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Chapter 1 

Introduction 



Introduction 

Nowadays, computers are used for numerous applications. We may think of simple 
batch systems for information processing for administrative applications, hut also of 
highly complex systems for process control for industrial applications. For each of 
these applications the issue of correctness is an important one. Incorrect software or 
hardware may have undesirable consequences. To ensure correctness of the system 
some formal method may be used to specify, design, and verify the system. A formal 
method should therefore include a high-level specification language - to describe the 
requirements of the desired system - which allows to abstract from implementation 
details, and a low-level language to describe an actual implementation. It is not re
quired that these languages are separated. The method should also provide a means 
to verify whether an implementation, i.e. the description of an actual implementation, 
satisfies its specification, i.e. whether it provides the requested services. ldeally the 
method provides the designer with guidelines how to structure the development of the 
desired system. 

Examples of formal methods are Hoare's logic [Hoare69, Apt8l.] - or more appropriate 
Floyd-Hoare logic) - and VDM [Jones90]. Hoare's logic and VDM are examples of 
model oriented methods. In chapter 2 a relational framework which unifies Hoare's 
logic and VDM is presented. The importance of such unifying framework lies in the fact 
that it allows to go forth and back between these two formalisms. It serves to illustrate 
that despite the apparent differences formalisms do not differ in an essential way, i.e. 
they focus on the same aspects of system development. Other examples of model ori
ented methods are Z [Spivey88, Spivey92], and refinement calculi [Back80, Morgan90]. 
As opposed to model oriented methods there exist various algebraic methods, most 
notably CCS [Milner80, Milner89], CSP [Hoare85], and ACP [BeKl84, BaWe90]. 

Formal methods such as Hoare's logic and VDM are only concerned with the functional 
correctness of a system. Some applications, however, require that a system is not 
only functionally correct, hut also correct with respect to the timing of actions. A 
system whose correctness depends on the timing of actions is called a real-time system. 
Several formal techniques to verify timeliness and functional correctness of systems 
have been developed. Examples of model oriented methods can be found in [Ostroff89, 
Hooman91], and examples of algebraic methods are [NiRiSiVo90] and [BaBe91]. Real
time systems are often used for critical applications. For example, avionic systems for 
flight control and control systems for power plants. Systems for critical applications 
are required to have additional fault tolerant properties. 

Of course a system can not be fault tolerant with respect to all possible faults. For 
a system to be fault tolerant it is therefore required only to tolerate a specified class 
of faults. Faults can be classified by location (i.e. where the fault occurs}, duration 
(i.e. when and how long the fault occurred}, and effect (how it influences the system 
behaviour). A formal method for fault tolerance must therefore also provide a way to 
formally define classes of faults. 

Algebraic theories that consider fault tolerance properties are presented in 
e.g. [Prasad87] and [HeHo87]. Model oriented methods can be found in 
e.g. [ScSc83], [Cristian85], anq [JoMoSo87]. Significantly less has been achieved in 
developing theories which combine functionality, timeliness, and fault tolerance. This 
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can cause problems because fault tolerance is typically obtained by some form of re
dundancy. For example, a backward recovery mechanism for databases introduces 
information redundancy (replicated data), modular redundancy (duplication of infor
mation carriers), and time redundancy (back-up and restore operations). Adding time 
redundancy may transform a correct real-time program into an incorrect one. Grace
ful degrading systems may sacrifice certain services, thereby changing the functional 
behaviour, in order for more important services to meet their deadlines. 

An algebraic theory for reasoning about timeliness and reliability is outlined 
in [HaJo89]. In chapter 3 the foundations of a formal framework for the specifica
tion and verification of fault tolerant distributed real-time systems with synchronous 
message passing are investigated. It presents a denotational semantics for a model 
oriented theory which combines functionality, timeliness, and reliability. In this se
mantics the occurrence of faults, due to a malfunctioning of the underlying execution 
mechanism, and their effects upon the behaviour of real-time systems are considered. 
The main idea is that by making very weak assumptions in the semantics about faults 
and their effects, any hypothesis about fault must be made explicit in the correctness 
proof of a program. 

Chapter 4 provides an algebraic method for specifying and verifying fault tolerant 
systems. There is an important difference between the ideas behind the definitions 
in chapter 3 and chapter 4. The semantics defined in chapter 3 adopts the principle 
that a system is incorrect (i.e. error prone) unless specified otherwise, whereas the 
theory in chapter 4 adapts the principle that a system is correct (i.e. error free) unless 
specified otherwise. A proof method based on the semantics of chapter 4 will therefore 
require that all assumptions about the occurrence, duration, and effect of faults must 
be made explicit in the specification of a system. The theory in chapter 4 requires 
that faults are inserted in the system by explicitly defining the fault hypothesis as 
an additional process in the specification. The theory of chapter 4 is more general 
than that of [Prasad87] and [HeHo87], in the sense that a more general class of pro
cesses is considered. The class of programs considered in [Prasad87] and [HeHo87], i.e. 
restartable systems, is a subclass of the systems definable in the theory of chapter 4. 

Finally, chapter 5 discusses the problems encountered when attempting to construct 
a formal method for designing fault tolerant systems which supports top-down devel
opment. It appears that we need to distinguish between preferred and less preferred 
behaviours of a system. Formal methods such as Hoare's logic and VDM do not dis
tinguish between those possible behaviours, and there seems to be no obvious way to 
adapt these methods so that they will distinguish such behaviours. As pointed out in 
chapter 5, one needs a more expressive assertion language 1. A possible candidate is 
dyadic deontic logic. Although modal logies in general (e.g. [Harel79] and [BaKuPn84]) 
and deontic logic in particular (e.g. [Khosla88]) have been proposed and developed for 
specifying (fault tolerant) systems, it is not immediate how to obtain a theory with 
the properties described in chapter 5. These are interesting cliffhangers for the fut ure. 

1 Besides the obvious need to distinguish between preferred and less preferred behaviours in the 
semantics. 
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Hoare's Logic and VDM 
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Hoare's Logic and VDM 

J. Coenen1 

Dept. of Math. and Computing Science, Eindhoven University of Technology. 

Keywords: Hoare's logic; Program specification; Realizability; VDM. 

Abstract. A relational framework which unifies Hoare's logic and VDM is presented. 
Within this framework a partial correctness version ofVDM is defined. It is argued that 
this partial correctness version ofVDM is intuitive and consistent with the original total 
correctness version. Furthermore it is shown how both partial and total correctness 
formulae and specifications can be translated from Hoare's logic into VDM and vice 
versa. VDM's satisfiability requirement is hriefly discussed, and a similar condition for 
Hoare's logic is defined. 

1 Introduction 

In nineteen sixty-nine Hoare published a number of axioms and proof rules for proving 
assertions about programs (Hoa69], which is usually referred to as Floyd-Hoare logic, 
or simply Hoare's logic. Hoare's logic has been thoroughly investigated by various 
researchers, which led to some interesting extensions (see eg. (Hoa71, Gor75, Bak80, 
Apt81]). We will consider Hoare's logic as it appeared in [Apt81], because the proof 
system presented there includes a complete set of proof rules for logical variables. 

Although logica! variables were originally introduced in Hoare's logic in order to 
ohtain a complete proof system for recursive procedures [Gor75], we're mainly inter
ested in them because of their use in specifications. For example, if we want to specify 
a program that increases the value of program variable x by one for an arbitrary initial 
value we have to use a logica! variable. The intended meaning of the specification (the 
superscript 1l is used for Hoare-style specifications and correctness forrnulae) 

{x = xo} incl {x xo + lf' (1) 

is that if x has initially the same value as logica! variable xo then incl should establish 
that afterwards x has the value of xo + 1. Because logical variables do not occur in 

Correspondence and offprint requests to: J. Coenen, Department of Mathematics and Computing 
Science, Eindhoven Unive:rsity of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands. 
E-mail: wsinjosc@win.tue.nl. 

1Supported by NWO/SION project 612-316-103: 'Fault Tolerance: Paradigms, Models, Logies, 
Construction.' 



programs, the above specification indeed specifies that the va.lue of x should increased 
by one. Notice how the logica.l varia.bie xo is used to carry information from the initial 
state, characterized by x xo, to the final state, characterized by x xo + 1. 

In VDM [Jon90] logical varia.bles are not needed, because the relationship between 
the initial program state and the final program state is established by 'hooked' vari
a.bles x. The operation incl can be specified as follows (VDM-style specifications and 
correctness formulae are decorated with a superscript :!) . 

{true} incl {x = x + 1}3 (2) 

The varia.bie x in the postcondition x = x + 1 refers to the value of x in the initia} 
program state, and the varia.bie x in the postcondition refers to the value of x in the 
final program state. 

Another difference between the above specifications is the use of the precondition. 
To make this difference clearer we need to distinguish between partial correctness 
and total correctness. A partial correctness specification such as (1) bas the intended 
meaning that if initially the precondition is satisfied and if incl terminates then the 
fina.l program state must satisfy the postcondition. Hence, a program that does not 
terminate satisfies the specification (1). A total correctness specification for incl is 
(notice the subscript) 

{x = xo}incl {x = xo + l}j'. (3) 

The intended meaning of {3} is that if initially x = xo is satisfied then incl must 
terminate in a state satisfying x = xo + 1. VDM is, as opposed to Hoare's original 
system, a total correctness formalism. In VDM it is possible to separate the issue of 
termination from the issue of functionality. The precondition in a VDM specification 
specifies a set of initial states for which the program must terminate; the postcon
dition specifies the functiona.1 behaviour of the program. In Hoare's logic (for total 
correctness) the precondition is used both for specifying the initia} states for which 
the program must terrninate and, together with the postcondition, for specifying the 
functional behaviour. 

Despite these apparent differences, Hoare's logic and VDM are interchangeable, 
and can be unified within a simple relational framework (see section 2). In section 3 
we show how to translate Hoare-style partial correctness specifications into VDM-style 
partial correctness specifications, and vice versa. Similar results for total correctness 
are obtained in section 4. Section 4 also contains a brief explanation of VDM's notion 
of 'satisfiability' and formulates an equivalent condition for Hoare's logic. Finally, 
conclusions can be found in section 5. 

2 A Unifl.ed Framework for Hoare's Logic and VDM 

The relational framework we use to capture both Hoare's logic and VDM is extracted 
from the one presented in [CRZ91]. First we define the syntax and semantics of 
a general class of assertions. Preconditions and postconditions of specifications in 
Hoare's logic are identified as a subset of this class. VDM postconditions which 
characterize a relation - are in a different subset, and so are the VDM preconditions. 
Second, we define the syntax of correctness formulae and specifications for both VDM 
and Hoare's logic. 



CHAPTER 2 - Hoare's Logic and VDM 

2.1 Syntax and Semantics of Assertions 

We assume a syntactic class &pr of expressions with occurrences of program variables 
x E Var, a disjoint set of 'hooked' program variables 'X, and another set, disjoint with 
the previous ones, of logical variables xo E .Cvar. We use E for the set of (program) 
states CT : Var --+ Val and r for the set of logical states 'Y : .Cvar --+ Val. Furthermore, 
we assume that an interpretation function &[.] : &pr--+ (r --+ ((E x E) --+ Val)) is 
defined such that 

ê[x]T(u,r) 

&['X]'Y(u, r) 

ê[xo]T(u,r) 

r(x) 

u(x) 

1(xo) 

The syntactic class Assn of assertions, with typical element x, is defined as follows. 

Definition 2.1. {Syntax of assertions) 
Let ei, e2 E êxpr. 

Abbreviations such as Xl V x2 are also included. We also allow syntactic substitutions 
in assertions. Let e E &pr then x[e/ z] is the assertion x with all free occurrences of z 
replaced by e, and a renaming of the bounded variables in x to avoid bindings of the 
variables in e. 

Definition 2.2. {Semantics of assertions) 
Assertions x E Assn are interpreted by a truth-valued function T[.] : Assn --+ (r --+ 
((Ex E)--+ {tt,ff})). 

With 

T[true]'Y(u, r) Ll. 

T[e1 = e2]T(u, r) 
Ll. 

T[e1 < e2]T(u, r) 
Ll. 

T[•xh(u, r) 
Ll. 

T[x1 --+ x2h( a, T) ~ 

T[3"0 (x)h(u, r) 
Ll. 

(1lxo: v)(yo) ~ { v 
1(yo) 

tt 

ê[e1]'Y(u, r) = ê[e2]'Y(a, r) 

ê[e1]1(u,r) < ê[e2]1(u,r) 

-.T[x]T(u,r) 

T[x1h(u, r) => T[x2h(u, r) 

r ' if there exists a v E Val such 

that T[x](1lxo: v)(u,r) 

Il ' 
otherwise. 

, if xo = Yo 

, otherwise. 

We distinguish three kinds of assertions in Assn. 

• Assn'H, with typical elements cp and 'if;: 
assertions in which 'hooked' variables 'X do not occur. For example preconditions 
and postconditions of Hoare-style correctness formulae and specifications. 

11 



• Assn1t, with typical element p: 

assertions without free occurrences of logical variables xo. For example 'postcon
ditions' of VDM-style correctness formulae and specifications. 

• Assn.7, with typical element 7r: 
assertions in Assn" n AssnR, i.e. assertions without 'hooked' variables x and 
without free occurrences of logical variables xo. For example 'preconditions' of 
VDM-style correctness formulae and specifications. 

For these assertions the following alternative interpretation functions are defined. 

[.r : Assn" --> (r --> 1'E)) 

[.r : AssnR __. 1'E x E) 

[.J.7 : Assn.7 --> 1'E) 

Definition 2.8. (Interpretation of assertions as sets} 
Let cp E Assn", p E AssnR·, and 7r E Assn.7. 

M"1 ~ n{r 1 T[<ph(u,r)} 
" 

lPr A n{(u, r) 1 T(p]t(u, r)} 
7 

[7r).7 ~ n { T 1 7[7r]/( <T, T)} 
7,u 

If no confusion can arise we drop the superscripts. 

2.2 Specifications and Correctness Formulae 

We introduce two more syntactic classes. The class :Form of correctness formulae 
and the class Spec of specifications. A correctness formula consists of a precondition, 
a postcondition, and a program segment. The precondition and postcondition are 
elements of Assn. The program segment is an element, typically S, of a syntactic class 
Prog. We assume Prog defines a relational programming language, i.e. a programming 
language with a relational semantics. More precisely we assume the existence of an 
interpretation function R[.D : 'Prog--> 1'E x :E). 

A specification consists of a precondition, a postcondition, and an operation iden
tifier. An operation identifier is an element of a set of names called Name. 

Defi.nition 2.4. (Syntax of correctness formulae) 
Let cp,1/J E Assn", 7r E Assn.7, p E AssnR, and SE Prog. The syntactic class :Form of 
correctness formulae consists of the following elements. 

• (<p) S (,P)": A Hoare-style partial correctness formula. 

• ( cp) S ( 1/J Y1: A Hoare-style total correctness formula. 

• (7r) S (pf: A VDM-style partial correctness formula. 

• (7r) S (p'}J_: A VDM-style total correctness formula. 

Correctness formulae are interpreted by a truth-valued function:F[.J : :Form--> {tt, /!}, 
whose definition is postponed until the next sections. 
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Deflnition 2.5. (Syntax of specifications) 
Let <p,1/J E Assn", 7r E Assn3 , p E AssnR, and op E Name. The syntactic class Spec 
of specifications consists of the following elements. 

• { cp} op { 'l{I}": A Hoare-style partial correctness specification. 

• { cp} op { 'l{I }1: A Hoare-style total correctness specification. 

• {7r} op {p}3 : A VDM-style partial correctness specification. 

• {7r} op {p}:[: A VDM-style total correctness specification. 

Specifications are interpreted as relations by 1-] : Spec -> 'P(E x E), whose definition is 
also postponed until the next sections. 

When defining the meaning of correctness formulae and specifications we use the 
following notation for relations. 

Deflnition 2.6. (Notation /or relations) 
Let p, q E 'P(E) and r, s E 'P(E x E). 

llPll ~ {(u, u) 1 u E p} 

p"-+q ~ {(u,T)iuEp->TEq} 

p"-+r ~ {(u, T) 1 O" E p ...... (u, T) Er} 

r; s ~ {(u, T) 1 3ç((u, Ç) Er A (Ç, T) Es)} 

In the section on total correctness we introduce a special state .l, .lji!' E, to denote 
divergence. It has the property that T(xh(.i,r) = ff and T[xh(u,.l) = jj for all 
/ E rand x E Assn. We abbreviate EU {.l} as E.L, and write p......, .Lq and p......, .Lr 
whenever p, q E 'P(E.L) and r E 'P(E.1. x E.L)· 

3 Partial Correctness 

Partial correctness formalisms abstract from the issue of termination, and focus on 
the functional behaviour. We define what partial correctness means in Hoare's logic, 
define partial correctness for VDM, and show how these formalisms are related. 

3.1 Hoare's Logic 

The intended meaning ofHoare-style partial correctness formula (cp) S ('1{1)1< is that if 
the initial program state satisfies the precondition <p and if the program S terminates 
then the final program state must satisfy the postcondition 'l{I. This is captured in the 
following definition. 

Deflnition 3.1. {Hoare partial correctness formula) 
Let S E 'Prog and <p, 'l/J E Assn 11.. 

Notice that we sometimes treat R(.J as a function, i.e. it is considered to be of type 
'P(E) --> 'P(E). Hence, 

R[SH(tp]'y) ~ {T 13"(u E ['1']1 /\ (u,r) E R(S])} 

13 



A partial correctness specification should specify the largest relation that satisfies the 
corresponding correctness formula. Or, in other words, if a program S satisfies the 
specification { <p} op { 1/1} u then ( lf') S ( 1/1) u should hold. 

Deftnition 3.2. (Hoare partial correctness specification) 
Let tp, 1/1 E Assnu and Of> E Name. 

[{cp} op {1/i}ul ~ n<Mî'"" l'!/>h) 
"'{ 

Lemma 3.3 states that definitions 3.1 and 3.2 are consistent in the sense that they 
satisfy the condition mentioned above. 

Lemma 3.3. Let SE Prog and ip,1/i E Assnn. 

V7 (7?.[S)([ip]î') Ç [.,P)î') <=> R.[S] Ç n([<p) "-' ['!/>)) 

Proof. 

0 

"'{ 

V7 (r e n[S)([iph) - re [1/ih) 

{::} V7V"((u E [cp)î' /\ (u,r) E 'R[S])-+ TE ('!/>]î') 

{::} V7V"((u,r) E R.[S)-+ (u E (cp)î'-+ TE ['ljl]î'}) 

<=> V.,.((u, r) E 'R[S) -+ V7 (u E [lf'Jî'-> T E ('ljl]î')} 

{::} (u, r) E 'R[S) -+ (u, r) E n([cp)î' "-' [1/ih) 
"'{ 

3.2 VDM 

Although VDM is a total correctness formalism, it makes sense to define a partial 
correctness version and to compare it with Hoare's partial correctness logic. Such 
a partial correctness version should be consistent with total correctness VDM, i.e. if 
we abstract from the issue of termination both versions of VDM should specify the 
sa.me operations. From definitions 4.5 and 4. 7 in section 4.2 it is immediate that the 
following definitions of VDM-style partial correctness formulae and specifications are 
indeed sensible. 

Deftnition 3.4. (VDM partial correctness formula) 
Let SE Prog, 1r E Assn.7, and p E .Assn'R.. 

