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Successive approximations for Markov decision processes 

and Markov games with unbounded rewards 

by 

. * ** Jo van Nunen and Jaap Wessels 

Summary: The a~m of this paper is to give an overview of recent developments 

in the area of successive approximations for Markov decision processes and 

Markov games. We will emphasize two aspects, viz. the conditions under which 

successive approximations converge in some strong sense and variations of 

_hese methods which diminish the amount of computational work to be executed. 
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With respect to the first aspect it will be shown how much unboundedness of the 

rewards may be allowed without violation of the convergence. 

With respect to the second aspect we will present four ideas, that can be 

applied in conjunction, which may diminish the amount of work to be done. These 

ideas are: I. the use of the actual convergence of the iterates for the construc­

tion of upper and lower bounds (Mcqueen bounds), 2. the use of alternative 

policy improvement procedures (based on stopping times), 3. a better evaluation 

of the values of actual policies in each iteration step by a value oriented 

approach, 4. the elimination of suboptimal actions not only permanently, but 

also temporarily. 

The general presentation ~s given for Markov decision processes with a final 

4Itection devoted to the possibilities of extension to Markov games. 

* Graduate School of Management, Delft, The Netherlands. 
** Eindhoven University of Technology (dept. of Math.), Eindhoven, The Netherlands. 
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1. Introduction 

In recent years quite a lot of research effort has been dedicated to successive 

ap~roximations methods in Markov decision processes and Markov games for the 

total expected reward as well as for the average reward criterion. In this 

paper we only consider the total expected reward criterion. The reasons for 

this attention are both theoretical and numerical. It appeared that from the 

theoretical point of view the successive approximations approach gives a 

basic understanding of the processes involved. From the numerical point of 

view, it turned out that the more sophisticated methods like policy iteration 

and linear programming are not suitable for very large problems. Furthermore, 

it appeared that the policy iteration method and therefore the strongly 

related (see e.g. [21J,[46J) linear programming approach,is essentially an 

~ extreme example of a successive approximations method (see section 5). 

• 

In this paper we will give a review of recent developments with regard to 

successive approximations for Markov decision processes and Markov games 

with the total expected reward criterion. First we will be concerned with 

the conditions under which successive approximations converge, in some 

uniform sense, to the value of the decision problem (section 2). In section 3 

we investigate these conditions further. For the sake of simplicity we 

initially treat the whole theory for Markov decision problems only and 

consider the extensions to Markov games later on (section 7). 

Essential for our conditions is that unbounded rewards are to a certain 

extent allowed. Furthermore, we do not require strict discounting. Actually-as 

will appear in section 2 and will be worked out further in section 3 - our 

conditions give a joint restriction on the allowed unboundedness of the 

rewards and the drift/fading of the system (or equivalently: the uniformity 

of discounting). With our conditions we combine the shift approach of 

Harrison [5J with the weighted supremum norm approach of Wessels [43J. For 

countable state space and arbitrary action space this combination has been 

presented first by van Nunen in his monograph [22J. A slight generalization 

has been given by the present authors in [25J. A generalization to more 

general state spaces has been given by Couwenbergh in [2J and [3J. In 

order to avoid measure theoretic and topological complexities, we will only 

treat the countable state space situation in this paper. 
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Besides the conditions for convergence of successive approximations, we will 

also be concerned with ways to diminish the amount of work required for the 

computation of good strategies and good estimates of the value function. 

We will present essentially four work saving ideas. The first one already 

appears in section 2 and consists of using the subsequent approximations for 

the construction of upper and lower bounds. Compared with the conventional 

estimates (using only the geometric convergence rate), these generalizations 

of the Mac Queen-bounds [19J accelerate the convergence considerably, 

without requiring more work per iteration step. The second device which 

can be used in order to accelerate convergence is an alternative policy 

improvement step which can be defined with a stopping time. In section 4 

it is shown how different stopping times generate different successive 

approximation methods. This stopping time approach has been presented first 

~ in [44J and has been generalized and refined in [22J; [26J gives a short 

overview together with some new points of view. In section 5 it is demon­

strated how all these successive approximation methods can be refined by 

the introduction of a better value estimation for the current policy in 

each iteration step. Here all types of policy iteration methods appear to 

be extreme cases of successive approximations procedures. This value 

oriented approach has been introduced in [23J, generalized in [27J , and 

further generalized in [22J, see also [26J. There is still one other idea 

to exploit (section 6), viz. the elimination Qf suboptimal actions. In [20J 

MacQueen used his upper and lower estimates for the value function for the 

detection of actions which cannot be optimal. Namely, in each iteration 

step some actions may be eliminated resulting in less work during the 

remaining iteration steps. This idea can be adopted to our more general 

conditions and to our alternative procedures (see [22J). 

However, it is also possible to eliminate actions only temporarily. Based 

on an idea of Hastings (see [7J), this has been established in [8J for 

finite actions, finite state discounted Markov decision problems. This will 

be demonstrated for our situation in section 6 (an example will be included). 

Finally, in section 7, all these features are reconsidered for Markov games. 

It appears that all the ideas allow some sort of generalization to the 

zero-sum game situation. A strjking point is that the standard successive 

approximations approach for Markov games is older than the analogous (but 

actually more specific) approach for Markov decision processes (see 

Shapley [38J). For Markov games the MacQueen bounds have been introduced 

in [40J by van der Wal. In the same paper the stopping time approach for 

introducing alternative procedures has been given. The more general convergence 
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conditions have been g1ven 1n [45J; Further generalizations of the conditions­

viz. to noncountable state spaces- may be found in the papers [2], [3J by 

Couwenbergh. The value oriented approach has been given in [41J again by 

van der Wal. The elimination of suboptimal actions has been treated in [34]. 

