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Abstract: This paper focuses on the synthesis of computationally friendly sub-optimal
nonlinear Model Predictive Control (MPC) algorithms with guaranteed robust stability.
The input-to-state stability framework is employed to analyze the robustness of the
resulting MPC closed-loop systems. Two new sub-optimal nonlinear MPC schemes
are proposed, based on a contraction argument and an artificial Lyapunov function,
respectively. The developed theory is illustrated by applying it to control a Buck-Boost
DC-DC converter. Copyright c©2006 IFAC
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1. INTRODUCTION

One of the most studied properties of Nonlinear Model
Predictive Control (NMPC) is the stability of the
controlled system. Perhaps the most embraced sta-
bilization method is the so-called terminal cost and
constraint set approach, see, for example, the survey
(Mayne et al., 2000) for an overview. This method
uses the value function of the MPC cost as a can-
didate Lyapunov function for the closed-loop system
and achieves stability via a particular terminal cost and
an additional constraint on the terminal state, i.e. the
predicted state at the end of the prediction horizon. Its
advantage consists in the fact that initial feasibility of
the NMPC optimization problem implies feasibility all
the way and the finite horizon MPC cost is proven to

1 This research was supported by the Dutch Science Foundation
(STW), Grant “Model Predictive Control for Hybrid Systems”
(DMR. 5675) and the European Community through the Network
of Excellence HYCON (contract FP6-IST-511368) and the IST
project SICONOS (IST-2001-37172). The authors are grateful to
C. Mahulea for his help with the simulations.

be a good approximation of the infinite horizon MPC
cost. However, these properties are only guaranteed
under the standing assumption that the global opti-
mum of the MPC optimization problem is attained on-
line, at each sampling instant. Clearly, when dealing
with nonlinear prediction models and hard constraints,
it is difficult if not impossible to guarantee this as-
sumption in practice, where numerical solvers usually
provide (in the limited computational time available)
a feasible, sub-optimal input sequence, rather than a
globally optimal one. Such a sub-optimal input se-
quence needs to have certain properties to still guar-
antee robust stability of the MPC closed-loop system.
Therefore, in practice, there is a need for sub-optimal
MPC algorithms based on simpler optimization prob-
lems, which can be solved faster, and that still have an
a priori robust stability guarantee.

An important result regarding sub-optimal NMPC was
presented in (Scokaert et al., 1999), where it is shown
that feasibility of the NMPC optimization problem
rather than optimality is sufficient for stability. In



(Scokaert et al., 1999), stability is achieved with-
out requiring optimality, by forcing the MPC value
function to decrease at each sampling-instant, which
can be expressed in terms of an additional constraint.
However, when nonlinear prediction models are used,
this constraint becomes highly nonlinear and difficult
to implement from a computational point of view, as
the MPC value function depends on the whole se-
quence of unknown predicted future inputs. Feasibility
is guaranteed for the nominal case in (Scokaert et
al., 1999) by adding a terminal equality or inequality
constraint.

This paper investigates the possibility of designing
Input-to-State Stabilizing (ISS) (Jiang and Wang,
2001), but computationally friendly sub-optimal MPC
algorithms. We propose to achieve this goal via new,
simpler stabilizing constraints, that can be imple-
mented as a finite number of linear inequalities. Two
sub-optimal NMPC algorithms are presented. The first
one is based on a contraction argument, i.e. we prove
that, if the norm of the state of the closed-loop sys-
tem is sufficiently decreasing at each sampling instant,
then ISS is guaranteed. The second NMPC scheme re-
sorts to an ∞-norm based artificial Lyapunov function,
which only depends on the measured state and the
first element of the sub-optimal sequence of predicted
future inputs. A method for computing this function
off-line for a linear approximation of the nonlinear
model is also given. A case study on the control of DC-
DC converters is included to illustrate the potential of
the developed theory for practical applications.

Compared to (Scokaert et al., 1999), we do not guar-
antee that initial feasibility implies feasibility all the
way for the proposed algorithms. However, note that
we consider perturbed systems. In this case, feasibility
all the way is not guaranteed for the algorithms of
(Scokaert et al., 1999) either. From a computational
point of view, we obtain faster NMPC algorithms, as
our stabilizing constraints can be written as a finite
number of linear inequalities. Moreover, we also pro-
vide a robust stability guarantee in terms of ISS, which
ensures a bound on the norm of the MPC closed-loop
system state.

