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Nomenclature

Notations
a scalar
a,a vector
A scalar
A bilinear form
A, matrix
A tensor
A:B tr(AB7T)
Symbols
c molar concentration of the fluid phase [mot A}
& molar concentration of iof¥ per unit fluid volume ~ [mol m?]
cfe molar concentration of fixed charges attached to tifi@ol m—3]
solid skeleton per unit fluid volume
C right Cauchy-Green strain tensor [-]
DP diffusivity of ion 3 [m2s]
£ Green strain tensor [-]
18 activity coefficient of ion3 []
F Faraday’s constant [C mol]
K hydraulic permeability [N s
Kh chemical potential tensor per unit mixture [NH)
volume for thes constituent
P pressure of the fluid phase [NTH]



specific discharge relative to the solid
flux of ion S relative to the fluid
q? + ¢’q, total flux of ion
universal gas constant
second Piola-Kirchhoff stress
time

absolute temperature
displacement

velocity of thea-phase
velocity of ion 8

velocity of mixture

partial molar volume of iors
Helmholtz free energy
elastic energy

valance of ion3

valance of fixed charge

Greek symbols

osmotic coefficient of iorg

Lameé stress constant

electro-chemical potential of the fluid phase
electro-chemical potential of iofi

Lamé stress constant

[-]
[N ]
[N'fh
[J mol1]
[ m)
[N ]

momentum interaction with constituent other than [N m—3]

first Piola-Kirchhoff stress

bulk density of thex-phase

true density of thex-phase

partial stress tensor of constituent

Cauchy stress tensor

volume fraction of thex-phase

volume fraction of the componept

volume fraction per unit initial volume

voltage

Helmholtz free energy of constituefitper unit vol-
ume mixture

Helmholtz free energy of constituefitper unit vol-
ume constituent

Vi

[N m?]
[kg m”]
[kg m”]
[Nm~2]
[NTH



Mathematical symbols and function spaces

Qe := current configuration of the-th constituent
Qg .= reference configuration of theth constituent
9 := domain
n := dimension of2 (2 or 3)
b'e := vector in current configuration
X = vector in reference configuration
\Y := gradient operator in current configurati%%,
Vo = gradient operator in initial configuratio(,ﬁZ
r := polygonal (polyhedral) boundary 6f partitioned into non-empty
Dirichlet and closed Neumann parts.

n(x) = outward unit normal vector frof atx
L) = {f:Q—=R: |[fllo < oo}
/13 = JolfI?dx
L2(Q) = {f:Q—->R": |f|lo < oo}
€13 = Ja \flz‘ d|X

0% .
D>y = G oan a=(ag, - ,0n) € Ntwith |a| =37 | a;
HFE(Q) = {vel?Q): D e L*(Q) forall|a| <k}
C () := space of all infinitely differentiable scalar functiops: 2 — R

with compact support if
HE(Q) := closure ofCg® in H*(()
vk = Ylal=k 1Dl
H7*(Q) := thedual ofH*(Q)
YD = ¢|r, trace of alH*(9) function
H'?(T) = H'YT)={wp:pecHQ)}
V- = divergence operator in the current configuration
Vo- := divergence operator in the reference configuration
H(div;Q) = {qeL?Q): V-qe L)}
(a1, 92)divi=  fo (@1 92+ V- -a1V - qq) dx
lalave = (a4 a)iq
NG = n-q, trace of aH (div; 2) function
H™Y2IT) = {ynq:qe H(div;Q)}
v = {ue(H'(Q)":u=00nTY}
Hp(Q) = {peH (Q):9p=00nTY}
HJ’(T) = {xe HYXT):A=o0onlD}
Hy(div; Q):= {qGH(div;Q):n-quOﬂFéV}
HY'2M) = {pe HY2(T):p=00nT)}
1/2

lewalh = (Il + lalo)
T := atriangulation of2
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Chapter 1

