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1 Introduction

Consider a server alternating between two service points. At each service point there is an
infinite queue of customers waiting to be served. Only one customer can occupy each service
point. Once a customer enters the service point, his total service is divided into two separate
phases. First there is a preparation phase, where the server is not involved at all. After the
preparation phase is completed the customer is allowed to start with the second phase, which
is the actual service. The customer either has to wait for the server to return from the other
service point, where he may be still busy with the previous customer, or he may commence
with his actual service immediately after completing his preparation phase. This would be the
case only if the server had completed serving the previous customer and was waiting for this
customer to complete his preparation phase. The server is obliged to alternate; therefore he
serves all odd-numbered customers at one service point and all even-numbered customers at the
other. Once the service is completed, a new customer immediately enters the empty service
point and starts his preparation phase without any delay. In the above setting, the steady-state
waiting time of the server W is given by the Lindley-type equation (cf. Vlasiou et al. [10])

W = max{0, B −A−W}, (1.1)

where B and A are the steady-state preparation and service time respectively.
It is interesting to note that this equation is very similar to Lindley’s equation. The only

difference between the two equations is the sign of W at the right hand side. Lindley’s equation
describes the relation between the waiting time of a customer W and the interarrival time A
and service time B in a single server queue. It is one of the fundamental and most well-studied
equations in queuing theory. For a detailed study of Lindley’s equation we refer to Asmussen [1],
Cohen [4], and the references therein.

The model described by (1.1) applies in many real-life situations that involve a single server
alternating between two stations. It was first introduced by Park et al. [7], who study a two-
carousel bi-directional system that is operated by a single picker. In this setting, the preparation
time B represents the rotation time of the carousels and A is the time needed to pick an item.
It is assumed that B is uniformly distributed, while the pick time A is either exponential or
deterministic. The authors are mainly interested in the steady-state waiting time of the picker.
This problem is further investigated in Vlasiou et al. [11], where the authors expand the results
in [7] by allowing the pick times to follow a phase-type distribution.

In general, it is not possible to derive a closed-form expression for the distribution of W
for every given distribution FB of B (or FA of A). In [10] the authors derive an exact solution
under the assumption that A is generally distributed and B follows a phase-type distribution.
For the classic Lindley-equation, the M/G/1 single server queue is perhaps the most easy case
to analyse. The analogous scenario for our model would be to allow the service time A to be
exponentially distributed and the preparation time B to follow a general distribution. For this
model though, the analysis is not straightforward, as is the case for Lindley’s equation. The
structure of FB (or the lack thereof) is essential for this model. If FB belongs to a specific class
of distributions, exact computations are possible. This class of distributions includes at least all
distribution functions that have a rational Laplace transform and a density on an unbounded
support. Both this class and the closed-form expression for the distribution of W are described
in detail in Vlasiou [9].

Despite the fact that this class is fairly big, it does not include all distribution functions. For
example, if FB is a Pareto distribution, the method described in [9] is inapplicable. Polynomial
distributions are another example of distributions that do not belong to this class. However, they
are extremely useful, since they can be used to approximate any distribution function that has a
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bounded support. Our main goal in this paper is to complement the above mentioned results by
deriving a closed-form expression of the steady-state distribution of the waiting time, FW , under
the assumption that A is exponentially distributed and B follows a polynomial distribution. In
Section 2 we derive FW under these assumptions. As an application, in Section 3 we discuss how
one can use this result in order to derive good approximate solutions for FW when B is generally
distributed on a bounded support, and we provide error bounds of these approximations.

2 Exact solution of the waiting time distribution

In this section we derive a closed-form expression of FW , under the assumption that A is expo-
nentially distributed and B follows a polynomial distribution. Without loss of generality we can
assume that FB has all its mass on [0, 1]. Therefore, let

FA(x) = 1− e−µx and FB(x) =

{∑n
i=0 cix

i, for 0 6 x 6 1;
1, for x > 1,

(2.1)

where
∑n

i=0 ci = 1. Let X = B −A. As we have shown in [9, Section 4], the mapping

(T F )(x) = 1−
∫ ∞

x
F (y − x)dFX(y) (2.2)

is a contraction mapping –with the contraction constant equal to P[B > A]– in the space
L∞([0,∞)), i.e., the space of measurable and bounded functions on the real line with the norm

‖F‖ = sup
x>0

|F (x)|.

