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Abstract. We present a process algebra for maobile processes without
bound or free variables. Instead, pointers are used, that refer back f0 an
action executed in the history of a process. The situation is comparable
to a presentation of the A-calculus with De Bruijn indices.
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1 Introduction

For some fime now, there is research on process algebras that can deal with
mobility of proecesses and eommunication links. Most of this research centres
around the m-calculus (see [16], a nice introduction is [15]). An essential part of
the w-calculus is the use of free and bound variables, different forms of variable
hinding, a-conversion, scope extrusion. This makes it difficult to understand for
some, and makes implementations hard. In this paper, we develop a process
algebra that can deal with mobility, that does not use variables. Instead, we
use potnters, also called history pointers or step counters. A pointer i a natural
number n, and refers back to an action that happened n steps ago in the history
of the process that is being executed. Such history pointers have come up in the
study of process algebras with a refinement operator (stated differently, a process
algebra with durational actions). see e.g. [10. 2], dating back to work on causal
trees, see [11]. In this paper, we develop a process algebra with pointers in full,
show some hasic results, and provide some examples that show how mohility of
processes and communication links can be handled.

The advantage of our approach is that we are still within the familiar frame-
work of process algebra, and not in a caleulus with variable binding construcis.
Thus, we can use standard reasoning and techniques. For instance, we can work
in the setiing of strong hisimulation equivalence, or we can consider a projective
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limit model, with finite approximations of infinite hchaviour. We can use struc-
tured operational semantics, and standazd results from this azea. A disadvantage
is that we do not know how to freat silent steps or forms of weak hisimulation
equivalence in our setting.

The introduction of numbers in the place of variables s comparable 1o a
presentation of the A-calculus with De Bruiin indices or nameless dummies, see
[9]. Also there, numbers are used that point back in a torm (or tree). These
indices were introduced in 1972 for the automatic manipulation of terms needed
in the implementation of the proof checker Automath (see [17], this statement
is quoted from [5], page 579). Use of free and bound variables remains difficult
around a-conversion when doing substitutions, see e.g. [6] page 126. De Bruijn
indices still play an important role in the theory and practice of the A-calculus
and funetional programming. Some references are [18,14,19,12,13].

The only reference to the use of De Bruijn indices in the x-caleulus we could
find is [20], where they were used m the mmplementation of the Mohility Work-
bench. However, no theoretical treatment is provided.

1.1 Acknowledgement
The authors gratefully acknowledge the help of Tijn Borghuis (Techn. Univ.

Eindhoven),

2 ACP with Pointers

We start out from the well-known theory ACP [7.4], slightly modified along the
lines of [2] in order to deal with pointer updates. The signature of ACP contains
the following ingredients:

— A given finite set of action labels L with typical elements o, 5, ...

— Atomic actions aldy,....dy,7i, ..., 7iy), abbreviated a(d, @) consist of an
action label and a namber of parameters. First of all, there can be a number
of data parameters dy, ..., dp. Then, there can be a number of pointers 74,

for a natural number 4. In order 1o distinguish pointers from other numbers
that might occur in terms, we precede them by the letter 7. Two pointers
are the same if they have the same number. Two pointer sequonces are egual
if they have the same length and consist of the same elements. The set of
atomic actions Acf is ranged over by letters a.b,. . .

— A constant inection denoted 6 (not an atomic action). This constant is the
newtral element of alternative composition. This process disallows termina-
tion, so can be wsed o denote deadlock behaviour, It doesn™® take parame-
ters, 1.e. for each parameter sequence, 4 {(f 7} denotes 6.

— A binary operator alternative composition or choice, denoted +. Choice is
resolved by the execution of an action.

— A binary operator sequential composition, denoted -
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— A binary operator parallel composition or merge, denoted || In a parallel
composition, one of the components executes an action, or more than one
component execute an action together, a communication action. The merge
is axiomatised using two auxiliary operators: left merge, denoted ||, and
communication merge, denoted | . Communication on action labels is given
by a partial, commutative and associative function v, considered to be a
parameter of the theory. Atomie actions can only communicate if they have
the same paramoeters.

