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UNIFORM ASYMPTOTIC THEORY OF DIFFRACTION BY A
PLANE SCREEN*

D. S. AHLUWALIAf, R. M. LEWIS} anp J. BOERSMA}

1. Introduction. The study of diffraction phenomena requires the solu-
tion of an appropriate boundary value problem for the reduced wave equa-
tion or Maxwell’s equations. With few exceptions these problems cannot
be solved exactly. Often useful approximate solutions are given by geo-
metrical optics, but these solutions fail to account for diffraction, i.e., the
existence of nonzero fields in the shadow regions. It is now known that
geometrical optics yields the leading term of a high-frequency asymptotic
expansion of the solution of the boundary value problem, and that higher
order terms account for diffraction. Keller’s “geometrical theory of dif-
fraction” [3] provides a systematic means of computing such terms.

Keller’s theory has not only been of great practical value but has formed
the foundation for important further developments in the asymptotic
theory of diffraction. Many of these developments have been motivated
by the attempt to overcome some of the defects of the geometrical theory
of diffraction. These defects, such as the singularities at caustics and shadow
boundaries, are listed at the end of §3.

In a recent paper [4] Lewis and Boersma presented a method of obtaining
2 “‘uniform” asymptotic solution of problems involving diffraction by thin
screens. That work was largely motivated by an earlier paper of Wolfe
[8], who treated special cases involving plane and spherical waves incident
on a plane screen, by a somewhat different method. More recently Boersma,
and Kersten [1] have extended the method of [4] to the electromagnetic
case, and Wolfe [9] has introduced a new method for the scalar problem
based on the representation of the solution as an integral over the aperture.

In several respects the work of Lewis and Boersma [4] is incomplete.
Only the first two terms of the asymptotic expansion were actually ob-
tained, and it was conjectured that all terms could be obtained by the
same method. However the calculations were prohibitively complex. It was
also conjectured that all terms would be regular at the shadow boundaries,
but this was proved only for the leading term. In this paper we complete
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the work of [4] for the special case of screens which are portions of planes.
We begin with the same Ansatz introduced in [4], but our treatment of the
Ansatz is significantly simpler. This enables us to obtain all terms of the
expansion and to prove the conjectures. Except for one reference to a re-
sult obtained in [4] our work here is essentially self-contained.

In §2 we formulate the boundary value problem, and in §3 we briefly
summarize Keller’s solution. In §4 we reduce the boundary value problem
to the determination of a certain double-valued function. This device,
which was first introduced by Sommerfeld [6], simplifies the remaining
work. In §5 we introduce our Ansatz and derive the consequences of in-
serting it into the reduced wave equation. There we state two theorems
which assert the existence of the integrals that define the terms of the ex-
pansion and the regularity of the solution. These theorems are proved in
Appendix 2. In §6 we present alternate forms of the solution, and in §7
we compare our results with Keller’s theory. There we obtain all terms of
the expansion of the ‘“diffracted wave”. Keller’s theory yields only the
leading term and involves a “diffraction coefficient” D. We find that our
leading term agrees with Keller’s and all the terms can be described simply
in terms of successive diffraction coefficients Dy = D, Dy, D,, --- . Ex-
plicit formulas for the coefficients D, are given. Appendix 1 contains a
brief summary of a basic method for obtaining asymptotic solutions of
the reduced wave equation.

2. Formulation of the problem. We consider problems of diffraction by a
sereen S which lies in the plane z; = 0. The screen may have one or more
apertures of arbitrary shape or may consist of a collection of disjoint
regions of arbitrary shape. The complications of the geometry of the screen
will not concern us because our considerations will be local. We shall con-
struct the diffracted field in a certain neighborhood' N of the edge of a
typical portion of the screen and shall ignore contributions from other
portions of the screen as well as those due to interactions between portions
of the screen. Such contributions will be considered in a later paper. We
shall require that the edge curve x = xo(n) be regular, i.e., have derivative
of all orders.” The parameter n denotes arc length along the edge.

An incident field uo(x) which is a solution of the reduced wave equation

1 The neighborhood N extends up to the first caustic point along each ¢“diffracted
ray’’ emanating from the edge (see §5).

2 This requirement can be weakened. We shall construct our asymptotic solution
to all orders and show that the functions in every term are regular. However it can
be shown that the construction can be carried out to any given finite order and the
terms will have any specified number of derivatives if the edge function xXo(y) has
sufficiently many derivatives. In fact the required order of differentiability of x¢(n)
might be determined exactly.
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(2.1) is prescribed. The total field u(x) must then satisfy the following
conditions:

(2.1) Au + k'u = 0;

(2.2a) =0 on

or

(2.2b) du/dxzs = 0 on S;

(2.3) u has a finite limit at the edge;
(2.4) u — u 1is outgoing from 8.

Thus we are in fact simultaneously considering two problems correspond-
ing to the two boundary conditions (2.2a) and (2.2b). Condition (2.4) is
a form of the “radiation condition” which is more convenient for our
asymptotic method. The definition of the condition is given in Appendix
1. The “edge condition” (2.3) is an essential part of the problem. It is
well known that without it the solution is not unique.

We assume that the incident field has an asymptotic expansion of the
form

(2.5) Uo ~ €5 D (1h) "2m(X), k— o,
m=0

Then (see Appendix 1) the phase function s(x) satisfies the eiconal equa-

tion

(2.6) (Vs)’ =1,

and the amplitude functions z,,(x) satisly the recursive system of transport
equations

(2.7) 2Vs V2, + 2nAs = —A2py, m=0,1,2,--+, z24=0,
The solutions of these equations are discussed in Appendix 1.