Thus if we restrict the behaviour of program S to those starting in an initial state 
for which the precondition 1r holds, then we only observe behaviours allowed by the 
postcondition p. 

Deftnition 3.5. (VDM partial correctness specification) 
Let Of> E Name, 1r E Assn.7, and p E Assn'R.. 
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Analogous to lemma 3.3 for Hoare's logic we have a lemma to ensure that the above 
two definitions are consistent with each other. 

Lemma 3.6. Let S E Prog, 7r E Assn3 , and p E Assn'R. 

Proof. 

D 

(u,r) E 11[7rlll; 'R[S]-+ (u,r) E (p] 

<=> (a E [7rJ /\ (u, r) E 'R(SJ)-+ (u, r) E (p] 

~ (a, r) E 'R[S]-+ (u E [7r] -+ (u, r) E [p)) 

<=> (a, r) E 'R[S)-+ (a, r) E [7rJ"" [p) 

3.3 Translation of Partial Correctness Formulae 

We adopt the convention that x, xo, and x denote lists of variables rather than single 
variables. For rocample, in theorem 3.7 we use xo to denote the list of all free logica! 
variables in the precondition of the Hoare formula. 

The claim that VDM allows the separation of functional behaviour - defined by 
the postcondition from termination - defined by the precondition - is justified 
by the fäct that we have the assertion true as the precondition of the VDM formula in 
the following theorem. 

Theorem 3.7. (Translation of Hoare formulae into VDM formulae) 
Let S E Prog and <p, 'ifJ E Assnu. 

(ip) S (,,P)u <=> (true) S (V"0 (ip[x/x]-+ 'l/JW' 

Proof. Using lemma 3.3 and lemma 3.6 it suffices to prove the following equality. 

D 

n(['P)7"" ['l/Jh) 
'Y 

n({(u,r) 1 u E (ip]î'-+ r E ['f/;)î'}) 
'Y 

{(u, r) 1 'V'Y(u E (ip]î'-+ r E ['lf;]î')} 

[V"0 (<p[x/x] - 'f/;)), with Y"0 (ip[xjx]-+ 'f/;) E Assn" 

= {(u,r) 1 u E [true)-+ (u,r) E [V"0 (ip[x/x]-+ 'ljl)J}, 

with true E Assn3 

[true] "" [V "0 ( ip[x / x] -+ 'ifJ)] 

From this theorem and lemma's 3.3 and 3.6 we immediately obtain a similar result for 
Hoare-style and VDM-style partial correctness specifications. 

Corollary 3.8. The Hoare-style specification {ip} op {'efl}u and the VDM-style speci
fication { true} op {'v' "0 ( cp [x / x] -+ 'ljl)} 3 are correctly implemented by the same opera.
tions. 
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The following theorem and corollary describe how a VDM partial correctness formula 
or specification can be directly translated into an equivalent Hoare-style partial cor
rectness formula or specification. Hence, we can go from Hoare's logic to VDM and 
vice versa if preserving partial correctness is our only concern. 

We use x = xo as an abbreviation of A'/=1 :z:Î = x~, where x1
, "" xn is the list of 

program variables in the precondition 1f of the VDM formula.. Notice how the logical 
varia.bles are used to copy the values of the program varia.bles from the initial program 
state to the final program state. 

Theorem 3.9. {'Pranslation of VDM form:ulae into Hoare formulae) 
Let S E 'Prog, 1f E Assn", and p E AssnR. 

(1r) s (p).:r * (x = xo "1r) S (p[xo/x])" 

Proof. Using lemma 3.3 and lemma 3.6 it suffices to prove the following equality. 

D 

[1rJ "" (p] 

= {(u, r) 1 u E [11')-+ (u, r) E [p)} 

{(u, r) 1 V-y(('Y(xo) = u(x) /\ u E [1r])-+ r E [p[xo/x]h)} 

with p(x0/x] E Assnu 

{(u, r) 1 V-y(u E (11' /\ x = xoh-+ r E (p[xo/x]]'Y)} 

with ( 11' /\ x = xo) E Assnu 

n{(u,r} 1 u E [1r /\x = xoh-+ r E [p[xo/x]h} 
'Y 

n{[1r /\ x xoh"" [p[xo/x]]'Y) 
'Y 

Corollary 3.10. The VDM-style specification {1r} op {PV and the Hoare-style speci
fication { x = xo /\ 1f} op {p[xo/i)} u are correctly implemented by the same operations. 

4 Total Correctness 

In order to deal adequately with nontermination ( divergence) we assume a special 
state .L with the properties mentioned at the end of section 2, and adopt the proposed 
notation. As a consequence of definition 2.3 we have that .Lil" [q:ir'Y, (u, .L) il" [pr, 
( .L, u) ~ (pj1\ and J.~ [11-J" ( u and r are supposed to be elements of EJ.}. 

We also assume a relational semantics 'R(.t : 'Prog -+ 7"EJ. x EJ.}, with the following 
properties. 

V.,.(3T((u,r) E 'R(St)} 
(u, J.) E 'R.(S)J. <:;> V.,.((u, r) E 'R[S]) 

(4) 

(5) 

Thus 'R[St is a total relation (property (4)). Property (5) is typical for Smyth
semantics [Smy78], which adopts the principle that if, given an initial state, a program 
might not terminate then it will not terminate. The reason that we choose a Smyth
semantics is that in [Jon87] Jones defines such a semantics for VDM. Furthermore we 
require that 'R.[.t is a conservative extension of 'R[.J, i.e. we require that for all p Ç E 

.L\t 'R[S]J. (p) :::} 'R(SJ(p) = 'R.(SJ.1. (p) . (6) 

Because J.ît 'R[S](p), it follows immediately that 'R[SB(p) # 'R[S].L (p) if, and only if, 
J.E 'R[St (p}. 
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4.1 Hoare's Logic 

The intended meaning of Hoare-style total correctness formula ( tp) S ( 1/1 Y1 is that if 
the initial program state satisfies the precondition tp then the program S terminates 
in a final program state which satisfies the postcondition 1fl. This is captured in defi
nition 4.1. 

Definition 4.1. (Hoare total correctness formula) 
Let SE 'Prog and cp,7/; E Assn'1<. 

We prove the following folk theorem, which relates partial and total correctness for
mulae. 

Lemma 4.2. Let SE 'Prog and tp,'lj; E Assn'1<. 

(ip) S (,,P)1; # ((ip) S (,,P)'1< /\ (cp) S (true)11.) 

Proof. We distinguish two cases. 

1. ..LE 'R[St_ ([cp)ï). 
Because ..L\t ['l/lh and ..L\t [trueh both (cp) S (?jJYf. and (ip) S (trueYf. are false. 

2 . ..L\t 'R(St_ ([cp)'Y). 

D 

Because [true]'Y = E andinthiscase'R[St_ (('P]'Y) Ç E, itfollowsthat (cp) S {trueYf 
is true. From requirement (6) it follows that 'R[Slt ([ip)ï) = 'R[S){[ip)'y), which 
meana that ( 'P) S ( 'ljJ Yi. holds if, and only if, ( tp) S ('Ijl) 1-1. holds. 

A total correctness specification specifies the largest Smyth-rela.tion - i.e. the largest 
relation on E.1. x E.i. satisfying requirements (4) and (5} which satisfies the corre
sponding correctness formula. 

Deflnition 4.S. {Hoare total correctness specification) 
Let tp, 'ljJ E Assn'H. and <fP E Name. 

[{'P} <fP {?/J}1] ~ n<M'î"" .i.l'l/Jh) 

' 
Lemma 4.4 ensures that definitiona 4.1 and 4.3 are consistent. 

Lemma 4.4. Let S E 'Prog and ip, 'ljJ E Assn1-1.. 

V1 ('R[St (['Ph) ç ['ifih} <=> 'R[St_ ç ni:M "".i.['1/1]) 

' 

Proof. Analogous to the proof of lemma 3.3. D 



4.2 VDM 

In [Jon87, Jon90] Jones defines what it means for an operation S to be a correct 
implementation of a specification { 1f} op {p }f. Within the relational framework of 
section 2, Jones' requirement becomes (recall that 'R[Sli. is a total relation and [pr Ç 
Ex E) 

V","(a E [7r].:r-+ ((o-, r) E 'R[S].1. -+ (a, r) E [pr)) (7) 

Because (7) is equivalent with 

V"""(((a,a) E 11[7r).:ril /\ (a,r) E 'R(S]J-+ (a,r) E [pr) 
it is easily seen that definition 4.5 is indeed equivalent with the VDM condition for 
implementation correctness. 

Definition 4.5. (VDM total correctness formula) 
Let S E 'Prog, 1f E Assn.7, and p E Assnn. 

F[(7r) s (p)Ij ~ 11[7r]JI; 'R[SL ç [p] 

For VDM total correctness formulae we have an analogous result to lemma 4.2 for 
Hoare's logic. 

Lemma 4.6. Let SE 'Prog, 11' E Assn.:r, and p E Assnn. 

(7r) S (p)f * ((7r) S (p).:r /\ (7r) S (true)f) 

Proof. 

11[7r].:rJI; 'R[SJ.1. ç [pr 

# v",,,.((o- E [7r)3 
/\ (a, r) E 'R[SJJ -+ (a, r) E [pr) 

* Vu,,,.(r E 'R(SL ({a})-+ (a E M.:r-+ (a,r) E [pr)) 

In case the initial program state a r:/. [7r] the above theorem clearly holds. Therefore 
assume that o- E (7r). We consider two cases of the last formula. 

1. .lE 'R(St ( { a} ). 
Because (a, .l) r:/. [pr the correctness formula (7r) S (p)I is false. Likewise, 
because (a,.l) r:f. (truer, the correctness formulae (7r) S (true)l is false. 

2 . .l\t n(st ( { a} ). 

0 

Because for all T # .l we have that ( u, r) E [truer, the correctness formula 
(7r) S (true):[ holds. From requirement (6) it immediately follows that (7r) S (p):[ 
holds if, and only if, (7r) S (p):l holds. 

Lemma 4.8 guarantees that the interpretation of VDM total correctness specifications 
as defined in definition 4.7 is consistent with the definition of VDM total correctness 
formulae. 

Definition 4. 7. (VD M total correctness specification) 
Let op E Name, 7r E Assn3 , and p E Assnn. 

[{ 7r} op {p }f] ~ [11'] "-> l. [p) 

Lemma 4.8. Let S E 'Prog, 7r E Assn3 , and p E Assnn. 

11[11')11; 'RISL ç IPJ * 'R(SL ç [11'] "'".1.[pJ 

Proof. Analogous to the proof of lemma 3.6. D 



4.3 Translation of Total Correctness Formulae 

In this section we give theorems for total correctness similar to the ones for partial 
correctness in section 3. First, we show how to translate a Hoare-style total correctness 
formula into an equivalent VDM-style total correctness formula. 

Theorem 4.9. (Tronslation of Hoare formulae into VDM formulae} 
Let SE 'Prog and ip,1/J E Assn"". 

(ip) S (1/J)~ <::? (3"0 (ip)) S ('v'"0 (cp[x/x]-+ 1/J}Yf_ 

Proof. First we apply lemma 4.2, and then proceed in two major steps. 

1. (cp) S (1/J)"" <::? (3"0 (ip)) S ('v'"0 (ip[i}x] -+ 1/J))"'. Following the proof of theo
rem 3. 7 we proceed as follows. 

n<M1~ [1/Jh) 
"( 

{(u, r) l 'v'"l(u E M'Y-+ T E [1/Jh)} 

{(u, r) j 'v'1 (u E ['Ph-+ 'v'"l(u E ['Ph-+ r E [1/Jh))} 

{(u, r) j 3"1(u E [iph)-+ (u, r) E [V"0 (ip[x /x]-+ 'lf;)J} 

= [3"0 (cp)J ~ ['v'"0 (ip[x/x]-+ 1/J}), with 3"0 (ip) E Assn3 

2. (cp) S (true~ <::? (3"0 (ip)) S (true)I. This is proved as follows. 

n(['PJ-y ~ .i.[trueh) 
"! 

{(u, r) l 'v'"l(u E ['Ph-+ TE [true)'Y)} 

{(u, r) l 'v'"l(u E ['Ph-+ (u, r) E [trueB)}, with true E Assnn 

{(u,r) l 3"/(u E [ip)'Y)-+ (u,r) E (true)} 

[3"0 (cp)] ~ .i.[true), with 3"0 (cp) E Assn3 

An application of lemma 4.6 concludes the proof. D 

Corollary 4.10. The Hoare-style specification {ip} op {'l,b}j_' and the VDM-style spec
ification {3"0 (ip)} op {'v'"0 (ip(x/x] -+ 1/J)}i are correctly implemented by the same 
operations. 

The following theorem shows how to translate VDM-style total correctness formulae 
into Hoare-style total correctness formulae. Hence, we can go back and forth between 
VDM and Hoare's logic. 

Theorem 4.11. (Tronslation of VDM formulae into Hoare formulae) 
Let SE 'Prog, 11' E Assn3 , and p E Assnn. 

('11") S (p'fJ. <::? (11' /\ x = xo) S (p[xo/x])~ 

Proof. First we apply lemma 4.6, and then proceed in two steps. 

1. (n") S (p) 3 <::? (11' /\ x = x0) S (p[x0 /x])'"'. See theorem 3.9. 
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2. (7r) S (true}I # (?r /\ x = x0 ) S (true}I. This is proved as follows. 

[7r] .._... .L [true] 

{(u, r) 1 u E [7rD-+ (u, r) E [true]} 

{(u, r) 1 \:/"l(u E [7r]r-+ r E [true]r}, with ?r, true E Assn'H 

n({(u, r) 1 :J"l(u E [7r]'Y)-+ TE [true]'Y}) 
"( 

there are no free logical variables in true 

n({(u, r} l u E [:3"o{'lf /\ x = xo)h-+ TE [true]r)}) 
"( 

there are no free logical variables in 7r 

n([:i"o('lf /\ x = xo}h .._... .L[true]r) 
"( 

One application of lemma 4.2 concludes the proof. 0 

J. Coenen 

Corollary 4.12. The VDM-style specification { 7r} op {p }:'[ and the Hoare-style speci
fication { 7r /\ x = xo} op {p[xo/x]}1 are correctly implemented by the same operations. 

4.4 Realizability 

Consider the following VDM-style specification. 

{true} op {false}3 (8) 

According to definition 3.5 this specification denotes the empty relation. If abort is a 
(nonterminating) program with partial correctness semantics R[abort] = 0 then (8) is 
correctly implemented by abort. Admittedly abort doesn't seem to be a very useful 
implementation, but the point is that there exists a program which satisfies (8). In 
this sense ( 8) is realizable. The total correctness specification 

{ true} op { false }:'[ , (9) 

however, is unrealizable. The reason for this is that (9) specifies a partial relation, viz. 
{..L} x E.L, but R[St defines a total relation for all S (see (4)). 

In VDM [Jon90] realizable and unrealizable specifications are separated by the 
satisfiability requirement. A specification { 1f} op {p }:'[ is satisfiable if, and only if, 

\:/"(u E [7r]-+ :3.,.((u,r} E [p]I)) (10} 

Thus { 7r} op {p }:'[ is satisfiable if [p] is total on [?r]. Condition {10} is expressed by 
7r['X /x] -+ :3"(p). 

Hoare's logic has the same problem. The specification {true} op {false}1 is not 
realizable, because it specifies the same partial relation as (9). Following Jones, we 
define a condition for Hoare's logic similar to requirement (10} for VDM: 

(11} 

This requirement is expressed by <p-+ :ly('if;[y/x]}, where variables in the list y don't 
occur in 'Ij;. However, for Hoare's logic the issue of realizability is more complicated. 
Consider the following specification. 

{true} op {x = xo}1 
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This specification satisfies requirement {11), hut is nevertheless unrealizahle hecause 
it is denoted by partial relation: 

n(E ""'.i.(x = xoh) = n{(u,r)lu #1-- r(x) 1(xo)} = {1-} x E.L. 
'î 'î 

Hence, this specification is not satisfiahle because programs are denoted by total re
lations (requirement (4)). This is explained by the fact that logical variables do not 
occur in programs, and therefore a correct implementation must nondeterministically 
guess the value of xo. Requirement (11) is sufficient (and necessary) in case logical 
variables don't appear in the specification. If logica! variables are present we still need 
to check whether the specification denotes a total relation. 

5 Conclusions 

We presented a unified framework for Hoare's logic and VDM, and showed how to 
translate correctness formulae and specifications from one formalism into the other. 
An interesting observation is that for VDM there exists a simple requirement which is 
necessary and suflicient to guarantee realizahility of a specification, whereas for Hoare's 
logic a similar requirement is not so easily found. 

In case we have an adaptation complete proof system for Hoare's logic such as the 
one in [Apt81] theorems 3.7 and 4.9 are not needed. A proof system is adaptation 
complete whenever if (<p) S ('lf;) implies {<p1

) S ('lf;1) then (<p1
) S ('lf;') is derivahle from 

{<p) S ('Ijl) (cf. [Old83]). 2 This can be seen as follows. Suppose we want to translate 
the Hoare formula (<p) S ('!f;)'H. using only theorem 3.9. In order to apply theorem 3.9 
the assertions in the Hoare formula have to be of a particular format. Because we 
assume that the proof system is adaptation complete, it is suflicient to show that 
( <p) S ( 'ljJ) 1i implies ( <p1

) S ( 1/i') 1i with <p1 and 1/J' in the specific format needed in theo
rem 3.9. According to theorem 3.7 an equivalent VDM formula exists, say (7r) S (p)3

• 

Theorem 3.9 provides us with another equivalent Hoare formula (1.p") S ('lf;11 )1i which 
obviously has the format required by this theorem. Hence, ( 1p11) S ( '!f;") 1i is the formula 
(<p') S (1f;1)1i we were looking for. 
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Abstract 

Motivated by the close relation between real-time and fault tolerance, we in
vestigate the foundations of a forma! framework to specify and verify real-time 
distributed systems that incorporate fault tolerance techniques. Therefore a deno
tational semantics is presented to describe the real-time behaviour of distributed 
programs in which concurrent processes communicate by synchronous messa.ge 
passing. In this semantics we allow the occurrence of faults, due to faults of the 
underlying execution mechanism, and we describe the effect of these faults on 
the real-time behaviour of programs. Whenever appropriate we give alternative 
choices for the de:finition of the semantics. The main idea is that making only very 
weak assumptions about faults and their effect upon the behaviour of a program 
in the semantics, any hypothesis about faults must be made explicit in the correct
ness proof of a program. Next we introduce two parameters in the semantics that 
restrict the way in which varia.bles and communication channels can be affected 
by faults. These parameters provide an easy way to incorporate some interesting 
fault hypotheses within the semantics. 

1 Introduction 

The development of distributed systems with real-time and fault tolerance require
ments is a difficult task, which may result in complicated and opa.que designs. This, 
and the fact that such systems are often embedded in environments where a small error 
can have serious consequences, calls for formal methods to specify the requirements 
and verify the development steps during the design process. 

Unfortunately most methods that have been proposed up to the present deal either 
with fault tolerance requirements, e.g. [15, 4, 10], or with real-time requirements, e.g. 
[16, 8, 12], hut not with both simultaneously. This can be a problem, because fault 
tolerance is obtained by some form of redundancy. For example, a ba.ckward recovery 
mechanism introduces not only information redundancy and modular redundancy, hut 
also time redundancy. Hence, it is possible to obta.in a higher degree of fault tolerance 
by introducing more checkpoints, i.e. by introducing more time redundancy. This is 
the main reason why program transformations that are used to transform a program 
into a functiona.lly equivalent fault tolerant program, e.g. by superimposition of an 
agreement algorithm, may tra.nsform a real-time program into one that doesn't meet 
its deadlines. 