A unary operator encapsuletion, denoted Oy, that blocks the execution of

atomie actions with a label from the parameter set H C L. It is used to

encapsulate communicating actions from the environment.

— The pointer shift operator I will update all pointers, when an action is
execuied in a parallel component. It is axiomatized using auxiliary operators
II7,,, for natural numbers 1.

— The pointer forgetting operator ¢ will forget all pointers of actions with
labels in I C L.

Factiona € A s of the form e = a'((f,, 7}, then the label of @ is o, expressed
as L{a) = a. Of all operators, sequential composition binds the strongest, and
alternative composition the weakest. The other operators are not ranked. The
axioms of ACP are well-known, and given for easy reference in Table 1. In order
t0 save on the number of axioms, we enforce commutativity of communieagion
mezrge from the start {we have no need to consider models where this does not
hold, anyway). We use the presentation and naming of axioms of [8].

Y=yt Al ald,®)| B(d,®) = C(d ®) if (o, 8y = ¢ CF1
z++e=x+(y+2) A2 alb=§ otherwise CF2
rtr=x A3
ety z=x-24y -z Al zlly=zly+ulc+zly M1
(z-y)-z=z {y 2z Ad alle=a-HM ) CM 2
8= A6 (oaMly=a (|| T y) CM 3
dx=4 AT (z+ypllz=zllz+yll 2 CM4
zly=ylz CMC
Opla)y=8if Liay e H Dix f(a-z)|b={alb)-x M3
dyia) — a otherwise D2x  (a-z2)|{b-gy=(alb}-{x|l#) CM7
Ole+y =iy +ulyy DI (z+yilz=zlz+ylz CM8

Oxlac -y} = Al - Du (31) D4

Table 1. Axioms of ACP with pointer update (o, 5,{ € L, HC L, a,b € AU{4}).

The main difference with the standard presentation is in the freatment of
interleaving: in axioms CM2x CM37, when an action from the left component
iz executed, all pointers in the right component that refer to something outside
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this component should he incremented. All pointers that refer to something
internally are unchanged. Thus, in the initial position all pointers greater than
¢ are incremented, in the second position all pointers greater than 1, and so on.
These axioms are taken from [2], where the pointer update operator was called
history pointer shift, which was used in order to deal with durational actions
in ST hisimulation semantics. Next, we present axioms for the pointer update
operator [I7 and the pointer forgetting operator ¢y in Table 2.

I+ () = I () PLO
15,0 = 8 oy
Himn ((3‘{{? )= (k(cz Hin (=) P2
I (wi) = wi+ 1 i i > n PI3

H%:ﬁ(ar-w)zﬂ;‘”i{a)-ﬂ;“ﬁn () PI5
Ol (e4+y)= O, (z}+ I {y) PIo

¢rlald, 7)) = ald) facT PHI
¢r{a) = o otherwise PH2
e +y) = driz)+ drly) PH3
drie-y) = drle) - drly) PH4

Table 2. Axioms of pointer update and erase (o € L,a € AU {4}).

An interesting properiy we can prove by means of structural induction for
all closed terms over the theory of ACP with pointers is the following:

O Ly = O, () || T ).

The definition of an operational semantics by means of SOS deduetion rules
is also standard. By means of these rules, we define binary relations . 5 . and
wnary relations . % \/ on closed torms (for @ € A). Intuitively, they have the
following meaning:

G, . .
— & - & means that z evolves into &7 by executing a
a4, . .
— a - o/ means that o successfully terminates upon execution of o

We present the rules in Table 3. Rules for pointer update and pointer erase
only change something inside atomic actions, 80 are not very interesting and left
out. The rules for communication in fines 6 and 7 only hold in case a| & is defined
to be an atomic action, so not equal to 4. The rules are in the so-called path
format, see e.g. [3], from which we know that the semantics induced by the rules
have some nice properties.