3. Keller’s asymptotic solution. According to Keller’s geometrical theory
of diffraction [3], the asymptotic solution of our diffraction problem is
given by

(3.1) U~ u; + u + 4,

where

(3.2) (L1, Ta, T3) = 6; Uo(xy, X2, T3),
(3.3) Up(Ty , To, T3) = TFO, U(T1, T2, —s),
and

(3.4) 4 = k%O S (ik) ", (x).
m=0



786 D. 8. AHLUWALIA, R. M. LEWIS AND J. BOERSMA

The factor §; is one in the illuminated region of the incident wave and
zero in the (complementary) shadow region. We assume that this wave is
incident from the region z; < 0. Then the illuminated region includes the
region 3 < 0 and that portion of the region x; > 0 reached by incident
rays. Similarly 8, is one in the illuminated region of the reflected wave
(the region reached by the reflected rays of geometrical optics) and zero
in the corresponding shadow region. The upper sign in (3.3) corresponds
to the boundary condition (2.2a) and the lower sign to (2.2b). From (3.1)
we see that, in addition to the incident and reflected waves, there is a
“diffracted wave” 4 given by (3.4). In order to describe this function we
must first discuss the two-parameter family of ‘“‘diffracted rays”. These
rays emanate from the edge. The diffracted rays through a point xo(4) of
the edge generate a cone of semiangle 8 = 8(5) with vertex at xo(5) and
axis tangent to the edge. Thus, for each fixed 5, ¢, a diffracted ray is given
by

(3'5) X = X(a’, m d’) = Xo(’?) + O'U(ﬂa ¢))

where U is the unit vector
(3.6) U=cosfBti+sinBcospt, —sinBsingty;, -7 =¢=m.

Here t; = %o(n) = dxo/dn is the unit tangent vector to the edge; t2(y) is
the unit vector orthogonal to the edge, in the plane of the screen, pointing
away from the screen; and t; is a unit vector in the direction of the negative
zs-axis. These vectors are illustrated in Fig. 1. The positive direction of 7
along the edge is so chosen that t; = t; X t;. In (6), 8(n) is the angle
between the incident ray and the tangent to the edge at the point Xo(7n).
Thus, since Vs is the unit vector in the direction of the incident ray, cos 8
= Vs-t; . In fact

(3.7) Vs = cos Bt; — sin B cos ¢pt, — sin B sin ¢o t3 .

This equation merely determines the angle ¢o(7n). (See Fig. 1.)
If n denotes the unit normal to the edge, then t, = =n, and the upper
or lower sign holds when the screen is locally concave or convex. In either

case the curvature is given by xo = n -t, = |«|, where x = —t,-{, = Fxo
is the “signed curvature.” Sincet; = wwnand n = —kot;, it follows that
(3.8) 'i:l = ""Ktz, tz = Ktl 5 1'.'3 = 0.

Equation (3.5) defines a transformation from “ray coordinates” o,
7, ¢ to Cartesian coordinates x; , » , 3 . The Jacobian

- i‘)(wl,xg,xg) _0x 9x _, 0x

(8:9) o B~ 0 o1 < 3
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SCREEN

F1a. 1. Angles and vectors at an edge of the screen. The vectors ty , t2 , t3 , A, and B
are of unit length: t, is tangent to the edge of the screen and points out of the plane of
the figure, ts lies in the plane of the screen and points away from the screen, and ts points

in the direction of the negative xs-axis. The projections of incident and difiracted rays
into the plane of the figure are shown. ¢ = w — ¢y — ¢ s the angle between these pro-

Jjections. The incident wave propagates to the right,t.e.,0 < ¢o < .

can be obtained from (3.5), (3.6) and (3.8). A brief calculation yields
(3.10)

j= sin2ﬁ~a<1+5),
P
where
_ _ sng
(3.11) = coos § — B

In order to complete the desecription of Keller’s solution (3.1) we must
specify the functions that appear in (3.4). Along the diffracted ray (3.5),
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$(x) is given by
(3.12) § = s[xo(n)] + o,

where s is the phase function of the incident wave (2.5). The functions 2,
are given recursively along the diffracted rays (see (A1.14) of Appendix 1)
by

y@) 2% ylo)

(1+)

The finite part integral% in (3.13) is defined in Appendix 1. Keller’s

(3.13)  %u(0) = dn(n, ¢) _ 1 [7y(o') Abma(d’) dd’, m=0,1,2, -,

where
- 11/2

(3.14) y =L
sin B

1/2

method yields 8,(n, ¢) only for m = 0, hence only the leading term %, of
(3.4). It is given by
I (1 -+ E)
P

where D is Keller’s ‘““diffraction coefficient”,

—1/2

(3.15) 30 = Dz [%0(n)]

eir/4

T 24/27 sin B
The upper or lower sign holds for the boundary condition (2.2a) or (2.2b).
Since § increases with distance from the edge along the diffracted rays, the
last term in (3.1) is clearly outgoing from S. The reflected wave u, is also
clearly outgoing. Then, since u; — uy = (1 — 8;)Uo is nonzero only in the
shadow region of the incident wave, we see that (3.1) satisfies the outgoing
condition (2.4).

Keller’s solution has been very useful and yields excellent agreement
with experimental results. It also agrees perfectly with the asymptotic
expansion of the few exact solutions that are known. However it suffers
from the following defects:

(a) As can be seen from (3.2) and (3.3), u; is discontinuous across the
shadow boundary of the incident wave (the surface that separates the
illuminated and shadow regions). Similarly u, is discontinuous across the
shadow boundary of the reflected wave.

(b) The diffracted wave % becomes infinite at both shadow boundaries,
where ¢ = © — ¢pand ¢ = —m 4+ ¢o, because the diffraction coefficient
(3.16) becomes infinite there.

(3.16) D= [sec (¢ + o) == sec 1(¢ + ¢o)l.
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(¢) From (3.15) we see that the diffracted wave becomes infinite at
the edge where ¢ = 0; thus the edge condition is violated.

(d) The higher order terms %2,, m = 1, 2, ..., in (3.4) cannot be
determined.

(e) The value (3.16) of the diffraction coefficient does not arise as an
integral part of Keller’s method; rather it is obtained by comparison with
the asymptotic expansion of the exact solution of a “canonical problem,”
the problem of diffraction of a plane wave by a half-plane.

(f) The solution becomes infinite at the caustic ¢ = — p of the diffracted
wave (see (3.15)) as well as at any caustics of the incident and reflected
waves.

(g) A rigorous proof of the asymptotic nature of the formal solution
has not been given.

