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Abstract. \Ve present a process algebra for mobile processes without 
bound or free variables. Instead; pointers arc used) that refer back to an 
action executed in the history of a process. The situation is comparable 
to a presentation of the '\~cakulus with De Bruijn indices. 
Note: Report CS~R 02~03) Department of Mathematics and Computer 
Science) Tedmische Universiteit Eindhoven) 
http://wvrw.win.tue.nl/st/medew/pubbaeten.html. 

1 Introduction 

For some time now, there is research on process algebras that can deal with 
mobility of processes and communication links. :0.-'Iost of this research centres 
around the 7f-calculus (sec [161, a nice introduction is [15]). An essential part of 
the 7f-calculus is the usc of free and bound variables, different forms of variable 
binding, (l;-conversion, scope extrusion. This makes it difficult to understand for 
some, and makes implementations han1. In this paper, we develop a process 
algebra that can deal with mobility, that docs not usc variables. Instead, we 
usc pointers, also called history pointers or step counters. A pointer is a natural 
number 'fl, and refers back to an action that happened 'fl steps ago in the history 
of the process that is being executed. Such history pointers have come up in the 
study of process algebras with a refinement operator (stated differently, a process 
algebra with durational actions), sec e.g. [10,21, dating back to work on causal 
trees, sec [11]. In this paper, we develop a process algebra with pointers in full, 
show some basic results, and provide some examples that show how mobility of 
processes and communication links can be handled. 

The advantage of our approach is that we arc still within the familiar frame­
work of process algebra, and not in a calculus with variable binding constructs. 
Thus, we can usc standard reasoning and techniques. For instance, we can work 
in the setting of strong bisimulation equivalence, or we can consider a projective 



2 Baeten, Bergstra, Feijs 

limit model, with finite appro"AimatioIls of infinite behaviour. vVc can usc struc­
tured operational semantics, and standard results from this area. A disadvantage 
is that we do Ilot know how to treat silent steps or forms of weak bisimuiatioll 
equivalence in our setting. 

The introduction of numbers in the place of variables is comparable to a 
presentation of the A-calculus with Dc Bruijn indices or nameless dUIIlInics, scc 
[9]. Also there, numbers arc used that point back in a term (or tree). These 
indices were introduced in 1972 for the automatic manipulation of terms needed 
in the implementation of the proof checker Automath (scc [171, this statement 
is quoted from [51, page 579). ';8C of free and bound variables remains difficult 
around (l;-conversion when doing substitutions, see e.g. [6] page 126. De Bruijn 
indices still play an important role in the theory and practice of the A-calculus 
and functional programming. Some references are [18,14,19,12,13]. 

The only reference to the use of De Bruijn indices in the 7[-calculus we could 
find is [20j, where they were used in the implementation of the Mobility Work­
bench. However, no theoretical treatment is provided. 

1.1 Acknowledgement 

The authors gratefully acknowledge the hdp of Tijn Borghuis (Techn. l;niv. 
Eindhoven). 

2 ACP with Pointers 

vVe start out from the well-known theory ACP [7,41, slightly modified along the 
lines of [2] in order to deal with pointer updates. The signature of ACP contains 
the following ingredients: 

A given finite set of action labds L with typical dements n, 
Atomic actions n(d1 , ... , dk, 7['i1, .. . , 7['in), abbreviated n(([' if) consist of an 
action labd and a number of parameters. First of all, there can be a number 
of data parameters d1 , ••• ,dk' Then, there can be a number of pointers 
for a natural number 'i. In order to distinguish pointers from other numbers 
that might occur in terms, we precede them by the letter 7[. Two pointers 
are the same if they have the same number. Two pointer sequences are equal 
if they have the same length and consist of the same dements. The set of 
atomic actions Ad is ranged over by letters a, b, . 
A constant inaction denoted 6 (not an atomic action). This constant is the 
neutral dement of alternative composition. This process disallows termina­
tion, so can be used to denote deadlock behaviour. It doesn't take parame­
ters, i.e. for each parameter sequence, 6(([' if) denotes 6. 
A binary operator alternative composition or choice, denoted +. Choice is 
resolved by the execution of an action. 
A binary operator sequential composition, denoted 
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A binary operator parallel composition or merge, denoted II. In a parallel 
composition, one of the components executes an action, or more than one 
component execute an action together, a comIIlunication action. The merge 
is axiomatised using two aU"Ailiary operators: left merge, denoted lL, and 
comrrrunication merge, denoted I. Communication on action labels is given 
by a partial, comIIlutative and associative function ;', considered to be a 
parameter of the theory. Atomic actions can only comIIlunicate if they have 
the same parameters. 
A unary operator encaps'ulation, denoted au, that blocks the execution of 
atomic actions with a label from the parameter set H ~ L. It is used to 
encapsulate comIIlunicating actions from the environment. 
The pointer shift operator II+ will update all pointers, when an action is 
executed in a parallel component. It is a"Aiomatized using auxiliary operators 
II;:rp for natural numbers 'fl. 

