

Formalisms for program reification and fault tolerance

Citation for published version (APA):
Coenen, J. A. A. (1994). Formalisms for program reification and fault tolerance. [Phd Thesis 1 (Research TU/e /
Graduation TU/e), Mathematics and Computer Science]. Technische Universiteit Eindhoven.
https://doi.org/10.6100/IR417244

DOI:
10.6100/IR417244

Document status and date:
Published: 01/01/1994

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://doi.org/10.6100/IR417244
https://doi.org/10.6100/IR417244
https://research.tue.nl/en/publications/21a9e697-a4f9-4aa0-8ce3-3a59665bfd97

FORMALISMS FOR PROGRAM REIFICATION

AND FAULT TOLERANCE

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de
TechniS<;he Universiteit Eindhoven, op gezag van
de Rector Magnificus, prof.dr. J.H. van Lint,
voor een commissie aangewezen door het Col
lege van Dekanen in het openbaar te verdedigen
op

woensdag 18 mei 1994 om 16.00 uur

door

JOSEPH ALBERT ADRIAAN COENEN

Geboren te Eindhoven

Dit proefschrift is goedgekeurd

door de promotoren

prof.dr. W.-P. de Roever

prof.dr. J.C.M. Baeten

en de copromotor

dr. J.J.M. Hooman

il

Acknowledgements

The research on which this thesis is based was carried out while the author was em
ployed by NWO on the combined SION/STW project 1 "Fault Tolerance: Paradigms,
Models, Logies, Construction." I'm grateful for the very generous financial support
received from NWO. In particular 1 thank drs. R. Kellermann-Deibel for sharing his
administrative expertise and wisdom.

I thank Willem-Paul de Roever and Jozef Hooman for their guidance and stimulation
during the last four years. I'm indebted to my co-authors and (former) colleagues
at the computing science department of the Eindhoven University of Technology, and
the participants of the afore mentioned project for their collaboration. In particular,
I thank Frank de Boer, Tijn Borghuis, Wim Koole, and Henk Schepers.

I thank Rob Nederpelt for giving me sound advice when it was most needed.

1SION project numbers 612-316-022 and 612-316-103.

iii

Contents

Acknowledgements iii

Contents v

1 Introduction 1

2 Hoare's Logic and VDM 7

3 Parameterized Semantics for Fault Tolerant Real-Time Systems 23

4 Exception Handling in Process Algebra 49

5 Top-down Development of Layered Fault Tolerant Systems
- a Deontic Perspective 65

Samenvatting 85

Promotiereglement Artikel 15.Sb 87

v

Chapter 1

Introduction

Introduction

Nowadays, computers are used for numerous applications. We may think of simple
batch systems for information processing for administrative applications, hut also of
highly complex systems for process control for industrial applications. For each of
these applications the issue of correctness is an important one. Incorrect software or
hardware may have undesirable consequences. To ensure correctness of the system
some formal method may be used to specify, design, and verify the system. A formal
method should therefore include a high-level specification language - to describe the
requirements of the desired system - which allows to abstract from implementation
details, and a low-level language to describe an actual implementation. It is not re
quired that these languages are separated. The method should also provide a means
to verify whether an implementation, i.e. the description of an actual implementation,
satisfies its specification, i.e. whether it provides the requested services. ldeally the
method provides the designer with guidelines how to structure the development of the
desired system.

Examples of formal methods are Hoare's logic [Hoare69, Apt8l.] - or more appropriate
Floyd-Hoare logic) - and VDM [Jones90]. Hoare's logic and VDM are examples of
model oriented methods. In chapter 2 a relational framework which unifies Hoare's
logic and VDM is presented. The importance of such unifying framework lies in the fact
that it allows to go forth and back between these two formalisms. It serves to illustrate
that despite the apparent differences formalisms do not differ in an essential way, i.e.
they focus on the same aspects of system development. Other examples of model ori
ented methods are Z [Spivey88, Spivey92], and refinement calculi [Back80, Morgan90].
As opposed to model oriented methods there exist various algebraic methods, most
notably CCS [Milner80, Milner89], CSP [Hoare85], and ACP [BeKl84, BaWe90].

Formal methods such as Hoare's logic and VDM are only concerned with the functional
correctness of a system. Some applications, however, require that a system is not
only functionally correct, hut also correct with respect to the timing of actions. A
system whose correctness depends on the timing of actions is called a real-time system.
Several formal techniques to verify timeliness and functional correctness of systems
have been developed. Examples of model oriented methods can be found in [Ostroff89,
Hooman91], and examples of algebraic methods are [NiRiSiVo90] and [BaBe91]. Real
time systems are often used for critical applications. For example, avionic systems for
flight control and control systems for power plants. Systems for critical applications
are required to have additional fault tolerant properties.

Of course a system can not be fault tolerant with respect to all possible faults. For
a system to be fault tolerant it is therefore required only to tolerate a specified class
of faults. Faults can be classified by location (i.e. where the fault occurs}, duration
(i.e. when and how long the fault occurred}, and effect (how it influences the system
behaviour). A formal method for fault tolerance must therefore also provide a way to
formally define classes of faults.

Algebraic theories that consider fault tolerance properties are presented in
e.g. [Prasad87] and [HeHo87]. Model oriented methods can be found in
e.g. [ScSc83], [Cristian85], anq [JoMoSo87]. Significantly less has been achieved in
developing theories which combine functionality, timeliness, and fault tolerance. This

4

can cause problems because fault tolerance is typically obtained by some form of re
dundancy. For example, a backward recovery mechanism for databases introduces
information redundancy (replicated data), modular redundancy (duplication of infor
mation carriers), and time redundancy (back-up and restore operations). Adding time
redundancy may transform a correct real-time program into an incorrect one. Grace
ful degrading systems may sacrifice certain services, thereby changing the functional
behaviour, in order for more important services to meet their deadlines.

An algebraic theory for reasoning about timeliness and reliability is outlined
in [HaJo89]. In chapter 3 the foundations of a formal framework for the specifica
tion and verification of fault tolerant distributed real-time systems with synchronous
message passing are investigated. It presents a denotational semantics for a model
oriented theory which combines functionality, timeliness, and reliability. In this se
mantics the occurrence of faults, due to a malfunctioning of the underlying execution
mechanism, and their effects upon the behaviour of real-time systems are considered.
The main idea is that by making very weak assumptions in the semantics about faults
and their effects, any hypothesis about fault must be made explicit in the correctness
proof of a program.

Chapter 4 provides an algebraic method for specifying and verifying fault tolerant
systems. There is an important difference between the ideas behind the definitions
in chapter 3 and chapter 4. The semantics defined in chapter 3 adopts the principle
that a system is incorrect (i.e. error prone) unless specified otherwise, whereas the
theory in chapter 4 adapts the principle that a system is correct (i.e. error free) unless
specified otherwise. A proof method based on the semantics of chapter 4 will therefore
require that all assumptions about the occurrence, duration, and effect of faults must
be made explicit in the specification of a system. The theory in chapter 4 requires
that faults are inserted in the system by explicitly defining the fault hypothesis as
an additional process in the specification. The theory of chapter 4 is more general
than that of [Prasad87] and [HeHo87], in the sense that a more general class of pro
cesses is considered. The class of programs considered in [Prasad87] and [HeHo87], i.e.
restartable systems, is a subclass of the systems definable in the theory of chapter 4.

Finally, chapter 5 discusses the problems encountered when attempting to construct
a formal method for designing fault tolerant systems which supports top-down devel
opment. It appears that we need to distinguish between preferred and less preferred
behaviours of a system. Formal methods such as Hoare's logic and VDM do not dis
tinguish between those possible behaviours, and there seems to be no obvious way to
adapt these methods so that they will distinguish such behaviours. As pointed out in
chapter 5, one needs a more expressive assertion language 1. A possible candidate is
dyadic deontic logic. Although modal logies in general (e.g. [Harel79] and [BaKuPn84])
and deontic logic in particular (e.g. [Khosla88]) have been proposed and developed for
specifying (fault tolerant) systems, it is not immediate how to obtain a theory with
the properties described in chapter 5. These are interesting cliffhangers for the fut ure.

1 Besides the obvious need to distinguish between preferred and less preferred behaviours in the
semantics.

References

[Apt81]

[Back80]

[BaWe90J

[BaBe91]

Apt, K.R.: Ten Years of Hoare's Logic: A Survey
TOPLAS 4, pp.:431-483, 1981.

Part 1. ACM

Back, R.J.R.: Correctness Preserving Program Refinements: Proof The
ory and Applications. Mathematica} Centre Tracts 131, CWI Amster
dam 1980.

Baeten, J.C.M. & Weijland, W.P.: Process Algebra. Cambridge Tra.cts
in Theor. Comp. Sci. 18, Cambridge University Press 1990.

Baeten, J.C.M. & Bergstra, J.A.: Real-Time Process Algebra. Forma.!
Aspects of Computing 3, pp.:142-188, 1991.

[Ba.KuPn84] Barringer, H., Kuiper, R. & Pnueli, A.: Now You May Compose Tempo
ral Logic Specifications. Proc. 16th ACM Symp. on Theory of Computing,
pp.:51-63, 1984.

[BeK184] Bergstra, J.A. & Klop, J.W.: Process Algebra /or Synchronous Commu
nication. Information and Control 60, pp.:109-137, 1984.

[Cristian85] Cristian, F.: A Rigorous Approach to Fault Tolerant Programming. IEEE
Trans. on Softw. Engin. 11, pp.:23-31, 1985.

[HeHo87) He Jifeng & Hoare, C.A.R.:. Algebraic Specification and Proof of a Dis
tribute4 Recovery Algorithm. Distributed Computing 2, pp.:1-12, 1987.

[JoMoSo87] Joseph, M., Moitra, A. & Soundararajan, N.: Proof Rules for Fault
Tolerant Distribute4 Programs. Science of Comp. Prog. 8, pp.:43-67,
1987.

[HaJo89] Hansson, H. & Jonsson, B.: A Framework /or Reasoning About Time
and Reliability. Proc. lOth IEEE Real-Time Systems Symp., pp.:101-
111, 1989.

[Harel79] Harel, D.: First-Order Dynamic Logic. LNCS 68, Springer-Verlag 1979.

[Hoare69] Hoare, C.A.R.: An Axiomatic Basis /or Computer Programming. Com
munications of the ACM 12, pp.:576-580, 1969.

[Hoare85] Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall
1985.

[Hooman91] Hooman, J.J.M.: Specification and Compositional Verification of Real
Time Systems. LNCS 558, Springer-Verlag 1991.

[Jones90] Jones, C.B.: Systematics Software Development Using VDM (Second
edition). Prentice-Hall 1990.

[Khosla88] Khosla, S.: System Specification: a Deontic Approach. PhD Thesis Uni
versity of London 1988.

[Milner80] Milner, R.: A Calculus of Communicating Systems. LNCS 92, Springer
Verlag 1980.

[Milner89] Milner, R.: Communication and Concurrency. Prentice-Hall 1989.

[Morgan90J Morgan, C.: Progmmming from Specifications. Prentice-Hall 1990.

[NiRiSiVo90] Nicollin, X., Richier, J.-L., Sifa.kis, J. & Voiron, J.: ATP: an Algebra /or
Timed Processes. In "Programming Concepts and Methods" (M. Broy
& C.B. Jones eds.), pp.:415-442, 1990.

[Ostroff89] Ostroff, J.: Temporal Logic /or Real-Time Systems. Advanced Software
Development Series, Research Studies Press 1989.

[Prasad87] Prasad, K.V.S.: Combinators and Bisimulation Proofs /or Restartable
Systems. PhD Thesis University of Edinburgh, 1987.

[ScSc83] Schlichting, R.D. & Schneider, F.B.: Fail-Stop Processors: an Approach
to Designing Fault Tolerant Computing Systems. ACM 'frans. on Comp.
Sys. 1, pp.:222-238, 1983.

[Spivey88] Spivey, J.M.: Understanding Z : a Specification Language and lts For
mal Semantics. Cambridge Tracts in Theor. Comp. Sci. 3, Cambridge
University Press 1988.

[Spivey92] Spivey, J.M.: The Z Notation : a Reference Manual (Second edition).
Prentice-Hall 1992.

Chapter 2

Hoare's Logic and VDM

This chapter is a revised version of:

J. COENEN.

Hoare's Logic and VDM.
To appear in 'Format Aspects of Computing.'

Hoare's Logic and VDM

J. Coenen1

Dept. of Math. and Computing Science, Eindhoven University of Technology.

Keywords: Hoare's logic; Program specification; Realizability; VDM.

Abstract. A relational framework which unifies Hoare's logic and VDM is presented.
Within this framework a partial correctness version ofVDM is defined. It is argued that
this partial correctness version ofVDM is intuitive and consistent with the original total
correctness version. Furthermore it is shown how both partial and total correctness
formulae and specifications can be translated from Hoare's logic into VDM and vice
versa. VDM's satisfiability requirement is hriefly discussed, and a similar condition for
Hoare's logic is defined.

1 Introduction

In nineteen sixty-nine Hoare published a number of axioms and proof rules for proving
assertions about programs (Hoa69], which is usually referred to as Floyd-Hoare logic,
or simply Hoare's logic. Hoare's logic has been thoroughly investigated by various
researchers, which led to some interesting extensions (see eg. (Hoa71, Gor75, Bak80,
Apt81]). We will consider Hoare's logic as it appeared in [Apt81], because the proof
system presented there includes a complete set of proof rules for logical variables.

Although logica! variables were originally introduced in Hoare's logic in order to
ohtain a complete proof system for recursive procedures [Gor75], we're mainly inter
ested in them because of their use in specifications. For example, if we want to specify
a program that increases the value of program variable x by one for an arbitrary initial
value we have to use a logica! variable. The intended meaning of the specification (the
superscript 1l is used for Hoare-style specifications and correctness forrnulae)

{x = xo} incl {x xo + lf' (1)

is that if x has initially the same value as logica! variable xo then incl should establish
that afterwards x has the value of xo + 1. Because logical variables do not occur in

Correspondence and offprint requests to: J. Coenen, Department of Mathematics and Computing
Science, Eindhoven Unive:rsity of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
E-mail: wsinjosc@win.tue.nl.

1Supported by NWO/SION project 612-316-103: 'Fault Tolerance: Paradigms, Models, Logies,
Construction.'

programs, the above specification indeed specifies that the va.lue of x should increased
by one. Notice how the logica.l varia.bie xo is used to carry information from the initial
state, characterized by x xo, to the final state, characterized by x xo + 1.

In VDM [Jon90] logical varia.bles are not needed, because the relationship between
the initial program state and the final program state is established by 'hooked' vari
a.bles x. The operation incl can be specified as follows (VDM-style specifications and
correctness formulae are decorated with a superscript :!) .

{true} incl {x = x + 1}3 (2)

The varia.bie x in the postcondition x = x + 1 refers to the value of x in the initia}
program state, and the varia.bie x in the postcondition refers to the value of x in the
final program state.

Another difference between the above specifications is the use of the precondition.
To make this difference clearer we need to distinguish between partial correctness
and total correctness. A partial correctness specification such as (1) bas the intended
meaning that if initially the precondition is satisfied and if incl terminates then the
fina.l program state must satisfy the postcondition. Hence, a program that does not
terminate satisfies the specification (1). A total correctness specification for incl is
(notice the subscript)

{x = xo}incl {x = xo + l}j'. (3)

The intended meaning of {3} is that if initially x = xo is satisfied then incl must
terminate in a state satisfying x = xo + 1. VDM is, as opposed to Hoare's original
system, a total correctness formalism. In VDM it is possible to separate the issue of
termination from the issue of functionality. The precondition in a VDM specification
specifies a set of initial states for which the program must terminate; the postcon
dition specifies the functiona.1 behaviour of the program. In Hoare's logic (for total
correctness) the precondition is used both for specifying the initia} states for which
the program must terrninate and, together with the postcondition, for specifying the
functional behaviour.

Despite these apparent differences, Hoare's logic and VDM are interchangeable,
and can be unified within a simple relational framework (see section 2). In section 3
we show how to translate Hoare-style partial correctness specifications into VDM-style
partial correctness specifications, and vice versa. Similar results for total correctness
are obtained in section 4. Section 4 also contains a brief explanation of VDM's notion
of 'satisfiability' and formulates an equivalent condition for Hoare's logic. Finally,
conclusions can be found in section 5.

2 A Unifl.ed Framework for Hoare's Logic and VDM

The relational framework we use to capture both Hoare's logic and VDM is extracted
from the one presented in [CRZ91]. First we define the syntax and semantics of
a general class of assertions. Preconditions and postconditions of specifications in
Hoare's logic are identified as a subset of this class. VDM postconditions which
characterize a relation - are in a different subset, and so are the VDM preconditions.
Second, we define the syntax of correctness formulae and specifications for both VDM
and Hoare's logic.

CHAPTER 2 - Hoare's Logic and VDM

2.1 Syntax and Semantics of Assertions

We assume a syntactic class &pr of expressions with occurrences of program variables
x E Var, a disjoint set of 'hooked' program variables 'X, and another set, disjoint with
the previous ones, of logical variables xo E .Cvar. We use E for the set of (program)
states CT : Var --+ Val and r for the set of logical states 'Y : .Cvar --+ Val. Furthermore,
we assume that an interpretation function &[.] : &pr--+ (r --+ ((E x E) --+ Val)) is
defined such that

ê[x]T(u,r)

&['X]'Y(u, r)

ê[xo]T(u,r)

r(x)

u(x)

1(xo)

The syntactic class Assn of assertions, with typical element x, is defined as follows.

Definition 2.1. {Syntax of assertions)
Let ei, e2 E êxpr.

Abbreviations such as Xl V x2 are also included. We also allow syntactic substitutions
in assertions. Let e E &pr then x[e/ z] is the assertion x with all free occurrences of z
replaced by e, and a renaming of the bounded variables in x to avoid bindings of the
variables in e.

Definition 2.2. {Semantics of assertions)
Assertions x E Assn are interpreted by a truth-valued function T[.] : Assn --+ (r --+
((Ex E)--+ {tt,ff})).

With

T[true]'Y(u, r) Ll.

T[e1 = e2]T(u, r)
Ll.

T[e1 < e2]T(u, r)
Ll.

T[•xh(u, r)
Ll.

T[x1 --+ x2h(a, T) ~

T[3"0 (x)h(u, r)
Ll.

(1lxo: v)(yo) ~ { v
1(yo)

tt

ê[e1]'Y(u, r) = ê[e2]'Y(a, r)

ê[e1]1(u,r) < ê[e2]1(u,r)

-.T[x]T(u,r)

T[x1h(u, r) => T[x2h(u, r)

r ' if there exists a v E Val such

that T[x](1lxo: v)(u,r)

Il '
otherwise.

, if xo = Yo

, otherwise.

We distinguish three kinds of assertions in Assn.

• Assn'H, with typical elements cp and 'if;:
assertions in which 'hooked' variables 'X do not occur. For example preconditions
and postconditions of Hoare-style correctness formulae and specifications.

11

• Assn1t, with typical element p:

assertions without free occurrences of logical variables xo. For example 'postcon
ditions' of VDM-style correctness formulae and specifications.

• Assn.7, with typical element 7r:
assertions in Assn" n AssnR, i.e. assertions without 'hooked' variables x and
without free occurrences of logical variables xo. For example 'preconditions' of
VDM-style correctness formulae and specifications.

For these assertions the following alternative interpretation functions are defined.

[.r : Assn" --> (r --> 1'E))

[.r : AssnR __. 1'E x E)

[.J.7 : Assn.7 --> 1'E)

Definition 2.8. (Interpretation of assertions as sets}
Let cp E Assn", p E AssnR·, and 7r E Assn.7.

M"1 ~ n{r 1 T[<ph(u,r)}
"

lPr A n{(u, r) 1 T(p]t(u, r)}
7

[7r).7 ~ n { T 1 7[7r]/(<T, T)}
7,u

If no confusion can arise we drop the superscripts.

2.2 Specifications and Correctness Formulae

We introduce two more syntactic classes. The class :Form of correctness formulae
and the class Spec of specifications. A correctness formula consists of a precondition,
a postcondition, and a program segment. The precondition and postcondition are
elements of Assn. The program segment is an element, typically S, of a syntactic class
Prog. We assume Prog defines a relational programming language, i.e. a programming
language with a relational semantics. More precisely we assume the existence of an
interpretation function R[.D : 'Prog--> 1'E x :E).

A specification consists of a precondition, a postcondition, and an operation iden
tifier. An operation identifier is an element of a set of names called Name.

Defi.nition 2.4. (Syntax of correctness formulae)
Let cp,1/J E Assn", 7r E Assn.7, p E AssnR, and SE Prog. The syntactic class :Form of
correctness formulae consists of the following elements.

• (<p) S (,P)": A Hoare-style partial correctness formula.

• (cp) S (1/J Y1: A Hoare-style total correctness formula.

• (7r) S (pf: A VDM-style partial correctness formula.

• (7r) S (p'}J_: A VDM-style total correctness formula.

Correctness formulae are interpreted by a truth-valued function:F[.J : :Form--> {tt, /!},
whose definition is postponed until the next sections.

CHAPTERm'},..:::_Hoare's Logic and VDJl.f. _____ _

Deflnition 2.5. (Syntax of specifications)
Let <p,1/J E Assn", 7r E Assn3 , p E AssnR, and op E Name. The syntactic class Spec
of specifications consists of the following elements.

