

A polynomial time attack on RSA with private CRT-exponents
smaller than $N^{0.073}$
Citation for published version (APA):
Jochemsz, E., & May, A. (2007). A polynomial time attack on RSA with private CRT-exponents smaller than
$N^{0.073}$. In A. Menezes (Ed.), Proceedings of the 27th Annual International Cryptology Conference on
Advances in Cryptology (CRYPTO 2007) 19-23 August 2007, Santa Barbara, California, USA (pp. 395-411).
(Lecture Notes in Computer Science; Vol. 4622). Springer. https://doi.org/10.1007/978-3-540-74143-5_22

DOI:
10.1007/978-3-540-74143-5_22

Document status and date:
Published: 01/01/2007

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://doi.org/10.1007/978-3-540-74143-5_22
https://doi.org/10.1007/978-3-540-74143-5_22
https://research.tue.nl/en/publications/4ff99d40-4d06-44c8-8649-1b68e059e356

A Polynomial Time Attack on RSA with
Private CRT-Exponents Smaller Than N 0.073

Ellen Jochemsz1,� and Alexander May2

1 Department of Mathematics and Computer Science,
TU Eindhoven, 5600 MB Eindhoven, the Netherlands

e.jochemsz@tue.nl
2 Faculty of Computer Science

TU Darmstadt, 64289 Darmstadt, Germany
may@informatik.tu-darmstadt.de

Abstract. Wiener’s famous attack on RSA with d < N0.25 shows that
using a small d for an efficient decryption process makes RSA completely
insecure. As an alternative, Wiener proposed to use the Chinese Remain-
der Theorem in the decryption phase, where dp = d mod (p − 1) and
dq = d mod (q − 1) are chosen significantly smaller than p and q. The
parameters dp, dq are called private CRT-exponents. Since Wiener’s pro-
posal in 1990, it has been a challenging open question whether there
exists a polynomial time attack on small private CRT-exponents. In this
paper, we give an affirmative answer to this question, and show that a
polynomial time attack exists if dp and dq are smaller than N0.073.

Keywords: RSA, CRT, cryptanalysis, small exponents, Coppersmith’s
method.

1 Introduction

In the RSA cryptosystem, the public modulus N = pq is a product of two primes
of the same bitsize. The public and private exponent e and d satisfy

ed = 1 mod (p − 1)(q − 1).

In many applications of RSA, either e or d is chosen to be small, for efficient
modular exponentiation in the encryption/verifying or in the decryption/signing
phase. It is well-known that it is dangerous to choose a small private exponent,
since Wiener [22] showed that the RSA scheme is insecure if d < N0.25, which
was extended to d < N0.292 by Boneh and Durfee [4].

� The work described in this paper has been supported in part by the European Com-
mission through the IST Programme under Contract IST-2002-507932 ECRYPT.
The information in this document reflects only the author’s views, is provided as is
and no guarantee or warranty is given that the information is fit for any particular
purpose. The user thereof uses the information at its sole risk and liability.

A. Menezes (Ed.): CRYPTO 2007, LNCS 4622, pp. 395–411, 2007.
c© International Association for Cryptologic Research 2007

396 E. Jochemsz and A. May

As an alternative approach, Wiener proposed to use the Chinese Remainder
Theorem (CRT) for decryption/signing as described by Quisquater and Cou-
vreur in [18], and to use small private CRT-exponents instead of a small private
exponent. In that case, the public exponent e and private CRT-exponents dp

and dq satisfy edp = 1 mod (p − 1) and edq = 1 mod (q − 1). To obtain a
fast decryption/signing phase, dp and dq are chosen significantly smaller than p
and q. In time-critical applications, for instance for signing procedures on smart-
cards, this technique is especially useful. Whether there exists a polynomial time
attack on this RSA-CRT system with small dp and dq has been a challenging
open question since Wiener’s work (see also the comments in Boneh-Durfee [4],
the STORK roadmap [19], and the ECRYPT document on the hardness of the
main computational problems in cryptography [9]).

So far, the best attack on this variant is a square-root attack [3] that enables
an adversary to factor N in time and space Õ(min{

√
dp,

√
dq}), which is expo-

nential in the bitsize of dp and dq. All other attacks on RSA with small private
CRT-exponents can be divided in two categories.

First, there are attacks on the special case where p and q are ’unbalanced’ (not
of the same bitsize). May [16] described two attacks that work up to a smallest
prime factor of N0.382. Recently, Bleichenbacher and May [2] improved this to
N0.468.

Secondly, there are attacks on a special case where not only dp and dq, but
also e is chosen to be small. Galbraith, Heneghan and McKee [10] and Sun and
Wu [20] have made proposals to use RSA-CRT in a way that ’balances’ the
cost of encryption and decryption by forcing both e and dp, dq to be small.
In these articles, several attacks are described, after which the authors propose
parameters that are not affected by these attacks. Bleichenbacher and May [2]
in turn described a new attack on RSA-CRT with balanced exponents, forcing
Galbraith, Heneghan, McKee and Sun, Wu to revise their parameter suggestions
in [11] and [21], respectively.

However, the attacks in both categories are not applicable in the standard RSA
case with small CRT-exponents dp and dq, that is, when p and q are balanced
and e is full size. In this paper, we describe a way to extend one of the attacks
of Bleichenbacher, May [2] such that it also works in the standard RSA-CRT
case. This leads to the first polynomial time attack on standard RSA with small
private CRT-exponents. More precisely, we present the following result.

Theorem 1 (RSA-CRT with Small dp, dq). Under a well-known heuristic
assumption (as described in Section 6), for every ε > 0 and sufficiently large n,
the following holds:
Let N = pq be an n-bit RSA modulus, and p, q primes of bitsize n

2 . Let e < φ(N),
dp < p − 1, and dq < q − 1 be the public exponent and private CRT-exponents,
satisfying edp ≡ 1 mod (p−1) and edq ≡ 1 mod (q−1). Let bitsize(dp) ≤ δn and
bitsize(dq) ≤ δn. Then N can be factored in time polynomial in log(N) provided
that

δ < 0.0734 − ε.

A PTime Attack on RSA with Small Private CRT-Exponents 397

The rest of the paper is organized as follows. In Section 2, we give a brief intro-
duction to Coppersmith’s lattice-based method for finding small roots of polyno-
mials [5]. In Section 3, we recall the Bleichenbacher-May attack [2]. In Section 4,
we show how an extension of the attack leads to our new attack on standard
RSA-CRT with δ < 0.0734 − ε. Furthermore, we generalize our bound to public
exponents e of arbitrary size, and show that this leads to a polynomial time
attack on one of the revised parameter choices in [21]. In Section 5, we explain
in detail how we use Coppersmith’s original method for the implementation of
the attack. In Section 6, we discuss the only heuristic part of the attack, namely
how to retrieve a common root from a number of polynomials. We conclude in
Section 7 by giving experimental data for our attack.