The pointer forgetting operator ¢l will forget all pointers of actions with 
labels in I c:; L. 

If action a E A is of the form a 0;(([, then the label of a is Ct, expressed 
as L(o,) = Ct. Of all operators, sequential composition binds the strongest, and 
alternative composition the weakest. The other operators are not ranked. The 
axioms of ACP are well-known, and given for easy reference in Table L In order 
to save on the Ilumber of axioms, we enforce comIIlutativity of comIIlunication 
merge from the start (we have no need to consider models where this does not 
hold, anyway). vVe use the presentation and naming of a"Aioms of [8]. 

x+y=y+x Al it(d~71) I #(d,71) = ((d~71) if ~i(it,#) = ( cn 
(x + y) + z = x + (y + z) .1.2 a I b = <l otherwise CF2 
x+x=x .1.3 
(x + y) < Z = x < z + Y < z .1.4 x II y = xlLY+ ylLx +x I y CMI 
(x < y) < Z = x < (y < z) A5 olLx = 0 < IJ+(x) CM2iT 
x+<l=x .1.6 (o<x)lLy = 0 < (x II IJ+(y» CM3iT 
6 <x =6 A7 (x + y)lLz = xlLz + ylLz CM4 

xly=ylx CMC 
Uil (0) = 6 if L(o) E II Dl-rr (o<x)lb=(olb)<x CM5 
Of! (a) = a othenvise D2-rr (0 < x) I (b < y) = (0 I b) < (x II y) CM7 
UiI(X + y) = UiI(X) + uiI(Y) D3 (x + y) I z = x I z + y I z CM8 
UiI(X < y) = UiI(X) < uiI(Y) D4 

Table L Axioms of ACP with pointer update (it, #, ( E L, II c:; L, o,b E AU {6})< 

The main difference with the standard presentation is in the treatment of 
interleaving: in axioms C:0.-'I27[ C:0.-'I37[, when an action from the left component 
is executed, all pointers in the right component that refer to something outside 
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this component should be incremented. All pointers that refer to something 
internally arc unchanged. Thus, in the initial position all pointers greater than 
o arc incremented, in the second position all pointers greater than I, and so OIL 

These a"Aioms arc taken from [21, where the pointer update operator was called 
histor,1J pointer shift, which was used in order to deal with durational actions 
in ST bisimulation semantics. l\e"A'i, we present axioms for the pointer update 
operator II+ and the pointer forgetting operator ¢l in Table 2. 

Il+(x) = Il~(l(x) PIO 
Il~o(J)=J Pll 

Il~o(<>(d~if» = <>(d~ Il~:(7r» PI2 
II:}: n (-ITi) = -lTi + 1 if i > 1t PI3 
II:}:n(-ITi) = -lTi if i:S 1t PI4 
Il~o(a<x)=Il~o(a)<Il~ot'(x) PI5 
Il~o(x + y) = Il~o(x) + Il>o(y) PIG 

1)1 (<>(d~if» = <>(1) if <> E I PHI 
1)1 (a.) = a othcnvisc PH2 
1" (x + y) = 1" (x) + 1" (y) PH3 
1)I(x<y) = 1)I(x) < 1)I(y) PH4 

Table 2. Axioms of pointer update and erase (0: E L)a E AU {J}). 

