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Flow patterns behind the free flow front for a
Newtonian fluid injected between two infinite
parallel plates.
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2 Mathematics and Computing Science, Technische Universiteit Findhoven,
5600MB Eindhoven, The Netherlands
bL.G. Philips Displays Netherlands B.V., 5600 AV Eindhoven, The Netherlands

Abstract

A complete analytical treatment of the 2-dimensional problem of the injection of
a Newtonian fluid between two parallel plates is presented. Explicit formulas are
derived for the shape of the free flow front, the streamlines behind the flow front,
the velocity, deformation and rotation (orientation) of material elements in the flow
front region, and the associated stresses there. The analysis is based on complex
function theory, and in this, the flow region, inclusive the unknown free flow front,
is mapped onto the interior of the unit circle. The mapping function that determines
the shape of the flow front is found by solving a Hilbert problem. It is analytically
found in how far the actual flow front differs from a semi-circular shape, and it is
concluded that the semi-circular approximation seems acceptable. Deformations of
material line or area elements due to the fountain flow in the flow front region are
followed in time; large deformation and reorientations of the material elements are
observed. Our results are compared with results in literature obtained by numerical
simulations and by experimental work, and on the whole good correspondence is
found.

Keywords: injection moulding; free flow front; fountain flow; molecular orienta-
tion; conformal mapping.

1 Introduction

Injection moulding, especially in the filling phase, is a process exhibiting sev-
eral peculiar but interesting aspects. To name some: the flow has a free bound-
ary, the flow front, behind which a fountain flow occurs. Induced by this foun-
tain flow, changes of molecular orientation in the injected polymer take place.
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Questions arise such as: what is the shape of the free flow front, how are the
streamlines of the fountain flow directed, and how does the flow deform and
reorientate a material line element moving to the wall of the mould? More
advanced questions are: is the shape of the flow front stationary or does it
change ("wobble”), and is this flow always stable? In this paper, we will re-
strict ourselves to injection moulding between two parallel plates; in this case
the mould consists of a narrow striplike (2-dimensional) cavity bounded by
two fixed walls.

Many articles have dealt with these subjects. The shape of the flow front
was already calculated in the 80ties by, [1], [2], and [3]. Here, Diereck, [1],
and Mavridis et al, [2], used finite element computations to calculate the front
shape, whereas Vroonhoven and Kuijpers, [3], introduced a completely analyt-
ical approach, leading to an explicit formula for the flow front. Recent papers
show more advanced numerical techniques; e.g. Friedrichs and Giigeri, [4], ap-
plied an hybrid 2-D/3-D numerical technique to compute the flow front, and
the fountain flow behind it, for a shear-thinning non-Newtonian fluid. Such a
2-D/3-D approach was also proposed by Almeida et al, [5], by means of a so
called Dimensional Reduction Method, based on a minimum energy principle.
Other authors, such as Nguyen-Chung and Mennig, [6], used front tracking
methods, whereas Pichelin and Coupez, [7], used a global transport equation
to find the flow front position. In [7, Figs. 6 and 7|, flow fronts for a Newtonian
and a non-Newtonian, shear-thinning, fluid are compared; no great qualitative
differences are found. A visualisation of the flow front behaviour by means of
a flow front tracking camera system was recently presented by Yokoi et al, [8].
Results for the streamlines of the fountain flow behind the flow front are in-
corporated in e.g. [1], [2], [10], and [9]. Mavridis et al, [9], exploiting a Leonov
viscoelastic model, also pictured the deformation of a material fluid element
behind the flow front; when comparing with earlier results, [2], for a New-
tonian fluid, the authors concluded that similar deformation patterns were
found. In [6], an interesting figure, depicting the deformation of an initially
straight, transverse, material line, can be found.

A paper deserving special interest is the one from Kamal et al, [11], who
performed a numerical simulation for a polymer melt. They computed veloc-
ity profiles and stresses for two constitutive models: a power-law fluid and a
viscoelastic (White-Metzner) model. Comparing the results, they found essen-
tially the same velocity profiles (with only minor quantitative differences in
the transverse profile), but significant differences in the stress profiles. The
latter did not so much hold for the shear stresses inside the flow front region
(see [11, Fig. 7, CP- and (CP+2)-lines]), but the more for the first normal
stress difference ([11, Fig. 8]). The authors also replace, in order to alleviate
the singularities occurring at the separation point, the no-slip condition at
the walls by a slip condition in a small region behind the separation point.
This modification affects the behaviour near the walls in the vicinity of the
separation point essentially; this shows up most evident in the shear stresses
(see [11, Fig. 5]).



Molecular orientation, especially with regard to aspects such as residual stresses,
birefringence, surface defects, and flow front instabilities, was studied in a se-
ries of references, of which we mention here [6], [9], [12], [13], [14], and [15]. In
his thesis, Wimberger-Friedl, [13], mainly focussed on the effects of the molec-
ular orientation on birefringence. Hung and Shen, [14], calculated the fibre
orientation using Jeffery’s model for a generalised Newtonian fluid. Vincent et
al, [15], looked at the orientation of short fibres in reinforced thermoplastics
due to fountain flow. Effects on surface defects and on flow front instabilities
are thoroughly investigated by Grillet et al, [16], and by Bogaerds et al, [17],
[18], respectively.

