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Unsteady entrance flow in a 90" curved tube 

By C. C. M. RINDT, A. A. V A N  STEENHOVEN, J. D. JANSSEN 
A N D  G. VOSSERS 

Departments of Mechanical Engineering and Physics, Eindhoven University of Technology, 
Eindhoven, The Netherlands 

(Received 9 February 1990 and in revised form 15 November 1990) 

A numerical model enabling the prediction of the axial and secondary velocity fields 
in three-dimensional configurations a t  moderate Reynolds numbers and Womersley 
parameters is presented. Steady and unsteady entrance flows in a 90" curve tube 
(6 = +) under various flow conditions are analysed. The good quality agreement 
between axial and secondary velocities for a sinusoidally varying flow rate a t  a 
Womersley parameter of a = 7.8, obtained from a finite-element calculation, and 
those obtained from laser-Doppler measurements justify the use of the numerical 
model. 

Halfway into the deceleration phase for a sinusoidally varying flow rate (200 < 
Re < 800, a = 7.8) a strong resemblance is found to the steady flow case (Re = 700). I n  
contrast with steady flow, near the inner wall reversed axial flow regions are found 
halfway into and a t  the end of the deceleration phase. Throughout the flow cycle the 
Dean-type secondary flow field highly influences axial flow resulting in a shift of the 
maximal axial velocity towards the outer wall, C-shaped axial isovelocity lines and 
an axial velocity plateau near the inner wall. Further downstream in the curved tube 
the Dean-type secondary vortex near the plane of symmetry is deflected towards the 
sidewall ('tail'-formation), as is also found for steady flow. An increase of the 
Womersley parameter (a  = 24.7) results in a constant secondary flow field which is 
probably mainly determined by the steady component of the flow rate. A study on 
the flow phenomena occurring for a physiologically varying flow rate suggests that  
the diastolic phase is only of minor importance for the flow phenomena occurring in 
the systolic phase. Elimination of the steady flow component (-300 < Re < 300) 
results in a pure Dean-type secondary flow field (no 'tail'-formation) for a = 7.8 and 
in a Lyne-type secondary flow field for a = 24.7. The magnitude of the secondary 
velocities for a = 24.7 are of 0(1Op2) as compared to the secondary velocities for 
a = 7.8. 

1. Introduction 
Detailed analysis of unsteady entrance flow in a curved pipe is important for 

several reasons. First, fluid flow in a curved tube is of interest as a fundamental fluid- 
mechanical problem.Many investigators studied analytically fully developed flow in 
a curved pipe with a low curvature ratio (Dean 1927; Lyne 1970; Smith 1975). Only 
a few analytical studies, however, are performed on entrance flows in curved tubes 
(Singh, Sinha & Aggarwal 1978), owing to  the complexity of the problem. Therefore, 
a numerical approach to the problem seems to be an appropriate way to gain more 
insight into the flow phenomena occurring in the entrance region of curved pipes. 
Secondly, this study was carried out in the context of a project studying the flow 
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phenomena occurring in the carotid artery bifurcation. Olson (1971) studied steady 
flow in a symmetrical three-dimensional bifurcation using hot-wire anemometry, and 
compared the results with data obtained from velocity measurements performed in 
curved tubes. Olson concluded that the flow phenomena occurring in the daughter 
branches of such a symmetrical bifurcation are mainly determined by curvature 
effects. In spite of the fact that the geometry of the carotid artery bifurcation is 
highly asymmetric, the influence of curvature effects on the flow phenomena 
occurring in the daughter branches of this bifurcation are presumed to play an 
important role. Therefore, the entrance flow in a 90" curved tube was investigated to 
gain more insight into the complicated flow field in the carotid artery bifurcation. 

In dimensionless form the Navier-Stokes and continuity equations are rulcd by 
the Strouhal and Reynolds number, defined as Sr = 2ao/U with o a characteristic 
angular frequency, a the radius of the tube and U a characteristic vclocity, and Re 
as Re = 2aU/v with v the kinematic viscosity. Unsteady fluid flow in a 90" curved 
tube is fully determined by these dimensionless quantities together with the geometry 
of the curved tube, characterized by the curvature ratio 6 defined as S = a / R  with R 
the curvature radius of the axis of the tube. In  analytical studies on fully developed 
fluid flows in curved tubes the Navier-Stokes and continuity equations are often 
presented in a toroidal coordinate system. It then appears that for loosely coiled 
pipes (low curvature ratios) the Dean number D (U = Ga3$/(pv2) with G the mean 
axial pressure gradient and p the density), the Womersley parameter a (a = a(w/v)i)  
and the Secondary Reynolds number R, (R, = Sl/m/(vw)) are more appropriate to 
characterize fluid flow than the Reynolds number and the Strouhal number in 
combination with the curvature ratio. These numbers, in combination with the 
curvature ratio, are also commonly used for characterization of the flow phenomena 
occurring in curved tubes with higher curvature ratios. Because for entrance flows in 
curved tubes the mean axial pressure gradient G is not, fixed, in studies on this 
subject the alternative Dean number K is usually used, defined as K = $Re. The 
secondary motions for fully developed flows in loosely coiled pipes are found to be 
governed by the secondary Reynolds number (Lyne 1970). In the present study we 
will focus mainly on the Reynolds number as a function of time and the Womersley 
parameter in combination with the curvature ratio. In the definition of the Reynolds 
number the instantaneous mean axial velocity is used as characteristic velocity. In 
the remainder of the text the alternative Dean number K is mostly denoted as the 
Dean number. 

Fully developed unsteady flows in curved tubes have been studied theoretically 
and/or experimentally by many investigators (Lyne 1970; Zalosh & Nelson 1973; 
Bertelsen 1975; Munson 1975; Smith 1975; Lin & Tarbell 1980; Mullin & Greated 
1980; Berger, Talbot & Yao 1983). In recent studies on this subject (Chang & Tarbell 
1985; Hamakiotes & Berger 1988) the system of equations was solved by a finite- 
difference method. Singh et al. (1978) performed an analytical study of unsteady 
entrance flow in a curved tube (6 = O(10-l)) using a uniform inlet profile. Mullin & 
Greated (1980) used laser-Doppler anemometry for their velocity measurements in a 
curved tube with a curvature ratio o f f .  As the inlet condition an oscillating fully 
developed pipe flow was employed. The measurements were performed at a 
Womersley parameter of 0.99 and 4.36, while the peak Dean number ranged from 5.8 
to 64.2. Chandran, Yearwood & Wieting (1979) performed laser-Doppler velocity 
measurements for a sinusoidally varying flow rate in a curved tube with a curvature 
ratio of +,. The time-averaged Dean number was equal to 322 and the Womersley 
parameter was equal to 21.9. Chandran & Yearwood (1981) performed the same sort 
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of study for a physiologically varying flow rate a t  a time-averaged Dean number of 
320 and a Womcrsley parameter of 20.7. Talbot & Gong (1983) performed laser- 
Doppler experiments in a curved tube with a curvature ratio of & and $. Two 
situations were investigated for which the characteristic flow parameters were 80 < 
K < 160: a = 8 and 0 < K < 744, a = 12.5, respectively. Perktold, Florian & Hilbert 
(1987) analyscd pulsatile blood flow in a carotid siphon model, composed of several 
curved scgments. They used the finite-element method to solve the time dependent, 
three-dimensional Navier-Stokes and continuity equations under physiological flow 
conditions. 