We define (strong) bisimulation equivalence in the standard way, based on
these rules. Since the rules are in path format, bisimulation is a congruence for all
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operators, and the set of closed terms modulo bisimulation furns into an algebra,
for the signature of ACP,

We quote from [3,4] the resalt that the axiomatisation of Table 1 is sound
and complete for the algebra of closed terms modulo hisimulation. Of course,
in order to prove this, we have to update all the results that go into this proof
in the present setting, and some things do become more difficult (for instance,
termination of the associated term rewrite system).

z =’ ¥y z 2y =
z+y Tty -y x4y Ty
& =i &
oy oy Ty -y
= vy T ¥
slly=a [Ty zlly =0 @y zliy = M) 2y T
P z
ally = || Ty zlly = Ty
eSSy eSSy aSd Sy eSSy
oy ey clly™'2 allySy
ehd yhy e S uny 25 gy hy e H DY
wly N |y ely Sy oy oy v
5, 0 H x5, 0g H
Ay lx) = Byl Ay lr) =

Table 3. Deduction rules for ACP with pointers (a, b€ A,albg A).

We can also consider other models of the theory of ACP with pointers, such as
a projective limit model. As of yet, we have not considered any model involving
nternal actions (7) or empty process {e).

The extension with iteration or more general forms of recursion is straightfor-
ward. A preliminary observation that can be made is that the pointer mechanism
adds expressive power. For instance, consider the process a*d that keeps on ex-
ecuting action a {the solution of recursive equation X = o« X). The process
a*d || 8(x1} has infinitely many differont states (even in the absence of commu-
nication}, so the set of regular processes is not closed under parallel composition.

Now it 18 time to look more closely at the mechanism of communication.
I particulaz, we need to look at the mechanism that is called scope extrusion
in w-calculus. First of all, for the romaindor of this article we suppose we have
standard read/send communication, so the v function is only defined on label
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pairs (r.3) (read. send) and given by v{r. 8) = v{s.r} = ¢ {¢ for communicate).
These labels come with two parameters, a channel name and a data element. If
i € (7is a name in a set of channel names, and d € D is a data element in a daga
set, we write r:{d), (). ci{d) instead of r(4, d), s(i. ). c{i. d}. The way we now
model value passing is as follows: suppose a sender process S wants to send a
particular value dy along channel 1, and the receiver process R wants 10 receive
any value, and process it further. We put

S=s{dy)- S  R=> rid-Rd
deh

In order to enforce communication, we encapsulate the actions in the set H =
{r,s}. Using the axioms of ACP, we obtain

T (S]] By = ¢1(dy) - Ip (S || R(dy)).

and the value s passed from left o right. If we have a pointer instead of the
channel name, it works the same way.

We see that in the receiver process the value d s actually a bound variable,
that gets replaced by the particular value dy in communication. Now we consider
the case where not a value but a pointer is passed. so we have § = 3, (wk)-S'. The
receiver receives this pointer, and then must update its pointers with the correct
number. The way we implement this is to have a special pointer 7+ for a receive
action. We extend the communication merge to also allow a communication

sy (rky Pry(as) = ¢y (wk)

and then need to increase all pointers in the receive process that point to the
receive action by k. The previous example now goes as follows,

S =5 (xk) - 5 R = (s} R
Oui{S || B) = er{nk) - (‘3;‘;‘(8! I Hr"(}%’))

Here, the pointer update function I ¥ increments pointer 1 in the mitial
position by exactly k, and leaves other pointers unchanged. The equations of this
update function are shown in Table 4. But we also need to change the axioms
concerning commumication, as we have introduced a new form of communication.