Buchal and Keller [2] have overcome defects (a)—(e) by boundary layer
methods. However these methods yield separate expansions in various
regions and require relatively complicated computations. In the succeeding
sections we shall obtain, by relatively simple means, a single (uniform)
asymptotic expansion which is free of defects (a)-(e). However (f) and
(g) remain. Our expansion is the same as that obtained by a more compli-
cated method in [4]. The present method enables us to prove the con-
jectures made in [4].

4. The double-valued solution. The solution of our diffraction problem is
facilitated by the introduction of a double-valued solution of the reduced
wave equation. A similar device was used by Sommerfeld [6] for the solu-
tion of the half-plane diffraction problem. We shall attempt to construct
a function U of the ray coordinates o, 5, ¢ which satisfies the conditions
(corresponding to (2.1)-(2.3))

(4.1) AU 4 KU =0 for ¢ >0,

(4‘2) U(O‘, ¢ + 41!‘) = U(‘77 m ¢)y

(4.3) ﬁr{)l U(o, 9, ) = Uo(n) exists and is finite for all 5.

From the transformation (3.5), (3.6) we see that the periodicity condition

(4.2) makes U a double-valued function of x. We now define a single-
valued function u(x) by setting

(44) u="U(o,n,¢) FU(,n2r—¢), —-1=é¢=m;

and we observe that if (4.1)-(4.3) are satisfied, then u satisfies the con-
ditions (2.1)-(2.3) of the diffraction problem. (Condition (2.4) will be
verified later.) In fact, conditions (2.1) and (2.3) are clearly satisfied
and it remains to verify the boundary conditions (2.2). From (3.5) and
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(3.6) we see that on 8, i.e., for ¢ = =*£m,

(45) %=g§- =—asin65i—3.

We assume that 0 < 8 < 7. Hence (2.2a) and (2.2b) are equivalent to
(4.6a) u(kw) = 0,

(4.6b) ug(kw) = 0.

Using the upper sign in (4.4) for the boundary condition (4.6a) we see from
(4.2) that

4.7) w(x) = U(xr) — U(x) =0, u(—w) = U(—=x) — U@Bx) = 0.

Similarly for the other boundary condition us(¢) = Us(¢p) — Us(2r — ¢)

and
(458) us(x) = Us(m) = Us(r) =0,
u¢(’—7r) = U¢(—1|') — U¢(37l’) = Q.

Thus the boundary condition is verified in both cases.

6. The uniform asymptotic solution. We shall construct the function
U (asymptotically) in a neighborhood N of the edge defined as follows:

N = {x=x0(9) + 0,0 £ ¢ < o1},

where ¢ = o1 is the smallest positive value of ¢ such that x = %y 4+ «,U is
a caustic point of the incident or diffracted wave. Thus that segment of
each diffracted ray (3.5), beginning at the edge and terminating at the
nearest caustic point, lies in N. We shall also refer later to the neighborhood

No={x=x(n) + dU,0 < ¢ < a1},

from which the edge itself has been deleted.
In order to find the function U we introduce the Ansatz’

U ~ l:f(kmo) Eo (k)™ 2m 4 ck? Zo (k)™ vm:l

(5.1)

k— o,
where
(5:2) f(x@) = —ice™ f e dt, e

3 This form was suggested by the study of the exact solution of the half-plane
diffraction problem (see [4]).
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and
(5.3) 6 =5§—s.

The functions s and z,, are the phase and amplitude functions of the in-
cident wave (2.5), and § is the phase function of Keller’s diffracted wave.
It is given by (3.12). The functions v,, are to be determined. It is easy to
show that § — s = 0in N (see [4, Section 2, Lemma 1]). Hence 8 is real
and double-valued in N. We note that if we set

(5.4) =7 — ¢ — ¢o
then (see Fig. 1) sin (§/2) = cos ((¢ + ¢0)/2) vanishes at the shadow
boundary, where { = 2nmr, n = 0, &1, 2, - - . . Furthermore the incident

and diffracted rays coincide on the shadow boundary, and hence § = s there.
It follows that 6 vanishes on the shadow boundary, and we may choose

(55) sgn 6 = sgn (sin g) = sgn cos ¢ _g Ly

Then 6 satisfies the periodicity condition (4.2). In fact the first term in (5.1)
satisfies the same condition. This follows from the fact that § and 2, are
single-valued functions of x, hence have period 27 (therefore 4w) in ¢.
Later we shall verify that the second term in (5.1) also satisfies (4.2).
First however we insert (5.1) into the reduced wave equation, using

(5.6) f(x) = —ic — 2af(x)

to eliminate derivatives of f. The calculation is simplified if we set
(5.7) g = e™f(k"0), b = k%™

and

(5.8) U = (ik) ™"[gzm + hvn).

Here we sum over all integer values of the repeated index m, and it is
understood that 2, and v, vanish identically for m = —1, —2, --. . In
computing derivatives of U we note that

(5.9) 2L — i <%s g - h), 2w

Then it is easy to show that (4.1) is satisfied, provided

(5.10) (V) =1,

(5.11) V6-(Vs + V§) =0

and

(5.12) 2V8- Vo, + v = —Avpy + Gu
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where
(5.13) m = 2V0-Vz,, + 2.A0.

In verifying (4.1) we also made use of (2.6) and (2.7).

Now (5.10) is just the eiconal equation for § and is clearly satisfied by
(3.12). Furthermore (5.11) is satisfied because, from (5.3), 20 V8 = V§
— Vs, and
20 VO- (Vs + V8) = (V8§ — Vs)- (V8 + Vs)

= (V8§ — (V) =1 —-1=0.
Thus we are left with (5.12) which we shall use to determine the functions
U . We first transform (5.12) by using the identity

(5.14)

—1dy _ i

do’ y sin 8’

(5.15) AS = —d-log 71 =2y
do

which follows from (A1.9). Here, since § is the phase function of the dif-
fracted wave, j is the Jacobian of the transformation defined by the dif-
fracted rays. It is given by (3.10). Now, since V§-Vv,, = dv,/do, (5.12)
becomes

(5.16) 2 (yon) = % (A0t + ga).
do 2

From (4.3) we see that v,, must be finite at ¢ = 0, and from (3.10) and

(5.15) we see that y vanishes at ¢ = 0. Therefore integration of (5.16)

yields

1 ’ ’
(5.17) () = 525 fo Y(—Bps + ) do’s M= 0,1,2,-+-,

provided the integral exists. In (5.17) the dependence on the ray coordi-
nates n and ¢ is not explicitly indicated.