The studies mentioned above dealing with unsteady entrance flows in curved tubes 
are either experimental or analytical/numerical. In  none of these studies are 
experimental measurements confronted quantitatively with analytical or numerical 
calculations. In  the present study on entrance flow problems of oscillating, pulsating 
and physiological flow rates in a 90" curved tube with a curvature ratio of S = $, both 
measurements and calculations are performed and a detailed comparison between 
the experimental and numerical results is carried out. I n  a study by van de Vosse 
et al. (1989), results arc shown of a numerical and experimental study on steady 
entrance flow in a three-dimensional model of a 90" curved tube for Reynolds 
numbers up to 500. First, as a preparatory study, steady flow at a Reynolds number 
of 700 is investigated. A comparison of thc calculated velocity field is made with that 
obtained from laser-Doppler velocity rneasuremcnts of Bovendeerd et al. (1987). 
Next, the results of a velocity calculation are shown for a pulsating flow rate. The 
Reynolds number varied sinusoidally between 200 and 800, corresponding to  the 
diastolic and systolic Reynolds numbers in the carotid artery bifurcation, 
respectively. The Womersley parameter was equal to 7.8, about twice the i n  vivo 
value. This value was chosen to  match the sinusoidal flow rate variation with the 
physiological flow rate variation in the systolic phase of the heart cycle. For this 
particular case a detailed description of the axial and secondary flow fields is given 
as a function of time. To validate the numerical model, a detailed comparison with 
laser-Doppler velocity measurements is also made. Next, the influence of the 
frequency parameter on secondary flow is described. The results of a velocity 
calculation of fluid flow a t  a physiological flow rate are also shown, elucidating the 
influence of the waveform on the flow phenomena. Finally, the influence of the steady 
flow component is studied. 

2. Methodology 
2.1. Numerical method 

For numerical modelling of incompressible, isothermal, laminar and Newtonian fluid 
flow in a 90" curved tube the Navier-Stokes and continuity equations have to be 
solved. In  dimensionless form thcsc cquations read : 

Sr u +us Vu- 

V - u  = 0, (1b)  

with u the velocity vector, p the pressure, f the body force per unit mass, V the 
gradient vector operator and the superscript dot the local time derivative a /a t .  To 
discretize these equations Galerkin's finite-element method was used, leading to the 
following sct of ordinary differential equations (Cuvelier, Segal & Steenhoven 1986) : 
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Mu + [S + N ( u ) ]  u + f ' p  = f+ b, 

f u  = 0 ,  

where the column u contains the velocity unknowns ( N )  in the nodal points for the 
velocity and the column p the pressure unknowns ( M )  in the nodal points for the 
pressure. M is the mass matrix (NxN), S the diffusion matrix (NxN),  N ( u )  the 
convection matrix ( N x N ) ,  f the divergence matrix (M xX),f the body force column 
(Nx 1 )  and b the boundary stress column (Nx 1 ) .  

Elimination of the pressure unknowns from the discretized Navier-Stokes equation 
(2a)  is performed by using the penalty function approach (Cuvelier et al. 1986). In 
discretized form the continuity equation reads : 

f u  = sM,p, (3) 
with B a very small parameter (the penalty parameter) and with M ,  the pressure 
matrix (M xM). If the right-hand side is small enough then the incompressibility of 
the fluid will be sufficiently approximated. It can be shown that for both the Stokes 
and NavierStokes equations, the solution of the penalty function approach 
converges to the solution of the unperturbed system for small values of the 
parameter s (Pelissier 1975; Temam 1977). 

The local time derivative is approximated by the &method. Consider a set of 
ordinary differential equations ax/at = Ax + I ,  then this finite-difference scheme 
reads (Cuvelier et al. 1986) : 

= t9(Axn+l + rn+l) + ( 1  - 0) (Axn + P ) ,  (4) 
in which xn  denotes x(nAt) with At the timestep. The parameter 0 can have values 
in the range 0 Q 0 Q 1.  For 0 = 1 this scheme reduces to the Euler-implicit scheme 
and for 0 = 0 t o  the Euler-explicit scheme, both O(At)  accurate in time. For 0 = 0.5 
this scheme is known as the Crank-Nicolson scheme which is O(At2)  accurate in time. 
Besides the accuracy of a finite-difference method, the stability of the scheme also 
has to be taken into account. Because an undamped behaviour is expected of 
numerical errors in the solution for the Crank-Nicolson scheme whereas for the 
Euler-implicit scheme these errors tend to zero, in many application fields a 
combination of these two methods is used (van de Vosse et al. 1986). First, several 
Euler-implicit timesteps are applied to damp numerical errors in the solution induced 
by the assumed initial condition. Secondly, the Crank-Nicolson scheme is applied to 
achieve a higher accuracy of the approximate solution. 

Applying the penalty function approach and the &method to the discretized 
Navier-Stokes equation (equation (2 a ) )  and linearization of the convective term by 
one step of a Newton-Raphson iteration scheme (Cuvelier et al. 1986) leads to: 

1 
[M/8At+S+J(un) +-f'M;'f] un+' = [M/0At+N(un)] ~ " + f n + ' + b ~ + ' ,  ( 5 )  

with J(u) ( N x N )  the Jacobian matrix of N ( u ) u .  This is an Euler-implicit step from 
un to  un+'. The solution un+l is calculated afterwards from extrapolation of un and 
un+' to un+l using un+' = 0un+l+ (1  -t9)un. Both schemes are in principal O(At) 
accurate in time but a combination of these two methods, as described above, is 
similar to a Crank-Nicolson scheme which is O(At2) accurate in time (van dc Vosse 
et al. 1986). 

7 
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FIGURE 1 .  The 27-noded Crouzeix-Raviart element. 0 ,  0, u ;  x , p ,  applax. 

The 27-noded element, as presented in figure 1 ,  is used for division of the 90" 
curved tube into three-dimensional elements. Velocity unknowns are defined in all 
the nodal points of the element which means 81 velocity unknowns per element. The 
basis functions related to  each nodal point are triquadratic functions. Pressure 
unknowns are only defined in the centre of the element, which are the pressure itself 
and its three spatial derivatives. The basis functions related to  the pressure 
unknowns are a constant and three linear functions. Since these functions are zero 
outside the element under consideration, the pressure field varies discontinuously 
over the element boundaries. This type of element belongs to the group of the so- 
called Crouzeix-Raviart elements (Crouzeix & Raviart 1973). For this element the 
inverse of the pressure matrix (equation (5)) can be calculated elementwise (Cuvelier 
et al. 1986). Besides, the continuity equation is satisfied elementwise. 

Discretization of the Navier-Stokes and continuity equations in combination with 
a penalty function approach leads to a system matrix with a symmetric profile 
structure. To economize the memory usage a profile storage technique was used. 
Previously performed calculations of steady entrance flow in a 90" curved tube (van 
de Vosse et al. 1989) revealed that large computing times (CPU-times) and 
input/output times (I/O-times) were needed for LU-decomposition of the system 
matrix resulting from a Galerkin finite element approach. Therefore, super and 
minisupercomputers were used in combination with a Sloan renumbering procedure 
(Sloan 1986) to reduce the bandwidth of the system matrix. I n  this study a 
minisupcrcomputer Alliant-fx/4 with 2 processors and a supercomputer Cyber-205 
with 2 vectorpipes were used to solve the system of equations. To build and solve the 
system of equations and for presentation of the calculated results, the finite element 
package Sepran was used (Segal 1984). 

Figure 2 shows the element division used for the reference flow case, which will be 
described below (sinusoidally varying flow rate : 200 < Re < 800, a = 7.8), consisting 
of 20 elements in the axial direction and 30 elements per cross-section. The lengths 
of the inlet and outlet sections are both 6 times the radius of the curvcd tube. Flow 
a t  the inlet was supposed to be fully developed and the velocities at the wall were 
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90"- bend 

FIGURE 2. The element division for the 90' curved tube 

FIGURE 3. Fluid circuit for the unsteady flow experiments. 

presumed to be zero, according to the no-slip condition. At the outlet the normal and 
both tangential stresses were set to zero, while in the plane of symmetry both 
tangential stresses and the normal velocity component were put to zero. 