So far, we have only defined communication on a matching pair of actions,
as in

ol d. #) | A(d. 7) = ((d. %)
where v{a., #) = (. For the new cases, i is enough to just consider send /recetve
pairs, as wo show in Table 5 below. We add an extra parametor 7+, and add
the axioms in this table to the ones of Table 1. The axioms CF2, OM5, CMT of
Table 1 only apply in case there is no parameter «w+ present.

We employ two prefix operators that allow us to introduce symbolic labels to
denote communication links. These prefix {(binding) operators are as introduced
n [1]. The first prefix operator, called indtialisation prefiz s denoted nfv; for
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I (mn) =an+ k P
I (wm) = wm ifm #£ n ruz

T old 7)) = ald, TF(x)  PU3
H;f“_k(a, ‘)= H;fi”{a) . E-;m's (“,:) PU4
I (e +y) = T (2) + () PUS

Hy{o) = wn PVl
Hydy =difd £ v Pv2
Itald, &) = a(Hg(d), # PV3

H;é(a. cx) = H;l(a) KH;{%-;‘(J:) PV4
e+ ) = I () + I {y) PVi

Table 4. Axioms of pointer update operators {a € LU {d},a € A).

sifd, k) | rld, wx) = eild, k) CFnt
al|b = 4§ otherwise CFx2
seld, wk) | (re(d, ws) - a) = egld, k) - I () Ml
al{b-z) = {a|b} -z otherwise CMbn2
(520 7)) | (o m0) - ) = euldh) - (2 || TTF(y)) CM7t
{a-x)|hy)="{a|b)-{x || ¥) otherwise CM7r2

Table 5. Axioms for pointer communication {2 a pointer or daga value, d a data vector,
a.be A
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all actions ni. Tt has the effect that n/v; P means to perform action n followed
by process PP such that inside P the symbolic label » refers to the unigue point
in time at which the action n happened. This prefix operator can be used o
translate the new o prefix of the a-calculus. The sccond prefix operator is
er? (v), called input prefiz for *early read’, which has the effect of binding variable
¢ 1o a value that is input. The foliowing rules allow us to eliminate the prefix
oporators:

nju P o=n- H7{P)
erf{vy P = y{nx) I (P)

We use the operator 1, which has the effect of replacing a symbolic label
{} by concrete labels (relative pointers) such as 7, an + 1 et¢., depending on
the precise depth of the symbolic label inside the process tree. The laws for this
operator are shown in Table 4. As for the pointer update operator, we can prove
by means of structural induction for all closed terms over the theory of ACP
with pointers the following identity:

e ly) = ) || I(y).

As we did in [1], we can generalize these prefix operators to the case where
more than one initialisation or more than one input takes place. Then we got
paraliel nitialisation or parallel input that is defined (in case of two tems) as
follows:

(nfollnfwy P =y on I (PY) +nn - OV (P))
(erF (v} || erF(w)y; P = ri(ms) - vy (me) - HY(ITE(PY) + r3(ms) - rilms) - TP (P))

With the help of these prefix operators, we can now address the wm-calculus
{see [16,15]). The main prefix operators of the w-caleculus can be defined as
foliows:

fe:f
vo.PE oy o P
o le:f N
o(w).PE s (w) - P
| le:f Y
v{w).P = eri{w); P

Note that in the middie definition, w is not bound in P. Thus, we obfain the
#-caleulus by forgetting about the pointer update operators (in the sense of [1}},
using these dofinitions and next, adding 7 and 7-laws. We can say that the a-
calculus forgets the counting aspect of the present theory and mainfains names
modulo a-conversion. Notice that an important difference with the m-caleulus is
that there, in case there is more than one ‘now’ prefix, they commute, whereas
they do not in general, in our case (o more faithful translation is where in such
case, we use the parallel initialisation prefix). On the other hand, we can use
strong bisimulagion as our notion of equivalence. The exact relation will reguire
more research,
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The definition of durational actions can now be easily added just like we did
m [2]:

P H(x0) - t(x1).

