

Process algebra with pointers

Citation for published version (APA):
Baeten, J. C. M., Bergstra, J. A., & Feijs, L. M. G. (2002). Process algebra with pointers. (Computer science
reports; Vol. 0203). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/2002

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://research.tue.nl/en/publications/bdc4ff51-c07a-4424-b4d0-50dd32d3a769

Process Algebra with Pointers

j Department of Computer Science) Tedmische Universiteit Eindhoven)
P.O. Box 513) 5600 ME Eindhoven) The Netherlands

{j.c.m.baeten. l.m.g.feijs}@tue.nl
2 PrObfTfUnming Research Group; Universiteit van Amsterdam)

Kruislaan 403) 1098 S.T Amsterdam) The Netherlands
a Department of Philosophy; Universiteit Utrecht)

Heidelberglaan 8) 3584 CS Utrecht) The Netherlands
janb@phil.uu.nl

4 Department of Industrial DesibfI1; Tedmische Universiteit Eindhoven)
P.O. Box 513) 5600 ME Eindhoven) The Netherlands

Abstract. \Ve present a process algebra for mobile processes without
bound or free variables. Instead; pointers arc used) that refer back to an
action executed in the history of a process. The situation is comparable
to a presentation of the '\~cakulus with De Bruijn indices.
Note: Report CS~R 02~03) Department of Mathematics and Computer
Science) Tedmische Universiteit Eindhoven)
http://wvrw.win.tue.nl/st/medew/pubbaeten.html.

1 Introduction

For some time now, there is research on process algebras that can deal with
mobility of processes and communication links. :0.-'Iost of this research centres
around the 7f-calculus (sec [161, a nice introduction is [15]). An essential part of
the 7f-calculus is the usc of free and bound variables, different forms of variable
binding, (l;-conversion, scope extrusion. This makes it difficult to understand for
some, and makes implementations han1. In this paper, we develop a process
algebra that can deal with mobility, that docs not usc variables. Instead, we
usc pointers, also called history pointers or step counters. A pointer is a natural
number 'fl, and refers back to an action that happened 'fl steps ago in the history
of the process that is being executed. Such history pointers have come up in the
study of process algebras with a refinement operator (stated differently, a process
algebra with durational actions), sec e.g. [10,21, dating back to work on causal
trees, sec [11]. In this paper, we develop a process algebra with pointers in full,
show some basic results, and provide some examples that show how mobility of
processes and communication links can be handled.

The advantage of our approach is that we arc still within the familiar frame­
work of process algebra, and not in a calculus with variable binding constructs.
Thus, we can usc standard reasoning and techniques. For instance, we can work
in the setting of strong bisimulation equivalence, or we can consider a projective

2 Baeten, Bergstra, Feijs

limit model, with finite appro"AimatioIls of infinite behaviour. vVc can usc struc­
tured operational semantics, and standard results from this area. A disadvantage
is that we do Ilot know how to treat silent steps or forms of weak bisimuiatioll
equivalence in our setting.

The introduction of numbers in the place of variables is comparable to a
presentation of the A-calculus with Dc Bruijn indices or nameless dUIIlInics, scc
[9]. Also there, numbers arc used that point back in a term (or tree). These
indices were introduced in 1972 for the automatic manipulation of terms needed
in the implementation of the proof checker Automath (scc [171, this statement
is quoted from [51, page 579). ';8C of free and bound variables remains difficult
around (l;-conversion when doing substitutions, see e.g. [6] page 126. De Bruijn
indices still play an important role in the theory and practice of the A-calculus
and functional programming. Some references are [18,14,19,12,13].

The only reference to the use of De Bruijn indices in the 7[-calculus we could
find is [20j, where they were used in the implementation of the Mobility Work­
bench. However, no theoretical treatment is provided.

1.1 Acknowledgement

The authors gratefully acknowledge the hdp of Tijn Borghuis (Techn. l;niv.
Eindhoven).

2 ACP with Pointers

vVe start out from the well-known theory ACP [7,41, slightly modified along the
lines of [2] in order to deal with pointer updates. The signature of ACP contains
the following ingredients:

A given finite set of action labds L with typical dements n,
Atomic actions n(d1 , ... , dk, 7['i1, .. . , 7['in), abbreviated n(([' if) consist of an
action labd and a number of parameters. First of all, there can be a number
of data parameters d1 , ••• ,dk' Then, there can be a number of pointers
for a natural number 'i. In order to distinguish pointers from other numbers
that might occur in terms, we precede them by the letter 7[. Two pointers
are the same if they have the same number. Two pointer sequences are equal
if they have the same length and consist of the same dements. The set of
atomic actions Ad is ranged over by letters a, b, .
A constant inaction denoted 6 (not an atomic action). This constant is the
neutral dement of alternative composition. This process disallows termina­
tion, so can be used to denote deadlock behaviour. It doesn't take parame­
ters, i.e. for each parameter sequence, 6(([' if) denotes 6.
A binary operator alternative composition or choice, denoted +. Choice is
resolved by the execution of an action.
A binary operator sequential composition, denoted