Except in [3], all the results in the papers listed above are derived by numerical
means. For our purposes, we prefer an analytical approach, as in [3], and we
want to calculate the shape of the flow front, the velocity field behind the flow
front, the induced deformation and reorientation of material line elements,
and the resulting stresses, all by purely analytical means. In doing this, we
shall follow the lines set up by Vroonhoven and Kuijpers, [3]; in particular, in
Section 3, we shall shortly recapitulate how they came to their explicit for-
mula for the shape of the flow front. Starting from this result, we then proceed
with the calculations of velocities, deformations, and stresses. Of course, these
purely analytical calculations can only be done for a simple case. Therefore, we
restrict ourselves to a two-dimensional injection between two parallel plates
of an incompressible Newtonian fluid, with a no-slip boundary condition at
the walls of the mould. Thermal effects are not taken into account. The shape
of the flow front is fixed and moving with constant velocity. Far behind the
flow front, the flow is a Poiseuille flow. The analysis is based on the theory of
complex functions, [19], and on a conformal mapping of the flow front onto a
unit circle. The specific form of this conformal mapping is the principal un-
known in this problem. Once the mapping is known, all other quantities can
be calculated. It turns out that the shape of the flow front is very close to,
but not identically equal to, a semi-circle, as is conformed by several other
articles, [1], [2](see also Table 1), [10], [11] and [17](see Fig. 5.9).

In Section 4, the results of Section 3 are further evaluated to explicit formulas
for especially the velocity in the flow front region. Other kinematical quanti-
ties such as deformations and rotations, as well as dynamical ones as sttresses,
can then be analytically calculated. The results are presented in Section 5,
while the main conclusions are listed in Section 6. As far as the kinematical
results concern, the behaviour as found here corresponds very well with be-
haviour found in literature for much more complex fluid models. Therefore,
a Newtonian model seems adequate enough to describe in a first order the
kinematics of fountain flow for polymer melts of general constitutive nature
(Non-Newtonian, nonlinear viscoelastic).
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Fig. 1. The flow region with moving front between two plates.

2 Problem description

A fluid is injected with prescribed volumetric flow rate  between two infinite
parallel plates at distance 2h. The flow is 2-dimensional in the X —Y —plane;
see Figure 1. The fixed origin O of an {OXY} system is midway between the
plates, the X-axis points in the flow direction and the Y-axis is perpendicular
to the plates (—h < Y < h). In the flow considered here, the flow front I'f
is an unknown free surface. In the next section, we shall show how the shape
of I'¢ can be determined completely by analytical means. For this, we restrict
ourselves to an incompressible Newtonian fluid model, in which case a fully
analytical solution can be obtained.

We assume the flow so slow, and the viscosity of the fluid so high, that all
inertia effects may be neglected (small Reynolds number = Stokes flow). More-
over, the shape of the flow front is taken constant (stationary) and the front
moves with constant speed V. This speed is related to the given flow rate @,
per unit of length in the direction normal to the plane of flow, by

vf:% (1)

Far behind the flow front, the flow is a fully developed Poiseuille flow. Here,
the velocity V = Uex + Vey is given by

0-2p-()]-p- (] v e

The actual flow front region is given by the area between the line AB, see
Figure 1, and the free flow front I'y. Note that this area moves with constant
speed V;. Therefore, we introduce a comoving frame {ozy}, as depicted in



Figure 1, with the dimensionless coordinates

X -Vt Y

In this comoving frame, the flow front is given by

Li(z,y) =0, (4)

where the function I's(z, y) is still to be determined.
The dimensionless velocity v = u(z,y)e, + v(z, y)e, with respect to the co-
moving frame is related to the dimensional absolute velocity V(X,Y,t) by

U=Vi(l+u), V=Vw. (5)
The incompressibility condition div v = 0, written here as
ou Ov
122 =0 6
s "oy =0 (6)
allows us to introduce a stream function ¢(z,y) by

_ % __
u—a—y, V=g (7)

For a Newtonian fluid model, the stress tensor 7 is given by the constitutive
equation

T =—pI+2nD, (8)
where p = p(z,y) is the pressure, 7 is the (constant) viscosity and D is the
rate of deformation tensor. Scaling the pressure and the stress with a factor
h/2nV}, we obtain the dimensionless formulation (since confusion is unlikely,
we attain the same notation for p and 7)

T=—-pI+D, (9)

where
D= % (Vv + (VV)T) : (10)

In the absence of body forces and under the neglect of inertia terms, the
equation of motion reduces to

div7T =0. (11)

This equation can be identically satisfied by introducing an Airy stress func-
tion ¢(x,y) such that

7o ¢ _ 09 __ T
gy Y dxdy W ox2

(12)



while, then
1 1 (0% 0%
=-Np==-—"+-—"71]. 1
o) = 500= 5 (G + b (13
Use of the constitutive equation (9) shows that ¢ and ¢ are related to each
other by

%y 1[0 0% ¢ 1[0 0%
Ox? 3y2> '

dzdy 2\ 022 Oy? dxdy 2

0x?  Oy? (14)

These relations imply that both ¢ and ¢ have to satisfy a biharmonic equation.