Notation and basic definitions

Let R, R+, Z and Z+ denote the field of real num-
bers, the set of non-negative reals, the set of integer
numbers and the set of non-negative integers, respec-
tively. We use the notation Z≥c1 to denote the set
{k ∈ Z+ | k ≥ c1} for some c1 ∈ Z+. Let ‖ · ‖ denote
the ∞-norm for shortness. For a matrix Z ∈ Rm×n let
‖Z‖ := supx 6=0

‖Zx‖
‖x‖ denote its corresponding induced

matrix norm. For a sequence {zp}p∈Z+ with zp ∈Rl let
‖{zp}p∈Z+‖ := sup{‖zp‖ | p∈Z+}. Let z[k] ∈{Rl}k+1

denote the truncation of {zp}p∈Z+ at time k ∈ Z+, i.e.
z[k],p = zp, p ≤ k. For a set S ⊆ Rn, we denote by
∂S the boundary of S , by int(S ) its interior and by
cl(S ) its closure. A polyhedron (or a polyhedral set)

in Rn is a set obtained as the intersection of a finite
number of open and/or closed half-spaces. A function
ϕ : R+ → R+ belongs to class K if it is continuous,
strictly increasing and ϕ(0) = 0. A function β : R+×
R+ → R+ belongs to class K L if for each fixed
k ∈R+, β (·,k)∈K and for each fixed s∈R+, β (s, ·)
is non-increasing and limk→∞ β (s,k) = 0.

2. INPUT-TO-STATE STABILITY
PRELIMINARIES

Consider the discrete-time perturbed nonlinear system
described by

xk+1 = G(xk,wk), k ∈ Z+, (1)

where xk ∈ Rn is the state, wk ∈ Rl is an unknown
disturbance input and G : Rn×Rl → Rn is a nonlin-
ear, possibly discontinuous function. For simplicity of
notation, we assume that the origin is an equilibrium
in (1) for zero disturbance, meaning that G(0,0) = 0.
For system (1), we now introduce the notion of input-
to-state stability (Jiang and Wang, 2001).

Definition 1. Let X and W be subsets of Rn and Rl ,
respectively, with 0 ∈ int(X). We call system (1) ISS
for initial conditions in X and disturbances in W if
there exist a K L -function β (·, ·) and a K -function
γ(·) such that, for each x0 ∈ X and all {wp}p∈Z+

with wp ∈W for all p ∈ Z+, it holds that the corre-
sponding state trajectory satisfies ‖xk‖ ≤ β (‖x0‖,k)+
γ(‖w[k−1]‖) for all k ∈ Z≥1.

Theorem 2. Let W be a subset of Rl with 0 ∈ int(W)
and let X be a Robust Positive Invariant (RPI) set 2 for
(1) and disturbances in W with 0 ∈ int(X). Further-
more, let α1(s) := asλ , α2(s) := bsλ , α3(s) := csλ for
some a,b,c,λ > 0, σ(·) ∈K and let V :Rn →R+ be
a function with V (0) = 0. Consider now the following
inequalities:

α1(‖x‖)≤V (x)≤ α2(‖x‖), (2a)
V (G(x,w))−V (x)≤−α3(‖x‖)+σ(‖w‖). (2b)

If inequalities (2) hold for all x ∈ X and all w ∈W,
then system (1) is ISS for initial conditions in X and
disturbances in W. Moreover, the ISS property of
Definition 1 holds with

β (s,k) , α−1
1 (2ρkα2(s)), γ(s) , α−1

1

(
2σ(s)
1−ρ

)
,

(3)
where ρ := c

b ∈ [0,1).

The proof of Theorem 2, including how the specific
β (·, ·) and γ(·) functions given in (3) are obtained, is
given in (Lazar et al., 2005a). Note that, the conditions
(2) imply Lyapunov asymptotic stability when the
disturbance input converges to zero (Jiang and Wang,
2001).

2 Meaning that for all x∈X it holds that G(x,w)∈X for all w∈W.



Definition 3. A function V (·) that satisfies the hypoth-
esis of Theorem 2 is called an ISS Lyapunov function.

