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Abstract. We propose two simple and efficient deterministic extractors
for J(Fq), the Jacobian of a genus 2 hyperelliptic curve H defined over
Fq, for some odd q. Our first extractor, SEJ, called sum extractor, for a
given point D on J(Fq), outputs the sum of abscissas of rational points
on H in the support of D, considering D as a reduced divisor. Similarly
the second extractor, PEJ, called product extractor, for a given point D
on the J(Fq), outputs the product of abscissas of rational points in the
support of D. Provided that the point D is chosen uniformly at random
in J(Fq), the element extracted from the point D is indistinguishable
from a uniformly random variable in Fq. Thanks to the Kummer surface
K, that is associated to the Jacobian of H over Fq, we propose the sum
and product extractors, SEK and PEK, for K(Fq). These extractors are the
modified versions of the extractors SEJ and PEJ. Provided a point K is
chosen uniformly at random in K, the element extracted from the point
K is statistically close to a uniformly random variable in Fq.

Keywords: Jacobian, Hyperelliptic curve, Kummer surface, Determin-
istic extractor.

1 Introduction

A deterministic extractor for a set S is a function that converts a random point
on S to a bit-string of fixed length that is statistically close to uniformly random.
In this paper, we propose two simple and efficient deterministic extractors for
J(Fq), the Jacobian of a hyperelliptic curve H of genus 2 defined over Fq, for
some odd q. Our first extractor, SEJ, called sum extractor, for a given point D
on J(Fq), outputs the sum of abscissas of rational points on H in the support
of D, considering D as a reduced divisor. Similarly the second extractor, PEJ,
called product extractor, for a given point D on the J(Fq), outputs the product
of abscissas of rational points in the support of D. Provided that the point D is
chosen uniformly at random in J(Fq), the element extracted from the point D
is indistinguishable from a uniformly random variable in Fq.

Let K be the Kummer surface associated to the Jacobian of H over Fq. Then
there is a map κ from J(Fq) to K(Fq), so that a point and it’s opposite in
J(Fq) are mapped to the same value. Using this map, we propose two simple
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and efficient deterministic extractors, SEK and PEK, for the Kummer surface K.
If a point K is chosen uniformly at random in K, the element extracted from
the point K is statistically close to a uniformly random variable in Fq.

The use of hyperelliptic curves in public key cryptography was first intro-
duced by Koblitz in [15]. The security of hyperelliptic cryptosystems is based
on the difficulty of discrete logarithm problem in the Jacobian of these curves.
Hyperelliptic curves of genus 2 are undergoing intensive study. They were shown
to be competitive with elliptic curves in speed and security. Various researchers
have been optimizing genus 2 arithmetic (see [2,16,17]). The security of genus
2 hyperelliptic curves is assumed to be similar to that of elliptic curves of the
same group size (e.g see [10]).

The use of Kummer surface associated to the Jacobian of a genus 2 curve is
proposed for faster arithmetic (see [7,11,16]). The scalar multiplication on the
Jacobian can be used to define a scalar multiplication on the Kummer surface.
It could be used to construct a Diffie-Hellman protocol (see [21]). In addition,
it is shown in [21], solving the discrete logarithm problem on the Jacobian is
polynomial time equivalent to solving the discrete logarithm problem on the
kummer surface.

The problem of converting random points of a variety (e.g a curve or Jaco-
bian of a curve) into random bits has several cryptographic applications. Such
applications are key derivation functions, key exchange protocols and design
of cryptographically secure pseudorandom number generators. As examples we
can mention the well-known Elliptic Curve Diffie-Hellman protocol and Diffie-
Hellman protocol in genus 2. By the end of Diffie-Hellman protocol, the parties
agree on a common secret element of the group, which is indistinguishable from
a uniformly random element under the decisional Diffie-Hellman assumption
(denoted by DDH). However the binary representation of the common secret el-
ement is distinguishable from a uniformly random bit-string of the same length.
Hence one has to convert this group element into a random-looking bit-string.
This can be done using a deterministic extractor.

At the moment, several deterministic randomness extractors for elliptic curves
are known. Kaliski [14] shows that if a point is taken uniformly at random
from the union of an elliptic curve and its quadratic twist then the abscissa of
this point is uniformly distributed in the finite field. Then Chevassut et al. [5],
proposed the TAU technique. This technique allows to extract almost all the bits
of the abscissa of a point of the union of an elliptic curve and its quadratic twist.
Gürel [12] proposed an extractor for an elliptic curve defined over a quadratic
extension of a prime field. It extracts almost half of the bits of the abscissa of a
point on the curve. Then, Farashahi and Pellikaan proposed the similar extractor,
yet more general, for hyperelliptic curves defined over a quadratic extension of a
finite filed in odd characteristic [8]. Furthermore, their result for elliptic curves
improves the result of [12]. Two deterministic extractors for a family of binary
elliptic curves are proposed by Farashahi et al. [9]. It is shown that half of the
bits of the abscissa of a point on the curve can be extracted. They also proposed
two deterministic extractors for the main subgroup of an ordinary elliptic curve
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that has minimal 2-torsion. In our knowledge, up to now, no extractor is defined
for the Jacobian of a hyperelliptic curve.

We organize the paper as follows. In the next section we introduce some
notations and recall some basic definitions. In Section 3, we propose extractors
SEJ and PEJ for J(Fq), the Jacobian of a genus 2 hyperelliptic curve H over
Fq. We show that the outputs of these extractors, for a given uniformly random
point of J(Fq), are statistically close to a uniformly random variable in Fq. For
the analysis of these extractors, we need some bounds on the cardinalities of
SEJ−1(a) and PEJ−1(b), for all a, b ∈ Fq. We give our estimates for them in
Theorems 2 and 3. Then, in Section 4, we give the proofs of the main Theorems
2 and 3. In Section 5, we propose two extractors SEK and PEK for K(Fq), the
Kummer surface related to J(Fq). These extractors are modified versions of the
previous extractors, using the map κ from J(Fq) to K(Fq). We conclude our
result in Section 6. Furthermore, in appendix, we introduce some corresponding
problems for the proof of the main Theorem 2.

2 Preliminaries

Let us define the notations and recall the basic definitions that are used through-
out the paper.

Notation. Denote by Zn the set of nonnegative integers less than n. A field is
denoted by F and its algebraic closure by F. Denote by F

∗ the set of nonzero
elements of F. The finite field with q elements is denoted by Fq, and its algebraic
closure by Fq. Let C be a curve defined over Fq, then the set of Fq-rational points
on C is denoted by C(Fq). The x-coordinate of a point P on a curve is denoted
by xP . The cardinality of a finite set S is denoted by #S. We make a distinction
between a variable x and a specific value x in F.

2.1 Finite Field Notation

Consider the finite fields Fq and Fq2 , where q = pk, for some odd prime number
p and positive integer k. Fix a polynomial representation Fq2 ∼= Fq[t]/(t2 − α),
where α is not a quadratic residue in Fq. Then Fq2 is a vector space over Fq

which is generated by the basis {1, t}. That means every element x in Fq2 can
be represented in the form x = x0 + x1t, where x0 and x1 are in Fq.