Furthermore, we have shown that FW , provided that it is continuous, is the unique solution to
the fixed-point equation F = T F. Then from (2.2), for F = FW , we have that

FW (x) = 1−
∫ ∞

x
FW (y − x)dFX(y)

= 1− P[X −W ≥ x] = P[B −W −A ≤ x]

=
∫ ∞

0

∫ ∞

0
P[B ≤ x + z + y]dFA(z)dFW (y) (2.3)

= π0

∫ ∞

0
FB(x + z)µe−µzdz +

∫ ∞

0+

∫ ∞

0
FB(x + y + z)µe−µzdzdFW (y),

where π0 is the mass of the distribution at the origin, i.e., π0 = P[W = 0]. Now, by differentiating
with respect to x, we have after some rewriting (cf. [9, Section 6]) that

fW (x) = µFW (x)− µπ0FB(x)− µ

∫ ∞

0
FB(x + y)fW (y)dy. (2.4)

Since B is defined on [0, 1], then from Equation (1.1) it emerges that W is also defined on the
same interval. Therefore, the integrand at the right-hand side of (2.4) is nonzero only on [0, 1].
So, substituting (2.1) in (2.4), we obtain for 0 6 x 6 1,

fW (x) = µFW (x)− µπ0

n∑
i=0

cix
i − µ

∫ 1−x

0

n∑
i=0

ci(x + y)ifW (y)dy − µ

∫ 1

1−x
fW (y)dy (2.5)

= µFW (x)− µπ0

n∑
i=0

cix
i − µ

n∑
i=0

i∑
k=0

ci

(
i

k

)
xi−k

∫ 1−x

0
ykfW (y)dy − µ

∫ 1

1−x
fW (y)dy.
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We know from [9, Section 3] that (2.5) has a unique solution fW and π0, provided that they
satisfy the normalisation equation

π0 = 1−
∫ 1

0
fW (x)dx. (2.6)

To determine fW and π0, we shall transform the integral equation (2.5) into a (high order) dif-
ferential equation for fW . Let f (i) denote the i-th derivative of a function f. Then differentiating
(2.5) with respect to x yields

f
(1)
W (x) = µfW (x)− µπ0

n∑
i=1

icix
i−1 − µ

n−1∑
i=0

i∑
k=0

ci+1(i + 1)
(

i

k

)
xi−k

∫ 1−x

0
ykfW (y)dy

+ µ
n∑

i=0

i∑
k=0

ci

(
i

k

)
xi−k(1− x)kfW (1− x)− µfW (1− x)

= µfW (x)− µπ0

n∑
i=1

icix
i−1 − µ

n−1∑
i=0

i∑
k=0

ci+1(i + 1)
(

i

k

)
xi−k

∫ 1−x

0
ykfW (y)dy

and in general, for ` = 1, 2, . . . , n,

f
(`)
W (x) = a`(x) +

`−1∑
j=0

νn−j(−1)`−1−jf
(`−1−j)
W (1− x), (2.7)

where

νn−j = µ

n−j∑
i=0

(i + j)!
i!

ci+j

a`(x) = µf
(`−1)
W (x)− µπ0

n−∑̀
i=0

(i + `)!
i!

ci+` xi − µ(−1)`−1f
(`−1)
W (1− x)

− µ
n−∑̀
i=0

i∑
k=0

ci+`
(i + `)!

i!

(
i

k

)
xi−k

∫ 1−x

0
ykfW (y)dy.