For the boundary conditions, we have

e at the walls y = +1: a no-slip condition, i.e. V = 0, yielding
u(z,£1)=-1, ov(z,£1)=0; (15)

e for z — —oo: fully developed Poiseuille flow, according to (2), yielding

u(@,y) — w(y) = = — 2%, v(wy) —0; (16)

2 2
e at the flow front (z,y) € I'y, being a free flow front, we require
Tn = —DPonn (17)

where n is the unit outward normal vector on I'¢, and p, is the environmental
pressure.

Finally, we need the free-flow-front condition, stating that the front curve
I'f must be a flow line. This is expressed by

(v,n)=0, for (z,y)ely. (18)

3 Complex formulation and solution

In this section, we only present the main lines for the determination of I's,
by means of the theory of complex functions and conformal mapping. For the
details of the derivations, we refer to [3].

3.1 Complex potentials

Upon introducing the complex variables

z=zx+iy, Z=z-—1y, (19)



we can express the complex function

¢ = QS(x?y) + 1¢(x7y) ’ (20)

in terms of z and Z, i.e. ® = ®(z, Z). This function is governed by the equation
(following from (14))
0?®(z, z)
77— 21
e o, (21)

implying that ®(z,Z) can be expressed in terms of the analytical functions
Q(z) and w(z) as

D(z,z) = 2Q(z) + w(z) . (22)
We can now also express the complex velocity w = u 4 iv and the stresses in
terms of Q(z) and w(z), resulting in (' means differentiation with respect to
z, and f(z) denotes the complex conjugate of f(z))

w(z,2)=20(2) + w'(z) — Uz)
N(2,2)=Toe + Ty = -2 (¥ (2) + () ,
S(z,2) =Tyy — Ty + 21Ty, = 220" (2) + 2w"(2) . (23)

To eliminate the influence of the environmental pressure py and of the flow
far behind the flow front (w — wuo(y) for Re(z) — —o0), we write Q(z) =
Qo(2) + % (2) and w(z) = wo(z) + wi(z), where

1 3 1 1 1
Do(z) = 1 (1 + 52'2) + 5P wo(z) = ¢ (1 + §z2) . (24)

With this modification, (23) becomes (with wy = w — wy, wo(z,Z) = ue(y))

wi(2,2) =20 (2) + wi(2) — u(2) ,
N(2,2) =Ty + Ty = 2 (Qll(z) +T(z)) + g(z—i-z) —2po ,

S(2,2) =Ty — Ty + 21T, = 2207 (2) + 2w{(2) — g(z —Z). (25)

We can now express the boundary conditions (15)-(18) in terms of ;(z) and
w1 (z). This yields successively

2 (2) + wi(z) —(2) =0, Im(z) =41,
2Q(2) + wi(z) — U (z) — 0, Re(z) - —,
2 (2) +wi(z) + N (z) = g(z +222 — 7%, z €Ty,
Re [(204(2) + @i (2) — (2)) (s — iny)] = g(Im(z))2 L ser,. (26
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Fig. 2. The conformal mapping of G, onto the unit circle GZ’.

We note here that the third of the conditions above does not prescribe the
stresses, as in (17), but rather the resultant force on a part of the arc I's. This
is conform to [3] and [19, Eq. (2.47)].

3.2 Conformal mapping

The basic idea of the method used in [3] is to map the total flow region G,
in the z-plane onto the unit circle Gzr in the (-plane and then to reduce the
problem to a so called Hilbert problem on the unit circle, that can explicitly
be solved in terms of the conformal mapping m(¢). In this way, the problem
of determining the explicit shape of the flow front is tackled completely by
analytical means. The conformal mapping z = m((), depicted in Figure 2, is
by definition analytic, implying that it can be expressed as an infinite power
series, with radius of convergence 1,

m(¢) = g: it (27)

which will be approximated by the truncated series

mlQ) = 3 mc* (28

Note that, as the shape of I'y is unknown, the real coefficients py, in (28) are
still unknown.

We assume that my(¢) is a good approximation of the mapping function m(¢),
especially in the neighbourhood of the free boundary (this will be confirmed
by the final results). Since my((¢) is a polynomial of degree N, it is clearly
analytic and a one-to-one mapping as long as N is not too large.

Next, we replace 21 (z) and w;(z) by functions of ¢ by means of the substitution
z =mp(¢), yielding

On(¢) =U(mn(C)),  wn(C) =wi(mn(()) . (29)



For the complex velocity wi(z,Z), given by (25.1), this for instance yields

Wy = mN(C)Q%C()C;_ w;v(C) . QN(C) _ (30)

We proceed with the evaluation of the boundary conditions. In the following,
a superscript T denotes the boundary value of the function coming from the
interior of the unit circle, so e.g.