Introduction

ntervertebral discs (or intervertebral fibrocartilage) are cartilagitisaues that lie
between adjacent vertebrae in the spine. Each disc forms a cartilaginait® jo
allow slight movement of the vertebrae, and acts as a ligament to hold theraerteb
together.
Disc diseases like degenerated discs,
slipped discs, herniated discs are comm@n
terms often related to back pain, both the
lower back and the neck.
The spinal column is made up of bones
called vertebrae. Each vertebra has six
joints; four at the back of the bones that vertebral body
allow and control spinal movement. These facet joints
are called facet joints and are aligned verti- ~—
cally, parallel to the direction of the spine. shock
The other two joints are at the top and bo- absorber
tom of the vertebrae themselves. These
joints are horizontal joints in orientation
and weight-bearing in function. Betwee
each pair of the vertebrae is an intervert
bral disc, except between the top two in the
neck.
The discs become progressively smaller
as you go up the spine. They change shape intervertebral
as they go up, simply because the bongs disc
also change shape. The combination pf
two vertebrae and an intervertebral disc s
called motion segment.
The intervertebral disc functions to per-
mit limited motion and flexibility, while Figure 1.1.schematic of the spine and the mo-
maintaining segmental stability and alfon segment
sorbing and distributing external loads.

flexibility
of the spine




2 Chapter 1. Introduction

In fact, the intervertebral discs are fibrocartilaginous cushions ggasrihe spine’s
shock absorbing system, which protect the vertebrae, brain, andstthetures (i.e.
nerves). The discs allow some vertebral motion: extension and flexiakividoal
disc movement is very limited period however considerable motion is possible whe
several discs combine.

The structure of the normal intervertebral
pleus disc includes:

spinal cord apnulus ¢ A nucleus pulposus, soft and composed

icul primarily of proteoglycans and Type Il
Sféglégsr collagen with a capacity to absorb and
distribute load.

e A tough outer annulus fibrosus with A
well-organized layer of Type | collagen
vertebra that serves to stabilize the motion seg-
nerve root ment.

Figure 1.2. schematic representation of an  * Two end plates that cover top and bot-
in?ervertéb'rm disc P tom of an intervertebral disc of type hya-
line cartilage that allow fluid movement

between disc and vertebral body.

® O
The nucleus of the disc acts as a shock ab-
® 0 sorber, absorbing the impact of the body’s
daily activities and keeping the two vertebrae
* | separated. The nucleus is roughly spherical in
anion - shape and is made of a hydrogel-like material.
® The weight of the body causes a considerable
amount of pressure to be built up in the nu-
cleus.
The annulus is wrapped in layers around
the nucleus to contain its pressure. These lay-
ers are somewhat like the layers of an onion.

Ny

interstitial The fibres of one layer are at right angles to
fluid cation the next layer. These layers have to be tough
proteoglycan and non-yielding; otherwise the soft nucleus
molecules collagen fibre would lose its shape and spill all over the
place.

Figure 1.3. microscopic representation of  |n fact, the intervertebral disc can be
an intervertebral disc likened to a doughnut: whereby the annulus
fibrosis is similar to the dough and the nucleus

pulposus is the jelly. If one presses down on the front of the doughaielily moves
posteriorly or to the back.

As people age, the nucleus pulposus begins to dehydrate, which limits its ability
to absorb shock. The annulus fibrosus gets weaker with age and betgas. While
this may not cause pain in some people, in others one or both of these may caus
chronic pain.
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Historically, Hippocrates (460-390 BC) is the father of spine surgergridgtos
and Skiadas, 1999a). Galen (129-210 AD) compiled treaties of ortimedtments
like: experimental physiologist and made many true observations on hovwothe b
works. Galen described four spinal suffering, kyphosis, lordesisliosis and seisis
that occur due to tuberculosis nodes on the lungs, falls on to the hips widehg
aging and painful conditions (Marketos and Skiadas, 1999b).

The main structures of annulus fibrosus are a fibre network consistlagen
fibores and proteoglycan molecules, freely moving charged particles édd CI)
and an interstitial fluid.

The large proteoglycan molecules consisting of a protein core to which ujoto 1
highly sulphated glycosaminoglycan chains (GAGS) are attached. A dis@rfeta-
ture of glycosaminoglycan chains is their high number of charges. Theeotmation
of these fixed charges is called the fixed charge density.

Because of the entanglement of the glycosaminoglycans in the collagerrkeiveo
charges of proteoglycans are fixed in the tissue, unlike the small ions likeaNad

The main function of the intervertebral disc is mechanical. The disc transmits
load along the spinal column and also allows the spine to bend and twist. Ttse load
on the disc arise from body weight and muscular activity, and change oo,

Discs are under pressure, which varies with posture from around 0.2 tdPa
at rest, to around 1.5 to 2.5 MPa while bending and lifting. The pressure idymain
due to water pressure across the nucleus and inner annulus in a nggmal d

In fact, intervertebral discs exhibits swelling and shrinking behaviouchvts
caused by mechanical force(weight of the body), chemical forcan@hg the salt
concentration) and electrical force (electrical potential field). In @ésahe swelling
is caused by inflow or outflow of fluid.