In Appendix 2 we shall prove the following theorems. (The definitions
of o1 and N, are given at the beginning of this section.)

TueoreEM 1. For every m = 0, 1, 2, - -+ | the integral (5.17) exists for 0
2o < oand

lim v, (o) = 0.
o0

TueoreM 2. U s a regular function of x in Ny and it satisfies (4.3).
Since (4.1) is satisfied by construction and Theorem 2 establishes the
validity of (4.3), it remains to verify (4.2). We have already seen that
0(¢ + 47) = 0(¢); therefore to verify (4.2) we need show only that
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Vu(¢ + 47) = v,(¢). This can be proved by induction on m beginning
with m = —1. (v_; clearly satisfies the periodicity condition since it vanishes
identically.) Since 2, is a single-valued function of x, it is 2#-periodic in
¢; hence it follows from (5.13) that ¢.(¢ + 4x) = gu(¢). If now we
make the induction assumption v,_1(¢ + 47) = v,,_1(¢) we see from (5.17)
that v,(¢ + 47) = v.(9).

According to (4.4) our uniform asymptotic solution of the diffraction
problem (2.1)-(2.4) is now given by
(5'18) u(x) = U(O’, m ¢) -+ U(G’, m 27 — ¢)’ -7 = [ é Ty
where U(o, 3, ¢) is given by (5.1), (5.2), (5.3), (5.5), (5.15), (5.17)
and (5.13). The present solution (5.18) satisfies the conditions (2.1)-(2.3).
It only remains to be verified that the outgoing condition (2.4) is satis-
fied. For that purpose we shall show that away from the shadow boundaries
and from the edge the solution (5.18) reduces to (3.1). At the same time
we shall verify Keller’s theory and obtain the higher order terms in the
expansions (3.4). We begin with the asymptotic expansion of f(z), which
can be obtained from (5.2) by integration by parts:

(5.19) f@) ~ e n(a) — e N (D) w o ke
Here

(520) (3)o=1, Ba=33+1 ---G+n—-1), n=123, .-,

and no(2) is the unit step function. Thus o(z) = 1forxz > 0 and 5o(z) = 0
for x < 0. Except near the shadow boundary and the edge, where § = 0,
k%6 is large, and we may use (5.19) in (5.1). This yields

(5.21) U~ [cos ¢ + o ] u 4+ ke s Z (k)™
where 4, is the incident field, given by (2.5), and

(5.22) O = cliv %Zi: ( ) ot zm_n] .

In the interval —x < ¢ < 7, 70 [cos ((¢ + ¢0)/2)] is nonzero only for —=
< ¢ < ™ — ¢, which (see Fig. 1) coincides with the illuminated region
of the incident wave. Similarly, in the same interval,

v [cos 21:%1@] _ ,,o[ﬁcos ?:éi’]

is nonzero only for —r < ¢ < —= -+ ¢, which coincides with the illumi-
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nated region of the reflected wave. Therefore
Mo [cos '#’:l = 0;,

no[cos%—:é——M]= oy —wT=¢=m

Thus away from the shadow boundaries and from the edge we see
from (5.21) and (5.23) that (5.18) reduces to the (nonuniform) asymptotic
solution (3.1)-(3.4), where

(5'24) 2m(x) = ﬁm("'; M, ¢’) -+ 0m(”7 m 2r — ¢’)7 —rT=¢=m,

(5.23)

and 9, is given by (5.22). Hence the outgoing condition is satisfied.

6. Alternate forms of the uniform expansion. We first obtain a useful
alternate expression for ¢, which is given by (5.13). From (5.3) we see
that

1o _A$—As 1 —V§-Vs
(6.1) Vo= 5 (V8 — Vs), Af= 5 Tt
Hence
_ (V8 — Vs)-Van | 1 <A§ —As 11— V§~Vs)
(62) g = T g g, (22 ).
But
d (1 1 s 1 —VsVs

Thus, from (5.15) and (6.3),

1 d (Y2m) _ #n A8 | V2,-VE§ 1 — Vs-V§
(6.4) Y % (-—0—*) = ’"'2"’0“‘ -+ ) Zm ( 268 ) .

Now from (6.2), (6.4) and (2.7) we see that

AZm—~1 —1 d Ym
% TV 4 <7)>

If we insert (6.5) in (5.17), we obtain

(65) gm =

_1 ’ _ Azy ’ 1 [yzm |
(6'6) Um = 2y o yl: Avm—l"" 29 :Ido’ + 5&[—5—]0.

By expanding 6 and y for small ¢ (see (7.19) and (7.20)) we find that

. 0__ 1/2 . g .
(6.7) 1%1?;—2 sm2sm,8.
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Hence
1 Azm—l zm[xo ( n ) ]
(68) on =35 y[ At + ]d R T XY
For m = 0, (6.8) becomes
_ % zol%o(n)]

(69) % =% T 5y sin (¢/2)smp
In the important special case of an incident plane wave, 2o = 1 and 2z, = 0
form =1, 2, ... . Then (6.8) simplifies to

-1 f ’ ' -192-
(6.10) U = % YAy do m= 1,2,

7. The nonuniform expansion. In §5 we obtained the nonuniform ex-
pansion (5.21), (5.22) for U valid away from the shadow boundaries and
from the edge. Using the results of Appendix 1 we shall now derive a
simple recursive formula for the coefficients 9, . According to (Al.14),
(A1.15), 9,,(c) can be represented by

A —
(7-1) f)m(o') y( ) 2y(a)f: yAf)m_1 dO', m = 0 1 2 cey, Vg =0,
where
(7.2) Am = I;y(a)ﬁm(a).

Here, y = |7 |"*/sin 8 is given by (3.10). Using (5.22), the initial value
Am can be expressed in terms of the known coefficients v, and 2., viz.,

. . 1 - }_ —2n—1
(7.3) A = C Er; Yy [vm 5 n=0<2> 0 zm_,,:l .