For a partial survey of these results (together with some other topics) 

we refer to [42]. 

2. Markov decision processes with unbounded rewards 

We will first introduce our Markov decision process. 

A system is observed at discrete points of time (t :; 0,1,2, ••• ). The state 

of the system at any time t is an element of the countable state space 

S:-{1,2, ••• }. If at time t the state of the system is i E S, an action a 

may be chosen from a given arbitrary set A, which incurs a reward r(i,a). The 

current state i at time t and the action a determine the probability 

pa(i,j) of observing the system in state J at time t + 1 (regardless of the 

earlier history of the process). We suppose 

l pa(i,j) ~ 1 for all 1 E S, a € A. 
jES 

Hence a positive probability for fading of the system is allowed. 

A policy f is a map from S into A. A strategy ~ is a sequence of policies: 

~:;(fO,fl"")' If strategy ~ is used, we choose action ft(i) when the system 

is in state i at time t. The set of all policies is denoted by F, the set of 

all strategies by M. A stationary strategy consists of equal policies 

~ = (f,f, •.• ), so we actually may use the terms policy and stationary 

strategy deliberately. 

As optimality criterion we choose total expected rewards, which is defined 

(if the sum converges absolutely) for a strategy ~ :; (f
O
,f

1
, ••• ) by 

00 

v(~) := l 
t=O 

t-l 
{IT P(f)} ref ) , 

n=O n t 

where r(f) is the column vector with i-th component r(i,f(i»,] P(f) is 

the matrix with (i,j)~component pf(i)(i,j) and empty products of matrices 

are equal to the identity matrix I. Matrix products, matrix-vector products 

and sums of vectors are defined in the usual way. Hence v(~) is a column 

vector with i-th component: the total expected rewards under stragey ~, if 

the process starts in i. 
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Remarks: 

a. Actually, we only introduced the so-called nonrandomized Markov strategies. 

It would be very well possible to work with more general types of strategies 

allowing e.g. actions based on the complete history of the process and 

mixing of actions. However, under the convergence conditions we need 

anyhow for our theory it is noJ necessary to consider these more complicated 

strategies. This can be proved easily using a basic theorem of van Hee 

(see [9J), as has been demonstrated in [25J for a somewhat more general 

situation than we have in this:paper. 

b. This set-up contains (semi)-Markov decision processes with discounting, 

since the resulting discount factors may be incorporated in the transition 

~ probabilities. This approach leads to the fact that probabilities not 

necessarily sum to one, as mentioned in the beginning of this section 

(see e.g. [22J section 9.1). 

Supposing for the moment that v(n) is properly defined for all strategies 
I 

n E M, we may state the aim of the decision maker: 
. * f~nd n E M, such that 

* v(TI ) = sup v(n) =: v, 
TIEM 

o 0 
or, if the sup is not attained, a n is asked for such that v(n ) 

approximates v ~n some sense. 

The key to the solution of this problem is the so-called optimality equation 

• (which holds under suitable condi~ions to be specified in the sequel): 

v = sup {ref) + P(f)v}, 
fEF 

where the sup is taken componentwise. 

Analogously to linear equation systems and linear integral equations, a 

standard approach for solving such an equation is to use contraction properties 

of a suitably chosen operator. For our kind of equations, this approach 

has been initiated by Blackwell in [IJ and extended by Denardo in [4J. In 

the following it will be shown how this approach can be generalized further 

and how it can be used to find relatively good extrapolations for v and 
o 

v(n ). 

We will first introduce the assumptions on the transition probabilities and 

the rewards. Therefore we assume a positive function ~ on S to be given 

(~ and ~-1, the function with values ~-l(i), will also 

be interpreted as column vectors). Let W be the Banach space of vectors w 
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(real valued functions on S) which satisfy: 

IIwll := sup Iw(i)l· j.l-I(i) < 00 

iES 

For matrices B (real valued functions on S x S) we introduce the corresponding 

operator norm: 

II BII : = sup II Bwli 
II wli = 1 

= sup j.l-I(i) L IB(i,j)1 • j.l(j). 
iES J 

Using this, our main assumptions become: 

(i) a. there is a number m > 0, such that for all policies f E F: 

II ref) - ;11 :$ m, 

where r is the vector with ;(i) := sup r(i,a) or r = sup ref). 
aEA fEF 

00 t-I 
b. sup L {IT P(f )}·I;I < 00 (componentwise) 

TIEM t=O n=O n 

where 1;1 is the vector with components I;(i) I. 

(ii) P:= sup IIp(f)11 < 1, hence P(f)j.l :$ P j.l for all f E F. 
+ fEF + 

(iii) m
l 

:= sup II P(f); - p;1I 
fEF 

< 00 for some P with 0 < P < I. 

In section 3 we will consider the question in what situations a function j.l 

exists such that (i), (ii) and (iii) hold. For the moment we will take these 

assumptions for granted. Note that p and p+ in the assumptions are not 

necessarily equal. 

From these assumptions it follows not only that P(f) is a properly defined 

operator on W, but also that P(f) is monotone and contracting on W with 

contrac tion radius II P (f) II :$ P + < I. 

Since ref) + P(f)w is not necessarily in W, we define a translated space U 

of W on which ref) + P(f)u is a properly defined operator: U is the set 
-1-

of vectors u (real valued functions on S) which satisfy u - (I -p) r E W. 

As W is a Banach space, the space U is completely met-ric with the distance 

II u - u' II between u and u' E U. 

Now one easily verifies the following properties (compare [25J): 
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Lemma 2.1: (i) For any f E F, the mapping L(f) on U, defined by 

L(f)u := ref) + P(f)u, 

maps U into U. 

(ii) L(f) is monotone and contracting on U with contraction 

radius II P(f)1I ~ p < 1. 
+ 

(iii) Being contracting, L(f) has a unique fixed point in U. 

