ff(ua):= tau(u',a)

~ ua <f- pref(P) ----> skip
ft

n :=n+ 1

Finally, we consider the precomputation of function Output : pref(P) ----> P(P) defined by
Output(u) = suff(u) n P. A recursive definition of Output is derived as follows:

i. By definition we have Output(e) = {c} n P.

ii. Let u E pref(P) \ {e}. Let u = buo where b E V and Uo E V'. We derive

Output(u)

{ definition of Output}

suff(u) n P

{suff(u) = (suff(u) \ {u}) u {u}}
«suff(u)\{u})np)u({u}np)

= {u = buo, suff(u) \ {u} = suff(uo), P <;; pref(P)}

(suff(uo) n pref(P) n P) U ({ u) n P)

{suff is idempotent, Theorem B.5 }

(suff«MAX,s, w: W E suff(uo) npref(P) : w)) npref(P) n P) u ({u) n P)

{P <;; pref(P), u = buo, suff(uo) = suff(u) \ {u}}

(suff«MAX,s. w : w E (suff(u) \ {uj) n pref(P) : w)) n P) u ({u) n P)

{definition of ff, u E pref(P) \ {ej, definition of Output}

Output(ft(u)) U ({u) n P)

By preceding the algorithm on page 34 with assignment "out(e) := {e} n P", and by adding
assignment "out (a) := outre) U ({a} n P)" to the end of the first alternative of its first if-ft
statement and assignment "out(ua) := out (ff (ua)) U ({ ua) n P)" to the end of the first alternative
of its second if -fi statement one obtains an algorithm computing function Output as well.

35

7 Precomputation for the Commentz-Walter algorithms

In this section we will be using the reverse trie corresponding to P T, : suff(P) x V -----> suff(P) U

{-L} defined by

() _ {au if au E suff(P)
T, u, a - -1 if au rf- suff(P) (u E suff(P), a E V),

its optimal transition function 'Y, : suff(P) x V -----> suff(P) defined by

'Y,(q,a) = (MAX"" w: W E pref(qa) nsuff(P): w) (q E suff(P),a E V),

and its failure function I, : suff(P) \ {e} -----> suff(P) defined by

I,(q) = (MAX"" w: W E (pref(q) \ {q}) nsuff(p): w) (q E suff(P) \ {e}).

These functions are the mirror image of the functions corresponding to the forward trie and can
be computed by algorithms that are the mirror images of the algorithms in the previous section.

7.1 Computation of d j and d2

Next, we consider the computation of function dl : suff(P) ----->]\/ defined by

dl(x) = (MINn: n 2: 1A V'xV n nP i' 0: n)

Let x E suff(P). We derive

(x E suff(P».

Note

(MIN n : n 2: 1 A V'xV n n Pi' 0 : n)

{property B.2}

(MIN n : n 2: 1 A (xvn) n suff(P) i' 0 : n)

{change of bound variable: n = lsi}
(MIN s : S E V+ A xs E suff(P) : lsi)

{ change of bound variable: t = xs }

(MIN t: t E suff(P) \ {e} A x <p t: Itl-Ixl)
{x, t E suff(P), t i' e, lemma B.8}

(MINt: t E suff(P) \ {e} Ax Sp I,(t): Itl-Ixl)
{ domain split}

(MIN t : t E suff(P) \ {£} 1\ x = I,(t) : Itl-Ixl)
min(MIN t : t E sulf(P) \ {f} A x <p I,(t) : Itl-Ixl)

{ see following note}

(MINt: tE suff(P) \ {£}Ax= I,(t): Itl-Ixl)

In order to show that the second operand of the min-operator can be omitted we distinguish two
cases:

i. Assume ,(3t : t E suff(P) \ {f} : x <p I,(t». The second operand now equals the unity of
the min-operator.

ii. Assume (3t: t E suff(P) \ {f}: x <p I,(t». We derive

(MINt: t E suff(P) \ {flAX <p I,(t): Itl-Ixl)
> {(3t: t E suff(P) \ {e}: x <p I,(t», t E suff(P) \ {e} =? II,(t)1 < It I }

(MIN t : t E suff(P) \ {e} A x <p I,(t) : II,(t)1 -Ixl)

36

{fr(t) E suff(P), x <p fr(t) '* fr(t) # e}

(MIN t: t E suff(P) \ {e} A fr(t) E suff(P) \ {e} A x <p fr(t) : Ifr(t)I-lxl)

::0: {omitting first predicate in domain, change of bound variable: t' = fr(t) }

(MIN t' : t' E suff(P) \ {e} A x <p t' : WI-Ix!)
{ see first part of the previous derivation}

d,(x)

Since a = b min cAe> a ~ a = b the second operand of the min-operator can be omitted
in this case as well.

(End of Note)

Summarizing, we have

d,(x) = (MINt: t E suff(P) \ {e}Ax = fr(t): Itl-Ix!) (x E suff(P)).

(ef. [Com79a], sections I and III, and [Com79b), sections ILl and III, functions shift1, set1,
and set1'). Function d, can be computed during the computation of "Ir and fr without having
to compute the (generalized) inverse of fr explicitly.

Before giving an algorithm demonstrating this we will first deal with the computation of
function d2 : suff(P) --+ N defined by

d2 (x) = (MINn: n::O: 1 A V'pnxVn # 0: n) (x E suff(P)).