Since v, — 0 (Theorem 1) and y — 0 as ¢ — 0, the finite part (7.3) re-
duces to

@8 =S (2) 7 e = X Dt

2 >0 n=0

Here the D, = D.(¢) are linear operators defined by
__cf1 —2n—1
(7.5) Dp 2 = 5 (2)” ﬁg (6 yz).

For example, from (6.7),

- _ Yy, _ cz(%o)
(76) Doz = 2 Pﬁ?é “= 23/2gin Bsin (¢/2)
: eiml4 é + o

Tavaremp® .
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Thus D, is a multiplication operator. However, for n > 0, D, is a differ-
ential operator, as we shall see shortly.
If we now insert (7.1) into (5.24), we see that

L Y VY

(7.7) om = y 2y A yAzm—l do 9

where

(7.8) dm = An(9) F Mn(21 — ¢) = Z_‘,OD,.z,,,-,..

Here the diffraction coefficienis D, are linear operators defined by (7.5) and
(7.9) D, = Du(¢) F Du(2r — ¢), - = ¢ =
Thus from (7.6),

(7.10) Dozo = Dzo(x0),

where D is Keller’s diffraction coefficient (3.16), and

(7.11) 20 = Dao(z0)y

We note that (7.7) and (7.11) agree exactly with (3.13) and (3.15). Thus
we have verified Keller’s theory.

The higher order terms in the expansion of the diffracted wave cannot
be obtained by Keller’s method. Here we see that they are given recursively
by (7.7), (7.8), (7.9) and (7.5). In conclusion we may state that the
uniform asymptotic solution as derived in §4 and §5 is not only of great
value in itself, but it is also fundamental for the completion of Keller’s
nonuniform asymptotic solution. The initial value é,, in (3.13) and (7.7),
which was unknown until now (except for m = 0), is directly obtained
from the uniform asymptotic solution.

To illustrate the application of this nonuniform asymptotic solution,
we complete the correction term 2; . This requires the evaluation of

(7.12) Dz = -—% fin 67 ya.

o->0

To evaluate the finite part we expand 0, y, and z for small o. First we see
from (3.5) and (3.6) that

(7.13) 2 = 2(X) + oU-Vz(x) + O(d*)
and

(7.14) s = s(x0) + oU-Vs(xe) + ba* + 0(d°).
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Here
(7.15) b=.;. z a s - (%) U U,

(716) U = (U, U2 , U3) = (cos B, sin B cos ¢, — sin B sin ¢),

and the y; are Cartesian coordinates corresponding to the base vectors t;,
7 = 1,2, 3. From (3.7) we see that

(7.17) U-Vs(%) = cos’ 8 — sin” B cos (¢ + ¢o) = cos’ B + sin® B cos {.
Since § = s(x0) + o, and 1 — cos ¢ = sin® (¢/2),

e — 284 _ _ﬁ_ﬁg‘_____ 2
(7.18) § — s = 20 sin’Bsin 5 I:l Sein?B sE (/2) + 0(o ):I.
Now, (5.3) and (5.5) yield
~3 __ —3/2 . . §‘ -3 3 b 2
(7-19) 0 = (20’) (Sln len <—2‘> [1 + 4: m + 0(0’ ):|

Furthermore (3.10) yields
_lJlm_ 1/2[ 4 2]
(7.20) Yy = o B 14 5 + 0(s%) |.
We now form the product of (7.13), (7.19) and (7.20). Then we delete
the singular terms (negative powers of ¢) and then let o —> 0. This yields
fing-o 6 yz, and (7.12) becomes

Dz = —27" ¢(sin B sin (¢/2))7"

(7.21) 1 3b
[(‘z‘; * zs'ﬁmm?@z)) #x) + U"”("")]‘

Here { = v — ¢ — ¢, b is given by (7.15) and U is given by (3.6). The
last term in (7.21) illustrates the fact that the D; are in general differ-
ential operators.

We shall not complete the evaluation of 2; in general, because the in-
tegral in (7.7) for m = 1 cannot be explicitly evaluated in general. How-
ever there are two important special cases which can be evaluated. We
consider first the case in which ¢ = 0 (grazing incidence toward the sereen:
see Fig. 1) and the second boundary condition (2.2b) holds. In this case
we see from (3.16) that the diffraction coefficient Dy = D vanishes. Then
% = 0 and it is especially important to evaluate 2; because it now provides
the leading term in (3.4). From (7.7), (7.8) and (7.9) we see that

(722) & = D;Jz", Di=Di(¢) + Du(2r — ¢), —-rSéSn
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Here Dz = Dy(¢)z is given by (7.21) with ¢y = 0, ¢ = = — ¢, and sin ({/2)
= cos (¢/2). Since cos ((2r — ¢)/2) = —cos (¢/2) and p(2r — ¢) = p(¢)
(see (3.11)), the first term in (7.21) contributes nothing to the sum in
(7.22). Furthermore, since the incident rays are tangent to the screen,
ds/dys = 0 on S and 9°s(x0)/dy:dys = 0,7 = 1, 2, 3. It follows from (7.15)
and (7.16) that b(2r — ¢) = b(¢); hence the second term in (7.21) also
does not contribute. Now from (3.6) we see that

U(¢)-Vz — U(2r — ¢)-Vz = —2sin B sin ¢ Va3

(7.23) . . 9z
= ZSmﬁsqu%;.
It follows that
—ptmd 0.
(7.24) D,z = oo 20 (%0);

4+/27 sin® B cos® (¢/2) 9%

and if we insert (7.22) and (7.24) into (3.4) we obtain, for the leading
term of the diffracted wave,

. —1/2
(7.25) 0~ %% | o (1 + 5) p & (x0),
P X
where
‘ , _ __—eisin (¢/2)
(7.26) D= 24/2x sin’ B cos” (¢/2)"

This result was also obtained by Keller by expanding the exact solution of a
special diffraction problem. It is easily seen that (7.25) and (7.26) agree
exactly with (12) of [3]. (We must first correct an error in the last part of
(12) which has the wrong sign. Then the results agree because ¢ = 6
— x/2.)

The second special case occurs when ¢y = = (grazing incidence from the
screen: see Fig. 1) and the first boundary condition (2.2a) holds. In this
case we see from (3.16) that the diffraction coefficient Dy = D again
vanishes. Again 2, = 0 and 2, provides the leading term in (3.4). Now (7.7),
(7.8) and (7.9) yield

(127) o= 13;_’2", Dy = Du(¢) — Du(2r — 6),  —1 <

IA

.