From velocity calculations in a two-dimensional model of the carotid artery 
bifurcation (Rindt et al. 1987), it  appeared that 20 timesteps per period were 
sufficient to  achieve an accurate solution. For the reference flow case one period 
consisted of 24 timesteps. A zero velocity field was used as the initial condition. To 
damp numerical errors induced by this initial condition, an Euler-implicit time 
integration scheme was first applied for + of a period. Hereafter, a Crank-Nicolson 
time integration scheme was employed until the maximal difference between the 
velocity components of the solution at the same time intervals of two successive 
periods was smaller than lop2 times the mean axial velocity. For the reference flow 
case, 3 periods were needed to reach this goal. 

2.2. Experimental method 
The velocity measurements to validate the numerical model were performed with a 
one-component forward-scattering reference-beam laser-Doppler anemometer. Drain 
(1981) gives an extensive description of the physical aspects of this method. In figure 
3 a schematic presentation of the fluid circuit used is given. A gear pump was used 
for generation of the steady flow component (Verder) and the unsteady flow 
component was generated by a piston-in-cylinder pump driven by a programmable 
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2omml 
FIGURE 4. (a) The Perspex model of the 90" curved tube, ( b )  the measuring grid and 

( c )  the finite element mesh. 

waveform generator (Vivitro Systems Incorporated). The waveform generator also 
provides an output signal to facilitate synchronization to external instrumentation. 
As connecting tubes between the various systems, wire-reinforced tubes were used to  
avoid wave propagation and reflection phenomena. An entrance length of 50 tube 
diameters was used to  ensure that fluid flow was fully developed before i t  reached the 
measuring section. The three-dimensional model consisted of two halves of Perspex, 
split a t  the plane of symmetry, in which the 90" curved tube was machined out 
(figure 4a).  The curvature ratio of the 90' curved tube was equal to S = Q. A solution 
of zinc iodide was used as the measuring fluid, enabling exact matching of the 
refraction index to the one of Perspex. Because a zinc iodide solution is somewhat 
poisonous and rather aggressive, it must be treated with care. Also, high internal 
stresses in the Perspex model should be avoided because otherwise cracks may occur. 

Data were measured by a system controlled by a personal computer. Fifty samples 
were taken per period. The start of data intake was controlled by a trigger pulse. This 
trigger pulse was generated by the wave generator of the plunger pump. After 
calibration of the measuring system and the laser-Doppler equipment, the data 
obtained were converted to physical units. Beside the mean values, 95 %-confidence 
intervals based on a Student-t distribution were calculated. Therefore, 10 periods 
were measured. 

For measurement of the axial velocity component and the secondary velocity 
component parallel to the plane of symmetry, the optical axis of the He-Ne laser 
was put perpendicular to  the plane of symmetry of the three-dimensional model 
used. By rotation of the plane spanned by the laser beams both velocity components 
could be obtained. For measurement of the secondary velocity component 
perpendicular to the plane of symmetry the optical axis had to  be parallel and the 
plane spanned by the laser beams had to be perpendicular to the plane of symmetry. 
The problem with this kind of measurement is that total reflection a t  the plane of 
symmetry may occur to one of the laser beams, owing to an air film between the two 
halves of Perspex. Therefore, a Perspex model was used which was split along the 
axis of the tube and perpendicular to the plane of symmetry. 

Three stepper motors were used to traverse the model in three independent 
directions, through which positioning of the measuring volume a t  various sites in the 
model was possible. Owing to the step size, positioning of the measuring volume 
occurred with an accuracy of & 3 pm, & 8 pm and f 8 pm in the x-, y- and z- 



452 C. C. Rindt, A .  A .  van Steenhoven, J .  D. Janssen and G. Vossers 

directions, respectively. Detailed analysis of the axial and secondary velocity 
distributions was performed at 5 levels in the 90" curved tube. At each level the 
measuring volume was traversed according to a rectangular grid (figure 46). 
Independently, the axial velocity component and both secondary velocity com- 
ponents were measured in each grid point. Afterwards, for presentation purposes, the 
rectangular measuring grid was transformed to a finite element mesh (figure 4c) .  The 
velocities at the wall were presumed to be zero according to the no-slip boundary 
condition. Then, using post-processing software, axial and secondary flow fields were 
presented by axial isovelocity lines and secondary velocity vectors, respectively. 

Several kinds of error sources result in detection errors of the fluid velocities. First, 
errors result from small variations in the fluid velocity owing to small variations in 
the imposed flow rate and the limited electronic detection accuracy of the frequency 
of the photodetector signal. Also frequency instabilities of the plunger pump result 
in detection errors. All these errors can be estimated by calculation of the 95%- 
confidence intervals, which were found to be less than 1% of the maximal axial 
velocity. 

Errors also result from positioning failures of the measuring volume owing to 
localization errors of a starting point and the finite accuracy of the traversing system. 
Detection errors of the velocity caused by these positioning errors are estimated to 
be 5 % of the local velocity. Also, errors are caused by failures in the adjustment of 
the correct angles, resulting in the measurement of the wrong velocity component. 
The largest absolute errors occur in the detection of the secondary flow field, which 
are estimated to be 2 YO of the local axial velocity. However, in regions with low axial 
velocities, large relative errors in the detection of axial velocities may occur owing to 
the secondary velocity components. Next, errors in the determination of the angle 
between the reference and the main beam cause detection errors of the velocity, 
which are estimated to  be *0.5%. The large size of the measuring volume 
(400 ,urn x 40 pm x 40 pm) with regard to the size of the three-dimensional models 
used (8 mm), also causes detection errors of the velocity, dependent on the velocity 
gradients. The highest influence of these errors is expected near the sidewalls of the 
models, where the velocity gradients are mostly large. The largest errors are expected 
for the secondary velocity component parallel to the plane of symmetry because for 
this component the largest dimension of the measuring volume was positioned in the 
direction of the largest velocity gradients near the sidewall. The resulting errors in 
that case can be u p  to 20 YO of the maximal secondary velocity. Finally, errors result 
from adjustment failures of the correct Reynolds number and Womersley parameter. 
Errors in the Reynolds number are caused by inaccuracies in the values of the flow 
rate and the kinematic viscosity and are estimated to be k 5 % of the mean Reynolds 
number. It is remarked that a small deviation in Reynolds number may cause a 
considerable shift in the axial isovelocity lines, especially where small velocity 
gradients are present. Finally, errors in the adjustment of the Womersley parameter 
are estimated to be f 1 %. 

3. Steady entrance flow 
3.1. Introduction 

I n  a study performed by van de Vosse et al. (1989) the results of finite element 
calculations of steady flow in a 90" curved tube with a curvature ratio of k are 
presented for Reynolds numbers u p  to 500. Application of higher Reynolds numbers 
caused oscillations in the predicted velocity field, probably owing to bifurcation of 
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FIQURE 5. (a) Calculated (-) and measured (0) axial velocity profiles in the plane of symmetry (I ,  
inner wall; outer wall). (b) Calculated (-) and measured (0) secondary velocity profiles (I, inner 
wall; 0, outer wall: S, sidewall). 

the solution in this range of Reynolds numbers or to a too coarse element division. 
To avoid these problems, in this study a finer element division is employed and 
iteration towards a Reynolds number of 700 was achieved by first solving the 
unsteady and then solving the steady Navier-Stokes problem. The maximal 
difference between the velocity components of the final 2 iterations was smaller than 

times the mean axial velocity. For the steady flow case the same element 
division was used as depicted in figure 2. Also the boundary conditions were the same 
as already described for the reference flow case except for the ones a t  the inlet. There, 
flow was supposed to  be fully developed, which means a parabolic axial flow field and 
zero secondary velocities. 