This fixed point is v(f), the total expected reward vector 

of the stationary strategy (f,f,f, ••• ). 

(vi) If u E U, then Ln(f)u converges to v(f) if n + ~. 

However, for application of the successive approximations idea to the 

optimality equation, it is not the operator L(f) that counts, but the 

operator T on U defined by 

Tu := sup L(f)u. 
fEF 

Using the properties of L(f) one verifies for T (see [25J): 

Lemma 2.2: (i) T maps U into U. 

(ii) T is monotone and contracting on U with contraction radius 

y~p <1. 
+ 

(iii) Being contracting, T has a unique fixed point in U. This 

shows that the optimality equation u = sup {ref) + P(f)u} 
fEF 

4It has a unique solution in U. 

(iv) The unique fixed point of T in U, and hence the unique 

solution of the optimality equation in U, is v = sup v(~). 
7rEM 

«v) If u E U, then Tnu converges to v if n + "". 

The proofs of point (i), (ii) and (v) being straightforward, we only sketch 

the proof of (iv): 
* Suppose the fixed point of T is u E U, then we have for any policy 

* * * fO : u ~ r(fO) + P(fO)u = L(fo)u 

This implies for any strategy 7r = (f
O
,f

1
, .•• ) by iteration 

* * u ~ L(fO)L(f I)" .L(ft)u • 

* By taking t -I- 00 the left hand side converges to v(7r), so v(7r) s; u for 

* any 7r, Hence v ~ u . 

* * * That u s; v can be shown by taking a policy f with u S; ref) + P(f)u + £1.1 
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for an arbitrary E > O. By iterating this inequality one shows 

u* ~ v(f) + E(l _ P )-1~ + • 

The proof of lemma 2.2 (iv) exhibited above actually shows more, viz. 

the existence of an E-optimal stationary strategy (IIv(f) - vii ~ E) 

for any positive E. If the sup in the optimality equation is attained 
* by some f for u = v, then E can be taken zero and the stationary strategy 

f * is optimal. 

n Since T is contracting with contraction radius y, T u converges to v 

geometrically. This can be used to give upper and lowerbounds for v 

based on Tnu. However, using the actual convergence of the iterates rnu 

much better bounds can be given without much extra work. These bounds are 

based on the following properties: 

Lemma 2.3: Let 0 > 0, u, u' 

(i) if Tu' - o~ 

(ii) if L(f)u' = 

where" ull 

E U, f E F: 
o + p II u - u'li 

+ 
~ u, then v ~ u + 

I 

p -II u - u '" 
then u + f -u, 1 = ~ - p 

f 

:= inf ~-l(i)u(i), P
f 

:= 
it:S 

- p+ 

s v(f) 

ll· 

p II u - u'li 
+ s u + 
1 - p+ 

Proof: The proof of (ii) is similar, but simpler, as the proof of (i) which 

will be sketched: 

Tu = T (u' + u - u I) S Tu' + p "u - u' II II ~ u + 0 II + P "U - u' II II • + + 
Hence Tu S u + Ell, with E = 0 + P lIu - u'li. 

+ 
Repeating this argument we obtain 

n n-1 
T u ~ u + E(l + p+ + ••• + P+ )~. 

Taking the Umit for n -+ <Xl we obtain the required inequality. 

These properties make it possible to construct an algorithm which generates 
(n) (n) 

vectors u and policies f such that u converges monotonically to v 
n 

and producing the following bounds: 

~ 

Pf 
II u en) _ u (n-I)" 0 + P " u(n) u (n-I)" 

u(n) + (n) 
+ 

n 
~ v(f ) S v S + 1 ~ u - P+ n 

1 - Pf n 

'jJ. 
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h ' b b ' db' 1> 0 (0) 'h (0) (0) d T ~s can e 0 ta~ne y choos~ng u > , U E U Wlt u ~< Tu an 

determining f (n = 1,2, ••• ) such that 
n 

u(n) := L(f ) 
n 

(n-I) > {(n-I) u _ max u , Tu(n-l) - o).l}. 

If 0 satisfies 0 < a(I - p ) for some chosen a > 0, then the upper and lower 
+ 

bound will differ at most a).l for some finite n. For details see [43J, [22J,[25J. 

3. Analysis of the assumptions 

We will first make some miscellaneous remarks on the assumptions. 

a. r may be replaced by any vector b with b - ref) E W for some f, so 

it is not necessary to compute r exactly (see [22J). 

b. the translation function (I - p)-I ~ - as introduced in a slightly 

different way by Harrison in [5J - can be related to an approach by Porteus 

in [31J. Porteus introduced his so-called return transformation which 

transforms the original problem into an equivalent problem satisfying 

Ilr(f)11 ~ mO' IIP(f)1I ~ p+, which can be treated in W itself (for 

details see [25J). 

c. In [I8J, Lippman presents conditions for problems with unbounded rewards 

to allow convergent successive approximations. As we have proved in [28J, 

the models for which Lippman's approach works are covered by our approach 

(in fact the translation is not necessary, so even the conditions of [43J 

are satisfied). As demonstrated in [28J, our conditions are easier to 

verify. 

d. As remarked ~n the introduction the conditions of section 2 have been 

weakened somewhat in [25J by exploiting the fact that very bad policies 

cannot influence convergence essentially. 

e. For convergence of successive approximations it is not necessary to have 

contraction. However, the contraction gives elegant and efficient estimates. 

For treatment of the convergence problem without contraction we refer to 

Schal [36J, Couwenbergh [2J and the papers[lOJ, [IIJ by van Hee, Hordijk, 

van der Wale 

f. Another possible extension ~s to weaken the countability of the state 

space. This has been executed by Schal in [36J and by Couwenbergh in [2], 

[3J. The main new difficulties in that case are measurability problems. 