Let φ : Fq −→ Fq be the Frobenius map defined by φ(x) = xq .

2.2 Hyperelliptic Curves

Definition 1. An absolutely irreducible nonsingular curve H of genus at least
2 is called hyperelliptic if there exists a morphism of degree 2 from H to the
projective line.
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Theorem 1. Let H be a hyperelliptic curve of genus g over Fq, where q is odd.
Then H has a plane model of the form

y2 = f(x),

where f is a square-free polynomial and 2g + 1 ≤ deg(f) ≤ 2g + 2. The plane
model is singular at infinity. If deg(f) = 2g+1 then the point at infinity ramifies
and H has only one point at infinity. If deg(f) = 2g + 2 then H has zero or two
Fq-rational points at infinity.

Proof. See [1,6]. �

In this paper we consider a hyperelliptic curve H that has only one point at
infinity. One calls H an imaginary hyperelliptic curve.

2.3 Jacobian of a Hyperelliptic Curve

Let H be an imaginary hyperelliptic curve of genus g over Fq, where q is odd.
Then H has a plane model of the form y2 = f(x), where f is a square-free
polynomial and deg(f) = 2g + 1. For any subfield K of Fq containing Fq, the set

H(K) = {(x, y) : x, y ∈ K, y2 = f(x)} ∪ {P∞},

is called the set of K-rational points on H. The point P∞ is called the point at
infinity for H. A point P on H, also written P ∈ H, is a point P ∈ H(Fq). The
negative of a point P = (x, y) on H is defined as −P = (x, −y) and −P∞ = P∞.

Definition 2. A divisor D on H is a formal sum of points on H

D =
∑

P∈H
mP P,

where mP ∈ Z, and only a finite number of the mP are nonzero. The degree of D
is defined by degD =

∑
P∈H mP P . The divisor D is said to be defined over K, if

for all automorphisms ϕ in the Galois group of K, ϕ(D) =
∑

P∈H mP ϕ(P ) = D,
where ϕ(P ) = (ϕ(x), ϕ(y)) if P = (x, y) and ϕ(P∞) = P∞.

The set of all divisors on H defined over K, denoted by DivH(K), forms an
additive abelian group under the addition rule

∑

P∈H
mP P +

∑

P∈H
nP P =

∑

P∈H
(mP + nP )P.

The set Div0
H(K) of all divisors on H of degree zero defined over K is a subgroup

of DivH(K). In particular, Div0
H = Div0

H(K).
Let K[H] be the coordinate ring of the plain model of H over K. Then the

function field of H over K is the field of fractions K(H) of K[H]. For a polynomial
R in K[H], the divisor of R is defined by div(R) =

∑
P∈H ordP (R)P , where

ordP (R) is the order of vanishing of R at P . For a rational function R = F/G,
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where F , G ∈ K[H], the divisor of R is defined by div(R) = div(F ) − div(G)
and is called a principal divisor. The group of principal divisors on H over K is
denoted by PH(K) = {div(R) : R ∈ K(H)}. Specially PH = PH(K) is called the
group of principal divisors on H.

Definition 3. The Jacobian of H over K is defined by

JH(K) = Div0
H(K)/PH(K).

Similarly, the Jacobian of H is defined by JH = Div0
H/PH.

For each nontrivial class of divisors in JH(K), there exist a unique divisor D on
H over K of the form

D =
r∑

i=1

Pi − rP∞,

where Pi = (xi, yi) �= P∞, Pi �= −Pj, for i �= j, and r ≤ g. Such a divisor is
called a reduced divisor on H over K. By using Mumford’s representation [19],
each reduced divisor D on H over K can be uniquely represented by a pair of
polynomials [u(x), v(x)], u, v ∈ K[x], where u is monic, deg(v) < deg(u) ≤ g,
and u | (v2 − f). Precisely u(x) =

∏r
i=1(x − xi) and v(xi) = yi. The neutral

element of JH(K), denoted by O, is represented by [1, 0]. Cantor’s algorithm, [3],
efficiently computes the sum of two reduced divisors in JH(K) and expresses it
in reduced form.

2.4 Kummer Surface

Let H be an imaginary hyperelliptic curve of genus 2 defined over Fq, for odd q.
Then H has a plane model of the form

y2 = f(x) = x5 + f4x
4 + f3x

3 + f2x
2 + f1x + f0, (1)

where fi ∈ Fq and f is a square-free polynomial. Then for the curve H , there
exist a quartic surface K in P

3, called the Kummer surface, which is given by
the equation

A(k1, k2, k3)k2
4 + B(k1, k2, k3)k4 + C(k1, k2, k3) = 0,

where

A(k1, k2, k3) =k2
2 − 4k1k3,

B(k1, k2, k3) = − 2(2f0k
3
1 + f1k

2
1k2 + 2f2k

2
1k3 + f3k1k2k3 + 2f4k1k

2
3 + k2k

2
3),

C(k1, k2, k3) = − 4f0f2k
4
1 + f2

1 k4
1 − 4f0f3k

3
1k2 − 2f1f3k

3
1k3 − 4f0f4k

2
1k

2
2

+ 4f0k
2
1k2k3 − 4f1f4k

2
1k2k3 + 2f1k

2
1k

2
3 − 4f2f4k

2
1k

2
3 + f2

3 k2
1k

2
3

− 4f0k1k
3
2 − 4f1k1k

2
2k3 − 4f2k1k2k

2
3 − 2f3k1k

3
3 + k4

3 .

Let J(Fq) be the Jacobian of H over Fq (see Subsection 2.3). Then there is a
map

κ : J(Fq) −→ K(Fq),
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where κ(D) = κ(−D), for all D ∈ J(Fq) and κ(O) = (0, 0, 0, 1). This map does
not preserve the group structure, however, endows a pseudo-group structure on
K (see [4]). In particular, a scalar multiplication on the image of κ is defined by

mκ(D) = κ(mD),

for m ∈ Z and D ∈ J(Fq). It could be used for a Diffie-Hellman protocol (see
[21]). Furthermore, the above definition can be extended to have a scalar multi-
plication on K. Since each point on K can be pulled back to the Jacobian of H
or to the Jacobian of the quadratic twist of H .

2.5 Deterministic Extractor

In our analysis we use the notion of a deterministic extractor, so let us recall it
briefly. For general definition of extractors we refer to [20,22].

Definition 4. Let X and Y be S-valued random variables, where S is a finite
set. Then the statistical distance Δ(X, Y ) of X and Y is

Δ(X, Y ) = 1
2

∑
s∈S |Pr[X = s] − Pr[Y = s] | .

Let US denote a random variable uniformly distributed on S. We say that a
random variable X on S is δ-uniform, if Δ(X, US) ≤ δ.

Note that if the random variable X is δ-uniform, then no algorithm can dis-
tinguish X from US with advantage larger than δ, that is, for all algorithms
D : S −→ {0, 1}

| Pr[D (X) = 1] − Pr[D (US) = 1]| ≤ δ.