3.2. Comparison with experiments 
Bovendeerd et al. (1987) performed an experimental study of steady entrance flow in 
a 90" curved tube, with a curvature ratio of i, at a Reynolds number of 700. A laser- 
Doppler anemometer waR used to measure axial and secondary velocities a t  7 
positions in the curved tube (8 = 0", 4.6", 11.7", 23.4", 39.8", 58.8" and 81.9"). See 
Bovendeerd et al. (1987) for a detailed description of axial and secondary flow. In  
short, owing to centrifugal forces a secondary flow develops which is directed from 
the inner wall towards the outer wall near the plane of symmetry and 
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circumferentially back near the sidewall, resembling a Dean-type vortex. This 
secondary motion results in a shift of the maximal axial velocity towards the outer 
wall on the one hand and an injection of fluid particles with high axial velocities near 
the sidewall on the other, resulting in C-shaped axial velocity contours. Further 
downstream in the curved tube, ' tail'-formation (deflection of the Dean-type vortex 
towards the sidewall) in the secondary flow field takes place near the centre of the 
curved tube. 

A comparison with the measurements of Bovendeerd et al. (1987) is performed by 
comparing the axial velocity profiles in the plane of symmetry. In  figure 5(a)  these 
axial velocity profiles are presented for both the measurements and the calculations. 
There is a good agreement between the experimental and numerical data, In the 
numerical case the axial velocity plateau at  6 = 58.5" is somewhat less developed. 
For a comparison between the calculated and measured secondary flow field, in figure 
5 ( b )  secondary flow at  6 = 23.4" and 58.5" is presented by velocity profiles of the 
component parallel to the plane of symmetry (upper half) and the component 
perpendicular to the plane of symmetry (lower half). Here again relatively good 
agreement exists between the experimental and numerical results. The largest 
diffcrcnccs are found near the sidewall a t  6 = 23.4", where the calculated secondary 
velocities parallel to  the plane of symmetry are higher than the measured ones. 
Probably, measuring errors due to positioning of the largest dimension of the 
measuring volume in the direction of the steepest velocity gradients contribute to 
this discrepancy. 

4. Unsteady entrance flow 
4.1. Introduction 

In  this section a detailed description of unsteady entrance flow in a 90" curved tube 
at a particular set of parameters is given. To validate the numerical model both axial 
and secondary flow are compared with experimental results. The flow rate consisted 
of a sinusoidally varying unsteady flow component ( - 300 < Re < 300) superimposed 
on a steady flow component (Re = 500). With a curvature ratio of + this yields a Dean 
number varying between 82 and 327. The Womersley parameter was equal to 7.8. In 
the remainder of the text this flow case will be denoted as the reference flow case or 
flow case 1. The element division used and the boundary condition prescribed, are 
already reported in the description of the numerical method. The time intervals a t  
which the results are reported corresponds to mean flow rate in the acceleration 
phase (t = 0 ) ,  to maximal flow rate ( t  = $T), to mean flow rate in the deceleration 
phase (t  = iT) and to minimal flow rate (t  = aT). 

4.2. Description of the Jlow field 
In figure 6 the results of axial and secondary flow a t  5 axial positions in the curved 
tube (6 = O", 22.5", 45", 67.5" and 90") are shown. Axial flow is presented by axial 
isovelocity lines and secondary flow is visualized by means of velocity vectors. 
Contour level 0 corresponds to zero axial velocity and the difference in axial velocity 
between two successive levels is equal to 0.32 times the mean axial velocity a t  t = 
0 (Umn). The secondary velocities a t  0 = 0" are scaled up three times, as compared to 
the secondary velocities a t  the other cross-sectional planes. 

At 6 = 0" (figure 6a)  the axial velocity contours a t  t = +T and qT are almost 
concentric circles. At t = 0 and aT the maximum of axial velocity is slightly shifted 
towards the inner bend of the curved tube, resulting in larger axial velocity gradients 
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a t  the inner wall, as compared to those a t  the outer wall. The secondary velocities are 
completely directed from the outer wall towards the inner wall, pointing at upstream 
influences of the curved tube. These secondary velocities are about equal halfway 
into the acceleration and deceleration phases. They are almost zero a t  minimal flow 
rate. At maximal flow rate, oscillations are observed in the secondary flow field, 
possibly owing to numerical failures as a consequence of a too coarse element division 
in the axial direction or a too short entrance length. A calculation of the velocity field 
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in a curved tube with a smaller entrance length and larger elements showed larger 
oscillations in the secondary flow field. The solution further downstream in the 
curved tube, however, was not affected. 

At 6 = 22.5" (figure 6b)  the secondary velocities near the plane of symmetry arc 
directed towards the outer bend, as a consequence of centrifugal forceslwhereas near 
the sidewall of the curved tube these secondary velocities are directed towards the 
inner bend, resulting in a Dean-type secondary flow field. For the total period of time 
the centre of this secondary vortex is situated near the centreline of the cross- 
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sectional plane. The secondary velocities a t  t = tT and $Tare about equal, as well as 
the secondary velocities at t = iT and t = 0. At minimal flow rate a region with low 
secondary velocities is found near the inner bend. As a consequence of secondary flow 
a shift of the maximum of axial velocity towards the outer bend is observed for the 
whole period of time. This shift is maximal at minimal flow rate (t = iT). At this time 
interval a region with negative axial velocities is observed a t  the inner bend. The 
largest axial velocity gradients are found a t  the outer wall at maximal flow rate 
( t  = +T). 
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The highest secondary velocities throughout the curved tube occur a t  8 = 45' 
(figure 6c)  a t  peak flow rate. Still, the secondary velocities are directed from the inner 
wall towards the outer wall near the plane of symmetry and circumferentially back 
near the sidewall. The centre of the vortex is situated near the centre line of the cross- 
sectional plane for t = 0 and it is slightly shifted towards the inner wall for t = $T, iT 
and %T, describing some kind of circle. In the dcceleration phase and at minimal flow 
rate a ' tail '  in the secondary flow field develops, through which the secondary 
velocities in the central region of the tube are no longer parallel to the plane of 
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FIGURE 6. Axial and secondary flow for the reference flow case (I, inner wall; 0, outer wall; 
S, sidewall; U,,, time-averaged mean axial velocity). (a) 0 = Oo, ( b )  0 = 22.5', (c) 0 = 45', 
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symmetry but slightly directed towards the sidewall. Possibly, this 'tail '-formation 
is due to the relatively large axial velocity gradients in the central region. The shift 
of the axial isovelocity lines towards the outer wall continues, as compared to the 
shift a t  B = 22.5', resulting in large axial velocity gradients a t  the outer wall. The 
largest shift is found a t  t = qT but, owing to  the smallest flow rate a t  this time 
interval, the axial velocity gradients are relatively small. At all time intervals C- 
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(c) Calculated (-) and measured (0) secondary flow field at two positions in the curved tube. 

shaped axial velocity contours are observed, which develop in the deceleration phase 
and become less pronounced in the acceleration phase. These C-shaped axial velocity 
contours are caused by secondary flow, through which fluid particles with high axial 
velocities situated at  the outer bend are injected at the inner bend. Halfway into the 
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deceleration phase, a t  t = iT, a region with negative axial velocities is observed near 
the inner wall. Also a t  minimal flow rate ( t  = $T) a region with reversed axial flow is 
found in the central region of the tube. At t = 0 large regions occur with hardly 
varying axial velocities, pointing to the formation of axial velocity plateaus. 