3. SUB-OPTIMAL NMPC ALGORITHMS

We consider nominal and perturbed discrete-time non-
linear systems of the form:

xk+1 = f (xk)+g(xk)uk, k ∈ Z+, (4a)
x̃k+1 = f (x̃k)+g(x̃k)uk +wk, k ∈ Z+, (4b)

where xk, x̃k ∈ Rn, uk ∈ Rm and wk ∈W ⊂ Rn are the
state, the input and an additive disturbance, respec-
tively, and f : Rn → Rn, g : Rn → Rn×m are nonlin-
ear functions with f (0) = 0. In the sequel we will
consider the case when sub-optimal NMPC is used
to generate the control input uk in (4). We assume
that the state and the input vectors are constrained
for both systems (4a) and (4b), in a compact subset
X of Rn and a compact subset U of Rm, respectively,
which contain the origin in their interior. For a fixed
N ∈ Z≥1, let xk(xk,uk) , (x1|k, . . . ,xN|k) denote the
state sequence generated by the nominal system (4a)
from initial state x0|k , xk and by applying an input
sequence uk , (u0|k, . . . ,uN−1|k). Let F : Rn → R+
with F(0) = 0 and L :Rn×Rm →R+ with L(0,0) = 0
be mappings. At time k ∈ Z+ let xk ∈ X be given. The
basic NMPC scenario consists in minimizing at each
sampling instant k ∈ Z+ a finite horizon cost function
of the form

J(xk,uk) , F(xN|k)+
N−1

∑
i=0

L(xi|k,ui|k), (5)

with prediction model (4a), over all input sequences
uk, subject to state and input constraints.

Let X f (N) ⊆ X denote the set of feasible states with
respect to the above optimization problem, i.e. the
set of all states for which there exists a sequence of
inputs that satisfies the input constraints and results
in a predicted state trajectory that satisfies the state
constraints. Then,

VMPC : X f (N)→ R+, VMPC(xk) , inf
uk

J(xk,uk)

is the MPC value function corresponding to the cost
(5). If there exists an optimal sequence of controls
u∗k , (u∗0|k,u

∗
1|k, . . . ,u

∗
N−1|k) that minimizes (5), the in-

fimum above is a minimum and VMPC(xk) = J(xk,u∗k).
Then, an optimal MPC control law is defined as
uMPC(xk) , u∗0|k, k ∈ Z+. Stability of the resulting
MPC closed-loop system is usually guaranteed by
adding a particular constraint on the terminal state
xN|k, see, for example, the survey (Mayne et al., 2000).

As mentioned in the introduction, in practice, the
available solvers provide only a feasible, sub-optimal
sequence of inputs ūk , (ū0|k, ū1|k, . . . , ūN−1|k) and
the control applied to the plant, i.e. ū0|k, is a sub-
optimal MPC control. The resulting value function is
then V (xk) , J(xk, ūk). The stability of the resulting

MPC closed-loop system may be unclear now, or may
even be lost. Next, we present two sub-optimal NMPC
algorithms that still guarantee stability a priori.

3.1 A contraction approach

In this paper we consider ∞-norm based MPC costs,
i.e. F(x) , ‖Px‖ and L(x,u) , ‖Qx‖+ ‖Ruu‖, where
P ∈ Rp×n, Q ∈ Rq×n and Ru ∈ Rru×m are assumed to
be known matrices that have full-column rank. To set-
up the sub-optimal MPC algorithm we assume 3 that
a Lipschitz condition holds for the dynamics f (·),g(·)
in the sense that there exist L f ,Lg > 0 such that

‖ f (x)+g(x)u‖ ≤L f ‖x‖+Lg‖u‖, ∀x ∈X,∀u ∈U.
(6)

We also assume that all the controls in the sequence of
predicted future inputs satisfy the regularity condition

‖ui|k‖ ≤ θi‖x0|k‖, i = 0, . . . ,N−1, (7)

for some constants θi > 0. Since the control laws
ui|k are not known explicitly, to ensure that (7) holds
we will choose the constants θi a priori and im-
pose (7) as an additional constraint to the NMPC
optimization problem. Then, using (6) and (7) suc-
cessively, one can easily establish a class K up-
per bound on J(x,u) for any x ∈ X and feasible u,
i.e. J(x,u)≤ α2(‖x‖) with α2(s) , C (L f ,Lg,θ ,N)s,
where C (L f ,Lg,θ ,N) > 0 is a constant that depends
on L f , Lg, θ , (θi, . . . ,θn) and N. Since Q has full-
column rank, there exists a ξQ > 0 such that ‖Qx‖ >
ξQ‖x‖ for all x ∈ X. Then, it holds that J(x,u) ≥
α1(‖x‖) for all x ∈ X and any u, where α1(s) , ξQs.
Let τ ∈ (0,1) be a known constant.