1Supported by NWO/SION project 612-316-022: "Fault Tolerance: Para.digms, Models, Logies, 
Construction." E-mail: wsinjosc@win.tue.nl. 

2Supported by ESPRIT-BRA project 3096: "Formal Methods for the Development of Distributed 
Real-Time Systems." E-mail: wsinjh@win.tue.nl 
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The tra.de-off hetween relia.hility and timeliness extends to one between relia.bility, 
timeliness a.nd functiona.lity. An elegant wa.y of exploiting this trade-off ca.n be observed 
in gra.ceful degra.ding systems. For exa.mple, if a fault occurs a. system ma.y temporary 
sa.crilice a service in order to ensure that more important deadlines are met. 

Motivated by the close relation between the reliability, timeliness and functiona.lity 
of a system, we would like to reason about these properties simultaneously. Related 
research on the integration of these three aspects of real-time programs within one 
framework can be found in [6]. In that paper a probabilistic (quantitative) approach 
is presented, whereas we are maiuly concerned with the qualitative aspects of fault 
tolerance. 

To motivate our semantic model we describe, by means of an example, how we 
would like to reason about fault-tolerant real-time systems. We consider concurrent 
systems in which parallel processes communicate by messa.ge passing along unidirec
tional channels. Communication is synchronous, i.e" both sender and receiver have 
to wait until a corresponding partner is available. We illustra.te our approach using 
specifications of the form S sat tp, where S is a program and tp a sentence in a first
order predicate logic. Informally, S sat tp is va.lid if cp holds in any execution of S. 
To express the timed communication behaviour of programs, the logic includes the 
following predicates. 

• ( c, v) at t to denote the start of a communication along channel c with value v at 
timet. 

• await c? at t to express that a process starts waiting to receive a value along 
channel c at time t until the communication takes place. 

• await ( c!, v) at t to express that a process starts waiting to send the value v along 
channel c at time t until the communication takes place. 

Let [ti, t2] denote a closed interval of time points. For a predicate Pat t we define the 
following abbreviations. 

• Pat [t1, t2] ~ Vt, t1 :5 t :5 t2 : Pat t 

• Pin [ti, t2] ~ 3t, ti :5 t ::; t2 : Pat t 

In this paper we assume maxima! progress which means that a process only waits if 
it tries to communica.te and no communication partner is available. Communication 
takes place as soon as possible, i.e., as soon as both partners are ready to communicate. 
This assumption leads to the following proposition. 

Proposition 1.1 

await ( c!, exp) in [t1, t2] A await c? in [ti, ta] 
--+ (c, exp) in [ti, min(t2, ts)] 

• 
As an example, we design a program P such that if P receives input v along channel 
in then it will be ready to send the value f(v) along channel out in less than T time 
units. Formally, P sat ip(t), where 

ip(t) ~ (in, v) at t--+ await (out!, f (v)) in [t, t + TJ 



CHAPTER 3 - Parometerized Semantics /or Fault Tolerant Real-Time Systems 27 

Free variables, such as v and t in the specification above, are implicitly universally 
quantified. Using a formal method for real-time systems (see, e.g., [12, 7]) we could 
now derive a program S satisfying this specification for suitable values of T. In such a 
verification method there is usually an implicit assumption that the underlying execu
tion mechanism of programs is correct. In this paper, however, we want to take these 
faults into account and make assumptions about faults explicit. To refer to programs 
we use the naming construct (P .ç: S) which assigns the name P to the program S. 
Then the occurrence of faults is expressed in the logic by the predicate 

• fail(P) at t to denote the failure of a process with name P at time t. 

The main aim of this paper is to give a semantics for programs which does not only 
describe the normal executions of the program, as in traditional semantic models, hut 
also all possible executions in which the program fails. Then (P .ç: S) sat ,,P is valid 
if .,P holds in any execution of S, including those in which there are faults. Because 
the behaviour of a program that fails can be arbitrary, the assertion ,,P will in general 
select a subset of all possible executions by means of a fault hypothesis. Hence in .,P we 
have to express explicitly what is assumed about faults. For instance in our example 
we can use the fault hypothesis (...,fail(P)) at [t -Tp, t + Tp], for some parameter Tp, 
and obtain the specification 

(P .ç: S) sat (...,fail(P)) at [t -Tp, t + Tp]-+ rp(t) 

Clearly rp(t) need not hold if a fault occurs in the interval [t - Tp, t + Tp]. Therefore 
we will derive a program that can tolerate one fault. This can be achieved using a 
Triple Modular Redundancy (TMR) system. Instead of a single process S we take 
three copies, Si, S2 and Sa, of S, where Si is obtained from S by replacing in by in; 
and out by out;, for i = 1, 2, 3. Then the TMR system consists of five processes, as 
depicted in figure 1. In the first place there is a distribution node D with program 

in3 out3 

in 

Figure 1: TMR system 

So which copies the input of channel in on three channels ini, in2, and in3 provided 
there is no fault during a certain period. Using parameter Tv this leads to 

(D .ç: So) sat (...,fail(D)) at [t -Tv, t +Tv]-+ rpv(t) 

where rpv(t) ~ (in,v)att-+ /\~=1 await (ini!,v)at(t+Tv). Process (P; .ç: S;), for 
i = 1, 2, 3, is ready to receive a message on channel in; at least once every Tp time 



units. If a value vis received, it offers f(v) on channel out, in less than T1 time units, 
again using a suitable fault hypothesis. Thus we have 

(.11 *Si) sat (-.fail(.11)) at [t -Tp, t + Tp]-+ 'Pi(t) 

where 

'Pi(t) ~ 
(await in;? in [t, t + Tp]) 
A((in;, 11) at t-+ await (out,!, f(v)) in [t, t + T1]) . 

The voter V is implemented by a program 84. Given a suitable fa.uit hypothesis, 
it is ready to receive a value on each of the channels out1, out2, and out3 at least once 
every Tv time units. If it receives the same input on two different channels during a 
period of at most T1 time units, then it offers this value on channel out in less than T2 

time units. Formally, the voter is specified by 

(V <::::: 84) sat ( -,fail(V)) at [t - Tv, t +Tv] -+ ipv(t) 

where ipv(t) is defined as follows. 

3 

'Pv(t) ~ /\ awaitout;?in[t,t+Tv]) 
i=l 

A(3i,j, i :f= j: (out;, u) in [t, t + T1] t\ (out;, u) in [t, t + T1] 
-+ await {out!, u) in [t + Ti, t + T1+1"2]) 

Ohserve that for each process the specification only refers to the process name and the 
channels of the process itself. Then we can take the conjunction of the specifications 
for the parallel composition of these processes. This leads to 

(D <::::: So}li(P1 <::::: Si)ll(P2 ç S2}ll(P3 * 83}ll(V ç 84} 
sat (-.fail{D) at [t -Tv, t +Tv] -+ ipv(t)) 

3 

t\( f\ ...,fail(P;) at [t - Tp, t + Tp] -+ cp;(t)) 
i=l 

A( -,fail(V) at [t - Tv, t +Tv] -+ t,cv(t)) 

To derive ip(t) we consider the following fault hypothesis. 

FH(t) ~ (...,faiJ(D))at [t-Tv,t +Tv] 
l\(3i,j, i :f= j : ( -.fail(.11)) at [t +Tv - Tp, t +Tv+ 2Tp] 

A( ...,fail(Pj)) at [t +Tv - Tp, t +Tv+ 2Tp]) 
1\(-.fail(V)) at [t +Tv -Tv, t +Tv+ Tp + T1 +Tv] 

From the previous specification we can then derive 

(D ç So}ll(P1 <::::: 8i)ll(P2 ç 82}ll(Pa ç 8a)ll(V * 84} 
sat FH(t)-+ 

<pv(t) t\ (Vt1 E [t +Tv, t +Tv+ Tp + T1]: 1Pv(t1)) 
l\(3i,j, i :f: j : (Vto E [t +Tv, t +Tv+ Tp] : ip;(to) /\ 'PJ(to)}) 

To obtain t.p we use the following proposition. 
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Proposition 1.2 
If T1 ;:: Tp + T1 +Tv and Tv+ T1 + T2 :::; T, then 

((3i,j, i ::/; j: (Vt0 E [t +Tv, t +Tv+ Tp] : ip;(to) i\ 'Pj(to))) 
i\ipv(t) i\ (Vt1 E [t +Tv, t +Tv+ Tp + T] : <pv(t1))) 

-+ ip(t) 

Hence by proposition 1.2 we obtain 

(D ~ So)ll(P1 ~ S1)1i(P2 ~ S2)ll(P3 ~ S3)ll(V ~ 84) 
sat F H(t) -+ ip(t) 

provided T1 ;:: Tp + TJ +Tv and Tv + T1 + T2 :::; T. 

• 

Notice that a specification typically is of the format N sat (FH-+ ip). The an
tecedent FH in the assertion is called the fault hypothesis. Because FH is assumed for 
a particular process it is called a local fault hypothesis, as opposed to a global fault 
hypothesis which hold for all processes. A global fault hypothesis is an axiom of the 
proof system, provided it is expressible in the assertion language. 

A fault hypothesis characterizes faults by (c.f. [14]) 

• Duration, i.e. the time when faults occur, how long will the fault be present, etc. 

• Location, i.e. the place where a fault occurs, in which processes, etc. 

• Effect, i.e. the effect of the fault on the behaviour of a process, on program 
variables, etc. 

For instance, the following fault hypothesis asserts that faults are transient 

fail(P) at t -+ 3t'~t( --,fail(P) at t') , 

and another example is the following which relates the occurrence of faults in two 
processors (a fault P1 will propagate within five time units to P2) 

fail(P1) at t-+ 3t':t::;t'::;t+s(fail(P2) at t') . 

In this report we take a first step towards a formal method for designing real-time 
systems with fault tolerance requirements. Our aim is a compositional proof system, 
i.e. is proof system in which the specification of a compound program can be inferred 
from the specifications of the constituent components without referring to the internal 
structure of these components. Compositionality is a desirable property, because it 
enables one to decompose a large specification of a system into smaller specifications 
for the subsystems. As a basis for such a proof system we define a denotational 
(and therefore compositional) semanticst i.e. a semantics in which the semantics of a 
compound program is defined by the semantics of the components independently from 
the structure of these components. 

From the discussion in the preceding paragraphs it is clear that we need a semantics 
that simultaneously describes the following views of a system: 

• Functional behaviour. The functional behaviour defines the relation between 
initia! and final states of a program and its communication behaviour. 
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• Timed behaviour. For real-time systems the time at which a process terminates 
and the time that it communicates is of interest. 

• Fault behaviour. The behaviour of a process in the presence of faults may devi
ate considerably from its behaviour in absence of faults. Therefore we want to 
distinguish the fault behaviour from the correct behaviour. 

It is inevitable to make some assumptions about the fault behaviour of a process when 
defining a semantics. However, by making only very weak assumptions we enforce that 
the assumptions used when dealing with software fault tolerance and indeed many 
of the assumptions for hardware fault tolerance - have to be made explicit by a fault 
hypothesis (cf. [4, 2, 1, 13, 17, 5]). 

The remainder of this report is organized as follows. In section 2, a programming 
language is defined, inspired by OCCAM [9]. We also give an informal explanation of 
the language constructs under the assumption that faults don't occur. In section 3 we 
introduce the computational model, and in section 4 we define the semantics of the pro
gramming language under assumption that faults do not occur. Faults are taken into 
consideration in section 5, where we define the general semantics of the programming 
language. This semantics is essentially the one presented in [3]. Whenever appropriate 
we discuss alternative choices for the assumptions that are implidt in the semantics. 
In section 6 we parameterize the semantics in such a way that it includes the semantics 
of section 5 as a special case by selecting the right parameters. Conclusions are present 
in section 7, where we also discuss some future work. 

2 Programming Language 

To describe real-time systems we use an OCCAM-like programming language, named 
RT. An RT program is a network of sequential processes that communicate over syn
chronous channels. Each channel is directed and connects exactly two processes. Pro
cesses can only access local variables, i.e. variables are not shared between parallel 
processes. Processes have unique names. 

We assume that the following disjunct sets are defined: 

• (x E) VAR, the set of program varia.bles; 

• (e E) EXP, the set of (integer) expressions with free occurrences of program 
variables only; 

• (b E) BOOL, the set of boolean expressions with free occurrences of program 
variables only; 

• (c E) CHAN, a set of channel names; 

• (P E) PID, a set of process names. 
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The formal syntax of an RI' program N is defined by 

Statement S 
.. - skip 1delaye1 x := e 1de1c?x181; 82 I ALTI *ALT 

Alternative ALT 
.. - [Uf=1 bi--> S;] 1 [l]f=l bi; c;?x;--> SïObo; delaye--> So] 

Network N 
.. - (P *' S} 1 Ni Il N2 

If we forget about fa.ults for the moment, and concentra.te on the functiona.l and 
timed behaviour of programs only, we obta.in the following intended mea.ning for the 
programming langua.ge constructs above. 

2.1 Primitive Constructs 

• skip causes no sta.te changes and terminates immediately. Hence, it consumes 
no time. 

• delay e takes exactly Kd + e time units to be executed if e ;::: 0 and Kd ~ 0 time 
units otherwise, but has no other effect. The constant Kd is the minimal amount 
of time needed to execute a delay-statement. 

• x := e assigns the value of the expression e to the varia.bie x. lts execution takes 
Ka. ;::: 0 time units. 

• Communication takes place by synchronous messa.ge passing over directed chan
nels. Because communication is synchronous a process may have to wait until 
its communication partner is ready to communicate. There are two primitives 
for communication: 

- The output statement c!e is used to send the value of e on cha.nnel c. It 
causes the process to wait until the communication partner is prepared to 
receive a value on cha.nnel c. 

- The input statement c?x is similar to the output statement, except that the 
process waits to receive a value on cha.nnel x. If communication takes place 
the received value is assigned to x. 

The actual cornmunication itself, i.e. without the waiting period, takes exactly 
Kc > 0 time-units. 

Instead of using a fixed amount of time for the execution of, for example, the assignment 
statement we could have chosen an interval of time or a function that assigns an amount 
of time to an assignment. These options, however, lead toa more difficult to understand 
semantics, with essentially the same properties. 

2.2 Compound Constructs 

• 81; 82 denotes the sequential composition of the statements 81 and 82. First 81 
is executed, then 82. The total amount of time needed for execution, is the sum 
of the execution times of 81 and 82. Thus, sequential composition itself takes 
zero time. 



• The alternative statement comes in two formats: 

- rn~1 bi-+ s,] 
First the boolean expressions b; are evaluated, which takes Kg > 0 time. If 
all the b; evaluate to false, the statement terminates immediately after the 
evaluation of the guards. Otherwise, nondeterministically one of the bi that 
evaluated to true is chosen and the corresponding alternative S; is executed. 

- [Ü~=l b;; c;?x;-+ S;U bo; delaye-+ So] 
If all the boolean guards evaluate to false execution of this statement takes 
exactly Kg > 0 time units. Otherwise, if bo evaluates to false, the process 
waits until one of communications c;?x, for which b; (i =/= 0) evaluated to 
true, is completed. After this communication, the process continues with 
the execution of the corresponding alternative S;. If bo evaluated to true, 
the execution is as in the previous case, except that the process waits at 
most e time units for a communication. If, after evaluation of the guards, 
e time units have elapsed without starting a communication, the statement 
So is executed. In this case, the process has consumed Kg + e time before 
So is executed. 

• *ALT denotes the iteration of an alternative statement ALT until all the boolean 
expressions in the guards evaluate to false. Because, the evaluation of the boolean 
expressions takes positive time (Kg > 0) only a finite number of iterations is 
possible in finite time. 

• (P {: S} associates the process identifier P with process S. It is nota statement 
that is actually executed or implemented, but it is included to enable us to 
reason over processes by referring to their names. Consequently, this statement 
consumes no time. 

• Ni Il N2 denotes parallel composition. We assume maxima! parallelism, which 
means that each process has its own processor. This ensures maxima! progress, 
i.e. minimal waiting. 

3 Computational Model 

We define explain the computational model that is used in the remainder to define the 
semantics of RT programs. 

The functional behaviour of a program is partially defined by the initia! and final 
states of a program. A state s E STATE assigns to each program variable a value. 
Thus STATE is the set of mappings VAR-+ VAL, where VAL is the set of possible 
values of program variables. We use s(e) to denote the value of expression e in state s, 
even if eis nota variable. The variant (slx H v) of a state sis defined by(='= denotes 
syntactic equality): 

(slx H v){y) = { :(y) 
,x='=y 
, otherwise. 

The communication behaviour, timed behaviour and fault behaviour of a computation 
is described by a mapping u over a time domain TIME. The time domain is dense 
and t 2:: 0 for all t E TIME. Furthermore, TIME is linearly ordered and closed 
under addition and multiplication. TIME includes the values of constants Ka, Kc, 
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Kà, Kf, K 9 , and VAL. For simplicity we assume that TIME is the set of nonnegative 
rational numbers and that program varia.bles are of type integer. The special symbol 
oo ( oo rf; TIME) denotes infinity with the usual properties. 

Let :E be the set of mappings u of type 

[O,t)--> (P(CHANx (VALU {!, ?})) x P(PIDU {X})), 

where t E TIMEU {oo}. Thus for all t E [O,t'}, u(t) is a pair (romm,fai{) with 
comm Ç CHANx ( VALU {!, ?} ) and fail Ç PIDU {X}. We use u(t).romm and u(t).fail 
to refer to respectively the first and the second field of u(t). 

• comm Ç CHANx ( VALU {!, ?} ) defines the communication and timed behaviour. 
The intended meaning of comm at time t E [O, t'} is as follows. 

- If (c1v) E u(t).comm then the value vis being communicated on channel c 
at timet. 

- If (c, !) E u(t).comm then a process is waiting to send a value on channel c 
at timet. 

- If (c, ?) E u(t).comm then a process is waiting to receive a value on channel 
c at timet. 

The waiting for a communication is included in the model to obtain a composi
tional semantica. 

• fail Ç PIDU{X}, X rf; PID. If P E u(t).failthen process Pis behaving according 
to its fault semantics. Otherwise, P is behaving correctly, i.e. according to its 
normal semantica. For programs S to which a name bas not yet been assigned 
by a (P {= S) construct, X is used as a place bolder. The fait.field enables 
one to distinguish between normal behaviour (whenever u(t).fail 0) and fault 
behaviour (whenever u(t).fail =f:. 0). 

The length lul of a mapping u with domain [O, t) is defined as t. 

The meaning of an RT program is denoted by a set Mof triples (M Ç A), where 
Ais the Cartesian product STATE x Ex STATE. Ina triple (s0 , u, s}, s0 denotes the 
initial program state and s denotes the final program state. In case the program does 
not terminate s is undefined. 

We define the initial part of length tof u fort E [O, lul], notation u ! t, as 

" t lu !tl 
(ult)(t') ~ u(t') , t' E [O, t) . 

If t > lul then u ! t is undefined. 

The concatenation uou1 of two mappings uo and u1 is defined by 

luocr11 

(uou1)(t) " 
, if t E [O, luol); 
, if t E [luol, luou11). 