At 8 = 67.5' (figure 6 d )  the secondary velocities are considerably lower, as 
compared to the secondary velocities halfway into the curved tube, except at 
maximal flow rate (t  = fT). A t  8 = 67.5' the 'tail '  in the secondary flow field is also 
observed at maximal flow rate and it intensifies in the deceleration phase. The 
position of the centre of the secondary vortex at t = aT, iT and ZT is almost the same 
as compared to the position halfway into the curved tube. Also in the deceleration 
phase, C-shaped axial velocity contours develop with highly curved segments a t  t = 
iT. Halfway into the acceleration phase ( t  = 0) a local minimum is observed at the 
centre of the tube. Regions with almost constant axial velocities occur a t  minimal 
flow rate ( t  = aT) and halfway into the acceleration phase ( t  = 0). Reversed axial flow 
regions are found near the inner wall a t  t = iT and $T. The region with negative axial 
velocities at the centre of the tube has disappeared. 

All in all, the axial and secondary flow fields at 8 = 90" (figure 0e)  have the same 
appearance as the flow fields at 8 = 67.5'. The secondary velocities a t  maximal flow 
rate, however, are lower, as compared with the secondary velocities a t  8 = 67.5'. Also 
the C-shaped axial velocity contours are less pronounced at  t = qT and the local axial 
velocity minimum a t  t = 0 has disappeared. 

4.3. Comparison with experiments 
To validate the numerical results, laser-Doppler experiments were performed in a 90' 
curved tube. Although the adjusted flow rate in the experiments consisted of a 
sinusoidally varying component (-300 < Re < 300) superimposed on a steady flow 
component (Re = 500), some differences with the numerical situation were found to 
be present. It appeared that the minimal Reynolds number was 250 instead of 200 
and that the Reynolds numbers halfway into the acceleration (t  = 0) and deceleration 
phase (t  = iT) were, respectively, 565 and 460. Errors in the calculation of these 
Reynolds numbers resulting from numerical integration of the axial flow field are 
estimated to be +lo.  The rather large differences between the experimental and 
numerical situation can possibly be cxplained by thc strategy applied for the 
adjustment of the flow rate in the experiments. First, the steady flow component was 
adjusted at a Reynolds number of 500. Afterwards the unsteady flow component was 
imposed and a maximal Reynolds number of 800 was adjusted. In this strategy, 
however, the influence of the unsteady flow component on the 'steady' flow 
component was not taken into account, which may result in the observed 
discrepancies. Besides, the sampling frequency of 50 samples per period contributes 
to these discrepancies. Owing to this sampling frequency, data presentation a t  
exactly minimal, mean and maximal flow rate is impossible. This may result in errors 
in the Reynolds number of f 2 0  a t  mean flow rate. Despite these experimental 
deviations, the measurements seem to be appropriate to validate qualitatively the 
numerical model used. 

A comparison with the laser-Doppler velocity measurements is achieved by 
presentation of the axial velocities in the plane of symmetry and the axial contour 
levels and secondary velocity profiles at 8 = 22.5' and 67.5'. In  figure 71a) the axial 
velocity profiles in the plane of symmetry are presented as a function of time for both 
the measurements and the calculations. A good agreement between the experimental 
and numerical data is observed. The largest differences occur halfway into the 
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acceleration phase a t  t = 0 and a t  the end of the deceleration phase a t  t = $T. For 
both time intervals the velocities found in the experiments are somewhat higher than 
the velocities calculated by the numerical model, probably caused by the larger 
Reynolds number in the experiments at these time intervals. For the experiments 
this discrepancy results in the absence of regions with reversed axial flow downstream 
in the curved tube a t  minimal flow rate ( t  = ZT). The shift of the maximum of axial 
velocity towards the outer wall is clearly seen a t  all time intervals. Also the presence 
of a local minimum in the axial velocity field a t  8 = 67.5' and t = 0 is observed for 
both the measurements and the calculatiom. Such minima also occur downstream in 
the curved tube a t  t = ST and aT. 

In figure 7 ( b )  the axial velocity contours a t  8 = 22.5" and 67.5" are presented as 
function of time. Contour level 0 corresponds to zero axial velocity and the difference 
in axial velocity between two successive levels corresponds to 0.52 times the time- 
averaged mean axial velocity (Umn). The agreement between the numerical and 
experimental data is satisfactory. The regions with reversed axial flow calculated by 
the numerical model a t  the end of the deceleration phase are absent in the 
experiments, probably owing to the larger Reynolds number in the experiments a t  
this time interval. The largest differences in the C-shaped appearance of the axial 
velocity contours occur a t  8 = 67.5" and t = ST, where the curvature of the contour 
levels 2 and 3 is more pronounced, whereas the curvature of contour level 1 is less 
pronounced for the computations, possibly also as a consequence of the difference in 
the Reynolds number a t  this time interval. The position of the local axial velocity 
minimum a t  8 = 67.5" and t = 0 is closer to  the inner bend for the experiments than 
for the calculations. 

A comparison of the secondary flow field is performed with the use of velocity 
profiles of secondary flow. I n  figure 7 (c) the component of secondary flow parallel to 
the plane of symmetry is presented in the upper half and the component 
perpendicular to the plane of symmetry in the lower half of the cross-sectional area. 
The agreement between the experimental and numerical data is fair. The largest 
differences occur in the component parallel to  the plane of symmetry near the 
sidewall of the curved tube a t  both positions for t = aT and ST. Near the plane of 
symmetry the largest differences in this component occur a t  8 = 67.5' for t = aT and 
iT, but these differences are small compared to  the differences near the sidewall. 
Possibly, the rather large dimensions of the measuring volume contribute to these 
discrepancies. The main differences in the component perpendicular to  the plane of 
symmetry occur a t  8 = 67.5" for t = aTand iT, where a shift in the profiles near the 
inner bend of the curved tube is observed, probably owing to  positioning errors of the 
measuring volume. 

5. Influence of various parameters on axial and secondary flow 
5.1. Introduction 

To gain more insight into the influence of the frequency parameter and the steady 
flow component on axial and secondary flow, calculations were performed at a 
Womersley parameter of 15 and 24.7, for a Reynolds number varying between 200 
and 800, and a t  a Womersley parameter of 7.8 and 24.7, for a Reynolds number 
varying between -300 and 300. For the latter two flow cases the Reynolds number 
was adjusted by lowering the axial velocity values. Also axial and secondary flow 
were investigated for a physiologically varying flow rate, as presented in figure 8. The 
Reynolds number varied between 200 and 800, with a time-averaged mean Reynolds 
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Reynolds Dean Womersley Flow 
number number parameter wave 

Case 1 200 : 800 82 : 327 7.8 pulsating 
Case 2 200 : 800 82 : 327 15.0 pulsating 
Case 3 200 : 800 82 : 327 24.7 pulsating 
Case 4 200 : 800 82 : 327 4.0 physiological 
Case 5 -300:300 -122:122 7.8 oscillating 
Case 6 -300:300 -122:122 24.7 oscillating 

TABLE 1. Summary of the parameters for the unsteady flow cases 

Ncross Nnxin, N i n  Nout Lin Lout  N c m v  

Case 1 30 20 4 4 6 6 3 
Case 2 30 15 1 2 2 2 6 
Case 3 30 15 1 2 2 2 9 
Case 4 30 20 4 4 6 6 1.5 
Case 5 20 28 8 8 20 20 6 
Case 6 30 20 4 4 6 6 3 

TABLE 2. Details of the element divisions used (N,,,,,, N,,,,,, Ni, and No,, correspond, respectively, 
to number of elements per cross-section, in axial direction, in inlet section and in outlet section, L,, 
and Lout correspond to lengths of inlet and outlet section) and number of periods needed to reach 
convergence (N,,,,) for the various flow cases 

number of about 300. The Womersley parameter for this flow case was equal to 4. All 
the parameters, including the Dean number, for the different flow cases studied, are 
summarized in table 1. 