See [18].

Definition 5. Let S, T be finite sets. Consider the function Ext : S −→ T . We
say that Ext is a deterministic (T, δ)-extractor for S if Ext(US) is δ-uniform
on T . That means

Δ(Ext(US), UT ) ≤ δ.

In the case that T = {0, 1}k, we say Ext is a δ-deterministic extractor for S.

In this paper we consider deterministic (Fq, δ)-extractors. Observe that, con-
verting random elements of Fq into random bit strings is a relatively easy prob-
lem. For instance, one can represent an element of Fq by a number in Zq and
convert this number to a bit-string of a length equal or very close to the bit
length of q (e.g. see [13]). Furthermore, if q is close to a power of 2, that is,
0 ≤ (2n − q)/2n ≤ δ for a small δ, then the uniform element UFq is statistically
close to n uniformly random bits. The following simple lemma is a well-known
result (the proof can be found, for instance, in [5]).

Lemma 1. Under the condition that 0 ≤ (2n−q)/2n ≤ δ, the statistical distance
between UFq and U2n is bounded from above by δ.
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3 Extractors for Jacobian

In this section we propose two extractors for the Jacobian of a hyperelliptic curve
of genus 2 in odd characteristic. Then we analyse them.

We recall that H is an imaginary hyperelliptic curve of genus 2 defined over
Fq, for odd q, and J(Fq) is the Jacobian of H over Fq. The hyperelliptic curve
H has a plane model of the form y2 = f(x), where f is a monic square-free
polynomial of degree 5 (see equation (1)).

3.1 Sum Extractor for Jacobian

Definition 6. The sum extractor SEJ for the Jacobian of H over Fq is defined
as the function SEJ : J(Fq) −→ Fq, by

SEJ(D) =

{ ∑r
i=1 xPi if D =

∑r
i=1 Pi − rP∞, 1 ≤ r ≤ 2

0 if D = O.

Remark 1. By using Mumford’s representation for the points of J(Fq), the func-
tion SEJ is defined as

SEJ(D) =

⎧
⎪⎨

⎪⎩

− u1 if D = [x2 + u1x + u0, v1x + v0],
− u0 if D = [x + u0, v0],
0 if D = [1, 0].

The following theorem gives the estimates for #SEJ−1(a), for all a in Fq. In
Subsection 3.3, we use the result of this theorem to analyse the extractor SEJ.
We give a proof of Theorem 2 in Section 4.

Theorem 2. For all a ∈ F
∗
q,

∣∣#SEJ−1(a) − q
∣∣ ≤ 8

√
q + 1

and ∣∣#SEJ−1(0) − (q + 1)
∣∣ ≤ 8

√
q + 1.

3.2 Product Extractor for Jacobian

Definition 7. The product extractor PEJ for the Jacobian of H over Fq is de-
fined as the function PEJ : J(Fq) −→ Fq, by

PEJ(D) =

{ ∏r
i=1 xPi if D =

∑r
i=1 Pi − rP∞, 1 ≤ r ≤ 2

0 if D = O.

Remark 2. By using Mumford’s representation for the points of J(Fq), the func-
tion PEJ is defined as

PEJ(D) =

⎧
⎪⎨

⎪⎩

u0 if D = [x2 + u1x + u0, v1x + v0],
− u0 if D = [x + u0, v0],
0 if D = [1, 0].
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The next theorem shows the estimates for #PEJ−1(b), for all b in Fq.

Theorem 3. Let b ∈ F
∗
q. Let If = {z ∈ F

∗
q : f1 = z2, f2 = zf4}. Then

∣∣#PEJ−1(b) − q
∣∣ ≤

⎧
⎪⎨

⎪⎩

8
√

q + 3 if f0 �= 0,

6
√

q + 3 if f0 = 0 and b /∈ If ,

q + 4
√

q if f0 = 0 and b ∈ If .

For b = 0, ∣∣#PEJ−1(0) − (eq + 1)
∣∣ ≤ 4e

√
q ,

where e = #{(x, y) ∈ H(Fq) : x = 0}.

3.3 Analysis of the Extractors

In this subsection we show that provided the divisor D is chosen uniformly at
random in J(Fq), the element extracted from the divisor D by SEJ or PEJ is
indistinguishable from a uniformly random element in Fq.

Let A be a Fq-valued random variable that is defined as

A = SEJ(D), for D ∈R J(Fq).

Proposition 1. The random variable A is statistically close to the uniform ran-
dom variable UFq .

Δ(A, UFq) = O(
1

√
q
).

Proof. Let a ∈ Fq. For the uniform random variable UFq , Pr[UFq = a] = 1/q.
Also for the Fq-valued random variable A,

Pr[A = a] =
#SEJ−1(a)

#J(Fq)
.

The genus of H is 2, so by Hasse-Weil’s Theorem we have

(
√

q − 1)4 ≤ #J(Fq) ≤ (
√

q + 1)4.

Theorem 2 gives the bound for #SEJ−1(a), for all a ∈ Fq. Hence

Δ(A, UFq) =
1
2

∑

a∈Fq

∣∣Pr[A = a] − Pr[UFq = a]
∣∣

=
1
2

∑

a∈Fq

∣∣∣∣
#SEJ−1(a)

#J(Fq)
− 1

q

∣∣∣∣

=

∣∣q#SEJ−1(0) − #J(Fq)
∣∣

2q#J(Fq)
+

∑

a∈F∗
q

∣∣q#SEJ−1(a) − #J(Fq)
∣∣

2q#J(Fq)
.
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Then

Δ(A, UFq) ≤
(12q

√
q − 4q + 4

√
q − 1) + (q − 1)(12q

√
q − 5q + 4

√
q − 1)

2q(
√

q − 1)4

=
12q

√
q − 5q + 4

√
q

2(
√

q − 1)4
=

6 + ε(q)
√

q
,

where ε(q) = 43q
√

q−68q+48
√

q−12
2(

√
q−1)4 . If q ≥ 570, then ε(q) < 1. �

Corollary 1. SEJ is a deterministic (Fq, O( 1√
q ))-extractor for J(Fq).

Proof. Proposition 1 concludes the proof of this corollary. �

Corollary 2. PEJ is a deterministic (Fq, O( 1√
q ))-extractor for J(Fq).

Proof. The result of Theorem 3 implies the proof of this corollary. �

4 Proofs of Theorems 2 and 3

In this section we give the proofs of Theorems 2 and 3. In other words, we are
going to count the cardinalities of #SEJ−1(a), #PEJ−1(b), for all a, b ∈ Fq. In
Subsection 4.1, we recall some notes on the Jacobian of H over Fq. We give the
proof of Theorem 2 in Subsection 4.2. Then, we sketch the proof of Theorem 3
in Subsection 4.3.

4.1 Notes on the Jacobian of H over Fq

We recall from Section 3 that J(Fq) is the Jacobian of H over Fq. We partition
J(Fq) as J(Fq) = J0 ∪ J1 ∪ J2, where J0 = {O} and Jr, for r = 1, 2 is defined as

Jr = {D ∈ J(Fq) : D = [u(x), v(x)], deg(u) = r}.