Process Algebra with Pointers 3

A binary operator parallel composition or merge, denoted II. In a parallel
composition, one of the components executes an action, or more than one
component execute an action together, a comIIlunication action. The merge
is axiomatised using two aU"Ailiary operators: left merge, denoted lL, and
comrrrunication merge, denoted I. Communication on action labels is given
by a partial, comIIlutative and associative function ;', considered to be a
parameter of the theory. Atomic actions can only comIIlunicate if they have
the same parameters.
A unary operator encaps'ulation, denoted au, that blocks the execution of
atomic actions with a label from the parameter set H ~ L. It is used to
encapsulate comIIlunicating actions from the environment.
The pointer shift operator II+ will update all pointers, when an action is
executed in a parallel component. It is a"Aiomatized using auxiliary operators
II;:rp for natural numbers 'fl.

The pointer forgetting operator ¢l will forget all pointers of actions with
labels in I c:; L.

If action a E A is of the form a 0;(([, then the label of a is Ct, expressed
as L(o,) = Ct. Of all operators, sequential composition binds the strongest, and
alternative composition the weakest. The other operators are not ranked. The
axioms of ACP are well-known, and given for easy reference in Table L In order
to save on the Ilumber of axioms, we enforce comIIlutativity of comIIlunication
merge from the start (we have no need to consider models where this does not
hold, anyway). vVe use the presentation and naming of a"Aioms of [8].

x+y=y+x Al it(d~71) I #(d,71) = ((d~71) if ~i(it,#) = (cn
(x + y) + z = x + (y + z) .1.2 a I b = <l otherwise CF2
x+x=x .1.3
(x + y) < Z = x < z + Y < z .1.4 x II y = xlLY+ ylLx +x I y CMI
(x < y) < Z = x < (y < z) A5 olLx = 0 < IJ+(x) CM2iT
x+<l=x .1.6 (o<x)lLy = 0 < (x II IJ+(y» CM3iT
6 <x =6 A7 (x + y)lLz = xlLz + ylLz CM4

xly=ylx CMC
Uil (0) = 6 if L(o) E II Dl-rr (o<x)lb=(olb)<x CM5
Of! (a) = a othenvise D2-rr (0 < x) I (b < y) = (0 I b) < (x II y) CM7
UiI(X + y) = UiI(X) + uiI(Y) D3 (x + y) I z = x I z + y I z CM8
UiI(X < y) = UiI(X) < uiI(Y) D4

Table L Axioms of ACP with pointer update (it, #, (E L, II c:; L, o,b E AU {6})<

The main difference with the standard presentation is in the treatment of
interleaving: in axioms C:0.-'I27[C:0.-'I37[, when an action from the left component
is executed, all pointers in the right component that refer to something outside

4 Baeten) Bergstra) Feijs

this component should be incremented. All pointers that refer to something
internally arc unchanged. Thus, in the initial position all pointers greater than
o arc incremented, in the second position all pointers greater than I, and so OIL

These a"Aioms arc taken from [21, where the pointer update operator was called
histor,1J pointer shift, which was used in order to deal with durational actions
in ST bisimulation semantics. l\e"A'i, we present axioms for the pointer update
operator II+ and the pointer forgetting operator ¢l in Table 2.

Il+(x) = Il~(l(x) PIO
Il~o(J)=J Pll

Il~o(<>(d~if» = <>(d~ Il~:(7r» PI2
II:}: n (-ITi) = -lTi + 1 if i > 1t PI3
II:}:n(-ITi) = -lTi if i:S 1t PI4
Il~o(a<x)=Il~o(a)<Il~ot'(x) PI5
Il~o(x + y) = Il~o(x) + Il>o(y) PIG

1)1 (<>(d~if» = <>(1) if <> E I PHI
1)1 (a.) = a othcnvisc PH2
1" (x + y) = 1" (x) + 1" (y) PH3
1)I(x<y) = 1)I(x) < 1)I(y) PH4

Table 2. Axioms of pointer update and erase (0: E L)a E AU {J}).

An interesting property we can prove by means of structural induction for
all closed terms over the theory of ACP with pointers is the following:

The definition of an operational semantics by means of SOS deduction rules
is also standard. Bv means of these rules, we define binarv relations and
unary relations ~ von closed terms (for a E -4). Intuitively, they have the
following meaning:

J; J;I means that J; evolves into J;I by executing a
J; V means that J; successfully terminates upon execution of a

vVe present the rules in Table 3. Rules for pointer update and pointer crase
only change something inside atomic actions, so arc not very interesting and left
out. The rules for comIIlunication in lines 6 and 7 only hold in case a I b is defined
to be an atomic action, so not equal to 6. The rules arc in the so-called path
format, sec e.g. [31, from which we know that the semantics induced by the rules
have some nice properties.

vVe define (strong) bisimulation equivalence in the standard way, based on
these rules. Since the rules arc in path format, bisimulation is a congruence for all