An interesting property we can prove by means of structural induction for 
all closed terms over the theory of ACP with pointers is the following: 

The definition of an operational semantics by means of SOS deduction rules 
is also standard. Bv means of these rules, we define binarv relations and 
unary relations ~ von closed terms (for a E -4). Intuitively, they have the 
following meaning: 

J; J;I means that J; evolves into J;I by executing a 
J; V means that J; successfully terminates upon execution of a 

vVe present the rules in Table 3. Rules for pointer update and pointer crase 
only change something inside atomic actions, so arc not very interesting and left 
out. The rules for comIIlunication in lines 6 and 7 only hold in case a I b is defined 
to be an atomic action, so not equal to 6. The rules arc in the so-called path 
format, sec e.g. [31, from which we know that the semantics induced by the rules 
have some nice properties. 

vVe define (strong) bisimulation equivalence in the standard way, based on 
these rules. Since the rules arc in path format, bisimulation is a congruence for all 
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operators, and the set of closed terms modulo bisimulation turns into an algebra 
for the signature of ACP. 

vVe quote from [3,4] the result that the axiomatisation of Table 1 is sound 
and complete for the algebra of closed terms modulo bisimulation. Of course, 
in order to prove this, we have to update all the results that go into this proof 
in the present setting, and some things do become more difficult (for instance, 
termination of the associated term rewrite system). 

a V 

X x' 
" , X+1J-+X 

x x' 

X x' 

X x' 

, 0, 
x X)1J-+1J 

II ,,:b 'II ' x 1J-+X 1J 
, 0, 

x X)1J-+1J 

I ,,:b 'II ' x 1J-+X 1J 

X x') aft H 

Uil (x) -'+ Uil (x') 

1J 1J' 
" , X+)J-t)J 

1J 1J' 

x V 0, , )J-t)J 

II ,,:b , x )J-t)J 

x V 0, , )J-t)J 

I " : b , x )J-t)J 

)J V 

" X<)J-t)J 

x V )J V 
x II)J -'+ IJ+()J) x II)J -'+ IJ+(x) 

x V 
xlLY -'+ IJ+()J) 

x , 0 V X)1J-+ x 
0 V,)J-t V 

II ,,:b , x 1J-+X x II )J '':'.to V 
x , 0 V X)1J-+ x 

0 V,)J-t V 
I " : b , x 1J-+X x I )J '':'.to V 

x V, a <Ie II 

UiI(X) -'+ V 
Table 3. Deduction rules for ACP with pointers (a)b E A)a I b E A). 

vVe can also consider other models of the theory of ACP with pointers, such as 
a projective limit model. As of yet, we have not considered any model involving 
internal actions (7) or empty process (c-). 

The extension with iteration or more general forms of recursion is straightfor­
ward. A preliminary observation that can be made is that the pointer mechanism 
adds e"Al)ressive power. For instance, consider the process a*6 that keeps on ex­
ecuting action a (the solution of recursive equation X = a . X). The process 
a*611 b(Ttl) has infinitely many different states (even in the absence of commu­
nication), so the set of regular processes is not closed under parallel composition. 

l\ow it is time to look more closely at the mechanism of comIIlunication. 
In particular, we need to look at the mechanism that is called scope e'J:trusion 
in Tt-calculus. First of all, for the remainder of this article we suppose we have 
standard read/send communication, so the ;' function is only defined on label 
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pairs (r,s) (read, send) and given by itr,s) = i'(s,r) = c (c for comIIlunicate). 
These labels come with two parameters, a channel name and a data element. If 
'i E C is a name in a set of channel names, and d E D is a data element in a data 
set, we write Ti(f) , Si(ri), "i(f) instead of TU, (f), sU, (f), (ti, (f). The way we now 
model value passing is as follows: suppose a sender process 5 wants to send a 
particular value (4) along channel I, and the receiver process R wants to receive 
any value, and process it further. vVe put 

R = :L T1 (f) . R(f). 
dEl) 

In order to enforce comIIlunication, we encapsulate the actions in the set H = 
{r,s}. l;sing the axioms of ACP, we obtain 

and the value is passed from left to right. If we have a pointer instead of the 
channel name, it works the same way. 

vVe see that in the receiver process the value d is actually a bound variable, 
that gets replaced by the particular value (4) in comIIlunication. l\ow we consider 
the case where not a value but a pointer is passed, so we have 5 = S1 (K k)· 51. The 
receiver receives this pointer, and then IIlUSt update its pointers with the correct 
number. The way we implement this is to have a special pointer K* for a receive 
action. vVe extend the comIIlunication merge to also allow a comIIlunication 

and then need to increase all pointers in the receive process that point to the 
receive action by k. The previous example now goes as follows. 