Recall that O is represented by [1, 0].
Note that D is defined over Fq, that means for all automorphisms ϕ in the

Galois group of Fq, ϕ(D) = D.
Let D ∈ J1, then D = P −P∞, where P = (xP , yP ) ∈ H(Fq). The Mumford’s

representation for D is [x − xP , yP ].
Let D ∈ J2, then D = P + Q − 2P∞, where P, Q �= P∞ and P �= −Q. The

divisor D is represented by [u(x), v(x)], such that u(x) = (x − xP )(x − xQ)
and v is the line through P and Q. Since D is defined over Fq, then φ(D) =
φ(P ) +φ(Q) − 2φ(P∞) = D, where φ is the Frobenius map. There are two cases
for D.

– Suppose φ(P ) = P . Since φ(D) = D, then φ(Q) = Q. Thus P , Q ∈ H(Fq).
That means

D = P + Q − 2P∞, P, Q ∈ H(Fq), P, Q �= P∞, P �= −Q.

In this case the polynomial u is reducible over Fq.
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– Suppose φ(P ) �= P . Since φ(D) = D, so φ(P ) = Q and φ(Q) = P . Then
φ(φ(P )) = P . Hence P ∈ H(Fq2). That means

D = P + φ(P ) − 2P∞, P ∈ H(Fq2), P �= P∞, φ(P ) �= ±P.

In this case the polynomial u is irreducible over Fq.

Let
J = {(P, Q) : P, Q ∈ H(Fq), P, Q �= P∞, Q �= −P},

J φ = {(P, φ(P )) : P ∈ H(Fq2), P �= P∞, φ(P ) �= −P}.

Lemma 2. Let σ : J −→ J2 be the map defined by

σ(P, Q) = P + Q − 2P∞,

and let σφ : J φ −→ J2 be the map defined by

σφ(P, φ(P )) = P + φ(P ) − 2P∞.

Then #σ−1(D) + #σ−1
φ (D) = 2, for all D ∈ J2.

Proof. Let D ∈ J2. Then we have the following cases.

1. Assume D = P +Q−2P∞, such that P, Q ∈ H(Fq), P, Q �= P∞ and Q �= P .
Clearly σ−1(D) = {(P, Q), (Q, P )} and σ−1

φ (D) = ∅.
2. Assume D = P+φ(P )−2P∞, such that P ∈ H(Fq2), P �= P∞ and φ(P ) �= P .

Clearly σ−1(D) = ∅ and σ−1
φ (D) = {(P, φ(P )), (φ(P ), P )}.

3. Assume D = 2P − 2P∞, where P ∈ H(Fq), P �= P∞. It is easy to see that
σ−1(D) = σ−1

φ (D) = {(P, P )}. �

4.2 Proof of Theorem 2

For the proof of Theorem 2, we need several propositions. First, by Proposition 2,
we transform our problem to the problem of computing sum of the cardinalities
of corresponding sets in Definition 8. Second, in proposition 3, we give a formula
for this sum in terms of the cardinalities of some curves. Finally, by using Hasse-
Weil Theorem, we obtain tight estimates for #SEJ−1(a), for all a ∈ Fq.

Definition 8. Let a ∈ Fq. Define

Σa = {(P, Q) : P, Q ∈ H(Fq), xP + xQ = a},

Σφ
a = {(P, φ(P )) : P ∈ H(Fq2), xP + xφ(P ) = a}.

Proposition 2. For all a ∈ Fq,

#(SEJ−1(a) ∩ J2) =
#Σa + #Σφ

a

2
− 1.
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Proof. Let a ∈ Fq. Let Sa = σ−1(SEJ−1(a) ∩ J2) and Sφ
a = σ−1

φ (SEJ−1(a) ∩ J2)
(see Lemma 2). Then Σa = Sa ∪ Ea and Σφ

a = Sφ
a ∪ Eφ

a , where Ea = {(P, Q) :
(P, Q) ∈ Σa, Q = −P} and Eφ

a = {(P, φ(P )) : (P, φ(P )) ∈ Σφ
a , φ(P ) = −P}.

Since Sa and Ea are disjoint, so #Σa = #Sa+#Ea. Similarly, #Σφ
a = #Sφ

a +#Eφ
a .

Assume (P, −P ) is a point of Ea or Eφ
a , then xP = a

2 . Obviously P is a point
of H(Fq) or H(Fq2). Suppose f(a

2 ) = 0. Then P ∈ H(Fq) and P = −P . That
means Ea = Eφ

a = {(P, P )}. Now, suppose f(a
2 ) �= 0. So P �= −P . If P ∈ H(Fq),

then Ea = {(P, −P ), (−P, P )} and Eφ
a = ∅. Otherwise, P is a point of H(Fq2).

Thus φ(P ) = −P . Hence Ea = ∅ and Eφ
a = {(P, −P ), (−P, P )}. In other words

#Ea + #Eφ
a = 2.

Lemma 2 implies that #Sa + #Sφ
a = 2#(SEJ−1(a) ∩ J2). That concludes the

proof of this proposition. �

Proposition 2 gives the estimate for the cardinality of SEJ−1(a), for a ∈ Fq, in
terms of the sum of the cardinalities of Σa and Σφ

a . Now, we are dealing to
have a tight estimate for #Σa + #Σφ

a , for all a ∈ Fq. In order to do that, we
define a curve Xa, for a ∈ Fq. Then, in Proposition 3, we give a formula for
#Σa +#Σφ

a in terms of the cardinalities of H(Fq) and Xa(Fq). After that, using
the Hasse-Weil’s Theorem, we obtain a tight estimate for #Σa + #Σφ

a .
The hyperellitic curve H has the plane model defined by

y2 = f(x) =
5∏

i=1

(x − λi), (2)

where λi are pairwise distinct elements of Fq. (see equation (1)). Define the two-
variable polynomial Φ ∈ Fq[x0,x1] as Φ(x0,x1) = f(x0)f(x1). Clearly Φ is a
symmetric polynomial. Let a = x0 + x1 and b = x0x1. Then from equation (2),
we obtain

Φ(x0,x1) =
5∏

i=1

((x0 − λi)(x1 − λi)) =
5∏

i=1

(x0x1 − λi(x0 + x1) + λ2
i )

Define the two-variable polynomial Ψ in Fq[a,b] by

Ψ(a,b) =
5∏

i=1

(b − λia + λ2
i ). (3)

For a ∈ Fq, let Xa be the affine curve defined over Fq, by the equation

y2 = Ψa(b) = Ψ(a,b). (4)

Proposition 3. Let a ∈ Fq. Then

#Σa + #Σφ
a = 2(#H(Fq) + #Xa(Fq) − q − 1).