• { cp} op { 'l{I}": A Hoare-style partial correctness specification.

• { cp} op { 'l{I }1: A Hoare-style total correctness specification.

• {7r} op {p}3 : A VDM-style partial correctness specification.

• {7r} op {p}:[: A VDM-style total correctness specification.

Specifications are interpreted as relations by 1-] : Spec -> 'P(E x E), whose definition is
also postponed until the next sections.

When defining the meaning of correctness formulae and specifications we use the
following notation for relations.

Deflnition 2.6. (Notation /or relations)
Let p, q E 'P(E) and r, s E 'P(E x E).

llPll ~ {(u, u) 1 u E p}

p"-+q ~ {(u,T)iuEp->TEq}

p"-+r ~ {(u, T) 1 O" E p (u, T) Er}

r; s ~ {(u, T) 1 3ç((u, Ç) Er A (Ç, T) Es)}

In the section on total correctness we introduce a special state .l, .lji!' E, to denote
divergence. It has the property that T(xh(.i,r) = ff and T[xh(u,.l) = jj for all
/ E rand x E Assn. We abbreviate EU {.l} as E.L, and write p......, .Lq and p......, .Lr
whenever p, q E 'P(E.L) and r E 'P(E.1. x E.L)·

3 Partial Correctness

Partial correctness formalisms abstract from the issue of termination, and focus on
the functional behaviour. We define what partial correctness means in Hoare's logic,
define partial correctness for VDM, and show how these formalisms are related.

3.1 Hoare's Logic

The intended meaning ofHoare-style partial correctness formula (cp) S ('1{1)1< is that if
the initial program state satisfies the precondition <p and if the program S terminates
then the final program state must satisfy the postcondition 'l{I. This is captured in the
following definition.

Deflnition 3.1. {Hoare partial correctness formula)
Let S E 'Prog and <p, 'l/J E Assn 11..

Notice that we sometimes treat R(.J as a function, i.e. it is considered to be of type
'P(E) --> 'P(E). Hence,

R[SH(tp]'y) ~ {T 13"(u E ['1']1 /\ (u,r) E R(S])}

13

A partial correctness specification should specify the largest relation that satisfies the
corresponding correctness formula. Or, in other words, if a program S satisfies the
specification { <p} op { 1/1} u then (lf') S (1/1) u should hold.

Deftnition 3.2. (Hoare partial correctness specification)
Let tp, 1/1 E Assnu and Of> E Name.

[{cp} op {1/i}ul ~ n<Mî'"" l'!/>h)
"'{

Lemma 3.3 states that definitions 3.1 and 3.2 are consistent in the sense that they
satisfy the condition mentioned above.

Lemma 3.3. Let SE Prog and ip,1/i E Assnn.

V7 (7?.[S)([ip]î') Ç [.,P)î') <=> R.[S] Ç n([<p) "-' ['!/>))

Proof.

0

"'{

V7 (r e n[S)([iph) - re [1/ih)

{::} V7V"((u E [cp)î' /\ (u,r) E 'R[S])-+ TE ('!/>]î')

{::} V7V"((u,r) E R.[S)-+ (u E (cp)î'-+ TE ['ljl]î'})

<=> V.,.((u, r) E 'R[S) -+ V7 (u E [lf'Jî'-> T E ('ljl]î')}

{::} (u, r) E 'R[S) -+ (u, r) E n([cp)î' "-' [1/ih)
"'{

3.2 VDM

Although VDM is a total correctness formalism, it makes sense to define a partial
correctness version and to compare it with Hoare's partial correctness logic. Such
a partial correctness version should be consistent with total correctness VDM, i.e. if
we abstract from the issue of termination both versions of VDM should specify the
sa.me operations. From definitions 4.5 and 4. 7 in section 4.2 it is immediate that the
following definitions of VDM-style partial correctness formulae and specifications are
indeed sensible.

Deftnition 3.4. (VDM partial correctness formula)
Let SE Prog, 1r E Assn.7, and p E .Assn'R..

Thus if we restrict the behaviour of program S to those starting in an initial state
for which the precondition 1r holds, then we only observe behaviours allowed by the
postcondition p.

Deftnition 3.5. (VDM partial correctness specification)
Let Of> E Name, 1r E Assn.7, and p E Assn'R..

CHAPTER 2 - Hoare's Logic and VDM

Analogous to lemma 3.3 for Hoare's logic we have a lemma to ensure that the above
two definitions are consistent with each other.

Lemma 3.6. Let S E Prog, 7r E Assn3 , and p E Assn'R.

Proof.

D

(u,r) E 11[7rlll; 'R[S]-+ (u,r) E (p]

<=> (a E [7rJ /\ (u, r) E 'R(SJ)-+ (u, r) E (p]

~ (a, r) E 'R[S]-+ (u E [7r] -+ (u, r) E [p))

<=> (a, r) E 'R[S)-+ (a, r) E [7rJ"" [p)

3.3 Translation of Partial Correctness Formulae

We adopt the convention that x, xo, and x denote lists of variables rather than single
variables. For rocample, in theorem 3.7 we use xo to denote the list of all free logica!
variables in the precondition of the Hoare formula.

The claim that VDM allows the separation of functional behaviour - defined by
the postcondition from termination - defined by the precondition - is justified
by the fäct that we have the assertion true as the precondition of the VDM formula in
the following theorem.

Theorem 3.7. (Translation of Hoare formulae into VDM formulae)
Let S E Prog and <p, 'ifJ E Assnu.

(ip) S (,,P)u <=> (true) S (V"0 (ip[x/x]-+ 'l/JW'

Proof. Using lemma 3.3 and lemma 3.6 it suffices to prove the following equality.

D

n(['P)7"" ['l/Jh)
'Y

n({(u,r) 1 u E (ip]î'-+ r E ['f/;)î'})
'Y

{(u, r) 1 'V'Y(u E (ip]î'-+ r E ['lf;]î')}

[V"0 (<p[x/x] - 'f/;)), with Y"0 (ip[xjx]-+ 'f/;) E Assn"

= {(u,r) 1 u E [true)-+ (u,r) E [V"0 (ip[x/x]-+ 'ljl)J},

with true E Assn3

[true] "" [V "0 (ip[x / x] -+ 'ifJ)]

From this theorem and lemma's 3.3 and 3.6 we immediately obtain a similar result for
Hoare-style and VDM-style partial correctness specifications.

Corollary 3.8. The Hoare-style specification {ip} op {'efl}u and the VDM-style speci
fication { true} op {'v' "0 (cp [x / x] -+ 'ljl)} 3 are correctly implemented by the same opera.
tions.

15

The following theorem and corollary describe how a VDM partial correctness formula
or specification can be directly translated into an equivalent Hoare-style partial cor
rectness formula or specification. Hence, we can go from Hoare's logic to VDM and
vice versa if preserving partial correctness is our only concern.

We use x = xo as an abbreviation of A'/=1 :z:Î = x~, where x1
, "" xn is the list of

program variables in the precondition 1f of the VDM formula.. Notice how the logical
varia.bles are used to copy the values of the program varia.bles from the initial program
state to the final program state.

Theorem 3.9. {'Pranslation of VDM form:ulae into Hoare formulae)
Let S E 'Prog, 1f E Assn", and p E AssnR.

(1r) s (p).:r * (x = xo "1r) S (p[xo/x])"

Proof. Using lemma 3.3 and lemma 3.6 it suffices to prove the following equality.

D

[1rJ "" (p]

= {(u, r) 1 u E [11')-+ (u, r) E [p)}

{(u, r) 1 V-y(('Y(xo) = u(x) /\ u E [1r])-+ r E [p[xo/x]h)}

with p(x0/x] E Assnu

{(u, r) 1 V-y(u E (11' /\ x = xoh-+ r E (p[xo/x]]'Y)}

with (11' /\ x = xo) E Assnu

n{(u,r} 1 u E [1r /\x = xoh-+ r E [p[xo/x]h}
'Y

n{[1r /\ x xoh"" [p[xo/x]]'Y)
'Y

Corollary 3.10. The VDM-style specification {1r} op {PV and the Hoare-style speci
fication { x = xo /\ 1f} op {p[xo/i)} u are correctly implemented by the same operations.

4 Total Correctness

In order to deal adequately with nontermination (divergence) we assume a special
state .L with the properties mentioned at the end of section 2, and adopt the proposed
notation. As a consequence of definition 2.3 we have that .Lil" [q:ir'Y, (u, .L) il" [pr,
(.L, u) ~ (pj1\ and J.~ [11-J" (u and r are supposed to be elements of EJ.}.

We also assume a relational semantics 'R(.t : 'Prog -+ 7"EJ. x EJ.}, with the following
properties.

V.,.(3T((u,r) E 'R(St)}
(u, J.) E 'R.(S)J. <:;> V.,.((u, r) E 'R[S])

(4)

(5)

Thus 'R[St is a total relation (property (4)). Property (5) is typical for Smyth
semantics [Smy78], which adopts the principle that if, given an initial state, a program
might not terminate then it will not terminate. The reason that we choose a Smyth
semantics is that in [Jon87] Jones defines such a semantics for VDM. Furthermore we
require that 'R.[.t is a conservative extension of 'R[.J, i.e. we require that for all p Ç E

.L\t 'R[S]J. (p) :::} 'R(SJ(p) = 'R.(SJ.1. (p) . (6)

Because J.ît 'R[S](p), it follows immediately that 'R[SB(p) # 'R[S].L (p) if, and only if,
J.E 'R[St (p}.

CHAPTER 2 - Hoa~'s Logic and VDM ····--··_!!

4.1 Hoare's Logic

The intended meaning of Hoare-style total correctness formula (tp) S (1/1 Y1 is that if
the initial program state satisfies the precondition tp then the program S terminates
in a final program state which satisfies the postcondition 1fl. This is captured in defi
nition 4.1.

Definition 4.1. (Hoare total correctness formula)
Let SE 'Prog and cp,7/; E Assn'1<.

We prove the following folk theorem, which relates partial and total correctness for
mulae.

Lemma 4.2. Let SE 'Prog and tp,'lj; E Assn'1<.

(ip) S (,,P)1; # ((ip) S (,,P)'1< /\ (cp) S (true)11.)

Proof. We distinguish two cases.

1. ..LE 'R[St_ ([cp)ï).
Because ..L\t ['l/lh and ..L\t [trueh both (cp) S (?jJYf. and (ip) S (trueYf. are false.

2 . ..L\t 'R(St_ ([cp)'Y).

D

Because [true]'Y = E andinthiscase'R[St_ (('P]'Y) Ç E, itfollowsthat (cp) S {trueYf
is true. From requirement (6) it follows that 'R[Slt ([ip)ï) = 'R[S){[ip)'y), which
meana that ('P) S ('ljJ Yi. holds if, and only if, (tp) S ('Ijl) 1-1. holds.

A total correctness specification specifies the largest Smyth-rela.tion - i.e. the largest
relation on E.1. x E.i. satisfying requirements (4) and (5} which satisfies the corre
sponding correctness formula.

Deflnition 4.S. {Hoare total correctness specification)
Let tp, 'ljJ E Assn'H. and <fP E Name.

[{'P} <fP {?/J}1] ~ n<M'î"" .i.l'l/Jh)

'
Lemma 4.4 ensures that definitiona 4.1 and 4.3 are consistent.

Lemma 4.4. Let S E 'Prog and ip, 'ljJ E Assn1-1..

V1 ('R[St (['Ph) ç ['ifih} <=> 'R[St_ ç ni:M "".i.['1/1])

'

Proof. Analogous to the proof of lemma 3.3. D

4.2 VDM

In [Jon87, Jon90] Jones defines what it means for an operation S to be a correct
implementation of a specification { 1f} op {p }f. Within the relational framework of
section 2, Jones' requirement becomes (recall that 'R[Sli. is a total relation and [pr Ç
Ex E)

V","(a E [7r].:r-+ ((o-, r) E 'R[S].1. -+ (a, r) E [pr)) (7)

Because (7) is equivalent with

V"""(((a,a) E 11[7r).:ril /\ (a,r) E 'R(S]J-+ (a,r) E [pr)
it is easily seen that definition 4.5 is indeed equivalent with the VDM condition for
implementation correctness.

Definition 4.5. (VDM total correctness formula)
Let S E 'Prog, 1f E Assn.7, and p E Assnn.

F[(7r) s (p)Ij ~ 11[7r]JI; 'R[SL ç [p]

For VDM total correctness formulae we have an analogous result to lemma 4.2 for
Hoare's logic.

Lemma 4.6. Let SE 'Prog, 11' E Assn.:r, and p E Assnn.

(7r) S (p)f * ((7r) S (p).:r /\ (7r) S (true)f)

Proof.

11[7r].:rJI; 'R[SJ.1. ç [pr

v",,,.((o- E [7r)3
/\ (a, r) E 'R[SJJ -+ (a, r) E [pr)

* Vu,,,.(r E 'R(SL ({a})-+ (a E M.:r-+ (a,r) E [pr))

In case the initial program state a r:/. [7r] the above theorem clearly holds. Therefore
assume that o- E (7r). We consider two cases of the last formula.

1. .lE 'R(St ({ a}).
Because (a, .l) r:/. [pr the correctness formula (7r) S (p)I is false. Likewise,
because (a,.l) r:f. (truer, the correctness formulae (7r) S (true)l is false.

2 . .l\t n(st ({ a}).

0

Because for all T # .l we have that (u, r) E [truer, the correctness formula
(7r) S (true):[holds. From requirement (6) it immediately follows that (7r) S (p):[
holds if, and only if, (7r) S (p):l holds.

Lemma 4.8 guarantees that the interpretation of VDM total correctness specifications
as defined in definition 4.7 is consistent with the definition of VDM total correctness
formulae.

Definition 4. 7. (VD M total correctness specification)
Let op E Name, 7r E Assn3 , and p E Assnn.

[{ 7r} op {p }f] ~ [11'] "-> l. [p)

Lemma 4.8. Let S E 'Prog, 7r E Assn3 , and p E Assnn.

11[11')11; 'RISL ç IPJ * 'R(SL ç [11'] "'".1.[pJ

Proof. Analogous to the proof of lemma 3.6. D

4.3 Translation of Total Correctness Formulae

In this section we give theorems for total correctness similar to the ones for partial
correctness in section 3. First, we show how to translate a Hoare-style total correctness
formula into an equivalent VDM-style total correctness formula.

Theorem 4.9. (Tronslation of Hoare formulae into VDM formulae}
Let SE 'Prog and ip,1/J E Assn"".

(ip) S (1/J)~ <::? (3"0 (ip)) S ('v'"0 (cp[x/x]-+ 1/J}Yf_

Proof. First we apply lemma 4.2, and then proceed in two major steps.

1. (cp) S (1/J)"" <::? (3"0 (ip)) S ('v'"0 (ip[i}x] -+ 1/J))"'. Following the proof of theo
rem 3. 7 we proceed as follows.

n<M1~ [1/Jh)
"(

{(u, r) l 'v'"l(u E M'Y-+ T E [1/Jh)}

{(u, r) j 'v'1 (u E ['Ph-+ 'v'"l(u E ['Ph-+ r E [1/Jh))}

{(u, r) j 3"1(u E [iph)-+ (u, r) E [V"0 (ip[x /x]-+ 'lf;)J}

= [3"0 (cp)J ~ ['v'"0 (ip[x/x]-+ 1/J}), with 3"0 (ip) E Assn3

2. (cp) S (true~ <::? (3"0 (ip)) S (true)I. This is proved as follows.

n(['PJ-y ~ .i.[trueh)
"!

{(u, r) l 'v'"l(u E ['Ph-+ TE [true)'Y)}

{(u, r) l 'v'"l(u E ['Ph-+ (u, r) E [trueB)}, with true E Assnn

{(u,r) l 3"/(u E [ip)'Y)-+ (u,r) E (true)}

[3"0 (cp)] ~ .i.[true), with 3"0 (cp) E Assn3

An application of lemma 4.6 concludes the proof. D

Corollary 4.10. The Hoare-style specification {ip} op {'l,b}j_' and the VDM-style spec
ification {3"0 (ip)} op {'v'"0 (ip(x/x] -+ 1/J)}i are correctly implemented by the same
operations.

The following theorem shows how to translate VDM-style total correctness formulae
into Hoare-style total correctness formulae. Hence, we can go back and forth between
VDM and Hoare's logic.

Theorem 4.11. (Tronslation of VDM formulae into Hoare formulae)
Let SE 'Prog, 11' E Assn3 , and p E Assnn.

('11") S (p'fJ. <::? (11' /\ x = xo) S (p[xo/x])~

Proof. First we apply lemma 4.6, and then proceed in two steps.

1. (n") S (p) 3 <::? (11' /\ x = x0) S (p[x0 /x])'"'. See theorem 3.9.

20

2. (7r) S (true}I # (?r /\ x = x0) S (true}I. This is proved as follows.

[7r] .._... .L [true]

{(u, r) 1 u E [7rD-+ (u, r) E [true]}

{(u, r) 1 \:/"l(u E [7r]r-+ r E [true]r}, with ?r, true E Assn'H

n({(u, r) 1 :J"l(u E [7r]'Y)-+ TE [true]'Y})
"(

there are no free logical variables in true

n({(u, r} l u E [:3"o{'lf /\ x = xo)h-+ TE [true]r)})
"(

there are no free logical variables in 7r

n([:i"o('lf /\ x = xo}h .._... .L[true]r)
"(

One application of lemma 4.2 concludes the proof. 0

J. Coenen

Corollary 4.12. The VDM-style specification { 7r} op {p }:'[and the Hoare-style speci
fication { 7r /\ x = xo} op {p[xo/x]}1 are correctly implemented by the same operations.

4.4 Realizability

Consider the following VDM-style specification.

{true} op {false}3 (8)

According to definition 3.5 this specification denotes the empty relation. If abort is a
(nonterminating) program with partial correctness semantics R[abort] = 0 then (8) is
correctly implemented by abort. Admittedly abort doesn't seem to be a very useful
implementation, but the point is that there exists a program which satisfies (8). In
this sense (8) is realizable. The total correctness specification

{ true} op { false }:'[, (9)

however, is unrealizable. The reason for this is that (9) specifies a partial relation, viz.
{..L} x E.L, but R[St defines a total relation for all S (see (4)).

In VDM [Jon90] realizable and unrealizable specifications are separated by the
satisfiability requirement. A specification { 1f} op {p }:'[is satisfiable if, and only if,

\:/"(u E [7r]-+ :3.,.((u,r} E [p]I)) (10}

Thus { 7r} op {p }:'[is satisfiable if [p] is total on [?r]. Condition {10} is expressed by
7r['X /x] -+ :3"(p).

Hoare's logic has the same problem. The specification {true} op {false}1 is not
realizable, because it specifies the same partial relation as (9). Following Jones, we
define a condition for Hoare's logic similar to requirement (10} for VDM:

(11}

This requirement is expressed by <p-+ :ly('if;[y/x]}, where variables in the list y don't
occur in 'Ij;. However, for Hoare's logic the issue of realizability is more complicated.
Consider the following specification.

{true} op {x = xo}1

QHAPTER 2 - Hoare 's Logic and VDM

This specification satisfies requirement {11), hut is nevertheless unrealizahle hecause
it is denoted by partial relation:

n(E ""'.i.(x = xoh) = n{(u,r)lu #1-- r(x) 1(xo)} = {1-} x E.L.
'î 'î

Hence, this specification is not satisfiahle because programs are denoted by total re
lations (requirement (4)). This is explained by the fact that logical variables do not
occur in programs, and therefore a correct implementation must nondeterministically
guess the value of xo. Requirement (11) is sufficient (and necessary) in case logical
variables don't appear in the specification. If logica! variables are present we still need
to check whether the specification denotes a total relation.

5 Conclusions

We presented a unified framework for Hoare's logic and VDM, and showed how to
translate correctness formulae and specifications from one formalism into the other.
An interesting observation is that for VDM there exists a simple requirement which is
necessary and suflicient to guarantee realizahility of a specification, whereas for Hoare's
logic a similar requirement is not so easily found.

In case we have an adaptation complete proof system for Hoare's logic such as the
one in [Apt81] theorems 3.7 and 4.9 are not needed. A proof system is adaptation
complete whenever if (<p) S ('lf;) implies {<p1

) S ('lf;1) then (<p1
) S ('lf;') is derivahle from

{<p) S ('Ijl) (cf. [Old83]). 2 This can be seen as follows. Suppose we want to translate
the Hoare formula (<p) S ('!f;)'H. using only theorem 3.9. In order to apply theorem 3.9
the assertions in the Hoare formula have to be of a particular format. Because we
assume that the proof system is adaptation complete, it is suflicient to show that
(<p) S ('ljJ) 1i implies (<p1

) S (1/i') 1i with <p1 and 1/J' in the specific format needed in theo
rem 3.9. According to theorem 3.7 an equivalent VDM formula exists, say (7r) S (p)3

•

Theorem 3.9 provides us with another equivalent Hoare formula (1.p") S ('lf;11)1i which
obviously has the format required by this theorem. Hence, (1p11) S ('!f;") 1i is the formula
(<p') S (1f;1)1i we were looking for.

Acknowledgement

The author would like to thank Kai Engelhardt and Willem-Paul de Roever for many
stimulating discussions and their helpful comments. Willem-Paul de Roever suggested
the topic of this paper, which builds upon joint research.

