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Streaming Algorithms for Line Simplification under the Fréchet Distance

M.A. Abam∗ M.de Berg∗ P. Hachenberger∗ A. Zarei†

Abstract

We study the following variant of the well-known line-
simplification problem: we are getting a possibly infi-
nite sequence of points p0, p1, p2, . . . defining a polyg-
onal path, and as we receive the points we wish to
maintain a simplification of the path seen so far. We
study this problem in a streaming setting, where we
only have a limited amount of storage so that we can-
not store all the points. We analyze the competitive
ratio of our algorithm, allowing resource augmenta-
tion: we let our algorithm maintain a simplification
with 2k (internal) points, and compare the error of
our simplification to the error of the optimal simplifi-
cation with k points.

1 Introduction

Suppose we are tracking one, or maybe many, moving
objects. Each object is equipped with a device that
is continuously transmitting its position. Thus we are
receiving a stream of data points that describes the
path along which the object moves. The goal is to
maintain this path for each object. We are interested
in the scenario where we are tracking the objects over
a very long period of time, as happens for instance
when studying the migratory patterns of animals. In
this situation it may be undesirable or even impossible
to store the complete stream of data points. Instead
we have to maintain an approximation of the input
path. This leads us to the following problem: we are
receiving a (possibly infinite) stream p0, p1, p2, . . . of
points in the plane, and we wish to maintain a simpli-
fication (of the part of the path seen so far) that is as
close to the original path as possible, while using not
more than a given (fixed) amount of available storage.

The problem described above is a streaming version
of line simplification, one of the basic problems in GIS.
Here one is given a polygonal path P := p0, p1, . . . , pn

in the plane, and the goal is to find a path Q :=
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q0, q1, . . . , qk with fewer vertices that approximates P
well. In fact, this problem arises whenever we want to
perform data reduction on a polygonal shape in the
plane, and so it plays a role not only in GIS but also
in areas like image processing and computer graphics.
Line simplification has been studied extensively both
in these application areas as well as in computational
geometry.

The line-simplification problem has many variants.
For example, we can require the sequence of vertices
of Q to be a subsequence of P (with q0 = p0 and
qk = pn)—this is sometimes called the restricted ver-
sion—or we can allow arbitrary points as vertices. In
this paper, as in most other papers, we consider the
restricted version, and we limit our discussion to this
version from now on; some results on the unrestricted
version can be found in [5, 6, 7]. In the restricted
version, each link qlql+1 of the simplification corre-
sponds to a shortcut pipj (with j > i) of the original
path, and the error of the link is defined as the dis-
tance between pipj and the subpath pi, . . . , pj . To
measure the distance between pipj and pi, . . . , pj the
Hausdorff distance or the Fréchet distance are usually
used. Since we concentrate on the latter, the error
of the simplification Q is now defined as the maxi-
mum Fréchet error of any of its links. Once the error
measure has been defined, we can consider two types
of optimization problems: the min-k and the min-δ
problem. In the min-k problem, one is given the path
P and a maximum error δ, and the goal is to find a
simplification Q with as few vertices as possible whose
error is at most δ. In the min-δ problem, one is given
the path P and a maximum number of vertices k, and
the goal is to find a simplification with the smallest
possible error that uses at most k vertices.

The line-simplification was first studied for the
Fréchet distance by Godau [4]. Alt and Godau [2]
proposed an algorithm to compute the Fréchet dis-
tance between two polygonal paths in quadratic time;
combined with the approach of Imai and Iri [8] this
can be used to compute an optimal solution to the
min-δ or the min-k problem for the Fréchet distance.
Since solving the line-simplification problem exactly
is costly—the best known algorithm for the Fréchet
distance takes quadratic time or more—Agarwal et
al. [1] consider approximation algorithms. In par-
ticular, they consider the min-k problem for both
the Hausdorff distance for x-monotone paths (in the
plane) and the Fréchet distance for general paths (in
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d-dimensional space). They give near-linear time al-
gorithms that compute a simplification whose error is
at most δ and whose number of vertices is at most the
minimum number of vertices of a simplification of er-
ror at most δ/2. However, these algorithms cannot be
used in a streaming setting, because the complexity
of the produced simplification for an input path of n
points can be Θ(n).