Proof. See Proposition 12. �
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Clearly the affine curve Xa is absolutely irreducible, for all a ∈ Fq. The curve Xa

is nonsingular for almost all a ∈ Fq. Furthermore, the genus of the nonsingular
model of Xa is at most 2. By using the Hasse-Weil’s bound for the nonsingular
model of Xa, we obtain an estimate for #Xa(Fq).

Proposition 4. For all a ∈ Fq,

|#Xa(Fq) − q| ≤ 4
√

q.

Proof. See Subsection B.1. �

Proof (Theorem 2). Let a ∈ Fq. Proposition 2 shows that

#(SEJ−1(a) ∩ J2) =
#Σa + #Σφ

a

2
− 1.

From Proposition 3, we have

#Σa + #Σφ
a = 2(#H(Fq) + #Xa(Fq) − q − 1).

Then by using Hasse-Weil’s bound for H we obtain

|#H(Fq) − q − 1| ≤ 4
√

q.

Furthermore, from Proposition 4 we have

|#Xa(Fq) − q| ≤ 4
√

q.

Hence ∣∣#(SEJ−1(a) ∩ J2) − q
∣∣ ≤ 8

√
q.

Clearly #(SEJ−1(a)∩J1) equals 0, 1 or 2. If a = 0, then #(SEJ−1(a)∩J0) equals
1, otherwise equals 0. So the proof of Theorem 2 is completed. �

4.3 Proof of Theorem 3

The proof of Theorem 3 is similar to the proof of Theorem 2. First, in Proposition
5, we give the estimate for the cardinality of PEJ−1(b), for b ∈ F

∗
q , in terms of

the sum of the cardinalities of Πb and Πφ
b . Second, in Proposition 6, we give a

relation between #Σa+#Σφ
a and the cardinalities of H(Fq) and Xa(Fq). Finally,

Hasse-Weil Theorem concludes the proof of Theorem 3.

Definition 9. Let b ∈ F
∗
q. Define

Πb = {(P, Q) : P, Q ∈ H(Fq), xP xQ = b},

Πφ
b = {(P, φ(P )) : P ∈ H(Fq2), xP xφ(P ) = b}.

Proposition 5. For all b ∈ F
∗
q,

#(PEJ−1(b) ∩ J2) =
#Πb + #Πφ

b

2
− rb,

where rb equals the number of square roots of b in F
∗
q.
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Proof. The proof of this proposition is similar to the proof of Proposition 2. So
we leave it for the interested reader. �
Consider the polynomial Ψ ∈ Fq[a,b] defined by the equation (3). Let Xb be the
affine curve defined over Fq, by the equation

y2 = Ψb(a) =
5∏

i=1

(b − λia + λ2
i ), (5)

for b ∈ F
∗
q .

Proposition 6. Let b ∈ F
∗
q. Then

#Πb + #Πφ
b = 2(#H(Fq) + #Xb(Fq) − q − e),

where e = #{(x, y) ∈ H(Fq) : x = 0}.
Proof. The proof of this proposition is similar to the proof of Proposition 3. �
The affine curve Xb is absolutely irreducible and nonsingular, for almost all
b ∈ Fq. In fact the curve Xb is reducible if and only if λi = 0, for some i, and
b ∈ If , where If = {z ∈ F

∗
q : f1 = z2, f2 = zf4}. Provided the curve Xb is

absolutely irreducible, the genus of the nonsingular model of Xb is at most 2.
Then Hasse-Weil’s Theorem gives the estimates for #Xb(Fq).

Proposition 7. Let b ∈ Fq. Then

|#Xb(Fq) − q| ≤

⎧
⎪⎨

⎪⎩

4
√

q if f0 �= 0,

2
√

q if f0 = 0 and b /∈ If ,

q if f0 = 0 and b ∈ If .

Proof. See Subsection B.2. �

Proof (Theorem 3). Let b ∈ F
∗
q . Proposition 5 shows that

#(PEJ−1(b) ∩ J2) =
#Πb + #Πφ

b

2
− rb,

where rb equals the number of square roots of b in Fq. It is easy to see that
0 ≤ #(PEJ−1(b) ∩ J1) ≤ 2 and #(PEJ−1(b) ∩ J0) = 0. So

∣∣#PEJ−1(b) − q
∣∣ ≤

∣∣∣#Πb + #Πφ
b − 2q

∣∣∣
2

+ 2.

From Proposition 6, we have

#Πb + #Πφ
b = 2(#H(Fq) + #Xb(Fq) − q − e),

where e is the number of points on H(Fq) whose abscissa equals zero. Note that
0 ≤ e ≤ 2. Hence

∣∣∣#Πb + #Πφ
b − 2q

∣∣∣ ≤ 2 |#H(Fq) + #Xb(Fq) − 2q − 1| + 2.



326 R.R. Farashahi

Hasse-Weil’s Theorem gives the bound for #H(Fq). Then Proposition 7 con-
cludes the proof of Theorem 3 for all b ∈ F

∗
q .

Now assume that b = 0. It is easy to see #PEJ−1(0) = e#H(Fq)−e+1, where
e equals the number of points of H(Fq) whose abscissa equals zero. So the proof
of Theorem 3 is completed. �

5 Extractors for Kummer Surface

Consider the hyperelliptic curve H that is defined in equation (1). Let K be the
Kummer surface related to J(Fq) (Jacobian of H over Fq). We recall that each
point of J(Fq) can be uniquely represented by at most 2 points on H . Then there
is a map

κ : J(Fq) −→ K(Fq)
P + Q − 2P∞ �−→ (1 : a : b : c)

P − P∞ �−→ (0 : 1 : xP : x2
P )

O �−→ (0 : 0 : 0 : 1),

where a = xP + xQ, b = xP xQ and

c =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

B̃(a, b) − 2yP yQ

(xP − xQ)2
if P �= Q

C̃(a, b)
4y2

P

if P = Q,

with
B̃(a, b) = ab2 + f3ab + f1a + 2f4b

2 + 2f2b + 2f0,

C̃(a, b) = C(1, a, b).

5.1 Sum Extractor for Kummer Surface

In this subsection we define the sum extractor SEK for the Kummer surface K.
Then we define the sum extractor SEKJ as the restriction of SEK to the image of
κ. We briefly mention the analysis of these extractors.

Definition 10. The sum extractor SEK for the Kummer surface K is defined as
the function SEK : K(Fq) −→ Fq, by

SEK(k1 : k2 : k3 : k4) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

k2

k1
if k1 �= 0,

k3

k2
if k1 = 0, k2 �= 0,

0 otherwise.

The following theorem gives the estimates for #SEK−1(a), for all a in Fq. By using
the result of this theorem, one can show that SEK is a deterministic (Fq, O( 1√

q ))-
extractor for K(Fq).
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Theorem 4. For all a ∈ F
∗
q,
∣∣#SEK−1(a) − q

∣∣ ≤ 4
√

q

and ∣∣#SEK−1(0) − (q + 1)
∣∣ ≤ 4

√
q.