3 Client Server System

We describe a simple client-server system. There are two processes: a client and
a server. The architecture of the client-server system is shown in Figure 1.

dy along v

Fig. 1. Client-server system

The idea is that the server holds a certain data value dy € ID which is
to be sent to the client, but first the client has ¢ inform the server of the
communication link to be used. In other words, the client € takes the initiative
to establish a communication link with the server 5. Once the eommunication
link {v) is established, the client uses this link to Hsten for a data value to he
received from the server,

O = nfr {s{w) - Z rold) - Cg)
ded
Sy = erﬁ{w}:’ {8 {(ﬂ) - 5)

C8 = g (C || Sy, )

whoere again H = {s,r}. We assume that the remainders Cy, S do not contain

any variables, so that IIN(Cy) = Cy and II5(S) = §. We proceed to calculate
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the system C5.

O8 = Oy (C ] Sy, )
= dy{n - s{zl)- Z rea(d) - Cg || r{mwx) - sz1(do} - 5)

oyt
= Jp(s(al) Y raa(d) - Cy || rme) - sa1(da) - 5)
ey
=n-e(xl) ‘5#{(2 rrofd) - Cy || sz2ldp) - S)
er

E

- o(ml) - exa(de) - Fu(Cy, || S)

We see the system behaves as expected. Abstracting from pointers, i.e. applying
the operator ¢y vields

Sro(C8y = n e} cldy) - Sy (On(Cy, | 1)

The above example can be used to illustrate the working of the pointer
mechanism of ACP with pointers, as shown in Figure 2. The process terms are
represented as boxes, composed by sequential composition (indicated by lines
with a dot, going from left to right) and parallel composition {indicated by |).
The thin lines show how each occurrence of a label, for example represented
by #l or 72, points backwards to an action such as 1 or r{7=) that marks the
defining occurrence of a variable. The pointer tells how many dots have to be
skipped: for example 71 means to skip one dot, 72 means to skip two dots,
and so on. The analogy with De Bruijn sequences is obvicus. Figure 2 shows
the second transition of the above calculation. The figure also explains what
happens when a s(x1) action and an v{7#) action are combined into a single
c{wl) action: mside the subterm that sequentially follows the r{w) action, all
pointers that were pointing to the r{7+) are updated in order to make them
point to the marked position communicated by the send action. If a poinger is
at o distance of Ly from the receive action r(a%) and if the send action is at a
distance of L, from the defining occurence of the label then the updated pointer
points 1o the action that is located Ly + Lo steps away.

4 Client broker server gystem

We describe a slightly more complicated system which contains three processes:
a client, a broker and a server. The architecture of this system is shown in
Figure 3.

Initially the server holds a cortain data vwalue dy € D which must be sent
t0 the client. In this example, 1t is assumed that initially the client does not
know the server and conversely, the server does not know the client. The hroker
B i3 known to all parties, however, by means of fixed communication links 1.2
The server § takes the initiative hy sending its own communication link w to
the broker and similarly the client  sends #s communication link » to the
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H S@ ez @

N
—{» -

— r(n*} = 5@(d0) % 5
W

2, ré(d) . ¢

L @R

— 5@(.d0) 2 5
|

L1+L2

Fig. 2. The pointer mechanism in action.

v along w

Fig. 3. Client broker server system.

broker. After having received both links, the broker informs the server about the
communication link » of the client {the broker can do this since it knows w now).
Now the broker has performed its task and returns 1o the idle state, Finally the
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server sends the data value dy to the client along the link ¢

C = o {sp{w) - Z ru{d))
deD
B = (erf{w) || erj{v)); su{v)
Sy = ngfun {1 {w) - ery (v); 8,{d)
CBS = 3y (C || Sa, || B)

i

i

whoere again H = {s,r}.

Here we use the parallel input prefix as explained above. It means the two
inputs can take place in arbitrary order. The translation into ACPx of these
specifications is as follows.