Process Algebra with Pointers 5

operators, and the set of closed terms modulo bisimulation turns into an algebra
for the signature of ACP.

vVe quote from [3,4] the result that the axiomatisation of Table 1 is sound
and complete for the algebra of closed terms modulo bisimulation. Of course,
in order to prove this, we have to update all the results that go into this proof
in the present setting, and some things do become more difficult (for instance,
termination of the associated term rewrite system).

a V

X x'
" , X+1J-+X

x x'

X x'

X x'

, 0,
x X)1J-+1J

II ,,:b 'II ' x 1J-+X 1J
, 0,

x X)1J-+1J

I ,,:b 'II ' x 1J-+X 1J

X x') aft H

Uil (x) -'+ Uil (x')

1J 1J'
" , X+)J-t)J

1J 1J'

x V 0, ,)J-t)J

II ,,:b , x)J-t)J

x V 0, ,)J-t)J

I " : b , x)J-t)J

)J V

" X<)J-t)J

x V)J V
x II)J -'+ IJ+()J) x II)J -'+ IJ+(x)

x V
xlLY -'+ IJ+()J)

x , 0 V X)1J-+ x
0 V,)J-t V

II ,,:b , x 1J-+X x II)J '':'.to V
x , 0 V X)1J-+ x

0 V,)J-t V
I " : b , x 1J-+X x I)J '':'.to V

x V, a <Ie II

UiI(X) -'+ V
Table 3. Deduction rules for ACP with pointers (a)b E A)a I b E A).

vVe can also consider other models of the theory of ACP with pointers, such as
a projective limit model. As of yet, we have not considered any model involving
internal actions (7) or empty process (c-).

The extension with iteration or more general forms of recursion is straightfor­
ward. A preliminary observation that can be made is that the pointer mechanism
adds e"Al)ressive power. For instance, consider the process a*6 that keeps on ex­
ecuting action a (the solution of recursive equation X = a . X). The process
a*611 b(Ttl) has infinitely many different states (even in the absence of commu­
nication), so the set of regular processes is not closed under parallel composition.

l\ow it is time to look more closely at the mechanism of comIIlunication.
In particular, we need to look at the mechanism that is called scope e'J:trusion
in Tt-calculus. First of all, for the remainder of this article we suppose we have
standard read/send communication, so the ;' function is only defined on label

6 Baeten) Bergstra) Feijs

pairs (r,s) (read, send) and given by itr,s) = i'(s,r) = c (c for comIIlunicate).
These labels come with two parameters, a channel name and a data element. If
'i E C is a name in a set of channel names, and d E D is a data element in a data
set, we write Ti(f) , Si(ri), "i(f) instead of TU, (f), sU, (f), (ti, (f). The way we now
model value passing is as follows: suppose a sender process 5 wants to send a
particular value (4) along channel I, and the receiver process R wants to receive
any value, and process it further. vVe put

R = :L T1 (f) . R(f).
dEl)

In order to enforce comIIlunication, we encapsulate the actions in the set H =
{r,s}. l;sing the axioms of ACP, we obtain

and the value is passed from left to right. If we have a pointer instead of the
channel name, it works the same way.

vVe see that in the receiver process the value d is actually a bound variable,
that gets replaced by the particular value (4) in comIIlunication. l\ow we consider
the case where not a value but a pointer is passed, so we have 5 = S1 (K k)· 51. The
receiver receives this pointer, and then IIlUSt update its pointers with the correct
number. The way we implement this is to have a special pointer K* for a receive
action. vVe extend the comIIlunication merge to also allow a comIIlunication

and then need to increase all pointers in the receive process that point to the
receive action by k. The previous example now goes as follows.

5 = S1(1fk)· 5'

iJlI(S II R) = "1 (Kk)· iJlI(S' II m·k(R'))

Here, the pointer update function IT(k increments pointer 1 in the initial
position by exactly k, and leaves other pointers unchanged. The equations of this
update function are shown in Table 4. But we also need to change the axioms
concerning comIIlunication, as we have introduced a new form of comIIlunication.

So far, we have only defined communication on a matching pair of actions,
as in

n(7, if) I 8(7, if) = (((7, if)

where i'(Ct"B) = (. For the new cases, it is enough to just consider send/receive
pairs, as we show in Table 5 below. vVe add an extra parameter K*, and add
the a"Aioms in this table to the ones of Table L The axioms CF2, C:v'I5, C:v'I7 of
Table 1 only apply in case there is no parameter K* present.

vVe employ two prefix operators that allow us to introduce s:ymbolic labels to
denote communication links. These prefix (binding) operators are as introduced
in [1]. The first prefix operator, called initialisation prcjiJ: is denoted n/v: for

Process Algebra with Pointers 7

lI;;k(7rn) =7rn + k PUl
lI;tk(-rrm) = -rrm if mIn PU2

lI;;k(<>(d~if» = <>(d~ lI;;k(7r» PU3
lI;;k(o. < x) = lI;;k(o.) < 1I;;~, (x) PU4
lI;;k(x +)J) = lI;;k(x) + lI;;k()J) PU5

1I~(1) =m P\'l
1I~(d) = d if d Ie 1) P\'2

1I~(<>(d,if» = <>(lIh(d), if) P\'3
1I~(o.<x)=II~(o.)<II~+l(x) P\'4
1I~(x +)J) = 1I~(x) + 1I~()J) P\'5

Table 4. Axioms of pointer update operators (0: E L U {J}, a E A).