Here D1z = Dy(¢)z is given by (7.21) with ¢ = m, { = —¢ and sin (¢/2)
= —sin (¢/2). Since sin ((2r — ¢)/2) = sin (¢/2) and p(27 — ¢) = p(¢), the
first term in (7.21) contributes nothing to the sum in (7.22). Since again
b(2r — ¢) = b(¢), the second term in (7.21) also does not contribute. It
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then follows from (7.23) that

ei"lt sin ¢ 920
(7.28) Dy = 44/27 sin® B sin® (¢/2) dzs (x0).
The leading term of the diffracted wave is now given by (7.25), with
;o e~ cos (¢/2)
(7.29) D= 24/2r sin’ B sin® (¢/2)°
This result was also obtained by Keller. (If we set 6 = ¢ + #/2,n = 2,
and correct some errors in (19) of [3], it then agrees with (29).)

Appendix 1. Asymptotic solutions of the reduced wave equation. We
consider solutions u(x) of

(Al1.1) Au + Ky =0

which have an asymptotic expansion of the form
(A1.2) u~ e (1) "em(x), k— .
m=0

By formally substituting (A1.2) into (Al.1) we find that (Al.1) is satis-
fied if

(A1.3) (vs)® =1,
and

(A1.4) 2Vs  Vem + 2mls = —Az,y, m=0,1,2,-.-, 2,=0.

The solutions of (A1.3) and (Al.4) may be described conveniently by
introducing a two-parameter family of straight lines (rays)

(A1.5) X = X(a, ag, 0-3)

which are orthogonal to a level surface (wave front) s(x) = s of s. The
labeling parameters o , o3 are fixed on a ray and ¢ denotes arc length along
the ray from the given wave front in the direction of increasing s. Then we
see from (A1.3) that

(A1.6) six(o, o2, 03)] = 80 + 0.

This provides the solution of (A1.3). It is easily seen that the rays are
orthogonal to every wave front s = const.

An asymptotic solution of (A1.1) of the form (A1.2) is said to be out-
going from a manifold M if all of the rays of the family associated with the
solution emanate from M and on each ray, in a neighborhood of M, the
phase function s increases with distance from A along the ray.
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For cach m, (Al.4) is an ordinary differential equation along a ray be-
cause Vs:Ve, = dzm/do. This equation can be conveniently solved by
introducing the Jacobian of the “ray transformation” x = x(o, 03, 03),

(A1.7) = det ((")x,) Z 6:17, 0:1:, o1 = 0.
y=1 60‘, 60,

Here we have used the expansion of the determinant in terms of cofactors of
the 7th row, 7 = 1, 2 or 3. Since the determinant vanishes if two rows are
identical, we have

(ALS) > & cof 57 = jbu,
y=1 acr,,
where 8;;, is the Kronecker symbol. It follows that
dji 8 _ 8’z ox; d (ax.) [axk ax,]
do do1 %53 90, 901 cof dos, &% 9z, \da1/ | de, cof day
(A1.9) s ix
i
—Jzan(aa,) = jV- 7 = jV-Vs = jAs.

Thus, from (Al.4),
|1/2

4 (17 "%m) = |5 [dzm + & dj] = lil [2Vs V2, + 2n48]
do de " % do
(A1.10) '|1’2

_ __IJ
2

By integration (along rays) we obtain the recursive formulas for the 2,’s:

1/2 1 1/2
L
7
m=01,2, -

(AL.11) (o)
Here we have not indicated the dependence of all quantities on o, and o3 .}
In general we can of course take oo = 0in (A1.11). However if j(0) = 0,
the point ¢ = 0is called a caustic point and it can be shown that the integral
in (A1.11) would then diverge at the lower endpoint ¢ = 0. To avoid this
difficulty we introduce a finite part integral defined as follows:
TFor ¢ = 0 let f(e¢) have an asymptotic expansion in powers (perhaps
fractional) of € as ¢ — 0. Left fw(e) denote the singular terms (negative
powers of €) of this expansion. We define the finite part of f(€) as e — 0 by

(A1.12) fin f(e) = lim [f(e) — fa(e)l.

AZm_], .

Azpy(a’) da',

4 The present method of solution of the equations (Al.4) is different from the
method used in [5] and elsewhere. The latter method led to a solution containing the
expansion ratio da(eso)/da(s), where da stands for the cross-sectional area of a tube
of rays. The solutions are equivalent because j(s0)/j(¢) = da(oo)/da(c).
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a

Now if j g(x)dz is divergent or convergent at x = 0, we define the finite
0

part of the integral as

(A1.13) ﬁa g(z) dzx = ﬁrz :F g(z) dx.

If o = 0is a caustic point, the solution (A1.11) is meaningful for oo > 0.
Let us now take the finite part of (A1.11) as ocp — 0. Then

1/2
(Al-]4) Zm(a) = “I“j‘(“f'%t“l‘iﬂ f ]‘7((0.) Azm..]_(a'/) (ZO',, m = 0, 1, 2, ey
where
(A1.15) tm = En(or, 00) = fin | j(ov) ["2n(au).

The initial value ¢, may be chosen to meet the boundary conditions of the
problem for (Al.1). For m = 0 the integral term in (Al.14) is missing. If
o = 01is not a caustic point, the integral in (A1.14) is an ordinary integral
and the finite part of (A1.15) reduces to an ordinary limit, so

(A1.16) $m = IJ(O) Illzzm(())'
It is then clear that (A1.14) reduces to (Al.11) with o, replaced by zero.

Appendix 2. Proofs of theorems. In this Appendix we shall prove
Theorems 1 and 2 which are stated in §5. In the body of the paper we made
heavy use of the “ray coordinates” o, 5, ¢ defined by the transformation

(A2.1) X = Xo(n) + oU(n, ¢),

where U is a unit vector in the direction of the diffracted ray. Thus U is
given by (3.6) or, in terms of the unit vectors t; , A, B (illustrated in Fig. 1),
by

(A22) U=cosfti+sinBcos{A+sinBsin{B, { =7 —¢— .