(2.8)

From (2.7) we have that the n-th derivative of fW is given by

f
(n)
W (x) = µf

(n−1)
W (x)− µπ0n!cn − µ(−1)n−1f

(n−1)
W (1− x)

− µn!cn

∫ 1−x

0
fW (y)dy +

n−1∑
j=0

νn−j(−1)n−1−jf
(n−1−j)
W (1− x)

= µf
(n−1)
W (x)− µπ0n!cn − µn!cn

∫ 1−x

0
fW (y)dy +

n−1∑
j=1

νn−j(−1)n−1−jf
(n−1−j)
W (1− x),

which implies that for 0 6 x 6 1,

f
(n+1)
W (x) = µf

(n)
W (x) + µn!cnfW (1− x) +

n−1∑
j=1

νj(−1)jf
(j)
W (1− x)

= µf
(n)
W (x) +

n−1∑
j=0

νj(−1)jf
(j)
W (1− x). (2.9)
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Up to this point, we have differentiated Equation (2.5) a total of n + 1 times. Therefore, we
need a total of n + 1 additional conditions in order to guarantee that any solution to (2.9) is
also a solution to (2.5). Since for every value of x in [0, 1], Equations (2.5), (2.7), and (2.9) are
satisfied, then we can evaluate all these equations for a specific x, say x = 0, which provides us
with the n + 1 initial conditions, for ` = 1, 2, . . . , n,

f
(`)
W (0) = a`(0) +

`−1∑
j=0

νn−j(−1)`−1−jf
(`−1−j)
W (1)

and f
(n+1)
W (0) = µf

(n)
W (0) +

n−1∑
j=0

νj(−1)jf
(j)
W (1).

(2.10)

So we now have that Equation (2.9) has a unique solution that satisfies these conditions, along
with the normalisation equation (2.6).

Equation (2.9) is a homogeneous linear differential equation, not of a standard form because
of the argument 1− x that appears at the right-hand side. Therefore, we need to proceed with
caution. Note that the unknown probability π0 is not involved in (2.9). We shall solve this
equation by transforming it into a differential equation we can handle. To this end, substitute
x for 1− x in (2.9), to obtain the equation

f
(n+1)
W (1− x) = µf

(n)
W (1− x) +

n−1∑
j=0

νj(−1)jf
(j)
W (x). (2.11)

Equations (2.9) and (2.11) form a system of equations. Now let

fW (x) =
[

fW (x)
fW (1− x)

]
, An =

[
1 0
0 (−1)n

]
, and J =

[
0 1
1 0

]
.

Then the system of equations (2.9) and (2.11) can be rewritten as

f
(n+1)
W (x) = µAn+1Anf

(n)
W (x) + An+1J

n−1∑
i=0

νi(−1)if
(i)
W (x). (2.12)

In order to derive the characteristic equation of (2.12), we work as follows. We look for solutions

of the form ξerx, where ξ =
[

ζ
θ

]
. Substituting this solution into (2.12) and dividing by erx,

we derive the following linear system that determines ξ and r, which is

ζrn+1 = µζrn +
n−1∑
i=0

νiθr
i

θrn+1 = −µθrn +
n−1∑
i=0

νi(−1)n+1+iζri.

(2.13)

In order for a nontrivial solution to exist, the determinant of the coefficients of ζ and θ should
be equal to zero. This yields that

r2n(r2 − µ2) + (−1)n

(
n−1∑
i=0

νir
i

)n−1∑
j=0

νj(−r)j

 = 0, (2.14)
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which is the characteristic equation of (2.12).
Let us assume for the moment that the characteristic equation has only simple roots, and

label them r1, . . . , r2n+2. It is interesting to note here that since (2.14) is a polynomial in r2,
then for every root r of this polynomial −r is also a root. Therefore, we shall order the roots
so that for every i, ri = −r2n+3−i. By substituting each root into the system (2.13), we obtain
the corresponding vectors ξi, i = 1, . . . , 2n + 2. Then (2.12) has the 2n + 2 linearly independent
solutions ξie

rix. Thus, the general solution of (2.12) is given by

fW (x) =
2n+2∑
i=1

diξie
rix, (2.15)

where di are arbitrary constants.
From (2.15) we can immediately conclude that the solution to Equation (2.9) that we are

interested in, is of the form

fW (x) =
2n+2∑
i=1

diζie
rix. (2.16)