8l(d,7rk) I n(d,7r*) = Cj(d,7rk)
a I b = J otherwise
8l(d,7rk) I (n(d,7r*) < x) = Cj(d,7rk) <1I;k(x)
0.1 (b < x) = (0.1 b) < x othenvise
(8l(d,7rk) <x) I (n(d,7r*h,) = Cj(d~7rk) < (x 111I;k()J»
(a. < x) I (b <)J) = (0.1 b) < (x II)J) otherwise

CF-rrl
CF-rr2

CM5-rrl
CM5-rr2
CM7-rrl
CM7-rr2

Table 5. Axioms for pointer counllunication (i a pointer or data value; l a data vector;
a., bE A

8 Baeten) Bergstra) Feijs

all actions u. It has the effect that u/v: P means to perform action u followed
by process P such that inside P the symbolic label v refers to the unique point
in time at which the action u happened. This prefix operator can be used to
translate the 'new v' prefix of the 7f-calculus. The second prefix operator is
erY (v), called inp'ut prcji'J: for 'early read', which has the effect of binding variable
v to a value that is input. The following rules allow us to eliminate the prefix
operators:

nlv: P = n' IIr(p)

er;(v): p = Ti(1f*)' IIr(p)

vVe usc the operator II::, which has the effect of replacing a s:ymbolic label
(v) by concrete labels (relative pointers) such as 7fU, 7fU + 1 etc., depending on
the precise depth of the s:ymbolic label inside the process tree. The laws for this
operator arc shown in Table 4. As for the pointer update operator, we can prove
by means of structural induction for all closed terms over the theory of ACP
with pointers the following identity:

As we did in [11, we can generalize these prefix operators to the case where
more than one initialisation or more than one input takes place. Then we get
parallel initialisation or parallel input that is defined (in case of two items) as
follows:

(nlv II nlw): P = n' n' IIJ'(II1
W(P)) + n' n' II!'(IIJV(P))

(er;(v) II erj(w)): P = Ti(1f*)' Tj(1f*)' IIr(II1W(P)) + Tj(1f*) . Ti(1f*)' IIr(IIJV(p))

vVith the help of these prefix operators, we can now address the 7f-calculus
(sec [16,15]). The main prefix operators of the 7f-calculus can be defined as
follows:

vv.P

v(w).P

v(w).P

vlv:P

",,(w) . P

er~(-w): P

l\ote that in the middle definition, 'W is not bound in P. Thus, we obtain the
7f-calculus by forgetting about the pointer update operators (in the sense of [1]),
using these definitions and next, adding 7 and 7-laws. vVe can say that the 7f­
calculus forgets the counting aspect of the present theory and maintains names
modulo (l;-conversion. l\otice that an important difference with the 7f-calculus is
that there, in case there is more than one 'new' prefix, they commute, whereas
they do not in general, in our case (a more faithful translation is where in such
case, we usc the parallel initialisation prefix). On the other hand, we can usc
strong bisimulation as our notion of equivalence. The exact relation will require
more research.

Process Algebra with Pointers 9

The definition of d'urational actions can now be easily added just like we did
in [2]:

i t("O) . t(d).

3 Client Server System

vVe describe a simple client-server system. There are two processes: a client and
a server. The architecture of the client-server system is shown in Figure L

Fig. 1. Client-server s:ystem

The idea is that the server holds a certain data value do E D which is
to be sent to the client, but first the client has to inform the server of the
comIIlunication link to be used. In other words, the client C takes the initiative
to establish a communication link with the server S. Once the comIIlunication
link (v) is established, the client uses this link to listen for a data value to be
received from the server.

C = n/v: (s(v) . L Tv(f) . Cd)
dEl)

Sd = er~(w): (sw(d)' 5)

CS = iJlI(C II Sdo)

where again H = {s,r}. vVe assume that the remainders Cd,S do not contain
any variables, so that II::(Cd) = Cd and II:~(S) = S. vVe proceed to calculate

10 Baeten) Bergstra) Feijs

the system CS.