We will show that d2 can also be expressed in terms of fro We distinguish two cases::

i. Let x = e. We derive

(MIN n : n ::0: 1 A V' P n x vn # 0 : n)

{x = e, property B.2}

(MIN n: n::O: 1 A P n suff(vn) # 0: n)

{t: C/. P (NE), n ~ 1,* suff(vn) \ suff(Vn-') = vn}

(MIN n : n ::0: 1 A P n vn # 0 : n)

{e C/. P}
(MIN p : pEP: Ip!)

ii. Let x E suff(P) \ {e}. We derive

(MINn:n::O: IA V'Pnxvn #0 :n)

{property B.2}

(MINn: n::O: 1 APnsuff(xVn) #0 :n)

{x # e, suff(xvn) = xV" + suff((xJ l)Vn), domain split}

(MIN n : n ::0: 1 A P n xV" # 0 : n)
min(MIN n : n ::0: 1 A P n suff((xJ I)V") # 0 : n)

= {change of bound variable: n = lsi, definition of d2 }

(MIN s: s E V+ Axs E P: Isl)mind2 (xU)

{ change of bound variable: p = xs }

(MIN p: pEP A x <p p: Ipl-Ix!) mind2 (xU)
{e C/. P, hence p E suff(P) \ {,,}, x E suff(P), definition E.9, corollary B.12}

(MIN p: pEP A (3i : 0 < i ::; v(p) : x = f:(p)) : Ipl-Ixl) mind2 (xU)

The result in case i. can be made to look more like the result in case ii.:

37

(MIN P : pEP: Ipl)

{f:(p) (p) = 0, 0 rt P, hence v(p) > 0, 101 = 0)

(MIN p : pEP t\ (3i : 0 < i :'0 vip) : 0 = f;(p» : Ipl-Iol)

Summarizing, we have, for x E suff(P) \ {o),

d,(o) = (MIN p: pEP t\ (3i : 0 < i:'O vip) : 0 = f:(p)) : Ipl- 101)
d,(x) = (MIN p : pEP t\ (3i : 0 < i :'0 vip) : x = f;(p» : Ipl-Ixl) min d2 (xJ 1).

(ef. [Com79a], sections I and III, and [Com79b], sections 11.1 and III, functions shift2, set2, and
set2 J; the restriction from set2 to set2' for the computation of shift2 is not explained there
and seems, in view of our results for d2 , to be incorrect).

The expressions derived for d, and dz lead to the following algorithm computing 'Yro fro d"
and d2 in program variables gr, fT, dl, and d2, respectively:

for u: u E suff(P) do d1(u),d2(u):= +inf,+inf rof;
for a: a E V do

if a E suff(P) --->

gr(o, a) := a;
fr(a) := E;
d1(0) := d1(0) min 1;
if a E P ---> d2(0) := d2(0) min 1
i a rt P ---> skip
Ii

~ art suff(P) ---> gr(o, a) := 0

Ii
rof;
n:= 1;
{ invariant:

}

(Vu, a: u E suff(P) 1\ lui < n 1\ a E V: gr(u, a) = ,,(u, a»
t\ (lIu: u E suff(P) \ {o) t\ lul:'O n: fr(u) = f,(u»
1\ (lIu: u E suff(P) : d1(u) = (MIN t: t E suff(P) \ {o} 1\ It I :s; n 1\ u = f,(t) : It I -lui»
t\ (lIu: u E suff(P) : d2(u) = (MIN p: pEP t\ Ipi :'0 n t\ (3i : 0 < i:'O vip) : u = f;(p» : Ipl-Iul»

do suff(P) n vn oj 0 --->

for u : u E suff(P) n vn do
for a: a E V do

if au E suff(P) --->

gr(u,a):= au;
fr(au):= gr(fr(u),a);

Ii

d1(fr(au» := d1(fr(au» min(laul-lfr(au)I);
if au E P--->

v := fr(au); i := 1;
{ invariant: v = fri(au) t\ 0 < i :'0 v(au))
do v oj 0 --->

ad;

d2(v) := d2(v) min(laul-Ivl);
v := fr(v); i := i + 1

d2(0) := d2(0) min laul
I au rt P ---> skip
Ii

au rt suff(P) --->

gr(u,a) := gr(fr(u),a)

38

rof
rofj
n :=n+ 1

ad;
{ (ltu,a :uE suff(P)lIa E V: gr(u,a) ='Yr(u,a»

II (ltu: u E suff(P) \ {e} : fr(u) = fr(u»
II (ltu: u E suff(P) : dl(u) = d,(u»
II (ltu: u E suff(P) : d2(u) = (MIN p: pEP II (3i : 0 < i :s lI(p) : U = f:(p» : Ipl-Iul»

}
n:::::::; 1;
{ invariant:

(ltu: U E suff(P) II lui < n: d2(u) = d2 (u»
II (ltu: u E suff(P) II lui 2' n: d2(u) = (MIN p: pEP II (3i : 0 < i :s lI(p) : u = f:(p» : Ipl-Iul»

}
do suff(P) n vn # 0 ----->

ad

for u: u E suff(P) n vn do d2(u):= d2(u)mind2(uJl) rof;
n :=n + 1

7.2 Computation of dna

Let x E suff(P) and a E V. We derive

dno(x, a)

{ definition of dna}

(MIN n: n 2' 111 ((V'avn+1x l n P # 011 V'xvn n Pol 0) V V' P n (xvn) # 0) : n)

{ domain split, definition of d, }

(MIN n: n 2' 111 V'avn+lxl n Pol 011 V'xvn n P # 0: n) mind,(x)

{ property B.2 }

(MIN n: n 2' 111 avn+lxl n suff(P) # 011 xvn n suff(P) # 0 : n) mind,(x)

{ change of bound variable: lsi = n}

(MIN s: s E V+ lIaVI"1 nsuff(p) #011xs E suff(P): Isl)mind2 (x)

{ change of bound variable: t = xs }

(MINt: t E suff(P)\ {E}lIaV lt l nsuff(P) # 011x <p t: Itl-lxl)mind2 (x)

{x, t E suff(P), tolE, corollary B.12, definition of DCCr (after derivation)}

(MINt: t E suff(P) \ {E} II It I E Dccr(a) II (3i: 0 < i:S lI(t): x = I:(t»: Itl-Ixl)
mind,(x)

where DCCr : V --> P(Nl is defined by

Dccr(a) = {n I n E Nil aVn n suff(P) # 0} (a E V).

Observe that DCCr can easily be computed beforehand, e.g. during the computation of T r . There
after, the computation of the first operand of the min-operator is similar to the first part of the
computation of d,. Finally, function dna can be computed during the second and final part of the
computation of d,. We do not give an algorithm here since with these observations the reader
may easily adapt the preceding algorithm to also compute dna.