References

[Apt81] Apt, K. R.: Ten Years ofHoare's Logic: A Survey- Part I. ACM TOPLAS,
4, 431-483 (1981).

[Bak80] Bakker, J. W. de: Mathematical Theory of Program Correctness. Prentice
Hall, 1980.

2 Adaptation completeness is proved using the assumption that the logic of the assertion language is
complete. Thus adaptation completeness is relative w.r.t. the underlying proof system of the assertion
language.

21

[CRZ91] Coenen, J., Roever, W.-P. de, Zwiers, J.: Assertional Data Reification
Proofs: Survey and Perspective. Proc. 4th BGS-FAGS Refinement Work
shop, pp. 97-114, Workshops in Computing, Springer-Verlag 1991.

[Gor75] Gorelick, G. A.: A Complete Axiomatic System for Proving Assertions
about Recursive and Non-Recursive Programs. Tech. Report No. 75, Dept.
of Computer Science, University of Toronto, 1975.

[Hoa69] Hoare, C.A. R.: An Axiomatic Basis for Computer Programming. G. AGM,
12, 576-580 (1969).

(Hoa71] Hoare, C. A. R.: Procedures and Parameters: An Axioma.tic Approach.
Symp. on Semantics of Algorithmic LanguageJJ, pp. 10.2-116, LNM 188,
Springer-Verlag 1971.

(Jon87] Jones, C. B.: VDM Proof Obligations and their Justification. Proc. VDM
Europe Symposium, pp. 260-286, LNCS 252, Springer-Verlag 1987.

(Jon90] Jones, C. B.: Systematic Software Development Using VDM (second edi
tion). Prentice-Hall, 1990.

[Old83) Olderog, E.-R.: On the Notion of Expressiveness and the Rule of Adapta
tion. The.or. Comp. Sci., 24, 337-347 (1983).

[Smy78) Smyth, M. B.: Power Domains. J. Gomp. êJ Sys. Sci., 16, 23-36 (1978).

Chapter 3

Parameterized Semantics for
Fault Tolerant Real-Time
Systems

This chapter is a revised version of:

J. CO ENEN AND J. HOOMAN.

Parameterized Semantica /or Fault Tolerant Real-Time Systems.
Formal Techniques in Real-Time and Fault Tolerant Systems,
{J. Vytopil ed.), pp. 51-78, Kluwer Academie Press 1993.

Parameterized Semantics for Fault Tolerant
Real-Time Systems

J. Coenen1 & J. Hooman2

Department of Ma.thema.tics and Computing Sdence
Eindhoven University of Technology

P.O. Box 513, 5600 MB Eindhoven, The Netherlands.

Abstract

Motivated by the close relation between real-time and fault tolerance, we in
vestigate the foundations of a forma! framework to specify and verify real-time
distributed systems that incorporate fault tolerance techniques. Therefore a deno
tational semantics is presented to describe the real-time behaviour of distributed
programs in which concurrent processes communicate by synchronous messa.ge
passing. In this semantics we allow the occurrence of faults, due to faults of the
underlying execution mechanism, and we describe the effect of these faults on
the real-time behaviour of programs. Whenever appropriate we give alternative
choices for the de:finition of the semantics. The main idea is that making only very
weak assumptions about faults and their effect upon the behaviour of a program
in the semantics, any hypothesis about faults must be made explicit in the correct
ness proof of a program. Next we introduce two parameters in the semantics that
restrict the way in which varia.bles and communication channels can be affected
by faults. These parameters provide an easy way to incorporate some interesting
fault hypotheses within the semantics.

1 Introduction

The development of distributed systems with real-time and fault tolerance require
ments is a difficult task, which may result in complicated and opa.que designs. This,
and the fact that such systems are often embedded in environments where a small error
can have serious consequences, calls for formal methods to specify the requirements
and verify the development steps during the design process.

Unfortunately most methods that have been proposed up to the present deal either
with fault tolerance requirements, e.g. [15, 4, 10], or with real-time requirements, e.g.
[16, 8, 12], hut not with both simultaneously. This can be a problem, because fault
tolerance is obtained by some form of redundancy. For example, a ba.ckward recovery
mechanism introduces not only information redundancy and modular redundancy, hut
also time redundancy. Hence, it is possible to obta.in a higher degree of fault tolerance
by introducing more checkpoints, i.e. by introducing more time redundancy. This is
the main reason why program transformations that are used to transform a program
into a functiona.lly equivalent fault tolerant program, e.g. by superimposition of an
agreement algorithm, may tra.nsform a real-time program into one that doesn't meet
its deadlines.

1Supported by NWO/SION project 612-316-022: "Fault Tolerance: Para.digms, Models, Logies,
Construction." E-mail: wsinjosc@win.tue.nl.

2Supported by ESPRIT-BRA project 3096: "Formal Methods for the Development of Distributed
Real-Time Systems." E-mail: wsinjh@win.tue.nl

26 J. Coenen and J. Hooman

The tra.de-off hetween relia.hility and timeliness extends to one between relia.bility,
timeliness a.nd functiona.lity. An elegant wa.y of exploiting this trade-off ca.n be observed
in gra.ceful degra.ding systems. For exa.mple, if a fault occurs a. system ma.y temporary
sa.crilice a service in order to ensure that more important deadlines are met.

Motivated by the close relation between the reliability, timeliness and functiona.lity
of a system, we would like to reason about these properties simultaneously. Related
research on the integration of these three aspects of real-time programs within one
framework can be found in [6]. In that paper a probabilistic (quantitative) approach
is presented, whereas we are maiuly concerned with the qualitative aspects of fault
tolerance.

To motivate our semantic model we describe, by means of an example, how we
would like to reason about fault-tolerant real-time systems. We consider concurrent
systems in which parallel processes communicate by messa.ge passing along unidirec
tional channels. Communication is synchronous, i.e" both sender and receiver have
to wait until a corresponding partner is available. We illustra.te our approach using
specifications of the form S sat tp, where S is a program and tp a sentence in a first
order predicate logic. Informally, S sat tp is va.lid if cp holds in any execution of S.
To express the timed communication behaviour of programs, the logic includes the
following predicates.

• (c, v) at t to denote the start of a communication along channel c with value v at
timet.

• await c? at t to express that a process starts waiting to receive a value along
channel c at time t until the communication takes place.

• await (c!, v) at t to express that a process starts waiting to send the value v along
channel c at time t until the communication takes place.

Let [ti, t2] denote a closed interval of time points. For a predicate Pat t we define the
following abbreviations.

• Pat [t1, t2] ~ Vt, t1 :5 t :5 t2 : Pat t

• Pin [ti, t2] ~ 3t, ti :5 t ::; t2 : Pat t

In this paper we assume maxima! progress which means that a process only waits if
it tries to communica.te and no communication partner is available. Communication
takes place as soon as possible, i.e., as soon as both partners are ready to communicate.
This assumption leads to the following proposition.

Proposition 1.1

await (c!, exp) in [t1, t2] A await c? in [ti, ta]
--+ (c, exp) in [ti, min(t2, ts)]

•
As an example, we design a program P such that if P receives input v along channel
in then it will be ready to send the value f(v) along channel out in less than T time
units. Formally, P sat ip(t), where

ip(t) ~ (in, v) at t--+ await (out!, f (v)) in [t, t + TJ

CHAPTER 3 - Parometerized Semantics /or Fault Tolerant Real-Time Systems 27

Free variables, such as v and t in the specification above, are implicitly universally
quantified. Using a formal method for real-time systems (see, e.g., [12, 7]) we could
now derive a program S satisfying this specification for suitable values of T. In such a
verification method there is usually an implicit assumption that the underlying execu
tion mechanism of programs is correct. In this paper, however, we want to take these
faults into account and make assumptions about faults explicit. To refer to programs
we use the naming construct (P .ç: S) which assigns the name P to the program S.
Then the occurrence of faults is expressed in the logic by the predicate

• fail(P) at t to denote the failure of a process with name P at time t.

The main aim of this paper is to give a semantics for programs which does not only
describe the normal executions of the program, as in traditional semantic models, hut
also all possible executions in which the program fails. Then (P .ç: S) sat ,,P is valid
if .,P holds in any execution of S, including those in which there are faults. Because
the behaviour of a program that fails can be arbitrary, the assertion ,,P will in general
select a subset of all possible executions by means of a fault hypothesis. Hence in .,P we
have to express explicitly what is assumed about faults. For instance in our example
we can use the fault hypothesis (...,fail(P)) at [t -Tp, t + Tp], for some parameter Tp,
and obtain the specification

(P .ç: S) sat (...,fail(P)) at [t -Tp, t + Tp]-+ rp(t)

Clearly rp(t) need not hold if a fault occurs in the interval [t - Tp, t + Tp]. Therefore
we will derive a program that can tolerate one fault. This can be achieved using a
Triple Modular Redundancy (TMR) system. Instead of a single process S we take
three copies, Si, S2 and Sa, of S, where Si is obtained from S by replacing in by in;
and out by out;, for i = 1, 2, 3. Then the TMR system consists of five processes, as
depicted in figure 1. In the first place there is a distribution node D with program

in3 out3

in

Figure 1: TMR system

So which copies the input of channel in on three channels ini, in2, and in3 provided
there is no fault during a certain period. Using parameter Tv this leads to

(D .ç: So) sat (...,fail(D)) at [t -Tv, t +Tv]-+ rpv(t)

where rpv(t) ~ (in,v)att-+ /\~=1 await (ini!,v)at(t+Tv). Process (P; .ç: S;), for
i = 1, 2, 3, is ready to receive a message on channel in; at least once every Tp time

units. If a value vis received, it offers f(v) on channel out, in less than T1 time units,
again using a suitable fault hypothesis. Thus we have

(.11 *Si) sat (-.fail(.11)) at [t -Tp, t + Tp]-+ 'Pi(t)

where

'Pi(t) ~
(await in;? in [t, t + Tp])
A((in;, 11) at t-+ await (out,!, f(v)) in [t, t + T1]) .

The voter V is implemented by a program 84. Given a suitable fa.uit hypothesis,
it is ready to receive a value on each of the channels out1, out2, and out3 at least once
every Tv time units. If it receives the same input on two different channels during a
period of at most T1 time units, then it offers this value on channel out in less than T2

time units. Formally, the voter is specified by

(V <::::: 84) sat (-,fail(V)) at [t - Tv, t +Tv] -+ ipv(t)

where ipv(t) is defined as follows.

3

'Pv(t) ~ /\ awaitout;?in[t,t+Tv])
i=l

A(3i,j, i :f= j: (out;, u) in [t, t + T1] t\ (out;, u) in [t, t + T1]
-+ await {out!, u) in [t + Ti, t + T1+1"2])

Ohserve that for each process the specification only refers to the process name and the
channels of the process itself. Then we can take the conjunction of the specifications
for the parallel composition of these processes. This leads to

(D <::::: So}li(P1 <::::: Si)ll(P2 ç S2}ll(P3 * 83}ll(V ç 84}
sat (-.fail{D) at [t -Tv, t +Tv] -+ ipv(t))

3

t\(f\ ...,fail(P;) at [t - Tp, t + Tp] -+ cp;(t))
i=l

A(-,fail(V) at [t - Tv, t +Tv] -+ t,cv(t))

To derive ip(t) we consider the following fault hypothesis.

FH(t) ~ (...,faiJ(D))at [t-Tv,t +Tv]
l\(3i,j, i :f= j : (-.fail(.11)) at [t +Tv - Tp, t +Tv+ 2Tp]

A(...,fail(Pj)) at [t +Tv - Tp, t +Tv+ 2Tp])
1\(-.fail(V)) at [t +Tv -Tv, t +Tv+ Tp + T1 +Tv]

From the previous specification we can then derive

(D ç So}ll(P1 <::::: 8i)ll(P2 ç 82}ll(Pa ç 8a)ll(V * 84}
sat FH(t)-+

<pv(t) t\ (Vt1 E [t +Tv, t +Tv+ Tp + T1]: 1Pv(t1))
l\(3i,j, i :f: j : (Vto E [t +Tv, t +Tv+ Tp] : ip;(to) /\ 'PJ(to)})

To obtain t.p we use the following proposition.

CHAPTER 3 - Parameterized Semantica /or Fault Tolerant Real-Time Systems 29

Proposition 1.2
If T1 ;:: Tp + T1 +Tv and Tv+ T1 + T2 :::; T, then

((3i,j, i ::/; j: (Vt0 E [t +Tv, t +Tv+ Tp] : ip;(to) i\ 'Pj(to)))
i\ipv(t) i\ (Vt1 E [t +Tv, t +Tv+ Tp + T] : <pv(t1)))

-+ ip(t)

Hence by proposition 1.2 we obtain

(D ~ So)ll(P1 ~ S1)1i(P2 ~ S2)ll(P3 ~ S3)ll(V ~ 84)
sat F H(t) -+ ip(t)

provided T1 ;:: Tp + TJ +Tv and Tv + T1 + T2 :::; T.

•

Notice that a specification typically is of the format N sat (FH-+ ip). The an
tecedent FH in the assertion is called the fault hypothesis. Because FH is assumed for
a particular process it is called a local fault hypothesis, as opposed to a global fault
hypothesis which hold for all processes. A global fault hypothesis is an axiom of the
proof system, provided it is expressible in the assertion language.

A fault hypothesis characterizes faults by (c.f. [14])

• Duration, i.e. the time when faults occur, how long will the fault be present, etc.

• Location, i.e. the place where a fault occurs, in which processes, etc.

• Effect, i.e. the effect of the fault on the behaviour of a process, on program
variables, etc.

For instance, the following fault hypothesis asserts that faults are transient

fail(P) at t -+ 3t'~t(--,fail(P) at t') ,

and another example is the following which relates the occurrence of faults in two
processors (a fault P1 will propagate within five time units to P2)

fail(P1) at t-+ 3t':t::;t'::;t+s(fail(P2) at t') .

In this report we take a first step towards a formal method for designing real-time
systems with fault tolerance requirements. Our aim is a compositional proof system,
i.e. is proof system in which the specification of a compound program can be inferred
from the specifications of the constituent components without referring to the internal
structure of these components. Compositionality is a desirable property, because it
enables one to decompose a large specification of a system into smaller specifications
for the subsystems. As a basis for such a proof system we define a denotational
(and therefore compositional) semanticst i.e. a semantics in which the semantics of a
compound program is defined by the semantics of the components independently from
the structure of these components.

From the discussion in the preceding paragraphs it is clear that we need a semantics
that simultaneously describes the following views of a system:

• Functional behaviour. The functional behaviour defines the relation between
initia! and final states of a program and its communication behaviour.

30 J. Coenen and J. Hooman

• Timed behaviour. For real-time systems the time at which a process terminates
and the time that it communicates is of interest.

• Fault behaviour. The behaviour of a process in the presence of faults may devi
ate considerably from its behaviour in absence of faults. Therefore we want to
distinguish the fault behaviour from the correct behaviour.

It is inevitable to make some assumptions about the fault behaviour of a process when
defining a semantics. However, by making only very weak assumptions we enforce that
the assumptions used when dealing with software fault tolerance and indeed many
of the assumptions for hardware fault tolerance - have to be made explicit by a fault
hypothesis (cf. [4, 2, 1, 13, 17, 5]).

The remainder of this report is organized as follows. In section 2, a programming
language is defined, inspired by OCCAM [9]. We also give an informal explanation of
the language constructs under the assumption that faults don't occur. In section 3 we
introduce the computational model, and in section 4 we define the semantics of the pro
gramming language under assumption that faults do not occur. Faults are taken into
consideration in section 5, where we define the general semantics of the programming
language. This semantics is essentially the one presented in [3]. Whenever appropriate
we discuss alternative choices for the assumptions that are implidt in the semantics.
In section 6 we parameterize the semantics in such a way that it includes the semantics
of section 5 as a special case by selecting the right parameters. Conclusions are present
in section 7, where we also discuss some future work.

2 Programming Language

To describe real-time systems we use an OCCAM-like programming language, named
RT. An RT program is a network of sequential processes that communicate over syn
chronous channels. Each channel is directed and connects exactly two processes. Pro
cesses can only access local variables, i.e. variables are not shared between parallel
processes. Processes have unique names.

We assume that the following disjunct sets are defined:

• (x E) VAR, the set of program varia.bles;

• (e E) EXP, the set of (integer) expressions with free occurrences of program
variables only;

• (b E) BOOL, the set of boolean expressions with free occurrences of program
variables only;

• (c E) CHAN, a set of channel names;

• (P E) PID, a set of process names.

CHAPTER 3 - Parameterized Semantics /or Fault Tolerant Real-Time Systems 31

The formal syntax of an RI' program N is defined by

Statement S
.. - skip 1delaye1 x := e 1de1c?x181; 82 I ALTI *ALT

Alternative ALT
.. - [Uf=1 bi--> S;] 1 [l]f=l bi; c;?x;--> SïObo; delaye--> So]

Network N
.. - (P *' S} 1 Ni Il N2

If we forget about fa.ults for the moment, and concentra.te on the functiona.l and
timed behaviour of programs only, we obta.in the following intended mea.ning for the
programming langua.ge constructs above.

2.1 Primitive Constructs

• skip causes no sta.te changes and terminates immediately. Hence, it consumes
no time.

• delay e takes exactly Kd + e time units to be executed if e ;::: 0 and Kd ~ 0 time
units otherwise, but has no other effect. The constant Kd is the minimal amount
of time needed to execute a delay-statement.

• x := e assigns the value of the expression e to the varia.bie x. lts execution takes
Ka. ;::: 0 time units.

• Communication takes place by synchronous messa.ge passing over directed chan
nels. Because communication is synchronous a process may have to wait until
its communication partner is ready to communicate. There are two primitives
for communication:

- The output statement c!e is used to send the value of e on cha.nnel c. It
causes the process to wait until the communication partner is prepared to
receive a value on cha.nnel c.

- The input statement c?x is similar to the output statement, except that the
process waits to receive a value on cha.nnel x. If communication takes place
the received value is assigned to x.

The actual cornmunication itself, i.e. without the waiting period, takes exactly
Kc > 0 time-units.

Instead of using a fixed amount of time for the execution of, for example, the assignment
statement we could have chosen an interval of time or a function that assigns an amount
of time to an assignment. These options, however, lead toa more difficult to understand
semantics, with essentially the same properties.

2.2 Compound Constructs

• 81; 82 denotes the sequential composition of the statements 81 and 82. First 81
is executed, then 82. The total amount of time needed for execution, is the sum
of the execution times of 81 and 82. Thus, sequential composition itself takes
zero time.

• The alternative statement comes in two formats:

- rn~1 bi-+ s,]
First the boolean expressions b; are evaluated, which takes Kg > 0 time. If
all the b; evaluate to false, the statement terminates immediately after the
evaluation of the guards. Otherwise, nondeterministically one of the bi that
evaluated to true is chosen and the corresponding alternative S; is executed.

- [Ü~=l b;; c;?x;-+ S;U bo; delaye-+ So]
If all the boolean guards evaluate to false execution of this statement takes
exactly Kg > 0 time units. Otherwise, if bo evaluates to false, the process
waits until one of communications c;?x, for which b; (i =/= 0) evaluated to
true, is completed. After this communication, the process continues with
the execution of the corresponding alternative S;. If bo evaluated to true,
the execution is as in the previous case, except that the process waits at
most e time units for a communication. If, after evaluation of the guards,
e time units have elapsed without starting a communication, the statement
So is executed. In this case, the process has consumed Kg + e time before
So is executed.

• *ALT denotes the iteration of an alternative statement ALT until all the boolean
expressions in the guards evaluate to false. Because, the evaluation of the boolean
expressions takes positive time (Kg > 0) only a finite number of iterations is
possible in finite time.

• (P {: S} associates the process identifier P with process S. It is nota statement
that is actually executed or implemented, but it is included to enable us to
reason over processes by referring to their names. Consequently, this statement
consumes no time.

• Ni Il N2 denotes parallel composition. We assume maxima! parallelism, which
means that each process has its own processor. This ensures maxima! progress,
i.e. minimal waiting.

3 Computational Model

We define explain the computational model that is used in the remainder to define the
semantics of RT programs.

The functional behaviour of a program is partially defined by the initia! and final
states of a program. A state s E STATE assigns to each program variable a value.
Thus STATE is the set of mappings VAR-+ VAL, where VAL is the set of possible
values of program variables. We use s(e) to denote the value of expression e in state s,
even if eis nota variable. The variant (slx H v) of a state sis defined by(='= denotes
syntactic equality):

(slx H v){y) = { :(y)
,x='=y
, otherwise.

The communication behaviour, timed behaviour and fault behaviour of a computation
is described by a mapping u over a time domain TIME. The time domain is dense
and t 2:: 0 for all t E TIME. Furthermore, TIME is linearly ordered and closed
under addition and multiplication. TIME includes the values of constants Ka, Kc,

ÜHAPTER 3 - Parameterized Semantica for Fault Tolerant Real-Time Systems 33

Kà, Kf, K 9 , and VAL. For simplicity we assume that TIME is the set of nonnegative
rational numbers and that program varia.bles are of type integer. The special symbol
oo (oo rf; TIME) denotes infinity with the usual properties.

Let :E be the set of mappings u of type

[O,t)--> (P(CHANx (VALU {!, ?})) x P(PIDU {X})),

where t E TIMEU {oo}. Thus for all t E [O,t'}, u(t) is a pair (romm,fai{) with
comm Ç CHANx (VALU {!, ?}) and fail Ç PIDU {X}. We use u(t).romm and u(t).fail
to refer to respectively the first and the second field of u(t).