I n  Table 2 details of the element divisions used are given, like the number of 
elements per cross-section, the number of elements in the axial direction, the lengths 
of the inlet and outlet sections and so forth. For the flow cases 2 and 3 the element 
division consisted of 15 elements in the axial direction and 30 elements per cross- 
section. The lengths of the inlet and outlet sections were equal to  twice the radius of 
the tube and consisted of 1 and 2 elements in the axial direction, respectively. Using 
this element division for the calculation of axial and secondary flow for flow case 1, 
no remarkable differences with the results presented earlier were found. For flow case 
4 the same element division was used as for flow case 1. The boundary conditions for 
flow cases 2, 3 and 4 were the same as employed for flow case 1,  i.e. a t  the inlet fully 
developed unsteady pipe flow was assumed. To that end, for the physiological flow 
wave 15 harmonics were used to correctly prescribe the axial flow field a t  the inlet. 
From a velocity calculation of fully developed oscillating flow in a straight tube, it 
appeared that the stress-free boundary condition at the outlet gave rise to large 
oscillations in the velocities in the outstream region. Therefore, essential boundary 
conditions, describing fully developed oscillating flow in straight tubes, were applied 
to both ends of the curved tube for flow cases 5 and 6. To ensure that fluid flow was 
fully developed, the lengths of the instream and outstream sections for flow case 5 
were chosen to be 20 times the radius of the tube. For flow case 6 the same element 
division was used as for flow ease 1.  Two-dimensional test calculations in straight 
tubes revealed that these lengths were reasonable estimates. Because of the long 
instream and outstream pipes for flow case 5 and owing to the limited capacity of the 
computer used for this calculation, the number of elements per cross-section had to 
be reduced to 20. The total number of elements in the axial direction was 28. 
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FIGURE 8. Timesteps and presentation levels for the physiological flow case. 

In table 2 the number of periods needed to reach convergence are also presented. 
For flow cases 1 , 2  and 3 the number of periods seems to be linearly dependent on the 
Womersley parameter. For these flow cases it was typical to see that the curvature 
of the axial isovelocity lines intensified with increasing period number. This 
phenomenon probably indicates that the number of periods needed to reach 
convergence is dominated by the development of the flow field induced by the steady 
flow component. For the physiological flow case one and a half periods were sufficient 
to  reach convergence because flow a t  the end of the diastolic phase was found to  be 
quasi-steady. For oscillating flow rates the number of periods appears to be smaller 
for higher Womersley parameters, which is different from the pulsatile flow cases. 
This is plausible owing to the absence of a steady flow component and the resulting 
lower secondary velocities a t  higher frequencies. 

As for the reference case, the number of timesteps per period for flow cases 2, 3, 5 
and 6 was 24. For the physiological flow case variable timesteps were applied, as 
pointed o u t  in figure 8. The timesteps in the systolic phase were taken equal to  AT, 
whereas the timesteps a t  the end of the diastolic phase were set equal to &T. 

For flow cases 2, 3, 5 and 6 first an Euler-implicit time integration scheme was 
applied during iT,  succeeded by a Crank-Nicolson scheme. For flow cases 2 , 3  and 5, 
after 3 periods again an Euler-implicit time integration scheme was applied during 
iT because of the bad convergence of the solution. All velocity calculations were 
started a t  minimal flow rate and used a zero velocity field as the initial condition. In 
the case of the physiological flow wave the calculation was started near the onset of 
the diastolic phase (figure 8). For this flow case during 11 timesteps an Euler-implicit 
timc integration scheme was applied. 

For all flow cases except 4, the results are presented at the same time levels as for 
the reference flow case, i.e. a t  mean flow rate in the acceleration phase ( t  = 0) ,  at peak 
flow rate ( t  = +T), a t  mean flow rate in the deceleration phase ( t  = iT) and at minimal 
flow rate ( t  = iT). For the physiological flow wave the results are presented a t  the 
time intervals indicated in figure 8. At these time intervals the Reynolds numbers 
were equal to 500, 800, 540 and 265, respectively. To reduce the amount of data and 
because axial flow is a more or less prescribed quantity, only secondary velocity 
profiles are shown, 
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FIGURE 9. Secondary flow a t  0 = 22.5" and 67.5' for flow case 1 (-) and flow case 2 (..-.) 

5.2. Comparison between the various flow cases 

5.2.1. The influence of the frequency parameter 
I n  figure 9 secondary flow at 0 = 22.5" and 67.5" as a function of time is shown for 

flow cases 1 and 2 (flow case 2 : 200 < Re < 800, a = 15, pulsating). A t  6' = 22.5" the 
secondary velocity profiles look the same for both flow cases. At minimal flow rate 
and halfway into the acceleration phase the secondary velocities are somewhat 
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FIGURE 10. Secondary flow at 0 = 22.5O and 67.5' for flow case 1 (-) and flow case 3 (--). 

higher for flow case 2, whereas, at peak flow rate these velocities are somewhat lower. 
At 8 = 67.5", however, secondary flow for flow case 2 shows complicated structures, 
especially a t  t = tT and BT. At peak flow rate on each line both components of 
secondary flow are changing direction two or three times. Near the sidewall all 
secondary velocities are directed from the outer bend towards the inner bend. Near 
the plane of symmetry, however, secondary velocities are found directed from the 
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FIGURE 1 1 .  Secondary flow at 0 = 22.5' and 67.5' flow case 1 (-) and flow case 4 ( - 3  

inner bend towards the outer bend, as well as secondary velocities directed from the 
outer bend towards the inner bend, pointing to the development of Lyne-type 
structures. At all time intervals, except t = aT, the secondary velocities for flow case 
2 are higher than the secondary velocities for the reference flow caw. 

In figure 10 the results are shown for flow cases 1 and 3 (flow case 3 :  200 <Re < 
800, a: = 24.7, pulsating). At 8 = 22.5' secondary flow has the same appearance as 
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secondary flow for the reference flow case. The secondary velocities are somewhat 
higher for the time levels t = 0 and 21' and somewhat lower for t = +T and 4T. At 
8 = 67.5" larger differences are found in the secondary flow field. The irregular 
structures as found for flow case 2, however, are not present here. Throughout the 
flow cycle, the secondary velocities parallel to the plane of symmetry, are directed 
from the inner bend towards the outer bend near the plane of symmetry and 
circumferentially back near the sidewall. For flow case 3 a t  peak flow rate both 
secondary velocity components near the sidewall are lower, whereas these 
components are higher a t  minimal flow rate, as compared to the secondary velocities 
for the reference flow case. It is remarkable that the secondary velocity profiles for 
flow case 3 are almost constant in time a t  both positions. Apparently the unsteadiness 
of the flow rate a t  this high value of thc Womersley parameter, hardly affects the 
secondary flow field. 

5.2.2 Influence of the flow wave form 

In figure 11 the results are shown for flow case 1 and flow case 4, the physiological 
flow wave (flow case 4 :  200 <Re < 800, a = 4, physiological). From this figure it is 
observed that there is a rather fair agreement between the two flow cases with regard 
to secondary flow. The main differences are characterized by the somewhat' higher 
secondary velocities for the physiological flow case a t  t = 0 and 6' = 67.5". From this 
comparison it can be concluded that the influence of the diastolic phase on the flow 
phenomena occurring in the systolic phase is of minor importance. 

5.2.3. Influence of the steady $ow component 
In figure 12 the secondary velocity profiles a t  0 = 45" as functions of time are 

presented for the oscillating flow cases. For a = 7.8 the secondary flow field a t  6' = 

45" resembles a pure Dean-type vortex a t  all time levels. These pure Dean-type 
vortices were also found a t  8 = 22.5" and 67.5" throughout the flow cycle. This is in 
contrast to the pulsating flow case where 'tail '-formation occurs further downstream 
in the curved tube a t  6' = 45", 67.5" and 90". Therefore, for these Reynolds numbers, 
it may be concluded that 'tail'-formation is a consequence of the steady flow 
component rather than of the unsteady one. The secondary flow field for a = 24.7 
shows a central core in which the velocities are directed towards the inner wall, 
whereas the Dean-type secondary vortex is situated near the sidewall. This points to 
a Lyne-type secondary flow field. The secondary velocities for a = 24.7, however, are 
about 50 times lower than the secondary velocities for 01 = 7.8. The oscillations in the 
numerical solution of the secondary flow field for a = 24.7 are probably caused by a 
too coarse clement division in radial direction. 