7.3 Computation of d3

Function d3 : N x V -----> N can be expressed in terms of function (13 : V --> N, defined by

(13(a) = (MIN n: n 2' 111 V'aVn n P # 0: n) (a E V),

39

a.'l follows

{
+inf ifd3 (a) = +inf

d3 (z, a) = d3 (a) _ z if d
3
(a) oj +inf

Let a E V. We derive

d3 (a)
{ definition of d3 }

(MIN n : n ;:0: 1/\ V'avn n P oj 0 : n)

{ property B.2 }

(MIN n: n;:O: 1/\ avn n suff(P) oj 0: n)

{ definition of aCCr }

(MIN n : n ;:0: 1/\ n E accr(a) : n).

(zEN,aEV).

This derivation shows that (13 can be computed at the same time as DeCr .

7.4 Computation of dbm and char

Let x E suff(P). We derive

dbm(x)

{ definition of dbm }

(MIN n : n ;:0: 1 /\ V· x vn n V· P oj 0 : n)

{V' An V· B oj 0 '" V' An B oj 0 V A n V· B oj 0, domain split}

(MIN n : n ;:0: 1/\ V'xvn n P oj 0 : n) min(MIN n : n ;:0: 1/\ xvn n V' P oj 0 : n)

{ definition of d, and d2 }

d, (x) mind2 (x).

Hence, we have

(x E suff(P)),

showing that dbm can be computed from d, and d2.

Let a E V. We derive

charta)

{ definition of char}

(MIN n : n ;:0: 1/\ V'aVn n V· P oj 0 : n)

= {V' An V· B oj 0 '" V' An B oj 0 V A n V+ B oj 0, domain split}

(MIN n : n ;:0: 1 /\ V· a vn n P oj 0 : n) min (MIN n : n ;:0: 1 /\ a vn n V+ P oj 0 : n)

{ definition of d3 , P oj 0, c '/. P, a vn n v+ P oj 0 '" n ;:0: (MIN p : pEP: Ipl) }
d3 (a) min (MIN p : pEP: Ipl)

Defining

mp = (MIN p: pEP: Ipl)
we have

charta) = d3 (a) min mp (a E V),

showing that char can be computed from d3 .

Having derived expressions for dbm and char in terms of d11 d21 and d3 we are able to compare
the amount of shift for the normal Commentz-Walter algorithm, knorm , to the amount of shift for
the Boyer-Moore algorithm, kbmo First, we derive

40

chaT(l[l) -Ivl
{ preceding derivation}

(d3(1[1) minmp) -Ivl
{ case analysis , +inf unity of min, distributivity}

if d3 (l[1) = +inf -----; mp -Ivl
~ d3(l[1) t- +inf -----; (d3(l[1) -Ivl) min(mp -Ivl)
fi

{relation between d3 and d3 }

d3(lvl, l[1) min(mp -Ivl).
Next, we derive

{ definition of kbm }

((chaT(l [1) - Ivl) max dbm(v)) min ITI
{preceding derivation, dbm expressed in d, and d2 }

((d3 (lvi, 1[1) min(mp - Ivl)) max(d, (v) min d2 (v))) min ITI
{ distributivity}

((d3(1vl, 1[1) min(mp -Ivl)) maxd1(v))

min((d3 {1vl, 1[1) min(mp - Ivl)) maxd2 (v)) min ITI
{(lfn: 1 :s; n < mp -Ivl : V' P n vvn = 0), definition of d2 , hence mp -Ivl :s; d2 (v)}

((d3(lvl, I [1) min(mp - Ivl)) max dl (v)) min d2 (v) min ITI
:s; { calcul us }

(d3 (lvi, 1[1) max d1 (v)) min d2 (v) min ITI
= { definition of knDTm }

k norm)

showing that the amount of shift in the normal Commentz-Walter algorithm is at least the amount
of shift in the Boyer-Moore algorithm.

7.5 Precomputation of 8" char" and char2

Here we discuss the precomputation of functions 81, chaTI, and char2 for the variants of the
one keyword Boyer-Moore algorithm obtained by instantiating detail (MO) by (FWD) and (REV),
respectively.

7.5.1 Forward matching

In the forward matching scheme (algorithm detail (FWD)) we have mo(i) = i. In this case P3 can
be manipulated further:

P3 (v,i,k)

= { definition of P3 and mo}

(lfj : 1 :s; j < i 111 + k :s; j : Pj = pj-kl

II (i :s; Ipllli + k :s; i => Vi = Pi-k II Pi t- Pi-k)

= {simplifying ranges, 1 :s; i :s; Ipi + 1 }

(lfj : 1 + k:S; j < i: Pj = Pj-k)

II (1 + k :s; i :s; Ipi => Vi = Pi-k II Pi t- Pi-k)

We continue with only the first conjunct, assuming 1 + k ~ i:

41

=

(Vj : 1 + k:S j < i : Pj = Pj-k)

{ rewrite using 1 and J }
(pHi - 1))Jk = pHi - 1 - k)

{set calculus}

{(p1(i -1))Jk} n {pHi -1- k)} oF 0

{ {xJj} n Y '" 0 == {x} n vjy '" 0 (O:S j :s lxI), k:S i-I}

{pHi - I)} n V k (p1(i - 1 - k)) '" 0
{X n Y(xjj) '" 0 == Xvlxl-j n Yx '" 0 (O:S j :s Ixl), k:S i-I, i :s Ipi + I}

(p1(i - 1))VlpIH-i+1 n Vkp '" 0

{('Ix, y : x E X 1\ Y E Y : Ixl = Iyl) =;. (X n Y '" 0 == V' X n V'Y '" 0)}
V*(pl (i - 1))VlpIH-i+l n V'p '" 0

Notice that this predicate is similar to the predicate in the definition of function db= (see subsec
tion 4.4). Precomputation of functions 81, charl, and char2 is similar to the precomputation for
the Boyer-Moore variant derived from the Commentz-Walter algorithm (Part II, subsection 7.4).
For this reason we do not elaborate the precomputation any further.