Q) = lim Qn(), €eTy. (31)
(—¢, (G}

Thus, we obtain from the first two boundary conditions of (26)

my (O (£) +wi (§)

-Q© =0, ¢€AEDH, (32)

and for the third one

my ()2 (§) + wi'(§)

my (€)

+QN(€) =gn (), E€T7, (33)

where

() = 5 (ma(€)? + 2my (€ (8 ~ TR (E) ) (34

For the evaluation of the fourth boundary condition of (26), we need the
analytical continuation of Qx(C) to the exterior space G/ of the unit circle.
This is done by introducing the function ¥y () in the following way

Un(Q) = Qn(C) CeGyY,
~ my () (1/C) + wi(1/¢) _
Un(C) = i (L0) ,(eGy . (35)

We note that Qn(¢) is, by definition, continuous over the arc A’E’'D’'B’ (in
accordance with (32)) and, hence, analytic for ¢ € C\ I';. With (35), the
function wx can be expressed in ¥x and my according to

wi(¢) =my(Q)UN(1/C) —mn(1/Q)¥N(C) , (E€GL. (36)

Both the functions my(1/¢) and ¥ (1/¢) have poles of order N at the origin.
The analycity of w, however, demands that these poles cancel at the right-hand
side of (36). This will be referred to as the holomorphy condition. Moreover,
the function ¥y has to satisfy some regularity conditions, such as

Un(¢)=0(1), ¢ — +i, (37)



expressing that the velocity must remain finite near the points A and B, and

Un(Q) =0("), I¢l— o0, (38)

which follows immediately from the definition of Uy.
All this leads us to the formulation of the following Hilbert problem for ¥y

(here, Wy (&) = lim_ ccq, n(C))

TR () —oy()= 0, (€ AE'D'B
THE) +INE) =gn(E), €T}, (39)

The solution of this Hilbert problem will be presented in the next section.
Finally, for the determination of my(¢) we need the flow-front condition
(v,n) = 0 on I}, as expressed by the fourth boundary condition of (26),
which can be evaluated into

Re (E — g(Im m(€))? + gn (€) — 204 ()

Emy(@) =0, £elf. (40)

Here, we have used (39) to eliminate ¥}, together with the relation

dz ., dE

ng + in, = -l = —imy (f)% =&my (€)

holding along the unit circle where % = i£.

3.8 Solution of the Hilbert problem

The solution procedure of (39) is described in detail in [3], therefore, we here
present the main lines only. The solution can be split up into a particular
solution and a homogeneous one, looking like

Un(C) = X (OGN (C) + X(OFN(C) (41)
where X (¢) is the Plemelj function:
X(Q) = (- ¢+1)'?, (eC\TIy, (42)
satisfying
XTO+X (=0, €Ty, (43)
while Gy is defined by the Cauchy integral,
Gy (Q) = o ) g, (44)

271 Jr, XH(E)(€ Q)

10



and Fy is a polynomial of degree N — 1,

Fy(Q) = NX_:I fi®, (45)

the coeflicients of which can be determined by means of the holomorphy con-
dition.

The Plemelj function X (¢) has branch points at ¢ = +i, and the cut, joining
—i with infinity is defined in such a way that; see [19],

X(Q)=—y(1+¢) ¢eGf, X(Q)=y(1+¢) (G, (46)

Note that in (41) the first term X ({)Gn(C) represents the particular solution,
whereas the second term X (¢)Fn(¢) stands for the homogeneous solution.
As will be shown in Section 4.1, the function Gx({) can be explicitly expressed
in the coefficients of the conformal mapping my(¢). To this end, we consider
the function gy(€) in the integrand of (44), defined in (34) for £ € T7, as
the limiting value of an analytical function gn(¢) (analytic in C \ I'}) for
¢ — & € I'}. This function is given by

o (©) = 2 () + 2mu(Qmn(10) ~ /D) (4D

Then, the following expression for Gy (¢) can be derived (this derivation is
postponed to Section 4.1; see (65) for the result)

2G N (() = 9)? ((8 - —2—:21\/ axct — kg_:o bec*. (48)

We introduce the Laurent series

WO _ 5w, cear,

X(©) v
gN(C) _ 2N-1 N -
X(0) —kg_jmbkc , CEG, (49)

the coefficients of which can be expressed in terms of py, (see (53) below).
With the above results, the solution of the Hilbert problem can be written as

1 1 -1 aN-1 N-1

Uy () = EQN(C) — 5 (€) ( Sooat+ > wF -2 kak) ,  (30)
k=—2N k=0 k=0

for ¢ € C\ I'; . This means that, given the coefficients pg, k = 0,1...N, (by

which also gn(¢) is given, according to (47)) the solution of the Hilbert problem

is reduced to determining (by analytical means) only 5N coefficients ay, by

and fr. What remains now is the calculation of ug, & = 0,1...N, from the

11



free-boundary condition (40). The latter step can only be done numerically
(however, by a very simple procedure). Results for several values of N are
presented by Vroonhoven and Kuijpers in [3]. As an example, for the case
N = 3 they found

o = —0.04287 , py =0.98349 , o= —0.04287, sz = —0.01651. (51)

In Figure 3, the exact flow front is compared with a semi-circle, and a reason-
able resemblance is found; a similar result is found in [2, Figs. 13-14]. A typical
set of flow lines in the flow region, with respect to the comoving frame, for the
p-values according to (51) is depicted in Figure 5.b. We note that these flow
lines are completely in agreement with similar results obtained in [2], [10], [9],
and [17], all by finite element simulations, and often for more complex fluid
models than the Newtonian model used here.