= ng- so{nl)- Z reatd)

dED
B =y (mx) - ra(mx) - sea(ml) +ra{ms) - ri(ax) - 3o (72)
Sa =n, - s1{(w1) - reolas) s {d)

E

It is possible to calculate the specification of system CBS. We show this in
the calculations to follow.

CBS = Tle - aﬁ{&'g{’f{l} . z ’f‘?i-:g{(f} EE B H S) +
deD
+ g O (C ] B[ s1(ml) - raalmx) - s21{dp))



= e

+ g

=}l -

+ g

B L

A+ 1rg -

Process Algebra with Pointers 13

(”s COpl{sa(w2) - Z resld) | B | si{al) crep(ms) 52 (ds))

de)

+ oo (1) - B (> reald) [ (7%) - 871 (73) ] 5’))
dED

(n« - Jpr(s2(ml}- Z raea{d) || B || 1(72) - rrs(a*) - s71(do))
dir i)

e (wly - O (C || ralms) - s (71 || rea(ms) - 52 (fiaxj))
(nw (Cf:z{?ff’-’) ~ 33;;(2 ras(d) [ ri(ms) - s {md) || s1(n2} - roslms) - s21(da))
de

+er(nl) - G (sa(nd) - Z rrea(d) [l ra(ms) - sog(m1) || i@} - 8m {fi(a}))
de

Fep(al)n, - O (> ras(d) [ () - s (7 d) || 50 (71 - ran(mx) - 50 {da)))
def)

(-’:‘a<;~ (ﬂu{ﬁl} : (‘3;;(2 ra2(d) || ri(ms) - 520 {78) || 51 (78) - rralms) - s71{da))
deb
+er(n2) - plsa(a2) - Y raald) [ ra(ms) - sea(a ) || rrals) - 5m {rie}))
deD

e (ml) e Fplsa(w1) Y reld) | ralme) - saa(ml) || ras(me) - s {de)))
ded)

(ug- (cz{ﬁ"?f) cer(m2) - B (Y raald) || sen(md) [ rea{me) s (do)

deb

+ e (1) - ex(w3) - T (> raald) || seal(nd) || ras(ms) - 52 {de}))
de i)

+ep(ml} ng - er{wl) '@H{Z rrald) || sa(md) || raalms) - sa {U’G)\))
del)

(uc- (cz{ﬁ"l) cer{m3) O (O3 reald) || sea(w3) | rea(me) - 501 (dy))

deb

+e1(72) - e {m2) - Op Z Trsld) || 524 (73) || raalms) - 551 {de)))
dED

doep{mly-nie - eodrl) - af'{{z Tao(d) || 524 (72) || rra (75} - 501 {rig}))
deD
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= 1, (ng Aep(w2y o (w72) 4 e (7l eow8Y)

g (74) - O (> ras(d) | 52aldo))
deD

Foeplrl) ong e (w1} cpnlad) - g z ras(d) || ‘i~){d(3)})
de)

b gl (n(; Aeo{wl) - e (7B) 4+ e1(72) - (7 2})

Cra{T3) - (‘3;;{2 Tra(d) || 874 (do))
deD

+e{ml) ne - co(ml) - epa(72) 3#{(2 reafd) || 523 {(i(s)))
deD
=91 0 (R fea(w2) - e (72 + ey {wly - col®@d)) - can(mdd - o (da)
+eof{ml) cng (w1} epa(wd) - crside))
Forg s (e {ea(wl) - ep(w3) + e (72) - ea(w2)) - g (73) -« epa(da)
+o{ml) ng - ea(ml) e (72) - erald)}

We show one trace of the system in Figure 4, and the complete transition
system, with pointors visualized in Figure 5.