7.5.2 Backward matching

With backward matching (algorithm detail (REV)), p is compared to v from right to left, i.e. we
have mo(i) = Ipl- i + 1, the reverse permutation of the integers from 1 to Ipl. Predicate P3 can
be manipulated further. We have

P3 (v,i,k)

= { definition of P3 and mo}

(Vj : 1 :s j < i 1\ j :s Ipl- k : PlpH+l = Plpl-j-k+1)

1\ (i :s Ipi - k =;. vlpl-i+1 = Plpl-i-k+l 1\ Plpl-Hl '" Plpl-i-k+l)

We concentrate on the first conjunct and distinguish three cases. If i :s Ipi - k the first conjunct
becomes

(Vj : 1 :s j < i : Plpl-J+l = Plpl-j-k+l)

{ rewrite using rand l}
pr(i - 1) = (pr(k + i-I)) lk

= { set calculus}

{pr(i - I)} n {(pr(k + i - Illlk} '" 0

= {X n {yU} '" 0 == xVj n {y} oF 0 (0 :s j :5 Iyl), i +k :s Ipi }

(pr(i - 1))Vk n {pr(k + i-I)} '" 0
{X n {y rj} oF 0 == vlyH X n {y} '" 0 (0 :s j :s Iyl)' k + i-I < Ipi }

Vlpl-k-i+1(pr(i - 1))Vk n {p} '" 0

{('Ix, y : X E X 1\ Y E Y : Ixl = Iyl) =? (X n Y '" 0 == V' X n V'Y '" 0)}

V'(pr(i - 1))Vk n V'p '" 0

If i > Ipl - k and k :s Ipl the first conjunct becomes

(Vj : 1 :s j :s Ipl- k : PlpH+l = PlpH-k+1)

{ rewrite using J and l}

pJk = plk

{ set calculus}

{pJk} n {plk} '" 0

42

{{xJj}nY #0 =0 {x}nvjy #0 (O::S:j::S: Ixl), k::S: Ipl}
{p}nVk(plk) # 0

{XnY(ylj) #0 =oXVjnYy #0 (o::S:j::S: Iyl), k::S: Ipl}
pv k nv·p# 0

{(\Ix, y : x E X /I Y E Y : Ixl = Iyl) ~ (X n Y # 0 =0 V' X n V'Y # 0)}
v'pV k n v'p # 0

If i > Ipi - k and k > Ipi the first conjunct holds by definition. Notice that in this case V'pV k n
V'p # 0 holds as well, so the last two cases can combined. From these derivations and the definition
of dbm (see subsection 4.4, P = {p}) it follows that 81(i) = dbm(pf(i -1)) for i 2: l. Notice that
pf(i - 1) E suff(P). Precomputation of function 8, is therefore equal to the precomputation of
dbm (see Part II, subsection 7.4).

In a similar way one can derive

char,(v,i) = (MIN k: i::S: k /I V'Vl p !-i+1 Vk n V'p # 0: k) - (i -1)

in which the quantified expression can approximated from below by chart Vlp l_i+1) (see subsec
tion 4.4, P = {p}) by enlarging the range to 1 ::s: k. Precomputation of char, is similar to the
precomputation of char (see Part II, subsection 7.4).

The expression for char2(i) becomes

(MIN k : i ::s: k ::s: Ipl- 1/\ V'Plpl-i+1 Vk n V'p = 0 : k - i + 1) min(lpl- i + 1)

Equivalence

indicates that the precomputation of char2 is analogous to the precomputation of chaTI and char.

43

Part III

Conclusions
The taxonomy presented in Parts I and II has achieved the goals set out in the introduction. The
highlights of this taxonomy fall into two categories: general results of the derivation method and
specific results of the taxonomy. The general results can be summarized as:

• The method of refinement used in each of the derivations presented the algorithms in an
abstract, easily digested format. This presentation allows a correctness proof of an algorithm
to be developed simultaneously with the algorithm itself.

o The presentation method proves to be more than just a method of deriving algorithms: the
derivations themselves serve in the classification (in the taxonomy) of the algorithms. This
is accomplished by dividing the derivation at points which involve the introduction of either
problem or algorithm details. A sequence of such details serves to identify an algorithm. By
prefix-factoring these sequences, common parts of two algorithm derivations can be presented
simultaneously.

o The taxonomy of all algorithms considered can be depicted as a graph (in our particular case a
tree); the root represents the original solution 0 := (U I, v, r : Ivr = S : {I} x ({v} np) x {r}),
edges represent the addition of a detail, and the internal vertices and leaves represent derived
algorithms. This graph is shown in Figure 1. The utility of this graph is that it can be used
as an "alternative table of contents" to the taxonomy. Being interested in only a subset of
the algorithms, for example the Aho-Corasick (AC) algorithms, does not necessitate reading
all of the derivations; only the root-leaf paths that lead to the AC algorithms need to be
read for a complete view of these algorithms .

• The presentation was also more than just a taxonomy. Instead of using completed derivations
of known algorithms, which are possibly in different styles of derivation, all of the algorithms
were derived in a common framework. This made it easy to see what the algorithms have
in common (or where they differ) for the purposes of classifying them.

o The pattern matching overview presented in [Ah090J is an excellent introduction to many of
the algorithms presented in this paper. Unfortunately, it does not present all variants of the
algorithms, or present them in a fashion that allows one to contrast the algorithms with one
another. OUf taxonomy accomplished precisely this goal, of presenting algorithms in one
framework for comparison. In deriving the algorithms for this taxonomy every attempt was
made to thoroughly explore all of the possible variants. Our taxonomy should be a thorough
introduction to all variants of the four principal pattern matching algorithms presented in
[Ah090J.

Results concerning particular algorithms can be summarized as follows:

o As stated in [AC75], the AC algorithm is intended to be a generalization of the original
Knuth-Morris-Pratt (KMP) algorithm - making use of automata theory. The classical
derivations of the two (using automata and indices, respectively) do not serve to highlight
their similarities, or differences.

When derived in the same framework, it becomes apparent that the AC algorithm cannot
be specialized to arrive at KMP; this can be seen from the derivation of the AC algorithm
subtree of the taxonomy tree. The linear search (introduced in subsection 3.3) used in the
failure function AC algorithm (algorithm 3.4) is quite different from the linear search used
in the abstract KMP algorithm (algorithm 3.5). Indices could have been introduced in
algorithm 3.4, although this does not yield the classically presented KMP algorithm. The
AC-KMP relationship is in fact that they have a common ancestor algorithm (p +, E, AC,

LS).