Proof. Note that each point on K can be pulled back to the Jacobian of H or to
the Jacobian of the quadratic twist of H . Furthermore, the map κ is 2 : 1 on all
points except the points of order 2 in the Jacobian of H where it is 1 : 1. Then,
the proof of Theorem 2 and the application of that proof for the sum extractor
for the Jacobian of the quadratic twist of H conclude the proof of this Theorem.

�
The scalar multiplication on κ(J(Fq)) could be used for a variant of Diffie-
Hellman protocol on this set. For instance, consider the case that J(Fq) is a
cyclic group with generator Dg. Then κ(Dg) is the generator of κ(J(Fq)). That
brings us to define the following extractor for this set.

Definition 11. The sum extractor SEKJ for κ(J(Fq)), is defined as the restric-
tion of the extractor SEK to κ(J(Fq)).

The following theorem shows that #SEJ−1(a) = 2#SEKJ−1(a), for almost all
a ∈ Fq. One can show that SEKJ is a deterministic (Fq, O( 1√

q ))-extractor for
κ(J(Fq)) (see Subsection 3.3).

Proposition 8. For all a ∈ Fq,

#SEKJ−1(a) =
#SEJ−1(a) + da

2
,

where da is the number of two torsion points of J(Fq) in SEJ−1(a).

Proof. The fact that the map κ is 2 : 1 on all points except the points of order 2
in the Jacobian of H where it is 1 : 1, concludes the proof of this proposition. �
Remark 3. It is easy to see that 0 ≤ da ≤ 3 and

∑
a∈Fq

da equals the number of
two torsion points of J(Fq), which is bounded by 16.

5.2 Product Extractor for Kummer Surface

In this subsection we define the product extractor PEK for the K. We briefly
mention the analysis of this extractor.

Definition 12. The product extractor PEK for the Kummer surface K is defined
as the function PEK : K(Fq) −→ Fq, by

PEK(k1 : k2 : k3 : k4) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

k3

k1
if k1 �= 0,

k3

k2
if k1 = 0, k2 �= 0,

0 otherwise.
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The next theorem gives the estimates for #PEK−1(b), for all b in Fq. The result of
this theorem implies that PEK is a deterministic (Fq, O( 1√

q ))-extractor for K(Fq).

Theorem 5. Let b ∈ Fq. Let If = {z ∈ F
∗
q : f1 = z2, f2 = zf4}. Then

∣∣#PEK−1(b) − q
∣∣ ≤

⎧
⎪⎨

⎪⎩

4
√

q + 1 if f0 �= 0,

2
√

q + 1 if f0 = 0 and b /∈ If ,

q − 1 if f0 = 0 and b ∈ If .

Furthermore, one can define the product extractor PEKJ for κ(J(Fq)) as the
restriction of the extractor PEK to κ(J(Fq)).

6 Conclusion

We propose the sum and product extractors, SEJ and PEJ, for J(Fq), the Jacobian
of a genus 2 hyperelliptic curve H over Fq. We show that the outputs of these
extractors, for a given uniformly random point of J(Fq), are statistically close
to a uniformly random variable in Fq. To show the latter we need some bounds
on the cardinalities of SEJ−1(a) and PEJ−1(b), for all a, b ∈ Fq. To have these
estimates, we introduce some corresponding problems. In new problems, we are
looking for bounds on the cardinality of some curves. We give our estimates in
Theorems 2 and 3 using Hasse-Weil Theorem.

Thanks to the Kummer surface K, that is associated to the Jacobian of H over
Fq, we propose the sum and product extractors, SEK and PEK, for K(Fq). These
extractors are the modified versions of the extractors SEJ and PEJ. Provided a
point K is chosen uniformly at random in K, the element extracted from the
point K is statistically close to a uniformly random variable in Fq.

Our proposed extractors can be generalized for the Jacobian of hyperelliptic
curves of higher genus.

Acknowledgment. The author thanks to the anonymous referees for several
useful suggestions.
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Appendix

A Corresponding Problems

In this section we are dealing with computing the bounds for the cardinalities
of Σa and Σφ

a , for a ∈ Fq (see Definition 8). We reconsider Definition 8 related
to an affine curve with an arbitrary genus. In particular, the sum of Σa and Σφ

a

are related to subsets of points of the Jacobian of a genus 2 hyperelliptic (see
Proposition 2).

Let C be an affine curve that is defined over Fq by the equation

y2 = f(x),

http://eprint.iacr.org/
http://eprint.iacr.org/
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where f(x) ∈ Fq[x] is a monic polynomial of a positive degree d. Let a ∈ Fq. We
recall that

Σa = {(P, Q) : P, Q ∈ C(Fq), xP + xQ = a},

Σφ
a = {(P, φ(P )) : P ∈ C(Fq2), xP + xφ(P ) = a}.

Note that we reconsider Definition 8 that is now related to the affine curve C.

A.1 Cardinality of Σa

For an element a ∈ Fq, the set Σa includes the ordered pairs of points on C(Fq),
such that the sum of their abscissas equals a.

Let Ca be the affine curve defined over Fq by the equation

z2 = fa(x) = f(a − x).

Let C�
a be the affine curve over Fq, that is defined by the following equation.

w2 = f�
a (x) = f(x)f(a − x).

The next proposition gives a formula for the cardinality of Σa in terms of the
numbers of Fq-rational points of curves C and C�

a .

Lemma 3. Define

Ta = {(P, Q) : P ∈ C(Fq), Q ∈ Ca(Fq), xP = xQ}.

Then #Ta = #Σa.

Proof. Clearly ((x, y), (x′, y′)) ∈ T if and only if ((x, y), (a − x′, y′)) ∈ Σa. �

Lemma 4. Define the function πTa : Ta −→ Fq by πTa(P, Q) = xP . Define the
projection map πC : C(Fq) −→ Fq by πC(P ) = xP . Similarly define the projection
maps πCa and πC�

a
, for the curves Ca, C�

a. Then

#π−1
C (x) + #π−1

Ca
(x) + #π−1

C�
a

(x) = 2 + #π−1
Ta

(x),

for all x ∈ Fq.

Proof. Define m(x) = #π−1
Ta

(x) and r(x) = #π−1
C (x) + #π−1

Ca
(x) + #π−1

C�
a

(x), for
x ∈ Fq. We shall prove that r(x) = 2 + m(x), for all x ∈ Fq.

Let x ∈ Fq. Let XTa = πTa(Ta). First we assume that x ∈ XTa and f�
a (x) �= 0.

Then there exist points P = (x, y) ∈ C(Fq) and Q = (x, z) ∈ Ca(Fq). Let R =
(x, w), where w = yz. So R is a point on C�

a(Fq). Note that y, z and w are nonzero
elements in Fq. So −P = (x, −y) �= P , also −Q �= Q and −R �= R. Then it is
easy to see that π−1

C (x) = {P, −P}, π−1
Ca

(x) = {Q, −Q} and π−1
C�

a
(x) = {R, −R}.