2 Finding Small Roots of Polynomials

Many attacks in RSA cryptanalysis use a similar technique, which originated
from Coppersmith’s work on finding small roots of polynomials [5]. In essence,
the attack starts with a polynomial equation in some of the unknowns of the
RSA variant, such as p, q, d, or dp and dq in the case of RSA-CRT. An example
is the usual RSA equation

ed = 1 + k(N + 1 − (p + q)),

with the unknowns d, k, p, and q.
Such an equation yields a polynomial f which has a certain root that an

attacker wishes to find. In the example, the polynomial

f(x1, x2, x3) = ex1 − 1 − x2(N + 1 − x3)

has the root (x(0)
1 , x

(0)
2 , x

(0)
3) = (d, k, p + q). Finding the root is equivalent to

factoring N , since p, q can be computed from p + q using N = pq. The goal is
to derive a polynomial time attack provided that the size of the root is below a
certain bound.

In our new attack on standard RSA-CRT (Section 4), our goal is to find a root
of a four-variate polynomial f(x1, x2, x3, x4). We follow the strategy of Jochemsz
and May [13], that we will sketch here.

Let (x(0)
1 , x

(0)
2 , x

(0)
3 , x

(0)
4) be a root of the polynomial f(x1, x2, x3, x4) that is

small in the sense that |x(0)
1 | < X1, |x(0)

2 | < X2, |x(0)
3 | < X3, |x(0)

4 | < X4,
for some known upper bounds Xj , for j = 1, . . . , 4. Moreover, we define W as
the maximal absolute coefficient of f(x1X1, x2X2, x3X3, x4X4). That is, W :=
‖f(x1X1, x2X2, x3X3, x4X4)‖∞, where ‖f(x1, x2, x3, x4)‖∞ = max |ai1i2i3i4 | for
a polynomial f(x1, x2, x3, x4) =

∑
ai1i2i3i4x

i1
1 xi2

2 xi3
3 xi4

4 .
A basis B of a lattice L is defined via so-called shift polynomials of the form

xi1
1 xi2

2 xi3
3 xi4

4 f(x1, x2, x3, x4). The choice of the combinations {i1, i2, i3, i4} that
are used is described by a set S. The set M then consists of all monomials that
appear in the shift polynomials. The choice of S is crucial and depends on the

398 E. Jochemsz and A. May

monomials that appear in f . We will give the precise definition of S in Section 4
for our specific polynomial.

Then, LLL-reduction [15] is performed on B to find small vectors in the lattice
L. From a result of [13], we know that under the condition

Xs1
1 Xs2

2 Xs3
3 Xs4

4 < W s, for sj =
∑

x
i1
1 x

i2
2 x

i3
3 x

i4
4 ∈M\S

ij and s = |S|, (1)

the first vectors in the reduced basis are small enough to ensure that we find a list
f0, . . . , f� of at least three polynomials that all have the root (x(0)

1 , x
(0)
2 , x

(0)
3 , x

(0)
4)

over the integers. The polynomials {f, f0, . . . , f�} will reveal their common root
(x(0)

1 , x
(0)
2 , x

(0)
3 , x

(0)
4) under the assumption that three variables can be eliminated

from the polynomial system of equations {f = 0, f0 = 0, . . . , f� = 0}. Resultant
computations are often used for this elimination process, but we choose to use
Gröbner Bases, as we will explain in Section 6. Experiments must be done to
verify that the elimination assumption holds in practice.

3 The Bleichenbacher-May Attack

In [2], Bleichenbacher and May describe two new attacks on RSA-CRT. One of
them is meant for the case that both e and dp and dq are chosen to be smaller
than in standard RSA-CRT. For notation, we use e = Nα, dp < N δ, and dq < N δ

for some α ∈ [0, 1] and δ ∈ [0, 1
2]. Clearly, if an attack on this so called ’balanced’

RSA works in the case α = 1, then it threatens the security of standard RSA
with small private CRT-exponents.

The attack of Bleichenbacher and May uses a lattice of dimension 3. The
attack works whenever δ < min{ 1

4 , 2
5 − 2

5 α}, and therefore gives no result in
the case α = 1. However, we present a generalization of the attack for higher
dimensional lattices that is applicable also for α = 1. To explain our new attack,
we first describe the basics of the BM-attack [2].

Bleichenbacher and May start with the two RSA-CRT equations edp = 1 +
k(p − 1) and edq = 1 + l(q − 1), and rewrite these as

edp + k − 1 = kp and edq + l − 1 = lq.

Multiplying the two equations yields

e2dpdq + edp(l − 1) + edq(k − 1) − (N − 1)kl − (k + l − 1) = 0.

This can be transformed into the linear equation e2x1+ex2−(N −1)x3−x4 = 0,
if we substitute x1 = dpdq, x2 = dp(l − 1) + dq(k − 1), x3 = kl, x4 = k + l − 1.

The given linear equation leads directly to a lattice attack with a lattice of
dimension 3. This attack works provided that δ < min{ 1

4 , 2
5 − 2

5 α}.
Although linearization of an equation makes the analysis easier and keeps the

lattice dimension small, better results can sometimes be obtained by using a
non-linear polynomial equation directly. In the next section, we will pursue this
approach and use a polynomial with the variables x1, . . . , x4 corresponding to
dp, dq, k, and l, respectively.

A PTime Attack on RSA with Small Private CRT-Exponents 399

4 The New Attack on RSA-CRT

The equation we introduced in the previous section

e2dpdq + edp(l − 1) + edq(k − 1) − (N − 1)kl − (k + l − 1) = 0

yields a polynomial f(x1, x2, x3, x4) = e2x1x2 + ex1x4 − ex1 + ex2x3 − ex2 −
(N −1)x3x4 −x3 −x4 +1 with monomials 1, x1, x2, x3, x4, x1x2, x1x4, x2x3, x3x4
and a small root

(x(0)
1 , x

(0)
2 , x

(0)
3 , x

(0)
4) = (dp, dq, k, l), with

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

|x(0)
1 | < X1 = N δ,

|x(0)
2 | < X2 = N δ,

|x(0)
3 | < X3 = Nα+δ− 1

2 ,

|x(0)
4 | < X4 = Nα+δ− 1

2 .