44

• The abstract intermediate KMP algorithm (algorithm 3.5) is in fact a new algorithm, albeit
a variant of the AC algorithm. The running time of this new algorithm does not appear to be
any better than algorithm 3.4. The transformation (by adding indices) of algorithm 3.5 into
the classically presented KMP algorithm (algorithm 3.6) was demonstrated to be straight
forward.

• The origin·al Aho-Corasick article [AC75j presented the "optimal" version of the algorithm
after the failure function version of the algorithm. The optimal algorithm was explained
as using a transition function If which is a composition of the extended forward trie Ie!

and failure function ff. While this is indeed the case, our derivation proceeded much more
smoothly by deriving an algorithm which is a common ancestor of both the optimal and the
failure function algorithms.

• "Predicate weakening" (of sections 4 and 5) was instrumental in deriving various algorithms
(and their correctness proofs) from the Commentz-Walter (CW) algorithm, in particular
the Boyer-Moore (BM) algorithm. The CW algorithm has not emerged as a popular string
pattern matching algorithm partly due to the difficulty in understanding it. The derivation
presented in Part I arrives at the CW algorithm through a series of smaIl transformations,
starting with a naive (quadratic ruuning time) algorithm. This derivation makes the CW
algorithm considerably easier to understand. Predicate weakening was also heavily used in
deriving the "match-order" variant of the BM algorithm.

• Commentz-Walter's intention was to combine the BM algorithm with automata theory, to
produce an algorithm dealing with multiple keywords. The relationship between the two
algorithms has previously remained obscured by the styles of presentation of the two algo
rithms (indices in BM, and automata in OW). As seen from section 4 the BM algorithm
can indeed be arrived at in the same framework (as the CW algorithm) as a special case.
The publication of the Hume-Sunday taxonomy [HS91j motivated us to also derive the BM
algorithm in an entirely different manner ~ making lise of the concept of "match-orders" .

• In both papers by Commentz-Walter describing her algorithm (in particular [Com79a]), the
differences between methods of determining a safe shift amount were not made explicit.
Indeed, that some of these shift functions were distinct was not mentioned in all cases. OUI

derivation of the CW algorithm clearly defines the differences between the shift functions.
The (NEAR-OPT) shift function was only mentioned in passing in the original paper; this
derivation provides a definition of this function; Part II provides the only fuIl derivation of
a precomputation algorithm for this function.

• In the BM algorithm the functions contributing to a shift have been presented in several
separate papers since the introduction of the original algorithm. Until the publication of the
taxonomy by [HS91j it was difficult to examine the contribution of each shift function. Both
section 5 and [HS91j present a shift as consisting of components that can be readily replaced
by an equivalent component, for example: the "skip" loops, or the "match-orders". [HS91]
emphasized effects on running-time of each component. Our taxonomy has emphasized the
derivation of each of these components from a common specification.

• The precomputation of the BM shift functions has been troublesome; many solutions were
published, corrected, and re-published (for a good bibliography of these see [Ah090J). The
precomputation presented in Part II provides an understandable derivation of a correct
precomputation algorithm.

45

Part IV

Appendices

A Calculating the value of a quantification

The problem is, given an associative, commutative operator E9 on set U with unit e$) a set W, a
range predicate RANGE: W --> $, and a function f : W --> U on W, calculate:

w = (EIlx E W: RANGE(x) : f(x))

We now present three solutions.

A.1 A nondeterministic solution

This can be done with the following nondeterministic repetition:

RW:= {x I x E W A RANGE(x)}; w:= e$;
for x : x E RW do w := w Ell f(x) rof
{w = (EIlx E W: RANGE(x) : f(x))}

A.2 A deterministic solution in the ascending direction

Given the set RW = {x I x E W A RANGE(x)} and a linear order :<:; on RW we can define a
function next: RW --> (RW U {T}) as:

next(v) = (MIN~x E RW: v < x: x)

Function next is extended to map the maximum element of RW to fictitious element T (to make
next total). Assume RW oF 0.

This allows us to implement a deterministic algorithm which processes RW in :s-ascending
order:

v:= (MIN< x E RW:: x); w:= f(v);
{invariant: ; Ell (EIlx E RW: v < x: f(x)) = (EIlx E W: RANGE(x) : f(x)) }
do next(v) oF T --->

od

v:= next(v);
w:=WEllf(v)

{w = (EIlX E W : RANGE(x) : f(x))}

A.3 A deterministic solution in the descending direction

Given the set RW defined above in Appendix A.2, we define a function prev : RW --> (RWU{ -L})
as:

prev(v) = (MAX <x E RW:x <v: x)

extended to map the minimum element in RW to . .1. We can now implement a deterministic
algorithm which processes RW in :<:;-descending order. Assume RW oF 0. The following algorithm
is symmetrical to that presented above in Appendix A.2, with the exception that the repetition is
phase shifted, leaving an additional assignment after the repetition:

46

v:= (MAX", x E RW:: x); w:= eEll;
{invariant: wEB (EBx E RW: x:O; v : f(x)) = (EBx E W : RANGE(x) : f(x)) }
do prev(v) # -L ---->

w:=WEBf(v);
v:= prev(v)

od;
w:=wEBf(v)
{w = (EBx E W: RANGE(x) : f(x))}

AA Nested quantifications

Nested quantifications can similarly be dealt with using nested repetitions. When two operators
of nested quantifications are in fact the same, the accumulation variable (in the above programs
w) of the two corresponding nested repetitions can be identified. This is useful in our case, where
most of the quantifications will consist of two nested union quantifications.