These problems are solved by using selection theorems. 

g. A similar theory as given in section 2 can be given for finite-stage 

problems. Then strict contraction (i.e. p < 1) is not necessary. For an 
+ 

overview and further references see [I3J by Hinderer and Hubner. 
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h. In the procedure at the end of section 2, the requirement u(O) < Tu(O) 

is not essential. It only makes a definition of the sequence u(n) possible 

such that this sequence is nondecreasing. Here and in later variants we 

only require this mono tonicity for reasons of elegance and - in some 

cases - simplicity of the proofs. 

In the sequel of this section we will discuss the assumptions of section 2, 

so in this part we will not presuppose them. 

Our assumption (ii) requires some sort of transient behaviour of the process 

involved. Assumption (ii) may be written as 

for all f ~ F, with p < 1. 
+ 

In this form the function ~ is clearly required to satisfy some sort of strong 

~ excessivity property (for excessive functions in Markov decision theory 

see Hordijk's monograph [15J). If such a strongly excessive and positive 

function ~ exists, we will call the Markov decision problem strongly 

excessive. 

• 

In the following lemmas we demonstrate the relation between strong excessiveness 

and the transient behaviour of the process. In order to do so, we denote by 

P~(.) the probability of some event given that the strategy ~ is used and 
~ 

the process starts in i. Xt denotes the random variable indicating the 

state of the system at time t. So Xt E S denotes that the system is still 

"alivelf (has not faded) at time t. 

Lemma 3.1: A Markov de~ision process is strongly excessive if and only if 

there exist some partition {Sk/k integer} of S and numbers 

a > 1, a ~ 1, such that for all strategies ~ E M 

for i € SJI," 

In fact this lemma gives a bound for the expected number of 

visi ts to Sk' This number is bounded in k and t but also decreases 

exponentially with increasing k for k 2 t. For a proof we 

refer to [12J by van Hee and Wessels. 

Lemma 3.2: A Markov decision process is strongly exceSS1ve with ~ (i) ~ is > 0 

if and only if the lifetimes of the process are exponentially 

bounded, i.e. 

"TOrr, (X E S) ~ a(';)' t f 11 t 0 1 2 11 M ..u;- ... A or a =", •.. , a ~ IS , 
~ t 

i € Sand 
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positive function a on S, A < I. 

Similarly, strong excessivity with ~ ~ ~(i) ~ 6 > 0 corresponds 

to uniform, exponential boundedness of lifetimes, i.e. the 

function a is constant on S. 

Again we refer for proofs to [12J. 

Lemma 3.3: A Markov decision process is strongly excessive with ~ ~ ~(i) ~o > 0 

if and only if the supremal expected lifetime is bounded as a 

function of the starting state, i.e. 

00 

sup sup I 
iES 1fEM t=O 

lP~ (x E S) < 00. 
1. t 

This has been remarked for finite state and action Markov decision processes 

by Veinott in [39J and by Denardo in [4J • For our situation a proof may be 

found in [l2J. 

There is a close relation between strong excessivity and so-called N-stage 

contraction. The following lemma (see [12J) even shows more, viz. if the 

spectral radius of the Markov decision process with respect to some norm ~ 

is less than one, then the process is strongly excessive: 

Lemma 3.4: Let ~ be a positive function on S, such that P(f)~ ~ m2~ for some 

number m2 and all policies f. 

If lim II pn(f)1I 1 /n ~ P < I for all f and some p , then the Markov 
* * n~ 

decision process is strongly excessive with respect to some 

positive function ~' on S. 

It should be remarked here that ~' is equivalent to ~ in the sense that 

r(f)-vectors which are bounded in ~-norm are also bounded in ~'-norm (see 

the construction of ~' 1.n [12.). 

The proof of lemma 3.4 1.S relatively complicated. If we do not require the 

new norm~' to be of the weighted supremum norm type, but content ourselves 

with contractingness with respect to an arbitrary norm, then a similar 

statement is much easier to prove (see [28J). 



- 12 -

4. Stopping times and success~ve approximation methods 

As mentioned in the introduction we will present alternative ways for 

generating sequences like {u(n)} at the end of section 2. These alternatives 

for the so called policy improvement step amount to replacement of the 

operators L(f) - and hence T - by alternative ones. The alternative operators 

will be defined by stopping times. 

Actually, several variants of the policy improvement step are well known. 

E.g. a Gauss-Seidel procedure (see Hastings[6J or Kushner and Kleinmann [17J), 

an overrelaxation procedure (see Reetz [33J or Schellhaas [37J) and several 

other variants (see van Nunen [24J). All variants require their own convergence 

proofs and their own construction of upper and lower bounds, although clearly 

the techniques are similar. Furthermore, the question arises whether this 

set of variants exhausts all possibilities. In [24J there is already a first 

attempt to a unified approach. In [44J it is demonstrated how stopping 

times can be used to generate alternative. policy improvement operators and 

how a general proof and general bounds can be given for all stopping time 

based operators at the same time. This approach has been generalized to 

countable state spaces and randomized stopping times in [22J. In order to 

keep the presentation simple, we will only consider nonrandomized stopping 

times here. 

Let us go back to the set-up of section 2. The set of allowed paths until 
. . t+l 00 • 

t~me t ~s S • So, S 1S the set of paths. 
00 

A stopping time T is a function on S with nonnegative integer values and 
~ 00 t+l 

satisfying T (t) = B x S for some B c S • This means that T prescribes 

stopping of the process at time t depending on the path of the process until 

time t. With this definition T "is a stopping time in the ordinary sense 

(see e.g. Ross [35J)with respect to the random process XO,X 1, •.•• 

An alternative way of introducing a stopping time is by way of its so-called 

"go ahead set". Each stopping time corresponds to a go ahead set (and 

reversely) in the following way: 

00 

t I 
00 

Let G := u {a E: S T(a,S) ~ t for all S E: S } , T t=l 

then for all t we have: 

st f 
co 

a E G n R. E: S, (a,R.) G .. T(a,t,S) so t for all S E: S 
T J T 
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is the set of paths until some time, for which the stopping time T 

prescribes: go ahead. The set G determines the stopping time T completely 
T 

(see [44J, [26J, [22J). 