• comm Ç CHANx (VALU {!, ?}) defines the communication and timed behaviour.
The intended meaning of comm at time t E [O, t'} is as follows.

- If (c1v) E u(t).comm then the value vis being communicated on channel c
at timet.

- If (c, !) E u(t).comm then a process is waiting to send a value on channel c
at timet.

- If (c, ?) E u(t).comm then a process is waiting to receive a value on channel
c at timet.

The waiting for a communication is included in the model to obtain a composi
tional semantica.

• fail Ç PIDU{X}, X rf; PID. If P E u(t).failthen process Pis behaving according
to its fault semantics. Otherwise, P is behaving correctly, i.e. according to its
normal semantica. For programs S to which a name bas not yet been assigned
by a (P {= S) construct, X is used as a place bolder. The fait.field enables
one to distinguish between normal behaviour (whenever u(t).fail 0) and fault
behaviour (whenever u(t).fail =f:. 0).

The length lul of a mapping u with domain [O, t) is defined as t.

The meaning of an RT program is denoted by a set Mof triples (M Ç A), where
Ais the Cartesian product STATE x Ex STATE. Ina triple (s0 , u, s}, s0 denotes the
initial program state and s denotes the final program state. In case the program does
not terminate s is undefined.

We define the initial part of length tof u fort E [O, lul], notation u ! t, as

" t lu !tl
(ult)(t') ~ u(t') , t' E [O, t) .

If t > lul then u ! t is undefined.

The concatenation uou1 of two mappings uo and u1 is defined by

luocr11

(uou1)(t) "
, if t E [O, luol);
, if t E [luol, luou11).

Sequentia! composition SEQ(Mo, Mi) of two models Mo, Mi Ç Ais defined as follows.

SEQ(Mo,Mi) &
{(s0,ao,s) E Mol laol = oo}

U { (s0, aoa1, s) 1 there exists s1 such that

(s0,ao,s') E Mo /\ laol =/; oo /\ (s1,a1,s) E M1}

The SEQ operator is a.ssociative, i.e.

Proposition 3.1

•

4 Normal Semantics

The semantics of an RT program is typically defined in two steps. First, we define
the normal semantics of the programming language as described in section 2, i.e. the
semantics when faults do not occur. This is done by defining the interpretation func
tion M[. J : RT-> 'P{A). Second, in section 5 we define the interpretation function
Mt[. J : RT-> 'P{A) which defines the general semantics when faults are taken into
account. The normal behaviour is considered to be a special case of the general be
haviour, i.e.

M[S] = {(s0
, a, s) E Mt[S] 1 O'(t).fail = 0, for all t E [O, lal)} .

Hence, for all RT programs Sit is guaranteed that M[SJ Ç Mf[S].

4.1 Skip, Delay, and Assignment

The semantics of the skip-statement is:

M(skip) & {(s0 ,a,s0)1ial=O}

The definition of the semantics of the delay-statement and the assignment statement
should cause no trouble after the discussion in the previous sections.

M[delaye) ~
{(s0 ,a,s0) 1 lal= Kd + max(s0(e),O)
and for all t E (0, jai) : a(t).comm 0 /\ u(t).fail = 0}

M[x e] &
{(s0, a, s) I lal =Ka/\ s (s01x....., s0(e))
and for all t E (0, lal) : a(t).comm = 0 /\ u(t).fail 0}

CHAPTER 3 fU,fJJ.meterized Semantics (or Fault Tolerant Real-Time Systems 35

4.2 Communication

Recall from section 2 that communication is synchronous and therefore the behaviour
of, for example, a send statement can be split into two parts. During the first part,
the process executing the send statement waits until the communication partner is
available. If the communication partner eventually is available, which is not always
guaranteed, the process will continue with the second part, i.e. the communication
itself. Thus a communication statement can be seen as a sequential composition of
two smaller processes.

The normal semantics of the receive statement is defined as the concatenation of
two models. The first model denotes the behaviour of the process while it is waiting
for its communication partner (c E CHAN):

WaitRec(c) ~
{(s0,u,8) 1 (lul< oo-+ s0 = 8)
a.nd for all t E (0, lul) : u(t).comm = {(c, ?)} /\ u(t).fail 0} .

The second model denotes the hehaviour of the process while the actual communication
is taking place:

CommRec(c, x) ~
{(s0 ,u,s) 1 lul= Kc
and there exists a v such that 8 = (8° lx 1-> v)
and for all t E (0, lul): u(t).comm;;:;: {{c, v)} /\ O'(t).fail;;:;: 0}.

So, the complete normal behaviour of the receive statement is

M(c?xJ ~ SEQ(WaitRec(c), CommRec(c,x)).

The normal behaviour of a receive statement is pictured in figure 2.

comm = {(c, ?)} comm = {(c,v)}
t--~~~~~~~~t--~~~~-)

0

Figure 2: A normal sequence u of a receive statement c?x

The send statement is defined in a similar way as the receive statement. First the
hehaviour of the process while it is waiting is defined. Second, the hehaviour during
the communication itself is defined. Finally, we define the normal hehaviour as the
concatenation of these hehaviors.

WaitSend(c) ~
{(s0, er, 8} 1 (lul < oo-+ 8° = 8)
and for all t E [O, lul) : u(t).comm = {(c, !)} /\ u(t).fail = 0}

CommSend(c, e} ~
{(s0 ,u,s) 1 lul

u(t}.comm
Kc and for all t E (0, lul} :

{(c, s0(e)}} /\ u(t).fail;;:;: 0} .

M[c!e) ~ SEQ(WaitSend(c), CommSend(c,e))

4.3 Sequentia! Composition

The nonnal semantics of sequential composition of two program fragments is simply
defined as follows.

M[So; Sd ~ SEQ(M[So],M[Si)).

Observe that sequentia! composition itself doesn't consume time. Hence, fa.ults occur in
the component statements only. As a consequence of proposition 3.1, we may conclude
that sequentia! composition is associative.

Proposition 4.1

M[(So; Si); S:d M[So; (S1; 82)]

•
4.4 Guarded Statements

The alternative statement ALT=. [Of=1 b; -+ S;J is is executed as follows. First the
boolean guard are evaluated, and if one of the guards evaluated to true, the appropriate
altemative is executed. The evaluation of the guards takes Kg time units, hut has no
other effect.

Guard(ALT) ~
{(s0,u,s0) ! lul =Kg
and for all t E (0, Jul) : u(t).comm = 0 /\ u(t).fail = 0}

If all the guards evaluated to false the remainder of the statement is skipped. Otherwise
nondeterministically an appropriate alternative is chosen, and executed.

Select(ALT) ~
{(s0, u, s) 1 there exists ani E {1, ... , n} such that

s0(b;) /\ (s0 ,u,s) E M[Sd}
n

U {(s0 , u, s0) l lul = 0 /\ V -is0(b;)}
i=l

The complete normal behaviour of the simple alternative statement is thus defined by

M[ALT] ~ SEQ(Guard(ALT), Select(ALT)) .

If ALT= [1Jf=1 b;; c;?x; S;0 b0; delaye-+ S0] there are three possible ways the
process may continue after evaluation of the guards.

1. If all the guards are false the remainder of the ALT statement is skipped.

2. If one of the b; (i =/= O} is true the process waits for an input on one of the c;
for which b; is true. If bo is true communication has to begin within e time
units. After the input is received the process continues with the corresponding
alternative.

3. If bo is true and the process has not received an input within e time units after
the guards were evaluated it continues with the execution of So.

CHAPTER 3 - Parameterized Semantics Jor Fault Tolerant Real-Time S11stems 37

The first behaviour is defined by

n

{{s0,u,s} E Guard(ALT) 1 /\ "s0(bi)}
i=O

The second behaviour is defined as the concatenation of three behaviors

SEQ(Guard(ALT), Wait(ALT), Comm(ALT)) ,

where Guard(ALT) is defined as before and Wait(ALT) and Comm(ALT) are defined
as follows.

Wait(ALT) ~
n

{(s0,u,s} 1 (V s0(b3}}
j=O

/\(s0{bo}-+ lul< min(s0(e),O)) /\(lul< oo-+ s0 = s)
and for all t E !O, lul) : u(t).comm = {(c;, ?) 1 s0 (bi)}}

Comm(ALT) ~

{(s0 , u, s) 1 there exists ani E {l, ... , n} such that

s0(bi) /\ (s0,u,s} E SEQ(CommRec(c;,:z:.:},M[Si])}

The third behaviour is also defined as the concatenation of three behaviors

SEQ(Guard(ALT), TimeOut(ALT),M[SoJ),

where TimeOut(ALT) is defined as follows.

TimeOut(ALT) ~

{(s0 , u, s} E Wait(ALT) 1 s0(b} /\lul= min(s0{e), O)}

The complete normal behaviour of this ALT statement is the union of the three be
haviors described above.

M[ALTB ~
n

{(s0 ,u,s) E Guard(ALT) 1 /\ ...,s0(b;)}
i=O

U SEQ(Guard(ALT), Wait(ALT), Comm(ALT))

U SEQ(Guard(ALT), Time Out(ALT), M [So])

4.5 Iteration

We define EB as V?=l bi in case ALT is the simple alternative statement and as Vf=o b1
otherwise. The semantics of the iteration is defined as a greatest fixed-point:

M[*ALT] ~
vY.({(s0 , u, s} 1 ...,s0(BB) /\ (s0,u, s) E M[ALT)}

U{(s0
, u, s) I s0(BB) /\ (s0,u, s) E SEQ(M[ALT], Y)})

Because evaluation of the boolean guards takes Kg > 0 time greatest fixed-point exists
and is not empty (cf. [7]).

38 J. Coenen and J. Hooman

4.6 Networks

As explained in previous sections, the naming construct is not executed or imple
mented, hut only included to facilitate reasoning over programs. Consequently, it does
not affect the communication behaviour or the program states. Because in the nor
mal semantics the Jail--field will always be empty, it follows that the naming construct
has no effect at all with respect to the normal semantics. In section 5 we shall see
that naming does have an affect to fault semantics, and therefore its introduction is
justified.

M({P<:=S)) ~ M[SJ

The parallel composition operator doesn't consume time. We use var(N) and
chan(N) to denote the set of program variables in N and the set of channels incident
with N respectively. Recall that variables are not shared and channels connect exactly
two processes.

M(N1 Il N2) ~
{(s0, O', s) 1 there exists (s?, u;, s;) E Mt[N;] such that

10'1 = max(lu1l, lu21)

}

!\(x E var{N;)-> (s0(x) = s?(x) !\ s(x) s;(x}))

!\(x !/. var(Ni, N2) -> s(x) = s0(x))

and for all t E [O, lul), c E CHAN, and v E VAL :

u(t).comm = u1(t).comm U u2(t).comm

Au(t).Jail = ui(t).failU u2(t).Jail

Alu(t).comm n {(c, ?), (c, !), (c, v)}I ~ 1

A { if c E chan(N1) n chan(N2)
then (c,v) E u1.comm...., (c,v) E 0'2.comm

(1)

(2)

(3)

It easily seen that parallel composition is commutative. Associativity follows from the
fact that channels connect exactly two processes. Hence, the following proposition.

Proposition 4.2

M[N1 Il N2]
M[(N1 Il N2) Il N3)

M[N2 Il Ni)
M[N1 Il (N2 Il Na}]

•
Notice that (1) ensures that a process can affect only its local variables and that (2)

is the maxima} progress assumption. Condition (3) corresponds with regular commu
nication.

5 Genera! Semantics

The general behaviour can be partitioned into the normal behaviour and the fault
behaviour that describes the behaviour if a fault occurs. This is best illustrated by the
definition of the semantics of the assigument statement. First we define the normal
semantics M[x := e]. Then we apply a function FAIL: 1'(6.)-+ 1'(Ll) to M[x := e],

CHAPTER 3 - Parameterized S.~mantics /or Fault Tolerant Real-Time Syst~ms 39

which transforms the normal behaviour into the fault behaviour. Finally we define the
genera! semantics Mt[x := e J as the union of the normal behaviour and the fault
behaviour.

Let M Ç il, then FAIL is defined as föllows

FAIL(M) ~
{(s0 ,u,s) 1

there exist (s0,u1,s1
) E Mand t E [O,min(iul - K1, lu11)}

such that u ! t = u' ! t and for all t' E [t, lul) : u(t1).fail = { X}}

For a program S, FAIL(M [S)) defines the same behaviour as M [S] up to a point in
time where a fault occurs and after that the program may exhibit arbitrary behaviour.
For instance it may never terminate (see also figure 3). The definïtion ensures that
there is a fixed lower bound KI on the period of time during which a process fails. We
wiU motivate this decision when we discuss the the semantics of the iteration statement.

Proposition 5.1

(a} FAIL(M} 0 ~ for all (s0 ,u,s} E M: lul 0.
(b) for all (s0,u,s) E FAIL(M): lul> K1

u !(t) fail= {X}
\,

/'

0 t

Figure 3: A sequence u of a failing computation

•

I

Part (a) of proposition 5.1 expresses that if, and only if, the executions in M don't
consume time they cannot fail and therefore FAIL(M) is empty. Part (b) expresses
that the minimal length of the mappings of all executions in FAIL(M) is at least K 1
. As a consequence all computations in FAIL(M) take at least K1 time.

5.1 Skip, Delay, and Assignment

Because executing a skip-statement takes no time, its execution can not fall. Therefore
FAIL(M[skip B) is empty (see proposition 5.1). Hence, the genera! semantics is equal
to the normal semantics.

Mt[skip) ~ M[skip] UFAIL(M(skipj)

M[skip)

The definition of the delay and the assignment statement are according the pattern
described in the introduction of this section.

Mt[delaye) ~ M[delaye)UFAIL(M[delaye])

Mt(x := e] :è M[x := e) UFAIL(M[x := e))

5.2 Sequentia} Composition

Sequential composition itself doesn't consume time. Therefore, faults occur in the
component statements only.

A possible way to define the general semantics of sequential composition is to use
the FAIL function as we <lid for delay-statement, hut there are reasonable alternatives
to consider.

1. Using the FAIL function in the same manner as in the definition of the assignment
statement leads to the following definition.

MÎ[So; Si) ä M[So; Si]UFAIL(M[So; Si))
= FAIL(M[So])USEQ(M[S0),Mt[Si}}.

This alternative implies that once a process fails it remains failed. Note that the
definition only depends on the normal semantics of the components.

2. It is also possible to assume that if a failing process terminates it will continue
with the next statement:

Notice that each of these definitions results in a compositional semantics, because
M (S] can be defined in terms of Mt [S B for all statements S in RT.

Each of the alternatives ensures that sequentia} composition is associative.

Proposition 5.2

•
The following proposition relates the behaviors defined by these alternatives for a given
program fragment S.

Proposition 5.3

•
5.3 Communication

For the general semantics of the communication statements we have similar options as
in case of sequentia} composition. We give three reasonable alternatives.

1. The first alternative is our standard approach for the primitive constructs.

Ml[c?x J ~ M(c?x JU FAIL(M[c?x])

If the process fails during the waiting period and eventually terminates, it skips
the communication part. Observe that while the process is still failing it may
attempt to communicate because we don't want to make assumptions about the
behaviour of a failing process.

CHAPTER 3 - Pammeterizerj Semantics /or Fault Tolerant}leal-Tim_e Systems 41

2. Alternatively, it is possible to assurne that if the process fails while waiting, it
rernains failed until cornrnunication succeeds. This rnodels an execution mecha
nisms with a reliable communication channel.

M~[c?x) ~
M[c?x] U SEQ(FAIL(WaitRec(c)), CommRec(c,x))

3. If one does not assume a reliable communication channel then a process that
fails while waiting but does not remain failed, may thereafter attempt to com
municate. Thus a successful communication is not guaranteed. The possibility
of failing or not failing during the waiting period and the actual communication
is modelled by WaitRect(c) and CommRect(c,x) respectively.·

WaitRect(c)
CommRecf(c,x)

~ WaitRec(c) U FAIL(WaitRec(c)) ,
~

CommRec(c, x) U FAIL(CommRec(c, x)) .

The general behaviour of the receive statement is in this case

We prefer to use the third alternative for two reasons. One reason is that we don't want
to assume a reliable communication channel. The other reason is that third alternative
defines the less restrictive behaviour in case of a fault.

For the same reasons as in case of the receive statement we define the general
behaviour of the send statement by

Mf[c!e) ~ SEQ(WaitSenttf(c), CommSentP(c,e)),

where WaitSentP (c) and GommSentP (c, e) are defined as follows.

WaitSenttf (c)
CommSenttf(c,e) ~

WaitSend(c) U FAIL(WaitSend(c)),
CommSend(c,e) U FAIL(CommSend(c,e)).

5.4 Guarded Statements

We consider two possible definitions of the general semantics of the simple alternative
statement.

1. The first possible definition is obtained by simply applying the FAIL function.

MÎ[ALT] ~ M[ALT) u FAIL(M(ALT)) .

The disadvantage of this definition is that it does not discriminate between the
occurrence of a fault during the evaluation of the guards and the occurrence of
a fault in one of the constituent statements: both faults cause the fault of the
whole alternative statement.

2. The second possibility is

Mi[ALT)~
M(ALT) u FAIL(Guard(ALT))

U SEQ(Guard(ALT),FAIL(Select(ALT)))
n

U LJ SEQ(FAIL(Guard(ALT)),Mf[S;)}
i=l

Where Mt[SJ MilSJ in case S =ALT. This definition doesn't have the
disadvantage of the previous one.

Because M1(ALT) Ç Mi (ALT) we prefer the second definition.

To understand the definition of the genera.l semantics below, one must consider the
places where a fault may occur while executing the ALT statement. We start near the
end of the statement.

I Suppose either a fault does not occur until the execution of one of the alternatives,
or a fa.uit occurs while the process is communicating. If the fa.uit behaviour is
finite the process may skip the remainder of the ALT statement or continue with
the execution of one of the alternatives which of course may also result in a fault.
This possibility is captured in the following definition.

SEQ(Guard(ALT), Wait(ALT), Commt(ALT))

u SEQ(Guard(ALT), TimeOut(ALT), Mt[So))

Where Commt (ALT) is defined as follows.

Commt(ALT) ~
{(s0 ,cr,s) 1 there exists ani E {1"" ,n} such that
s0(bi) A (s0,cr,s) E SEQ(CommRect(Ci,x;),Mt(Si))}

II Suppose a fa.uit occurs while the process is waiting to communicate. lf the fa.uit
behaviour if finite the process may continue with any of the communications or
a.lternatives for which it was waiting (i.e. those for which the guard eva.luated to
true). Of course each of these continuations may again lead to a fa.uit. So we get

SEQ(Guard(ALT), Waitt(ALT)),

where Waitt(ALT) is defined by

Waitt(ALT) ~

{(s0, er, s) 1 there exist s1
, uo, and cr1 such that

er= crocr1 /\ (s0,uo,s') E FAIL(Wait(ALT))

A((s0(bo) A (s',u1 ,s) E Mt(So))
V(there exists ani E {1" .. , n} such that

s0(b;) /\ (s',ui,s) E CommRect(ALT)))}.

111 Suppose the fa.uit occurs during the evaluation of the boolean part of the guards.
In this case the process may wait for an arbitrary communication for an arbitrary

CHAPTER 3 - Pammeterized Semantics /or Fault Tolerant Real-Time Systems 43

period of time, or it may exit the alternative statement immediately. This results
in the following behaviour.

SEQ(FAIL(Guard(ALT)), Wait(ALT), Commt(ALT)}

u SEQ(FAIL(Guard(ALT)), TimeOut(ALT),Mt(So))
U SEQ(FAIL(Guard(ALT)), Waitf(ALT))

n

U {(s0,<7,s) E FAIL(Guard(ALT)) 1 /\ ...,s(bi)}
i=O

The general semantics of the ALT statement is the union of the normal semantics and
the semantics given in I-III ahove.

5.5 Iteration

We consider two possible definitions for the genera! semantics of the iteration construct.

1. Using the FAIL function gives the simplest definition.

MÎ[*ALT] ~ M[*ALT] U FAIL(M[*ALT))

If a fault occurs the process will remain failed until the complete statement ter
minates. However, we want a definition that discriminates between, for example,
a single fault in one pass of the iteration and two consecutive passes with a fault.

2. A definition that does discriminate between the above mentioned cases, and also
between the place where a fault occurs is

M~(*ALT) ~
vY.({(s0,u,s) l ...,s0(BB) A (s0 ,u,s) E M(ALT)}

u{(s0,<7,s) E SEQ(Mt[ALT],Y) l s0(BB)}

UFAIL(Guard(ALT)))

Where Mt[sj M~[SJ in case S =*ALT. This definition allows a process to
continue or exit the loop due to a fault. The existence of the greatest fixed-point
follows from the fact that there is a lower bound min(Kf, K 9) on the amount of
time a failing processes must consume (proposition 5.1).

For the reasons mentioned above, we prefer to use the second definition.

5.6 Networks

As explained in section 4 the naming construct itself doesn't introduce new faults.
However it does have an affect on the fault behaviour of a process, and consequently
on the genera! semantics of a process.