CS = iJlI(C II Sdo)

= iJlI(n' s(;rl)· Lr~2(f)· Cd II r(1f*)' s~1(41)' 5)
dEl)

= n' iJlI(S(;rl)· L r~2(f)· Cd II r(1f*)' S~1 (41)·5)
dEl)

= n' c(;rl)· iJlI(L r~2(f)· Cd II s~2(41)' 5)
dEl)

= n' c(;rl)· c~2(41)' iJlI(Cdo 115)

vVe see the system behaves as e"Al)ected. Abstracting from pointers, i.e. applying
the operator ¢{ c} yields

The above example can be used to illustrate the working of the pointer
mechanism of ACP with pointers, as shown in Figure 2. The process terms are
represented as boxes, composed by sequential composition (indicated by lines
with a dot, going from left to right) and parallel composition (indicated by II).
The thin lines show how each occurrence of a label, for example represented
by 7[1 or 7[2, points backwards to an action such as n or r(7[*) that marks the
defining occurrence of a variable. The pointer tells how many dots have to be
skipped: for example 7[1 means to skip one dot, 7[2 means to skip two dots,
and so OIl. The analogy with De Bruijn sequences is obvious. Figure 2 shows
the second transition of the above calculation. The figure also explains what
happens when a s(7[l) action and an r(7[*) action are combined into a single
c(7[1) action: inside the subterm that sequentially follows the r(7[*) action, all
pointers that were pointing to the r(7[*) are updated in order to make them
point to the marked position comIIlunicated by the send action. If a pointer is
at a distance of L'2 from the receive action r(7[*) and if the send action is at a
distance of L1 from the defining occurence of the label then the updated pointer
points to the action that is located L1 + L'2 steps away.

4 Client broker server system

vVe describe a slightly more complicated system which contains three processes:
a client, a broker and a server. The architecture of this system is shown in
Figure 3.

Initially the server holds a certain data value (4) E D which must be sent
to the client. In this example, it is assumed that initially the client does not
know the server and conversely, the server does not know the client. The broker
B is known to all parties, however, by means of fixed comIIlunication links 1,2.
The server S takes the initiative by sending its own comIIlunication link 'W to
the broker and similarly the client C sends its communication link 'U to the

PrO(;f)SS AIgf)bra \vith Pointms 11

-+

Fig. 2. Tlw pointm utf)(;hanism in a<;tion.

v

v along w

d along v

Fig. 3. Clifmt brokm smym systmn.

broker. After having received both 1inks~ the broker informs the server about the
communication link 'V of the cHent (the broker can do this since it knows 'W now).
Now the broker h&<; perfonned its task .and returns to the idle state. Finany the

12 Baeten, Bergstra, Feijs

server sends the data value (4) to the client along the link 'U.

C = nd'u: (s,('O)· L T,,(f))
dEl)

B = (er;(w) II er~('O)):sw('O)
Sd = n,/w: (S1 (w) . er~('O): s,,(f)

CBS = iJlI(C II Sdo II B)

where again H = {s,r}.

Here we usc the parallel input prefix as explained above. It means the two
inputs can take place in arbitrary order. The translation into ACPTt of these
specificatioIls is as follows.

C = n,' s,(;rl)· L T~,(d)
dEl)

B = T1 (1f*)' T,(1f*)' s~,(;rl) + T,(1f*)' T1 (1f*)' S~1 (1f2)

Sd = n,' S1 (;rl). T~'(1f*)' S~1 (d)

It is possible to calculate the specification of system CBS. vVc show this in
the calculatioIls to follow.

CBS = n,' iJlI(S,(;rl)· L T~,(f) II B II 5) +
dEl)

+ n,' iJlI(C II B II S1 (;rl). T~'(1f*)' S~1 (41))

Process Algebra with Pointers 13

= n, . (n,' iJlI(s2(,,2)· L T~,,(fJ II B II S1 (d)· T~2("*)' S~1 (41))
dEl)

+ (Ad)· iJlI(L T~2(fJ II T1 (,,*). S~1 (,,3) II 5))
dEl)

+ n, . (n,' iJlI(s2(d)· L T~2(d) II B II S1 (,,2)· T~"("*)' S~1 (do))
dEl)

+ C1 (d)· iJlI(C II T2("*)' s~,,(d) II T~2("*)' S~1 (dO)))

= n,' (n,' (C2(,,2) .iJlI(LT~,,(fJ IIT1("*) ·s~1(,,4) II s1(,,2)· r~,,(,,*) ·s~1(41))
dEl)

+ C1 (d)· iJlI(s2(,,3)· L T~4(fJ II T2("*)' s~,,(d) II T~2("*)' S~1 (do)))
dEl)

+ (Ad) . n, . iJlI(L T~,,(d) II T1 (,,*) . S~1 (,,4) II S1 (d) . T~2("*) . S~1 (41)))
dEl)

+ n, . (n,' (C2(d)' iJlI(L T~2(d) II T1 (,,*). S~1 (,,3) II S1 (,,3)· r~4("*)' S~1 (41))
dEl)

+ C1 (,,2)· iJlI(s2(,,2)· L T~,,(fJ II T2("*)' s~4(d) II T~"("*)' S~1 (do)))
dEl)

+ C1 (d)· n,' iJlI(s2(d)· L T~2(d) II T2("*)' s~4(d) II T~"("*)' S~1 (do)))
dEl)

= n, . (n,' (C2(,,2)' C1 (,,2)· iJlI(L T~4(d) II s~,,(,,4) II T~"("*)' S~1 (41))
dEl)