1

> |
H
o
P
@
[

co @A TS o)

——
—
=L

Fig. 4. One trace of the CBS system
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Fig. 5. Transition system of the UBS system

5 Mobile phone system

15

We model Milner’s example (Sect. 8.2 in [15]: Mobile phones, pp.80-83). The
architecture of the mobile phone system is shown in Figure 6. There are four

processes: a ear, a central controller and two transmitters.

talky, switch,
along switchs

talks, switch:
along switchy

talky, switch;
along lose:

talkz, switchz
along lose;

talkz, switchz
along gainz

talk;, switchi
along gaing

Fig. 6. Mobile phone system
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There are several communicagion links, identified hy variables talky, gaing,
switchy, losey, talky, gaing, switcho, and losey. The idea s that the transmitter
Trans s a kind of base station which knows the comunication links “talk’ and
‘switeh’ that can be used to communiecate with the car. The transmitter also
knows the ports “gain’ and ‘lose’ to be wsed for communicating with the central
controller, called Controll (if it is m its first state) or Control2 (otherwise). The
transmitter receives contentless messages from the car via ‘talld. If the trans-
mitter receives via ‘lose’ a command from the contral controller, it informs {via,
‘switch’) the car of the new “talk’ and ‘switch’ ports (£ and 5) to be used. After
this, the transmitter goes into the idle state. In the idle state, if the transmitter
receives the ‘gain’ command from the central controller, this means that the
transmitter is informed of the new “falk’ and ‘switch’ ports to be used next.

First we give the defining equations of the car and the transmitter. Process
names are parameterised: Car has two parametors, Trans has four parameters
and Idtrans (the transmitter in its idle state) has two parameters.

C?ﬁ'talk,swiu:}l = Sta]k{dﬁ\) : C?ﬁ'ialk,snﬁuth
+ef§t’v}1<:h (t) (ef;rwit(':h {3} Car !;8)
Idtransgain lose = €Fg., (£): (€70, (81 Trans ¢ gain lose )
Tz'afns1alk,sLﬁt{:h,gain,luset = 7’1&]](((&1\} : Tmﬁ}stalk,mﬁi<:h,gain,](‘mw

- er]f;;,-g{t)? {erﬁ),\,‘{‘,(s); {35%'11(':11 {t\}-sxwiu':h (3)-I‘?{ﬁ'?ﬁ‘isgain,](‘mz)\)

Our equations are almost a direct translation of Milner’s example, except for
the fact that we do not convey two or more communication links in a single
step. So instead of, for example, erl, ;. (£.5):{...} we use two steps, writing

er;swii(:h{t};- {er;?‘w}{{:h (3) ( . },}

Next we give the remaining equations. Carl and Car? represent the two
distinet states of the car. Similarly Controll and Control2 represent the two
distinet states of the controller,
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Carl = Ca’rt;a]]q,;swi{(:}n
Car2 = GELI-Ta”{g,;)‘U\-’H(Thg
TransA = Transcak, switeh gaing loser
TransB = Tz'aﬂsta]kg,mﬁi(zhg,gaing,l(mtg
IdtransA = Idtrans gaing Joses
IdtransB = Idtrans gain, toses
Controll = 8450, (talke) - S14s0, (switcha) -
Sgaing (Talky ) Sgain, (switchy ) - Control2
Control? = 850, (talky ) - S1ose, (Switchy) -
Sgain, (Falky } - $gain, (switchy ) - Controll
MPS1 = dy{(n/talky || n/switchy || n/gain; || n/lose; ||
n/talky || n/switchy || n/gaing || n/losey);
{Carl || TransA || IdtransB || Control1}}

Where H is defined in the usual way., We use here the parallel initialisation
prefix, denoting that these initialisations can take place in arbitrary order. In
the following ealeulations, we fix one such order, given by the textual order.

We use some obvious shorthands, such as 7 /talky .. loses, which is an abbre-
viation for niftalky || n/switchy || n/fgain; || n/flose; || n/talky || n/switchy ||
n/gainy || n/loses. Using this we can perform a number of rewritings, one for
each name introduction.