We will follow the strategy for finding small integer roots of Jochemsz and
May [13] as sketched in Section 2, to analyze which attack bound corresponds
to this polynomial f .

In the basic strategy of [13], the set S that describes which monomials xi1
1 xi2

2
xi3

3 xi4
4 are used for the shift polynomials, is simply the set that contains all

monomials of fm−1 for a given integer m. The set M is defined as the set of all
monomials that appear in xi1

1 xi2
2 xi3

3 xi4
4 f(x1, x2, x3, x4), with xi1

1 xi2
2 xi3

3 xi4
4 ∈ S.

Since f has a non-zero constant coefficient, all monomials of S are included in
M . More precisely, S and M can be described as

xi1
1 xi2

2 xi3
3 xi4

4 ∈ S ⇔

⎧
⎪⎪⎨

⎪⎪⎩

i1 = 0, . . . , m − 1 − i3,
i2 = 0, . . . , m − 1 − i4,
i3 = 0, . . . , m − 1,
i4 = 0, . . . , m − 1,

xi1
1 xi2

2 xi3
3 xi4

4 ∈ M ⇔

⎧
⎪⎪⎨

⎪⎪⎩

i1 = 0, . . . , m − i3,
i2 = 0, . . . , m − i4,
i3 = 0, . . . , m,
i4 = 0, . . . , m.

However, in [13] it is also advised to explore the possibility of extra shifts of one
or more variables. Since X1 and X2 are significantly smaller than X3 and X4 for
α > 1

2 , we find that the attack bound is superior for α = 1 if we use extra shifts
of x1 and x2. Therefore, we take

xi1
1 xi2

2 xi3
3 xi4

4 ∈ S ⇔

⎧
⎪⎪⎨

⎪⎪⎩

i1 = 0, . . . , m − 1 − i3 + t,
i2 = 0, . . . , m − 1 − i4 + t,
i3 = 0, . . . , m − 1,
i4 = 0, . . . , m − 1,

xi1
1 xi2

2 xi3
3 xi4

4 ∈ M ⇔

⎧
⎪⎪⎨

⎪⎪⎩

i1 = 0, . . . , m − i3 + t,
i2 = 0, . . . , m − i4 + t,
i3 = 0, . . . , m,
i4 = 0, . . . , m,

for some t that has to be optimized as a function of m and α.

400 E. Jochemsz and A. May

Our goal is to find at least three polynomials f0, f1, f2 that share the root
(x(0)

1 , x
(0)
2 , x

(0)
3 , x

(0)
4) over the integers. From Section 2 we know that these poly-

nomials can be computed by lattice reduction techniques as long as

Xs1
1 Xs2

2 Xs3
3 Xs4

4 < W s, for sj =
∑

x
i1
1 x

i2
2 x

i3
3 x

i4
4 ∈M\S

ij and s = |S|.

For a given integer m and t = τm, our last definition of S and M yields the
bound

(X1X2)(
5
12+ 5

3 τ+ 9
4 τ2+τ3)m4+o(m4)(X3X4)(

5
12+ 5

3 τ+ 3
2 τ2)m4+o(m4)

< W (1
4+τ+τ2)m4+o(m4).

To obtain the asymptotic bound, we let m grow to infinity and let all terms
of order o(m4) contribute to some error term ε. If we substitute the values for
X1, X2, X3, X4, W , we obtain

(5
12 + 5

3τ + 9
4τ2 + τ3

)
· 2δ +

(5
12 + 5

3τ + 3
2τ2

)
· (2α + 2δ − 1)
<

(1
4 + τ + τ2

)
· (2α + 2δ) ,

which leads to

δ <
5 − 4α + 20τ − 16ατ + 18τ2 − 12ατ2

14 + 56τ + 66τ2 + 24τ3 − ε.

For α = 1, we find an optimal value of τ ≈ 0.381788, and we get

δ < 0.0734 − ε.

Hence, for a 1024-bit modulus, dp and dq are in the attack space if they are less
then 75 bits. Analogously, for a 2048-bit modulus, dp and dq are in the attack
space if they are at most 150 bits.

4.1 Extending the Attack to Other Values of α

In Section 4, we assumed that x
(0)
1 , x

(0)
2 are smaller than x

(0)
3 , x

(0)
4 , t.i. α ≥ 1

2 .
For α < 1

2 , symmetrically one uses extra x3 and x4-shifts instead of extra x1
and x2-shifts. Because of the symmetry, one can immediately see that the attack
bound is

(X1X2)(
5
12+ 5

3 τ+ 3
2 τ2)m4+o(m4)(X3X4)(

5
12 + 5

3 τ+ 9
4 τ2+τ3)m4+o(m4)

< W (1
4+τ+τ2)m4+o(m4).

The above bound leads to

δ <
5 − 4α + 20τ − 16ατ + 27τ2 − 30ατ2 + 12τ3 − 24ατ3

14 + 56τ + 66τ2 + 24τ3 − ε.

Note that this bound only holds for α + δ > 1
2 , since we assume that the values

of k and l are unknown to the attacker. Both conditions are only met if α ≥ 1
6 .

A PTime Attack on RSA with Small Private CRT-Exponents 401

However, in Section 7.1 we provide experimental evidence that our heuristic
attack is successful only when α ≥ 1

4 .
In the revised paper by Sun, Hinek, Wu [21], the authors propose as new

parameters {α = 0.577, δ = 0.186}. For this choice, we find the bound δ < 0.192,
which breaks the new proposal in polynomial time.

5 Implementation Using Coppersmith’s Original Method

Although we have derived our attack bound from the strategy of Jochemsz, May
[13], we deviate from their strategy for the implementation of the attack. Ba-
sically, we make use of Coppersmith’s original technique [5] instead of Coron’s
reformulation [6]. This does not change the asymptotic bound of the attack, but
it has a major practical advantage. Namely, the lattices used in the attacks are
high-dimensional, and Coppersmith’s original method requires only the reduc-
tion of a lower-dimensional sublattice1. Since the LLL-process is the most costly
factor in our attack, this leads to a significant improvement in practice. Further-
more, we slightly adapt Coppersmith’s original method such that we directly
obtain triangular lattice bases, which simplifies the determinant calculations.