However, this is not the general solution to (2.9). It does not follow from the derivation of (2.15)
that, for any choice of the coefficients di, the linear combination (2.16) will satisfy (2.9), since
ζie

rix is not a solution to (2.9). Therefore, we substitute (2.16) into (2.9), and by keeping in
mind that ri = −r2n+3−i, we have that for every i = 1, . . . , 2n + 2,

diζir
n
i (ri − µ) = erid2n+3−iζ2n+3−i

n−1∑
j=0

νjr
j
i . (2.17)

These are in fact only n + 1 relations between the unknown coefficients, since it can easily be
shown by using the characteristic equation (2.14) that the equations for every i and 2n + 3− i
are identical. Using the relations between the coefficients di, one can rewrite (2.16) as sum of
n + 1 linearly independent solutions to (2.9) as follows

fW (x) =
n+1∑
i=1

di

(
ζie

rix + qi ζ2n+3−ie
−rix

)
, (2.18)

where qi follows from (2.17) if we solve for d2n+3−i. Thus, the general solution to (2.9) is given
by (2.18). The coefficients di, for i = 1, . . . , n + 1, and the probability π0 that we still need to
determine, follow now from the initial conditions (2.10) and the normalisation equation (2.6).
Namely, by substituting (2.18) to (2.10) and (2.6) we obtain a linear system of n + 2 equations.

Note that it is not possible to use the same argument in order to determine the coefficients
di for any differential equation of the form (2.9), because of its nonstandard form. Here we
heavily rely on the fact that we know beforehand that a unique solution exists. We summarise
the above in the following theorem.

Theorem 1. Let FB be a polynomial distribution of the form (2.1). Then the waiting time
distribution FW has a mass π0 at the origin, which is given by

π0 = P[W = 0] = 1−
2n+2∑
i=1

diζi

ri
(eri − 1), (2.19)

and has a density fW on [0, 1], given by

fW (x) =
2n+2∑
i=1

diζie
rix.
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Although the roots ri and coefficients di may be complex-valued, the density and the proba-
bility π0 that appear in Theorem 1 will be nonnegative. This follows from the fact that for every
distribution FB of the preparation time, (2.4) has a unique solution which is a distribution. It
is also clear that, since the differential equation (2.9) has real coefficients, then each root ri and
coefficient di have a companion conjugate root and conjugate coefficient, which implies that the
imaginary parts cancel.

Remark 1. When (2.14) has roots with multiplicity greater than one, the analysis proceeds
essentially in the same way. For example assume that r1 = r2. Then we first look for two
solutions to (2.12) of the form ξer1x. If we find only one (that always exists), then we look for a
second solution of the form (xξ + η)er1x, where η is again a vector. Substituting this solution
into (2.12), we obtain a linear system that determines ξ and η. Thus we can obtain the general
solution to the differential equation (2.12). From this point on, by following the same method,
we can formulate a linear system that determines the coefficients di and π0, and obtain the
solution to (2.9).

Remark 2. Another method to derive the solution to the integral equation (2.5) is through
Laplace transforms over a bounded interval. We have illustrated this method in [11]. The steps
of this method are as follows. By taking the Laplace transform of (2.5) over the interval [0, 1]
we obtain an expression for the Laplace transform ω of FW that involves the terms ω(s) and
ω(−s). By substituting s for −s we form a system of two equations from which we can obtain
ω. This step is equivalent to the method we used here, namely forming a system of differential
equations for fW (x) and fW (1− x). It emerges that

ω(s) =
P (s) + e−sQ(s)

R(s)
,

where P , Q, and R are polynomials in s. Using the fact that the transform is an analytic
function on the whole complex plane, we can deduce that the previous expression is the Laplace
transform over a bounded interval of a mixture of 2n + 2 exponentials. This method is fairly
straightforward; it is, however, cumbersome and it does not illustrate the special relation between
the exponentials with opposite exponents that appear in the density fW .

3 Approximations of the waiting time distribution

The result we have obtained in the previous section comes in handy in some cases where it is
necessary to resort to approximations of the waiting time distribution. We have already proven
in [9] that for any distribution of A and B there exists a unique limiting distribution FW for (1.1),
provided that P[B < A] > 0, although we may not be able to compute it. Some distributions of
the preparation time are not suitable for deriving a closed-form expression of FW . Furthermore,
if FB has a bounded support, then we cannot readily apply previously obtained results. In [11]
only the case where FB is the uniform distribution is covered, while the method described in
[9] is not applicable (since distributions on a bounded support are excluded from the class of
distributions that are considered there).