Mf[(P <= S) J ~
{(s0,u,s) 1 there exists (s0,u',s) E Mt[SJ such that 1<71 = Jq'I

and for all t E [O, lul) : u(t).comm = u'(t).comm

A(u(t).fail = 0 +-+ u'(t).fail = 0)
A(u(t).fail = {P} +-+ u'(t).fail #- 0)}

The definition of the genera! semantics of a network is almost the sa.me as for the
normal semantics.

Mf[N1 Il N2) ~
{(s0,u,s) 1 there exists (s~,u;,s;) E Mf[N;] such that

lul= ma.x(lu1I, lu21)

}

A(x E var(Ni)-+ (s0 (x) = s~(x) /\ s(x) = s;(x)))

/\(x rf; var(Ni,N2)-+ s(x) s0(x))

and for all t E [O, lul), c E CHAN, and v E VAL :

u(t).comm = ui(t).comm U u2(t).comm

/\O"(t).fail = u1(t).failU u2(t).fail

Aiu(t).comm n {(c, ?), (c, !), (c, v)}I :5 1

/\ { if c E chan(N1) n chan(N2)
then (c,v) E u1.comm-(c,v) E u2.comm

(4)

(5)

(6)

The assumptions (4) (a process can only affect its local variables), (5) (maxima!
progress), and (6) (regular communication) can be weakened for failing processes,
simply by replacing them with

u(t).fail = 0-+ (4) /\ (5) /\ (6) .

This tra.nsformation affects commutativity nor a.ssociativity of the parallel composition
operator.

6 Parameterization of the Semantics

In this section we reconsider the definition of the F AI L function that was introduced
in section 5. We define a new function PFAIL that is similar to the FAIL function,
except that it has two parameters. In this way we obtain a parameterized semantics
in which the previously defined semantics is included. The parameters provide an easy
way of adapting the semantics to a large class of fault hypothesis.

Consider the partitioned network of three processes in figure 4. The network
consists of two processes P1 and P2 which are connected by the channel c, and a
single (stand-alone) process P3. Suppose each process only executes a single delay
statement. Now, if a fault occurs in Pa it is possible that the communications between
P1 and P2 are affected by this fault. Although such a situation may arise in practice,
it is a correlation of fä.ults one may want to exclude in the fault hypothesis (e.g. when
dealing with software fault tolerance).

A simple way of incorporating fa.uit hypothesis about which channels and varia.bles
can not be affected by a fault during the execution of a statement is provided by
including two parameters in the semantics. The two parameters appear only in the
definition of PFAIL:

PFAIL: ('P(A) x 'P(VAR) x 'P(CHAN)) -+ 'P(A)

PFAIL(M, V,G) :è

CHAPTER 3 - Parameterized Semantica /or Fault Tolerant Real-Time Systems 45

Figure 4: A partitioned network

{(s0 ,u,s) 1 there exists (s0,u1,s') E Mand

}

t E [O, min(IO'I - KJ> lu'I)) such that

u !t = u' !tand for all x E V: s0 (x) = s(x)

and for all t' E [t, lul) :
u(t').fail { X}
and for all c E G and v E VAL:
O'(t').comm n {(c, !), (c, ?), (c, v)}
= 0'1(t').comm n {(c, !), (c, ?), (c, v)}

Thus V defines the set of protected varia.bles that can not be affected by a fa.uit.
Similarly, C defines the set of protected channels t~t can not be affected by a fa.uit,
i.e. the communication behaviour is the sa.me until the execution terminates. However,
this does not guarantee that a communication statement is always successful, because
the statement may be aborted before communication is completed.

• The FAIL function can be defined in terms of the PFAIL function

FAIL(M) = PFAIL(M,0,0);

• It is possible to define statements <l S I> t~t are executed successfully, or behave
correctly until a fa.uit occurs in which case the original va.lues of the varia.bles are
restored when a fault occurs

Mt[<JS 1> J ~ M(S) u PFAIL(M(SJ, VAR, CHAN);

• One may choose to use different parameters, depending on the statement for
which the semantics are defined, e.g. a fault while executing the statement S can
only affect varia.bles and channels that occur in S. For insta.nee, the assignment
statement can be defined by (chan(x := e) 0)

Mt[x := e) ~ M[x := e]
U PFAIL(M(x := e], VAR - var(x := e),

CHAN- chan(x := e))

The use of parameters imposes a condition on the assertion language. It is required
that corresponding fault hypothesis is expressible.

46 J. Coenen and J. Hooman

7 Discussion

We have taken a first step towards a formal method for specifying and verifying real
time systems in the presence of faults. A compositional semantics has been defined
together with many alternative definitions. The semantics is defined such that only
very weak assumptions about faults and their effect upon the behaviour of a program
are made. In this way it is ensured that a proof system that takes this semantics as
a basis for its soundness will include few hidden assumptions. Therefore, if one uses
such a proof system to verify a real-time system, almost all assumptions about faults
will have to be made explicit.

The semantics is compositional which eases the development of a compositional
proof system, thereby making the verification of larger systems possible. In section 1
we discussed a small example to illustrate what a proof system might look like. Based
upon the semantics defined in this report, we are currently developing a compositional
proof system using a real-time version of temporal logic. Future work also includes the
design of a proof system that is more like the conventional Hoare-style proof system
with pre- and postconditions for sequential programs.

In our semantic definition, faults may affect any channel or local variable. For
instance, a fault in a processor may affect any channel in the network, including those
that are not connected to the failing processor. This is justified by our philosophy that
we want to make only very few (and weak} assumptions about the effect offault within
the model itself. A first study, however, shows that it is possible to parameterize the
semantics by function that restrict the set of variables and channels that might be
affected by a fault during the execution of a statement.

7.1 Acknowledgment

We would like to thank the members of the NWO project "Fault Tolerance: Paradigms,
Models, Logies, Construction" for their remarks when this work was presented to them
in the context of this project.

References

[1] BERNSTEIN PA. Sequoia: A Fault Tolerant Tightly Coupled Multiprocessor for
Transaction Processing. IEEE Computer pp. 37-46, February 1988.

[2] BARTLETT J, GRAY J & HORST B. Fault Tolerance in Tandem Computer Sys
tems. Symp. on the Evolution of Fault Tolerant Computing, Baden, Austria, 1986.

[3] COENEN J & HOOMAN J. A Compositional Semantics for Fault-Tolerant Real
Time Systems. Proc. 2nd Int. Symp. on Formal Techniques in Real-Time and
Fault-Tolerant Systems pp .. 33-51, LNCS 571, Springer-Verlag 1992.

[4] CRISTIAN F. A Rigorous Approach to Fault Tolerant Programming. IEEE Trans.
on Softw. Engin. ; SE-11(1):23-31, 1985.

[5] CRISTIAN F, DANCEY B & DEHN J. Fault Tolerance in the Advanced Automation
System. In "20th Annual Symp. on Fault Tolerant Computing", 1990.

[6] HANSSON H & JONSSON B. A Framework for Reasoning About Time and Relia
bility. Proc. lOth IEEE Real-Time Systems Symposium, pp. 101-111, 1989.

CHAPTER 3 - Parameterized Semantica for Fault Tolerant Real-Time Systems 47

[7] HoOMAN J. Specification and Compositional Verification of Real-Time Systems.
LNCS 558, Springer-Verlag 1991.

[8] HOOMAN J & WIDOM J. A Temporal-Logic Based Compositional Proof System
for Real-Time Message Passing. Proc. PARLE '89 Vol. 11:424-441, LNCS 366,
Springer-Verlag 1989.

[9] INMOS LTD. OCCAM 2 Reference Manual. Prentice-Hall, 1988.

[10] JOSEPH M, MOITRA A & SOUNDARARAJAN N. Proof Rules for Fault Tolerant
Distributed Programs. Science of Comp. Prog. ; 8:43-67, 1987.

[11] KRONENBERG N, LEVY H & STRECKER W. VAXclusters: A Closely-Coupled
Distributed System. ACM Thans. on Computer Systems, 4:130-146, 1986.

[12] ÜSTROFF J. Temporal Logic f or Real-Time Systems. Advanced Software Devel
opment Series. Research Studies Press, 1989.

[13) POWELL D, VERISSIMO P, BONN G, WAESELYNCK F & SEATON. D. The Delta-4
Approach to Dependability in Open Distributed Computing Systems. Proc. FTCS-
18, IEEE Computer Society Press, 1988.

[14] RANDELL B, LEE PA & TRELEAVEN PC. Reliability Issues in Computing System
Design. ACM Computing Surveys, 10:123-165, 1978.

[15] SCHLICHTING RD & SCHNEIDER FB. Fail-stop processors: an approach to design
ing fault tolerant computing systems. ACM Thans. on Comp. Sys. ; 1(3):222-238,
1983.

[16] SHANKAR AU & LAM SS. Time-Dependent Distributed Systems: Proving Safety,
Liveness and Real-Time Properties. Distributed Computing; 2:61-79, 1987.

[17) TAYLOR D & WILSON G. Stratus. In "Dependability ofResilient Computers", T.
Anderson Ed., Blackwell Scientific Publications, 1989.

Chapter 4

Exception Handling in Process
Algebra

This chapter is a revised version of:

F.S. DE BOER, J. COENEN, AND R. GERTH.

Exception Handling in Process Algebra.
Proc. of the First North-American Process Algebra Workshop
(S. Purushothaman & A. Zwarico, eds.),
pp. 86-100, Workshops in Computing, Springer-Verlag 1993.

Exception Handling in Process Algebra

F.S. de Boer • J. Coenen t R. Gertht

Eindhoven University of Technology

Department of Mathematics and Computing Science

P.O. Box 513, 5600 MB Eindhoven, The Netherlands

E-mail: {vsinfdb, vsinjosc, robg}©vin.tue.nl

Abstract

We study exception handling as it occurs e.g. in ADA, aiming at an algebraic
characterization. We take Bergstra and Klop's Algebra of Communicating Pro
cesses (ACP) as our starting point and equationally define strong bisimulation for
ACP extended with exception handling primitives. This theory is then applied
to showing fault tolerance under an explicitly stated fault hypothesis of a system
that is made more fault resilient by applying dynamic redundancy.

1 Introduction

Exception handling has received scant algebra.ic treatment. In fact, {HH87] and [Dix83]
are the only papers that we are aware of tha.t touch on this topic. In [HH87], the
interrupt construct of [Hoa85], P~Q, is utilized to express recovery from errors or
exceptions. In [Dix83] the term exception is used for Hoare's interrupt construct. The

construct satisfies the following SOS rules: YQ ~ P'~Q provided P P' and

P~Q Q' just in case Q ~ Q'. I.e" execution of P can alwa.ys be interrupted

by the first action of Q. If t is a symbol standing for an error, then associating an
error handler Q for this error to process P is done by P~(t -+ Q): if one a.ssumes
that P does not genera.te t, then in a. process t Il (P~(t -+ Q)), in which the leftmost
process specifies the error hypothesis that at most one error may occur while P or Q
is executing, the handler Q can interrupt P only if the error actually occurs (Hoare's
parallel operator imposes synchroniza.tion on common actions.)

Admirably though this approach fits their purpose, we fee! there is room for im
provement. Let us write P <-+ Q for a.ssociating an exception handler Q to a process
P. Now, what should this construct satisfy? Authoritative answers to this question
can be found in [Ada83, Cri85, LS90]:

1. In a process (P <-+ Q) <-+ Q only the inner handler Q should be activated by an
exception during execution of P so that a second exception occurring while Q is
active can still be caught by the outer handler.

2. If the process P in P '-+ Q raîses an exception, then Q ought to handle this
exception if it can.

*NWO/SION project "Research and Education in Computer Science (REX)."
tNWO/SION project "Fault Tolerance: Paradigms, Models, Logies, Construction."
fESPRlT project: "Building Correct Reactive Systems (REACT)."

52 F.S. de Boer J. Coenen and R. Gerth

Now, P~(t -> Q) as an implementation of P <-+ Q fails on both counts: exception
handlers need not be invoked innermost first; if P raises the error tint 11 (F\t-> Q))
then it can not be handled by Q, and therefore it ought to be handled by a parallel
process.

Another issue that we address is the algebraic treatment of failure due to unrecov
erable errors. Such failures we want to be visible.

In this paper we propose to extend aprACP [BK84]1 to aprACPE with an excep
tion handling construct that does satisfy the three earlier conditions. Furthermore,
a recovery operator is introduced, which interprets the occurrence of certain actions
as errors. Recovery from errors is described in terms of the synchronization merge of
aprACP, i.e., the occurrence of an error requires synchronization with a corresponding
action, a so-called handler, otherwise a failure occurs which gives rise to uncontrolled
behaviour of the system. One of the main difficulties of a proper algebraic treatment of
failure is the asymmetry between errors and their corresponding handlers: an error is
an autonomous action whereas handlers are only activated when an error occurs. This
asymmetry is analogous to the one between asynchronous send and receive actions,
and between synchronous put and get actions [BW90]. However there is an impor
tant difference between the occurrence of an error, on the one hand, and synchronous
put and asynchronous send actions, on the other hand: an error has to synchronize
with a corresponding handler, otherwise a failure occurs, whereas a synchronous put
or asynchronous send action is completely autonomous.

The language and an axiomatization of strong bisimulation is presented in Section 2.
In Section 3 we turn to an example due to Peleska [Pel91]. A simple transformational
process P is made more fault resilient by putting two copies of P in an arbitration
protocol. The fault resilient version equals P under the fault hypothesis that the time
interval between errors is large enough. Some conclusions are presented in Section 4.

2 aprACPE and its Axiomatization

2.1 Language and SOS

Let A be an alphabet of actions. We have a, b, ... E A. We assume two more actions
disjoint from A: b and ..l; the former denoting inaction and the latter indicating the
occurrence of an unrecoverable exception. Elements of A U { b, ..l} are denoted by
a,(3,

The grammar in Table 1 specifies the syntax of process terms of aprACPE (we treat
the left-merge ·IL· and the communication merge ·I· of aprACP as auxiliary operators.)
By convention, prefixing (a·) binds strongest, then comes <-+, then + and finally Il·
The behaviour of aprACPE-terms is described in Table 2. Some of the SOS rules have
negative premises, so there is a question of well-definedness. However, the rules are all
in GSOS format, hence stratifiable, so that they define a proper transition relation on
the process terms [Gro90].

We have the following definition of bisimulation:

2-1 DEFINITION (Bisimulation). Two process expressions x and y are bisimilar, no
tation: x ~ y, if and only if there exists a relation R on process expressions such that

x R y and whenever x' R y1 then for every a E A if x' __!!:__. x" then y' __!!:__. y11 for some

11.e., ACP with action prefixing instead of sequential composition.

CHAPTER 4 - Exception Handling iriProcess Algebra

x .- ó 1 ..1 1 a·x (a EAU { ó, ..1})

x+y 1 xlly

x<-+y

8H(x) (HÇ A)

'RH(X) (H Ç A)

Table 1: Process terms

y11 such that x 11 R y11 and vice versa; and also if x 1 __:!:_,. x 11 tben y' __:!:_,. y11 for some

y11 and vice versa.

lt should be noted that in the above definition in case of the occurrence of a failure the
resulting processes are not required to be bisimilar. As a consequence the behaviour
of a process becomes uncontrollable after the occurrence of a failure.

Since the SOS rules are obviously well-founded, we obtain that bisimulation is a
congruence for the operators in Table 1 (Theorem 4.4 in [Gro91].)

The rules for ..1, a·x and + are as should be expected. In aprACP, the parallel opera
tor is modelled as interleaving plus synchronization, where synchronization is described
in terms of a communication function · I · E Act U { ó, ..1} x Act U { ó, ..1} -t Act U { ó, ..1}.
The encapsulation OH(·) prohibits any action in H to occur and, hence, is similar to
the CCS restriction [Mil89]. The process x<-+y resembles Hoare's xy in that y ma.yin
terrupt x anytime, hut is dissimilar w.r.t. one essential point: control may only transfer
toy through executing an initial action of y that x cannot perform. E.g., the process
a·Ó <-+ a·b·ó admits only one sequence of transitions:

a a b
(a·Ó <-+ a·b·li) --+ (ó <-+ a·b·ó) --+ b·ó --> ó .

We stress that in x <-+ y, activation of y is not subject to any other constraints. At
the end of this subsection we shall see how to enforce that exception handlers can be
activated by the occurrence of an error only. Given an action a the set of handlers of
a, i.e" those actions b such that alb E A, is denoted by af. We assume that af n lf = 0
if a '# b, i.e. a recovery action b can recover a particular type of exception actions only
(viz. the unique action a such that b E af.) The recovery operator 'RH(-) interprets the
execution of an action a E H as the occurrence of an error which raises an exception
handled by an action in af. The result of the recovery of an error generated by an
action a by a handler b fora is indicated by alb. Unrecovered actions are indicated by
..1. As an example consider the process 'R{a}(x), where x = (a·Ó <-+ b·y) Il b·z, with ba
handler of a. The occurrence of ais interpreted as an error, which can be handled by
either b·y or b·z: we have both

and

alb
'R{a}(x)---+ y Il b·z

alb
'R{a}(x)---+ (ó '-+ b·y) Il z.

Thus we see that an error generated by a process is broadcasted so that it may raise an
exception in any (hut only one) process of the system. In this way, fault hypotheses,

54 F.S. de Boer, J. Coenen, and R. Gerth

a # f; and aifJ # ó

Fail ..L ___:!:__. é

+ and Il are commutative
..L

..L·x ---> f;

Prefixing

Choice

Merge

Exception Handler

Encapsulation

Recovery

a
x--;. y

a
a·x--;. x

x z

x+y z

a
x--->z

xll Y

a
X--->Z

x <-+ y z <-+ y
a

x--->y (altH)

OH(x) ~ OH(Y)

a {J
X--->'U y--->V

al{J
xlly----->ullv

x<-+y

a
y--->z

z

b
x y y----> z (a E H, b E al-)

(a'I. H)

'RH(x) ~ 'RH(Y)

Table 2: SOS rules for aprACPE

which are used to specify relative to what fault scenarios the systems is fault resilient,
can be described as a parallel process. (see Section 3 for an example.) The scope
within which an error or exception must be caught is determined by the recovery
operator. E.g" in the process 'R{a}(a·é <-+ b·y) Il b·z, the error a can only be caught by
the handler b·y. The autonomous character of an error can be best illustrated by the
following example: consider the process x = a·Ó + (a·Ó <-+ b·y). Then

..L
'R{a}(x) ---> 8

is a possible transition because the error generated by the left summand cannot be
recovered. So, once an error occurs other alternatives are disregarded.

An exception handler that is activated only if an error occurs can now be modelled
as

8{b} o 'R{a}(p <-+ b·q) ,

with b E <lf (alb # b). Thus we model exception handling analogously to the ACP
treatment of concurrency: first, freely generate all potentially possible executions and
then restrict this set to the actual ones.

2.2 The Axiom System

The axiomatization is an extension of the usual axiomatization of aprACP which con
sists of all the axioms of Table 4 and Table 3 hut for the axioms concerning ..L: ..L ·x = ..L

CHAPTER 4 - Exception llo.,r1:4.füi.01g-'i=n~P~roc=e=ss~A=lg~e~bra~-----------~5~5

and al.L = .L.

x+y y+x

(x+y)+z = x + (y + z)

x+x = x

x+ê x

ê·x ê

.L·x .L

Table 3: aprBPA6,.L axiomatization

x llY = xll_y + yll_ x + xly

(a·x) IL y = a-(x Il y)

(x+y)ll_z xll_z + yll_z

a·xl,B·y = {al,B}·(x Il y)

(x +y)lz xlz+ylz

xl(y+z) xly+xlz

al,B .Bla

al(.817) (alf1)h

alê = ê

al.L = .L Cl'. =F ê

8H(a·x) = ê aEH

OH(a·x) a·8H(x) arf.H

ÖH(X +y) aH(x) + aH(Y)

Table 4: Merge and encapsulation

Tables 5 and 6 extend these axioms. The combined set of equations is also denoted
as aprACPe. The way · <--+ • is axiomatized is analogous to that of the merge. We
introduce auxiliary operators that force the left (right) process to move first, thus
allowing choices to be resolved. Two auxiliary operators are needed here because · <--+ •

56 F.S. de Boer, J. Coenen, and R. Gerth

is not commutative. As an example, consider the following derivation (a :/= b):

(a·li <-t b·y) <-t b·z

(a·li tt--> b·y + a·li ._ b·y) <-t b·z

= (a(li <-t b·y) + (a·Ó + 6) ._ b·y) <-t b·z

(a(6......, b·y + /j ._ b·y) + 6 ._ b·y) <-t b·z

= (a(li + b·y) + b·y) <-t b·z

(a·b·y + b·y) <-t b·z

(a·b·y + b·y)......, b·z + (a·b·y + b·y) ._ b·z

(a·b·y tt--> b·z + b·y......, b·z) + (a·b·y + b·y) ._ b·z

(a(b·y <-t b·z) + b·(y <-t b·z)) + 6

a(b·y......, b·z + b·y ._ b·z) + b-(y <-t b·z}

= a-(b(y <-t b·z) + 6) + b(y <-+ b·z)

a·b(y <-t b·z) + b(y <-t b·z)

The left summand of the conclusion of this derivation describes the situation that after
a the handler b·y is activated, whereas the right summand descrihes the immediate
activation of the handler b·y. Note that the handler b·z can only be activated after b
is executed.