For our purpose (as will appear shortly) the only interesting stopping 
00 

times are those with T(a) c 1 for all a E S (or equivalently S c G ). 
T 

So from now on we restrict ourselves to such nonzero stopping times. Before 

going on, we give some simple examples: 

a. T n for some fixed n (1 ~ n ~ 00); 

H b. T defined by the go ahead set G containing all paths (iO,i1, ••• ,i t ) 

until time t (for any teO) with iO > il > > i . 
t 

R c. T defined by the go ahead set G containing all paths (i,i, ••• ,i) 

for any i E S until any time t. 

Now we will explain how a stopping time T generates a policy improvement step. 

Consider the stopping time T = 1. Using this stopping time we may redefine 

the operators L(f) on U as follows: 

L(f)u = ref) + P(f)u. 

Then clearly f 
L(f)u = E [r(XO,f(Xo) + u(X})J, 

T-l 
L(f)u = Ef[ 2 r(Xt,f(X

t
) + u(X )J, 

t=O T 

where E~ denotes the expectation with respect to the stationary strategy f 
1 •• f . . 

if the process starts 1n 1; so E 1S the correspond1ng vector of expectations. 

Now we can introduce similar operators L (~) 
T 

For arbitrary stopping times T and arbitrary strategies ~ = (f
O
,f

1
, ••• ): 

L (~)u 
T 

T-l 
2 

t=O 

with u(X ) = 0 if T = 00 
T 

reX ,f (X ) + u(X )J, 
t t t T 

As for the case T 1, it 1S easy to show that L (~) is a proper operator 
T 

on U, which is monotone and strictly contracting with a contraction radius 

not larger that p+ (see [22J or [44J). Therefore. L (~) possesses a unique 
T 

fixed point u~ in U. 
T 

For the examples a,b,c with stationary strategy f the i-th component of 

L (f)u becomes: 
T 
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a. (n = 1) r(i,f(i) + 1 pf(i)(i,j)u(j) • 
j 

b. r(i,f(i» + I pf(i)(i,j) (L,(f)u)(j) + 1 pf(i)(i,j)u(j) • 
j<i j~i 

f(i)(, ') (')} p 1.,J u J • 

Furthermore, 

b ' f we 0 talon u 
'[ 

it is easily verified that L (f)v(f) = v(f), so for any '[ 
T 

:= v(f). 

Now a policy improvement operator T on Umay be defined in an obvious 
T 

way 

T u ;= sup L (~)u. 
'[ M' n€ 

For computational purposes it is desirable if the supremum in the definition 

of T'[ can be restricted to stationary strategies. 

Furthermore, it would be nice if T u is also the supremum over all thinkable 
T 

(history-based, randomized) strategies. All this is true if T loS a so-called 

transition memoryless stopping time, i.e. whether the process is stopped 

after a path (iO,i1, ••• ,i t ) or not only depends on the pair (i t - 1,i t ) 

for t ~ 1 and neither on the earlier history nor on t. So for a transition 

memoryless stopping time the stopping or going ahead is based on the most 

recent transition (for a detailed treatment see [22J, [27J, [44J). 

If T is not transition memoryless, then there are {pa(i,j), r(i,a)} 

such that the supremum of L (n)u over all (very general) strategies ~ may 
1: til not be replaced by the supremum over the stationary strategies only (see [22J). 

From now on we will restrict ourselves to transition memoryless stopping 

times. For the operator T on U we then have the following properties , 
(for proofs see [22J, [44J): 

Lemma 4.1: 1. T is a monotone operator on U. , 
2. T, is strictly contracting with contraction radius vT 

that p+. Actually, v, is the supremum of the radii of 

over all policies f. 

not larger 

L (f) 
T 

3. the unique fixed point of T in U is the value function v. 
T 

4. for all E > 0, u € U there exists a policy f such that 

L (f)u ~ T u - E~ • 
T T 
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Now we may define for any (nonzero, transition memoryless) stopping 

time T a successive approximation procedure (completely analogous to the 

procedure at the end of section 2): 

Choose 0 > 0, u(O) E U with u(O) < T u(O) and determine f (for n = 1,2, .•• ) 
T n 

such that 

u(n) := L (f ) u(n-I) ~ max {u(n-l) T u(n-l) - o~} • 
Tn' T 

Then we have the following upper bound for v: 

Ilu(n) _ u(n-l)11 
(n) 0 + \) 

v ~ u + ______ T __ ~ ____ ----__ --_ ~ 
I-\) 

T 

and a similar lower bound for v and v(f ). Furthermore, by definition 
u(n) ~ u(n-l) • n 

The examples a,b,c induce numerically well-executable procedures: 

a. only n = 1 gives a transition memoryless stopping time and the procedure 

is the standard Gauss-Jordan procedure. 

b. this stopping time yields the Gauss-Seidel procedure (see [6J, [17J. 

c. this stopping time yields the Jacobi procedure (see [3IJ). 

Also combinations of b. and c. are interesting as well as some other variants 

(compare [22J). 

Porteus' preinverse transformation [31J for the data of the Markov decision 

process is strongly related to our stopping time approach (see [26J). 