Algorithm 1.
Step 1: At time k ∈ Z+ measure the state xk, let
x0|k := xk and minimize the cost (5) subject to:

xi+1|k = f (xi|k)+g(xi|k)ui|k, i = 0, . . . ,N−1, (8a)

α2(‖ f (x0|k)+g(x0|k)u0|k‖)
− (1− τ)α1(‖x0|k‖)≤ 0, (8b)

xi|k ∈ X, i = 1, . . . ,N, (8c)

ui|k ∈ U, i = 0, . . . ,N−1, (8d)

‖ui|k‖ ≤ θi‖x0|k‖, i = 0, . . . ,N−1. (8e)

Step 2: Let ūk be a feasible sequence of inputs calcu-
lated at Step 1. Apply to the perturbed system (4b) the
control input ūMPC(xk) := ū0|k.

Theorem 4. Let X f (N) be the set of states x ∈ X for
which the optimization problem in Step 1 of Algo-
rithm 1 is feasible and let X̃ f (N) ⊆ X f (N) be a RPI
set for system (4b) in closed-loop with ūMPC(·) with
0 ∈ int(X̃ f (N)). Then, the perturbed system (4b) in
closed-loop with ūMPC(·) is ISS for initial conditions
in X̃ f (N) and disturbances inW.

3 Note that the continuity assumption is required only for the
contraction based sub-optimal NMPC algorithm.



PROOF. The proof consists in showing that V (xk) =
J(xk, ūk) is an ISS Lyapunov function. Let C denote
C (L f ,Lg,θ ,N) for shortness. By construction and
from constraint (8e) we have that V (·) satisfies (2a) for
all x ∈ X̃ f (N) with α1(‖x‖) = ξQ‖x‖ and α2(‖x‖) =
C ‖x‖. From constraint (8b) we have that for all x ∈
X̃ f (N) and any feasible ū (‖ · ‖ denotes the ∞-norm):

V ( f (x)+g(x)ūMPC(x)+w)−V (x)

≤ α2(‖ f (x)+g(x)ūMPC(x)+w‖)−α1(‖x‖)
≤ α2(‖ f (x)+g(x)ūMPC(x)‖+‖w‖)−α1(‖x‖)
≤ α2(‖ f (x)+g(x)ūMPC(x)‖)+α2(‖w‖)−α1(‖x‖)
≤−α3(‖x‖)+σ(‖w‖),

where α3(s) , τα1(s) = τξQs and σ(s) , α2(s) = C s.
The statement then follows from Theorem 2. 2

The drawback of Algorithm 1 is that the gain of α2(·),
i.e. C (L f ,Lg,θ ,N), is a strictly increasing function
of N, which implies that for long prediction hori-
zons, the contractive constraint (8b) may become very
conservative. Moreover, the constant C (L f ,Lg,θ ,N)
also depends on the ∞-norm of P, Q and Ru. Hence,
one cannot freely choose the MPC cost weights, e.g.
following performance motivations, since a large ∞-
norm may imply a large ISS gain for the closed-loop
system, via σ(·), α1(·) and (3).

3.2 An artificial Lyapunov function approach

In practice it would be desirable that the design of
the MPC cost, i.e. choosing F(·), L(·, ·) and N, is
separated from guaranteeing stability, so that the MPC
cost can be tuned for best performance. A possible
solution to achieve this goal is to resort to an artificial
Lyapunov function, which is designed independently
of the MPC cost function. In this section, an ∞-norms
artificial Lyapunov function is employed to derive an
ISS sub-optimal NMPC algorithm.

Consider the candidate ISS Lyapunov function V (x) ,
‖PV x‖, where PV ∈Rpv×n is a full-column rank matrix.
Let QV ∈ Rqv×n be a known matrix with full-column
rank. The sub-optimal NMPC algorithm is now for-
mulated as follows.