Sequentia! composition SEQ(Mo, Mi) of two models Mo, Mi Ç Ais defined as follows. 

SEQ(Mo,Mi) & 
{(s0,ao,s) E Mol laol = oo} 

U { ( s0, aoa1, s) 1 there exists s1 such that 

(s0,ao,s') E Mo /\ laol =/; oo /\ (s1,a1,s) E M1} 

The SEQ operator is a.ssociative, i.e. 

Proposition 3.1 

• 

4 Normal Semantics 

The semantics of an RT program is typically defined in two steps. First, we define 
the normal semantics of the programming language as described in section 2, i.e. the 
semantics when faults do not occur. This is done by defining the interpretation func
tion M[. J : RT-> 'P{A). Second, in section 5 we define the interpretation function 
Mt[. J : RT-> 'P{A) which defines the general semantics when faults are taken into 
account. The normal behaviour is considered to be a special case of the general be
haviour, i.e. 

M[ S] = {(s0
, a, s) E Mt[ S] 1 O'(t).fail = 0, for all t E [O, lal)} . 

Hence, for all RT programs Sit is guaranteed that M[ SJ Ç Mf[S]. 

4.1 Skip, Delay, and Assignment 

The semantics of the skip-statement is: 

M(skip) & {(s0 ,a,s0)1ial=O} 

The definition of the semantics of the delay-statement and the assignment statement 
should cause no trouble after the discussion in the previous sections. 

M[delaye) ~ 
{(s0 ,a,s0) 1 lal= Kd + max(s0(e),O) 
and for all t E (0, jai) : a(t).comm 0 /\ u(t).fail = 0} 

M[x e] & 
{(s0, a, s) I lal =Ka/\ s (s01x....., s0(e)) 
and for all t E (0, lal) : a(t).comm = 0 /\ u(t).fail 0} 
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4.2 Communication 

Recall from section 2 that communication is synchronous and therefore the behaviour 
of, for example, a send statement can be split into two parts. During the first part, 
the process executing the send statement waits until the communication partner is 
available. If the communication partner eventually is available, which is not always 
guaranteed, the process will continue with the second part, i.e. the communication 
itself. Thus a communication statement can be seen as a sequential composition of 
two smaller processes. 

The normal semantics of the receive statement is defined as the concatenation of 
two models. The first model denotes the behaviour of the process while it is waiting 
for its communication partner (c E CHAN): 

WaitRec(c) ~ 
{(s0,u,8) 1 (lul< oo-+ s0 = 8) 
a.nd for all t E (0, lul) : u(t).comm = {(c, ?)} /\ u(t).fail 0} . 

The second model denotes the hehaviour of the process while the actual communication 
is taking place: 

CommRec( c, x) ~ 
{(s0 ,u,s) 1 lul= Kc 
and there exists a v such that 8 = ( 8° lx 1-> v) 
and for all t E (0, lul): u(t).comm;;:;: {{c, v)} /\ O'(t).fail;;:;: 0}. 

So, the complete normal behaviour of the receive statement is 

M(c?xJ ~ SEQ(WaitRec(c), CommRec(c,x)). 

The normal behaviour of a receive statement is pictured in figure 2. 

comm = {(c, ?)} comm = {(c,v)} 
t--~~~~~~~~t--~~~~-) 

0 

Figure 2: A normal sequence u of a receive statement c?x 

The send statement is defined in a similar way as the receive statement. First the 
hehaviour of the process while it is waiting is defined. Second, the hehaviour during 
the communication itself is defined. Finally, we define the normal hehaviour as the 
concatenation of these hehaviors. 

WaitSend(c) ~ 
{(s0, er, 8} 1 (lul < oo-+ 8° = 8) 
and for all t E [O, lul) : u(t).comm = {(c, !)} /\ u(t).fail = 0} 

CommSend(c, e} ~ 
{(s0 ,u,s) 1 lul 

u(t}.comm 
Kc and for all t E (0, lul} : 

{(c, s0(e)}} /\ u(t).fail;;:;: 0} . 

M[c!e) ~ SEQ(WaitSend(c), CommSend(c,e)) 



4.3 Sequentia! Composition 

The nonnal semantics of sequential composition of two program fragments is simply 
defined as follows. 

M[So; Sd ~ SEQ(M[So],M[Si)). 

Observe that sequentia! composition itself doesn't consume time. Hence, fa.ults occur in 
the component statements only. As a consequence of proposition 3.1, we may conclude 
that sequentia! composition is associative. 

Proposition 4.1 

M[(So; Si); S:d M[ So; (S1; 82)] 

• 
4.4 Guarded Statements 

The alternative statement ALT=. [Of=1 b; -+ S;J is is executed as follows. First the 
boolean guard are evaluated, and if one of the guards evaluated to true, the appropriate 
altemative is executed. The evaluation of the guards takes Kg time units, hut has no 
other effect. 

Guard(ALT) ~ 
{(s0,u,s0) ! lul =Kg 
and for all t E (0, Jul) : u(t).comm = 0 /\ u(t).fail = 0} 

If all the guards evaluated to false the remainder of the statement is skipped. Otherwise 
nondeterministically an appropriate alternative is chosen, and executed. 

Select(ALT) ~ 
{(s0, u, s) 1 there exists ani E {1, ... , n} such that 

s0(b;) /\ (s0 ,u,s) E M[Sd} 
n 

U {(s0 , u, s0 ) l lul = 0 /\ V -is0(b;)} 
i=l 

The complete normal behaviour of the simple alternative statement is thus defined by 

M[ ALT] ~ SEQ( Guard( ALT), Select( ALT)) . 

If ALT= [1Jf=1 b;; c;?x; ...... S;0 b0; delaye-+ S0] there are three possible ways the 
process may continue after evaluation of the guards. 

1. If all the guards are false the remainder of the ALT statement is skipped. 

2. If one of the b; (i =/= O} is true the process waits for an input on one of the c; 
for which b; is true. If bo is true communication has to begin within e time 
units. After the input is received the process continues with the corresponding 
alternative. 

3. If bo is true and the process has not received an input within e time units after 
the guards were evaluated it continues with the execution of So. 
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The first behaviour is defined by 

n 

{{s0,u,s} E Guard(ALT) 1 /\ "s0(bi)} 
i=O 

The second behaviour is defined as the concatenation of three behaviors 

SEQ( Guard( ALT), Wait(ALT), Comm(ALT)) , 

where Guard( ALT) is defined as before and Wait(ALT) and Comm(ALT) are defined 
as follows. 

Wait(ALT) ~ 
n 

{(s0,u,s} 1 ( V s0(b3}} 
j=O 

/\(s0{bo}-+ lul< min(s0(e),O)) /\(lul< oo-+ s0 = s) 
and for all t E !O, lul) : u(t).comm = {(c;, ?) 1 s0 (bi)}} 

Comm(ALT) ~ 

{(s0 , u, s) 1 there exists ani E {l, ... , n} such that 

s0(bi) /\ (s0,u,s} E SEQ(CommRec(c;,:z:.:},M[Si])} 

The third behaviour is also defined as the concatenation of three behaviors 

SEQ(Guard(ALT), TimeOut(ALT),M[SoJ), 

where TimeOut(ALT) is defined as follows. 

TimeOut(ALT) ~ 

{(s0 , u, s} E Wait(ALT) 1 s0(b} /\lul= min(s0{e), O)} 

The complete normal behaviour of this ALT statement is the union of the three be
haviors described above. 

M[ALTB ~ 
n 

{(s0 ,u,s) E Guard(ALT) 1 /\ ...,s0(b;)} 
i=O 

U SEQ( Guard(ALT), Wait(ALT), Comm(ALT)) 

U SEQ( Guard( ALT), Time Out( ALT), M [ So]) 

4.5 Iteration 

We define EB as V?=l bi in case ALT is the simple alternative statement and as Vf=o b1 
otherwise. The semantics of the iteration is defined as a greatest fixed-point: 

M[*ALT] ~ 
vY.( {(s0 , u, s} 1 ...,s0(BB) /\ (s0,u, s) E M[ ALT)} 

U{(s0
, u, s) I s0(BB) /\ (s0,u, s) E SEQ(M[ ALT], Y)}) 

Because evaluation of the boolean guards takes Kg > 0 time greatest fixed-point exists 
and is not empty (cf. [7]). 
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4.6 Networks 

As explained in previous sections, the naming construct is not executed or imple
mented, hut only included to facilitate reasoning over programs. Consequently, it does 
not affect the communication behaviour or the program states. Because in the nor
mal semantics the Jail--field will always be empty, it follows that the naming construct 
has no effect at all with respect to the normal semantics. In section 5 we shall see 
that naming does have an affect to fault semantics, and therefore its introduction is 
justified. 

M({P<:=S)) ~ M[SJ 

The parallel composition operator doesn't consume time. We use var(N) and 
chan(N) to denote the set of program variables in N and the set of channels incident 
with N respectively. Recall that variables are not shared and channels connect exactly 
two processes. 

M(N1 Il N2) ~ 
{(s0, O', s) 1 there exists (s?, u;, s;) E Mt[ N;] such that 

10'1 = max(lu1l, lu21) 

} 

!\(x E var{N;)-> (s0(x) = s?(x) !\ s(x) s;(x})) 

!\(x !/. var(Ni, N2) -> s(x) = s0(x)) 

and for all t E [O, lul), c E CHAN, and v E VAL : 

u(t).comm = u1(t).comm U u2(t).comm 

Au(t).Jail = ui(t).failU u2(t).Jail 

Alu(t).comm n {(c, ?), (c, !), (c, v)}I ~ 1 

A { if c E chan(N1) n chan(N2) 
then (c,v) E u1.comm...., (c,v) E 0'2.comm 

(1) 

(2) 

(3) 

It easily seen that parallel composition is commutative. Associativity follows from the 
fact that channels connect exactly two processes. Hence, the following proposition. 

Proposition 4.2 

M[N1 Il N2] 
M[(N1 Il N2) Il N3) 

M[N2 Il Ni) 
M[N1 Il (N2 Il Na}] 

• 
Notice that (1) ensures that a process can affect only its local variables and that (2) 

is the maxima} progress assumption. Condition (3) corresponds with regular commu
nication. 

5 Genera! Semantics 

The general behaviour can be partitioned into the normal behaviour and the fault 
behaviour that describes the behaviour if a fault occurs. This is best illustrated by the 
definition of the semantics of the assigument statement. First we define the normal 
semantics M[ x := e ]. Then we apply a function FAIL: 1'(6.)-+ 1'(Ll) to M[ x := e ], 
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which transforms the normal behaviour into the fault behaviour. Finally we define the 
genera! semantics Mt[ x := e J as the union of the normal behaviour and the fault 
behaviour. 

Let M Ç il, then FAIL is defined as föllows 

FAIL(M) ~ 
{(s0 ,u,s) 1 

there exist (s0,u1,s1
) E Mand t E [O,min(iul - K1, lu11)} 

such that u ! t = u' ! t and for all t' E [t, lul) : u(t1).fail = { X}} 

For a program S, FAIL( M [ S)) defines the same behaviour as M [ S] up to a point in 
time where a fault occurs and after that the program may exhibit arbitrary behaviour. 
For instance it may never terminate (see also figure 3). The definïtion ensures that 
there is a fixed lower bound KI on the period of time during which a process fails. We 
wiU motivate this decision when we discuss the the semantics of the iteration statement. 

Proposition 5.1 

(a} FAIL(M} 0 ~ for all (s0 ,u,s} E M: lul 0. 
(b) for all (s0,u,s) E FAIL(M): lul> K1 

u !(t) fail= {X} 
\, 

/' 

0 t 

Figure 3: A sequence u of a failing computation 

• 

I 

Part (a) of proposition 5.1 expresses that if, and only if, the executions in M don't 
consume time they cannot fail and therefore FAIL(M) is empty. Part (b) expresses 
that the minimal length of the mappings of all executions in FAIL(M) is at least K 1 
. As a consequence all computations in FAIL(M) take at least K1 time. 

5.1 Skip, Delay, and Assignment 

Because executing a skip-statement takes no time, its execution can not fall. Therefore 
FAIL(M[ skip B) is empty (see proposition 5.1). Hence, the genera! semantics is equal 
to the normal semantics. 

Mt[skip) ~ M[skip] UFAIL(M(skipj) 

M[skip) 

The definition of the delay and the assignment statement are according the pattern 
described in the introduction of this section. 

Mt[delaye) ~ M[delaye)UFAIL(M[delaye]) 

Mt(x := e] :è M[x := e) UFAIL(M[x := e)) 



5.2 Sequentia} Composition 

Sequential composition itself doesn't consume time. Therefore, faults occur in the 
component statements only. 

A possible way to define the general semantics of sequential composition is to use 
the FAIL function as we <lid for delay-statement, hut there are reasonable alternatives 
to consider. 

1. Using the FAIL function in the same manner as in the definition of the assignment 
statement leads to the following definition. 

MÎ[So; Si) ä M[So; Si]UFAIL(M[So; Si)) 
= FAIL(M[So])USEQ(M[S0 ),Mt[Si}}. 

This alternative implies that once a process fails it remains failed. Note that the 
definition only depends on the normal semantics of the components. 

2. It is also possible to assume that if a failing process terminates it will continue 
with the next statement: 

Notice that each of these definitions results in a compositional semantics, because 
M ( S] can be defined in terms of Mt [ S B for all statements S in RT. 

Each of the alternatives ensures that sequentia} composition is associative. 

Proposition 5.2 

• 
The following proposition relates the behaviors defined by these alternatives for a given 
program fragment S. 

Proposition 5.3 

• 
5.3 Communication 

For the general semantics of the communication statements we have similar options as 
in case of sequentia} composition. We give three reasonable alternatives. 

1. The first alternative is our standard approach for the primitive constructs. 

Ml[ c?x J ~ M( c?x JU FAIL(M[ c?x ]) 

If the process fails during the waiting period and eventually terminates, it skips 
the communication part. Observe that while the process is still failing it may 
attempt to communicate because we don't want to make assumptions about the 
behaviour of a failing process. 
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2. Alternatively, it is possible to assurne that if the process fails while waiting, it 
rernains failed until cornrnunication succeeds. This rnodels an execution mecha
nisms with a reliable communication channel. 

M~[c?x) ~ 
M[ c?x] U SEQ(FAIL(WaitRec(c)), CommRec(c,x)) 

3. If one does not assume a reliable communication channel then a process that 
fails while waiting but does not remain failed, may thereafter attempt to com
municate. Thus a successful communication is not guaranteed. The possibility 
of failing or not failing during the waiting period and the actual communication 
is modelled by WaitRect(c) and CommRect(c,x) respectively.· 

WaitRect(c) 
CommRecf(c,x) 

~ WaitRec(c) U FAIL( WaitRec(c)) , 
~ 

CommRec(c, x) U FAIL( CommRec(c, x)) . 

The general behaviour of the receive statement is in this case 

We prefer to use the third alternative for two reasons. One reason is that we don't want 
to assume a reliable communication channel. The other reason is that third alternative 
defines the less restrictive behaviour in case of a fault. 

For the same reasons as in case of the receive statement we define the general 
behaviour of the send statement by 

Mf[c!e) ~ SEQ(WaitSenttf(c), CommSentP(c,e)), 

where WaitSentP ( c) and GommSentP ( c, e) are defined as follows. 

WaitSenttf (c) 
CommSenttf(c,e) ~ 

WaitSend(c) U FAIL(WaitSend(c)), 
CommSend(c,e) U FAIL(CommSend(c,e)). 

5.4 Guarded Statements 

We consider two possible definitions of the general semantics of the simple alternative 
statement. 

1. The first possible definition is obtained by simply applying the FAIL function. 

MÎ[ ALT] ~ M[ ALT) u FAIL(M( ALT)) . 

The disadvantage of this definition is that it does not discriminate between the 
occurrence of a fault during the evaluation of the guards and the occurrence of 
a fault in one of the constituent statements: both faults cause the fault of the 
whole alternative statement. 



2. The second possibility is 

Mi[ ALT)~ 
M( ALT) u FAIL( Guard( ALT)) 

U SEQ(Guard(ALT),FAIL(Select(ALT))) 
n 

U LJ SEQ(FAIL(Guard(ALT)),Mf[S;)} 
i=l 

Where Mt[SJ MilSJ in case S =ALT. This definition doesn't have the 
disadvantage of the previous one. 

Because M1( ALT) Ç Mi (ALT) we prefer the second definition. 

To understand the definition of the genera.l semantics below, one must consider the 
places where a fault may occur while executing the ALT statement. We start near the 
end of the statement. 

I Suppose either a fault does not occur until the execution of one of the alternatives, 
or a fa.uit occurs while the process is communicating. If the fa.uit behaviour is 
finite the process may skip the remainder of the ALT statement or continue with 
the execution of one of the alternatives which of course may also result in a fault. 
This possibility is captured in the following definition. 

SEQ(Guard(ALT), Wait(ALT), Commt(ALT)) 

u SEQ( Guard( ALT), TimeOut(ALT), Mt[ So)) 

Where Commt (ALT) is defined as follows. 

Commt(ALT) ~ 
{(s0 ,cr,s) 1 there exists ani E {1"" ,n} such that 
s0(bi) A (s0,cr,s) E SEQ(CommRect(Ci,x;),Mt(Si))} 

II Suppose a fa.uit occurs while the process is waiting to communicate. lf the fa.uit 
behaviour if finite the process may continue with any of the communications or 
a.lternatives for which it was waiting (i.e. those for which the guard eva.luated to 
true). Of course each of these continuations may again lead to a fa.uit. So we get 

SEQ(Guard(ALT), Waitt(ALT)), 

where Waitt(ALT) is defined by 

Waitt(ALT) ~ 

{( s0, er, s) 1 there exist s1
, uo, and cr1 such that 

er= crocr1 /\ (s0,uo,s') E FAIL(Wait(ALT)) 

A((s0(bo) A (s',u1 ,s) E Mt(So)) 
V(there exists ani E {1" .. , n} such that 

s0(b;) /\ (s',ui,s) E CommRect(ALT)))}. 

111 Suppose the fa.uit occurs during the evaluation of the boolean part of the guards. 
In this case the process may wait for an arbitrary communication for an arbitrary 
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period of time, or it may exit the alternative statement immediately. This results 
in the following behaviour. 

SEQ(FAIL(Guard(ALT)), Wait(ALT), Commt(ALT)} 

u SEQ(FAIL( Guard( ALT)), TimeOut(ALT),Mt( So)) 
U SEQ(FAIL(Guard(ALT)), Waitf(ALT)) 

n 

U {(s0,<7,s) E FAIL(Guard(ALT)) 1 /\ ...,s(bi)} 
i=O 

The general semantics of the ALT statement is the union of the normal semantics and 
the semantics given in I-III ahove. 

5.5 Iteration 

We consider two possible definitions for the genera! semantics of the iteration construct. 

1. Using the FAIL function gives the simplest definition. 

MÎ[ *ALT] ~ M[ *ALT] U FAIL(M[ *ALT)) 

If a fault occurs the process will remain failed until the complete statement ter
minates. However, we want a definition that discriminates between, for example, 
a single fault in one pass of the iteration and two consecutive passes with a fault. 