So let us first explain how to apply Coppersmith’s technique for our attack.
We introduce the shift polynomials

gi1i2i3i4(x1, x2, x3, x4) = xi1
1 xi2

2 xi3
3 xi4

4 f(x1, x2, x3, x4),

for xi1
1 xi2

2 xi3
3 xi4

4 ∈ S for a set of monomials S, as specified in Section 4. As
before, we define the set M as the set of all monomials that appear in the shift
polynomials. We use the notation s = |S| for the total number of shifts and
d = |M | − |S| for the difference of the number of monomials and the number
of shifts. Notice that the maximal coefficient of f(x1X1, x2X2, x3X3, x4X4) is
e2X1X2, and the monomial corresponding to it is x1x2. We define S′ as the set
of monomials xi1+1

1 xi2+1
2 xi3

3 xi4
4 , for xi1

1 xi2
2 xi3

3 xi4
4 ∈ S. Naturally, |S′| = |S| = s.

We now build a (d + s) × (d + s) matrix B1 as follows.
The upper left d × d block is diagonal, where the rows represent the mono-

mials xi1
1 xi2

2 xi3
3 xi4

4 ∈ M\S′. The diagonal entry of the row corresponding to
xi1

1 xi2
2 xi3

3 xi4
4 is (X i1

1 X i2
2 X i3

3 X i4
4)−1. The lower left s × d block contains only ze-

ros.
The last s columns of the matrix B1 represent the shift polynomials gi1i2i3i4 =

xi1
1 xi2

2 xi3
3 xi4

4 f , for xi1
1 xi2

2 xi3
3 xi4

4 ∈ S. The first d rows correspond to the monomials
in M\S′, and the last s rows to the monomials of S′. The entry in the column
corresponding to gi1i2i3i4 is the coefficient of the monomial in gi1i2i3i4 .

This description asks for a simple example. Let us use the set S as described
in Section 4 with m = 1 and t = 0, which results in the lattice basis B1 given in
1 In these CRYPTO’07 proceedings, a new article by Coron [7] shows how to adapt

his method such that it also requires only the reduction of a sublattice instead of
the reduction of the full lattice, and hence his new technique could be applied here,
too.

402 E. Jochemsz and A. May

Figure 1. We only use the polynomial f(x1, x2, x3, x4) itself as a shift polynomial.
Therefore, s = 1 and we have d+s = 9 monomials. The rows represent the mono-
mials 1, x1, x2, x3, x4, x3x4, x2x3, x1x4, x1x2 and the last column corresponds to
the coefficients of these monomials in f .

�
��������������

1 0 0 0 0 0 0 0 −1
0 1

X1
0 0 0 0 0 0 −e

0 0 1
X2

0 0 0 0 0 −e

0 0 0 1
X3

0 0 0 0 −1
0 0 0 0 1

X4
0 0 0 −1

0 0 0 0 0 1
X3X4

0 0 1 − N

0 0 0 0 0 0 1
X2X3

0 e

0 0 0 0 0 0 0 1
X1X4

e

0 0 0 0 0 0 0 0 e2

�
��������������

Fig. 1. Matrix B1 for the case m = 1, t = 0

In general, the determinant of the matrix B1 is

det(B1) =

⎛

⎜
⎝

∏

x
i1
1 x

i2
2 x

i3
3 x

i4
4 ∈M\S′

(X i1
1 X i2

2 X i3
3 X i4

4)−1

⎞

⎟
⎠ · (e2)s.

Let
v(x1, x2, x3, x4) = (1, x1, x2, x3, x4, x3x4, x2x3, x1x4, x1x2).

Note that in our example,

v(x1, x2, x3, x4) · B1 := (1, x1
X1

, x2
X2

, x3
X3

, x4
X4

, x3x4
X3X4

, x2x3
X2X3

, x1x4
X1X4

, f(x1, x2, x3, x4)).

So,

‖v(dp, dq, k, l) · B1‖ = ‖(1,
dp

X1
,

dq

X2
, k

X3
, l

X4
, kl

X3X4
,

dqk
X2X3

,
dpl

X1X4
, 0)‖ ≤

√
d.

Since the Xj upper bound the root, there is always such a vector v which, if one
substitutes the unknowns {dp, dq, k, l} for the variables {x1, x2, x3, x4}, becomes
a vector with Euclidean norm smaller than

√
d after multiplication with the

matrix B1.
Let us perform a unimodular transformation U1 on B1 to create a matrix B2

such that

B2 = U1 · B1 =
(

Ad×d 0d×s

A′
s×d Is×s

)
.

Now if the rows of B1 form a basis of a lattice L, then the rows of B2 form a
basis of the same lattice. Moreover, the rows of

B3 =
(
Ad×d 0d×s

)

A PTime Attack on RSA with Small Private CRT-Exponents 403

are a basis of the sublattice L0 of L which has zeros in the last s entries. Notice
that det(L0) = det(L). Clearly, v(dp, dq, k, l) ·B1 is in the lattice L0 spanned by
the rows of B3.
Since

v(dp, dq, k, l) · B1 = v(dp, dq, k, l)U−1
1 B2,

this means that the last s entries of v(dp, dq, k, l)U−1
1 must be zero. We use the

notation
v�sh for the vector v with its length ’shortened’ to its first d entries.
Then,

v(dp, dq, k, l) · B1�sh =
v(dp, dq, k, l)U−1
1 B2�sh =
v(dp, dq, k, l)U−1

1 �shA.

Next, we reduce A using lattice basis reduction to a basis B = U2A. It follows
that

v(dp, dq, k, l) · B1�sh =
v(dp, dq, k, l)U−1
1 �shU−1

2 B.

We use the notation v′(dp, dq, k, l) for the vector
v(dp, dq, k, l)U−1
1 �shU−1

2 , and
B∗ (with row vectors b∗

i) for the basis after applying Gram-Schmidt orthogo-
nalization to B. Now we can make three observations. Firstly, the vector v′ is
integral. This is because both matrices U1 and U2 have integer entries. Secondly,
‖v(dp, dq, k, l) · B1‖ <

√
d. Thirdly, it is known [15] that the Gram-Schmidt

orthogonalization of the LLL-reduced basis satisfies

‖b∗
d‖ ≥ 2

−(d−1)
4 det(L)

1
d .

So, if we combine these three facts, we obtain that
√

d ≥ ‖v(dp, dq, k, l) · B1‖ = ‖
v(dp, dq, k, l) · B1�sh ‖ = ‖ v′(dp, dq, k, l)B ‖

≥ | v′(dp, dq, k, l)d | · ‖b∗
d‖ ≥ | v′(dp, dq, k, l)d | · 2 −(d−1)

4 det(L)
1
d .