Algorithm 2.
Step 1: At time k ∈ Z+ measure the state xk, let
x0|k := xk and minimize the cost (5) subject to:

xi+1|k = f (xi|k)+g(xi|k)ui|k, i = 0, . . . ,N−1, (9a)

‖PV ( f (x0|k)+g(x0|k)u0|k)‖−‖PV x0|k‖
≤ −‖QV x0|k‖, (9b)

xi|k ∈ X, i = 1, . . . ,N, (9c)

ui|k ∈ U, i = 0, . . . ,N−1. (9d)

Step 2: Let ūk be a feasible sequence of inputs calcu-
lated at Step 1. Apply to the perturbed system (4b) the
control input ūMPC(xk) := ū0|k.

Theorem 5. Let X f (N) be the set of states x ∈ X for
which the optimization problem in Step 1 of Algo-
rithm 2 is feasible and let X̃ f (N) ⊆ X f (N) be a RPI
set for system (4b) in closed-loop with ūMPC(·) with
0 ∈ int(X̃ f (N)). Then, the perturbed system (4b) in
closed-loop with ūMPC(·) is ISS for initial conditions
in X̃ f (N) and disturbances inW.

PROOF. The proof consists in showing that V (xk) =
‖PV xk‖ is an ISS Lyapunov function for system (4b)
in closed-loop with ūMPC(·). Since PV has full-column
rank, there exist c2 ≥ c1 > 0 such that c1‖x‖ ≤
‖PV x‖ ≤ c2‖x‖ for all x. Hence, V (·) satisfies condi-
tion (2a) for α1(‖x‖) , c1‖x‖ and α2(‖x‖) , c2‖x‖.
From constraint (9b) and using the triangle inequality,
we have that for all x ∈ X̃ f (N) and any feasible ū:

V ( f (x)+g(x)ūMPC(x)+w)−V (x)

= ‖PV ( f (x)+g(x)ūMPC(x)+w)‖−‖PV x‖
≤ ‖PV ( f (x)+g(x)ūMPC(x))‖+‖PV w‖−‖PV x‖
≤ −‖QV x‖+‖PV w‖ ≤ −α3(‖x‖)+σ(‖w‖),

where α3(s) , ξQV s (ξQV > 0 is such that ‖QV x‖ ≥
ξQV ‖x‖ for all x) and σ(s) , c2s. The statement then
follows from Theorem 2. 2

Next, we present a method for computing the ∞-norm
based artificial Lyapunov function V (·) off-line. Let

xk+1 = Axk +Buk, k ∈ Z+, (10)

where A ∈Rn×n, B ∈Rn×m, be a linear approximation
of (4a) around (0,0). We assume that there exists a
neighborhood N ⊂ X of the origin where Ax + Bu ≈
f (x)+g(x)u for all x ∈N and all u ∈ U. For a given
full-column rank matrix QV , to compute the matrix
PV , we consider a linear state-feedback uk = Kxk,
K ∈ Rm×n, k ∈ Z+, and we make use of the following
result.

Lemma 6. Suppose that a full-column rank matrix PV
and a gain K satisfy

1−‖PV (A+BK)P−L
V ‖−‖QV P−L

V ‖ ≥ 0, (11)

where P−L
V , (P>V PV )−1P>V is the left Moore-Penrose

inverse of PV . Then, it holds that ‖PV (A + BK)x‖−
‖PV x‖ ≤ −‖QV x‖ for all x and, the function V (x) =
‖PV x‖ is an ISS Lyapunov function for the closed-loop
system xk+1 = (A+BK)xk +wk.

The proof of Lemma 6 is a particular case of the proof
of a more general result presented in (Lazar et al.,
2005b) and is omitted here due to space limitations.
We also refer the reader to (Lazar et al., 2005b) for
ways to find a solution to inequality (11). Note that,
due to the use of an artificial Lyapunov function, the
weights of the MPC cost function and the length of
the prediction horizon can now be freely chosen to
achieve physical performance requirements. The value
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Fig. 1. A schematic view of a Buck-Boost converter.

function of the MPC cost is no longer used as an ISS
Lyapunov function and the norms of P, Q and Ru
no longer influence the ISS gain of the closed-loop
system.