X<-t y xtt-->y+x'-+>y

(x + y)......, z x, z + y, z

a·x tt--> z a·(x <-+ z)
/j, x 6

.l......, x .l

X'-+> (y+z) (x'-+>y)+(x'-+>z)

(a·x + y) ._ f3·z 6 a=f3

(a·x + y) ._ f3·z = y'-+> f3·z (X =!= fJ
Ó'-»X = x

Table 5: Exception handler

The recovery operator resembles the state operator [BW90]. After ha.ving seen
an a E H action, the operator changes its behavior: the operator 'R'f; searches for a
handler fora, which then is transformed into alb, in case such a handler cannot be
found .l is delivered.

2.3 Soundness

To prove soundness of the axiom system we define a model for the language which
associates with each process a labelled transition system. A labelled transition system
is a triple (S, A,---+) consisting of a set of states S, a set of labels A, and a transition

relation ---+ Ç S x A x S. We will use a representation of transition systems in non

well-founded set theory ([Acz88].) The techniques underlying the model construction

CHAPTER 4 - Exce'1!_tion Handling_ in Process Alflebm

Rn(a·x)

RH(a·x)

RH(x+y)

R'k(b)

R'H(b·x)

R'H(a·x)

R'ff(..L + x)

RH(b·x+y)

RH(b·x + c·y + z)

Left Handler

Right Handler

Handler-Search

a·RH(x) art H

R'1(x) aEH

'RH(x) + 'RH(Y)

..L

(alb)·RH(x) b E of

= ..L a (/of

..L +RH(x)

= R'k(y) b rt of
(alb)·R'fr(x) + RH(c·y + z) b,c E of

Table 6: Recovery

a
x--+y

a x.,__,z--+y<-+z
a a

y--+z x....::::;.
a x.__...y--+z

b
x--+ y (b E of)

alb
'RÏI(x)--+ 'RH(Y)

x 4 {VbE of)
..L

'RÏI(x)--+b

Table 7: SOS rules for the auxiliary operators

•

are taken from [Rut92]. One of the advantages of this new approach is that the model
is defined directly in terms of the SOS. Given that the SOS is well-founded and in
GSOS format so that bisimulation is a congruence, we then can prove soundness of
the axioms without having to define explicitly the semantic operators corresponding
to the operators of the language.

First observe that we can associate SOS rules to the auxiliary operators that were
used; see Table 7. These rules, too, are in GSOS format and are well-founded. In other
words, bisimulation is a congruence for all operators, including the auxiliary ones.

2-2 DEFINITJON. Let P be the Jargest class satisfying
P = P(AJ_ x P).

(Here AJ_ =AU {..L}.)

Formally, P is obtained as the largest fixed-point of the class operator <[> that
assigns to every class X the class P(AJ_ x X), i.e., the class of all subsets of AJ_ x X
(see [Rut92].)

2-3 DEFINITION. Let M E aprACPE -+ P be def:ined as foilows:

M(x) = {(a,M(y)) 1 x y}

57

58 F.S. de Boer, J. Coenen, and R. Gerth

This recursive definition can be justified by an application of the solution lemma
according to which systems of equations of a certain class have a unique solution in
non-well-founded set theory [Acz88]. We have the following theorem:

2-4 THEOREM. For any processes x and y we have
x ~ y {::} M(x) = M(y).

For a proof of this theorem we refer to [Rut92]. Since we know that ~ is a con
gruence, it suffices for proving soundness to show that for any axiom x = y we have
M(x) = M(y).

2-5 THEOREM (Soundness). For any two processes x and y
aprACPE 1- x = y implies x ~ y

As explained above we need now only to inspect the individual equations. We treat
the following case: x <-+ y = x «---> y + x '---* y.

M(x <-+ y)
a

{(a,M(z)) 1 x<-+y---+z}
a a a

{ (a, M(x' <-+ y)) 1 x ---+ x'} U { (a, M(y')) 1 x __:::;..., y ---+ y'}

M(x «---> y) U M(x '---* y)

M(x «---> y + x '---* y)

Finally we note that every guarded recursive (process) equation has a unique solu
tion in P (see [Rut92].) For example, the equation x = a·x is interpreted in non-well
founded set theory as x = {(a,x)}. Let 7r(x) be the unique solution of x. Since Pis
the largest class satisfying the equation used for its definition we have that 7r(x) E P.

2.4 Completeness

We first prove an elimination lemma. Let, aprBPA6,.L be the axiom system of Table 3
for basic processes, i.e., processes formulated in the signature { 8·, a·, ..l·, · + · 1 a E A}.

2-6 LEMMA (Elimination). For any x E aprACPE there is a basic process y such that
aprACPE 1- x = y.

Using the axioms we can eliminate all the operators but prefixing and choice starting
from the innermost one and "working our way up".

The completeness then follows from the completeness of aprBPA6 .L (which is a trivial
extension of the completeness theorem for aprBPA6) and the above ~oundness theorem:
let x ~ y, according to the above lemma there exists basic processes x' and y' such
that aprACPE 1- x = x' and aprACPE 1- y = y'. By the soundness theorem we have
that x ~ x' and y ~ y', so x' ~ y'. From the completeness of aprBPA6 .L it then follows
that aprBPA6,.L 1- x' = y', and thus aprACPE 1- x = y. '

3 A distributed fault-tolerant system

In order to achieve a higher degree of reliability, a fault-tolerant system must exploit
some form of redundancy. In the example below, which is very much inspired by
Peleska's fault-tolerant system [Pel91], a system P is duplicated and embedded in

ÜHAPTER 4 - Exception Handling in Process Algebra

a protocol that ensures correct behaviour despite the presence of fäults. We have
modified Peleska's original system in order to preserve correctness under a larger class
of fault scenario's. Nevertheless we will refer to this system as Peleska's system.

In this section each exception can be recovered by one action only, i.e. lail = 1 for
all a E A. Therefore, in this section we simply write ai instead of the unique action
b E ai that recovers at, for all at E a.

Peleska's system is built around two duplicates P1 and P2 of the basic system P
in table 8. The basic system inputs a value x on channel a and then computes the
value <,o(x), which is output on channel b. It is assumed that all values are within a
ûnite data domain D, and that <p : D --+ D is a function on D. Any system that

E a(x)·b(<,o(x})·P 1

IDED

Table 8: Basic system

satisfies the equation of the basic system, can be systematically transformed into a
more resilient system T that is weakly bisimilar with P; i.e., a system that is bisimilar
if we abstract from internal actions. This implies that for many applications one may
simply replace P by system T.

The transforined system T consists of six components RPi, RP2, Qi, Q2, RRi,
and RR2 (see Figure 1.) Components RP1 and RP2 are restartable (see e.g. [Pra84,

h

RP1

a Q2 b

. . ·-------·-·-------·········------------------------------·------··--·-----------·

Figure 1: Fa.uit-tolerant system T

Pra87, HH87].) A restartable system can be defined with the exception handler of
aprACPE. For example, in Table 9 a restartable version RP of the basic system P

59

60 F.S. de Boer, J. C~rien, and R. Gerth

Table 9: A restartable system

is defined. The restartable system RP behaves like the basic system P, until the
exception y is raised after which it is restarted. Components RP1 and RP2 are defined
slightly different because they operate in a master-slave configuration. Initially RP1
is the active master until a fault is detected in P1 (signalled by exception zit-_) Upon
detection of the fault RP1 is de-activated and RP2 takes over, thereby switching the röle
of master and slave. If a fault is detected in P2 (signalled by exception z2't) process RPi
takes over again. As a matter of fact this is an example of a dynamic redundant
system in which RPi and RP2 alternately function as hot-standby components. The
philosophy of such a system is that if faults don't occur too frequently - i.e. the
Mean Time Between Failures (MTBF) is sufficiently larger than the Mean Time To
Repair (MTTR) - the de-activated faulty component can be replaced while the other
duplicate is operational.

To ensure that no data will be lost if the currently active component P; (i E {1, 2})
crashes, the stand-by component should receive a copy of the input data whenever the
active component receives an input. Because the stand-by component is not active this
might result in a deadlock. For this reason each RP; is connected toa component RR;,.
RR;, is a restartable component with a care process R;,. Processes R;, simultaneously
accept the input data and then offer it to their corresponding component RP;. Be
cause RP; may not be active, process RR;, might deadlock. For this reason the other
process R; - which is gnaranteed to succeed because only one of the components RP;
can be de-activated at the time sends a reset signal (!or g) after it has forwarded
the result obtained from RP;. Component RR;, restarts R;, when the exception han
dler rf is activated. The exception handler rf is synchronized with the exception
handler pi', and therefore triggered by exception z;'t. If P; crashes after accepting an
input of RR;,, but before resetting the other component RRj, it should be willing to
accept a reset signal before restarting in order to avoid deadlock.

There is still one problem to be resolved. In case a component P; crashes just
after RR;, bas forwarded the result, hut before RR;, has sent the reset signal to the
other component RRj, RP; becomes active and RR; will forward its output also. To
avoid such duplicate outputs an additional layer consisting of components Q1 and Q2
is included. Components Q1 and Q2 execute an alternating-bit protocol. Process Q1
receives its inputs from the input channel a of the system T. U pon receipt of a messa.ge,
it adds an extra bit to the message and forwards it to bath components RR1 and RR2 •

A component RR;, removes the additional bit before passing the messa.ge to RP;, hut
re-appends it again before forwarding the output messages from RPi. Component Q2

waits for a message of one of the components R;,. Upon receipt of a message the
extra bit is inspected and removed. If the extra bit has the expected value then Q2

outputs the message, to channel b of T and sends a signal h to Q1. If the extra bit
does not have the expected value then the received message is simply discarded. The
signal h, which is not present in Peleska's original example, informs component Q1
that it may accept a new input. Peleska's original system bas a buffer capacity due
to internal communications. This results in a communication latency which allows
the transformed system T to input more than one messa.ge before giving an output
message. For this reason Peleska's original transformed system is not weakly bisimilar

CHAPTER 4 - Exception Handling in Process Algebra

with the basic system P.
The specification of the transformed system T and its components is listed in

Table 10. The synchronization function is defined in Table 11, and the encapsulation
set H is defined in Table 13.

T

RP1

RP2

Qi(n)

Q2(n)

E d1(x)-e1(\0(x))-P1
xED

E d2(x)-e2 (\O(x))-P2
xED

(pl ·Pi) <-+ Pi!.· RP1

(pil-. P2) <-+ Pl · RP2

E a(x)-c(x,n)-h·Qi(l - n)

E (b;(x,n)-b(x)-h·Q2(l - n) + b;(x, 1 - n)-Q2(n))
xED

iE{l,2}

E c1(x,n)-(d1(x)-(E e1(y)-b1(y,n)-J·R1) + g·R1)
xED yED

nE{O,l}

E c2(x,n)-(d2(x)-(E e2(y)-b2(y,n)-g·R2) + f·R2)
xED yED

nE{O,l}

R1 <-+ r1.i-(g·RR1 + RRi)

R2 <-+ rl·(f·RR2 + RR2)

Table 10: Specification of T and its components

b;(x, n)lb;(x, n) = cb;(x, n)

c(x, n)lc(x, n) =
ci(x, n)lc2(x, n) =

d;(x)ld;(x) =

e;(x)le;(x) =

cc(x, n)

c(x, n)

cd;(x)

ce;(x)

!Il = cf

gig = cg

hlh = ch

p/lp/ = rl

rllrl = zl

zllzl = z;~

i E {1,2},n E {0,1},x ED

Table 11: Synchronization function

Of course, no system can be guaranteed to function correctly in arbitrary condi
tions. Therefore we have to make some assumptions about occurrences of faults in a
fault hypothesis. It then suffices to prove correctness of a system with respect to the
fault hypothesis. In aprACPE a fault hypothesis can be modelled as a process. As
such one may think of the fault hypothesis as Cristian's adverse environment [Cri85).
To prove correctness of the system T with respect to a fault hypothesis modelled by
process FH, we have to verify the property in Table 12 (==" denotes weak bisimulation

61

62 F.S. de Boer, J. Coenen, and R. Gerth

1'[0 'R-J(T Il F Hi)

Table 12: Proof obligation

and r1 renames the action in I as r.) The set I of internal moves and the set J of
actions that must be recovered are defined in Table 13. In order to prove the property
in Table 12 we need additional axioms for weak bisimulation and hiding. These axioms
are included in Table 14 and their justification can be found in e.g. [BW90]. Note that
aprACPE allows P and RJ(T Il F H) to be reduced to aprBPA6,.L -terms and the axioms
in Table 14 suffice for weak bisimulation on aprBPA6,.L.

H {b;(x, n), c(x, n), Ci(x, n), d;(x), e;(x), f, g, h,p/, r/}

I { cb;(x, n), cc(x, n), cd;(x), ce;(x), cf, cg, ch, z;-U-}

J {zn

i E {1,2},n E {0,1},x ED

Table 13: Encapsulation, hide, and recovery set

a·T·X a·x

T·X + X T·X

a·(r·x + y) a·(r·x + y) + a·x

r1(6) 6

r1(..L) ..l

r1(a·x) r·rr(x) aEl

r1(a·x) a·rr(x) a <t I

r1(x + y) TJ(x) + r1(y)

Table 14: Axioms for weak bisimulation and hiding

Peleska's system is weakly bisimilar with the basic system P for the trivia! fault
hypothesis 6, which means that the normal bebaviour of T satisfies the property in
Table 12. Peleska's original system ([Pel91]) can tolerate a single failure of one of
its basic components P1 or P2, which is expressed by the fault hypothesis FH =
z1t ·6 + z2t ·6. The system we present can tolerate any number of faults of P1 and P2
provided the interval between consecutive faults is large enough and faults occur in
active components only. This is modelled by synchronizing the fault hypothesis with
the feedback signal h which results in the new fault hypothesis F H1 (see Table 15.)
The corresponding proof obligation is also given in that Table (It is assumed that
chlch = cch.) A formal verification of the above protocol is provided in [Ham93]
together with a discussion of the encountered problems.

CHAPTER 4 - E:xception Handling in Process Algebm

FHi
p

= z;t·ch·FH3_; + ch·FH;

T)u{eeh} 0 'RJ 0 a{eh}(T Il FH1)

Fault hypothesis

Proof obligation

Table 15: Proof obligation for extended fault hypothesis

4 Conclusions

We have defined an exception handling primitive and recovery operator that have prop
erties that are more in line with what is found in the fault tolerance literature [Cri85];
specifically, handlers are invoked innermost out and handlers can only become active
through the occurrence of an error. We have developed an algebraic theory for these
operators based on ACP [BK84]. We choose ACP because it is well developed, uniform
theory. However, nothing stands in the way of developing a similar theory based on
CCS [Mil89] or TCSP [Hoa85]. We have used this theory to specify a generalization
of a fault resilient system of Peleska's [Pel91]. Finally, we want to note our use of
non-well founded sets [Acz88] to construct models for our axiomatization. The stan
dard method in ACP is to use the process graph model. In this model, elements are
bisimulation equivalence classes of graphs and this fact makes the process graph model
more difficult to use than the concrete model we introduce in this paper in which
bisimilar process terms map onto the same element in the model, which element is
straightforwardly determined by the SOS.

Future work includes further working out the example towards a formal proof of
weak bisimilarity and extending the theory. We need to investigate more closely the
connection of our theory with others such as the one in [Pra87]. Another question
is whether a process algebra with prioritized actions (BW90] can be used to model
exception handling. We already have some preliminary results. Finally, we want to
extend our axiomatization to congruences coarser than bisimulation; specifically to
maximal trace congruence.

Acknowledgement

We would like to thank Jos Baeten for his helpful comments.

References

[Acz88] P. Aczel. Non-well-founded sets. Number 14 in CSLI Lecture Notes. 1988.

[Ada83] American National Standards Institute, Ine. The Programming Language
Ada Reference Manual. LNCS 155, Springer-Verlag 1983.

[BK84] J.A. Bergstra & J.W. Klop. Process Algebra for Synchronous Communica
tion. Information and Control 60:109-137, 1984.

(BW90] J.C.M. Baeten & W.P. Weij1and. Process Algebra. Cambridge Tracts in
Theoretica! Computer Science, Vol 18, 1990.

[Cri85J F. Cristian. A Rigorous Approa·b ~o Fault-Tolerant Programming. IEEE
Transactions on Software Engineerin~ 11:23--31, 1985.

63

64 F.S. de Boer, J. Coenen, and R. Gerth

[Di:x:83] T.I. Dix. Exceptions and Interrupts in CSP. Science of Computer Program
ming 3:189-204, 1983.

[Gro90] J.F. Groote. '.Iransition System Specifications with Negative Premises.
Proc. CONCUR '90, LNCS 443 pp. 332-341, 1990.

[Gro91] J.F. Groote Process Algebra and Structured Operational Semantics. PhD
Thesis University of Amsterdam, 1991.

[Ham93] A.M.R. Hamers. The Proof of an Algebraic Specification of a Distributed
Fault-Tolerant System. Master's Thesis, Dept. of Real-Time Systems, Fac
ulty of Math. and Computer Science, University of Nijmegen, 1993.

[Hoa85] C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall 1985.

[HH87] He Jifeng & C.A.R. Hoare. Algebraic Specification and Proof of a Dfs...
tributed Recovery Algorithm. Distributed Computing 2:1-12, 1987.

[LS90] K. Lodaya & R.K. Shyamasundar. Proof Theory for Exception Handling
in a Tasking Environment. Acta Informatica 28:7-42, 1990.

[Mil89] R. Milner. Communication and Concurrency. Prentice-Hall 1989.

[Pel91] J. Peleska. Design and Verilication of Fault Tolerant Systems with CSP.
Distributed Computing 5:95-106, 1991.

[Pra84] K.V.S. Prasad. Specification and Proof of a Simple Fault Tolerant System
in GCS. Interna.l Report CSR-1178-84, Department of Computer Science,
University of Edinburgh, 1984.

[Pra87] K.V.S. Prasad. Combinators and Bisimulation Proofs for Restartable
Systems. PhD Thesis University of Edinburgh, 1987.

[Rut92] J.J.M.M. Rutten. Processes as terms: non-well-founded models for bisimu
lation. Mathematical Structures in Computer Science 2:257-275, 1992.

Chapter 5

Top-down Development of
Layered Fault Tolerant Systems
and lts Problems - a Deontic
Perspective

This chapter is a revised vers.ion of:

J. COENEN.

Top-down Development of Layered Fault Tolerant Systems and lts Problems
a Deontic Perspective.

Annals of Mathematics and Artificial Intelligence 9, pp. 133-150,
Special Issue on The First Intern. Workshop on Deontic Logic in Computer Science
(R. Wier.inga & J.-J.Ch. Meyer, eds.), 1993.

Top-down Development of Layered Fault
Tolerant Systems and lts Problems -
a Deontic Perspective

J. COENEN 1

Department of Mathematica and Computing Science, Eindhoven University of Technology,
P.O. Box 519, 5600 MB Eindhoven, The Netherlands.

Abstract. Although the top-down development paradigm has successfully been ap
plied to master the complexity of large systems, it has not yet been accepted as a
useful paradigm for fault tolerant system design. This is mainly due to a problem
that is sometimes referred to as the 'lazy programmers' paradox. The 'lazy program
mer' paradox was already present and solved in top-down development methods for
non-critica! systems. However, the problem has re-appeared in an even more serious
variant for critica! systems. A few 'toy' examples concerning exception handling in an
Ada-like language are used to explain and illustrate the paradox.

One possible solution to the problem is to use a specification language in which one
can express that certain behaviours of a system are preferred over others. This paper
proposes deontic logic as such a specification language. Therefore, a short and rather
informal introduction to deontic logic is included. A non-trivial example is included
to illustrate how deontic logic can be used to solve the 'lazy programmer' paradox.

Keywords: Deontic logic, Exception handling, Fault tolerance, Layered systems, Lazy
programmer paradox, System specification, Top-down development.

1Supported by NWO/SION Project 612-316-022: "Fault Tolerance: Pa.radigms, Models, Logies,
Construction."

1 Introduction

As computing systems are used more often for critical applications the impor
tance of formal design methods for fault tolerant systems becomes more apparent
(cf. [deRoever91]). Such design methods should provide not only formal specification
and verification methods, but also a design methodology which supports the structuring
of the system under development and the development process itself. Formal methods
that meet these requirements adopt the top-down development paradîgm. Top-down
development methods incorporate some refinement method which is used to gradually
transform a high level abstract specification into a low level concrete implementation.
Each transformation step creates a new layer beneath the previous generated layers
of the system, hence the name layered systems. One of the earliest descriptions of a
layered system can be found in [Dijkstra68].

To overcome the complexîty of its design, a fault tolerant system may, lîke most com
plex systems, be structured in layers. On the one hand, a layer may use the services
delivered by its lower level layer to provide a service to its upper level layer. On
the other hand, a layer may receive an exception from its lower level layer or raise
an exception to signal its upper layer that it cannot provide a requested service. At
each level, the system tries to handle the exceptions raised by the layer below. If the
current layer is unable to cope with the current situation it may decide to raise an
exception itself. In this way a malfunctioning of the underlying execution mechanism
may gradually propagate to a layer which can deal with it in a satisfactory manner.
A layer can therefore be regarded as an ideal fault tolerant component in the sense
of Anderson and Lee [Anderson90], see figure 1. The are directed from 'exceptional

services ezceptions

normal behaviour exceptional behaviour

services exceptions

Figure 1: Layer viewed as an ideal fault tolerant component

behaviour' to 'normal behaviour' represents the case that the current layer handles an
exception raised by a lower level (or the current level). The are directed from 'normal
behaviour' to 'exceptional behaviour' represents the case that an exception is raised by
a lower level (or the current level). Notice, that in order to achieve a layered structure
as described above, it must be possible to program a deliberately raised exception.