So r(x) = 6. Also π−1
T (x) = {(P, Q), (P, −Q), (−P, Q), (−P, −Q)}. That means

m(x) = 4.
Second we assume that x ∈ Fq \ XTa and f�

a (x) �= 0. Since x /∈ XTa , then
π−1

T (x) = ∅ and m(x) = 0. If there exist a point P = (x, y) ∈ C(Fq) then
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π−1
C (x) = {P, −P} and π−1

Ca
(x) = ∅, since x /∈ XTa . Also π−1

C�
a

(x) = ∅, since if
there exist a point R = (x, w) ∈ C�

a(Fq), then (x, w/y) ∈ Ca(Fq), which contra-
dicts the assumption that x /∈ XTa . Hence r(x) = 2. Similarly if there exist a
point Q = (x, z) ∈ Ca(Fq), then π−1

Ca
(x) = {Q, −Q} and π−1

C (x) = π−1
C�

a
(x) = ∅.

That means r(x) = 2. Therefore assume that there do not exist points on C(Fq)
or Ca(Fq), with the abscissa equals x. So f(x) and fa(x) are not squared in
Fq. Hence f�

a (x) is a squared in Fq. Let w be the square root of f�
a (x). Then

R = (x, z) ∈ C�
a(Fq). Therefore π−1

C�
a

(x) = {R, −R} and π−1
C (x) = π−1

Ca
(x) = ∅.

Thus r(x) = 2.
Third we assume that x ∈ XTa and f�

a (x) = 0. So π−1
C�

a
(x) = {P0}, where

P0 = (x, 0). Since f�
a (x) = 0, then f(x) = 0 or fa(x) = 0. If both of f(x) and

fa(x) are zero, then π−1
C (x) = π−1

Ca
(x) = {P0}. Also π−1

T (x) = {(P0, P0)}. Hence
in this case r(x) = 3 and m(x) = 1. If f(x) = 0, but fa(x) �= 0, then there
exist a point Q = (x, z) ∈ Ca(Fq), where z �= 0. Hence π−1

C (x) = {P0} and
π−1
Ca

(x) = {Q, −Q}. Also π−1
T (x) = {(P0, Q), (P0, −Q)}. Therefore r(x) = 4 and

m(x) = 2. Similarly in the case that f(x) �= 0 and fa(x) = 0, r(x) = 4 and
m(x) = 2.

Finally we assume that x ∈ Fq \ XTa and f�
a (x) = 0. So π−1

C�
a

(x) = {P0}. If
f(x) = 0, then π−1

C (x) = {P0} but π−1
Ca

(x) = ∅, since x /∈ XTa . Hence r(x) = 2
and m(x) = 0. If fa(x) = 0, then π−1

C (x) = ∅ and π−1
Ca

(x) = {P0}. Therefore
r(x) = m(x) + 2, for all x ∈ Fq. �

Proposition 9. For all a ∈ Fq,

#Σa = 2#C(Fq) + #C�
a(Fq) − 2q.

Proof. From Lemma 4, we have

#C(Fq) + #Ca(Fq) + #C�
a(Fq) =

∑

x∈Fq

(#π−1
C (x) + #π−1

Ca
(x) + #π−1

C�
a

(x))

=
∑

x∈Fq

(2 + #π−1
Ta

(x)) = 2q + #Ta.

From Lemma 3, we have #Ta = #Σa. Since #C(Fq) = #Ca(Fq), so the proof of
this proposition is finished. �

A.2 Cardinality of Σφ
a

For a ∈ Fq, let C′
a be the affine curve that is defined by the equation

y2 = Fa(x) = f(a + xt)f(a − xt).

Remark 4. The affine curve C′
a, for a ∈ Fq, is defined over Fq (see [8]). Further-

more,
#C′

a(Fq) = #{P ∈ C(Fq2) : xP = a + x1t, x1 ∈ Fq}.

Theorem 3 in [8] gives the bound for #C′
a(Fq).
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Proposition 10. #Σφ
a = #C′

a
2
(Fq), for all a ∈ Fq.

Proof. Let P ∈ C(Fq2), where xP = x0 + x1t and x0, x1 ∈ Fq. Since tq = −t,
so xP + xφ(P ) = 2x0. That means (P, φ(P )) ∈ Σφ

a if and only if x0 = a
2 . Then

Remark 4 concludes the proof of this proposition. �

A.3 On the Sum of #Σa and #Σφ
a

In the proof of Theorem 2 (Subsection 4.2), we are dealing to have a tight
estimate for #Σa + #Σφ

a , for all a ∈ Fq. Following the result of Propositions 9
and 10, one can obtain separate estimates for #Σa and #Σφ

a . Then add them
together to have an estimate for #Σa + #Σφ

a , for a ∈ Fq. But this estimate is
not tight. Using the result of Proposition 12, we give a tight estimate for it. For
the proof of Proposition 12, we need several lemmas.

We recall some details from Subsection 4.2. The two-variable polynomial Φ in
Fq[x0,x1] is defined as Φ(x0,x1) = f(x0)f(x1). Furthermore, the two-variable
polynomial Ψ in Fq[a,b] is defined by

Ψ(a,b) =
d∏

i=1

(b − λia + λ2
i ),

where λi are roots of f in Fq. For a ∈ Fq, the affine curve Xa is defined over Fq,
by the equation

y2 = Ψa(b) = Ψ(a,b).

Lemma 5. Define the map ρ : C�
a(Fq) −→ Fq by

ρ(x, y) = x(a − x).

Let b ∈ Fq. Assume ρ−1(b) �= ∅. Let (x, y) ∈ ρ−1(b). Then

#ρ−1(b) =

⎧
⎪⎨

⎪⎩

1, if x = a
2 and y = 0,

2, if x = a
2 and y �= 0 or x �= a

2 and y = 0,
4, otherwise.

Proof. Let (x, y) ∈ ρ−1(b). It is obvious that (x, y) ∈ ρ−1(b) if and only if
(x, −y) ∈ ρ−1(b). Furthermore x is a root of polynomial τ(x) = x2 − ax + b. �

Lemma 6. Define the map � : C′
a
2
(Fq) −→ Fq by

�(x, y) =
a2

4
− αx2.

Let b ∈ Fq. Assume �−1(b) �= ∅. Let (x, y) ∈ �−1(b). Then

#�−1(b) =

⎧
⎪⎨

⎪⎩

1, if x = 0 and y = 0,

2, if x = 0 and y �= 0 or x �= 0 and y = 0,

4, otherwise.
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Proof. Let (x, y) ∈ �−1(b). It is obvious that (x, y) ∈ �−1(b) if and only if
(x, −y) ∈ �−1(b). Furthermore x is a root of polynomial τ̃ (x) = αx2 − a2

4 + b.
Thus (x, y) ∈ �−1(b) if and only if (−x, y) ∈ �−1(b). �

Lemma 7. Define the projection map π : Xa(Fq) −→ Fq by π(b, y) = b. Then

#ρ−1(b) + #�−1(b) = 2#π−1(b),

for all b ∈ Fq.