Remark 7. In practice, the constraint 4 x1|k ∈ X ∼W
is usually added to the optimization problem to ensure
that the closed-loop system state, i.e. x̃k+1 = x1|k +wk,
k ∈ Z+, does not violate the state constraints at time
k +1 for any disturbance inW.

Remark 8. When the sets X, U (and W) are polyhe-
dral, which is often the case in practice, the constraints
(8b)-(8e), as well as the constraints (9b)-(9d), can be
written as a finite number of linear inequalities since
the measured state x0|k is known and ‖ · ‖ denotes the
∞-norm. Moreover, since the nonlinear system (4) is
affine with respect to the input, for N = 1, the opti-
mization problem that has to be solved at Step 1 of
Algorithm 1 or Algorithm 2 can be formulated as a
single linear program.

4. APPLICATION TO DC-DC CONVERTERS

In this section we illustrate Algorithm 2 on a Buck-
Boost DC-DC converter power circuit. See Figure 1
for a schematic representation of an ideal circuit (i.e.
neglecting the parasite components). The following
nonlinear averaged model of the converter, which was
developed in (Lazar and De Keyser, 2004) by applying
the theory of (Kassakian et al., 1992), is used to obtain
a prediction model:

xm
k+1 =

[
xm

1,k + T
L xm

2,k− T
L (xm

2,k−Vin)um
k

−T
C xm

1,k + T
C xm

1,kum
k +(1− T

C )xm
2,k

]
, k ∈ Z+,

(12)
where xm

k = [xm
1,k xm

2,k]
> ∈ R2 and um

k ∈ R are the
state and the input, respectively. xm

1 (iL) represents
the current flowing through the inductor, xm

2 (vo) the
output voltage and um represents the duty cycle (i.e.
the fraction of the sampling period during which the
transistor is kept ON). The sampling period is T =
0.65 miliseconds. The parameters of the circuit are the
inductance L = 4.2mH, the capacitance C = 2200µF,
the load resistance R = 165Ω and the source input
voltage vin, with nominal value Vin = 15V. The control
objective is to reach a desired steady state value of

4 X∼W := {x ∈ Rn | x +W⊆ X} is the Pontryagin difference of
the sets X andW.

the output voltage, i.e. xss
2 , as fast as possible and

with minimum overshoot. From xss
2 one can obtain the

steady state duty cycle and inductor current as follows:

uss =
xss

2
xss

2 −Vin
, xss

1 =
xss

2
R(uss−1)

. (13)

Furthermore, the following physical constraints must
be fulfilled at all times k ∈ Z+:

xm
1,k ∈ [0.01,5], xm

2,k ∈ [−20,0], um
k ∈ [0.1,0.9].

(14)

To implement Algorithm 2, we first perform the fol-
lowing coordinate transformation on (12):

x1,k = xm
1,k− xss

1 , x2,k = xm
2,k− xss

2 , uk = um
k −uss.

(15)
We obtain the following system description

xk+1 =
[

x1,k +αx2,k +(β − T
L x2,k)uk

(T
C x1,k + γ)uk +(1− T

RC )x2,k +δx1,k

]
, (16)

where the constants α , β , γ and δ depend on the fixed
steady state value xss

2 as follows α = T
L (1− xss

2
xss

2 −Vin
),

β = T
L (Vin − xss

2 ), γ = T
RCVin

xss
2 (xss

2 − Vin) and δ =
T
C

(
xss

2
xss

2 −Vin
−1

)
. Using (15) and (13), the constraints

given in (14) can be converted to:

x1,k ∈ [bx1 ,b
x1 ], x2,k ∈ [bx2 ,b

x2 ], uk ∈ [bu,b
u],
(17)

where bx1 = 0.01− 1
RVin

xss
2 (xss

2 −Vin), bx2 =−20−xss
2 ,

bu = 0.1− xss
2

xss
2 −Vin

, b
x1 = 5− 1

RVin
xss

2 (xss
2 −Vin), b

x2 =

−xss
2 and b

u = 0.9− xss
2

xss
2 −Vin

. The control objective can
now be formulated as to stabilize (16) around the
equilibrium (0,0) while fulfilling the constraints given
in (17). Next, to compute an ∞-norm based artificial
Lyapunov function via Lemma 6, we linearize system
(16) around the equilibrium (0,0) (for zero input uk =
0 ∈ [bu,b

u]). The linearized equations are:

∆xk+1 = A∆xk +B∆uk, (18)

where ∆xk and ∆uk represent “small” deviations from
the equilibrium (0,0) and zero input uk = 0, respec-
tively. The matrices A and B are given by

A , ∂ f
∂x

∣∣
x=0,
u=0

=
[

1 α
δ 1− T

RC

]
, B , ∂ f

∂u

∣∣
x=0,
u=0

=
[

β
γ

]
.