To state our problem more precisely, we first intro-
duce some terminology and definitions. Let p0, p1, . . .
be the given stream of input points. We use P (n) to
denote the path defined by the points p0, p1, . . . , pn—
that is, the path connecting those points in order—
and for any two points p, q on the path we use P (p, q)
to denote the subpath from p to q. For two vertices
pi, pj we use P (i, j) as a shorthand for P (pi, pj). A
segment pipj with i < j is called a link or some-
times a shortcut. Thus P (n) consists of the links
pi−1pi for 0 < i 6 n. We assume a function error
is given that assigns a non-negative error to each link
pipj . An `-simplification of P (n) is a polygonal path
Q := q0, q1, . . . , qk, qk+1 where k 6 ` and q0 = p0

and qk+1 = pn, and q1, . . . , qk is a subsequence of
p1, . . . , pn−1. The error of a simplification Q for a
given function error , denoted error(Q), is defined as
the maximum error of any of its links. We consider
an error function based on the Fréchet distance, as
defined next.

The Fréchet distance between two paths A and B,
which we denote by dF (A,B), is defined as follows.
Consider a man with a dog on a leash, with the man
standing at the start point of A and the dog standing
at the start point of B. Imagine that the man walks
to the end of A and the dog walks to the end of B.
During the walk they can stop every now and then,
but they are not allowed to go back along their paths.
The Fréchet distance between A and B is the mini-
mum length of the leash needed for this walk, over all
possible such walks. See [4] for a formal definition.

Now consider an algorithm A := A(`) that
maintains an `-simplification for the input stream
p0, p1, . . ., for some given `. Let QA(n) denote the
simplification that A produces for the path P (n). Let
Opt(`) denote an optimal off-line algorithm that pro-
duces an `-simplification. Thus error(QOpt(`)(n)) is
the minimum possible error of any `-simplification of
P (n). We define the quality of A using the compet-
itive ratio, as is standard for on-line algorithms. We
also allow resource augmentation, i.e., we allow A to
use a 2k-simplification, but we compare the error of
this simplification to QOpt(k)(n). Thus we define the
competitive ratio of an algorithm A(2k) as

competitive ratio of A(2k) := max
n>0

error(QA(2k)(n))
error(QOpt(k)(n))

.

We say that an algorithm is c-competitive if its com-
petitive ratio is at most c.

We present and analyze a simple general streaming
algorithm for line simplification. Our analysis shows
that the algorithm has good competitive ratio un-
der two conditions: the error function that is used is
monotone—see Section 2 for a definition—and there
is an oracle that can approximate the error of any can-
didate link considered by the algorithm. We then con-
tinue to show that the Fréchet error function is mono-
tone for arbitrary paths in the plane and how to imple-
ment the error oracles for this setting. Putting every-
thing together leads to the following result. For paths
in the plane and the Fréchet error function we can,
for any fixed ε > 0, obtain a (4

√
2 + ε)-competitive

streaming algorithm that uses O((k2/
√

ε) log2(1/ε))
additional storage and processes each input point in
O((k/

√
ε) log2(1/ε)) amortized time.

2 A general simplification algorithm

In this section we describe a general strategy for
maintaining an `-simplification of an input stream
p0, p1, . . . of points in the plane, and we show that
it has a good competitive ratio under two conditions:
the error function is monotone (as defined below), and
we have an error oracle at our disposal that com-
putes or approximates the error of a link. We denote
the error computed by the oracle for a link pipj by
error∗(pipj). Later we will prove that the Fréchet er-
ror function is monotone, and we will show how to
implement the oracle for this setting.

Suppose we have already handled the points
p0, . . . , pn. (We assume n > ` + 1; otherwise we
can simply use all points and have zero error.) Let
Q := q0, q1, . . . , q`, q`+1 be the current simplification.
Our algorithm will maintain a priority queue Q that
stores the points qi with 1 6 i 6 `, where the priority
of a point is the error (as computed by the oracle) of
the link qi−1qi+1. In other words, the priority of qi is
(an approximation of) the error that is incurred when
qi is removed from the simplification. Now the next
point pn+1 is handled as follows:

1. Set q`+2 := pn+1, thus obtaining an (` + 1)-
simplification of P (n + 1).

2. Compute error∗(q`q`+2) and insert q`+1 into Q
with this error as priority.

3. Extract the point qs with minimum priority
from Q; remove qs from the simplification.

4. Update the priorities of qs−1 and qs+1 in Q.

Next we analyze the competitive ratio of our algo-
rithm. We say that a link pipj encloses a link plpm if
i 6 l 6 m 6 j, and we say that error is a c-monotone
error function for a path P (n) if for any two links pipj

and plpm such that pipj encloses plpm we have

error(plpm) 6 c · error(pipj).
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In other words, an error function is c-monotone if the
error of a link cannot be worse than c times the error
of any link that encloses it. Furthermore, we say that
the error oracle is an e-approximate error oracle if for
any link pipj

error(pipj) 6 error∗(pipj) 6 e · error(pipj)