+ C1 (d) . C2 (,,3) . iJlI (L T ~4 (fJ II s~" (,,4) II T ~,,(,,*) . S~1 (do)))
dEl)

+ (Ad) . n, . C1 (d) . iJlI (L T ~4 (fJ II s~2(,,4) II T ~2("*) . S~1 (41)))
dEl)

+ n, . (n,' (C2 (d) . C1 (,,3) . iJlI (L T ~,,(fJ II S~4 (,,3) II T ~4 (,,*) . S~1 (41))
dEl)

+ C1 (,,2) . C2 (,,2) . iJlI (L T ~,,(fJ II S~4 (,,3) II T ~4 (,,*) . S~1 (do)))
dEl)

+ C1 (d) . n, . C2 (d) . iJlI (L T ~2 (d) II S~4 (,,2) II T ~4 (,,*) . S~1 (do)))
dEl)

14 Baeten) Bergstra) Feijs

= n, . (/,. (1',(,,2)· 1'1 (,,2) + 1'1 (d)· 1',(,,3))

·c~,,(,,4)· iJlI(~= T~5(d) II s~5(do))
dEl)

+ c,(d)· n,' 1'1 (d)· c~,(,,4)· iJlI(~= T~5(f) II S~5(41)))
dEl)

+ n, . (/,. (Ad)· 1'1 (,,3) + 1'1 (,,2)· 1',(,,2))

·c~4(,,3)· iJlI(~= T~4(d) II s~4(do))
dEl)

+ 1'1 (d)· n,' c,(d)· c~4(,,2)· iJlI(~= T~,,(d) II S~"(do)))
dEl)

= n, . (n,· (1',(,,2)· 1'1 (,,2) + 1'1 (d)· 1',(,,3)) . c~,,(,,4)· c~5(do)

+ (Ad)· n,' 1'1 (d)· c~,(,,4)· c~5(do))

+ n, . (n,· (I"(d) . 1'1 (,,3) + 1'1 (,,2)· 1',(,,2))· c~4(,,3)· c~4(41)

+ 1'1 (d)· n,' c,(d)· c~4(,,2)· C~,,(41))

vVe show one trace of the system in Figure 4, and the complete transition
system, with pointers visualized in Figure 5.

v

v

Fig. 4. One trace of the CBS system

Process Algebra with Pointers 15

Fig. 5. Transition system of the CBS system

5 Mobile phone system

We model Milner's example (Sect. 8.2 in [15]: Mobile phoncs, pp.80-83). The
architecture of the mobile phone system is shown in Figure 6. There arc four
processes: a car) a central controller and two transmitters.

talk2,switch2
along losel

talk1,switchl
along gainl

talk2,switch2
along gain2

Fig. 6. Mobile phone system

16 Baeten) Bergstra) Feijs

There are several communication links, identified by variables talk1 , gain1,
switch1, lose1, talk], gain], switch2, and lose2. The idea is that the transmitter
Trans is a kind of base station which knows the comunication links "talk' and
"switch' that can be used to comIIlunicate with the car. The transmitter also
knows the ports "gain' and "lose' to be used for comIIlunicating with the central
controller, called Controll (if it is in its first state) or Control2 (otherwise). The
transmitter receives contentless messages from the car via "talk'. If the trans­
mitter receives via "lose' a command from the central controller, it informs (via
"switch') the car of the new "talk' and "switch' ports (t and s) to be used. After
this, the transmitter goes into the idle state. In the idle state, if the transmitter
receives the "gain' command from the central controller, this means that the
transmitter is informed of the new "talk' and "switch' ports to be used next.

First we give the defining equations of the car and the transmitter. Process
names are parameterised: Car has two parameters, Trans has four parameters
and Idtrans (the transmitter in its idle state) has two parameters.

Cartalk,;;witch = Stalk(do)' Cartalk,;;witch

+er:witch (t): (er:witch (s): Car [,Ii)

Idtransgaill,lo;;c = er;aill (t): (er;aill (s): Trans [,Ii,gaill,lo;;c)

TranStalk,;;witch,gaill,lo;;c = 'rtalk((4))· TranStalk,;;witch,gaill,lo;;c

+ erk);;(, (t): (erk);;(, (s): (S;;witch (t).S;;witch (s) .Idtransgaill,lo;;c))

Our equations are almost a direct translation of :VfIilner's example, except for
the fact that we do not convey two or more comIIlunication links in a single
step. So instead of, for example, er~vitch (t, s): (...) we use two steps, writing
er;,vilch (t): (er;,vild, (s): (...)).

l\ext we give the remaining equations. Carl and Car2 represent the two
distinct states of the car. Similarly Controll and Control2 represent the two
distinct states of the controller.