For example, given the requirement to compute:

W = (EBx E W: RANGE(x) : (EBy E W': RANGE'(x,y): fry)))

we can make the following first nondeterministic solutionI3 :

RW:= {x I x E W /\ RANGE(x)};w:= eEll;
for x : x E RW do

rof

RW' := {y lyE W' /\ RANGE'(x, y)}; w' := eEll;
for y: y E RW' do w':= w' EB fry) rof;
{w' = (EBy E W' : RANGE'(x,y): fry)))
w;== wEBw'

{w = (EBx E W: RANGE(x): (EBy E W': RANGE'(x,y): f(y))))

The program variable w' in the inner repetition is not needed, and w can instead be updated
directly. The (slightly) shortened version is nOw:

RW:= {x I x E W /\ RANGE(x)}; w := eEll;
for x : x E RW do

rof

RW' := {y lyE W' /\ RANGE'(x,y)};
for y : y E RW' do w:= wEB f(y) rof

{w = (EBx E W: RANGE(x): (EBy E W': RANGE'(x,y) : fry)))}

B Definitions and properties

This section provides a series of definitions and properties which are used throughout this paper.
For any language L, we take LR to denote the reversal of the language. For a string w E V*,

we take wR to denote the reversal of w.

Definition B.1 Let V be an alphabet. Define pref : P(V') ----> P(V') and suff : P(V') ---->

P(V') as pref(L) = {w I w E V' /\ (3x : x E V' : wx E L)} and suff(L) = (pref(LR))R 0

13The deterministic solution follows similarly.

47

For w E V' we will write pref(w) (suff(w)) instead ofpref({w}) (suff({w})).

Property B.2 Let A, B <:;; V'. Then pref(A) n B oj 0 == An BV' oj 0 and suff(A) n B oj 0 ==
An V'B oj 0.0

The following two theorems are used in the derivation of the Aha-Corasick precomputation algo
rithm.

Theorem B.3 Let V be an alphabet, A, B, C <:;; V', and V·C n B = BC n B. Then

suff(A)C n B = suff(suff(A) n B)C n B.

Proof

o

suff(A)C n B

{suff(A) <:;; V', distributivity}

suff(A)C n V·C n B

{V'C n B = BC n B}

suff(A)C n BC n B

{ distributivity }

(suff(A) n B)C n B

c {X <:;; suff(X) for all X <:;; V', monotanicity}

suff(suff(A) n B)C n B

C {suff(A) n B <:;; suff(A), monotonicity}

suff(suff(A))C n B

{suff is idempotent, since :Ss is transitive}

suff(A)C n B

If C = {o} or B = pref(B) then condition V·C n B = BC n B is satisfied.

Definition B.4 Define the relations :O,p and :0" over V' x V' as u :O,p v == U E pref(v) and
u:O" v == u E suff(v). 0

Theorem B.5 Let V be an alphabet, A, B, C <:;; V', V·C n B = BC n B, and A is nonempty,
finite, and linearly ordered with respect to :0". Then

suff(A)C n B = suff((MAX,;, w : w E suff(A) n B : w))C n B.

Proof

suff(A)C n B

:J {(MAX,;. w : w E suff(A) n B: w) E suff(A), monotonicity, A oj 0}

suff((MAX,;, w : w E suff(A) n B: w))C n B

:J {suff(A) n B:O" (MAX,;, w: w E suff(A) n B: w), monotonicity}

suff(suff(A) n B)C n B

{Theorem B.3 }

suff(A)C n B

o

48

Definition B.6 The infix operators 1, J, [, l : V' x N ---> V' are defined by

vl0 [(v E V*)
e1(k + 1) [(k 2: 0)

(aw)1(k + 1) a(wl k) (k 2: O,a E V,w E V')
vjO v (v E V*)

ej(k + 1) [(k 2: 0)
(aw)j(k + 1) wjk (k 2: O,a E W,w E V')

Define [as v[k = (v Rlk)R and l as vlk = (vRjk)R The operators 1,j, [, and l are called "lelt
take," "left drop," llright take," and "right drop 11 respectively. 0

For A <; V' and k 2: a we define Alk = (Uw: w E A: wlk) and Ajk = (Uw : w E A: wjk), and
likewise for [and l.

Property B.7 Let V be an alphabet, A, B <; V', A # 0, and e ~ A. Then

V' An B # 0 V V' B n A # 0 =? V' An B # 0 V V' B n (Aj 1) # 0

Proof

o

V' A n B # 0 V V* B n A # 0
{split second disjunct: V' = v+ U {e} }

V* A n B # 0 V B n A # 0 V V+ B n A # 0
=? {A <; (All)(AJl); BnA1'0=? V'AnB # 0)

V' An B # 0 V VV' B n (All)(AJl) # 0
=? {(All) <; V}

V'AnB # 0vVV'BnV(AJl) # 0
{ left factoring of V }

V' An B # 0 V V' B n (AJl) # 0

We continue with some properties of the failure function that are used in the derivation of the
Com mentz-Walter precomputation algorithm.

Lemma B.8 For x, Y E suff(P) and y # e we have

x <p y == x:Sp Ir(Y)·

Proof
Let x,y E suff(P) and Y # e. We derive

=

o

x <p Y
{ definition of <p and pref}

x E pref(y) \ {V}
{x E suff(P)}

x E pref(y) \ {y} n suff(P)

{pref(y) \ {V} n suff(P) is finite and linearly ordered W.r.t. :Sp}

x :Sp (MAX<:p w : w E pref(y) \ {V} n suff(P) : w)

{ y # e, definition of Ir }

x :Sp Ir(Y)

{y # e, Ir(Y) <p Y (by definition of Ir), transitivity of <p}

x <p Y

49

Definition B.9 We define v : suff(P) --+ N by

V(E)=O

and

v(y) = v(fr(Y)) + 1 (y E suff(P) \ {E}).

o

Property B.IO We have lor all y E suff(P) \ {E}

g(Y)(y) = E; 1\ ('In: 0::; n < v(y) : I::(y) # E).

o

Lemma B.ll For x, y E suff(P) and y # E we have

('In: 0::; n ::; v(y) : x <p y == (3i : 0 < i::; n: x = I;(y)) V x <p I::(y))

Proof
Let x, y E suff(P) and y # E. We proceed by induction on n.

base Let n = O. Observe that v(y) > 0 = n. The equivalence is satisfied trivially.

step Let n = k + 1 for some k : 0 ::; k < v(y). Assume

o

We derive

x <p Y

= {induction hypothesis}

(3i : 0 < i ::; k: x = I;(y)) V x <p I:(y)

{O::; k < v(y), hence by property B.lO I:(y) # E, lemma B.B}

(3i : 0 < i ::; k: x = I;(y)) V x::;p 1:+1(y)

= {x::;p 1:+1(y) == x = 1:+1(y) V x <p I:+l(y)}

(3i : 0 < i S k + 1 : x = I; (y)) V x <p 1:+1 (y)

By instantiating n with v(y) in this lemma we obtain

Corollary B.I2 For x, y E suff(P) and y # E we have

x <Py== (3i:0 < i::; v(y): x = I;(y))

o

50

References

[Ah090] AHO, A.V. Algorithms for finding patterns in strings, in: J. van Leeuwen, ed., Hand
book of Theoretical Computer Science, vol. A (North-Holland, Amsterdam, 1990) 257-
300.