Here it is convenient to introduce a new set of coordinates #;, 72, 73 de-
fined by

(A2.3) mn =1, n = (20)"sin(s/2), 3 = (20)1/2 cos(§/2).
Thus

(A24) 20 = 1" + ng, 20 cos¢ = 15 — noy osin§ = s,
and, from (Al.1) and (Al.2),

(A25)  x =X+ (1’ + n5’) cos B t1 + 3(ms" — #2") sinB A + myms sin B B.
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Here %o and the orthogonal unit vectors t; , A, B are functions of 4 = 1,
and (A2.5) defines a transformation x = x(91, 72, 73). This transforma-
tion maps the n-space on the doubly-sheeted x-space. Two points (91, 9.,
=+17;) have the same image in x-space.

In order to compute the gradient and Laplacian operators in the new co-
ordinates we first note that

(A2.6) A = —cos ¢got: — sin ¢o ts, B =singot; — cos ¢ots;
hence (3.8) yields

(A2.7) A= —kcosgot; + ¢oB, B = ksin¢ot; — doA.
It follows that

(A2.8) % = x = 0x/dm

(1 + 61) t1+ 62A + 63B,

(A2.9) Xy = 0X/dn2 = macos Bty — 7nasin B A 4 73 sin 8 B,
(A2.10) X3 = 9X/dn3 = n3 cos Bt + nssin BA + nasin 8B,
where

(papy @7 TERAEEG ) o+ becos d(a’ = )

— & sin ¢onams],
e = 3B cos B(m’ — m') + 3 cos B cos bo(m’ + nd’)
— ¢o sin Byans
B cos Brns — %« cos B sin go(ns” + ns")
+ 3o sin B(ns" — n,").
The Jacobian J = d(x1, 22, 23)/9(m1 , n3, 72) of the transformation (A2.5)

can be computed directly from (A2.8)-(A2.13). However it is simpler to
use (A2.2), (A2.3) and (3.10), which yield

(14 2) = g o W20 _ 2o, 2)
p

(A2.12)

(A2.13)

(A2.14) d(a,n, ) o, o, )
= J a(ﬂ:‘l ) ?72) - 1 J
3(0‘, g‘) 27"

The metric coefficients g;; of (A2.5) are defined by
(A2.15) Gij = Xi°X; = oz, oz, or (gi;) = <%>’ <§E>
dni In; dn;/ \om;
Here the accent denotes the transposed matrix. Clearly,

_ _ ar:\ T g2
(A216) g = det (g;j) = | det | — = J".
I
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The reciprocal coefficients g*’ are defined by
i _ P
(A2.17) (9") = (gi))™" or ¢ = EG”

where G = G* is the cofactor of gij - Then (see, e.g., [7]) for arbitrary
functions ¢, v,

1 9 oy 0 [y O
A218) Ay = ~—:—< “——) =J ‘——(J 1G“-—)
( ) v Vg 9 Vg In; In; I
and
i; Oy oY 1 0y oy
A2.1 vy = W L iy O
(42.19) W= s = 7 oo,

We now introduce two classes of functions g(#:1, 92, 73). We shall say
that ¢ is an odd or even function if it is regular in a neighborhood of the edge
ne = 13 = 0 (i.e., can be expressed as a power series in 5, and »; with co-
efficients that are regular functions of ;) and if
(A2.20) g(m, —ne, —n3) = —g(m, m2,ms) or

glm, —n2, —ms) = g(m, n2, m),

respectively. The definitions have some immediate and useful consequences:
If g is odd, then g(%;, 0, 0) = 0. The product of two odd functions is even,
etc. From (A2.5) we see that x is even; hence if g(x) is regular in a neigh-
borhood of the edge, then g[x(m:, 72, #3)] is even. From (A2.14), (A24)
and (3.11) it is easy to show that

(A2.21) oJ " is even.

In order to prove an important lemma about the regularity of the function 6

defined by (5.3) and (5.5), we introduce that segment $ of the shadow

boundary that lies in the neighborhood N which was defined at the begin-

ning of §5. In terms of the coordinates (n:1, %2, 73) we see from (A2.3) that
8 ={(m,m,mm),n=00=n< 2.

Lemma 1. 8 is a regular function of (1, 92, 13) tn a neighborhood M of
S. Furthermore 6 is odd.
Proof. Let

(A2.22) U;j=cosBti+sinBA =cosBt,— sinBcos ¢t — sin Bsingo ts,
(A2.23) U, =B =singgt; — cos o t3,
(A2.24) U; =TU; X U, = sin Bty — cos BA.

Then U; has the direction of the incident ray (see (3.7)), and from (A2.2)
we see that in the Uy, U, , U; basis

(A2.25) U = [cos’8 + sin’8 cos ¢, sin B sin ¢, cos 8 sin B(1 — cos §)]'
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We consider an arbitrary point P = X, + ¢U; on the shadow boundary and
a neighboring point x = x, + ¢U. The difference is
h=x—P=o(U-T)
= o[sin®8(cos ¢ — 1), sin 8 sin {, cos B sin B(1 — cos {)].
Hence, from (A2.4),
(A227) h = (b, hs, hs) = (— sin’8 45’ sin B 713, cos B sin B n2°).

Now §(x) = s(x0) + ¢ = s(P); therefore by Taylor’s theorem, provided P
is not a caustic point of the incident wave,

(A2.26)

(A228) §(x) — s(x) = s(P) — s(x) = —é L (@Y by b,

Since at P, (s1, 82, 85) = Vs = (1,0, 0), we see from (A2.27) and (A2.28)
that

(A2.29) §(x) — s(x) = (2 sin B)* — Lsy (2 75 sin 8) +
where every term in 7 contains a factor 7,°. Thus
(A2.30) 8(x) — s(x) = (n28in8)’p(n1, 12, ms),

where p = 1 — sy ny° + - -+ isregular in a neighborhood of %, = 0 and
even. Furthermore we see from (A2.4) that, on the shadow boundary where
me = 0, 73 = 2 and

(A2.31) p = 1-— a8 .