Theorem 1 Suppose that the error function is c-
monotone and that we have an e-approximate error
oracle at our disposal. Then the algorithm described
above with ` = 2k is ce-competitive with respect to
Opt(k). The time the algorithm needs to update the
simplification Q upon the arrival of a new point is
O(log k) plus the time spent by the error oracle. Be-
sides the storage needed for the simplification Q, the
algorithm uses O(k) storage plus the storage needed
by the error oracle.

Proof. Consider an arbitrary n > 0, and let Q(n)
denote the 2k-simplification produced by our algo-
rithm. Since the error of Q(n) is the maximum er-
ror of any of its links, we just need to show that
error(σ) 6 ce · error(QOpt(k)(n)) for any link σ in
Q(n). Let m 6 n be such that σ appears in the sim-
plification when we receive point pm. If m 6 2k + 2,
then error(σ) = 0 and we are done. Otherwise, let
Q(m − 1) := q0, . . . , q2k+1 be the 2k-simplification of
P (m − 1). Upon the arrival of pm = q2k+2 we insert
q2k+1 = pm−1 into Q. A simple counting argument
shows that at least one of the shortcuts qt−1qt+1 for
1 6 t 6 2k + 1, let’s call it σ′, must be enclosed by
one of the at most k + 1 links in QOpt(k)(n). Since σ
is the link with the smallest priority among all links
in Q at that time, its approximated error is smaller
than that of σ′. Therefore,

error(QOpt(k)(n)) > 1
c error(σ′) > 1

c·eerror
∗(σ′)

> 1
c·eerror

∗(σ) > 1
c·eerror(σ).

We conclude that our algorithm is ce-competitive with
respect to Opt(k). Besides the time and storage
needed by the error oracle, the algorithm only needs
O(k) space to store the priority queue and O(log k)
for each update of the priority queue. �

3 An algorithm for the Fréchet error function

We now turn our attention to the Fréchet error
function. We will show that we can obtain an
O(1)-competitive algorithm for arbitrary paths in the
plane. The first property we need is that the Fréchet
error function is monotone. This has in fact already
been proven by Agarwal et al. [1].

Lemma 2 [1] The Fréchet error function is 2-
monotone on arbitrary paths.

pi pj

pm

b(i, j)

pl

Figure 1: The largest back-path in direction pipj .

Next we turn our attention to the implementation
of the error oracle for the Fréchet error function. We
use two parameters to approximate errorF (pipj): the
width of the points of P (i, j) in the direction pipj and
the length of the largest back-path in the direction of
pipj .

The width of a set of points with respect to a
given direction

−→
d is the minimum distance of two

lines being parallel to
−→
d that enclose the point set.

Let w(i, j) be the width of the points in subpath
P (i, j) with respect to the direction −−→pipj . Chan [3]
has described a streaming algorithm for maintaining
a core-set that can be used to approximate the width
of a set in any direction. More precisely, given a
data stream p0, p1, . . ., he maintains an ε-core-set of
size O((1/

√
ε) log2(1/ε)) in O(1/

√
ε) amortized time

per point; with this core-set one can get a (1 + ε)-
approximation of the width in any direction.

The largest back-path in direction pipj is defined
as follows. Assume without loss of generality that
pipj is horizontal with pj to the right of pi. For two
points pl, pm on the path P (i, j) with l < m we define
P (l, m) to be a back-path on P (i, j) if (pm)x < (pl)x.
In other words P (l,m) is a back-path if, relative to
the direction −−→pipj , we go back when we move from pl

to pm. The length of a back-path P (l, m) on P (i, j)
is defined to be the length of the projection of plpm

onto a line parallel to pipj , which is equal to (pl)x −
(pm)x since we assumed pipj is horizontal. We define
b(i, j) to be the maximum length of any back-path
on P (i, j). See Figure 1 for an illustration.

Lemma 3 max(w(i,j)
2 , b(i,j)

2 ) 6 errorF (pipj) 6

2
√

2 max(w(i,j)
2 , b(i,j)

2 ).