5 = S1(1fk)· 5' 

iJlI(S II R) = "1 (Kk)· iJlI(S' II m·k(R')) 

Here, the pointer update function IT(k increments pointer 1 in the initial 
position by exactly k, and leaves other pointers unchanged. The equations of this 
update function are shown in Table 4. But we also need to change the axioms 
concerning comIIlunication, as we have introduced a new form of comIIlunication. 

So far, we have only defined communication on a matching pair of actions, 
as in 

n(7, if) I 8(7, if) = (((7, if) 

where i'(Ct"B) = (. For the new cases, it is enough to just consider send/receive 
pairs, as we show in Table 5 below. vVe add an extra parameter K*, and add 
the a"Aioms in this table to the ones of Table L The axioms CF2, C:v'I5, C:v'I7 of 
Table 1 only apply in case there is no parameter K* present. 

vVe employ two prefix operators that allow us to introduce s:ymbolic labels to 
denote communication links. These prefix (binding) operators are as introduced 
in [1]. The first prefix operator, called initialisation prcjiJ: is denoted n/v: for 
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lI;;k(7rn) =7rn + k PUl 
lI;tk(-rrm) = -rrm if mIn PU2 

lI;;k(<>(d~if» = <>(d~ lI;;k(7r» PU3 
lI;;k(o. < x) = lI;;k(o.) < 1I;;~, (x) PU4 
lI;;k(x +)J) = lI;;k(x) + lI;;k()J) PU5 

1I~(1) =m P\'l 
1I~(d) = d if d Ie 1) P\'2 

1I~(<>(d,if» = <>(lIh(d), if) P\'3 
1I~(o.<x)=II~(o.)<II~+l(x) P\'4 
1I~(x +)J) = 1I~(x) + 1I~()J) P\'5 

Table 4. Axioms of pointer update operators (0: E L U {J}, a E A). 

8l(d,7rk) I n(d,7r*) = Cj(d,7rk) 
a I b = J otherwise 
8l(d,7rk) I (n(d,7r*) < x) = Cj(d,7rk) <1I;k(x) 
0.1 (b < x) = (0.1 b) < x othenvise 
(8l(d,7rk) <x) I (n(d,7r*h,) = Cj(d~7rk) < (x 111I;k()J» 
(a. < x) I (b < )J) = (0.1 b) < (x II )J) otherwise 

CF-rrl 
CF-rr2 

CM5-rrl 
CM5-rr2 
CM7-rrl 
CM7-rr2 

Table 5. Axioms for pointer counllunication (i a pointer or data value; l a data vector; 
a., bE A 
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all actions u. It has the effect that u/v: P means to perform action u followed 
by process P such that inside P the symbolic label v refers to the unique point 
in time at which the action u happened. This prefix operator can be used to 
translate the 'new v' prefix of the 7f-calculus. The second prefix operator is 
erY (v), called inp'ut prcji'J: for 'early read', which has the effect of binding variable 
v to a value that is input. The following rules allow us to eliminate the prefix 
operators: 

nlv: P = n' IIr(p) 

er;(v): p = Ti(1f*)' IIr(p) 

vVe usc the operator II::, which has the effect of replacing a s:ymbolic label 
(v) by concrete labels (relative pointers) such as 7fU, 7fU + 1 etc., depending on 
the precise depth of the s:ymbolic label inside the process tree. The laws for this 
operator arc shown in Table 4. As for the pointer update operator, we can prove 
by means of structural induction for all closed terms over the theory of ACP 
with pointers the following identity: 

As we did in [11, we can generalize these prefix operators to the case where 
more than one initialisation or more than one input takes place. Then we get 
parallel initialisation or parallel input that is defined (in case of two items) as 
follows: 

(nlv II nlw): P = n' n' IIJ'(II1
W(P)) + n' n' II!'(IIJV(P)) 