Carl = Cartallq,;;witdI1

Car2 = Car talk::l,;;witch::l

Process Algebra with Pointers 17

TransA = TranStallq ,;;witdI1 ,gaill1 ,10;;c1

TransB = TranStalk::l,;;witch::l,gaill::l,lo;;c::l

IdtransA = Idtrans gaill1 ,10;;c1

IdtransB = Idtransgaill::l,lo;;c::l

Controll = 810;;('1 (talk2)· 810;;c1 (switch2)·

8gaill::l(talk2)· 8gaill::l(switch2)· Control2

Control2 = 810;;('::l (talk1) . 810;;c::l (switch1) .

8gaill 1 (talk1) . 8gaill1 (switch1) . Controll

MPSl = iJlI((n/talk1 II n/switch1 II n/gain1 II n/lose1 II
n/talk, II n/switch, II n/gain, II n/lose,):

(Carl II TransA II IdtransB II Controll))

vVhere H is defined in the usual way. vVe usc here the parallel initialisation
prefix, denoting that these initialisations can take place in arbitrary order. In
the following calculations, we fix one such order, given by the textual order.

vVe usc some obvious shorthands, such as ii/talk1 .. lose2, which is an abbre­
viation for n/talk1 II n/switch1 II n/gain1 II n/lose1 II n/talk, II n/switch, II
n/gain2 II n/lose2. l;sing this we can perform a number of rewritings, one for
each name introduction.

MPSl = iJlI(iT/talk1 .. Iose,:

= n····· n ·au
'--v--'
8 times

Cartalk1,;;witdI1
II TranStalk1 ,;;witdI1 ,gaill1 ,10;;c1
IIIdtransgaill::l,IO;;('::l
II 810;;c1 (talk2).810;;('1 (switch2)

.8gaill::l(talk2).8gaill::l(switch2)
. Control2

where 1I:~1I~: 5,10;;('::l (ControI2) abbreviateslI:~lk1 (1I~;vitdI1 (lIf~ill1 (1I;0;;c1 (lI~alk::l (
lI~witdl::l(1I(7aill ::l(1I;0;;('::l(ControI2)))))))). The effect is that symbolic labels arc
replaced by pointers, which (for the top-lew,1 of the II construct) means that the
substitutions arc given by the following table:

18 Baeten) Bergstra) Feijs

talk1 7[8
switd11 7[7
gain1 7[6
lose1 7[5
talk2 7[4
switch2 7[3
gain2 7[2
lose2 7[1

At this point, a real comIIlunication step can be performed. Basically, there is
the following behaviour: any number of talk comIIlunications can be executed,
and at each point in this sequence, a hand-over procedure can be started. vVe
will write out part of the system, where the handover procedure starts before
the first talk action.

Following the talk comIIlunication cr,8((4)), another one is possible, then de­
noted as cr,9(do), or, alternatively, the handover procedure is started, then de­
noted by cr,o(7[5). Here, we show the state of the system after immediate han­
dover initiation, by cr,5(7[4).

The entire sequence of events during handover is shown in Figure 7. Our
calculations have reached the point immediately before the first message that is
labeled C10M'1 (talk2).

After the handover procedure, a new series of talk comIIlunications can be
started, but alternatively, immediately a new handover procedun: can be started.
vVe show a message sequence chart showing this in Figure 8.

vVe do not show the complete calculations here, but instead, show the transi­
tion system of the complete system. In Figure 9, the two states that are filled in
solid correspond, with all I-indexed actions replaced by 2-indexed actions and
vice versa: in the uppermost state, talk1-actions can be started, in the other one,
talk::l-actions. Similarly, the two states marked with a cross are related, and the
two states with a thicker circle. Thus, the complete behaviour of the system is
exhibited.

Process Algebra with Pointers 19

I car I I trans II
I mitter I

II trans ~I
Imitter 2 I control I

I I I
< Transl > <Idtrans2> <Control I>

loop) Ctl

clI(t2)

011(52)

c,l(t2)

c,l(s2)
cq,(t2)
c.,(s2)

<Idtransl> < Trans2 > <Control2

Fig. 7. Sequence of events during hand~over

I car I I trans-II
I mitter I

II trans- ~I
Imitter 2 I control I

I I
<IdtransD < Trans2 > <ControI2>

loop) Ct,

Ci,(tl)

01,(51)
c.l(tl)
c.,(sl)

c,,(tl)
c,,(sl)

< Transl > <Idtrans2> <Controll
I I

Fig. 8. Sequence of events during haIld~over (continued)

6 Conclusion

vVe have seen we have introduced a process algebra t hat can handle aspect s
of mobile processes and mobile comIIlunication links. Secondly, thS we e}.l)ected,

20 Baeten, Bergstra, Feijs

t2 losel goinl switchl talkl

Cil(s2) C92(t2) C92(S2) Ci2(tl) Ci2(t2)

talk2

Fig. 9. Transition system of mobile phone system

the formalism is operating OIl a level which is better suited for tool supported
calculatioIls that for manual calculatioIls. This article can further understand­
ing of calculi for mobility, and can further implementatioIls and further work
concerning such calculi.

References

L .J.C.M. Baeten and .LA. Bergstra. On sequential composition) action prefixes and
process prefix. Form(tl Aspects of (,"omputing) 6(3):25(}-268) 1994.