2. A definition that does discriminate between the above mentioned cases, and also 
between the place where a fault occurs is 

M~(*ALT) ~ 
vY.( {(s0,u,s) l ...,s0(BB) A (s0 ,u,s) E M(ALT)} 

u{(s0,<7,s) E SEQ(Mt[ALT],Y) l s0(BB)} 

UFAIL( Guard( ALT))) 

Where Mt[sj M~[SJ in case S =*ALT. This definition allows a process to 
continue or exit the loop due to a fault. The existence of the greatest fixed-point 
follows from the fact that there is a lower bound min(Kf, K 9 ) on the amount of 
time a failing processes must consume (proposition 5.1). 

For the reasons mentioned above, we prefer to use the second definition. 

5.6 Networks 

As explained in section 4 the naming construct itself doesn't introduce new faults. 
However it does have an affect on the fault behaviour of a process, and consequently 
on the genera! semantics of a process. 

Mf[ (P <= S) J ~ 
{(s0,u,s) 1 there exists (s0,u',s) E Mt[SJ such that 1<71 = Jq'I 

and for all t E [O, lul) : u(t).comm = u'(t).comm 

A(u(t).fail = 0 +-+ u'(t).fail = 0) 
A(u(t).fail = {P} +-+ u'(t).fail #- 0)} 



The definition of the genera! semantics of a network is almost the sa.me as for the 
normal semantics. 

Mf[N1 Il N2) ~ 
{(s0,u,s) 1 there exists (s~,u;,s;) E Mf[N;] such that 

lul= ma.x(lu1I, lu21) 

} 

A(x E var(Ni)-+ (s0 (x) = s~(x) /\ s(x) = s;(x))) 

/\(x rf; var(Ni,N2)-+ s(x) s0(x)) 

and for all t E [O, lul), c E CHAN, and v E VAL : 

u(t).comm = ui(t).comm U u2(t).comm 

/\O"(t).fail = u1(t).failU u2(t).fail 

Aiu(t).comm n {(c, ?), (c, !), (c, v)}I :5 1 

/\ { if c E chan(N1) n chan(N2) 
then (c,v) E u1.comm-(c,v) E u2.comm 

(4) 

(5) 

(6) 

The assumptions (4) (a process can only affect its local variables), (5) (maxima! 
progress), and (6) (regular communication) can be weakened for failing processes, 
simply by replacing them with 

u(t).fail = 0-+ (4) /\ (5) /\ (6) . 

This tra.nsformation affects commutativity nor a.ssociativity of the parallel composition 
operator. 

6 Parameterization of the Semantics 

In this section we reconsider the definition of the F AI L function that was introduced 
in section 5. We define a new function PFAIL that is similar to the FAIL function, 
except that it has two parameters. In this way we obtain a parameterized semantics 
in which the previously defined semantics is included. The parameters provide an easy 
way of adapting the semantics to a large class of fault hypothesis. 

Consider the partitioned network of three processes in figure 4. The network 
consists of two processes P1 and P2 which are connected by the channel c, and a 
single (stand-alone) process P3. Suppose each process only executes a single delay
statement. Now, if a fault occurs in Pa it is possible that the communications between 
P1 and P2 are affected by this fault. Although such a situation may arise in practice, 
it is a correlation of fä.ults one may want to exclude in the fault hypothesis (e.g. when 
dealing with software fault tolerance). 

A simple way of incorporating fa.uit hypothesis about which channels and varia.bles 
can not be affected by a fault during the execution of a statement is provided by 
including two parameters in the semantics. The two parameters appear only in the 
definition of PFAIL: 

PFAIL: ('P(A) x 'P( VAR) x 'P( CHAN)) -+ 'P(A) 

PFAIL(M, V,G) :è 
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Figure 4: A partitioned network 

{(s0 ,u,s) 1 there exists (s0,u1,s') E Mand 

} 

t E [O, min(IO'I - KJ> lu'I)) such that 

u !t = u' !tand for all x E V: s0 (x) = s(x) 

and for all t' E [t, lul) : 
u( t').fail { X} 
and for all c E G and v E VAL: 
O'(t').comm n {(c, !), (c, ?), (c, v)} 
= 0'1(t').comm n {(c, !), (c, ?), (c, v)} 

Thus V defines the set of protected varia.bles that can not be affected by a fa.uit. 
Similarly, C defines the set of protected channels t~t can not be affected by a fa.uit, 
i.e. the communication behaviour is the sa.me until the execution terminates. However, 
this does not guarantee that a communication statement is always successful, because 
the statement may be aborted before communication is completed. 

• The FAIL function can be defined in terms of the PFAIL function 

FAIL(M) = PFAIL(M,0,0); 

• It is possible to define statements <l S I> t~t are executed successfully, or behave 
correctly until a fa.uit occurs in which case the original va.lues of the varia.bles are 
restored when a fault occurs 

Mt[ <JS 1> J ~ M(S) u PFAIL(M(SJ, VAR, CHAN); 

• One may choose to use different parameters, depending on the statement for 
which the semantics are defined, e.g. a fault while executing the statement S can 
only affect varia.bles and channels that occur in S. For insta.nee, the assignment 
statement can be defined by (chan(x := e) 0) 

Mt[x := e) ~ M[x := e] 
U PFAIL(M( x := e ], VAR - var(x := e), 

CHAN- chan(x := e)) 

The use of parameters imposes a condition on the assertion language. It is required 
that corresponding fault hypothesis is expressible. 
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7 Discussion 

We have taken a first step towards a formal method for specifying and verifying real
time systems in the presence of faults. A compositional semantics has been defined 
together with many alternative definitions. The semantics is defined such that only 
very weak assumptions about faults and their effect upon the behaviour of a program 
are made. In this way it is ensured that a proof system that takes this semantics as 
a basis for its soundness will include few hidden assumptions. Therefore, if one uses 
such a proof system to verify a real-time system, almost all assumptions about faults 
will have to be made explicit. 

The semantics is compositional which eases the development of a compositional 
proof system, thereby making the verification of larger systems possible. In section 1 
we discussed a small example to illustrate what a proof system might look like. Based 
upon the semantics defined in this report, we are currently developing a compositional 
proof system using a real-time version of temporal logic. Future work also includes the 
design of a proof system that is more like the conventional Hoare-style proof system 
with pre- and postconditions for sequential programs. 

In our semantic definition, faults may affect any channel or local variable. For 
instance, a fault in a processor may affect any channel in the network, including those 
that are not connected to the failing processor. This is justified by our philosophy that 
we want to make only very few (and weak} assumptions about the effect offault within 
the model itself. A first study, however, shows that it is possible to parameterize the 
semantics by function that restrict the set of variables and channels that might be 
affected by a fault during the execution of a statement. 
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Abstract 

We study exception handling as it occurs e.g. in ADA, aiming at an algebraic 
characterization. We take Bergstra and Klop's Algebra of Communicating Pro
cesses (ACP) as our starting point and equationally define strong bisimulation for 
ACP extended with exception handling primitives. This theory is then applied 
to showing fault tolerance under an explicitly stated fault hypothesis of a system 
that is made more fault resilient by applying dynamic redundancy. 

1 Introduction 

Exception handling has received scant algebra.ic treatment. In fact, {HH87] and [Dix83] 
are the only papers that we are aware of tha.t touch on this topic. In [HH87], the 
interrupt construct of [Hoa85], P~Q, is utilized to express recovery from errors or 
exceptions. In [Dix83] the term exception is used for Hoare's interrupt construct. The 

construct satisfies the following SOS rules: YQ ~ P'~Q provided P P' and 

P~Q Q' just in case Q ~ Q'. I.e" execution of P can alwa.ys be interrupted 

by the first action of Q. If t is a symbol standing for an error, then associating an 
error handler Q for this error to process P is done by P~(t -+ Q): if one a.ssumes 
that P does not genera.te t, then in a. process t Il (P~(t -+ Q)), in which the leftmost 
process specifies the error hypothesis that at most one error may occur while P or Q 
is executing, the handler Q can interrupt P only if the error actually occurs (Hoare's 
parallel operator imposes synchroniza.tion on common actions.) 

Admirably though this approach fits their purpose, we fee! there is room for im
provement. Let us write P <-+ Q for a.ssociating an exception handler Q to a process 
P. Now, what should this construct satisfy? Authoritative answers to this question 
can be found in [Ada83, Cri85, LS90]: 

1. In a process (P <-+ Q) <-+ Q only the inner handler Q should be activated by an 
exception during execution of P so that a second exception occurring while Q is 
active can still be caught by the outer handler. 

2. If the process P in P '-+ Q raîses an exception, then Q ought to handle this 
exception if it can. 

*NWO/SION project "Research and Education in Computer Science (REX)." 
tNWO/SION project "Fault Tolerance: Paradigms, Models, Logies, Construction." 
fESPRlT project: "Building Correct Reactive Systems (REACT)." 
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Now, P~(t -> Q) as an implementation of P <-+ Q fails on both counts: exception 
handlers need not be invoked innermost first; if P raises the error tint 11 (F\t-> Q)) 
then it can not be handled by Q, and therefore it ought to be handled by a parallel 
process. 

Another issue that we address is the algebraic treatment of failure due to unrecov
erable errors. Such failures we want to be visible. 

In this paper we propose to extend aprACP [BK84]1 to aprACPE with an excep
tion handling construct that does satisfy the three earlier conditions. Furthermore, 
a recovery operator is introduced, which interprets the occurrence of certain actions 
as errors. Recovery from errors is described in terms of the synchronization merge of 
aprACP, i.e., the occurrence of an error requires synchronization with a corresponding 
action, a so-called handler, otherwise a failure occurs which gives rise to uncontrolled 
behaviour of the system. One of the main difficulties of a proper algebraic treatment of 
failure is the asymmetry between errors and their corresponding handlers: an error is 
an autonomous action whereas handlers are only activated when an error occurs. This 
asymmetry is analogous to the one between asynchronous send and receive actions, 
and between synchronous put and get actions [BW90]. However there is an impor
tant difference between the occurrence of an error, on the one hand, and synchronous 
put and asynchronous send actions, on the other hand: an error has to synchronize 
with a corresponding handler, otherwise a failure occurs, whereas a synchronous put 
or asynchronous send action is completely autonomous. 

The language and an axiomatization of strong bisimulation is presented in Section 2. 
In Section 3 we turn to an example due to Peleska [Pel91]. A simple transformational 
process P is made more fault resilient by putting two copies of P in an arbitration 
protocol. The fault resilient version equals P under the fault hypothesis that the time 
interval between errors is large enough. Some conclusions are presented in Section 4. 

2 aprACPE and its Axiomatization 

2.1 Language and SOS 

Let A be an alphabet of actions. We have a, b, ... E A. We assume two more actions 
disjoint from A: b and ..l; the former denoting inaction and the latter indicating the 
occurrence of an unrecoverable exception. Elements of A U { b, ..l} are denoted by 
a,(3, .. .. 

The grammar in Table 1 specifies the syntax of process terms of aprACPE (we treat 
the left-merge ·IL· and the communication merge ·I· of aprACP as auxiliary operators.) 
By convention, prefixing (a·) binds strongest, then comes <-+, then + and finally Il· 
The behaviour of aprACPE-terms is described in Table 2. Some of the SOS rules have 
negative premises, so there is a question of well-definedness. However, the rules are all 
in GSOS format, hence stratifiable, so that they define a proper transition relation on 
the process terms [Gro90]. 

We have the following definition of bisimulation: 

2-1 DEFINITION (Bisimulation). Two process expressions x and y are bisimilar, no
tation: x ~ y, if and only if there exists a relation R on process expressions such that 

x R y and whenever x' R y1 then for every a E A if x' __!!:__. x" then y' __!!:__. y11 for some 

11.e., ACP with action prefixing instead of sequential composition. 
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x .- ó 1 ..1 1 a·x (a EAU { ó, ..1}) 

x+y 1 xlly 

x<-+y 

8H(x) (HÇ A) 

'RH(X) (H Ç A) 

Table 1: Process terms 

y11 such that x 11 R y11 and vice versa; and also if x 1 __:!:_,. x 11 tben y' __:!:_,. y11 for some 

y11 and vice versa. 

lt should be noted that in the above definition in case of the occurrence of a failure the 
resulting processes are not required to be bisimilar. As a consequence the behaviour 
of a process becomes uncontrollable after the occurrence of a failure. 

Since the SOS rules are obviously well-founded, we obtain that bisimulation is a 
congruence for the operators in Table 1 (Theorem 4.4 in [Gro91].) 

The rules for ..1, a·x and + are as should be expected. In aprACP, the parallel opera
tor is modelled as interleaving plus synchronization, where synchronization is described 
in terms of a communication function · I · E Act U { ó, ..1} x Act U { ó, ..1} -t Act U { ó, ..1}. 
The encapsulation OH(·) prohibits any action in H to occur and, hence, is similar to 
the CCS restriction [Mil89]. The process x<-+y resembles Hoare's xy in that y ma.yin
terrupt x anytime, hut is dissimilar w.r.t. one essential point: control may only transfer 
toy through executing an initial action of y that x cannot perform. E.g., the process 
a·Ó <-+ a·b·ó admits only one sequence of transitions: 

a a b 
(a·Ó <-+ a·b·li) --+ (ó <-+ a·b·ó) --+ b·ó --> ó . 

We stress that in x <-+ y, activation of y is not subject to any other constraints. At 
the end of this subsection we shall see how to enforce that exception handlers can be 
activated by the occurrence of an error only. Given an action a the set of handlers of 
a, i.e" those actions b such that alb E A, is denoted by af. We assume that af n lf = 0 
if a '# b, i.e. a recovery action b can recover a particular type of exception actions only 
(viz. the unique action a such that b E af.) The recovery operator 'RH(-) interprets the 
execution of an action a E H as the occurrence of an error which raises an exception 
handled by an action in af. The result of the recovery of an error generated by an 
action a by a handler b fora is indicated by alb. Unrecovered actions are indicated by 
..1. As an example consider the process 'R{a}(x), where x = (a·Ó <-+ b·y) Il b·z, with ba 
handler of a. The occurrence of ais interpreted as an error, which can be handled by 
either b·y or b·z: we have both 

and 

alb 
'R{a}(x)---+ y Il b·z 

alb 
'R{a}(x)---+ (ó '-+ b·y) Il z. 

Thus we see that an error generated by a process is broadcasted so that it may raise an 
exception in any (hut only one) process of the system. In this way, fault hypotheses, 
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a # f; and aifJ # ó 

Fail ..L ___:!:__. é 

+ and Il are commutative 
..L 

..L·x ---> f; 

Prefixing 

Choice 

Merge 

Exception Handler 

Encapsulation 

Recovery 

a 
x--;. y 

a 
a·x--;. x 

x z 

x+y z 

a 
x--->z 

xll Y 

a 
X--->Z 

x <-+ y z <-+ y 
a 

x--->y (altH) 

OH(x) ~ OH(Y) 

a {J 
X--->'U y--->V 

al{J 
xlly----->ullv 

x<-+y 

a 
y--->z 

z 

b 
x y y----> z (a E H, b E al-) 

(a'I. H) 

'RH(x) ~ 'RH(Y) 

Table 2: SOS rules for aprACPE 

which are used to specify relative to what fault scenarios the systems is fault resilient, 
can be described as a parallel process. (see Section 3 for an example.) The scope 
within which an error or exception must be caught is determined by the recovery 
operator. E.g" in the process 'R{a}(a·é <-+ b·y) Il b·z, the error a can only be caught by 
the handler b·y. The autonomous character of an error can be best illustrated by the 
following example: consider the process x = a·Ó + (a·Ó <-+ b·y). Then 

..L 
'R{a}(x) ---> 8 

is a possible transition because the error generated by the left summand cannot be 
recovered. So, once an error occurs other alternatives are disregarded. 

An exception handler that is activated only if an error occurs can now be modelled 
as 

8{b} o 'R{a}(p <-+ b·q) , 

with b E <lf (alb # b). Thus we model exception handling analogously to the ACP 
treatment of concurrency: first, freely generate all potentially possible executions and 
then restrict this set to the actual ones. 

2.2 The Axiom System 

The axiomatization is an extension of the usual axiomatization of aprACP which con
sists of all the axioms of Table 4 and Table 3 hut for the axioms concerning ..L: ..L ·x = ..L 
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and al.L = .L. 

x+y y+x 

(x+y)+z = x + (y + z) 

x+x = x 

x+ê x 

ê·x ê 

.L·x .L 

Table 3: aprBPA6,.L axiomatization 

x llY = xll_y + yll_ x + xly 

(a·x) IL y = a-(x Il y) 

(x+y)ll_z xll_z + yll_z 

a·xl,B·y = {al,B}·(x Il y) 

(x +y)lz xlz+ylz 

xl(y+z) xly+xlz 

al,B .Bla 

al(.817) (alf1)h 

alê = ê 

al.L = .L Cl'. =F ê 

8H(a·x) = ê aEH 

OH(a·x) a·8H(x) arf.H 

ÖH(X +y) aH(x) + aH(Y) 

Table 4: Merge and encapsulation 

Tables 5 and 6 extend these axioms. The combined set of equations is also denoted 
as aprACPe. The way · <--+ • is axiomatized is analogous to that of the merge. We 
introduce auxiliary operators that force the left (right) process to move first, thus 
allowing choices to be resolved. Two auxiliary operators are needed here because · <--+ • 



56 F.S. de Boer, J. Coenen, and R. Gerth 

is not commutative. As an example, consider the following derivation (a :/= b): 

(a·li <-t b·y) <-t b·z 

(a·li tt--> b·y + a·li ._ b·y) <-t b·z 

= (a(li <-t b·y) + (a·Ó + 6) ._ b·y) <-t b·z 

(a(6......, b·y + /j ._ b·y) + 6 ._ b·y) <-t b·z 

= (a(li + b·y) + b·y) <-t b·z 

(a·b·y + b·y) <-t b·z 

(a·b·y + b·y)......, b·z + (a·b·y + b·y) ._ b·z 

(a·b·y tt--> b·z + b·y......, b·z) + (a·b·y + b·y) ._ b·z 

(a(b·y <-t b·z) + b·(y <-t b·z)) + 6 

a(b·y......, b·z + b·y ._ b·z) + b-(y <-t b·z} 

= a-(b(y <-t b·z) + 6) + b(y <-+ b·z) 

a·b(y <-t b·z) + b(y <-t b·z) 

The left summand of the conclusion of this derivation describes the situation that after 
a the handler b·y is activated, whereas the right summand descrihes the immediate 
activation of the handler b·y. Note that the handler b·z can only be activated after b 
is executed. 

X<-t y xtt-->y+x'-+>y 

(x + y)......, z x ......, z + y ......, z 

a·x tt--> z a·(x <-+ z) 
/j ......, x 6 

.l......, x .l 

X'-+> (y+z) (x'-+>y)+(x'-+>z) 

(a·x + y) ._ f3·z 6 a=f3 

(a·x + y) ._ f3·z = y'-+> f3·z (X =!= fJ 
Ó'-»X = x 

Table 5: Exception handler 

The recovery operator resembles the state operator [BW90]. After ha.ving seen 
an a E H action, the operator changes its behavior: the operator 'R'f; searches for a 
handler fora, which then is transformed into alb, in case such a handler cannot be 
found .l is delivered. 