6. Concluding discussion 

6.1. Summary of the results 
For steady entrance flow in a 90" curved tube (Re = 700, 6 = t )  a shift of the 
maximum of axial velocity towards the outer wall occurs owing to centrifugal forces. 
The observed C-shaped axial isovelocity lines and the axial velocity plateaux near 
the inner bend, downstream in the curved tube, are caused by a Dean-type secondary 
flow field. Downstream in the curved tube 'tail'-formation (deflection of the Dean- 
type secondary vortex towards the sidewall) occurs in the secondary flow field, 
possibly caused by the fact that fluid particles with relative low axial and secondary 
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FIGURE 12. Secondary velocities halfway into the curved tube a t  t = 0. BT, +T, iTfor the oscillating 
flow cases 5 ( a )  and 6 ( b ) .  Urn, stands for the time-averaged mean axial velocity for the pulsating 
flow cases. 

velocities near the centre of the tube are not able to penetrate into the region with 
high axial velocities near the outer wall. 

For a fluid flow with a sinusoidally varying Reynolds number between 200 and 800 
and a Womersley parameter of 7.8 (the reference flow case), great resemblance is 
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found with the steady flow case halfway into the deceleration phase ( t  =a?'). In 
contrast with the steady flow case, near the inner wall reversed axial flow regions are 
found halfway into the deceleration phase ( t  = $T) and a t  minimal flow rate (t  = $T). 
Halfway into the curved tube, at 8 = 45", a reversed axial flow region is also situated 
a t  the centre of the tube a t  minimal flow rate ( t  = $T).  From 0 = 45" towards 8 = 90" 
the axial isovelocity lines show C-shaped contours a t  maximal flow rate ( t  = aT), 
which intensify in the deceleration phase. The secondary flow field is directed from 
the inner wall towards the outer wall near the plane of symmetry and 
circumferentially back near the sidewall of the curved tube, resembling a Dean-type 
secondary flow field. At all positions the highest secondary velocities occur a t  peak 
flow rate, but also halfway into the deceleration phase these velocities are high. As 
for steady flow, in the downstream end of the curved tube the secondary flow field 
shows 'tail'-formation in the deceleration phase, which is best visible a t  t = $T. At 
the entrance of the curved tube the secondary velocities are directed from the outer 
wall towards the inner wall, pointing at  upstream influences of the tube. 

The influence of an increase of the Womersley parameter is mainly observed in the 
secondary flow field. For a = 24.7 the secondary flow field is almost constant in time 
at  both positions 8 = 22.5O and 67.5". A qualitative comparison of the secondary flow 
field with that found for the steady flow ease at a Reynolds number of 700, reveals 
a good agreement. Therefore, it is presumed that secondary flow a t  higher 
frequencies is mainly determined by the steady flow component. A comparison of the 
secondary flow field for the physiological flow pulse (a = 4.0) with the secondary flow 
field for the sinusoidally varying flow rate (a = 7.8) reveals a good resemblance 
between the two flow cases. This supports the idea that the diastolic phase is only of 
minor importance for the systolic phase. Elimination of the steady flow component 
shows that for oscillating flow at a = 7.8 the secondary flow fields at 8 = 22.5O, 45" 
and 67.5' are pure Dean-type vortices with a slightly varying vortex strength. No 
'tail '-formation, as observed for the pulsating flow case, is present in the oscillating 
flow case suggesting that this 'tail'-formation is a consequence of the steady flow 
component rather than of the unsteady one. For oscillating flow a t  a = 24.7 the 
secondary flow field shows a Lyne-type vortex at  8 = 22.5", 45" and 67.5" and the 
secondary velocities are about 50 times lower than those for the pulsating flow case. 

In general a comparison of the axial and secondary velocities determined by the 
numerical model with those obtained from laser-Doppler velocity measurements 
reveals a good agreement. The differences between the measured and calculated axial 
velocities are mainly caused by errors in the adjustment of the correct Reynolds 
number. The differences in the secondary velocities, however, have to be sought in 
the finite dimensions and positioning errors of the measuring volume, causing 
measuring problems near the sidewall of the curved tube. Besides, for the reference 
flow case numerical oscillations occur in the secondary flow field a t  the entrance of 
the curved tube. Thcse oscillations are possibly caused by a too short inlet section or 
a too coarse element division in the axial direction. The observed oscillations in the 
numerical solution for the oscillating flow case a t  a = 24.7 are probably caused by a 
too coarse element division in the axial and radial direction. Nevertheless, it may be 
concluded that the numerical model, as presented in this study, can be used to 
predict axial and secondary entrance flow in a 90" curved tube a t  moderate Reynolds 
numbers and Womersley parameters. 
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FIGURE 13. Axial and secondary flow for flow case 2 at 0 = 67.5' and a t  t = fT and fT 

6.2. Comparison to literature 

A comparison of the results obtained in the present study with those reported in 
literature is difficult, because most studies deal with fully developed flows, which is 
probably only valid for the oscillating flow case a t  a Womersley parameter of 24.7. 
Studies dealing with unsteady entrance flow in curved tubes are mostly performed 
under totally different flow conditions. Nevertheless, a comparison is being made 
with the results of laser-Doppler velocity measurements performed by Talbot & 
Gong (1983). In  their first experimental axial and secondary flow were measured in a 
180' curved tube with a curvature ratio of &. The Dean number varied sinusoidally 
between 80 and 160 (360 <Re  < 720) at a Womersley parameter of 8.0. At all 
positions and time intervals they observed a Dean-type secondary flow field. The 
plots of the profiles of the secondary velocity component parallel to the plane of 
symmetry do not suggest that 'tail '-formation occurred in the secondary flow field, 
as observed in the present study for the reference flow case (flow case 1 : 200 < Re < 
800, a = 7.8). At all time intervals thc maximum of axial velocity shifted towards the 
outer wall. The C-shaped curvatures in the axial velocity contours, however, were 
only slightly in evidence or not present. In their second experiment fluid flow was 
investigated in a curved tube with a curvature ratio of 3 for a sinusoidally varying 
flow rate a t  a = 12.5 (0 < K < 744; 0 < Re < 1970). Especially at peak volume flow 
and halfway into the deceleration phase, complicated secondary flow fields were 
observed a t  8 = 60' and 110' with two regions where secondary flow was directed 
towards the outer wall and two regions where secondary flow was directed towards 
the inner wall. These secondary flow fields are quite similar to the secondary flow field 
which occurs in the present study for the pulsating flow case at a = 15,8  = 67.5' and 
t = aT (flow case 2 : 200 < Re < 800, OL = 15). In the second experiment of Talbot & 
Gong (1983) C-shaped axial velocity contours were observed downstream in the 
curved tube for all time intervals, except just before peak flow rate. The curvature 
of these C-shaped contours, however, was less pronounced as found in the present 
study (see figure 13). Finally, Talbot & Gong (1983) observed large regions with 
reversed axial flow near the inner bend. These regions are clearly due to the zero 
minimal flow rate. 