2 .. 1.C.M. Baeten and .1..1.. Bergstra. Deadlock behaviour in split and ST bisimulation
semantics. In L Castellani and C. Palamidessi) editors; Proceedings EXPRESS',98)
number 16 in Electronic Notes in Theoretical Computer Science) pages 101-114)
Nice) 1998. Elsevier. http://w\\'W.elsevier.nlflocatefentcsfvolumeI6.2.htmL

3 .. LC.M. Baeten and C. Verhoef. Concrete process algebra. In S. Abramsky; D.M.
Gabbay; and T.S.E. Maibaum; editors; H(tndbook of Logic in (,"omputer Science;
volume 4; pages 149-269. Oxford University Press; 1995.

4 .. LC.M. Baeten and \V.P. \Veijland. Process Algebr(t. Number 18 in Cambridge
Tracts in Theoretical Computer Science. Cambridge University Press; 1990.

5. H.P. Barendregt. The L(tmbd(t (,"(tlculus (Its Synt(tx (twl Sem(tnticsj. Number 103
in Studies in Logic and the Foundations of Mathematics. North~Holland; 1984.

6. H.P. Barendregt. Lambda calculi with types. In S. Abramsky; D.M. Gabbay; and
T.S.E. Maibaum; editors; H(twlbook of Logic in (,"omputer Science; volume 2; pages
117-309. Oxford University Press; 1992.

7 .. LA. Bergstra and .L\V. Klop. Process algebra for synchronous counllunication.
Informotion owi Control, 60(1/3):109-137, 1984.

Process Algebra with Pointers 21

8 .. LA. Bergstra and A. Ponse. Grid protocol specifications. In B. Moller and .T.Y.
Tucker) editors, Prospects for H()'rtiw()'re Founr}(),tions, number 1546 in Lecture Notes
in Computer Science, pages 278-308. Springer Verlag, 1998.

9. N.G. de Bruijn. Lambda calculus notation with Ilfuneless dummies, a tool for
automatic formula manipulation, with application to the Church~Rosser theorem.
irui(tg(ttiones M(tthem(ttico,c, 34(5):381-392, 1972.

10. N. Busi, R .. T. vall Glabbeek, and R. Gorrieri. Axiomatising ST~bisimulation SemaIl~
tics. In E.~R. Olderog, editor, Proceedings of the IFfP TC"2 lVorking (,"onference
on Progr(tmming (,"oncepts, Methods (twl (,"(),lculi (PROCY)MET',94J number 56 in
IFIP Transactions A, pages 169-188. North~Holland) Amsterdam) 1994.

11. Ph. Darondeau and P. Degano. Causal trees. In G. Ausiello) M. Dellani~Ciancaglini)
and S. Ronchi Della Rocca) editors) Proceedings I()ALP'8,9) number 372 in Lecture
Notes in Computer Science) pages 234-248. Springer Verlag) 1989.

12. F. Kamareddine and B.P. Nederpelt. On stepv.;se explicit substitution. Founrlo­
tions of (,"omputer Science) 4:197-240) 1993.

13. F. Kamareddine and R.P. NederpelL A useful '\~notation. Theoreticol (,"omputer
Science) 155:85-109) 1996.

14 . . J. McKinna and R. Pollack. Pure types systems formalilled. In M. Bellem and
.J.F. Groote) editors) Proceedings TL(,"A ',9S) number 664 in LNCS) pages 289-305.
Springer Verlag) 1993.

15. R. Milner. (,"ommunicoting owl Mobile Systems: the -7r~(,"olculus. Cambridge Uni~
versity Press) 1999.

16. R. Milner) .J. Parrow) and D. W-alker. A calculus of mobile processes. Informotion
owl (,"omputotion) 100:1-77) 1992.

17. R.P. Nederpelt) .J.H. Geuvers) and R.C. de Yrijer. Selected Popers on Automoth.
North~Holland) 1994.

18. A.M. Pitts. A fresh approach to representing syntax ,"vith static binders in func~
tional programming. In Proceedings I(,"FP'2001. ACM Press) 2001.

19. R. Pollack. Closure under alpha~conversion. In Proceedings TYPES',9S) number
806 in LNCS. Springer Verlag) 1993.

20. B. Victor. A Verifi(Ydion Tool for the PoIYfuJif7r-Colculus. Licentiate thesis,
Department of Computer S:ystems) Uppsala University) Sweden) 1994. Available
as report DoCS 94/50.

	200203_Page_01
	200203_Page_02
	200203_Page_03
	200203_Page_04
	200203_Page_05
	200203_Page_06
	200203_Page_07
	200203_Page_08
	200203_Page_09
	200203_Page_10
	200203_Page_11
	200203_Page_12
	200203_Page_13
	200203_Page_14
	200203_Page_15
	200203_Page_16
	200203_Page_17
	200203_Page_18
	200203_Page_19
	200203_Page_20
	200203_Page_21