2.3 Soundness 

To prove soundness of the axiom system we define a model for the language which 
associates with each process a labelled transition system. A labelled transition system 
is a triple (S, A,---+) consisting of a set of states S, a set of labels A, and a transition 

relation ---+ Ç S x A x S. We will use a representation of transition systems in non

well-founded set theory ([Acz88].) The techniques underlying the model construction 
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Rn(a·x) 

RH(a·x) 

RH(x+y) 

R'k(b) 

R'H(b·x) 

R'H(a·x) 

R'ff(..L + x) 

RH(b·x+y) 

RH(b·x + c·y + z) 

Left Handler 

Right Handler 

Handler-Search 

a·RH(x) art H 

R'1(x) aEH 

'RH(x) + 'RH(Y) 

..L 

(alb)·RH(x) b E of 

= ..L a (/of 

..L +RH(x) 

= R'k(y) b rt of 
(alb)·R'fr(x) + RH(c·y + z) b,c E of 

Table 6: Recovery 

a 
x--+y 

a x.,__,z--+y<-+z 
a a 

y--+z x....::::;. 
a x.__...y--+z 

b 
x--+ y (b E of) 

alb 
'RÏI(x)--+ 'RH(Y) 

x 4 {VbE of) 
..L 

'RÏI(x)--+b 

Table 7: SOS rules for the auxiliary operators 

• 

are taken from [Rut92]. One of the advantages of this new approach is that the model 
is defined directly in terms of the SOS. Given that the SOS is well-founded and in 
GSOS format so that bisimulation is a congruence, we then can prove soundness of 
the axioms without having to define explicitly the semantic operators corresponding 
to the operators of the language. 

First observe that we can associate SOS rules to the auxiliary operators that were 
used; see Table 7. These rules, too, are in GSOS format and are well-founded. In other 
words, bisimulation is a congruence for all operators, including the auxiliary ones. 

2-2 DEFINITJON. Let P be the Jargest class satisfying 
P = P(AJ_ x P). 

(Here AJ_ =AU {..L}.) 

Formally, P is obtained as the largest fixed-point of the class operator <[> that 
assigns to every class X the class P(AJ_ x X), i.e., the class of all subsets of AJ_ x X 
(see [Rut92].) 

2-3 DEFINITION. Let M E aprACPE -+ P be def:ined as foilows: 

M(x) = {(a,M(y)) 1 x y} 

57 
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This recursive definition can be justified by an application of the solution lemma 
according to which systems of equations of a certain class have a unique solution in 
non-well-founded set theory [Acz88]. We have the following theorem: 

2-4 THEOREM. For any processes x and y we have 
x ~ y {::} M(x) = M(y). 

For a proof of this theorem we refer to [Rut92]. Since we know that ~ is a con
gruence, it suffices for proving soundness to show that for any axiom x = y we have 
M(x) = M(y). 

2-5 THEOREM (Soundness). For any two processes x and y 
aprACPE 1- x = y implies x ~ y 

As explained above we need now only to inspect the individual equations. We treat 
the following case: x <-+ y = x «---> y + x '---* y. 

M(x <-+ y) 
a 

{(a,M(z)) 1 x<-+y---+z} 
a a a 

{ (a, M(x' <-+ y)) 1 x ---+ x'} U { (a, M(y')) 1 x __:::;..., y ---+ y'} 

M(x «---> y) U M(x '---* y) 

M(x «---> y + x '---* y) 

Finally we note that every guarded recursive (process) equation has a unique solu
tion in P (see [Rut92].) For example, the equation x = a·x is interpreted in non-well
founded set theory as x = {(a,x)}. Let 7r(x) be the unique solution of x. Since Pis 
the largest class satisfying the equation used for its definition we have that 7r(x) E P. 

2.4 Completeness 

We first prove an elimination lemma. Let, aprBPA6,.L be the axiom system of Table 3 
for basic processes, i.e., processes formulated in the signature { 8·, a·, ..l·, · + · 1 a E A}. 

2-6 LEMMA (Elimination). For any x E aprACPE there is a basic process y such that 
aprACPE 1- x = y. 

Using the axioms we can eliminate all the operators but prefixing and choice starting 
from the innermost one and "working our way up". 

The completeness then follows from the completeness of aprBPA6 .L ( which is a trivial 
extension of the completeness theorem for aprBPA6) and the above ~oundness theorem: 
let x ~ y, according to the above lemma there exists basic processes x' and y' such 
that aprACPE 1- x = x' and aprACPE 1- y = y'. By the soundness theorem we have 
that x ~ x' and y ~ y', so x' ~ y'. From the completeness of aprBPA6 .L it then follows 
that aprBPA6,.L 1- x' = y', and thus aprACPE 1- x = y. ' 

3 A distributed fault-tolerant system 

In order to achieve a higher degree of reliability, a fault-tolerant system must exploit 
some form of redundancy. In the example below, which is very much inspired by 
Peleska's fault-tolerant system [Pel91], a system P is duplicated and embedded in 
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a protocol that ensures correct behaviour despite the presence of fäults. We have 
modified Peleska's original system in order to preserve correctness under a larger class 
of fault scenario's. Nevertheless we will refer to this system as Peleska's system. 

In this section each exception can be recovered by one action only, i.e. lail = 1 for 
all a E A. Therefore, in this section we simply write ai instead of the unique action 
b E ai that recovers at, for all at E a. 

Peleska's system is built around two duplicates P1 and P2 of the basic system P 
in table 8. The basic system inputs a value x on channel a and then computes the 
value <,o(x), which is output on channel b. It is assumed that all values are within a 
ûnite data domain D, and that <p : D --+ D is a function on D. Any system that 

E a(x)·b(<,o(x})·P 1 

IDED 

Table 8: Basic system 

satisfies the equation of the basic system, can be systematically transformed into a 
more resilient system T that is weakly bisimilar with P; i.e., a system that is bisimilar 
if we abstract from internal actions. This implies that for many applications one may 
simply replace P by system T. 

The transforined system T consists of six components RPi, RP2, Qi, Q2, RRi, 
and RR2 (see Figure 1.) Components RP1 and RP2 are restartable (see e.g. [Pra84, 

h 

RP1 

a Q2 b 

. . ·-------·-·-------·········------------------------------·------··--·-----------· 

Figure 1: Fa.uit-tolerant system T 

Pra87, HH87].) A restartable system can be defined with the exception handler of 
aprACPE. For example, in Table 9 a restartable version RP of the basic system P 

59 
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Table 9: A restartable system 

is defined. The restartable system RP behaves like the basic system P, until the 
exception y is raised after which it is restarted. Components RP1 and RP2 are defined 
slightly different because they operate in a master-slave configuration. Initially RP1 
is the active master until a fault is detected in P1 (signalled by exception zit-_) Upon 
detection of the fault RP1 is de-activated and RP2 takes over, thereby switching the röle 
of master and slave. If a fault is detected in P2 (signalled by exception z2't) process RPi 
takes over again. As a matter of fact this is an example of a dynamic redundant 
system in which RPi and RP2 alternately function as hot-standby components. The 
philosophy of such a system is that if faults don't occur too frequently - i.e. the 
Mean Time Between Failures (MTBF) is sufficiently larger than the Mean Time To 
Repair (MTTR) - the de-activated faulty component can be replaced while the other 
duplicate is operational. 

To ensure that no data will be lost if the currently active component P; (i E {1, 2}) 
crashes, the stand-by component should receive a copy of the input data whenever the 
active component receives an input. Because the stand-by component is not active this 
might result in a deadlock. For this reason each RP; is connected toa component RR;,. 
RR;, is a restartable component with a care process R;,. Processes R;, simultaneously 
accept the input data and then offer it to their corresponding component RP;. Be
cause RP; may not be active, process RR;, might deadlock. For this reason the other 
process R; - which is gnaranteed to succeed because only one of the components RP; 
can be de-activated at the time sends a reset signal (!or g) after it has forwarded 
the result obtained from RP;. Component RR;, restarts R;, when the exception han
dler rf is activated. The exception handler rf is synchronized with the exception 
handler pi', and therefore triggered by exception z;'t. If P; crashes after accepting an 
input of RR;,, but before resetting the other component RRj, it should be willing to 
accept a reset signal before restarting in order to avoid deadlock. 

There is still one problem to be resolved. In case a component P; crashes just 
after RR;, bas forwarded the result, hut before RR;, has sent the reset signal to the 
other component RRj, RP; becomes active and RR; will forward its output also. To 
avoid such duplicate outputs an additional layer consisting of components Q1 and Q2 
is included. Components Q1 and Q2 execute an alternating-bit protocol. Process Q1 
receives its inputs from the input channel a of the system T. U pon receipt of a messa.ge, 
it adds an extra bit to the message and forwards it to bath components RR1 and RR2 • 

A component RR;, removes the additional bit before passing the messa.ge to RP;, hut 
re-appends it again before forwarding the output messages from RPi. Component Q2 

waits for a message of one of the components R;,. Upon receipt of a message the 
extra bit is inspected and removed. If the extra bit has the expected value then Q2 

outputs the message, to channel b of T and sends a signal h to Q1. If the extra bit 
does not have the expected value then the received message is simply discarded. The 
signal h, which is not present in Peleska's original example, informs component Q1 
that it may accept a new input. Peleska's original system bas a buffer capacity due 
to internal communications. This results in a communication latency which allows 
the transformed system T to input more than one messa.ge before giving an output 
message. For this reason Peleska's original transformed system is not weakly bisimilar 
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with the basic system P. 
The specification of the transformed system T and its components is listed in 

Table 10. The synchronization function is defined in Table 11, and the encapsulation 
set H is defined in Table 13. 

T 

RP1 

RP2 

Qi(n) 

Q2(n) 

E d1(x)-e1(\0(x))-P1 
xED 

E d2(x )-e2 ( \O(x) )-P2 
xED 

(pl ·Pi) <-+ Pi!.· RP1 

(pil-. P2) <-+ Pl · RP2 

E a(x)-c(x,n)-h·Qi(l - n) 

E (b;(x,n)-b(x)-h·Q2(l - n) + b;(x, 1 - n)-Q2(n)) 
xED 

iE{l,2} 

E c1(x,n)-(d1(x)-( E e1(y)-b1(y,n)-J·R1) + g·R1) 
xED yED 

nE{O,l} 

E c2(x,n)-(d2(x)-( E e2(y)-b2(y,n)-g·R2) + f·R2) 
xED yED 

nE{O,l} 

R1 <-+ r1.i-(g·RR1 + RRi) 

R2 <-+ rl·(f·RR2 + RR2) 

Table 10: Specification of T and its components 

b;(x, n)lb;(x, n) = cb;(x, n) 

c(x, n)lc(x, n) = 
ci(x, n)lc2(x, n) = 

d;(x)ld;(x) = 

e;(x)le;(x) = 

cc(x, n) 

c(x, n) 

cd;(x) 

ce;(x) 

!Il = cf 

gig = cg 

hlh = ch 

p/lp/ = rl 

rllrl = zl 

zllzl = z;~ 

i E {1,2},n E {0,1},x ED 

Table 11: Synchronization function 

Of course, no system can be guaranteed to function correctly in arbitrary condi
tions. Therefore we have to make some assumptions about occurrences of faults in a 
fault hypothesis. It then suffices to prove correctness of a system with respect to the 
fault hypothesis. In aprACPE a fault hypothesis can be modelled as a process. As 
such one may think of the fault hypothesis as Cristian's adverse environment [Cri85). 
To prove correctness of the system T with respect to a fault hypothesis modelled by 
process FH, we have to verify the property in Table 12 (==" denotes weak bisimulation 
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1'[ 0 'R-J(T Il F Hi) 

Table 12: Proof obligation 

and r1 renames the action in I as r.) The set I of internal moves and the set J of 
actions that must be recovered are defined in Table 13. In order to prove the property 
in Table 12 we need additional axioms for weak bisimulation and hiding. These axioms 
are included in Table 14 and their justification can be found in e.g. [BW90]. Note that 
aprACPE allows P and RJ(T Il F H) to be reduced to aprBPA6,.L -terms and the axioms 
in Table 14 suffice for weak bisimulation on aprBPA6,.L. 

H {b;(x, n), c(x, n), Ci(x, n), d;(x), e;(x), f, g, h,p/, r/} 

I { cb;(x, n), cc(x, n), cd;(x), ce;(x), cf, cg, ch, z;-U-} 

J {zn 

i E {1,2},n E {0,1},x ED 

Table 13: Encapsulation, hide, and recovery set 

a·T·X a·x 

T·X + X T·X 

a·(r·x + y) a·(r·x + y) + a·x 

r1( 6) 6 

r1(..L) ..l 

r1( a·x) r·rr(x) aEl 

r1( a·x) a·rr(x) a <t I 

r1(x + y) TJ(x) + r1(y) 

Table 14: Axioms for weak bisimulation and hiding 

Peleska's system is weakly bisimilar with the basic system P for the trivia! fault 
hypothesis 6, which means that the normal bebaviour of T satisfies the property in 
Table 12. Peleska's original system ([Pel91]) can tolerate a single failure of one of 
its basic components P1 or P2, which is expressed by the fault hypothesis FH = 
z1t ·6 + z2t ·6. The system we present can tolerate any number of faults of P1 and P2 
provided the interval between consecutive faults is large enough and faults occur in 
active components only. This is modelled by synchronizing the fault hypothesis with 
the feedback signal h which results in the new fault hypothesis F H1 (see Table 15.) 
The corresponding proof obligation is also given in that Table (It is assumed that 
chlch = cch.) A formal verification of the above protocol is provided in [Ham93] 
together with a discussion of the encountered problems. 
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FHi 
p 

= z;t·ch·FH3_; + ch·FH; 

T)u{eeh} 0 'RJ 0 a{eh}(T Il FH1) 

Fault hypothesis 

Proof obligation 

Table 15: Proof obligation for extended fault hypothesis 

4 Conclusions 

We have defined an exception handling primitive and recovery operator that have prop
erties that are more in line with what is found in the fault tolerance literature [Cri85]; 
specifically, handlers are invoked innermost out and handlers can only become active 
through the occurrence of an error. We have developed an algebraic theory for these 
operators based on ACP [BK84]. We choose ACP because it is well developed, uniform 
theory. However, nothing stands in the way of developing a similar theory based on 
CCS [Mil89] or TCSP [Hoa85]. We have used this theory to specify a generalization 
of a fault resilient system of Peleska's [Pel91]. Finally, we want to note our use of 
non-well founded sets [Acz88] to construct models for our axiomatization. The stan
dard method in ACP is to use the process graph model. In this model, elements are 
bisimulation equivalence classes of graphs and this fact makes the process graph model 
more difficult to use than the concrete model we introduce in this paper in which 
bisimilar process terms map onto the same element in the model, which element is 
straightforwardly determined by the SOS. 

Future work includes further working out the example towards a formal proof of 
weak bisimilarity and extending the theory. We need to investigate more closely the 
connection of our theory with others such as the one in [Pra87]. Another question 
is whether a process algebra with prioritized actions (BW90] can be used to model 
exception handling. We already have some preliminary results. Finally, we want to 
extend our axiomatization to congruences coarser than bisimulation; specifically to 
maximal trace congruence. 
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Department of Mathematica and Computing Science, Eindhoven University of Technology, 
P.O. Box 519, 5600 MB Eindhoven, The Netherlands. 

Abstract. Although the top-down development paradigm has successfully been ap
plied to master the complexity of large systems, it has not yet been accepted as a 
useful paradigm for fault tolerant system design. This is mainly due to a problem 
that is sometimes referred to as the 'lazy programmers' paradox. The 'lazy program
mer' paradox was already present and solved in top-down development methods for 
non-critica! systems. However, the problem has re-appeared in an even more serious 
variant for critica! systems. A few 'toy' examples concerning exception handling in an 
Ada-like language are used to explain and illustrate the paradox. 

One possible solution to the problem is to use a specification language in which one 
can express that certain behaviours of a system are preferred over others. This paper 
proposes deontic logic as such a specification language. Therefore, a short and rather 
informal introduction to deontic logic is included. A non-trivial example is included 
to illustrate how deontic logic can be used to solve the 'lazy programmer' paradox. 

Keywords: Deontic logic, Exception handling, Fault tolerance, Layered systems, Lazy 
programmer paradox, System specification, Top-down development. 

1Supported by NWO/SION Project 612-316-022: "Fault Tolerance: Pa.radigms, Models, Logies, 
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1 Introduction 

As computing systems are used more often for critical applications the impor
tance of formal design methods for fault tolerant systems becomes more apparent 
(cf. [deRoever91]). Such design methods should provide not only formal specification 
and verification methods, but also a design methodology which supports the structuring 
of the system under development and the development process itself. Formal methods 
that meet these requirements adopt the top-down development paradîgm. Top-down 
development methods incorporate some refinement method which is used to gradually 
transform a high level abstract specification into a low level concrete implementation. 
Each transformation step creates a new layer beneath the previous generated layers 
of the system, hence the name layered systems. One of the earliest descriptions of a 
layered system can be found in [Dijkstra68]. 

To overcome the complexîty of its design, a fault tolerant system may, lîke most com
plex systems, be structured in layers. On the one hand, a layer may use the services 
delivered by its lower level layer to provide a service to its upper level layer. On 
the other hand, a layer may receive an exception from its lower level layer or raise 
an exception to signal its upper layer that it cannot provide a requested service. At 
each level, the system tries to handle the exceptions raised by the layer below. If the 
current layer is unable to cope with the current situation it may decide to raise an 
exception itself. In this way a malfunctioning of the underlying execution mechanism 
may gradually propagate to a layer which can deal with it in a satisfactory manner. 
A layer can therefore be regarded as an ideal fault tolerant component in the sense 
of Anderson and Lee [Anderson90], see figure 1. The are directed from 'exceptional 

services ezceptions 

normal behaviour exceptional behaviour 

services exceptions 

Figure 1: Layer viewed as an ideal fault tolerant component 

behaviour' to 'normal behaviour' represents the case that the current layer handles an 
exception raised by a lower level (or the current level). The are directed from 'normal 
behaviour' to 'exceptional behaviour' represents the case that an exception is raised by 
a lower level (or the current level). Notice, that in order to achieve a layered structure 
as described above, it must be possible to program a deliberately raised exception. 

Any formal method that supports top-down development of layered fault tolerant sys
tems has to solve the following two problems. Firstly, the method must provide a 
forma! language to reason over faults and their effects. For example, Hoare's proof 
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system as it was presented in [Hoare69) can not deal with fault tolerance, because 
in this proof system a program is considered correct, if it behaves according to its 
specification under the assumption of a faultless execution mechanism. 

In [Cristian85] Cristian extended Hoare's logic to deal with exceptions. However, 
in Cristian's formalism it is not possible to distinguish between deliberately raised 
exceptions and exceptions due to a physical fault in the executing hardware. Now, 
consider a specification of a program that computes the factorial N! for input N. If 
an intermedia.te result of the computation causes an integer overflow, signa.lled by the 
exception ov/, it is specified tha.t the result is zero. A lazy programmer might be 
tempted to write a program that outputs zero immediately and raises the exception 
ov/ deliberately. This is of course not an acceptable implementation - the exception 
should only be raised due to an overflow in the underlying hardware - which can be 
avoided by explicitly stating that the programmer is not allowed to raise the exception 
ov/. This works well for this particular example, hut it was already mentioned that 
it should be allowed to raise certain exceptions deliberately, e.g. to prevent undefined 
results. Because it is in general not possible to predict when such exceptions may 
occur, the lazy programmer cannot be prohibited from abusing his privilege to raise 
exceptions deliberately. This is a particular case of the second problem that has to be 
solved in any top-down development method for fault tolerant programs. The more 
genera! case of this problem is referred to as the 'lazy programmer' paradox, and will 
be discussed in more detail in section 4. 