In the algorithm as presented in Section 2 we need
to maintain (an approximation of) the error of each
shortcut qlql+2 in the current simplification. Ac-
cording to the above lemma, in order to approxi-
mate errorF (pipj) it is enough if we can approxi-
mate max(w(i, j), b(i, j)).

To approximate the width of the links qlql+2, we
must maintain a core-set for each link that might be
needed at some later time in our simplification. These
are the links qiqj , with 0 6 i < j − 1 < 2k + 1. So
we need to maintain a core-set for each of these O(k2)
links. Considering a new point q2k+2 = pn+1, we must
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create O(k) new core-sets, one for each of the links
qipn+1, with 0 6 i 6 2k. We create such core-sets for
the links qipn+1, by copying the core-sets qiq2k+1 and
‘inserting’ point pn+1 to them using Chan’s algorithm.

We also need to approximate the maximum length
of a back-path on the path from ql to ql+2. For the
moment let’s assume that all we need is the maximum
length of the back-path with respect to the positive
x-direction. Then we maintain for each link pipj of
the simplification the following values:

(i) b(i, j), the maximum length of a back-path
(w.r.t. the positive x-direction) on P (i, j);

(ii) xmax (i, j), which is defined as the maximum x-
coordinate of any point on P (i, j);

(iii) xmin(i, j), which is defined as the minimum x-
coordinate of any point on P (i, j).

Now consider a shortcut qlql+2. Let ql = pi, ql+1 = pt

and ql+2 = pj . Then b(i, j), the maximum length of
a back-path on P (ql, ql+2) = P (i, j), is given by

max ( b(i, t), b(t, j), xmax (i, t)− xmin(t, j) ).

Adding a point q`+2 is easy, because we only have to
compute the above three values for q`+1q`+2, which
is trivial since q`+1 and q`+2 are consecutive points
on the original path. Removing a point qs can also
be done in O(1) time (let qs−1 = pi and qs+1 = pj):
above we have shown how to compute b(i, j) from the
available information for qs−1qs and qsqs+1, and com-
puting xmax (i, j) and xmin(i, j) is even easier.

Thus we can maintain the maximum length of a
back-path. There is one catch, however: the proce-
dure given above maintains the maximum length of a
back-path with respect to a fixed direction (the pos-
itive x-direction). But in fact we need to know for
each qiqi+2 the maximum length of a back-path with
respect to the direction −−−→qiqi+2. These directions are
different for each of the links and, moreover, we do
not know them in advance. To overcome this prob-
lem we define 2π/α equally spaced canonical direc-
tions, for a suitable α > 0, and we maintain, for every
link pipj , the information described above for each
direction. Now suppose we need to know the maxi-
mum length of a back-path for pipj with respect to
the direction −−→pipj . Then we will use b−→

d
(pipj), the

maximum length of a back-path with respect to
−→
d

instead, where
−→
d is the canonical direction closest

to −−→pipj in clockwise order. In general, using
−→
d may

not give a good approximation of the maximum length
of a back-path in direction −−→pipj , even when α is small.
However, the approximation is only bad when w(i, j)
is relatively large, which means that the Fréchet dis-
tance can still be approximated well.

Lemma 4 Let w be the width of P (i, j) in direc-
tion −−→pipj , let b be the maximum length of a back-path

on P (i, j) in direction−−→pipj , and let b∗ be the maximum

length of a back-path on P (i, j) in direction
−→
d . Then

we have: b∗−tan(α) ·w 6 b 6 b∗+tan(α) ·(b∗+w).

The final oracle is now defined as follows. Let w∗

be the approximation of the width of P (i, j) in di-
rection −−→pipj as given by Chan’s ε-core-set method,
and let b∗ be the maximum length of a back-path
on P (i, j) in direction

−→
d , where

−→
d is the canonical

direction closest to −−→pipj in clockwise order. We set

error∗F (pipj) :=
√

2·max(w∗, b∗+tan(α)·(b∗+w∗)).

Combing Lemma 3 with the observations above, we
can prove the following lemma.

Lemma 5 errorF (pipj) 6 error∗F (pipj) 6 2
√

2(1 +
ε)(1 + 4 tan(α)) · errorF (pipj)

With ε and α sufficiently small, we get our final result.

Theorem 6 There is a streaming algorithm that
maintains a 2k-simplification for arbitrary paths un-
der the Fréchet error function and that is (4

√
2 + ε)-

competitive with respect to Opt(k). The algorithm
uses O(k2 1√

ε
log2( 1

ε )) additional storage and each

point is processed in O(k 1√
ε
log2( 1

ε )) amortized time.
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