[AC75] AHO, A.V. and M.J. CORASICK. Efficient string matching: an aid to bibliographic
search, Comm. ACM, 18(6) (1975) 333-340.

[AHU74] AHO, A.V., J.E. HOPCROFT, and J.D. ULLMAN. The Design and Analysis of Com
puter Algorithms (Addison-Wesley Publishing Company, Reading, MA, 1974).

[BM77] BOYER, R.S. and J.S. MOORE. A fast string searching algorithm, Comm. ACM, 20(10)
(1977) 62-72.

{BroS3] BROY, M. Program construction by transformations: a family tree of sorting programs,
in: A.W. Biermann and G Guiho, eds., Computer Program Synthesis Methodologies
(1983) 1-49.

[Com79a] COMMENTZ-WALTER, B. A string matching algorithm fast on the average, in: H.A.
Maurer, ed., Proc. 6th Internat. ColI. on Automata, Languages and Programming
(Springer, Berlin, 1979) 118-132.

[Com79b] COMMENTZ- WALTER, B. A string matching algorithm fast on the average, Technical
report TR 79.09.007, IBM Germany, Heidelberg Scientific Center, 1979.

[Dar78]

[Dij76]

[vdE92]

[Fre60]

[HU79]

[HS91]

[Jon82]

DARLINGTON, J. A synthesis of several sorting algorithms. Acta Informatica, 11 (1978)
1-30.

DIJKSTRA, E.W. A discipline of programming (Prentice-Hall Inc., New Jersey, 1976).

VAN DEN EIJNDE, J.P.H.W. Program derivation in acyclic graphs and related prob
lems, Computing Science Notes 92/04, Eindhoven University of Technology, The
Netherlands, 1992.

FREDKIN, E. Trie memory, Comm. ACM, 3(9) (1960) 490-499.

HOPCROFT, J.E. and J.D. ULLMAN. Introduction to Automata, Theory, Languages,
and Computation (Addison-Wesley Publishing Company, Reading, MA, 1979).

HUME, S.C. and D. SUNDAY. Fast string searching, Software-Practice and Experi
ence, 21 (11) (1991) 1221-1248.

JONKERS, H.B.M. Abstraction, specification and implementation techniques, Disser
tation, Eindhoven University of Technology, The Netherlands, 1982; also MC-Tract
166, Mathematical Center, Amsterdam, The Netherlands, 1983.

[KMP77] KNUTH, D.E., J.H. MORRIS and V.R. PRATT. Fast pattern matching in strings,
SIAM J. Comput. 6(2) (1977) 323-350.

[Mar90] MARCELIS, A.J.J.M. On the classification of attribute evaluation algorithms, Science
of Computer Programming 14 (1990) 1-24.

[per90] PERRIN, D. Finite Automata, in: J. van Leeuwen, ed., Handbook of Theoretical Com
puter Science, vol. B (North-Holland, Amsterdam, 1990) 1-57.

[RS59] RABIN, M.O. and D. SCOTT. Finite automata and their decision problems, IBM Jour
nal of Research 3(2) (1959) 115-125.

[Ryt80] RYTTER, W. A correct preprocessing algorithm for Boyer-Moore string-searching,
SIAM J. Comput. 9(2) (1980) 509-512.

51

Computing Science Reports

In this series appeared:

91/01 D. Alstein

91/02 R.P. Nederpelt
H.C.M. de Swart

91/03 J.P. Katoen
L.A.M. Schoenmakers

91/04 E. v.d. Sluis
A.F. v.d. Stappen

91/05 D. de Reus

91/06 K.M. van Hee

91/07 E.Poll

91/08 H. Schepers

91/09 W.M.P.v.d.Aalst

91/10 R.C.Backhouse
P.J. de Bruin
P. Hoogendijk
G. Malcolm
E. Voermans
J. v.d. Woude

91/11 R.C. Backhouse
PJ. de Bruin
G.Malcolm
E.Voermans
J. van der Woude

91/12 E. van der Sluis

91/13 F. Rietman

91/14 P. Lemmens

91/15 A.T.M. Aerts
K.M. van Hee

91/16 A.J.J.M. Marcelis

Department of Mathematics and Computing Science
Eindhoven University of Technology

Dynamic Reconfiguration in Distributed Hard Real-Time
Systems. p. 14.

Implication. A survey of the different logical analyses
.. if.. .• then p. 26.

Parallel Programs for the Recognition of P-invariant
Segments. p. 16.

Performance Analysis of VLSI Programs. p. 31.

An Implementation Model for GOOD. p. 18.

SPECIFICATIEMETHOOEN. ecn overzicht. p. 20.

CPO-models for second order lambda calculus with
recursive types and subtyping. p. 49.

Terminology and Paradigms for Fault Tolerance. p. 25.

Interval Timed Petri Nets and their analysis. p.53.

POLYNOMIAL RELATORS. p. 52.

Relational Catamorphism. p. 31.

A parallel local search algorithm for the travelling
salesman problem. p. 12.

A note on Extensionality. p. 21.

The POB Hypermedia Package. Why and how it was
built. p. 63.

Eldorado: Architecture of a Functional Database
Management System. p. 19.

An example of proving attribute grammars correct:
the representation of arithmetical expressions by DAGs.
p. 25.