Therefore, one may consider approximating FB in order to be able to compute the distribu-
tion of the waiting time, which is our main concern. A reasonable approach is to approximate
FB by a phase-type distribution. An important reason is that the class of phase-type distribu-
tions is dense; any distribution on [0,∞) can, in principle, be approximated arbitrarily well by
a phase-type distribution (see Schassberger [8]). Furthermore, we have shown in [10] that if FB

is a phase-type distribution, then we can compute explicitly the waiting time distribution FW .
Nonetheless, if FB has a bounded support, it is more natural and possibly computationally more
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efficient to fit a polynomial distribution. In the sequel, we shall discuss how to fit a polynomial
distribution to FB.

3.1 Fitting polynomial distributions

If FB is a continuous distribution on a bounded support, it is reasonable to choose F̂B to be a
polynomial distribution. The famous Weierstrass approximation theorem asserts the possibility
of uniform approximation of a continuous, real-valued function on a closed and bounded support
by some polynomial. The following theorem is a more precise version of Weierstrass’ theorem.
It is a special case of the theorem by S. Bernstein that is stated in Feller [5, Section VII.2].

Theorem 2. If F is a continuous distribution on the closed interval [0, 1], then as n →∞

F̂n(x) =
n∑

k=0

F (k/n)
(

n

k

)
xk(1− x)n−k → F (x) (3.1)

uniformly for x ∈ [0, 1]. Furthermore, F̂n is also a distribution.

Proof. Bernstein’s theorem states that if F is a continuous function, then it can be approximated
uniformly in x with the polynomial F̂n. In other words, for any given ε > 0, there is an N
independent from x, such that for all n > N, |F̂n(x)− F (x)| < ε, for all x.

It is simple to show that if the function F is a distribution on [0, 1], then the approximation
F̂n(x) is also a distribution, since it is continuous, 0 6 F̂n(x) 6 1, and, by checking its derivative,
we shall show that it is non-decreasing in x. It suffices to note that

F̂ ′
n(x) =

n∑
k=1

F (k/n)
(

n

k

)
kxk−1(1− x)n−k −

n−1∑
k=0

F (k/n)
(

n

k

)
xk(n− k)(1− x)n−k−1

=
n−1∑
k=0

xk(1− x)n−k−1

[
F ((k + 1)/n)

(
n

k + 1

)
(k + 1)− F (k/n)

(
n

k

)
(n− k)

]

=
n−1∑
k=0

xk(1− x)n−k−1 n!
k!(n− k − 1)!

[F ((k + 1)/n)− F (k/n)] .

The expression in the square brackets at the right hand side is positive since F is a distribution,
which implies that F ((k + 1)/n) > F (k/n). Therefore, F̂ ′

n(x) > 0, for x ∈ [0, 1].

So, given a continuous distribution FB that has all its mass concentrated on [0, 1], one can
compute a polynomial distribution F̂B that approximates FB arbitrarily well by using Theorem
2. In this sense, the class of polynomial distributions is dense. Then F̂W can be computed by
using Theorem 1.

Naturally, after having obtained an approximation of FW , the first question that follows is to
determine how good this approximation actually is. Therefore, we shall obtain an upper bound
for the error between the approximated distribution for W and the actual one.

3.2 Bounding the approximation error

Error bounds for queueing models have been studied widely. The main question is to define an
upper bound of the distance between the distribution in question and its approximation, that
depend on the distance between the governing distributions. These bounds are obtained both
in terms of weighted metrics (cf. Kalashnikov [6]) and non-weighted metrics (cf. Borovkov [2, 3]
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and references therein). An important assumption which is often made in these studies is that
the recursion under discussion should be non-decreasing in its main argument. Clearly, in the
model we discuss here this assumption does not hold. Because of Theorem 2, we shall limit
ourselves to the uniform norm.