We now use the following identity which is given by [4, (18), Appendix
2]:
(A2.32) (po4 0)(ps+ o) 82 =0+ p2 + ps — I_)ZP_M

Here p;, p3 are the principal radii of curvature of the incident wavefront
at xo(n). It follows from (A2.31) that on the shadow boundary

B 14 0/p
(A2.33) b= A4 o/p2)A + o/ps)”

At the edge, ¢ = 0 and p = 1. Since p can vanish only at the caustic point
o = —p and is continuous except at the caustic points ¢ = —p; and o
= —p;, we see that p is finite and positive in 8, hence in a neighborhood M
of 8. From (5.3), (5.5), (A2.3) and (A2.30) we now see that

(A234) 0 =sgnme/8§—s=sgnn|m|sinf/p = nsinpBp.
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Since p is regular and positive at 7, = 0, we see that 6 is a regular function
of (m1, 72, 13) in a neighborhood of 9, = 0; and since p is even, 6 is odd.

CoROLLARY 1. 0 7s a regular function of x = (&1, %2, %3) tn Ny .

Proof. From (5.3) we see that 0 is a regular function of x except at a
caustic (where s or § fails to be regular) and perhaps at the shadow bound-
ary where § = s and 5, = 0. But from Lemma 1, in a neighborhood M of
the shadow boundary segment 8, 6 is a regular function of (91, 72, 13),
hence of x, except where the Jacobian J vanishes. From (A2.14) we see
that J vanishes only at the caustic ¢ = —p and at the edge ¢ = 0. Hence
6 is a regular function of x in N, .

Proof of Theorem 2. The function f defined by (5.2) is entire and the z,,
and § are regular functions of x except at caustics. Hence from Corollary 1
the first term in (5.1) is regular in No . The regularity of the second term
can be proved by induction: If v,,_; is regular in Ny, then Av,,; is regular,
and from Corollary 1 and (5.13) we see that ¢,, is regular. Thus from (5.17),
(3.10) and the formula y = | j |*/sin 8, v,, is regular in Ny . Condition (4.3)
follows from Theorem 1.

The proof of Theorem 1 is based on three more lemmas.

Lemma 2. () If¢ = 1,7 = 2,30rj = 1,4 = 2, 3, then J'G" is odd.

(ii) If i = j, then J'G¥ is even. 3

(iii) If ¢ = 2,§ = 3orj = 2,4 = 3, then J "G is even.

Proof. From (A2.15), (A2.8), (A2.9) and (A2.10),

(A2.35) gn = (1+e)’ + & + e

(A2.36) g2 = (1 4+ e1)nz cos B — ey sin B 4 egm; sin G,

(A237) g3 = (L + e1)nz cos B -+ ey sin B -+ ezne sin B,

(A2.38) gu = " + n5° sin’B, gos = mumy cOSB, g = 7n5° + 7o sin’B.

Let Pn, Q., R., S, denote nth degree homogeneous polynomials in 7, ,
7z with coefficients that are regular functions of » = 5. From (A2.14),
(A2.4) and (3.11),

(A2.39) J = sinB(nm’ + n5"){1 — Pa(nz, m)};

hence

(A2.40) J7 = esé®B(nd + nd) {1 — Pang, ma)}
From (A2.11)-(A2.13) we obtain by straightforward calculation
(A241) ems + ez = — (0 + 05")Qu(n2, M),

(A2.42) ems + e = (1" + u5)Ra(me, m),

(A2.43) e + e’ = (m’ + 15" )Ra(ma, 1s).
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Now from (A2.35)-(A2.38) we compute G* = cofactor (g:;) using
(A2.41)-(A2.43). We find, e.g., that (g,° + #5°) 'G" is even; hence from
(A2.40), J7'G" is even, etc.
LemmMA 3. If a is odd and b is even, then o Va- Vb is odd.
Proof. From (19),
da db

(A2.44) oVa-Vb = (e (@) =22
3 6771

By using (A2.21) and Lemma 2 we find: in case (i),

oa b —1 —1 yif da 9b . .
2 9m, is even, hence (oJ )(J Q") — 2 9, is odd;
in case (ii),
da db . —1 —1 3] da db . .
I is odd, hence (oJJ ) (JGY) — s 9, is odd;
in case (iii),
LI even, L is odd, hence (oJ 1) (JT'G¥ ) da a—b- is odd.
on; Iy an;

LemMA 4. If a s odd, then ¢Aa s odd.

Proof. Let J7'G* 8a/dn; = h'. Then it is easily seen from Lemma 2 that
B is odd and A? and k* are even. It follows that 9h’/d%; is odd and from
(A2.18) that cAa = (oJ ')8h*/am; is odd.

Proof of Theorem 1. From (A2.39) and (A2.4) we see that

(A2.45) (') isevenand (o) iseven.
Since y sin 8 = 7% = j* = (J/2)"?, it follows that
(A2.46) oy isevenand /%" iseven.

Since 2., is regular in a neighborhood of the edge, 2., is even. From Lemma 1,
6 is odd, and from Lemma, 3, ¢ V8- Vz,, is odd. Furthermore, from Lemma 4,
0200 is odd; hence from (5.13) we see that og.. is odd. We shall prove by
induction that for each m the integral (5.17) exists and v, is odd. The
assertion is clearly true for m = —1 because vy = v = ¢ = 0. If v,
is odd, it follows from Lemma 4 that ¢Av,.; is odd; hence from (A2.46) we
see that a,(m , 12, 13) is odd, where

(A2.47) Un = Y (= AVpy + @) = 0 Yl— cAVpy + 0qul.
Thus
(A248) y-(—Avpy + gn) = 0 an[n, (20)" sin (£/2), (20)"* cos (5/2)]

has an expansion in nonnegative integral powers of s, i.e., is regular in ¢
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at o = 0. Thus the integral in (5.17) exists, and v, = %0"% "2, , where

Am = cr*mfo Y(— AUy + gn) do’
(A2.49)

= " [* @ anln, (20 sin (/2), (20" cos (¢/2)] o

We see that a., is odd because a., is odd. It follows from (A2.46) that v,, is
odd. This completes the induction argument. Since v,,(n1, 12, 13) is odd,
we see from (A2.3) that

(A2.50) lim v, = Vm(m , 0, 0) = 0.
a->0
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