(er;(v) II erj(w)): P = Ti(1f*)' Tj(1f*)' IIr(II1W(P)) + Tj(1f*) . Ti(1f*)' IIr(IIJV(p)) 

vVith the help of these prefix operators, we can now address the 7f-calculus 
(sec [16,15]). The main prefix operators of the 7f-calculus can be defined as 
follows: 

vv.P 

v(w).P 

v(w).P 

vlv:P 

",,(w) . P 

er~(-w): P 

l\ote that in the middle definition, 'W is not bound in P. Thus, we obtain the 
7f-calculus by forgetting about the pointer update operators (in the sense of [1]), 
using these definitions and next, adding 7 and 7-laws. vVe can say that the 7f­
calculus forgets the counting aspect of the present theory and maintains names 
modulo (l;-conversion. l\otice that an important difference with the 7f-calculus is 
that there, in case there is more than one 'new' prefix, they commute, whereas 
they do not in general, in our case (a more faithful translation is where in such 
case, we usc the parallel initialisation prefix). On the other hand, we can usc 
strong bisimulation as our notion of equivalence. The exact relation will require 
more research. 
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The definition of d'urational actions can now be easily added just like we did 
in [2]: 

i t("O) . t(d). 

3 Client Server System 

vVe describe a simple client-server system. There are two processes: a client and 
a server. The architecture of the client-server system is shown in Figure L 

Fig. 1. Client-server s:ystem 

The idea is that the server holds a certain data value do E D which is 
to be sent to the client, but first the client has to inform the server of the 
comIIlunication link to be used. In other words, the client C takes the initiative 
to establish a communication link with the server S. Once the comIIlunication 
link (v) is established, the client uses this link to listen for a data value to be 
received from the server. 

C = n/v: (s(v) . L Tv(f) . Cd) 
dEl) 

Sd = er~(w): (sw(d)' 5) 

CS = iJlI(C II Sdo) 

where again H = {s,r}. vVe assume that the remainders Cd,S do not contain 
any variables, so that II::(Cd) = Cd and II:~(S) = S. vVe proceed to calculate 
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the system CS. 

CS = iJlI(C II Sdo) 

= iJlI(n' s(;rl)· Lr~2(f)· Cd II r(1f*)' s~1(41)' 5) 
dEl) 

= n' iJlI(S(;rl)· L r~2(f)· Cd II r(1f*)' S~1 (41)·5) 
dEl) 

= n' c(;rl)· iJlI(L r~2(f)· Cd II s~2(41)' 5) 
dEl) 

= n' c(;rl)· c~2(41)' iJlI(Cdo 115) 

vVe see the system behaves as e"Al)ected. Abstracting from pointers, i.e. applying 
the operator ¢{ c} yields 

The above example can be used to illustrate the working of the pointer 
mechanism of ACP with pointers, as shown in Figure 2. The process terms are 
represented as boxes, composed by sequential composition (indicated by lines 
with a dot, going from left to right) and parallel composition (indicated by II). 
The thin lines show how each occurrence of a label, for example represented 
by 7[1 or 7[2, points backwards to an action such as n or r(7[*) that marks the 
defining occurrence of a variable. The pointer tells how many dots have to be 
skipped: for example 7[1 means to skip one dot, 7[2 means to skip two dots, 
and so OIl. The analogy with De Bruijn sequences is obvious. Figure 2 shows 
the second transition of the above calculation. The figure also explains what 
happens when a s(7[l) action and an r(7[*) action are combined into a single 
c(7[1) action: inside the subterm that sequentially follows the r(7[*) action, all 
pointers that were pointing to the r(7[*) are updated in order to make them 
point to the marked position comIIlunicated by the send action. If a pointer is 
at a distance of L'2 from the receive action r(7[*) and if the send action is at a 
distance of L1 from the defining occurence of the label then the updated pointer 
points to the action that is located L1 + L'2 steps away. 

4 Client broker server system 

vVe describe a slightly more complicated system which contains three processes: 
a client, a broker and a server. The architecture of this system is shown in 
Figure 3. 

Initially the server holds a certain data value (4) E D which must be sent 
to the client. In this example, it is assumed that initially the client does not 
know the server and conversely, the server does not know the client. The broker 
B is known to all parties, however, by means of fixed comIIlunication links 1,2. 
The server S takes the initiative by sending its own comIIlunication link 'W to 
the broker and similarly the client C sends its communication link 'U to the 
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-+ 

Fig. 2. Tlw pointm utf)(;hanism in a<;tion. 

v 

v along w 

d along v 

Fig. 3. Clifmt brokm smym systmn. 

broker. After having received both 1inks~ the broker informs the server about the 
communication link 'V of the cHent (the broker can do this since it knows 'W now). 
Now the broker h&<; perfonned its task .and returns to the idle state. Finany the 
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server sends the data value (4) to the client along the link 'U. 