Chang & Tarbell (1985) simulated the two experiments of Talbot & Gong (1983) 
numerically by a finite difference scheme based on the Navier-Stokes equations 
describing fully developed unsteady flow in curved tubes. As also observed for flow 
case 1 in their first experiment 'tail'-formation was found at  the end of the 
deceleration phase. This 'tail '-formation, however, was absent a t  peak flow rate. 
Also the C-shaped axial velocity contours were less curved as observed for flow case 
1. Probably, these differences are mainly caused by differences in the Dean number 
and the fact that Chang & Tarbell (198.5) are dealing with fully developed flow. 
Comparison of the results for flow case 2 (figure 13) with the second experiment of 
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Chang & Tarbell (1985) reveals a rather good agreement a t  minimal flow rate (highly 
curved C-shaped axial velocity contours, reversal of axial flow near the inner wall, 
nearly 'tail'-formation in the secondary flow field), but a rather poor agreement at 
maximal flow rate. The results a t  maximal flow rate for flow case 2 seem to agree 
better with the results of Chang & Tarbell (1985) halfway into the deceleration phase 
(highly curved axial velocity contours, a complicated secondary flow field with 
several vortices). Probably the rather large difference in the Dean number contributes 
to this discrepancy. 

Munson (1975) visualized for a range of Womersley parameters (0.7 < a < 32) €ully 
developed unsteady flow in a 360" curved tube with a curvature ratio 6 = &. In these 
experiments the secondary velocity component parallel to the plane of symmetry in 
the centre of the tube was measured as function of a. It was found that for values 
of a larger than 13 this secondary velocity component was directed towards the inner 
wall (Lyne-type secondary flow field), whereas for values of a smaller than 13 this 
secondary velocity component was directed towards the outer wall (Dean- type 
secondary flow field). The value of the outward directed component was large, as 
compared to the value of the inward directed component. Munson (1975) defined a 
time-averaged dimensionless quantity of this secondary velocity component, which 
was found to be 0.35 x for a = 7.8 and -0.15 x lop3 for a = 24.7. These values 
arc 1.40 x lop2 and -0.05 x respectively, a t  0 = 45" for the oscillating flow 
cases, as investigated in the present study. It is observed that the value of this 
quantity is indeed much smaller for a = 24.7 than for a = 7.8 and that opposite 
velocity directions are found. The relatively large difference with the value found by 
Munson (1975) for a = 7.8 is probably caused by the fact that fluid flow at 0 = 45" 
was not yet fully developed in our experiment. For both flow cases also the curvature 
ratio 6 = Q is relatively large compared to that of Munson (1975). 

The authors are grateful to ir. F. C. M. van den Brand for his experimental 
assistance and to  the National Fund for Supercomputers (NFS) for providing the 
supercomputer facilities. 

REFERENCES 

BERGER, S. A., TALBOT. L. & YAO, L. S. 1983 Flow in curved pipes. Ann. Rev. Fluid Mech. 15, 

BERTELSEN. A. F. 1975 An experimental investigation of low Reynolds number secondary 
streaming effects associated with an oscillating viscous flow in a curved pipe. J. Fluid Mech. 

BOVENDEERD, P. H. M. ,  STEENHOVEN, A. A. VAN,  VOSSE, F. N. VAN DE & VOSSERS, G. 1987 

CHANDRAN, K.  B. & YEARWOOD, T. L. 1981 Experimental study of physiological pulsatile flow in 

CHANDRAN. K.  R. ,  YEARWOOD, T. L. & WIETING, D. W. 1979 An experimental study of pulsatile 

CHANQ, 1,. ,J. & TARBELL, J .  M. 1985 Kumerical simulation of fully developed sinusoidal and 

C'ROUZIIX, M .  & RAVIART, P. A. 1973 Conforming and nonconforming finite element methods for 

CUVELIER, C. ,  SEGAL, A. & STEENHOVEN, A. A. VAN 1986 Finite Element Methods and Naaier-Stokes 

DEAN, W. R. 1972 Note on the motion of fluid in a curved pipe. Phil. Mag. 4, 208-223. 
DRAIN, L. E. 1981 The Laser Doppler Technique. John Wiley & Sons. 

461-5 12. 

70, 519-527. 

Steady entry flow in a curved pipe. J.  Fluid Mech. 177, 233-246. 

a curved tube. J. Fluid Mech. 111, 59-85. 

flow in a curved tube. J. Biomechanics 12, 793-805. 

pulsatile (physiological) flow in curved tubes. J. Fluid Mech. 161, 17.5198. 

solving the stationary Stokes equations. RAIRO Anal. Num. R3, 33-76. 

Equations. Dordrecht : D. Reidel. 



474 C .  C .  Rindt, A .  A .  van Steenhoven, J .  D. Janssen and G .  Vossers 

HAMAKIOTES, C .  C .  & BERQER, S. A. 1988 Fully developed pulsatile flow in a curved pipe. J .  Fluid 

LIN, J. Y. & TARBELL, J. M. 1980 An experimental and numerical study of periodic flow in a 

LYNE, W. H.  1970 Unsteady viscous flow in a curved pipe. J .  Fluid Mech. 45, 13-31. 
MULLIN, T.  & GREATED. C. A. 1980 Oscillatory flow in curved pipes. Par t  1.  The developing-flow 

MUNSON, B. R.  1975 Experimental results for oscillating flow in a curved pipe. Phys. Fluids 18, 

OLSON, D. E. 1971 Fluid mechanics relevant t o  respiration' flow within curved or elliptical tubes 

PELISSIER, M. 1975 Resolution numkrique de quelques problkmes raides en mecanique des milieux 

PERKTOLD, K., FLORIAN, H.  & HILBERT, D. 1987 Analysis of pulsatile blood flow: a carotid siphon 

RINDT, C .  C. M., VOSSE. F .  K. VAN DE, STEENHOVEN, A. A. VAN, JANSSEN, J. D. & RENEMAN, R.  S. 
1987 A numerical and experimental analysis of the flow field in a two-dimensional model of 

the human carotid artery bifurcation. J .  Riomech. 20, 499-509. 
SEGAL, A. 1984 Sepran User Manual and Programmers Guide. Ingenieurs buro Sepra. 

Leidschendam. 
SINGH, M. P., SINHA. P. C. & AGGARWAI.. M .  1978 Flow in the entrance of the aorta. J .  Fluid Mech. 

SLOAN, S. W. 1986 An algorithm for profile and wavefront reduction of sparse matrices. Intl J .  

SMITH, F .  T. 1975 Pulsatile flow in curved pipes. J .  Fluid Mech. 71, 15-42. 
TALBOT, L. & GONG, K. 0. 1983 Pulsatile entrance flow in a curved pipe. J .  FluidMech. 127, 1-25. 
TEMAM, R. 1977 Navier-Stokes Equations, Theory and Numerical Analysis, 2nd edn. Xorth 

Holland. 
VOSSE, F. S. VAN DE. SEGAL, A.. STEEKHOVEN. A. A. VAN & JANSSEN, J. D. 1986 A finite element 

approximation of the unsteady 2D-XavierStokes equations. Zntl. J .  Numer. Meth. Fluids 6. 
427443. 

VOSSE, F. N. VAN DEN.  STEENHOVEN, A. A. VAN SEQEL, A. & JANSSEN, J. 1). 1989 A finite element 
analysis of the steady laminar entrance flow in a 90' curved tube. Intl. J .  Numer Meth. Fluids 

ZALOSH, R. G. & NELSON. W. 0. 1973 Pulsating flow in a curved tube. J .  Fluid Mech. 59.693-705. 

Mech. 195, 23-55. 

curved tube. J .  Fluid Mech. 100, 623-638. 

case; Par t  2. The fully developed case. J .  Fluid Mech. 98, 383416.  

1607- 1 609. 

and bifurcating systems. P h D  thesis, University of London. 

faiblement compressibles. Estratto da Calcolo 12, 275-314. 

model. J .  Biomed. Engng 9, 4&53. 

87, 97-120. 

Numer. Meth. Engng 23, 239-251. 

9, 275-287. 