This paper is a fust step towards a deontic specification language for fault tolerant 
systems. It does not include a semantic model nor does it include a complete proof 
theory. It merely discusses and illustrates the problems encountered when specifying 
the operations of fault tolerant system when adapting a top-down development strat
egy. This is unlike the work of [Meyer88] where (monadic) deontic logic is reduced 
to dynamic logic thereby obtaining a logic suitable for specifying the behaviour of 
programs without considering faults. 

The merits of a dyadic deontic specification language is that it is possible to distinguish 
the behaviour in a perfect world (i.e. a computation without faults) from the (preferred) 
one in a less than perfect world. For example, if a program should satisfy a property '{J, 

hut due to some fault it does not we can specify a property 'Ij; it should satisfy instead. 
Using dyadic deontic logic this can be specified as follows. 

Ocp /\ ( •qJ)O'l/J • 

The conjunct OqJ is used instead of simply cp, because cp is not always satisfied hut it 
ought to be if possible. The second conjunct specifies that if (/) is not satisfied then 'l/J 
ought to be satisfied instead. If one would replace the second conjunct by an implica
tion (-.ip) --+ 1f; the program that satisfies ...,(/) /\ '!/; would be a correct implementation, 
w hich was not intended. Replacing ( ...,'{J) O'I/; by 0( ''P --+ 'Ij;) or ''P --+ O'I/; causes similar 
problems (see [Follesdal7l]). For example, a specification cp fora system embedded in a 
perfect environment leaves no room for reasoning over the sa.me system in a malicious 
environment that prohibits the system from satisfying qJ, because '{J--+ (''P--+ Ofalse) 
forces the system to do the impossible in case it does not satisfy cp. 
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The remainder of this paper is organized as follows. In section 2, a programming 
language is defined and an intuitive explanation of the language constructs is given. 
In this section three small programs are explained. These programs are also used in 
section 3 to motivate the introduction, and explain the meaning of, dyadic modalities in 
the deontic logic specification language. Section 3 introduces deontic logic. The 'lazy 
programmer' paradox is discussed in somewhat more detail in section 4. Section 5 
includes an informal description of a non-trivia! fault tolerant system. The a.pplication 
of deontic logic as a specification language to solve the 'la.zy programmer' paradox is 
illustra.ted in section 6 by specifying part of the example outlined in section 5. Finally, 
section 7 contains a compa.rison with rela.ted work and some suggestions for future 
work. 

2 Program N otation 

In this section a small subset of an Ada.-like 'programming' language [Ada.83], called 
'Prog is defined. This programming language is also used in section 5 to describe some 
of operations used in the example. The main feature of the programming la.nguage 
'Prog is that it provides a notation for exception ha.ndling. 

Given the following basic sets: 

• Var, the set of program va.ria.bles, with typical element x; 

• e xc , the set of exceptions, with typical element exc; 

• &xpr, the set of expressions with occurrences of program variables, with typical 
element exp; 

• Bexp , the set of boolean expressions with occurrences of program varia.bles, with 
typical element b; 

the syntactic class 'Prog of programs, with typical element S, is defined by 

S ::= null I x := exp 1 raise exc 1 begin 8end1 S1; 82 

1 if b then S 61 if b then 81 else S2 6 I while bdo 8 

1 begin So exception when exc1 =} 81 ... when exck =} Sk end 

The meaning of the programming language constructs in 'Prog is as follows. 

• The empty statement null bas no effect other than skippi~ to the next state
ment. 

• The assignment statement x := exp assigns the value of the expression exp to the 
program varia.bie x. 

• The raise statement raise exc raises the exception exc. As a side effect it causes 
the execution of the program to continue at the innermost enclosing exception 
handler, that handles exc exceptions. If such enclosing exception handler does 
not exist, program execution is aborted. 
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• The simple block statement begin S end groups the statements in S in a single 
block. It may be regarded as a pair of parentheses. 

• 81; 82 is the sequentia! composition of the programs B1 and B2. First B1 is 
executed, and if B1 terminates successfully, then B2 is executed. 

• In case of the alternative statement if b then 81 else B2 fi, the subprogram B1 
is executed if the boolean guard b is true, and B2 is executed otherwise. The 
construct if b then B fi is an abbreviation of if b then B else null fi. 

• The iterative statement while b do B is skipped if b is initially false. If b initially 
is true, then execution of S is repeated until b becomes false. 

• begin Bo exception when exci '* B1 ••• when exc" '* B" end is executed as 
follows. The program starts with the execution of So. If during the execution of 
Bo an exception exc; (i 1, ... , k) is raised, then the execution of So is aborted 
and the program resumes with the execution of Si. If an exception other than 
exc; ( i = 1, ... , k) is raised, then execution of Bo is aborted, and the exception is 
passed to the next enclosing block. If there isn't an enclosing block the program 
is aborted. If Bo terminates without raising an exception, then the program 
terminates normally. 

For example, the programs listed in figure 2 are executed as follows. Program a a.ssigns 
the factorial of N to variable x unless an ov/ exception occurs - meaning that an 
overflow has been detected -in which case x is set to zero. Program b sets x to zero 
and then raises ov/ deliberately. Program c assigns N! to x if initially N is less or 
equal than K, and sets x to zero in case Nis larger than K. 

{a) begin x N! exception when ov/:::} x := 0 end 

{b) begin x : = 0 ; raise ov/ end 

(c) begin if N :::; K then x := N! else x := 0 fi end 

Figure 2: Running examples 

3 Deontic Logic 

The specification language combines deontic logic with first-order predicate logic, and 
is inspired by the logic used in [vEck82]. A systematic introduction to deontic logic 
in genera} is given in [Aqvist83]. The basic modality of the deontic logic used in this 
paper is the dyadic obligation '{JÜ'l/J. Amore philosophical motivation of dyadic deontic 
logic -can be found in [vWright71] and [vWright81]. The first-order predicates in the 
specification language are used to quantify over logical varia.bles only. 

Assume that the following sets are defined: 
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• t:xpr' , the extended set of expressions over program variables, which may be 
decorated with a prime. Thus t:xpr C t:xpr'. 

• Cvar , the set of logical variables, such that Cvar n t:xpr 0. Logica! variables 
never have primes attached to them. 

A primed program variable x1 refers to the value of the variable x before executing a 
program, whereas an unprimed variable x refers to the value of x after the execution 
of the program. The use of primed and unprimed variables in expressions captures the 
concept of initial and final states syntactically. 

Given the sets above, the syntax of assertions <p, 1f; E Assn is defined by ( exp0 , exp1 E 
&xpr', exc E &xc, and g E Cvar) 

cp ::= true 1 expo= exp1 1expo5 exp1 1 ó(exc) l •'P 1<p--+1f; l 39 (cp) l ipOV; 

Notice that quantification is only allowed over logica! variables. Besides the usual 
abbreviations for predicate logic (such as V9 (<p) for •39 (.ip)), the following derived 
operators are defined 

Ocp ~ trueO<p 
cpF?f; .é. cpO..,?f; 

cpP'lj; ~ ..,( cpQ-,?f;) 
F cp ~ trueF <p 
P<p .ö. trueP<p 

The meaning of ó(exc) is that exception exc was raised. The notation ó is used to 
stress the difference with variables that refer to states instead of events. The meaning 
of <pO 'Ijl is that in all <p-perfect wodds (wodds that are perfect E 

case) 'Ijl is true. Hence, O<p expresses that <pis the case in all perfect worlds. Similarly, 
<pP?f; and cpF'lj; express that in all cp-perfect worlds 'Ij; is respectively permitted and 
forbidden. 

A formula with primed and unprimed variables specifies a relation between the initia! 
and final state of a program. Hence, it can not distinguish between the individual 
actions of a program. The primed varia.bles provide the specification language with 
the dynamic aspect needed to reason about programs. For instance x = x1 + 1 specifies 
an action that increases the value of program variable x by one. 

Below two standard derivation rules of deontic logic are given (see e.g. [Aqvist83]). 

(Modus Ponens) 
f- ipO't/J 

(Necessitation) 

The axioms below are more typical for the application discussed in the introduction. 
The first two are still quite common axioms, that should cause no problems. The third 
axiom is more typical for the logic. It expresses that all relative perfect worlds are 
perfect alternatives to themselves. Or more loosely, there is only one perfect alternative 
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for each world. It is motivated by the fact that the set of possible executions of a 
program does not change unless new faults are introduced. 

1- i.pO('if; ..... x) ..... (i.pO'if; ..... t.pOx) 
1- t.pO('if; /\ x) ...... (ipO'lf; /\ i.pOx) 
1- ipO ( 01/;) -+ if'01/J 

This is of course not intended to be a complete axiomatization. The axiomatization of 
the logic itself is part of ongoing research in which there are still a lot of questions to 
be settled. 

The most characteristic difference between the deontic logic defined above and the 
ones that can be found in the literature about system specification is that the above 
logic includes dyadic modalities. For example, Khosla [Khosla88] uses the monadic 
modalities Oa respectively Pa to express that the action a must respectively may be 
performed. Thus the deontic aspect of the specification language in [Khosla88] is used 
only to reason over the freedom of choice. In particular, a predicate Oa is defined such 
that a is the only action that is obliged. Hence the formula Oa /\ 0/3 is equivalent 
to false per definition if a =fi f3. When specifying fault tolerant systems with monadic 
modalities this causes a problem, because in a less than perfect world one can get 
several, sometimes conflicting, duties. In the more general context of deontic logic this 
is known as the Chisholm paradox (see [Aqvist67]). 

Consider the following specification for a program that tries to anticipate a possible 
division by zero, when computing 1/x for input x. 

O(x1 # O) /\ O(x1 =/= 0 -+ y = 1/x1
) /\ (x1 = 0-+ O(y O)) (1) 

This specification expresses that the input x is expected not to be zero, and it should be 
the case that if input x is not zero then y is 1 / x, and if x is zero then y ought to be zero. 
This seemingly correct specification is inconsistent in case the input x is zero. Using the 
above axioms and proof rules only it is possible to derive O(y = 1/x') from O(x1 =fi 0) 
and O(x' =fi 0-+ y = 1/x1

), and O(y = 0) from x' = 0 and (x1 = 0-+ O(y = 0)). The 
problem is that the monadic modalities refer to perfect worlds only, which may lead to 
a conflict of duties once one finds oneself in a less than perfect world. The behaviour 
of a fault tolerant system in · less than perfect conditions should be specified, as the 
predicate 'fault tolerant' suggests. 

Of course one might argue that if in the above specification O(x' =fi 0 -+ y = 1/x') is 
replaced by x1 =fi 0 -+ O(y = 1/x') or (x' 0 -+ O(y = 0)) by O(x' = 0 -+ y = 0) 
then there is no problem if x is initially zero. The philosophical objections to do so 
(see e.g. [Follesdal71]) might be irrelevant to system specifications. The specification 
of fault tolerant systems is a difficult task even if one does not have to bother with 
such subtle paradoxes. Therefore, it is preferable to use a specification language in 
which such paradoxes can easily be avoided. 

Dyadic deontk logic allows one to make assertions about less than perfect worlds. For 
example, the last conjunct of (1) may be replaced by (x1 = O)O(y = 0), which does not 
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result in an inconsistency if x1 = 0 because there is no detachment rule which allows 
one to derive O(y = 0) from x' = 0 and (x' = O)O(y = 0). Notice that in the intuitive 
meaning of r.pO,,P it is implicit that ,,P ought to be established, but r.p is 'provided' for 
and not to be established. This observation is the key to the solution of the 'lazy 
programmer' paradox in section 4. 

In this paper the use of dyadic modalities is restricted to the special case in which 
only exceptions occur on the left side of the modality, i.e. dyadic modalities occur in 
specifications only according to the format ó(exc)O,,P. However, it is permitted to have 
predicates on the left side also. This is illustrated in the next section. 

A standard technique to obtain a higher degree of reliability is the duplication of system 
components. For example, one may use two different algorithms to compute a certain 
value and compare the outcomes, say x and y, of these computations. In case x # y 
at least one of the computations resulted in an error, and in case x = y either both 
computations were correct or both computations yielded the same erroneous result. 
If one assumes that the probability of the latter case occurring is zero, the system 
sketched above is fault tolerant. A schematic drawing of a component that compares 
the outputs x and y is pictured in figure 3. 

:=ÇJ--· 
alarm 

Figure 3: Comparator 

The comparator may be specified by 

O(z = x /\ z = y /\-,alarm)/\ (x # y)O(alarm), 

According to its specification, the comparator ought to set z equal to x and y, and set 
alarm to false . In case x # y - and hence, it is not possible to set z equal to both x 
and y - alarm must be set to true . 

4 The 'Lazy Programmer' Paradox 

Lazy programmers were already a problem in Hoare's logic, because it is a partial 
correctness formalism which means that it is not possible to specify that a program 
must terminate. Hence, each divergent program is a correct implementation of every 
specification. This particular version of the 'lazy programmer' paradox is solved in 
total correctness formalisms in which one can specify that a program must terminate. 

The particular formulation of the 'lazy programmer' paradox for fault tolerance has a 
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striking similarity with the 'Good Samaritan' paradox 2 (see [Aqvist67]). A program 
that is designed to tolerate only faults intentionally caused by that program itself, 
hardly deserves the predicate 'fault tolerant', just as little as a thief who salvages his 
own victims deserves to be called a Good Samaritan. 

The programs in figure 2 serve to illustrate the previous discussion. Consider the 
following naive specification fora program that is to compute the factorial of N. 

O((•ó(ovf) - x N!) A (5(ovf) - x = 0)). (2) 

The specifier has anticipated that, due to hardware limitations, it is possible that 
during the computation of N! an overflow, sigualled by exception ovf, occurs. If the 
overflow indeed occurs then x should be set to zero, otherwise x ought to be equal to 
Nl. However, nothing prevents the lazy programmer from simulating a.n overflow as 
in program b of figure 2. Because program b ought to raise the exception ovf and set 
x to zero it satisfies 

O(x = 0 A 5(ovf)). (3) 

Unfortunately (3) specifies a correct implementation of (2), which can förmally be 
proved as föllows. 

1. 1- (x = 0 /\ li(ovf)) - ((•li(ovf) - x = N!) /\ (li(ovf) - x = 0)) 
2. 1- O((x = 01\ó(ovf))- ((•li(ovf)-+ x = Nl) /\ (6(ovf)- x 0))) 
3. 1- O((x = 0 /\ li(ovf)) - ((•ó(ovf) - x = NI) /\ (li(ovf) - x = 0))) 

-+ (O(x = 0A5(ovf))-+ O((•li{ovf)-+ x = N!) /\ {li(ovf)--+ x = 0))) 
4. 1- O(x = 0 /\ 5(ovf)}--+ 0((•6(ovf)--+ x = N!) /\ (6(ovf)-+ x 0)) 

The individual steps of the above derivation are justified as follows: 
1. is a valid predicate logic formula; 
2. is obtained by the application of the Necessitation rule to 1; 
3. is an instance of the first axiom listed on page 73; 
4. is obtained by applying Modus Ponens to 2 and 3. 

Using dyadic modalities one can specify program a as follows. 

O(x = N!) /\ 5(ovf)O(x 0). (4) 

This specification expresses that is preferred to set x equal to N!, and if this is not 
possible due to an overflow x ought to be zero. Provided that the axiomatization of 
the deontic logic does not allow one to derive (4) from (3), it is not possible to prove 
that program bis a correct implementation of (4). As a matter of fact, program b can 
be excluded more explicitly by adding the conjunct Fli(ovf) to (4). Hence, the lazy 
programmer bas to think of other means to avoid working. 

2The Good Samaritan ought to help a man who has heen rohhed. Thus there ought to he man 
who has heen rohhed. 
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Basically, the 'lazy programmer' paradox is solved by making the specification language 
more expressive. This imposes some requirements on the semantics and axiomatization 
of the programming language to avoid the situation in which an intuitively correct pro
gram does not satisfy a given specification. For example, suppose that the maximum 
number, say Maxlnt, that can be computed without causing an overflow is known. If 
Kis chosen such that K! S Maxlnt < (K + 1)!, then program c in figure 2 is intuitively 
a correct implementation of (4). The specilication of program cis, however, as follows. 

O((N $KA x = N!) V (-.NS KA x = 0)) (5) 

The only way to prove that (5) specifies a correct implementation, i.e. to prove that (5) 
implies (4), is by making the knowledge about the hardware limitation explicit. For 
instance by including the following axioms. 

1- O(N S K) 

1- 0(-.N S K-+ ip)-+ 6(ovf)Oip 

(6) 
(7) 

Axiom (6) expresses that it ought to be the case that N S K. Axiom (7) expresses 
that if one is obliged to establish <p if -.N S K in a faultless world, this implies that <p 

ought to be established even if an overflow occurred. The second axiom is motivated by 
the knowledge that the overflow would have occurred anyway if-.N S K. Because (5) 
is equivalent with 

O(N S K-+ x = N!) A 0(-.N S K-+ x 0) 

This can be proved as follows. Let 1/J, <pi, and 1/J2 be defined by 

1/J ~ (NSKAx N!)v(-.N5KAx=O) 
ip1 a N S K -+ x = N! 
ip2 a -iNSK-+x=O 

We give the major steps of the derivation of (8) from (5): 

l-1/J ....., ('P1 A 'P2) 
f- O('lj!....., ('P1 A <p2)) 
1- O'lj! ...... O(i.p1 A 'P2) 
1- 01/J....., (O<p1A0\02) 

, Predicate logic. 
, Necessitation. 
, Axioms and Modus Ponens. 
, Axioms and Modus Ponens. 

Because it is easily seen that 8 implies 

(O(N S K)-+ O(x = N!)) A 0(-iN 5 K-> x = 0) 

(8) 

we may conclude from (6) and (7) that program cis a correct implementation of (4), 
provided that above assumptions hold. Thus only if the hardware limitations are such 
that the axioms are justified the above reasoning holds. 
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It is possible to think of clever variations on the programs in figure 2, e.g. the ones in 
figure 4, for which the correct arguments to accept or reject them as correct implemen
tations of (4) are not so easily found. For example, program d should be rejected, hut 
just including Fh(ovf) in the specification would also exclude program e which might 
be acceptable. However, these problems should be solved in the semantics and the 
axiomatization of the programming language. The purpose of the previous discussion 
is to demonstrate that dyadic deontic logic, if provided with adequate semantics, can 
be expressive enough to distinguish deliberate errors from unintentional ones. 

(d) begin x N!; raise ov/ exception when ov/=> x := 0 end 

(e) begin 
ifN$.K 

then x := N! 
else raise ov/ 

ft 
exception 

when ov/=> x := 0 
end 

Figure 4: The lazy programmer strikes baci?' 

5 A Stable Storage 

An important concept in fault tolerant computing is the atomicity of actions. An 
action is atomie if it is either executed successfully or not executed at all. Atomie 
actions can be implemented by creating a checkpoint before the action is executed, 
and if an error is detected by recovering the original state from this checkpoint. The 
checkpoint should be recorded on a reliable medium, called a stable storage. This 
section contains a summary of some aspects of a particular stable storage and focuses 
on the implementation of the read operation. A more complete description of the 
stable storage, described below is given in [Schepers91]. 