C = nd'u: (s,('O)· L T,,(f)) 
dEl) 

B = (er;(w) II er~('O)):sw('O) 
Sd = n,/w: (S1 (w) . er~('O): s,,(f) 

CBS = iJlI(C II Sdo II B) 

where again H = {s,r}. 

Here we usc the parallel input prefix as explained above. It means the two 
inputs can take place in arbitrary order. The translation into ACPTt of these 
specificatioIls is as follows. 

C = n,' s,(;rl)· L T~,(d) 
dEl) 

B = T1 (1f*)' T,(1f*)' s~,(;rl) + T,(1f*)' T1 (1f*)' S~1 (1f2) 

Sd = n,' S1 (;rl). T~'(1f*)' S~1 (d) 

It is possible to calculate the specification of system CBS. vVc show this in 
the calculatioIls to follow. 

CBS = n,' iJlI(S,(;rl)· L T~,(f) II B II 5) + 
dEl) 

+ n,' iJlI(C II B II S1 (;rl). T~'(1f*)' S~1 (41)) 
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= n, . (n,' iJlI(s2(,,2)· L T~,,(fJ II B II S1 (d)· T~2("*)' S~1 (41)) 
dEl) 

+ (Ad)· iJlI(L T~2(fJ II T1 (,,*). S~1 (,,3) II 5)) 
dEl) 

+ n, . (n,' iJlI(s2(d)· L T~2(d) II B II S1 (,,2)· T~"("*)' S~1 (do)) 
dEl) 

+ C1 (d)· iJlI(C II T2("*)' s~,,(d) II T~2("*)' S~1 (dO))) 

= n,' (n,' (C2(,,2) .iJlI(LT~,,(fJ IIT1("*) ·s~1(,,4) II s1(,,2)· r~,,(,,*) ·s~1(41)) 
dEl) 

+ C1 (d)· iJlI(s2(,,3)· L T~4(fJ II T2("*)' s~,,(d) II T~2("*)' S~1 (do))) 
dEl) 

+ (Ad) . n, . iJlI(L T~,,(d) II T1 (,,*) . S~1 (,,4) II S1 (d) . T~2("*) . S~1 (41))) 
dEl) 

+ n, . (n,' (C2(d)' iJlI(L T~2(d) II T1 (,,*). S~1 (,,3) II S1 (,,3)· r~4("*)' S~1 (41)) 
dEl) 

+ C1 (,,2)· iJlI(s2(,,2)· L T~,,(fJ II T2("*)' s~4(d) II T~"("*)' S~1 (do))) 
dEl) 

+ C1 (d)· n,' iJlI(s2(d)· L T~2(d) II T2("*)' s~4(d) II T~"("*)' S~1 (do))) 
dEl) 

= n, . (n,' (C2(,,2)' C1 (,,2)· iJlI(L T~4(d) II s~,,(,,4) II T~"("*)' S~1 (41)) 
dEl) 

+ C1 (d) . C2 (,,3) . iJlI (L T ~4 (fJ II s~" (,,4) II T ~,,(,,*) . S~1 (do))) 
dEl) 

+ (Ad) . n, . C1 (d) . iJlI (L T ~4 (fJ II s~2(,,4) II T ~2("*) . S~1 (41))) 
dEl) 

+ n, . (n,' (C2 (d) . C1 (,,3) . iJlI (L T ~,,(fJ II S~4 (,,3) II T ~4 (,,*) . S~1 (41)) 
dEl) 

+ C1 (,,2) . C2 (,,2) . iJlI (L T ~,,(fJ II S~4 (,,3) II T ~4 (,,*) . S~1 (do))) 
dEl) 

+ C1 (d) . n, . C2 (d) . iJlI (L T ~2 (d) II S~4 (,,2) II T ~4 (,,*) . S~1 (do))) 
dEl) 
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= n, . (/,. (1',(,,2)· 1'1 (,,2) + 1'1 (d)· 1',(,,3)) 

·c~,,(,,4)· iJlI(~= T~5(d) II s~5(do)) 
dEl) 

+ c,(d)· n,' 1'1 (d)· c~,(,,4)· iJlI(~= T~5(f) II S~5(41))) 
dEl) 

+ n, . (/,. (Ad)· 1'1 (,,3) + 1'1 (,,2)· 1',(,,2)) 