Actually, this stopping time approach might give a possibility of weakening 

conditions for convergence of successive approximations. Namely, if for 
II 

some T the operator T is N-stage contracting, then there will be convergence 
T 

in norm of Tnu to v. Whether this idea actually gives a real weakening of 
T 

the conditions or not, has not been investigated so far. 

5. Value oriented methods 

In this section we will introduce another acceleration technique. As has 

been said already in the introduction, it will consist of better approximation 

of v(f ) in the n-th step of the procedure. 
n 

Suppose for simplicity that the supremum in T u is actually attained for 
T 

some policy. Then we find in the n-th step of the algorithm some policy 

f with 
n 

T )n-I) = 
T 

L (f ) u(n-I) • 
T n 
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(n-1 ) 
T u is, of course, an approximation of v(f ). However, a better 

• n 
approximation would be 

for some natural - preferably large - number A. 

So, let us fix A (A may depend on n) and define 

In this way one obtains a procedure which seems to converge better. However, 

this becomes less certain as soon as one realizes that the operator which 

b " (0) (1). . h"l . maps an ar 1trary u on u 1S ne1t er necessar1 y monotone, nor contract1ng 

as one can see from some simple examples (see [23J, [22J or [27J). Nevertheless 

the convergence proof is simple (at least if we enforce monotonicity of the 

iterates) as will be demonstrated. 

Suppose that u(O) satisfies 

Hence u(O) ~ 

and 

L (f ) u(O) 
• I 

Slim Ln(f1)U(O) a v(t) 
n-

Furthermore, T u(l) = L (f
2

) u(l) ~ L (f}) u(l). Thus one obtains 
• T T . 

u(l) s u(2) S v(f
2
). By induction this gives u(n-l) S u(n) S v(f

n
) S v. 

On the other hand one has u(n) ~ Tn u(O), where the right hand side tends 
(n) T . 

to v for n -+ "". Therefore u -+ v when n -+ 00. Moreover 

In the same way as in section 2 and 4, one may obtain efficient bounds. As 

an example we give the upper bound for v: 

T u (n) _ u (n)11 
1: 

• 11 

where the only remarkable point is, that the extrapolation is not based 
on u(n+l) - u(n), but on T u(n) _ u(n). 

T 

It should be remarked that the restriction to finite values of A is not 

essential. If we interpret L:(f)u as lim L~(f)~, then all properties of our 
n-

value oriented methods also hold for A = 00. 

co 
However, L (f)u = v(f), which implies that for A = ()() we obtain the following 

. 1: 

procedure (without the stopping criterion): 

I 
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Choose u(O), such that u(O) ~ T u(O) • 
l' 

Determine f for n = 1,2, ••• with 
n 

T u(n-l) = L (f ) u(n-I) , u(n):_ v(f ). 
l' l' n n 

This means, that for A = 00 we have a policy iteration procedure. 

Namely, for l' 1 this results in the standard policy iteration procedure 

of Howard [16J(extended to more general situations), for the stopping 

time from example b (section 4) this results in Hasting's policy iteration 

procedure [6J based on Gauss-Seidel iteration. In fact, we developed in 

this way a whole set of policy iteration procedures (for some examples, see 

[24]) • 

The idea of value oriented methods has been initiated in [23J, where also 

examples are given showing the numerical advantages. The combination with 

non-standard policy improvement steps has been given in [24] and generalized 

to stopping time based policy improvements in [27J. The most general theory 

(countable state space, randomized stopping times) has been presented in [22J. 

6. Elimination of non-optimal actions 

The final work saving idea which will be presented in this paper, is the 

elimination of actions which are clearly not optimal. If such an elimination 

can be executed without much extra work, then it will save work, since the 

amount of work in the policy improvement step heavily depends on the number 

of available actions. 

The basic idea for using upper and lower bounds for elimination of actions 

stems from Macqueen [20J. A considerable improvement has been sugge~ted by 

Hastings in [7J for average reward problems by eliminating actions only 

temporarily. For total expected reward problems this idea has been extended 

by Hastings and van Nunen in [8]. 

We will present the action-elimination algorithm for the standard successive 

approximations procedure (i.e. l' = 1, A = 1), however the more general case 

may be treated in the same way. 

For simplicity of notations we will also suppose that the supremum in 

the operator T ~s attained, so 0 can be taken zero. Now consider the algorithm 

of section 2 (with C = 0), which produces a monotone nondecreasing sequence 

{ (n)}oo (n) (n-I) 
u ncO' Suppose for some n we have u = u, u = w, then we have 

the following lower bound for u(n+l) = Tu(n) = Tu: 

u + p II u - wll::. lJ ~ Tu, 
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where p = inf P f • This can be proved with the same trick as in the first step 
f 

of the proof of lemma 2.3 (i). 

For an arbitrary f we find the following bound for L(f)u with the analogous 

trick: 

+ L(f)u:S ref) + P(f)w + P
f 

lIu - wli }.I, 

+ 
where P f := II P(f)1I • 

Combining these bounds one may conclude that f can only be a candidate for 

the maximizer in Tu if 

u + P_ II u - wli 
+ 

}.I S ref) + P(f)w + Pf Uu - wlill • 

This property can be used to eliminate some actions for state i as candidates 
+ 

for the maximizing action f n+
1
(i). Namely, by replacing Pf by the more 

conservative value P+ we see that f n+
1
(i) 1 a if 

or 

u(n)(i) + P_ Ilu - wli lJ(i) > r(i,a) + I pa(i,j) w(j) + p+ UU - wli }.I (i), 
j 

r(i,a) + L pa(i,j) u(n-l)(j) < 

J 

Using this idea one can easily test action a in state i as a candidate 

for step n + 1 with the data computed in step n. 