Let F̂B be an approximation of FB and F̂W the exact solution that we obtain in that case
for the distribution of W. Let B̂ be a random variable that is distributed according to F̂B, and
let X̂ = B̂ −A. Define now the mapping (cf. (2.2))

(T̂ F )(x) = 1−
∫ ∞

x
F (y − x)dF

bX
(y),

which yields that F̂W is the solution to F = T̂ F that can be rewritten in the form (cf. (2.3))

(T̂ F )(x) =
∫ ∞

0

∫ ∞

0
F̂B(x + z + y)µe−µzdz dF (y).

Then we can prove the following theorem.

Theorem 3. Let ‖FB − F̂B‖ = ε. Then ‖FW − F̂W ‖ 6 ε/(1− P[B > A]).

Proof. We have that

‖FW − F̂W ‖ = ‖T FW − T̂ F̂W ‖ = ‖T FW − T F̂W + T F̂W − T̂ F̂W ‖

6 ‖T FW − T F̂W ‖+ ‖T F̂W − T̂ F̂W ‖ 6 P[B > A]‖FW − F̂W ‖+ ‖T F̂W − T̂ F̂W ‖,

since T is a contraction mapping with contraction constant P[B > A]. Furthermore,

‖T F̂W − T̂ F̂W ‖

= sup
x>0

∣∣∣∣∫ ∞

0

∫ ∞

0
FB(x + z + y)µe−µzdzdF̂W (y)−

∫ ∞

0

∫ ∞

0
F̂B(x + z + y)µe−µzdzdF̂W (y)

∣∣∣∣
6 sup

x>0

∫ ∞

0

∫ ∞

0
µe−µz

∣∣∣FB(x + z + y)− F̂B(x + z + y)
∣∣∣ dzdF̂W (y)

6 sup
x>0

∫ ∞

0

∫ ∞

0
µe−µz sup

x+y+z>0

∣∣∣FB(x + z + y)− F̂B(x + z + y)
∣∣∣ dzdF̂W (y)

= ε

∫ ∞

0

∫ ∞

0
µe−µzdzdF̂W (y) = ε.

So ‖FW − F̂W ‖ 6 P[B > A]‖FW − F̂W ‖+ ε, which is what we wanted to prove.

An important feature of Equation (1.1) that made the calculation of an error bound straight-
forward is that the distribution of the waiting time is the fixed point of a contraction mapping.
Note that this is not a property of Lindley’s recursion.

Remark 3. In the previous, we were concerned with the case where FB is a continuous distribu-
tion (on a bounded support) that is approximated arbitrarily well by the polynomial distribution
F̂B. However, if FB is discontinuous, then one may not be able to choose an appropriate approxi-
mation that instigates an acceptable error. Nonetheless, one can explicitly compute the invariant
distribution of W in the special case that FB is discontinuous at a single point, x0, of its support
as follows. Since FB is a distribution of a mixed type, it can be decomposed into two parts:
a discrete distribution FD and a continuous one FC . Now, FC can be approximated arbitrarily
well with either a phase-type or a polynomial distribution, and this approximation error will be

8



the distance ‖FB − F̂B‖. Whether one should choose to approximate FB with a phase-type or
a polynomial distribution depends on the computational efficiency of each method, in combina-
tion with the approximation error that occurs. Here, we shall concentrate on the case that FC

has a bounded support. Therefore, we can assume that FC is approximated by a polynomial
distribution on [0, 1].

If FC has a bounded support, then we need to make the extra assumption that the dis-
continuity occurs exactly in the middle of the support. We need to compute FW separately
in each interval [0, 0.5) and [0.5, 1]. Keep in mind, that although FB is discontinuous, FW is
a continuous distribution. For x in the interval [0.5, 1] one can derive a differential equation
that yields the density of the waiting time that is almost identical to (2.9). Another differential
equation for the density can be derived for the interval [0, 0.5). The characteristic of these two
differential equations is that they form a system, since each of them involves the density on
the other interval. This system can be solved explicitly by using a method similar to the one
described in Section 2. In case that FD is on a lattice (with more than one discontinuity) we
can again derive a system of differential equations that gives the density of the waiting time in
each interval. Hence, it seems possible that we can obtain an explicit solution to this system by
following the same method as in Section 2.
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