91/17 A.T.M. Aerts
P.M.E. de Bra
K.M. van Hee

91/18 Rik van Geldrop

91/19 Erik Poll

91/20 A.E. Eiben
R.V. Schuwer

91/21 J. Coenen
W.-P. de Roever
J.Zwiers

91/22 G. Wolf

91/23 K.M. van Hee
L.J. Somers
M. Voorhoeve

91/24 A.T.M. Aerts
D. de Reus

91/25 P. Zhou
J. Hooman
R. Kuiper

91/26 P. de Bra
GJ. Houben
J. Paredaens

91/27 F. de Boer
C. Palamidessi

91/28 F. de Boer

91/29 H. Ten Eikelder
R. van Geldrop

91/30 J.c.M. Baeten
F.W. Vaandrager

91/31 H. ten Eikelder

91/32 P. Stroik

91/33 W. v.d. Aalst

91/34 J. Coenen

Transfonning Functional Database Schemes to Relational
Representations, p. 21.

Transfonnational Query Solving, p. 35.

Some categorical properties for a model for second order
lambda calculus with subtyping, p. 21.

Knowledge Base Systems, a Fonnal Model, p. 21.

Assertional Data Reification Proofs: Survey and
Perspective, p. 18.

Schedule Management: an Object Oriented Approach, p.
26.

Z and high level Petri nets, p. 16.

Fonnal semantics for BRM with examples, p. 25.

A compositional proof system for real-time systems based
on explicit clock temporal logic: soundness and complete
ness, p. 52.

The GOOD based hypertext reference model. p. 12.

Embedding as a tool for language comparison: On the
CSP hierarchy, p. 17.

A compositional proof system for dynamic proces
creation, p. 24.

Correctness of Acceptor Schemes for Regular Languages,
p. 31.

An Algebra for Process Creation, p. 29.

Some algorithms to decide the equivalence of recursive
types, p. 26.

Techniques for designing efficient parallel programs, p.
14.

The modelling and analysis of queueing systems with
QNM-ExSpect, p. 23.

Specifying fault tolerant programs in deontic logic,
p. IS.

91/35 F.S. de Boer
J.W. Klop
C. Palamidessi

92/01 J. Coenen
J. Zwiers
W.-P. de Roever

92/02 J. Coenen
J. Hooman

92/03 J.C.M. Baeten
J.A. Bergstra

92/04 J.P.H.W.v.d.Eijnde

92/05 J.P.H.W.v.d.Eijnde

92/06 J.C.M. Baeten
J.A. Bergstra

92/07 R.P. Nederpelt

92/08 R.P. Nederpelt
F. Kamareddine

92/09 R.C. Backhouse

92/10 P.M.P. Rambags

92/11 R.C. Backhouse
J.S.C.P.v.d.Woude

92/12 F. Kamareddine

92/13 F. Kamareddine

92/14 J.C.M. Baeten

92/15 F. Kamareddine

92/16 R.R. Seljee

92/17 W.M.P. van der Aalst

92/18 R.Nederpelt
F. Kamareddine

92/19 J.C.M.Baeten
J .A.Bergstra
S.A.Smolka

92/20 F.Kamareddine

Asynchronous communication in process algebra, p. 20.

A note on compositional refinement, p. 27.

A compositional semantics for fault tolerant real-time
systems, p. 18.

Real space process algebra, p. 42.

Program derivation in acyclic graphs and related
problems, p. 90.

Conservative fixpoint functions on a graph, p. 25.

Discrete time process algebra, p.45.

The fine-structure of lambda calculus, p. 11 O.

On stepwise explicit substitution, p. 30.

Calculating the Warshall/Floyd path algorithm, p. 14.

Composition and decomposition in a CPN model, p. 55.

Demonic operators and monotype factors, p. 29.

Set theory and nominalisation, Pan I, p.26.

Set theory and nominalisation, Pan II, p.22.

The total order assumption, p. 10.

A system at the cross-roads of functional and logic
programming, p.36.

Integrity checking in deductive databases; an exposition,
p.32.

Interval timed coloured Petri nets and their analysis, p.
20.

A unified approach to Type Theory through a refined
lambda-calculus, p. 30.

Axiomatizing Probabilistic Processes:
ACP with Generative Probabilities, p. 36.

Are Types for Natural Language? P. 32.

1,'. v.

92/21 F.Kamareddine

92/22 R. Nederpelt
F.Kamareddine

92/23 F.Kamareddine
E.K1ein

92/24 M.Codish
D.Dams
Eyal Yardeni

92/25 E.Poll

92/26 T.H.W.Beelen
W.J.J.Stut
P.A.C.Verkoulen

Non well-foundedness and type freeness can unify the
interpretation of functional application. p. 16.

A useful lambda notation, p. 17.

NominaJization, Predication and Type Containment, p. 40.

Bottum-up Abstract Interpretation of Logic Programs,
p. 33.

A Programming Logic for Fro, p. 15.

A modelling method using MOVIE and SimConJExSpect,
p. 15.

	Abstract
	Contents
	1. Introduction
	2. The problem and some naive solutions
	2.1 The (P+) algorithms
	2.1.1 The (P+S+) algorithms
	2.1.2 The (P+S_) algorithm
	2.2 (S_) algorithms
	2.2.1 The (S_P+) algorithms
	2.2.2 The (S_P_) algorithm
	3. The Aho-Corasick algorithms
	3.1 Algorithm detail AC
	3.2 Method OPT
	3.3 Linear search
	3.3.1 The Aho-Corasick algorithm with failure function
	3.3.2 The Knuth-Morris-Pratt algorithm
	4. The Commentz-Walter algorithms
	4.1 Larger shifts
	4.2 Discarding the lookahead symbol
	4.3 Using the lookahead symbol
	4.4 A derivation of the Boyer-Moore algorithm
	5. The Boyer-Moore family of algorithms
	5.1 Larger shifts without using Match information
	5.2 Making use of Match information
	6. Precomputation for the Aho-Corasick algorithms
	7. Precomputing for the Commenz-Walter algorithms
	7.1 Computation of d1 and d2
	7.2 Computation of d-no
	7.3 Computation of d3
	7.4 Computation of dbm and char
	7.5 Precomputation of s1, char1, and char2
	7.5.1 Forward matching
	Conclusions
	Appendices
	A: Calculating the value of a quantification
	B: Definitions and properties
	References