Since the terms 2
−(d−1)

4 and
√

d do not depend on N , we let them contribute to
an error term ε. Thus, whenever

det(L)
1
d > 1,

we must have | v′(dp, dq, k, l)d | = 0.
Hence, the polynomial f0(x1, x2, x3, x4) corresponding to the coefficient vector

v′(x1, x2, x3, x4)d contains the root (dp, dq, k, l) over the integers.
In Appendix A, we show that the bound det(L)

1
d > 1 is equivalent to the

bound (1) that was given in Section 2. Moreover, we use a result from Jutla [14]
to show that the vectors v′(x1, x2, x3, x4)d−�, � ≥ 2, yield a list of at least three
polynomials f0, . . . , f� having the same root (dp, dq, k, l). In the next section, we
show how to retrieve this root from the polynomials f , f0, . . . , f�.

The running time of our algorithm is dominated by the time to LLL-reduce
the lattice basis A. Taking the algorithm of Nguyen, Stehlé [17] this can be
achieved in O(d5(d+log Am) log Am), where log Am is the maximal bitsize of an

404 E. Jochemsz and A. May

entry in A. Our lattice dimension d depends on ε−1 only, whereas the bitsize of
the entries is bounded by a polynomial in log N . Therefore, the construction of
f0, . . . , f� can be done in time polynomial in log N .

Moreover, f0, . . . , f� have a fixed degree that only depends on ε−1 and coeffi-
cients with bitsize polynomial in log N . This will be important for the analysis
in the following section.

6 Extracting the Common Root

Assume that we want to retrieve a common root from four polynomials f , f0,
f1, f2. Usually, one uses resultants to eliminate variables one by one until one
obtains a univariate polynomial w0(x1) that has x

(0)
1 as a root:

r0(x1, x2, x3) = Resx4(f, f0)
s0(x1, x2) = Resx3(r0, r1)

r1(x1, x2, x3) = Resx4(f, f1) w0(x1) = Resx2(r3, r4)
s1(x1, x2) = Resx3(r1, r2)

r2(x1, x2, x3) = Resx4(f, f2)

However, this method only works if the polynomials are algebraically indepen-
dent. One cannot easily use more than three candidates fj , besides repeating the
scheme for different combinations. Moreover, the last resultant computation can
take a significant amount of time and memory, since the degrees of the resultant
polynomials grow fast. We use Gröbner Bases instead of resultant methods to
extract the root. For a detailed introduction to Gröbner Bases, we refer to [8].

Suppose we have a set of polynomials {f, f0, . . . , f�} that have the small root
(x(0)

1 , . . . , x
(0)
n) in common. Then a Gröbner Basis G := {g1, . . . , gt} is a set of

polynomials that preserves the set of common roots of {f, f0, . . . , f�}. In other
words, the variety of the ideal I generated by {g1, . . . , gt} is the same as the vari-
ety of the ideal generated by {f, f0, . . . , fl}. The advantage of having a Gröbner
Basis is that the gi can be computed with respect to some ordering that elim-
inates the variables. Having such an elimination ordering, it is easy to extract
the desired root.

In our experiments in Section 7 we usually found much more polynomials
f0, . . . , f� than the required amount of � = 2. Therefore, we have two advantages
of Gröbner Bases in comparison with resultants. First, in contrast to resultants
the computation time of a Gröbner Basis usually benefits from more overdefined
systems which lowers the time for extracting the root. Second, we do not have
to search over all subsets of three polynomials until we find an algebraically in-
dependent one. Instead, we simply put all the polynomials in our Gröbner Basis
computation. The elimination of variables can only fail if the variety V(I) de-
fined by the ideal I which is generated by {f, f0, . . . , f�} is not zero-dimensional.
Therefore, we make the following heuristic assumption for our attack.

Assumption 1: The variety V(I) of the ideal I generated by the polynomials
in the construction of Section 5 is zero-dimensional.

A PTime Attack on RSA with Small Private CRT-Exponents 405

Under Assumption 1, the secret root (dp, dq, k, l) can be derived in polynomial
time, since we run a Gröbner Basis computation on polynomials of a fixed degree.

Recently, Bauer and Joux [1] made some important progress considering the
heuristic involved in Coppersmith methods. Their result, for roots of trivariate
polynomials, can in theory be extended to more variables. In this way, one could
investigate if Assumption 1 can be replaced by a weaker assumption. In this
paper, we made no efforts in this direction. Instead we verified the validity of
Assumption 1 by experiments.

7 Experiments

In order to test the attack described in this paper for varying bitsizes of e
and dp, dq we designed a key generation process similar to the one proposed
by Galbraith, Heneghan, and McKee [10].

INPUT: Bitsizes n of N, αn of e, δn of dp, dq

(1) Choose dp, dq of bitsize δn.
(2) Choose k, l of bitsize (α + δ − 1

2)n such that gcd(dp, k) = gcd(dq , l) =
gcd(k, l) = 1.

(3) Compute e using Chinese Remaindering such that
∣∣
∣
∣
e = d−1

p mod k
e = d−1

q mod l

∣∣
∣
∣ .

(4) Compute e := e + c · kl for some c of bitsize (1 − α − 2δ)n.
(5) Compute p = edp−1

k − 1 and q = edq−1
l − 1. If either p or q is composite,

repeat the whole algorithm.

OUTPUT: CRT-RSA-instance (e, N, dp, dq, p, q)

Notice that this key generation algorithm works as long as α + 2δ ≤ 1. Namely,
in Step 3 we compute a public key e of bitsize (2α + 2δ − 1)n, which is extended
in Step 4 to bitsize αn. Therefore, we require that α ≥ 2α + 2δ − 1.

The above key generation is a slight variation of the GHM algorithm. In [10],
the authors choose e, k, l first and afterwards compute dp, dq as inverses of e
mod k, l, respectively. Then analogously to Step 4 above, they fill up dq, dq to
the desired bitsize. Thus, their key generation requires that the sizes of dp, dq

are at least the sizes of k, l. However, this condition is not fulfilled by a large
portion of the RSA instances that we can attack. If the conditions of both key
generations are fulfilled, one should however prefer the GHM method. It is more
efficient, since one can generate p and q separately.

In the following experiments, we applied our key generation algorithm for
varying sizes of e and dp, dq. The LLL reduction was carried out using a C-
implementation of the provable L2 reduction algorithm due to Nguyen and
Stehlé [17]. The timings were performed on a 1GHz PC running Cygwin.

406 E. Jochemsz and A. May

7.1 Experiments for Small e

All experiments in this section were done for 1000-bit N . For every fixed e, we
looked for the maximal bitsize for dp, dq that gave us enough small vectors for
recovering the secrets. In our experiments, we fixed the attack parameter m = 2
and tried different values of t.