4 Further evaluation of the results of Section 3
4.1 Calculation of complex velocity

As mentioned in the previous section, if N is given and yy for £ = 0,..., N
are known, we can determine the coefficients ay, by and fi analytically. In
this section, we will outline the procedure how to do this, and how this will
eventually result in an explicit expression for the complex velocity wy ().
The coefficients a; and by follow from their definitions, and can be calculated
explicitly in terms of ug. Since pi € R, it holds that fiy = pg. Therefore,

my(1/¢) = ZMZC : ¢ € C\{0}. (52)

Moreover, for the analytical function gy (¢) introduced in (47), we have for

¢ € C\{0},

3 2N N 0 N )
gn (¢ (ZZMMZ P42 Z Zu]u] Y Zujujz(‘),

=0 5=0 —N j=0 i=—2N j=0
(53)

where we define py; = 0 for ¢ < 0 or ¢ > N. For ( — 0, 1/X(¢) can be
approximated according to (see (46))

e I f: (54)

12
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Fig. 3. The exact flow front compared with a semi-circle

with A; equal to

—1/2 .
e —g( k/), for j = 2k, k € NU {0}, (55)
! 0, for j odd or j <0,
where (_}c/ 2) is defined according to
-1/2\ _ (—1)* (2k)!
( P > =T ) k € NU {0}. (56)

If we combine (53) and (55), to get an expression for gy (¢)/X(() in terms of
¢*, and if we use this in the definition of ay, (49), it follows that ay, is equal to

2N N N N 0 N
e =3 Akmi D Hikiog T2 D Aomi D Hiti—i = D Me—i Y Hith—ij > (57)
i=0 =0 =N =0 =0

i=—2N

for kK > —2N. Analogously, we can develop gny(¢) and X (¢) as Taylor series
for |¢| — oo, rendering the following equation for by

0 N N N 2N N
by = Z Y—k—i Z Miph—i—j + 2 Z Y—k—i Z Hilbits — Z'Y—k—i Z Hili—j
§=0 i=—N j=0 i=0 j=0

i=—2N (58)

13



Fig. 4. Contours L and Cg
where k < 2N — 1, and +; is given by

(59)

. 3(/%), forj=2k+1,keNuU{0},
’ 0, for j even or j < 0.

In order to calculate fj, we first need to find an explicit expression for Gy (()
in terms of ag, by and gn. Consider the following integrals

_ 1 gn(€)
B 50t | X0 © )
hio) = 5 [ M),

" 2mi Jor X(Q)(C - 0)

where L is a contour enclosing I'}, but such that the points 0 and o lie outside
L, while Cg is a circle with radius R > max{1, |o|} as depicted in Figure 4.
By taking into account that

% =0(67Y2),  for|(+i|=d—0, (61)

and by using (43) and (44), we find the following expression for I; (o)

1 gn(§) 1 gn (§)
hlo) = 2mi Jr, X+(€)(€ - o) €= om r, X~ (£)(£ — o) d¢ =2Gnl(o)- (62)
Since gn(¢)/X (¢) is holomorphic outside Cr and o is a point inside Cpg, the
integral I>(o) is equal to the residue of the integrand in infinity (see [19,
eq.(1.15)]) and thus we find the following expression for I»(c), with use of
(49),
2N-1

L(o) = — kX_: bro®. (63)

14



From the residue theorem of Cauchy, it follows that I1(c) — I(o) is equal to

o) —Ree IN@ L p gxlo)
I(0) — I(c) =R CZGX(C)(C—O)—FR C:OX(C)(C—O) (64)
:gN(O-)i i akO'k
X(o) k=—2N .

Combining (62)-(64), we find the following expression for Gy(¢), valid in
C\{I'}},

2GN(C) = 9)? ((8 - —2—:21\/ anC — kg_:o beCE. (65)

With (65) we have found the explicit expression for Gn((), we were looking
for.