Any formal method that supports top-down development of layered fault tolerant sys
tems has to solve the following two problems. Firstly, the method must provide a
forma! language to reason over faults and their effects. For example, Hoare's proof

CHAPTER 5 - Top-down Development of Layered Fault Tolemnt Systems

system as it was presented in [Hoare69) can not deal with fault tolerance, because
in this proof system a program is considered correct, if it behaves according to its
specification under the assumption of a faultless execution mechanism.

In [Cristian85] Cristian extended Hoare's logic to deal with exceptions. However,
in Cristian's formalism it is not possible to distinguish between deliberately raised
exceptions and exceptions due to a physical fault in the executing hardware. Now,
consider a specification of a program that computes the factorial N! for input N. If
an intermedia.te result of the computation causes an integer overflow, signa.lled by the
exception ov/, it is specified tha.t the result is zero. A lazy programmer might be
tempted to write a program that outputs zero immediately and raises the exception
ov/ deliberately. This is of course not an acceptable implementation - the exception
should only be raised due to an overflow in the underlying hardware - which can be
avoided by explicitly stating that the programmer is not allowed to raise the exception
ov/. This works well for this particular example, hut it was already mentioned that
it should be allowed to raise certain exceptions deliberately, e.g. to prevent undefined
results. Because it is in general not possible to predict when such exceptions may
occur, the lazy programmer cannot be prohibited from abusing his privilege to raise
exceptions deliberately. This is a particular case of the second problem that has to be
solved in any top-down development method for fault tolerant programs. The more
genera! case of this problem is referred to as the 'lazy programmer' paradox, and will
be discussed in more detail in section 4.

This paper is a fust step towards a deontic specification language for fault tolerant
systems. It does not include a semantic model nor does it include a complete proof
theory. It merely discusses and illustrates the problems encountered when specifying
the operations of fault tolerant system when adapting a top-down development strat
egy. This is unlike the work of [Meyer88] where (monadic) deontic logic is reduced
to dynamic logic thereby obtaining a logic suitable for specifying the behaviour of
programs without considering faults.

The merits of a dyadic deontic specification language is that it is possible to distinguish
the behaviour in a perfect world (i.e. a computation without faults) from the (preferred)
one in a less than perfect world. For example, if a program should satisfy a property '{J,

hut due to some fault it does not we can specify a property 'Ij; it should satisfy instead.
Using dyadic deontic logic this can be specified as follows.

Ocp /\ (•qJ)O'l/J •

The conjunct OqJ is used instead of simply cp, because cp is not always satisfied hut it
ought to be if possible. The second conjunct specifies that if (/) is not satisfied then 'l/J
ought to be satisfied instead. If one would replace the second conjunct by an implica
tion (-.ip) --+ 1f; the program that satisfies ...,(/) /\ '!/; would be a correct implementation,
w hich was not intended. Replacing (...,'{J) O'I/; by 0(''P --+ 'Ij;) or ''P --+ O'I/; causes similar
problems (see [Follesdal7l]). For example, a specification cp fora system embedded in a
perfect environment leaves no room for reasoning over the sa.me system in a malicious
environment that prohibits the system from satisfying qJ, because '{J--+ (''P--+ Ofalse)
forces the system to do the impossible in case it does not satisfy cp.

69

The remainder of this paper is organized as follows. In section 2, a programming
language is defined and an intuitive explanation of the language constructs is given.
In this section three small programs are explained. These programs are also used in
section 3 to motivate the introduction, and explain the meaning of, dyadic modalities in
the deontic logic specification language. Section 3 introduces deontic logic. The 'lazy
programmer' paradox is discussed in somewhat more detail in section 4. Section 5
includes an informal description of a non-trivia! fault tolerant system. The a.pplication
of deontic logic as a specification language to solve the 'la.zy programmer' paradox is
illustra.ted in section 6 by specifying part of the example outlined in section 5. Finally,
section 7 contains a compa.rison with rela.ted work and some suggestions for future
work.

2 Program N otation

In this section a small subset of an Ada.-like 'programming' language [Ada.83], called
'Prog is defined. This programming language is also used in section 5 to describe some
of operations used in the example. The main feature of the programming la.nguage
'Prog is that it provides a notation for exception ha.ndling.

Given the following basic sets:

• Var, the set of program va.ria.bles, with typical element x;

• e xc , the set of exceptions, with typical element exc;

• &xpr, the set of expressions with occurrences of program variables, with typical
element exp;

• Bexp , the set of boolean expressions with occurrences of program varia.bles, with
typical element b;

the syntactic class 'Prog of programs, with typical element S, is defined by

S ::= null I x := exp 1 raise exc 1 begin 8end1 S1; 82

1 if b then S 61 if b then 81 else S2 6 I while bdo 8

1 begin So exception when exc1 =} 81 ... when exck =} Sk end

The meaning of the programming language constructs in 'Prog is as follows.

• The empty statement null bas no effect other than skippi~ to the next state
ment.

• The assignment statement x := exp assigns the value of the expression exp to the
program varia.bie x.

• The raise statement raise exc raises the exception exc. As a side effect it causes
the execution of the program to continue at the innermost enclosing exception
handler, that handles exc exceptions. If such enclosing exception handler does
not exist, program execution is aborted.

CHAPTI!:IL~ - Top-down J)evelopmentof Layered Fault Tolemnt Systems

• The simple block statement begin S end groups the statements in S in a single
block. It may be regarded as a pair of parentheses.

• 81; 82 is the sequentia! composition of the programs B1 and B2. First B1 is
executed, and if B1 terminates successfully, then B2 is executed.

• In case of the alternative statement if b then 81 else B2 fi, the subprogram B1
is executed if the boolean guard b is true, and B2 is executed otherwise. The
construct if b then B fi is an abbreviation of if b then B else null fi.

• The iterative statement while b do B is skipped if b is initially false. If b initially
is true, then execution of S is repeated until b becomes false.

• begin Bo exception when exci '* B1 ••• when exc" '* B" end is executed as
follows. The program starts with the execution of So. If during the execution of
Bo an exception exc; (i 1, ... , k) is raised, then the execution of So is aborted
and the program resumes with the execution of Si. If an exception other than
exc; (i = 1, ... , k) is raised, then execution of Bo is aborted, and the exception is
passed to the next enclosing block. If there isn't an enclosing block the program
is aborted. If Bo terminates without raising an exception, then the program
terminates normally.

For example, the programs listed in figure 2 are executed as follows. Program a a.ssigns
the factorial of N to variable x unless an ov/ exception occurs - meaning that an
overflow has been detected -in which case x is set to zero. Program b sets x to zero
and then raises ov/ deliberately. Program c assigns N! to x if initially N is less or
equal than K, and sets x to zero in case Nis larger than K.

{a) begin x N! exception when ov/:::} x := 0 end

{b) begin x : = 0 ; raise ov/ end

(c) begin if N :::; K then x := N! else x := 0 fi end

Figure 2: Running examples

3 Deontic Logic

The specification language combines deontic logic with first-order predicate logic, and
is inspired by the logic used in [vEck82]. A systematic introduction to deontic logic
in genera} is given in [Aqvist83]. The basic modality of the deontic logic used in this
paper is the dyadic obligation '{JÜ'l/J. Amore philosophical motivation of dyadic deontic
logic -can be found in [vWright71] and [vWright81]. The first-order predicates in the
specification language are used to quantify over logical varia.bles only.

Assume that the following sets are defined:

71

• t:xpr' , the extended set of expressions over program variables, which may be
decorated with a prime. Thus t:xpr C t:xpr'.

• Cvar , the set of logical variables, such that Cvar n t:xpr 0. Logica! variables
never have primes attached to them.

A primed program variable x1 refers to the value of the variable x before executing a
program, whereas an unprimed variable x refers to the value of x after the execution
of the program. The use of primed and unprimed variables in expressions captures the
concept of initial and final states syntactically.

Given the sets above, the syntax of assertions <p, 1f; E Assn is defined by (exp0 , exp1 E
&xpr', exc E &xc, and g E Cvar)

cp ::= true 1 expo= exp1 1expo5 exp1 1 ó(exc) l •'P 1<p--+1f; l 39 (cp) l ipOV;

Notice that quantification is only allowed over logica! variables. Besides the usual
abbreviations for predicate logic (such as V9 (<p) for •39 (.ip)), the following derived
operators are defined

Ocp ~ trueO<p
cpF?f; .é. cpO..,?f;

cpP'lj; ~ ..,(cpQ-,?f;)
F cp ~ trueF <p
P<p .ö. trueP<p

The meaning of ó(exc) is that exception exc was raised. The notation ó is used to
stress the difference with variables that refer to states instead of events. The meaning
of <pO 'Ijl is that in all <p-perfect wodds (wodds that are perfect E

case) 'Ijl is true. Hence, O<p expresses that <pis the case in all perfect worlds. Similarly,
<pP?f; and cpF'lj; express that in all cp-perfect worlds 'Ij; is respectively permitted and
forbidden.

A formula with primed and unprimed variables specifies a relation between the initia!
and final state of a program. Hence, it can not distinguish between the individual
actions of a program. The primed varia.bles provide the specification language with
the dynamic aspect needed to reason about programs. For instance x = x1 + 1 specifies
an action that increases the value of program variable x by one.

Below two standard derivation rules of deontic logic are given (see e.g. [Aqvist83]).

(Modus Ponens)
f- ipO't/J

(Necessitation)

The axioms below are more typical for the application discussed in the introduction.
The first two are still quite common axioms, that should cause no problems. The third
axiom is more typical for the logic. It expresses that all relative perfect worlds are
perfect alternatives to themselves. Or more loosely, there is only one perfect alternative

CHAPTER 5 - Top-down Development of~a,yered Fault Tolerant$11ste11!!

for each world. It is motivated by the fact that the set of possible executions of a
program does not change unless new faults are introduced.

1- i.pO('if; x) (i.pO'if; t.pOx)
1- t.pO('if; /\ x) (ipO'lf; /\ i.pOx)
1- ipO (01/;) -+ if'01/J

This is of course not intended to be a complete axiomatization. The axiomatization of
the logic itself is part of ongoing research in which there are still a lot of questions to
be settled.

The most characteristic difference between the deontic logic defined above and the
ones that can be found in the literature about system specification is that the above
logic includes dyadic modalities. For example, Khosla [Khosla88] uses the monadic
modalities Oa respectively Pa to express that the action a must respectively may be
performed. Thus the deontic aspect of the specification language in [Khosla88] is used
only to reason over the freedom of choice. In particular, a predicate Oa is defined such
that a is the only action that is obliged. Hence the formula Oa /\ 0/3 is equivalent
to false per definition if a =fi f3. When specifying fault tolerant systems with monadic
modalities this causes a problem, because in a less than perfect world one can get
several, sometimes conflicting, duties. In the more general context of deontic logic this
is known as the Chisholm paradox (see [Aqvist67]).

Consider the following specification for a program that tries to anticipate a possible
division by zero, when computing 1/x for input x.

O(x1 # O) /\ O(x1 =/= 0 -+ y = 1/x1
) /\ (x1 = 0-+ O(y O)) (1)

This specification expresses that the input x is expected not to be zero, and it should be
the case that if input x is not zero then y is 1 / x, and if x is zero then y ought to be zero.
This seemingly correct specification is inconsistent in case the input x is zero. Using the
above axioms and proof rules only it is possible to derive O(y = 1/x') from O(x1 =fi 0)
and O(x' =fi 0-+ y = 1/x1

), and O(y = 0) from x' = 0 and (x1 = 0-+ O(y = 0)). The
problem is that the monadic modalities refer to perfect worlds only, which may lead to
a conflict of duties once one finds oneself in a less than perfect world. The behaviour
of a fault tolerant system in · less than perfect conditions should be specified, as the
predicate 'fault tolerant' suggests.

Of course one might argue that if in the above specification O(x' =fi 0 -+ y = 1/x') is
replaced by x1 =fi 0 -+ O(y = 1/x') or (x' 0 -+ O(y = 0)) by O(x' = 0 -+ y = 0)
then there is no problem if x is initially zero. The philosophical objections to do so
(see e.g. [Follesdal71]) might be irrelevant to system specifications. The specification
of fault tolerant systems is a difficult task even if one does not have to bother with
such subtle paradoxes. Therefore, it is preferable to use a specification language in
which such paradoxes can easily be avoided.

Dyadic deontk logic allows one to make assertions about less than perfect worlds. For
example, the last conjunct of (1) may be replaced by (x1 = O)O(y = 0), which does not

73

result in an inconsistency if x1 = 0 because there is no detachment rule which allows
one to derive O(y = 0) from x' = 0 and (x' = O)O(y = 0). Notice that in the intuitive
meaning of r.pO,,P it is implicit that ,,P ought to be established, but r.p is 'provided' for
and not to be established. This observation is the key to the solution of the 'lazy
programmer' paradox in section 4.

In this paper the use of dyadic modalities is restricted to the special case in which
only exceptions occur on the left side of the modality, i.e. dyadic modalities occur in
specifications only according to the format ó(exc)O,,P. However, it is permitted to have
predicates on the left side also. This is illustrated in the next section.

A standard technique to obtain a higher degree of reliability is the duplication of system
components. For example, one may use two different algorithms to compute a certain
value and compare the outcomes, say x and y, of these computations. In case x # y
at least one of the computations resulted in an error, and in case x = y either both
computations were correct or both computations yielded the same erroneous result.
If one assumes that the probability of the latter case occurring is zero, the system
sketched above is fault tolerant. A schematic drawing of a component that compares
the outputs x and y is pictured in figure 3.

:=ÇJ--·
alarm

Figure 3: Comparator

The comparator may be specified by

O(z = x /\ z = y /\-,alarm)/\ (x # y)O(alarm),

According to its specification, the comparator ought to set z equal to x and y, and set
alarm to false . In case x # y - and hence, it is not possible to set z equal to both x
and y - alarm must be set to true .

4 The 'Lazy Programmer' Paradox

Lazy programmers were already a problem in Hoare's logic, because it is a partial
correctness formalism which means that it is not possible to specify that a program
must terminate. Hence, each divergent program is a correct implementation of every
specification. This particular version of the 'lazy programmer' paradox is solved in
total correctness formalisms in which one can specify that a program must terminate.

The particular formulation of the 'lazy programmer' paradox for fault tolerance has a

CHAPTER 5 - Top-down Development of Layered Fault Tolerant Systems

striking similarity with the 'Good Samaritan' paradox 2 (see [Aqvist67]). A program
that is designed to tolerate only faults intentionally caused by that program itself,
hardly deserves the predicate 'fault tolerant', just as little as a thief who salvages his
own victims deserves to be called a Good Samaritan.

The programs in figure 2 serve to illustrate the previous discussion. Consider the
following naive specification fora program that is to compute the factorial of N.

O((•ó(ovf) - x N!) A (5(ovf) - x = 0)). (2)

The specifier has anticipated that, due to hardware limitations, it is possible that
during the computation of N! an overflow, sigualled by exception ovf, occurs. If the
overflow indeed occurs then x should be set to zero, otherwise x ought to be equal to
Nl. However, nothing prevents the lazy programmer from simulating a.n overflow as
in program b of figure 2. Because program b ought to raise the exception ovf and set
x to zero it satisfies

O(x = 0 A 5(ovf)). (3)

Unfortunately (3) specifies a correct implementation of (2), which can förmally be
proved as föllows.

1. 1- (x = 0 /\ li(ovf)) - ((•li(ovf) - x = N!) /\ (li(ovf) - x = 0))
2. 1- O((x = 01\ó(ovf))- ((•li(ovf)-+ x = Nl) /\ (6(ovf)- x 0)))
3. 1- O((x = 0 /\ li(ovf)) - ((•ó(ovf) - x = NI) /\ (li(ovf) - x = 0)))

-+ (O(x = 0A5(ovf))-+ O((•li{ovf)-+ x = N!) /\ {li(ovf)--+ x = 0)))
4. 1- O(x = 0 /\ 5(ovf)}--+ 0((•6(ovf)--+ x = N!) /\ (6(ovf)-+ x 0))

The individual steps of the above derivation are justified as follows:
1. is a valid predicate logic formula;
2. is obtained by the application of the Necessitation rule to 1;
3. is an instance of the first axiom listed on page 73;
4. is obtained by applying Modus Ponens to 2 and 3.

Using dyadic modalities one can specify program a as follows.

O(x = N!) /\ 5(ovf)O(x 0). (4)

This specification expresses that is preferred to set x equal to N!, and if this is not
possible due to an overflow x ought to be zero. Provided that the axiomatization of
the deontic logic does not allow one to derive (4) from (3), it is not possible to prove
that program bis a correct implementation of (4). As a matter of fact, program b can
be excluded more explicitly by adding the conjunct Fli(ovf) to (4). Hence, the lazy
programmer bas to think of other means to avoid working.

2The Good Samaritan ought to help a man who has heen rohhed. Thus there ought to he man
who has heen rohhed.

75

76 J. Coenen

Basically, the 'lazy programmer' paradox is solved by making the specification language
more expressive. This imposes some requirements on the semantics and axiomatization
of the programming language to avoid the situation in which an intuitively correct pro
gram does not satisfy a given specification. For example, suppose that the maximum
number, say Maxlnt, that can be computed without causing an overflow is known. If
Kis chosen such that K! S Maxlnt < (K + 1)!, then program c in figure 2 is intuitively
a correct implementation of (4). The specilication of program cis, however, as follows.

O((N $KA x = N!) V (-.NS KA x = 0)) (5)

The only way to prove that (5) specifies a correct implementation, i.e. to prove that (5)
implies (4), is by making the knowledge about the hardware limitation explicit. For
instance by including the following axioms.

1- O(N S K)

1- 0(-.N S K-+ ip)-+ 6(ovf)Oip

(6)
(7)

Axiom (6) expresses that it ought to be the case that N S K. Axiom (7) expresses
that if one is obliged to establish <p if -.N S K in a faultless world, this implies that <p

ought to be established even if an overflow occurred. The second axiom is motivated by
the knowledge that the overflow would have occurred anyway if-.N S K. Because (5)
is equivalent with

O(N S K-+ x = N!) A 0(-.N S K-+ x 0)

This can be proved as follows. Let 1/J, <pi, and 1/J2 be defined by

1/J ~ (NSKAx N!)v(-.N5KAx=O)
ip1 a N S K -+ x = N!
ip2 a -iNSK-+x=O

We give the major steps of the derivation of (8) from (5):

l-1/J, ('P1 A 'P2)
f- O('lj!....., ('P1 A <p2))
1- O'lj! O(i.p1 A 'P2)
1- 01/J....., (O<p1A0\02)

, Predicate logic.
, Necessitation.
, Axioms and Modus Ponens.
, Axioms and Modus Ponens.

Because it is easily seen that 8 implies

(O(N S K)-+ O(x = N!)) A 0(-iN 5 K-> x = 0)

(8)

we may conclude from (6) and (7) that program cis a correct implementation of (4),
provided that above assumptions hold. Thus only if the hardware limitations are such
that the axioms are justified the above reasoning holds.

CHAPTER 5 - Top-down De~ment of Layerajlf..~'IJ,lt Tolerant Systems

It is possible to think of clever variations on the programs in figure 2, e.g. the ones in
figure 4, for which the correct arguments to accept or reject them as correct implemen
tations of (4) are not so easily found. For example, program d should be rejected, hut
just including Fh(ovf) in the specification would also exclude program e which might
be acceptable. However, these problems should be solved in the semantics and the
axiomatization of the programming language. The purpose of the previous discussion
is to demonstrate that dyadic deontic logic, if provided with adequate semantics, can
be expressive enough to distinguish deliberate errors from unintentional ones.

(d) begin x N!; raise ov/ exception when ov/=> x := 0 end

(e) begin
ifN$.K

then x := N!
else raise ov/

ft
exception

when ov/=> x := 0
end

Figure 4: The lazy programmer strikes baci?'

5 A Stable Storage

An important concept in fault tolerant computing is the atomicity of actions. An
action is atomie if it is either executed successfully or not executed at all. Atomie
actions can be implemented by creating a checkpoint before the action is executed,
and if an error is detected by recovering the original state from this checkpoint. The
checkpoint should be recorded on a reliable medium, called a stable storage. This
section contains a summary of some aspects of a particular stable storage and focuses
on the implementation of the read operation. A more complete description of the
stable storage, described below is given in [Schepers91].

The stable storage consists of tbree layers. At the lowest level, the stable storage is
implemented by a number of physical disks. These physical disks, with the appropriate
operations on them, are grouped in the so called 'physical disk' layer. Each physical
disk has a corresponding logical disk, that abstracts from the physical location of sec
tors on the physical disk, by maintaining a flexible mapping between logical addresses
and physical sector numbers. The logica] disks are grouped together in the 'logica]
disk' layer. The layer at the top level is called the 'reliable disk' layer. The reliable
disk layer provides a single stable storage, which is implemented by several logica!
disks.

is it a too diligent programmer?

11

It is assumed that the only relevant errors are caused by damaged sectors of the
physical disks. In the remainder of this section the layers are examined in somewhat
more detail.