In the table below, the third column provides the bound of Bleichenbacher-
May which can be achieved using a 3-dimensional lattice. The fourth column
provides the bound for an attack of Galbraith, Heneghan, and McKee [10], which
is closely related to the attack described in this paper (see Appendix B for details
on this GHM-attack). The δ-column gives the theoretical upper bound for the
chosen parameters m, t and e. The ’asymp’-column gives the asymptotic bound
which is reached when the lattice dimension goes to infinity.

e dp, dq BM[2] GHM[10] δ asymp lattice parameters LLL
250 bit 332 bit 0.250 0.333 0.227 0.287 m = 2, t = 0, dim = 27 2 sec
300 bit 299 bit 0.250 0.300 0.209 0.271 m = 2, t = 0, dim = 27 2 sec
400 bit 239 bit 0.240 0.233 0.173 0.243 m = 2, t = 0, dim = 27 2 sec
500 bit 199 bit 0.200 0.167 0.136 0.214 m = 2, t = 0, dim = 27 2 sec
577 bit 168 bit 0.169 0.115 0.108 0.192 m = 2, t = 0, dim = 27 2 sec
700 bit 119 bit 0.120 0.033 0.064 0.157 m = 2, t = 0, dim = 27 2 sec
800 bit 79 bit 0.080 −0.033 0.027 0.128 m = 2, t = 0, dim = 27 2 sec
900 bit 38 bit 0.040 −0.100 −0.009 0.100 m = 2, t = 0, dim = 27 2 sec
900 bit 40 bit 0.040 −0.100 0.013 0.100 m = 2, t = 1, dim = 56 93 sec
925 bit 29 bit 0.030 −0.117 −0.018 0.093 m = 2, t = 0, dim = 27 2 sec
925 bit 31 bit 0.030 −0.117 0.006 0.093 m = 2, t = 1, dim = 56 87 sec
950 bit 19 bit 0.020 −0.133 −0.027 0.087 m = 2, t = 0, dim = 27 2 sec
950 bit 23 bit 0.020 −0.133 −0.001 0.087 m = 2, t = 1, dim = 56 80 sec

In all the above experiments, we were able to recover the factorization of
N . Experimentally, we see that our attack is much better than theoretically
predicted. The reason is that for these RSA parameter settings, the shortest
vectors are linear combinations of certain subsets of the lattice basis. I.e., the
shortest vectors belong to some sublattice and the determinant calculation of the
full lattice in Section 4 does not accurately capture the optimal choice of basis
vectors. However, to identify the optimal sublattice structure for every fixed size
e seems to be a difficult task.

Let us first comment on the results for 250-bit and 300-bit e. As can be seen
in Appendix B, there exists an attack by Galbraith, Heneghan, and McKee [10]
that is closely related to our new attack. Basically, they use a Coppersmith
method for finding modular roots, to find the small root (k, l) of a polynomial
fe modulo e. The polynomial fe is exactly our polynomial f taken modulo e.
Since for α = 0.25, α = 0.3, the bound of the GHM-attack is superior to our
new attack bound, the GHM-attack should be used for these cases instead of the

A PTime Attack on RSA with Small Private CRT-Exponents 407

new attack. However, if one uses the new attack, the lattice reduction algorithm
chooses certain sublattices that still lead to the GHM-bound. This explains for
these small values of α, why the experimental results are better than expected.
These were the only instances that we discovered, where Assumption 1 failed.
Since the reduced basis vectors corresponded to the underlying structure of the
GHM-attack, we were not able to eliminate three variables. However, we always
found a polynomial of the form (k + l − 1)x3x4 − kl(x3 + x4 − 1) in the Gröbner
Basis, which directly yields k and l. The knowledge of k is sufficient to factor N
in polynomial time, provided that e is large enough: Notice that

p = 1 − k−1 mod e.

From a theorem of Coppersmith for factoring with high bits known [5], it follows
that we can find p in polynomial time whenever e ≥ N

1
4 , which is satisfied in our

experiments. We also made attacks for the case e < N
1
4 , where we still got the

secrets k, l. However, this information seems to be not sufficient for factoring N
efficiently. This is consistent with the GHM-attack, where Galbraith, Heneghan,
and McKee state that the attack only succeeds if the factorization of N can be
extracted in polynomial time from the knowledge of the exposed k, l.

For α ≥ 2/5, i.e. e of bitsize at least 400, Assumption 1 was always valid. In all
experiments, the Gröbner Basis of all polynomials yields the secret parameters
(dp, dq, k, l) and therefore the factorization of N . The roots were found by using
the F4 Gröbner Basis algorithm implemented in Magma V2.11-14. We would
like to note that, when we did not include all candidates f0, . . . , f� but used
only a few, it sometimes happened that we could eliminate two variables only.
In that case, we were still able to retrieve the secrets, since the Gröbner Basis,
where x2 and x4 were eliminated, then contained a polynomial with the terms
(dp + (k − 1)x1 − dpx3) and (dq + (l − 1)x1 − dqx3) in its factorization.

For e of bitsizes 400 up to 800, we actually rediscovered the bound 2
5 (1−α) by

Bleichenbacher, May experimentally. Again the lattice reduction algorithm chose
certain sublattices which in this case lead to the BM-bound. Even a moderate
increasement of the lattice dimension did not give us any improvement in this
range of e. Although our asymptotical bound always beats the BM-bound, we
are not able to see this effect for small e, since going beyond the BM-bound
requires high-dimensional lattice bases.

For e larger than 900 bits we can for the first time see the effect of increasing
the lattice dimension and we are able to go slightly beyond the BM-bound. This
effect intensifies for full size e, where the BM-bound does not give any results
at all.

7.2 Experiments for Full Size e

Here we describe the experiments for RSA with a standard key generation for
small CRT-exponents, which usually yields full size e. Namely, the parameters

408 E. Jochemsz and A. May

dp, dq are chosen for a fixed bitsize and e is the unique integer modulo φ(N)
which is the inverse of dp, dq modulo p − 1 and q − 1, respectively.

N dp, dq δ lattice parameters LLL-time
1000 bit 10 bit −0.015 m = 2, t = 1, dim = 56 61 sec
1000 bit 13 bit −0.002 m = 2, t = 2, dim = 95 1129 sec
1000 bit 15 bit 0.002 m = 3, t = 1, dim = 115 13787 sec
2000 bit 20 bit −0.015 m = 2, t = 1, dim = 56 255 sec
2000 bit 22 bit −0.002 m = 2, t = 2, dim = 95 1432 sec
2000 bit 32 bit 0.002 m = 3, t = 1, dim = 115 36652 sec
5000 bit 52 bit −0.015 m = 2, t = 1, dim = 56 1510 sec
5000 bit 70 bit −0.002 m = 2, t = 2, dim = 95 18032 sec

10000 bit 105 bit −0.015 m = 2, t = 1, dim = 56 3826 sec
10000 bit 140 bit −0.002 m = 2, t = 2, dim = 95 57606 sec

Every experiment gave us sufficiently many polynomials with the desired roots
over the integers, such that we could recover the factorization. The Gröbner
computation never took more than 100 seconds and consumed a maximum of
300 MB.