·c~4(,,3)· iJlI(~= T~4(d) II s~4(do)) 
dEl) 

+ 1'1 (d)· n,' c,(d)· c~4(,,2)· iJlI(~= T~,,(d) II S~"(do))) 
dEl) 

= n, . (n,· (1',(,,2)· 1'1 (,,2) + 1'1 (d)· 1',(,,3)) . c~,,(,,4)· c~5(do) 

+ (Ad)· n,' 1'1 (d)· c~,(,,4)· c~5(do)) 

+ n, . (n,· (I"(d) . 1'1 (,,3) + 1'1 (,,2)· 1',(,,2))· c~4(,,3)· c~4(41) 

+ 1'1 (d)· n,' c,(d)· c~4(,,2)· C~,,(41)) 

vVe show one trace of the system in Figure 4, and the complete transition 
system, with pointers visualized in Figure 5. 

v 

v 

Fig. 4. One trace of the CBS system 
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Fig. 5. Transition system of the CBS system 

5 Mobile phone system 

We model Milner's example (Sect. 8.2 in [15]: Mobile phoncs, pp.80-83). The 
architecture of the mobile phone system is shown in Figure 6. There arc four 
processes: a car) a central controller and two transmitters. 

talk2,switch2 
along losel 

talk1,switchl 
along gainl 

talk2,switch2 
along gain2 

Fig. 6. Mobile phone system 
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There are several communication links, identified by variables talk1 , gain1, 
switch1, lose1, talk], gain], switch2, and lose2. The idea is that the transmitter 
Trans is a kind of base station which knows the comunication links "talk' and 
"switch' that can be used to comIIlunicate with the car. The transmitter also 
knows the ports "gain' and "lose' to be used for comIIlunicating with the central 
controller, called Controll (if it is in its first state) or Control2 (otherwise). The 
transmitter receives contentless messages from the car via "talk'. If the trans­
mitter receives via "lose' a command from the central controller, it informs (via 
"switch') the car of the new "talk' and "switch' ports (t and s) to be used. After 
this, the transmitter goes into the idle state. In the idle state, if the transmitter 
receives the "gain' command from the central controller, this means that the 
transmitter is informed of the new "talk' and "switch' ports to be used next. 

First we give the defining equations of the car and the transmitter. Process 
names are parameterised: Car has two parameters, Trans has four parameters 
and Idtrans (the transmitter in its idle state) has two parameters. 

Cartalk,;;witch = Stalk(do)' Cartalk,;;witch 

+er:witch (t): (er:witch (s): Car [,Ii) 

Idtransgaill,lo;;c = er;aill (t): (er;aill (s): Trans [,Ii,gaill,lo;;c) 

TranStalk,;;witch,gaill,lo;;c = 'rtalk((4))· TranStalk,;;witch,gaill,lo;;c 

+ erk);;(, (t): (erk);;(, (s): (S;;witch (t).S;;witch (s) .Idtransgaill,lo;;c)) 

Our equations are almost a direct translation of :VfIilner's example, except for 
the fact that we do not convey two or more comIIlunication links in a single 
step. So instead of, for example, er~vitch (t, s): ( ... ) we use two steps, writing 
er;,vilch (t): (er;,vild, (s): ( ... )). 

l\ext we give the remaining equations. Carl and Car2 represent the two 
distinct states of the car. Similarly Controll and Control2 represent the two 
distinct states of the controller. 



Carl = Cartallq,;;witdI1 

Car2 = Car talk::l,;;witch::l 
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TransA = TranStallq ,;;witdI1 ,gaill1 ,10;;c1 

TransB = TranStalk::l,;;witch::l,gaill::l,lo;;c::l 

IdtransA = Idtrans gaill1 ,10;;c1 

IdtransB = Idtransgaill::l,lo;;c::l 

Controll = 810;;('1 (talk2)· 810;;c1 (switch2)· 

8gaill::l(talk2)· 8gaill::l(switch2)· Control2 

Control2 = 810;;('::l (talk1 ) . 810;;c::l (switch1) . 