Analogously one can test whether action a for state i can be eliminated for 

more than one step or not. Namely, again using the trick from the proof 
m of lemma 2.3, we can give as lower bound for T u: 

u + 
2 

(p- + P + 

m-l As upper bound for L(f) T u we find 

m 
1.1 STu. 

L(f) Tm-Iu S ref) + P(f)w + (p+ + ••• + P:) lIu - wlllJ • 

Hence a test for action a in state i to be no candidate for f (i) becomes n+m 
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r(i,a) + I pa(i,j) u(n-l)(j)< 
J 

Since the right hand side of this testinequality is nonincreasing in m, we 

can use this inequality with varying m to decide for how many steps action 

a in state i may be disregarded. This test does not cost much extra work 

but can save much computational work. In [8J Hastings and van Nunen 

illustrate this by Howard's autoreplacement problem. Here we will present 

the results for an inventory problem. In this example of a discounted 

Markov decision problem where (3 is the discountfactor, we have ].I == 1 and 

hence p_ = p+ = B. 

Inventory planning example: 

B 0.99. 

S == {O, 1, 

A= {O, I, 

... , 

.... , 
60}, where i E S denotes an inventory level. 

60}, where a ( A denotes the inventory level after ordering; 

in state i only actions a with a ~ i are available. Hence 1891 combinations 

(i,a) are available. With some realistic cost data and a demand distribution 

ranging from zero to forty we obtained. the elimination results as stated in 

the table. For comparison, we also give the elimination results for Macqueen's 

test [20J, which only removes action a in state i if it satisfies the test 

for m = ~, however, in that case the removal is permanent • 
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Hastings/v. Nunen 
- Macqueen 

no of itera no of (i,a)-combinations no of (i,a)-combinations 
tion step which have not been which have not been elimi-

eliminated temporarily nated permanently 

2 1891 1891 

3 1890 1891 

4 1859 1891 

5 1585 1891 

6 113 ] 1891 

7 1038 ]891 

8 648 1891 

9 434 1891 

10 237 1891 

1 1 186 1891 

12 150 1889 

13 )03 1848 

14 90 1809 

15 98 1200 

16 65 883 

17 65 258 

18 62 177 

19 65 102 

20 62 100 
2) 63 78 
22 61 68 

23 61 62 

24 61 62 

25 61 61 

Table of performance of two action elimination procedures. Note that the 

Hastings/v. Nunen procedure does not produce a monotone column. 
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7. Harkov games 

Host of the ideas explained in the preceding sections can be extended to 

so called Markov games. Actually, as stated in the introduction, the basic 

dynamic programming approach for Markov games is older than the similar 

approach for Markov decision processes (see Shapley [38J). However, the 

refinements as presented in this paper have been developed first for Markov 

decision processes. Most refinements can be generalized in a simple way to 

Markov games. At least, after the generalization has been found, it appears 

to be simple. 

In this section we will give a short introduction to Markov games and 

demonstrate how the ideas of the preceding section can be applied. 

~ 7.1. Markov games with unbounded rewards 

We now consider a system as in section 2, however, two players may choose 

at any time t = 0,1,2, ••• actions a and b from sets A and B after having 

observed the state i of the system. These (independently made) choices 

determine the immediate reward r(i,a,b) for the first player (choosing 

from A); this reward has to be paid by the second player (choosing from B). 

Another result of these choices is a state transition which will result in 

state j with probability pa,b(i,j). 

The conditions have to be stronger than in section 2 with respect to the 

action spaces. For simplicity we suppose here that A and B are finite. 

For more general cases see Couwenbergh [2J, [3J and the survey paper of 

Parthasarathy and Stern [29J. In all generalizations there are compactness 

~ requirements for A and B. Again we only introduce Markov strategies, since 

it can be proved that more general strategies can be discarded (see e.g. 

[2J, [3J, [40J,[42],[45J). However, we need randomized Markov strategies. 

So we call f a policy for the first player if f(i) is a probability 

distribution on A: fa(i) ~ 0, 1 fa(i) = 1. Similarly a policy g for the 
aEA 

second player is defined as a probability distribution on B. Strategies 

for the players are sequences of policies: n = (fO,f
1

, ••• ) for the first 

player and p = (gO,gl"") for the second player. 

Now the total expected reward v(n,p) fo·r the first player (= costs for 

the second player if they play the strategies n,p is defined as: 

00 t-l 
v(n,p) := 1 {IT P(f ,g )} r(ft,gt) , 

t=O n=O n n 
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where P(f,g), r(f,g) are defined analogous to P(f), ref) in section 2. 

h . f' . * * T e goal ~s to ~nd strateg~es 'IT ,p such that 

* * * * v('IT,p ) S v('IT ,p ) ~ v(n ,p) for all strategies n,p. 

Furthermore, one is interested in finding the value of v(n*,p*), which will 

be denoted by v and called: the value of the game, n* and p* will be called 

optimal strategies. 

Similarly as in section 2, the key to the solution is the fact that v 

satisfies (under suitable conditions) a kind of optimality equation 

v ~ sup inf {r(f,g) + P(f,g)v}. 
f g 

As in section 2 this may be proved by dynamic programming. In this case 

it implies the introduction of operators L(f,g) and Q with the similar 

tasks as the operators L(f) and T: 

L(f,g)u =: r(f,g) + P(f,g)u, 

Qu = sup inf {r(f,g) + P(f,g)u} 
f g 

= sup inf L(f,g)u. 
g f 

In order to guarantee that L(f,g) and Q are well-defined operators with nice 

properties, we need similar assumptions as in (i) - (iii) of section 2: 

(i) 

(ii) 

(iii) 

a. there is a number m > 0, such that for all policies f,g: 

II r(f,g) - rll ~ m, 

where r is the vector with rei) := sup inf r(i,a,b) or 
aEA bEB 

00 

b. sup L 
n,p t=O 

p+ := sup 
f,g 

mj := sup 
f,g 

r = sup inf r(f,g) 
f g 

t-l 
{TI P(f ,g )} Irl < 00 

n=O n n 

IIP(f,g)1I < 1 

II P(f ,g)r - prll < 00 for some p with 0 < P < 1. 
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(Actually, for some of these assumptions only degenerated policies are 

necessary; furthermore, sup and inf may often be replaced by max and min). 