5.1 Reliable Disk Layer

The reliable disk layer provides a read_sector operation, with the intention that the
contents of the sector with logical address address is retrieved in the variable sector.
For this purpose, the reliable disk layer records which logical disks are still operational,
i.e. which logica} disks have not yet caused a logicaLdisk_crash exception. The num
bers of the operational logical disks are administered in the set operationaLdisks. On
invocation of the read_sector operation, an operational logica} disk is selected on which
a read_logicaLdisk operation is performed.

The reliable disk layer must anticipate two exceptions that may be raised by the logical
disk layer. The exception logicaLsectodost indicates that this logica} disk is unable
to return the contents of the sector with logical address address. The exception logi
caLdisk_crash is raised when the logica} disk layer can no Jonger guarantee consistency
of the information stored in the logical disk. In case of a logicaLsector_lost exception,
the reliable disk layer attempts to retrieve the sector from another logical disk. The
retrieve operation will be left unspecified, hut notice that retrieving the lost sector
might include a recursive call of reatLsector.

The logicaLdisk_croAJh exception is handled simply by deleting the corresponding disk
number from the set operationaLdisks. If the reliable disk layer runs out of operational
logica} disks it raises a reliable_disk_cmsh exception. See also figure 5.

begin
success := false ;
while -isuccess do
begin

disknr := a member of operationaLdisks ;
read_logicaLdisk{ disknr, address) ;
success : == true

exception
when logicaLsector_lost =>

retrieve the lost sector
when logicatdisk_cmsh =>

end
end

operationaLdisks := operational_disks { disknr} ;
if operationaLdisks = 0

then rai.se reliable_disk_crash
ft

Figure 5: read_sector

Notice that the nondeterminism in the selection of an operational disk needs to be

CHAPTER !) - Top-down D13.yelopment of Layered Fault Tolerant System~ _____ 79

resolved. This freedom of choice may be exploited to obtain a more efficient read_sector
operation.

5.2 Logica! Disk Layer

Whereas the reliable disk layer achieves a higher degree of reliabilîty through the
redundancy of the logical disks, the logical disk layer, in turn, achieves a higher degree
of reliability through the redundancy of so called spare sectors on each logical disk. The
spare sectors are recorded in the set spare_sectors. Furthermore, the logical disk layer
abstracts from the physical location of sectors by maintaining a mapping log_to_phys
between logica! addresses and sector numbers.

begin
read_physicaLsector{log_to_phys(address))

exception
when invalid_crc =>

if spare-sectors = 0

il
end

then raise logicaLdisk_crosh
else new_sector := a member of spare_sectors ;

spare_sectors := spare_sectors - { new_sector} ;
update log_to_phys ;
raise logicaLsector-lost

Figure 6: read_logicaLdisk

The read operatîon at the logica} disk level is listed in figure 6. The logica! disk layer
simply calls the read_physicaLdisk operation with the converted address. If the physical
disk layer raises the invalid_crc exception and there are no spare sectors left, then the
logical disk layer raises a logicaLdisk_crash exception. If the invalid_crc exception is
raised and there are spare sectors, then one of the spare sectors is selected and the
mapping log_to_phys is updated, and the logicaLsector_lost exception is raised.

5.3 Physical Disk Layer

The physical disk layer achieves reliability by using information redundancy. The
contents of each logical sector is augmented with a. cydic redunda.ncy code. It is
a.ssumed that all relevant faults can be detected with this code. Or more precisely,
the probability of not detecting a relevant error is sufficiently small. This means that
faults like damaged disk drives etc. are not considered relevant in this example. The
read_physicaLsector operation is listed in figure 7.

The cyclic redundancy code is checked by the function cyc_red_check, which ma.y be
implemented by special purpose hardware.

begin
sector := physicaLdisk{sector_nr};
if -.cyc_red_check{sector)

fi
end

then raise invalid_crc

Figure 7: read_physicaLsector

6 Deontic Logic Specifications of the Read Operations

A specification of an operation of a fault tolerant system typically bas the following
format

Each '!/;; specifies how the operation of this layer should behave, provided the lower
level created the condition 'Pi· Because the upper level layer cannot interfere with the
actions of the lower level layer, the conditions 'Pi are established facts for the upper
level layer to which it is supposed to react according to '!/;;. For example, at the top
level of the stable storage the read operation may have been specified as follows.

O(sector = reliable_disk1(address')) /\ ó(reliable_disk_crash)O'ljJ ,

where '!/; is left open for the moment. Thus it is specified that the read operation ought
to assign the initia! contents of the stable storage at address address to sector. In case
a reliable_disk_crash exception was raised, 1jJ ought to be established. Of course, one
might also have specified that e.g. the address or contents of the storage ought to be
left unchanged.

Because the physical disk layer is the lowest level of the stable storage and it is assumed
that cyc_red_check detects all errors, there are no faults {from lower levels) that must be
anticipated by this layer. Therefore, the specification of the read_physicaLsector oper
ation (figure 7) contains only monadic modalities. The read_physicaLsector operation
(for physical disk i) is specified by

O(sector = physicaLdis~[sectornr'])

/\0(ó(invalid_crc) -+ -,cyc_red_check(sector)) .

The first conjunct expresses that if the underlying execution mechanism functions
correctly then sector is set equal to the contents of physical disk i at location sectornr.
The second conjunct of this specification can be rewritten as

F(ó(invalid_crc) /\ cyc_red_check(sector)),

CHAPTER 5 - Top-down Development of Layered f.ault Tolerant Systems

which forbids to raise the invalid_crc exception when the sector passes the cyclic re
dundancy check. Now suppose an invalid_crc exception ought to be raised, i.e.

Oli(invalid_crc).

From the specification of the read_physicaLsector operation it follows that

0(li(invalid_crc) --> •cyc_red_check(sector)) .

This together with the following axiom instance

0(li(invalid_crc) --> •cyc_red_check(sector))

--> (Oli(invalid_crc)--> Q-,cyc_red_check(sector))

is sufficient to derive

06(invalid_crc)--> O•cyc_red_check(sector)

with modus ponens. One more application of modus ponens results in

O•cyc_red_check(sector) .

Hence, under the assumption that the physical disk functions correctly it is established
that the invalid_crc exception ought to be raised only if the sector didn't pass the cyclic
redundancy check.

Notice that ifthe second conjunct in the spedfication of read_physicaLsector is replaced
by

li(invalid_crc) --> O•cyc_red_check(sector)

then an invalid_crc exception ensures that sector didn't pass the cyclic redundancy
check regardless whether the exception was raised by read_physicaLsector operation
itself or by another operation.

The logica! disk layer must anticipate an invalid_crc exception, but is allowed to raise
a logicaLdisk_crash exception or a logicaLsedor_lost exception depending on whether
there are any spare sectors available {figure 6). The read_logicaLsector operation {for
logica! disk i) is specified by

0(sector = logical_disk'; (address')) /\

li(invalid_crc)O((li(logicaLdisk_crash) /\ spare_sectors: = 0) V

(li (logicaLsectodost) /\ spare_sectorsi # 0)) .

A single logica! disk cannot handle an invalid_crc exception by itself, but achieves
graceful degradation through the discrimination between the fatal situation in which

81

there aren't any spare sectors left, and the less harmful situation when there are
enough redundant sectors. Assuming that this layer functions correctly, it follows that
a logicaLdisk-crash exception is raised if an invalid_crc exception was detected and
initially the number of spare sectors was zero. To ensure that a logicaLdisk_crash or
logicaLsector _lost is raised only in the situation described above, the specification may
be strengthened by adding the conjunct F(8(logicaLdisk_crash) /\ 8(logicaLsectodost)),
which forbids raising these exceptions deliberately. Notice that this specification is not
complete because it does not specify that the mapping log_to_phys should be updated
before raising the logicaLsector_lost exception.

Although the reliable disk layer must handle both exceptions that may possibly be
raised by the logica! disk layer, the specification below only anticipates the occurrence
of a logicaLdisk_crash exception. Therefore also this specification is not complete. The
read_sector operation (figure 5) of the reliable disk layer is specified by

03i(i E operationaLdisks1
/\ sector = logicaLdisl!; (address'))

/\ 8(logicaLdisk_crash)0(8(reliable_disk_crash)--+ operationa1-disks = 0).

Suppose that it is forbidden to raise the reliable_disk_crash exception deliberately,
which may be accomplished by adding the conjunct Fó(reliable_disk_crash) to the spec
ification above. Then it follows that a reliable_disk_crash exception is only raised if
there are no other operational disks left and a logicaLdisk_crash was raised. Thus the
only initially operational disk doesn't have the appropriate information.

7 Conclusions

The previous section illustrates how deontic logic provides the possibility to specify
fault tolerant systems in a natura! way. It turns out that to derive certain properties
of a specified system, one needs to make the assumptions about faults and their effect
on the behaviour of the system explicit. The possibility to express the preference of
some behaviors over others, allows one to distinguish between conditions created by a
possible malfunctioning of a lower level, and the conditions created by the layer under
discussion itself. Although deontic logies have been suggested for system specification
before, e.g. in [Khosla88], the application to fault tolerant systems seems to be new,
which partly explains the differences between the specification language used in this
paper and those appearing in the literature about system specification.

The deontic logic described in this paper differs from the deontic logies for system
specification in the existing literature mainly in two ways. Firstly, the logic in this
paper is a dyadic deontic logic, whereas the logies in e.g. [Meyer88] and [Khosla88] are
monadic deontic logies. Secondly, primed and unprimed variables are used to capture
the dynamic aspect of programs in the specification language, whereas Meyer [Meyer88 J
and Khosla [Khosla88] use a dynamic logic in combination with the deontic logic.

The first difference, which seems to be the most essential one, can be explained by the
particular application to fault tolerant systems. An important concept in fault toler
ance is graceful degradation, which allows a system to temporarily sacrifice a service

CHAPTER 5 - Top-down Developmen:t of Lay~'!1?4}f'ault Tolerant Systems

in favor of a more important one if a fault occurs. This corresponds in a natural way
with deontic logic specification of the format <p10'1/11 /\ ... <;nO'l/ln that specify the be
haviour ,,Pi of a system under less than perfect conditions <p; (i = 1, ... , n). Moreover,
dyadic deontic logic offers a solution to the 'lazy programmer' paradox described in
section 4. And, although the examples used to illustrate this paradox may be regarded
as 'toy' examples, it should be evident from the example in section 5 that this problem
becomes more important as the complexity of a system increases.

The second difference concerns primed variables. A nice property of the logic is that it
captures state predicates as well as action predicates. State predicates are predicates
with either only primed variables or only unprimed variables. Action predicates are
predicates with both primed and unprimed variables. A serious disadvaritage of the
primed and unprimed variables is that it is not clear how this method can be extended
to deal with (distributed) real-time systems, which is an important application area of
fault tolerance. Such systems may be specified in a logic that mixes deontic logic with
a temporal logic, or in a logic with combined deontic-temporal modalities like the one
in [vEck82].

The next step which must be taken is the definition of an adequate formal semantics for
the deontic logic discussed in this paper. A first study shows that a Kripke semantics
can be obtained by introducing residuals of reachability relations.

Acknowledgment. The author is grateful to Henk Schepers for providing the stable
storage example, and Tijn Borghuis and Wim Koole for many helpful discussions.

References

[Ada83] American National Standards Institute, Ine. The Programming Lan
guage Ada Reference Manual. ANSI/MIL-STD-1815A-1983, LNCS 155.
Springer-Verlag, 1983.

[Anderson90] T. Anderson & P.A. Lee. Fault Tolerance: Principles and Practice, 2nd.
revised edition. Springer-Verlag, 1990.

(Aqvist67] L. Áqvist. Good Samaritans, Contrary-to-Duty lmperatives, and Epis
temic Obligations. Noûs 2, pp. 361-379, 1967.

[Aqvist83] L. Áqvist. Deontic Logic. In "Handbook of Philosophical Logic" Vol. II,
pp. 605-714. D. Gabbay & F. Guenthner (Eds.), Reidel, 1983.

[Cristian85] F. Cristian. A Rigorous Approach to Fault-Tolerant Progmmming. IEEE
Trans. on Softw. Eng. Vol. SE-11 pp. 23-31, 1985.

[Dijkstra68] E.W. Dijkstra. The Structure of the "THE"-Multiprogramming System.
Comm. of the ACM 11:341-346, 1968.

[vEck82] J.A. van Eck. A System of Temporally Relative Modal and Deontic Pred
icate Logic and lts Philosophical Applications. Logique et Analyse 100,
pp. 249-381, 1982.

83

[Follesdal71] D. Fl<}llesdal & R. Hilpinen. Deontic Logic: an Introduction. In "Deontic
Logic: Introductory and Systematic Readings'', pp. 1-35. R. Hilpinen
(Ed.), Reidel 1971.

[Hoare69] C.A.R. Hoare. An Axiomatic Basis /or Computer Programming. Com
munications of the ACM, Vol. 12 pp. 576-580, 1969.

[Khosla88] S. Khosla. System Specification: a Deontic Approach. Ph.D. Thesis Uni
versity of London (Imperial College of Science and Technology), 1988.

[Meyer88] J.-J.Ch. Meyer. Using Programming Concepts in Deontic Reasoning. Re
port IR-161 Free University Amsterdam, 1988.

[deRoever91] W.-P. de Roever. Foundations of Computer Science: Leaving the lvory
Tower. Bulletin of the EATCS 44:455-492, 1991.

[Schepers91] H. Schepers. Terminology and Paradigms /or Fault Tolerance. In 'Formal
Techniques in Real-Time and Fault Tolerant Systems', J. Vytopil (Ed.),
pp. 3-31, Kluwer 1993.

[vWright71] G.H. von Wright. A New System of Deontic Logic. In "Deontic Logic:
Introductory and Systematic Readings", pp. 105-120. R. Hilpinen (Ed.),
Reidel 1971.

[vWright81] G.H. von Wright. Problems and Prospects of Deontic Logic: a Survey. In
"Modern Logic a Survey: Historica!, Philosophical, and Mathematical
Aspects of Modern Logic and lts Applications", pp. 399-423. E. Agazzi
(Ed.), Reide! 1981.

Samenvatting

Fout bestendige computersystemen hebben als speciale eigenschap dat ze correct blijven
functioneren indien er fouten optreden. Het is natuurlijk niet mogelijk om een systeem
zo te ontwerpen dat het tegen iedere denkbare fout opgewassen is. Daarom eist men
slechts dat het systeem bestand is tegen een bepaalde klasse van fouten. De eigenschap
dat een systeem foutbestendig is maakt het geschikt voor toepassingen in kritische
omgevingen waar het falen van een systeem of een component ongewenste gevolgen
kan hebben.

Bij het ontwerpen van een foutbestendig systeem moeten geen nieuwe fouten
geïntroduceerd worden. Het belang van een formele ontwikkelingsmethode is daarom
juist voor foutbestendige systemen van belang. Een formele methode biedt de mo
gelijk om de gewenste eigenschappen van het systeem op hoog niveau te specificeren
waarbij afgezien kan worden van implementatiedetails. Tevens bevat de methode een
taal waarmee concrete implementaties beschreven kunnen worden. De methode moet
daarnaast de mogelijkheid bieden om formeel af te leiden of de uiteindelijke imple
mentatie inderdaad de gespecificeerde eigenschappen heeft. Idealiter ondersteunt de
methode een ontwerper bij het structureren van zowel het beoogde systeem als on
twerpproces zelf.

Het onderhavige proefschrift beschrijft het onderzoek dat zich richtte op vinden van
een formele ontwikkelingsmethode voor foutbestendige systemen. Het eerste hoofd
stuk bevat een korte inleiding tot en een overzicht van het verrichte onderzoek. Het
tweede hoofdstuk beschrijft hoe twee bekende formalismen voor programmaontwikke
ling aan elkaar gerelateerd zijn. Het belang hiervan is dat het aantoont hoe op het
eerste oog verschillende methoden uiteindelijk dezelfde klasse van systemen in dit
geval sequentile programma's bschrijven. Het derde hoofdstuk definieert een inter
pretatie van een taal waarin foutbestendige tijdkritische systemen beschreven kunnen
worden. Tijdkritische systemen zijn systemen waaraan tijdseisen gesteld worden. Het
vierde hoofdstuk bevat een algebraïsche methode voor de verificatie van foutbestendige
systemen. Hoofdstuk vijf tenslotte, wordt een algemeen probleem voor formele meth
ode voor foutbestendigheid beschreven. Een eerste aanzet tot de oplossing van dit
probleem met behulp van een bijzondere logica wordt gegeven.

Promotiereglement
Artikel 15.3b

The EUT "promotiereglement" requires that if a thesis conta.ins co-authored papers it
should be indicated which parts are based on active contributions of the author of the
thesis.

Both chapter 3 and chapter 4 are typical joint articles that are diffi.cult to entangle.
The basic computational model of chapter 3 is due to Jozef Hooman; the original
idea and all adaptations to fault tolerance and simplifications are due to the author
of this thesis. In the case of chapter 4, the first set-up for an algebra.ic theory for
exception handling and its application to the specification and verification of fault
tolerant systems is due to the author of this thesis. The formalization in ACP was
proposed by Frank de Boer.

It is not feasible to provide any further quantitative or qualitative division of the efforts
reported on in these chapters. All co-authors have been actively involved in parts of
the research.

STELLINGEN

behorende bij het proefschrift

FORMALISMS FOR PROGRAM REIFICATION
AND FAULT TOLERANCE

van

Jos COENEN

I. Er bestaat geen volledige regel voor programmareïficatie in Floyd-Hoare logica, zoals
gedefinieerd in [Hoa69], zonder logische variabelen.

II. Iedere Hoare formule { <p} S { 1/J} kan als volgt in een equivalente normaalvorm gebracht
worden

{a: = Yo} S {cp[yo/:c] 1/J}

Hierin stelt x de lijst van programma.variabelen in <p en '1j1 voor, en y0 een even lange lijst van
verse logische variabelen.

111. De volgende bewijsregel voor neerwaartse simulatie (downward simulation) is volledig
voor gesloten relationele termen R11 R2 en R3 , d.w.z. relationele termen zonder vrije
voorkomens van specificatievariabelen"

IV. De volgende bewijsregel voor opwaartse simulatie (upwa.rd simulation) is volledig voor
gesloten relationele termen Ri. R2 en R3 , met gesloten als gedefinieerd als in stelling III.

V. De volgende niet compositionele bewijsregel voor simulatie is op zich volledig voor gesloten
relationele termen R1 , R2 en R3 , met gesloten als gedefinieerd in stelling III.

VI. Door toevoeging van de volgende verificatieconditie voor opwaartse simulatie (upward

simulation) kan VDM (zie [Jon90]) volledig gemaakt worden m.b.t. programmareïficatie.

'r/c, c E C, a E A · rel(a, c) A pre-C(c) A post-C(ê, c)

::?- 3ä E A · rel(ä, ë) A pre-A(ä) A post-A(ä, a)

VII. Back's algemene verificatieconditie voor programmareïficatie (zie [Bac88]), waarin for
tuinlijk nondeterminisme (a.ngelic nondeterminism) is toegelaten, is volledig voor neerwaartse
simulatie (downward simulation) indien geeist wordt da.t de abstractie relatie totaal is.

VIII. Superpositie van programma's is een vorm van contextverfijning waarvoor de eis van
snbdistributiviteit te sterk is [ZCdR.92].

IX. Dat de keuze van een symmetrisch symbool voor gelijkheid in de rekenkunde niet voor
iedereen intuïtief hoeft te zijn kan als volgt experimenteel aangetoond worden. Neem twee
repen chocola en breek van ieder reep een derde deel af en verdeel het resultaat gelijkelijk
onder drie jonge kinderen. Twee van de drie kinderen zullen verongelijkt reageren omdat het
andere kind twee stukken heeft.

X. Va.nuit het oogpunt van betrouwba.a.rheid verdient de toepassing van het TMR-principe
(Triple Modula.r Redunda.ncy) in grootschalige uniforme netwerken de voorkeur boven het
principe van zelfcontrole door duplicatie (self-checking logic) [Coe94].

XI. De werking van een remmende synaps in een neura.a.l netwerk correspondeert niet met
die van één enkele invertor in een logisch circuit [Coe93].

XII. Het onderscheid tussen 'natte' en 'droge' horeca is zeer bedenkenswaardig in een debat
over gokversla.ving waa.rbU drankmisbruik niet aan de orde komt.

Referenties

[Ba.c88] Back, R.J.R.: Data Refinement in the Refinernent Calcitfos. Reports on Computer
Science & Ma.thema.tics 68, Ábo Akademi, 1988.

[Coe93] Coenen, J.: Modelling Relia.ble Neura.l Networks. Proc. 3rd ICYCS, 3.01-3.06,
Tsinghua. University Press 1993.

[Coe94] Coenen, J.: Simula.ting Large Nenral Assemblies of Unrelia.ble Components. Cy
bernetics f.9 Systems, 25, 335-342 (1994).

[Hoa69] Hoa.re, C.A.R..: An Axioma.tic Basis for Computer Programming. C. ACM, 12,
576-580 (1969).

[Jon90] Jones, C.B.: Systenwtic Software Development Using l1DM (second edîtîon).
Prentice-Hall, 1990.

(ZCdR.92] Zwiers, J.; Coenen, J. & De Roever, W.-P.: A Note on Compositional Refinement.
Proc. 5th BCS-FACS Re.finement vV01·!.:shop, 342-366, Workshops in Computing,
Springer 1992.