Notice that for 10000-bit N , we can recover dp, dq of bitsize 140, which would
not be possible by a square-root attack.

As in the experiments before, the δ-bound is very inaccurate. For lattice di-
mensions 56 and 95, we should not obtain any results at all, while experimentally
we succeeded for d with bitsizes roughly a 0.010-fraction respectively a 0.013-
fraction of N . On the other hand, our asymptotical bound states that we could
in theory go up to a 0.073-fraction. Unfortunately, we are a tad bit away from the
theoretical bound, since currently the best LLL-reductions only allow to reduce
lattice bases of moderate size, when the base matrices have large entries. Let us
give a numerical example. Theoretically, for m = 10 we find an optimal value of
t = 6 which yields a bound of 0.063. However, this parameter choice results in a
lattice dimension of 4200 which is clearly out of practical reach.

Our result guarantees that one can find the factorization of N for a sufficiently
large – but fixed – lattice dimension for CRT-exponents dp, dq up to a 0.073-
fraction. Moreover, it does not rule out that one can go beyond this bound. Even
with our approach, the experimental results seem to indicate that an analysis of
sublattice structures could lead to a better theoretical bound. We hope that these
open problems stimulate further research in the exciting areas of lattice-based
cryptanalysis and fast practical lattice reduction algorithms.

Acknowledgements

We thank Antoine Joux and Ralph-Philipp Weinmann for discussions about
Gröbner Bases, Maike Ritzenhofen for doing the Gröbner Basis computations in
Magma, and Benne de Weger for his helpful comments.

A PTime Attack on RSA with Small Private CRT-Exponents 409

References

1. Bauer, A., Joux, A.: Toward a Rigorous Variation of Coppersmith’s Algorithm on
Three Variables. In: Naor, M. (ed.) Eurocrypt 2007. LNCS, vol. 4515, pp. 361–378.
Springer, Heidelberg (2007)

2. Bleichenbacher, D., May, A.: New Attacks on RSA with Small Secret CRT-
Exponents. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T.G. (eds.) PKC 2006.
LNCS, vol. 3958, pp. 1–13. Springer, Heidelberg (2006)

3. Boneh, D.: Twenty Years of Attacks on the RSA Cryptosystem. Notices of the
American Mathematical Society 46, 203–213 (1999)

4. Boneh, D., Durfee, G.: Cryptanalysis of RSA with Private Key d Less Than N0.292.
IEEE Transactions on Information Theory 46, 1339–1349 (2000)

5. Coppersmith, D.: Small Solutions to Polynomial Equations, and Low Exponent
RSA Vulnerabilities. Journal of Cryptology 10, 233–260 (1997)

6. Coron, J.-S.: Finding Small Roots of Bivariate Integer Equations Revisited. In:
Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 492–
505. Springer, Heidelberg (2004)

7. Coron, J.-S.: Finding Small Roots of Bivariate Integer Polynomial Equations: a
Direct Approach. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 379–
394. Springer, Heidelberg (2007)

8. Cox, D., Little, J., O’Shea, D.: Ideals, Varieties, and Algorithms, 2nd edn. Springer,
Heidelberg (1998)

9. ECRYPT - Hardness of the Main Computational Problems Used in Crypto-
graphy, IST-2002-507932, available at http://www.ecrypt.eu.org/documents/
D.AZTEC.4-1.1.pdf

10. Galbraith, S., Heneghan, C., McKee, J.: Tunable Balancing of RSA. In: Boyd, C.,
González Nieto, J.M. (eds.) ACISP 2005. LNCS, vol. 3574, pp. 280–292. Springer,
Heidelberg (2005)

11. Galbraith, S., Heneghan, C., McKee, J.: Tunable Balancing of RSA, full version of
[10] http://www.isg.rhul.ac.uk/∼sdg/full-tunable-rsa.pdf

12. Howgrave-Graham, N.: Finding Small Roots of Univariate Modular Equations Re-
visited. In: Darnell, M. (ed.) Cryptography and Coding. LNCS, vol. 1355, pp.
131–142. Springer, Heidelberg (1997)

13. Jochemsz, E., May, A.: A Strategy for Finding Roots of Multivariate Polynomials
with New Applications in Attacking RSA Variants. In: Lai, X., Chen, K. (eds.)
ASIACRYPT 2006. LNCS, vol. 4284, pp. 267–282. Springer, Heidelberg (2006)

14. Jutla, C.S.: On Finding Small Solutions of Modular Multivariate Polynomial Equa-
tions. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 158–170.
Springer, Heidelberg (1998)

15. Lenstra, A., Lenstra Jr., H., Lovász, L.: Factoring Polynomials with Rational Co-
efficients. Mathematische Ann. 261, 513–534 (1982)

16. May, A.: Cryptanalysis of Unbalanced RSA with Small CRT-Exponent. In: Yung,
M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 242–256. Springer, Heidelberg (2002)

17. Nguyen, P., Stehlé, D.: Floating-Point LLL Revisited. In: Cramer, R.J.F. (ed.)
EUROCRYPT 2005. LNCS, vol. 3494, pp. 215–233. Springer, Heidelberg (2006)

18. Quisquater, J.J., Couvreur, C.: Fast decipherment algorithm for RSA public-key
cryptosystems. Electronic Letters 18, 905–907 (1982)

19. STORK - Strategic Roadmap for Crypto, IST-2002-38273, available at http://
www.stork.eu.org/documents/RUB-D6-2 1.pdf

20. Sun, H.-M., Wu, M.-E.: An Approach Towards RSA-CRT with Short Public Ex-
ponent IACR eprint, http://eprint.iacr.org/2005/053

http://www.ecrypt.eu.org/documents/D.AZTEC.4-1.1.pdf
http://www.ecrypt.eu.org/documents/D.AZTEC.4-1.1.pdf
http://www.isg.rhul.ac.uk/~sdg/full-tunable-rsa.pdf
http://www.stork.eu.org/documents/RUB-D6-2_1.pdf
http://www.stork.eu.org/documents/RUB-D6-2_1.pdf
http://eprint.iacr.org/2005/053

410 E. Jochemsz and A. May

21. Sun, H.-M., Hinek, M.J., Wu, M.-E.: On the Design of Rebalanced RSA-
CRT, revised version of [20] http://www.cacr.math.uwaterloo.ca/techreports/
2005/cacr2005-35.pdf

22. Wiener, M.: Cryptanalysis of Short RSA Secret Exponents. IEEE Transactions on
Information Theory 36, 553–558 (1990)

A Calculating the Bound and Finding More Polynomials

In this appendix, we show that the bound det(L)
1
d > 1 of the implementation

of our attack using Coppersmith’s original method (Section 5) is equivalent to
the bound (1) corresponding to an implementation following Coron’s method
(as used in Section 2). Moreover, we use a result from Jutla [14] to show that
the vectors v′(x1, x2, x3, x4)d−�, � ≥ 2, yield a list of at least three polynomials
f0, . . . , f� having the same root (dp, dq, k, l).