Using the first equation of (49), we see that the singularity in ¢ = 0 is remov-
able. For || — oo, the second equation of (49) yields

2N -1 —1 2N -1
2GN(Q) = Y bl = - > bt = 0(1/¢). (66)
k=—o0 —2N k=0

So, the function Gy is holomorphic in C\{I'}}, including the point at infinity.
We proceed with the calculation of the polynomial Fix(¢) by considering the
holomorphy condition, formulated in relation with (36). Consider the following
equation, obtained by dividing (36) by X(¢),

_wy(© _ my(QUN(A/Q) | ma(1/O¥(C)
X() X(¢) X(¢) ’

CeGf. (67)

In order to satisfy the holomorphy condition, i.e. requiring that wy is analytical
in G, the right-hand side of (67) must remain finite for ¢ — 0.
Since (see (46))

X(1/0) = —%X«), (68)

we obtain from (41) with the aid of (66), for ¢ — 0,

Un(1/Q) 1 - - 1 C
R (Gn(1/Q) + Fn(1/Q)) = —Fw(1/0) +0(1),  (69)
according to (66).
Moreover,
Q) = 52X () (10)
SE T



from which it follows that

YO _ 4 (90, ¢ W)

X(©Q) A \X(©Q) E+1X(Q) (71)
= GO+ Fy(Q) + 557 (G0 + Fr())
Moreover, we have
g =6 Y = ¢ Y B, (72)
3=0 3=0
with
5 e {(()1)”’ iz;j :dzn, al?d n € NU {0}, (73)
, joddorjy<0.

For |¢| < 1, on using (49) in (65), we may approximate G x(¢) by means of a
Taylor series development around the point ( = 0, according to

= > 9i¢, (74)
§=0
with g; equal to

(75)

g; = %(aj—bj), for 0 < j < 2N,
! %aj, for j > 2N.

Substitution of (28) and (69)-(75) into (67) renders the following asymptotic
expansion for wy (¢)/X(¢), for ¢ — 0,

’ N-1 ]
_ww(€) =¢Ny (Z(J + 1),uj+1fN—1—z'+j) ¢+
X( i=0 7=0
N—-

- ( Dpn—iti(gi+1 + fj+1)) ¢+ (76)
0 \y= 0
1

N-1 [i
Z (Z'U‘N-I-l z—l—]Z/Bl g] l+f] )) Ci+0(1)7
i=1 =0 =0

where fx is to be taken equal to zero. The requirement that the right-hand
side of (67) must be finite for ( — 0, leads us to the following set of linear
equations, from which f;, 0 < k < N — 1, can be calculated in terms of py
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and gy,

i

D0+ 1) (i fu-rivs + pn—ivi(gin + firn)) +

=0

S )
D pnti-ivi 2 Bi(gia+ fi) =0,  for0<i< N -1,
=0 1=0

where fy = 0. So far, we have derived explicit expressions for a; and by in
terms of py. Also, we have found an explicit expression for G (() in terms of
ar and bg. By substituting this solution into the holomorphy condition given
by (36), we found a set of linear equations for f; in terms of uz and gi. By
solving this set of equations and substituting the solution into (50), we obtain
an expression for ¥y(¢), from which we can calculate the complex velocity
Wy-

For ( € Gzr, we have the following relation for the total (i.e. inclusive the
Poiseuille part; see (16)) complex velocity

1 3

wn(¢) = 5 = SImlmx (€))? + wxi (), (78)

where wy1(¢) is given by (30). Substitution of the first equation of (35) and
(36) into (30) renders the following expression for wy, for ¢ € G7,

my(¢) —mn(1/C)
miy(C)

w1 (¢) = Un(1/¢) — Un(C) + Un(C) (79)

where ¥y (() is given by (41).

At this point, we have obtained with (79) a possibility to calculate explicitly
the velocity in any point in the flow front area, where a fountain flow is
observed. In the next section, this will be made explicit with numerical results
for the velocity components for the approximated case: my(¢) = ¢, that is in
case the flow front is approximated by a semi-circle.

For £ € T';, we need to take the limit for ¢ — £, ¢ € G{, which renders the
following equation for wpxy for & € T,

wn1(§) = Ty(€) — Un(§)" =

-1 2N -1 N-1 (80)
= X7"(¢) ( >ooatt+ Y bkfk22fkfk) :
k=—2N k=0 k=0

4.2 Results for circular flow front approrimation

In this section, we will calculate explicit numerical values for the velocity
inside the flow area, close to the flow front region. However, we will do this
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only within an approximation, in which we approximate the flow front by a
semi-circle, meaning that we use z = m(¢) = (. Although results of [3] show
that 41 ~ 1 and dominant over over the other coefficients py, (see for instance
(51)), this is certainly not exactly true. However, as we are especially interested
in the flow behaviour close to the flow front, where this approximation is best,
this seems to us an acceptable approach. We could just as well have used the,
more exact, results for N = 3 as given in (51), and in fact for a part we did
so, but not only were the calculations more complex then, the relevant results
were nearly the same (differences less then a few procent).