Proof. Let b ∈ Fq, such that π−1(b) �= ∅. So there exist a point (b, y) ∈ Xa(Fq).
Hence y2 = Ψa(b) = Ψ(a, b). If y = 0, then π−1(b) = {(b, 0)}. So #π−1(b) = 1.
If y �= 0, then π−1(b) = {(b, y), (b, −y)}. Hence #π−1(b) = 2. Consider the
polynomials τ, τ̃ ∈ Fq[x], that are defined as τ(x) = x2 − ax + b and τ̃(x) =
αx2 − a2

4 + b. Let D be the discriminant of τ , that is D = a2 − 4b. Then αD is
the discriminant of τ̃ . We explain in three cases for D.

First, assume D = 0. Hence a
2 is the multiple root of τ . Since y2 = Ψ(a, b),

then y2 = Φ(a
2 , a

2 ) = (f(a
2 ))2. Thus (a

2 , y) ∈ C�
a(Fq) and (0, y) ∈ C′

a
2
(Fq). Since

D = 0, then b = a2

4 , so (a
2 , y) ∈ ρ−1(b) and (0, y) ∈ �−1(b). From Lemmas 5 and

6, if y = 0, then #ρ−1(b) = #�−1(b) = 1, else #ρ−1(b) = #�−1(b) = 2.
Second, assume D is a square in F

∗
q . So τ is reducible in Fq[x]. Let x0, x1 be

the distinct roots of τ in Fq. Then x0 +x1 = a and x0x1 = b. Since y2 = Ψ(a, b),
then y2 = Φ(x0, x1) = f(x0)f(x1). Thus (x0, y) and (x1, y) are points of C�

a(Fq)
and ρ−1(b). From Lemma 5, if y = 0, then #ρ−1(b) = 2, else ρ−1(b) = 4, since
x0 and x1 do not equal a

2 . Since D is a square in F
∗
q and α is a non-square in Fq,

then αD, the discriminant of τ̃ , is a non-square in F
∗
q . That means τ̃ (x) has no

root in Fq. So �−1(b) = ∅.
Third, assume D is a non-square in Fq. Hence τ(x) has no root in Fq. So

ρ−1(b) = ∅. Also αD is a square in F
∗
q . Thus τ̃ is reducible in Fq[x]. Let x0, x1 be

the distinct roots of τ̃ in Fq. Clearly x0 = −x1 and x0x1 = − D
4α . Let z0 = a

2 +x0t
and z1 = a

2 + x1t. Then z0 + z1 = a and z0z1 = b. Since y2 = Ψ(a, b), then
y2 = Φ(z0, z1) = f(z0)f(z1). So y2 = Fa

2
(x0) = Fa

2
(x1). Thus (x0, y) and (x1, y)

are points of C′
a
2
(Fq) and �−1(b). From Lemma 6, if y = 0, then #�−1(b) = 2,

else �−1(b) = 4, since x0 and x1 do not equal 0.
Now, let b ∈ Fq, such that π−1(b) = ∅. Then ρ−1(b) = �−1(b) = ∅. Since if

(x, y) ∈ ρ−1(b), then x(a − x) = b and (x, y) ∈ C�
a(Fq). So y2 = f(x)f(a − x).

Then y2 = Φ(x, a − x) = Ψ(a, b) = Ψa(b). Thus (b, y) ∈ Xa(Fq), which is a
contradiction. Also if (x, y) ∈ �−1(b), then a2

4 − αx2 = b and (x, y) ∈ C′
a
2
(Fq).

Hence y2 = f(a
2 + xt)f(a

2 − xt). Then y2 = Φ(a
2 + xt, a

2 − xt) = Ψ(a, b) = Ψa(b).
Thus (b, y) ∈ Xa(Fq), which is a contradiction. �

Proposition 11. #C�
a(Fq) + #C′

a
2
(Fq) = 2#Xa(Fq), for all a ∈ Fq.
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Proof. Let a ∈ Fq. From Lemma 7, #ρ−1(b) + #�−1(b) = 2#π−1(b), for all
b ∈ Fq. Then

#C�
a(Fq) + #C′

a
2
(Fq) =

∑

b∈Fq

#ρ−1(b) +
∑

b∈Fq

#�−1(b)

=
∑

b∈Fq

2#π−1(b) = 2#Xa(Fq).

�

Proposition 12. Let a ∈ Fq. Then

#Σa + #Σφ
a = 2(#C(Fq) + #Xa(Fq) − q).

Proof. Propositions 9, 10 and 11 conclude the proof of this proposition. �

B Proofs of Propositions

In this section we prove Propositions 4 and 7.

B.1 Proof of Proposition 4

Proof (Proposition 4). Clearly the affine curve Xa is absolutely irreducible for all
a ∈ Fq. The affine curve Xa may be singular. Let σi,j = λi + λj , for all integers
i, j such that 1 ≤ i < j ≤ 5. Let sa be the number of σi,j that are equal to a.
Then the polynomial Ψa(b) has sa double roots, since λi are pairwise distinct.
That means Xa has sa singular points. Note that 0 ≤ sa ≤ 2. If sa = 0, then
Xa is is an absolutely nonsingular affine curve of genus 2. In fact, the genus of
the nonsingular model of Xa equals 2 − sa. By using Hasse-Weil bound for the
nonsingular model of Xa, we obtain

|#Xa(Fq) − q| ≤ 2(2 − sa)
√

q + sa ≤ 4
√

q.

So the proof of this proposition is completed. �

B.2 Proof of Proposition 7

Proof (Proposition 7). Let b ∈ Fq. Let δi,j = λiλj , for all integers i, j such that
1 ≤ i < j ≤ 5. Let sb be the number of δi,j that are equal to b. Then the
polynomial Ψb(a) has sb double roots, since λi are pairwise distinct.

If f(0) �= 0, then λi �= 0, for all integer 0 ≤ i ≤ 5. Then the degree of Ψb(a)
equals 5. So the affine curve Xb is absolutely irreducible for all b ∈ Fq. Since
Ψb(a) has sb double root, thus Xb has sb singular points. In fact, the genus of
the nonsingular model of Xb equals 2 − sb. By using Hasse-Weil bound for the
the number of Fq-rational points of the nonsingular model of Xb, we obtain

|#Xb(Fq) − q| ≤ 2(2 − sb)
√

q + sb ≤ 4
√

q.
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If f(0) = 0, then there exists an integer i such that λi = 0. If b = 0, clearly
#Xb(Fq) = q. Now assume that b �= 0. Then the degree of Ψb(a) equals 4. In this
case, one could show that, sb = 2 if and only if b ∈ If . If sb = 2, then Ψb(a) is
square, so the affine curve Xb is reducible. Hence we have only the trivial bound
for #Xb(Fq), that is

|#Xb(Fq) − q| ≤ q.

Otherwise sb ≤ 1. So Ψb(a) is a non-square. Hence the affine curve Xb is abso-
lutely irreducible. Furthermore Xb has sb singular points and the genus of the
nonsingular model of Xb equals 1 − sb. By using Hasse-Weil bound we obtain

|#Xb(Fq) − q| ≤ 2(1 − sb)
√

q + sb ≤ 2
√

q.

So the proof of this proposition is finished. �
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