One can check that

det(L)
1
d = det(B1)

1
d =

⎛

⎜
⎝

∏

x
i1
1 x

i2
2 x

i3
3 x

i4
4 ∈M\S′

(X i1
1 X i2

2 X i3
3 X i4

4)−1

⎞

⎟
⎠

1
d

· (e2)
s
d .

So the bound det(L)
1
d > 1 implies that

⎛

⎜
⎝

∏

x
i1
1 x

i2
2 x

i3
3 x

i4
4 ∈M\S′

(X i1
1 X i2

2 X i3
3 X i4

4)

⎞

⎟
⎠ < (e2)s. (2)

Let us substitute e2 by W
X1X2

. We observe that the difference between the mono-
mials of M\S′ and M\S is s times the monomial x1x2. Multiplying both sides
by (X1X2)s yields

Xs1
1 Xs2

2 Xs3
3 Xs4

4 < W s, for sj =
∑

x
i1
1 x

i2
2 x

i3
3 x

i4
4 ∈M\S

ij and s =
∑

x
i1
1 x

i2
2 x

i3
3 x

i4
4 ∈S

1.

Notice that this condition is equivalent to the condition (1) given in Section 2.
It follows that if this bound holds, then applying Coppersmith’s method gives

us a polynomial f0(x1, x2, x3, x4) from the coefficient vector v′(x1, x2, x3, x4)d,
such that f0 has the desired root (dp, dq, k, l) over the integers. But in order to
extract the root, we have to construct at least two more polynomials which share
the same root.

We will prove now that it is always possible to construct any constant number
of polynomials with the same common root provided that condition (1) is satis-
fied, at the cost of a slightly larger error term ε in the construction. Therefore,
we use a theorem of Jutla [14], which gives us a lower bound for the length of
any Gram-Schmidt vector in an LLL-reduced basis. Namely,

‖b∗
i ‖ ≥ 2

−(i−1)
4

(
det(L)
bm−i
max

) 1
i

for i = 1 . . . d,

where bmax is the maximal length of the Gram-Schmidt orthogonalization of
the matrix A (the matrix before starting the LLL-reduction process). Following

http://www.cacr.math.uwaterloo.ca/techreports/2005/cacr2005-35.pdf
http://www.cacr.math.uwaterloo.ca/techreports/2005/cacr2005-35.pdf

A PTime Attack on RSA with Small Private CRT-Exponents 411

the analysis of [14], it can be checked that in our attack, bmax = e2. Therefore,
‖b∗

i ‖ > 1 reduces to

2
−(i−1)

4

⎛

⎝

(∏
x

i1
1 x

i2
2 x

i3
3 x

i4
4 ∈M\S′(X

i1
1 X i2

2 X i3
3 X i4

4)−1
)

· (e2)s

(e2)d−i

⎞

⎠

1
i

> 1.

Since 2
−(i−1)

4 does not depend on N , we let it contribute to an error term ε. This
simplifies our condition to

∏

x
i1
1 x

i2
2 x

i3
3 x

i4
4 ∈M\S′

(X i1
1 X i2

2 X i3
3 X i4

4) < (e2)s−(d−i),

Notice that for i = d, we obtain the same bound as in (2). In Section 4, we have
seen that s = m4(1 + o(1)). So as long as d − i = o(m4), the asymptotic bound
does not change and we get just another error term that contributes to ε. This is
clearly satisfied if d − i = � for some constant �. Thus, all polynomials f0, . . . , f�

corresponding to the coefficient vectors v′(x1, x2, x3, x4)d−i, i = 0 . . . �, share the
common root (dp, dq, k, l), as desired.

B A Related Attack by Galbraith, Heneghan, and McKee

In Section 7.1 we noted that for very small e, there is an attack by Galbraith,
Heneghan, and McKee [10, Section 5.1] that works better than our new attack.
In this appendix, we briefly describe this GHM-attack and its relation to our
new attack.

Recall that for our new attack, we multiply the equations

edp + k − 1 = kp and edq + l − 1 = lq

to obtain the polynomial

f(x1, x2, x3, x4) = e2x1x2 +ex1x4 −ex1+ex2x3 −ex2 −(N −1)x3x4 −x3−x4 +1

with the small root (dp, dq, k, l).
In their attack in [10, Section 5.1], Galbraith, Heneghan, and McKee do essen-

tially the same, but modulo e. Hence, the goal of their attack is to find the modular
root (k, l) of the polynomial fe(x3, x4) = (N − 1)x3x4 + x3 + x4 − 1 modulo e.
This polynomial fe, with monomials 1, x3, x4, x3x4 has a well-known [5] bound

X3X4 < e
2
3 .

that specifies for which upper bounds X3, X4 of x3, x4 the root can be found in
polynomial time. Substituting X3 = X4 = Nα+δ− 1

2 , and e = Nα, we find the
attack bound

δ <
1
2

− 2
3
α.

For very small α (for instance α = 0.25 and δ = 0.3), this bound is superior
to the bound obtained by our new attack, and for these cases, the GHM-attack
should be preferred to the new attack.

	A Polynomial Time Attack on RSA with Private CRT-Exponents Smaller Than N^0.073
	Introduction
	Finding Small Roots of Polynomials
	The Bleichenbacher-May Attack
	The New Attack on RSA-CRT
	Extending the Attack to Other Values of α

	Implementation Using Coppersmith's Original Method
	Extracting the Common Root
	Experiments
	Experiments for Small e
	Experiments for Full Size e

	Calculating the Bound and Finding More Polynomials
	A Related Attack by Galbraith, Heneghan, and McKee

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Europe ISO Coated FOGRA27)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