Cartan, switeh,
H Transiaik, switch gaing lose
|| Tdtransgaing loses
IF $10mes (talky ). $105e, (switehy }
- Sgaing (Falky ). Sgaing (switchy )

MPS1 = Jy(#/talky . loses:

. Control2
G?;I,I'qg}ﬁ-y
[} Tramsg =7 w6,
=g -G | || Idtrans,o .1
8 times | $ws{md} - $za(md} - $7a{76) - $25(76)

talks o loses
IR (C(mé:m 2}

Wizfezc H“‘““ - loses {COEEHG 2) @b?)wm@t(‘s H“‘““ ( H“““ b H]gg’“” ( H'“““ ( H“‘“‘“{

zepl@eed by po;z;tezb_, which {§01 the top- §ewl o§ the I (;Giibtlijti} means t?m‘c the
substitutions are given by the bllowing table:
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talky  |#8
switchy |#7
gain; |76
lose,  |@wh
talky, |w4
switchy|m3
gaing |72
losey,  |wl

At this point, a real communication step can be performed. Basically, there is
the following behaviour: any number of talk commumications can be executed,
and at each point in this sequence, a hand-over procedure can be started. We
will write out part of the system. where the handover procedure starts before
the first talk action.

C?i{';e;g}ﬁq
| Transas o7, 7,75
MPS1 =" - 0y | || Idtrans,)
| sas(md) - sa6i{md) - 554(76). 855 (70}
TR 1% Control2)

=u® - { eraldo) - ...+

Carry o
e | ree{m=) - 520(76) - so10{n2) - Idtrans 1o, 70
('4?'“5{“4} " On H E(‘it{'mlsn—g;i—z

| Sea(m4) - 574(76) - 5,5 (76) - T 15 (Control2)

Following the talk communication c.4(dy), another one is possible, then de-
noted as i {dn). or, alternatively, the handover procedure is started, then de-
noted hy cra(75). Here, we show the state of the system after immediate han-
dover imitiation, by ceq(7d}.

L

The entire sequence of events during handover is shown in Figure 7. Owr
calculations have reached the point immediately hefore the first message that is
laheled cse, (talks}.

After the handover procedure, a new series of talk communications can be
started, hut alternatively, immediately a new handover procedure can be started.
We show a message sequence chart showing this in Figure 8.

We do not show the complete caleulations here, hut instead, show the transi-
tion system of the complete system. In Figure 9, the two states that are filled in
soliel eorrespond, with all 1-indexed actions replaced hy Z-indexed actions and
vice versa: in the uppermost state, talk,-actions can be started, in the other one,
talkg-actions. Similarly, the two states marked with a cross are related, and the
two states with a thicker circle. Thus, the complete behaviour of the system is
exhibited.
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car trans- trans- control
mi‘r‘rler' 1 mi‘r‘rler' 2 |
{ Transl > <{Tdtrans2) <Coniroll>
Ioop / CTZ
B C;I(TZ )
- ci(s2)
ca(t2) +2
_ Csi(s2) “ cel(t2)
- | Cgi(s2)

{Tdtranst> € Trans2 > <Lontrol2)

Pz

Fig. 7. Sequence of events during hand-over

trans-
mitter 2

trans-
mitter 1

] | ]
{IdiransD> < Trans? > <Conirol2y

loop ) Cta

car control

ci(t1)
_ cp(st)
)
) Cos1)
es(t1) [
Css(s1)

F 3

& Transl > Tdirans2)> <Controll)

o

Fig. 8. Sequence of events during hand-over (continued)

6 Conclusion

We have seen we have miroduced a process algebra that can handle aspects
of mohile processes and mobile commumication links. Secondly, as we expected,
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i2 g2 52 t2 _lesel gainl switchl talkl

Fig. 9. Transition system of mobile phone system

the formalism is operating on a level which is better suited for tool supported
calculations that for manual calculations. This article can further understand-
ing of caleuli for mobility, and can further implementations and further work
concerning such ealeuli,
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