8gaill 1 (talk1) . 8gaill1 (switch1) . Controll 

MPSl = iJlI((n/talk1 II n/switch1 II n/gain1 II n/lose1 II 
n/talk, II n/switch, II n/gain, II n/lose,): 

(Carl II TransA II IdtransB II Controll)) 

vVhere H is defined in the usual way. vVe usc here the parallel initialisation 
prefix, denoting that these initialisations can take place in arbitrary order. In 
the following calculations, we fix one such order, given by the textual order. 

vVe usc some obvious shorthands, such as ii/talk1 .. lose2, which is an abbre­
viation for n/talk1 II n/switch1 II n/gain1 II n/lose1 II n/talk, II n/switch, II 
n/gain2 II n/lose2. l;sing this we can perform a number of rewritings, one for 
each name introduction. 

MPSl = iJlI(iT/talk1 .. Iose,: 

= n····· n ·au 
'--v--' 
8 times 

Cartalk1,;;witdI1 
II TranStalk1 ,;;witdI1 ,gaill1 ,10;;c1 
IIIdtransgaill::l,IO;;('::l 
II 810;;c1 (talk2).810;;('1 (switch2) 

.8gaill::l(talk2).8gaill::l(switch2) 
. Control2 

where 1I:~1I~: 5,10;;('::l (ControI2) abbreviateslI:~lk1 ( 1I~;vitdI1 ( lIf~ill1 ( 1I;0;;c1 ( lI~alk::l ( 
lI~witdl::l( 1I(7aill ::l( 1I;0;;('::l(ControI2)))))))). The effect is that symbolic labels arc 
replaced by pointers, which (for the top-lew,1 of the II construct) means that the 
substitutions arc given by the following table: 
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talk1 7[8 
switd11 7[7 
gain1 7[6 
lose1 7[5 
talk2 7[4 
switch2 7[3 
gain2 7[2 
lose2 7[1 

At this point, a real comIIlunication step can be performed. Basically, there is 
the following behaviour: any number of talk comIIlunications can be executed, 
and at each point in this sequence, a hand-over procedure can be started. vVe 
will write out part of the system, where the handover procedure starts before 
the first talk action. 

Following the talk comIIlunication cr,8((4)), another one is possible, then de­
noted as cr,9(do), or, alternatively, the handover procedure is started, then de­
noted by cr,o(7[5). Here, we show the state of the system after immediate han­
dover initiation, by cr,5(7[4). 

The entire sequence of events during handover is shown in Figure 7. Our 
calculations have reached the point immediately before the first message that is 
labeled C10M'1 (talk2). 

After the handover procedure, a new series of talk comIIlunications can be 
started, but alternatively, immediately a new handover procedun: can be started. 
vVe show a message sequence chart showing this in Figure 8. 

vVe do not show the complete calculations here, but instead, show the transi­
tion system of the complete system. In Figure 9, the two states that are filled in 
solid correspond, with all I-indexed actions replaced by 2-indexed actions and 
vice versa: in the uppermost state, talk1-actions can be started, in the other one, 
talk::l-actions. Similarly, the two states marked with a cross are related, and the 
two states with a thicker circle. Thus, the complete behaviour of the system is 
exhibited. 
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I car I I trans II 
I mitter I 

II trans ~I 
Imitter 2 I control I 

I I I 
< Transl > <Idtrans2> <Control I> 

loop) Ctl 

clI(t2 ) 

011(52 ) 

c,l(t2 ) 

c,l(s2 ) 
cq,(t2) 
c.,(s2) 

<Idtransl> < Trans2 > <Control2 

Fig. 7. Sequence of events during hand~over 

I car I I trans-II 
I mitter I 

II trans- ~I 
Imitter 2 I control I 

I I 
<IdtransD < Trans2 > <ControI2> 

loop) Ct, 

Ci,(tl) 

01,(51 ) 
c.l(tl) 
c.,(sl) 

c,,(tl) 
c,,(sl) 

< Transl > <Idtrans2> <Controll 
I I 

Fig. 8. Sequence of events during haIld~over (continued) 

6 Conclusion 

vVe have seen we have introduced a process algebra t hat can handle aspect s 
of mobile processes and mobile comIIlunication links. Secondly, thS we e}.l)ected, 
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t2 losel goinl switchl talkl 

Cil(s2) C92(t2) C92(S2) Ci2(tl) Ci2(t2) 

talk2 

Fig. 9. Transition system of mobile phone system 

the formalism is operating OIl a level which is better suited for tool supported 
calculatioIls that for manual calculatioIls. This article can further understand­
ing of calculi for mobility, and can further implementatioIls and further work 
concerning such calculi. 
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