Therefore, we stick to this approximation, for which we have N =1 and pg =0
and p; = 1. This implies that in (50), we only need to know the coefficients
a_o, G_1, by, by, and fo. From (57), (58), and (77), we obtain

a_2=b1=2f0=—, a_1=b0=0. (81)
For ¢g(¢) (we omit the index N(=1) from now on) we obtain from (47)

9Q)=%(+2-¢7), (82)

| W

and all this leads us with (50) to the following expression for ¥(()

\II(C)=13—6 C2+2§‘2i\/1+g2(021+§)], ¢eC\I', (83)

where the +sign holds for ¢ € G¥ and the —sign for ¢ € G;.
This means that for ¢ € G}, when 1/¢ € G,

L R e LR S (SR | IR Y

From (78) and (79) and with m(¢) = ¢ = z, the following expression for the
total complex velocity w(¢) = w(z) in the flow front region, z € G, follows

1

W)= 345 (-2~ V) +U1/D) + (- 1/DTE) . (%)

The use of (83) and (84) in (85) results in an explicit, completely analytical,
expression for w(z) in terms of z = z + iy and z. This expression will be used
in the next section to calculate the velocity field of the fountain flow in the
flow front region.
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a) Velocities b) Streamlines

Fig. 5. a) The velocity components at the border z = 0 of the flow front region
(axial velocity vy: full line; transverse velocity vy: dashed line) compared to the axial
velocity in Poiseuille flow (dot-dashed line); b) Streamlines in co-moving frame.

5 Velocity field, deformation and rotation, and stresses behind the
flow front

The results of Section 4 will be used here to calculate the velocity field in
and behind the flow front region. The thus calculated velocity is an approx-
imation of the actual velocity in the fluid, only accurate in the flow front
region (Re(z) > 0). Behind the flow front region, we assume the flow to be a
Poiseuille flow. In Figure 5a), the velocity profiles at the border of the flow
front region, i.e. at Re(z) = 0, according to (85) are compared to a fully devel-
oped Poiseuille flow. This figure shows that the differences there are already
small (less than 10%). So, the approach to approximate the flow directly be-
hind the flow front region by a Poiseuille flow seems justified.

Typical streamline patterns are depicted in Figure 5b), showing the stream-
lines relative to the flow front; this figure clearly demonstrates the fountain
flow effect. Comparing these results with results found by numerical means
in e.g. [1], [2, Fig. 8], [9], and [10, Fig. 4], a practically complete correspon-
dence is found. In [2], see Figs. 13-14, the numerically simulated shape of the
flow front shows a close resemblance to a semi-circle, in correspondence to
our Figure 3. This motivated our choice made in Section 4.2 to approximate
the flow front by a semi-circle. Moreover, it is noticeable that no qualitative
differences are found in [2] between the numerical simulations for Newtonian
and for shear-thinning fluids.

In analogy with [9] and [6], we have analysed the behaviour (deformation,
rotation) of material, line or surface, elements in injection flow. In Figure 6
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Fig. 6. Behaviour in time of an initially rectangular area element when passing
through the flow front region, relative to the flow front

1

: \\"\'T

Fig. 7. Behaviour in time of an initially rectangular area element when passing
through the flow front region, with respect to the inertial coordinate system

and Figure 7, we show the behaviour of a rectangular material element enter-
ing the fountain flow region. In the first figure, the behaviour relative to the
flow front (i.e. in a co-moving frame) is illustrated, while the same behaviour,
but now in an inertial frame, is presented in the second figure. We observe
how the element is stretched, spills over when reaching the flow front, and
becomes very strongly stretched at the wall. Further we notice in Figure 7
that the tail of the stretched element remains normal to the wall up to the
very last moment of reaching the fixed wall. Following [6], we also looked at
the deformation of an initially straight transverse line; the result is depicted
in Figure 8. The latter figure shows striking alikeness with Fig. 5 in [6], ob-
tained from finite elements calculations for a Carreau fluid. Watch especially
the typical V-shapes near the wall in the last picture. Finally, we show the
behaviour of a material element consisting of two material line elements, ini-
tially forming a right angle in Figure 9. We see that the right angle is folded
to a small sharp angle. Moreover, following the element initially orientated in
the axial direction, we once more notice that this line element is orientated
almost normal to the wall when approaching this wall, and only when it is
very near to the wall it suddenly flips over to an orientation parallel to the
wall. In practice, the polymer melt solidifies at the cooled walls immediately
after injection, forming solid (glass) layers at the walls. This means that the
polymer chains that are initially in axial direction, will be frozen in having
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Fig. 8. Deformation of an initially straight transverse line element at four increasing

times.

an orientation perpendicular to the walls. This has an essential effect on the
frozen-in stresses, and then also on the birefringence, near the walls. This ef-
fect is confirmed by numerical simulations and experimental observations, see
e.g. [13, Sect. 5.1]. The stresses in the fluid, especially in the flow front region,
can be calculated from (25). For the stresses, we are interested in the following

aspects:

(1) The pressure p, given by

(86)

We have plotted p along the upper wall (y = 1, z < 0) and the upper part
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Fig. 10. Pressure along the upper wall and the upper part of the flow front

of the flow front I'y (22 +y* =1, z > 0, y > 0) in Figure 10. This graph
shows a singularity in the point (z,y) = (0,1). Our analysis predicts that
this singularity has an order of —1/2 (a square root singularity); this can
be inferred from the behaviour of ¥’, and more specifically from that of
the Plemelj function in it, for z — +i. The result found here is in good
correspondence with that found in [2, Fig.11] for shear-thinning fluids.