For the linear model corresponding to a steady state
output voltage xss

2 = −4V (which yields uss = 0.2105
and xss

1 = 0.0307A), by applying the method of (Lazar
et al., 2005b) to find the matrix PV and the feedback
gain K satisfying (11) for QV = 0.001

[
1 0
0 1

]
, we have

obtained the solution PV =
[ 0.9197 −0.6895
−0.5815 1.8109

]
and K =

[−0.4648 0.4125 ]. The MPC cost matrices have been
chosen as follows, to ensure a good performance: P =[

1 0
0 4

]
, Q =

[
1 0
0 2

]
and Ru = 0.1.

To assess the real-time applicability of the developed
theory for this type of very fast system with a sampling
period well below one milisecond, we chose N = 1 and
we formulated the optimization problem in Step 1 of
Algorithm 2 as a Linear Programming (LP) problem.



The resulting LP problem has 3 optimization variables
and 18 constraints.

In one simulation, we tested first the start-up behavior
(see Figure 2 column one) and then, after reaching
the desired operating point, we tested the disturbance
rejection (see Figure 2 column two). The dynamics
were simultaneously affected by an asymptotically de-
creasing additive disturbance of the form w = [ 1

k 0]>
and a 50% drop of the load (i.e. R=82.5Ω) for k =
80,81, . . . ,180 (or from time instant 0.052 until time
instant 0.117 - in seconds). For k > 180 the distur-
bance was set equal to zero and the load was set to its
nominal value (i.e. R=165Ω) to show that the closed-
loop system is ISS, i.e. that asymptotic stability is
recovered when the disturbance input vanishes. The
trajectories over the time interval [0 0.1495] (in sec-
onds, or 230 sampling periods) of the state and sub-
optimal NMPC control input are plotted in Figure 2.
Moreover, in Figure 2 (first plot in the second column)
one can observe that during the disturbance rejection
phase of the simulation, the output voltage is well
within the operating margin required in industry for
DC-DC converters, i.e. ±3% of the desired operating
value.

Note that, although the simulations were performed
for the transformed system (16), we chose to plot all
variables in the original coordinates corresponding to
system (12), which have more physical meaning.

The LP problem equivalent to the sub-optimal NMPC
optimization problem in Step 1 of Algorithm 2 was
always solved 5 within the allowed sampling interval,
with an worst case CPU time over 20 runs of 0.6314
miliseconds. The very good closed-loop performance
obtained for N = 1 collaborated with the computa-
tional time estimate is encouraging for further devel-
opment of the real-time application of the presented
theory to control DC-DC power converters, especially
using faster platforms, such as Digital Signal Proces-
sors (DSP).

5. CONCLUSIONS

Two new computationally friendly sub-optimal NMPC
algorithms with an a priori input-to-state stability
guarantee were presented. The first one employs a
contraction constraint on the norm of the closed-loop
system state, while the second algorithm uses an ∞-
norm based artificial Lyapunov function. For both
NMPC schemes, the input-to-state stabilization con-
straints can be written as a finite number of linear
inequalities. A case study on the control of a Buck-
Boost DC-DC power converter that includes prelimi-
nary real-time numerical data was presented to illus-

5 The simulation platform was Matlab 7.0.4 (R14) (CDD Dual
Simplex LP solver) running on a Linux Fedora Core 5 operating
system powered by an Intel Pentium 4 with a 3.2 GHz CPU.
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Fig. 2. State trajectories and sub-optimal NMPC input histories
for N = 1 - blue solid lines, desired steady state values,
input constraint (in first column, bottom plot) and industrial
operating margins for DC-DC converters (±3% of the desired
output voltage, in second column, first plot) - red dashed lines.

trate the potential of the developed theory for real-time
applications.
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