With these assumptions L(f,g) and Q are proper operators in U which is 

defined - exactly as in section 2 - as the translation over (1 _p)-Ir 
of the space W of functions on the state space with finite norm. 

(Q,u)(i) 'now represents the value of the matrix game on A,B with rewards 

(L(f,g)u)(i) if policies f,g are chosen. That (Qu)(i) is really the value 

of this matrix game follows from the finiteness of A and B. Interpreting 

L(f,g)u, we see that (Qu)(i) represents the value of the one-step Markov 

game starting in i and with terminal reward u. So - exactly as in section 2 -

we obtain that (Qnu)(i) is the value of the n-step Markov game with 

terminal value u. Using the fact that - again similar to section 2 - Q is 
n contracting on U, we obtain that Q u tends to the unique fixed point of Q 

if n tends to infinity. Then it is simple to prove that this fixed point 

must be the value v of the m-step Markov game. As in section 2 this can 

be used to construct a successive approximation method for finding v and 

relatively good strategies: choose u(O) € U, compute successively 
(n) Q (n-I) u = u and f , g such that 

n n 

L(f,g ) u(n-l) ~ u(n) = Qu(n-I) = L(f ,g ) u(n-l) ~ L(f ,g) u (n-l) 
n n n n 

Again u(n) and u(n-l) may be used for the computation of simple but efficient 

upper and lower bounds for v and v(f ,g ). Because of the similarity with n n 
section 2 we will skip this (see e.g. [42J). moreover, we have here the 

~ simpler situation that the sup and inf in Q are always attained. 

The results of section 3 apply completely to the Markov game situation, 

since the lemmas 3. 1 - 3.4 in fact only require a set of transition matrices 

with the property that any combination of rows from some of the allowed 

matrices forms again an allowed matrix (see [12J). 

For a slight extension of the assumptions in this section see [45J. 

7.2. Stopping times generating approximation methods 

As in section 4 we may introduce a stopping time ~ and define L (n,p) by 
~ 

L (n,p)u 
~ 

l-l 
:= En,P[ I reX ,f (X ),g (x » + u(Xt)J, 

t=O t t t t t 
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with u(X ) = 0 if • = 00 and ETI,P is defined as in sections 2 and 4. 
T 

This leads to the definition of Q by 
t 

Q u = s~p inf L (TI,p) u. 
t "p' 

Again, we obtain for nonzero transition memoryless stopping times T, that 

U(n) = Q u(n-l) . . produces a proper successive approX1mat10ns method. For 
T 

details see van der Wal [40J. 

7.3. Value oriented methods for Markov games 

The value oriented methods for Markov decision processes as introduced in 

section 5 contain policy iteration methods as extreme cases (A = 00). For 

Markov games the standard (. = 1) extension of the policy iteration method 

has been suggested by Pollatschek and Avi-Itzhak [30J. They give a convergence 

proof under fairly strong conditions and only conjecture the convergence 

under milder conditions. A mare general proof of Rao, Chandrasekaran.and 

Nair [32J appeared to be incorrect as has been demonstrated by van der Wal 

in a forthcoming paper [41J. Actually, a simple example (see [41J or [42J) 

shows that the algorithm may start cycling. 

Hence the straightforward generalization of the policy iteration method 

to Markov games is riot feasible in general. However, an idea of Hoffman 

and Karp [14J for average reward games can be applied here as has also been 

suggested by Pollatschek and Avi-Itzhak [30J. Van der Wal [41J has used 

this set up for the construction of value oriented methods for Markov 

games. The case T 1, A = 1 represents the standard successive approximations 

method; arbitrary T, A = represents the methods of subsection 7.2; 

• = 1, A = 00 represents the policy iteration method as introduced by 

Pollatschek and Avi-Itzhak according to the idea of Hoffman and Karp. 

Here, we describe the method for fixed. and A: 

choose u(O) E U with Q u(O) ~ u(O) 
T 

Determine Q u(n) for successive values of nand 

find a pOli~y g 1 satisfying L (f g ) u(n) ~ 
n+ T ' n+l 

~ Q u(n) for all f • 
• 

Y~!~~_~EEE~~!!!~!~~_!~!ElDetermine 

where the 

(n+1) ._ QA( ) (n) 
u .- T gn+l u , 

operator Q (g) is defined by 
T 

QT(g)u := max L (f,g)u. 
f T 
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Having the formulation of this procedure, the convergence proof is very 

similar to the proof for Markov decision processes (see [41J). Also the 

Jtopping criteria and the bounds for v and v(f ,g ) are completely similar 
n n 

(see [41J, [42J,[45J). 

7.4. Elimination of nonoptimal actions 

As in section 6 we restrict attention to the standard successive approximation 

method (T = 1, A = 1). Then an action at is nonoptimal at stage n in state 

i, if any policy f(i) being optimal for the matrix game 

r(i,a,b) + I pa,b(~,j)u(n)(j) satisfies fat (i) = o. 
j n 

This gives the possibility to eliminate some actions for both players in 

some states for one iteration step. This can be executed completely similar 

to the procedure presented for Markov decision processes (section 6) using 

the upper and lower bounds which have not been stated explicity in sub 

section 7.1. Such a procedure has been worked out in detail by Reetz and van 

der Wal in [34J. It will be self-evident that the same idea may be used to 

eliminate actions ~or m steps (see [34J) • 
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