The first normal stress difference N7, can be found from

Ny =Tye — T,y = Re 5(2,2)

=2Q1(2) + 20 (2) + wi(2) + w{(2) = Ni(z,y) . (87)

However, we did not depict the results, because we do not expect that
our Newtonian model will give a realistic picture of this normal stress
difference due to the strong stretches observed in the flow front region.
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Fig. 11. Shear stress T, along the front line z = 0

These large elongations can only rightly be incorporated by a nonlinear
viscoelastic model, that accounts for the highly elastic influence on the
(normal) stresses caused by these elongations.

The shear stress Ty, given by

1

=5 (O -+ -0 - yz-2) - 68

In Figure 11, the shear stress along the border z = 0 of the flow front
region is plotted as a function of y for 0 < y < 1. We see almost linear
behaviour on the main part of this line; only in the end point near y = 1
a very steep behaviour representing the square root singularity in the
stress at the separation point x = 0, y = 1 is observed. This behaviour
is characteristic for Newtonian fluids, when a no-slip condition is main-
tained (compare for instance with [11, Fig.5]).

The second invariant II7, can be found from

1 1 1
Iy = Z(t17)? — ~trT? = 2p* — ~tr72. (89)
2 2 2
With

T2 = T2, + T2, + 2T2, = 4p* — 2(T,, Ty — T2) , (90)

it follows that

1

Iy = Too Ty — Tg, = p* = 19(2,2)8(2,2) (91)

as can be deduced from (25).
The second invariant of the stress tensor, I, is of practical importance,
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because it is directly related to birefringence, see [13], as can occur in
injection moulded compact discs. We did not plot our results for II; for
the same reason as mentioned for the normal stress difference. However,
there seems to be an essential difference in the behaviour in II'7, especially
very close to the walls, found from numerical simulations in which the
shape of the flow front is taken into account compared to similar ones
in which the flow front is replaced by a straight line (and in which the
thin-layer approximation is applied over the whole flow region); see [13].
Moreover, although birefringence is due to the elongations built up in the
fountain flow phase, the stresses causing this birefringence are frozen-in
in a later stage after the mould is completely filled. As this stage is not
considered in this work, we refrain from further considerations on IIr.

6 Conclusions

A complete analytical model has been developed for the injection moulding
of a Newtonian fluid between two parallel plates. Explicit formulas have been
derived for the shape of the free flow front (a free-boundary problem) and for
the description of the fountain flow in the flow front region. These analytical
results were derived by using complex function theory, inclusive a conformal
mapping of the flow front onto a circle. The problem was reformulated in
terms of a Hilbert problem, that could be solved by means of Plemelj func-
tions. These Plemelj functions are characteristic for the singularities in the
separation point, where the fluid separates from the fixed wall. A square root
singularity in the stresses is found there. For a global characterization of the
flow, the approximation of the actual flow front by a semi-circle is appropriate;
this seems to hold irrespective of the rheology of the fluid. It was found that
the velocity distribution at the border of the flow front region was very close
to that of the Poiseuille flow. This supports the expectation that the flow will
be a fully developed Poiseuille flow already a few times (2 or 3) the thickness
h behind the flow front. For the region behind the flow front, the full formula
for m(¢) according to (28) and (51) must be used; thus obtained results (not
published in this paper) confirm the expectation mentioned above. We have
performed a few calculations using the full formula for m(¢), e.g. for calculat-
ing the flow patterns within the flow front region; only minor differences with
the results published here for m(¢) = ¢ are found .

Comparison with existing literature reveals that our theoretical/analytical re-
sults show on the whole very good correspondence with numerical and experi-
mental results reported in literature, both qualitative and, whenever possible,
quantitative. Kinematical results, such as flow-front shape, velocities, and de-
formations and rotations (orientation), seem to be quite insensitive to the
rheology of the fluid. Of course, this does not hold for the stresses, especially
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for the normal stress differences, which are very sensitive to elastic effects.
These elastic effects become dominant whenever large elongations occur, as

in

the fountain flow in the flow front region. Moreover, this insensitivity is

only present for regular flows; in instability investigations, see [17] or [18], the
specific rheology becomes crucial. Nevertheless, for the unperturbed flow, the
rheology is far less relevant.

As our results are purely analytical, they can be incorporated in further re-
search to typical aspects of of the free flow front motion in injection moulding.
To mention two examples, the flow patterns found here can be used:

As input for the convection-diffusion temperature problem that is related
to the injection moulding of a hot polymer melt into a cold mould. This
problem, and specifically the thermal boundaries that show up in it, will be
the subject of the forthcoming paper [20]; see also [21].

As an unperturbed solution for stability problems investigating the (in)stability
of slightly perturbed flow front motions (” wobbling of the flow front”). When
incorporating also thermal effects by means of [20], the influence of temper-
ature on e.g. viscosity, and after that the influence of all this on the free
motion of the flow front, the effect of an initial asymmetric perturbation on
the motion of the front can be analysed; see [21] or [22]. The instability of
the flow front motion is an important problem in the practice of injection
moulding, as it causes surface defects on the final product; see [16], [17] and
[18].
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