The stable storage consists of tbree layers. At the lowest level, the stable storage is 
implemented by a number of physical disks. These physical disks, with the appropriate 
operations on them, are grouped in the so called 'physical disk' layer. Each physical 
disk has a corresponding logical disk, that abstracts from the physical location of sec
tors on the physical disk, by maintaining a flexible mapping between logical addresses 
and physical sector numbers. The logica] disks are grouped together in the 'logica] 
disk' layer. The layer at the top level is called the 'reliable disk' layer. The reliable 
disk layer provides a single stable storage, which is implemented by several logica! 
disks. 

is it a too diligent programmer? 
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It is assumed that the only relevant errors are caused by damaged sectors of the 
physical disks. In the remainder of this section the layers are examined in somewhat 
more detail. 

5.1 Reliable Disk Layer 

The reliable disk layer provides a read_sector operation, with the intention that the 
contents of the sector with logical address address is retrieved in the variable sector. 
For this purpose, the reliable disk layer records which logical disks are still operational, 
i.e. which logica} disks have not yet caused a logicaLdisk_crash exception. The num
bers of the operational logical disks are administered in the set operationaLdisks. On 
invocation of the read_sector operation, an operational logica} disk is selected on which 
a read_logicaLdisk operation is performed. 

The reliable disk layer must anticipate two exceptions that may be raised by the logical 
disk layer. The exception logicaLsectodost indicates that this logica} disk is unable 
to return the contents of the sector with logical address address. The exception logi
caLdisk_crash is raised when the logica} disk layer can no Jonger guarantee consistency 
of the information stored in the logical disk. In case of a logicaLsector_lost exception, 
the reliable disk layer attempts to retrieve the sector from another logical disk. The 
retrieve operation will be left unspecified, hut notice that retrieving the lost sector 
might include a recursive call of reatLsector. 

The logicaLdisk_croAJh exception is handled simply by deleting the corresponding disk 
number from the set operationaLdisks. If the reliable disk layer runs out of operational 
logica} disks it raises a reliable_disk_cmsh exception. See also figure 5. 

begin 
success := false ; 
while -isuccess do 
begin 

disknr := a member of operationaLdisks ; 
read_logicaLdisk{ disknr, address) ; 
success : == true 

exception 
when logicaLsector_lost => 

retrieve the lost sector 
when logicatdisk_cmsh => 

end 
end 

operationaLdisks := operational_disks { disknr} ; 
if operationaLdisks = 0 

then rai.se reliable_disk_crash 
ft 

Figure 5: read_sector 

Notice that the nondeterminism in the selection of an operational disk needs to be 
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resolved. This freedom of choice may be exploited to obtain a more efficient read_sector 
operation. 

5.2 Logica! Disk Layer 

Whereas the reliable disk layer achieves a higher degree of reliabilîty through the 
redundancy of the logical disks, the logical disk layer, in turn, achieves a higher degree 
of reliability through the redundancy of so called spare sectors on each logical disk. The 
spare sectors are recorded in the set spare_sectors. Furthermore, the logical disk layer 
abstracts from the physical location of sectors by maintaining a mapping log_to_phys 
between logica! addresses and sector numbers. 

begin 
read_physicaLsector{log_to_phys( address)) 

exception 
when invalid_crc => 

if spare-sectors = 0 

il 
end 

then raise logicaLdisk_crosh 
else new_sector := a member of spare_sectors ; 

spare_sectors := spare_sectors - { new_sector} ; 
update log_to_phys ; 
raise logicaLsector-lost 

Figure 6: read_logicaLdisk 

The read operatîon at the logica} disk level is listed in figure 6. The logica! disk layer 
simply calls the read_physicaLdisk operation with the converted address. If the physical 
disk layer raises the invalid_crc exception and there are no spare sectors left, then the 
logical disk layer raises a logicaLdisk_crash exception. If the invalid_crc exception is 
raised and there are spare sectors, then one of the spare sectors is selected and the 
mapping log_to_phys is updated, and the logicaLsector_lost exception is raised. 

5.3 Physical Disk Layer 

The physical disk layer achieves reliability by using information redundancy. The 
contents of each logical sector is augmented with a. cydic redunda.ncy code. It is 
a.ssumed that all relevant faults can be detected with this code. Or more precisely, 
the probability of not detecting a relevant error is sufficiently small. This means that 
faults like damaged disk drives etc. are not considered relevant in this example. The 
read_physicaLsector operation is listed in figure 7. 

The cyclic redundancy code is checked by the function cyc_red_check, which ma.y be 
implemented by special purpose hardware. 



begin 
sector := physicaLdisk{sector_nr}; 
if -.cyc_red_check{sector) 

fi 
end 

then raise invalid_crc 

Figure 7: read_physicaLsector 

6 Deontic Logic Specifications of the Read Operations 

A specification of an operation of a fault tolerant system typically bas the following 
format 

Each '!/;; specifies how the operation of this layer should behave, provided the lower 
level created the condition 'Pi· Because the upper level layer cannot interfere with the 
actions of the lower level layer, the conditions 'Pi are established facts for the upper 
level layer to which it is supposed to react according to '!/;;. For example, at the top 
level of the stable storage the read operation may have been specified as follows. 

O(sector = reliable_disk1(address')) /\ ó(reliable_disk_crash)O'ljJ , 

where '!/; is left open for the moment. Thus it is specified that the read operation ought 
to assign the initia! contents of the stable storage at address address to sector. In case 
a reliable_disk_crash exception was raised, 1jJ ought to be established. Of course, one 
might also have specified that e.g. the address or contents of the storage ought to be 
left unchanged. 

Because the physical disk layer is the lowest level of the stable storage and it is assumed 
that cyc_red_check detects all errors, there are no faults {from lower levels) that must be 
anticipated by this layer. Therefore, the specification of the read_physicaLsector oper
ation (figure 7) contains only monadic modalities. The read_physicaLsector operation 
(for physical disk i) is specified by 

O(sector = physicaLdis~[sectornr']) 

/\0( ó( invalid_crc) -+ -,cyc_red_check( sector)) . 

The first conjunct expresses that if the underlying execution mechanism functions 
correctly then sector is set equal to the contents of physical disk i at location sectornr. 
The second conjunct of this specification can be rewritten as 

F(ó(invalid_crc) /\ cyc_red_check(sector)), 
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which forbids to raise the invalid_crc exception when the sector passes the cyclic re
dundancy check. Now suppose an invalid_crc exception ought to be raised, i.e. 

Oli(invalid_crc). 

From the specification of the read_physicaLsector operation it follows that 

0( li( invalid_crc) --> •cyc_red_check( sector)) . 

This together with the following axiom instance 

0( li( invalid_crc) --> •cyc_red_check(sector)) 

--> (Oli(invalid_crc)--> Q-,cyc_red_check(sector)) 

is sufficient to derive 

06(invalid_crc)--> O•cyc_red_check(sector) 

with modus ponens. One more application of modus ponens results in 

O•cyc_red_check(sector) . 

Hence, under the assumption that the physical disk functions correctly it is established 
that the invalid_crc exception ought to be raised only if the sector didn't pass the cyclic 
redundancy check. 

Notice that ifthe second conjunct in the spedfication of read_physicaLsector is replaced 
by 

li( invalid_crc) --> O•cyc_red_check( sector) 

then an invalid_crc exception ensures that sector didn't pass the cyclic redundancy 
check regardless whether the exception was raised by read_physicaLsector operation 
itself or by another operation. 

The logica! disk layer must anticipate an invalid_crc exception, but is allowed to raise 
a logicaLdisk_crash exception or a logicaLsedor_lost exception depending on whether 
there are any spare sectors available {figure 6). The read_logicaLsector operation {for 
logica! disk i) is specified by 

0( sector = logical_disk'; ( address')) /\ 

li(invalid_crc)O( (li(logicaLdisk_crash) /\ spare_sectors: = 0) V 

( li ( logicaLsectodost) /\ spare_sectorsi # 0)) . 

A single logica! disk cannot handle an invalid_crc exception by itself, but achieves 
graceful degradation through the discrimination between the fatal situation in which 
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there aren't any spare sectors left, and the less harmful situation when there are 
enough redundant sectors. Assuming that this layer functions correctly, it follows that 
a logicaLdisk-crash exception is raised if an invalid_crc exception was detected and 
initially the number of spare sectors was zero. To ensure that a logicaLdisk_crash or 
logicaLsector _lost is raised only in the situation described above, the specification may 
be strengthened by adding the conjunct F( 8( logicaLdisk_crash) /\ 8( logicaLsectodost) ), 
which forbids raising these exceptions deliberately. Notice that this specification is not 
complete because it does not specify that the mapping log_to_phys should be updated 
before raising the logicaLsector_lost exception. 

Although the reliable disk layer must handle both exceptions that may possibly be 
raised by the logica! disk layer, the specification below only anticipates the occurrence 
of a logicaLdisk_crash exception. Therefore also this specification is not complete. The 
read_sector operation (figure 5) of the reliable disk layer is specified by 

03i( i E operationaLdisks1 
/\ sector = logicaLdisl!; ( address')) 

/\ 8(logicaLdisk_crash)0(8(reliable_disk_crash)--+ operationa1-disks = 0). 

Suppose that it is forbidden to raise the reliable_disk_crash exception deliberately, 
which may be accomplished by adding the conjunct Fó( reliable_disk_crash) to the spec
ification above. Then it follows that a reliable_disk_crash exception is only raised if 
there are no other operational disks left and a logicaLdisk_crash was raised. Thus the 
only initially operational disk doesn't have the appropriate information. 

7 Conclusions 

The previous section illustrates how deontic logic provides the possibility to specify 
fault tolerant systems in a natura! way. It turns out that to derive certain properties 
of a specified system, one needs to make the assumptions about faults and their effect 
on the behaviour of the system explicit. The possibility to express the preference of 
some behaviors over others, allows one to distinguish between conditions created by a 
possible malfunctioning of a lower level, and the conditions created by the layer under 
discussion itself. Although deontic logies have been suggested for system specification 
before, e.g. in [Khosla88], the application to fault tolerant systems seems to be new, 
which partly explains the differences between the specification language used in this 
paper and those appearing in the literature about system specification. 

The deontic logic described in this paper differs from the deontic logies for system 
specification in the existing literature mainly in two ways. Firstly, the logic in this 
paper is a dyadic deontic logic, whereas the logies in e.g. [Meyer88] and [Khosla88] are 
monadic deontic logies. Secondly, primed and unprimed variables are used to capture 
the dynamic aspect of programs in the specification language, whereas Meyer [Meyer88 J 
and Khosla [Khosla88] use a dynamic logic in combination with the deontic logic. 

The first difference, which seems to be the most essential one, can be explained by the 
particular application to fault tolerant systems. An important concept in fault toler
ance is graceful degradation, which allows a system to temporarily sacrifice a service 
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in favor of a more important one if a fault occurs. This corresponds in a natural way 
with deontic logic specification of the format <p10'1/11 /\ ... <;nO'l/ln that specify the be
haviour ,,Pi of a system under less than perfect conditions <p; (i = 1, ... , n). Moreover, 
dyadic deontic logic offers a solution to the 'lazy programmer' paradox described in 
section 4. And, although the examples used to illustrate this paradox may be regarded 
as 'toy' examples, it should be evident from the example in section 5 that this problem 
becomes more important as the complexity of a system increases. 

The second difference concerns primed variables. A nice property of the logic is that it 
captures state predicates as well as action predicates. State predicates are predicates 
with either only primed variables or only unprimed variables. Action predicates are 
predicates with both primed and unprimed variables. A serious disadvaritage of the 
primed and unprimed variables is that it is not clear how this method can be extended 
to deal with (distributed) real-time systems, which is an important application area of 
fault tolerance. Such systems may be specified in a logic that mixes deontic logic with 
a temporal logic, or in a logic with combined deontic-temporal modalities like the one 
in [vEck82]. 

The next step which must be taken is the definition of an adequate formal semantics for 
the deontic logic discussed in this paper. A first study shows that a Kripke semantics 
can be obtained by introducing residuals of reachability relations. 
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Samenvatting 

Fout bestendige computersystemen hebben als speciale eigenschap dat ze correct blijven 
functioneren indien er fouten optreden. Het is natuurlijk niet mogelijk om een systeem 
zo te ontwerpen dat het tegen iedere denkbare fout opgewassen is. Daarom eist men 
slechts dat het systeem bestand is tegen een bepaalde klasse van fouten. De eigenschap 
dat een systeem foutbestendig is maakt het geschikt voor toepassingen in kritische 
omgevingen waar het falen van een systeem of een component ongewenste gevolgen 
kan hebben. 

Bij het ontwerpen van een foutbestendig systeem moeten geen nieuwe fouten 
geïntroduceerd worden. Het belang van een formele ontwikkelingsmethode is daarom 
juist voor foutbestendige systemen van belang. Een formele methode biedt de mo
gelijk om de gewenste eigenschappen van het systeem op hoog niveau te specificeren 
waarbij afgezien kan worden van implementatiedetails. Tevens bevat de methode een 
taal waarmee concrete implementaties beschreven kunnen worden. De methode moet 
daarnaast de mogelijkheid bieden om formeel af te leiden of de uiteindelijke imple
mentatie inderdaad de gespecificeerde eigenschappen heeft. Idealiter ondersteunt de 
methode een ontwerper bij het structureren van zowel het beoogde systeem als on
twerpproces zelf. 

Het onderhavige proefschrift beschrijft het onderzoek dat zich richtte op vinden van 
een formele ontwikkelingsmethode voor foutbestendige systemen. Het eerste hoofd
stuk bevat een korte inleiding tot en een overzicht van het verrichte onderzoek. Het 
tweede hoofdstuk beschrijft hoe twee bekende formalismen voor programmaontwikke
ling aan elkaar gerelateerd zijn. Het belang hiervan is dat het aantoont hoe op het 
eerste oog verschillende methoden uiteindelijk dezelfde klasse van systemen in dit 
geval sequentile programma's bschrijven. Het derde hoofdstuk definieert een inter
pretatie van een taal waarin foutbestendige tijdkritische systemen beschreven kunnen 
worden. Tijdkritische systemen zijn systemen waaraan tijdseisen gesteld worden. Het 
vierde hoofdstuk bevat een algebraïsche methode voor de verificatie van foutbestendige 
systemen. Hoofdstuk vijf tenslotte, wordt een algemeen probleem voor formele meth
ode voor foutbestendigheid beschreven. Een eerste aanzet tot de oplossing van dit 
probleem met behulp van een bijzondere logica wordt gegeven. 



Promotiereglement 
Artikel 15.3b 

The EUT "promotiereglement" requires that if a thesis conta.ins co-authored papers it 
should be indicated which parts are based on active contributions of the author of the 
thesis. 

Both chapter 3 and chapter 4 are typical joint articles that are diffi.cult to entangle. 
The basic computational model of chapter 3 is due to Jozef Hooman; the original 
idea and all adaptations to fault tolerance and simplifications are due to the author 
of this thesis. In the case of chapter 4, the first set-up for an algebra.ic theory for 
exception handling and its application to the specification and verification of fault 
tolerant systems is due to the author of this thesis. The formalization in ACP was 
proposed by Frank de Boer. 

It is not feasible to provide any further quantitative or qualitative division of the efforts 
reported on in these chapters. All co-authors have been actively involved in parts of 
the research. 



STELLINGEN 

behorende bij het proefschrift 

FORMALISMS FOR PROGRAM REIFICATION 
AND FAULT TOLERANCE 

van 

Jos COENEN 

I. Er bestaat geen volledige regel voor programmareïficatie in Floyd-Hoare logica, zoals 
gedefinieerd in [Hoa69], zonder logische variabelen. 

II. Iedere Hoare formule { <p} S { 1/J} kan als volgt in een equivalente normaalvorm gebracht 
worden 

{a: = Yo} S {cp[yo/:c] 1/J} 

Hierin stelt x de lijst van programma.variabelen in <p en '1j1 voor, en y0 een even lange lijst van 
verse logische variabelen. 

111. De volgende bewijsregel voor neerwaartse simulatie ( downward simulation) is volledig 
voor gesloten relationele termen R11 R2 en R3 , d.w.z. relationele termen zonder vrije 
voorkomens van specificatievariabelen" 

IV. De volgende bewijsregel voor opwaartse simulatie (upwa.rd simulation) is volledig voor 
gesloten relationele termen Ri. R2 en R3 , met gesloten als gedefinieerd als in stelling III. 

V. De volgende niet compositionele bewijsregel voor simulatie is op zich volledig voor gesloten 
relationele termen R1 , R2 en R3 , met gesloten als gedefinieerd in stelling III. 

VI. Door toevoeging van de volgende verificatieconditie voor opwaartse simulatie ( upward 



simulation) kan VDM (zie [Jon90]) volledig gemaakt worden m.b.t. programmareïficatie. 

'r/c, c E C, a E A · rel( a, c) A pre-C(c) A post-C(ê, c) 

::?- 3ä E A · rel(ä, ë) A pre-A(ä) A post-A(ä, a) 

VII. Back's algemene verificatieconditie voor programmareïficatie (zie [Bac88]), waarin for
tuinlijk nondeterminisme ( a.ngelic nondeterminism) is toegelaten, is volledig voor neerwaartse 
simulatie ( downward simulation) indien geeist wordt da.t de abstractie relatie totaal is. 

VIII. Superpositie van programma's is een vorm van contextverfijning waarvoor de eis van 
snbdistributiviteit te sterk is [ZCdR.92]. 

IX. Dat de keuze van een symmetrisch symbool voor gelijkheid in de rekenkunde niet voor 
iedereen intuïtief hoeft te zijn kan als volgt experimenteel aangetoond worden. Neem twee 
repen chocola en breek van ieder reep een derde deel af en verdeel het resultaat gelijkelijk 
onder drie jonge kinderen. Twee van de drie kinderen zullen verongelijkt reageren omdat het 
andere kind twee stukken heeft. 

X. Va.nuit het oogpunt van betrouwba.a.rheid verdient de toepassing van het TMR-principe 
(Triple Modula.r Redunda.ncy) in grootschalige uniforme netwerken de voorkeur boven het 
principe van zelfcontrole door duplicatie (self-checking logic) [Coe94]. 

XI. De werking van een remmende synaps in een neura.a.l netwerk correspondeert niet met 
die van één enkele invertor in een logisch circuit [Coe93]. 

XII. Het onderscheid tussen 'natte' en 'droge' horeca is zeer bedenkenswaardig in een debat 
over gokversla.ving waa.rbU drankmisbruik niet aan de orde komt. 

Referenties 

[Ba.c88] Back, R.J.R.: Data Refinement in the Refinernent Calcitfos. Reports on Computer 
Science & Ma.thema.tics 68, Ábo Akademi, 1988. 

[Coe93] Coenen, J.: Modelling Relia.ble Neura.l Networks. Proc. 3rd ICYCS, 3.01-3.06, 
Tsinghua. University Press 1993. 

[Coe94] Coenen, J.: Simula.ting Large Nenral Assemblies of Unrelia.ble Components. Cy
bernetics f.9 Systems, 25, 335-342 (1994). 

[Hoa69] Hoa.re, C.A.R..: An Axioma.tic Basis for Computer Programming. C. ACM, 12, 
576-580 (1969). 

[Jon90] Jones, C.B.: Systenwtic Software Development Using l1DM (second edîtîon). 
Prentice-Hall, 1990. 

(ZCdR.92] Zwiers, J.; Coenen, J. & De Roever, W.-P.: A Note on Compositional Refinement. 
Proc. 5th BCS-FACS Re.finement vV01·!.:shop, 342-366, Workshops in Computing, 
Springer 1992. 