The fixed charge density is an important determinant of the swelling propertie
(osmaotic pressure) of the intervertebral disc.

1.1 Existing models for swelling of intervertebral discs

Modelling the mechanical and electro-chemical behaviour of soft tissigsas in-
tervertebral disc is an essential task in improving the understanding aEfailecha-
nisms. Several researchers have posed sets of equations whigtit pnesmechanical
and/or electro-chemical behaviour of such tissues.

We distinguish between the components and the phases in this way that the com-
ponents are considered to be continua related to the same macroscopic nwame
sure for all components (in our case a solid, a liquid, anions, and catasphases
are continua related to their own real volume measure (in our case solidughd fl
Mixture theory (Bowen, 1980) is a framework, in which the model integraieshan-
ical deformations and loads, diffusion, convection and chemical reaatiadifferent
solutes. Theories that describe the mechanical behaviour of cartilagissues can
be divided into three categories:

e An earlier study from geomechanics presents two-component modelg{biph
sic), that describe the solid-fluid interactions.((Biot, 1941) and (Biot2))97
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These models do not consider the electrical charge and thereforet aawn
scribe osmotic effects, which have a major influence on the swelling belaviou
of tissues.

e Osmotic effects are modelled in a triphasic model (Lai et al., 1991) and (Gu
etal., 1997) that take into account the ionic effects. In the triphasic moga th
phases are defined: a charge porous solid phase (collagen fidgsoéengly-
cans), the interstitial fluid phase, and the fluid miscible phase (the ionic)phase
The triphasic model extends the biphasic model using physico-chemical the-
ory.

e Inthe four-component mixture theory (Huyghe and Janssen, 19%fpenaable
and charged porous medium is saturated with a fluid with dissolved cations and
anions. In fact, the four component model takes the geometric non-linearity
electrical fluxes and potential gradient into account. By introducing tre ele
tronegativity as a restriction on the second law of thermodynamics, electrical
phenomena are modelled.

1.2 Finite element analysis for the numerical solution

The governing equations for the two-component model form a linear tirperdkent
system, involving solid displacement, fluid pressure and fluid flow.

In the case of a four-component model we are dealing with a nonlinear time-
dependent system, involving solid displacement, liquid and ions potentials, liquid
flow and ions flow, 15 equations and unknowns in a three-dimensionfigjacation.

Of the various forms of discretisation which are possible, one of the mest us
is the finite difference process. Another method that is often used in masjcph
applications is concerned with various trial function approximations fallindeun
the general classification of finite element methods. It has been showewat
finite difference processes can be included as a subclass of this nmaalgheory
(Ciarlet, 1978).

The name “mixed method” is applied to a variety of finite element methods that
have more than one approximation space. Typically one or more of thesspiage
the role of Lagrange multipliers to enforce constraints. The name and mahg of
original concepts for such methods originated in solid mechanics wheresitliera
sirable to have a more accurate approximation of certain derivativespi@césnent.
However, for the Stokes equations that govern viscous fluid flow, theal&alerkin
approximation is a mixed method (Brezzi, 1974), (Fortin, 1977) and (Braxd
Fortin, 1991).

In fact, mixed method involves the independent interpolation of a kinematic quan
tity, such as displacement, and a kinetic one, such as flow. Hybridizatiorpecab
class of mixed method. In fact, it is differentiated from mixed method becaese th
kinetic variables are forced to satisfy an equilibrium relation. Becauseeoadh
ditional interpolation of the kinetic variable, mixed and hybrid methods generally
require somehow more computational effort to implement at the element level tha
do standard methods. However this effort is well justified by the flexibility &csp
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ify independently the interpolation functions representing the kinetic vagattain
the element, as compared to conventional methods for which the kinetic varable
represented as derivatives of the kinematic ones.

1.3 Aims and contents of this thesis

In chapter 2 we give a historical overview of the mixture theory. Then lsyegtep

we construct the four-component mixture model for the swelling of tisstvesfirst
present the kinematic consideration and the balance laws. Then the coresttyia-
tions are derived. We present the set of field equations for the Lgigradescription

for the four-component system. In some detail, the transformation of treiegs to

the reference configuration of the skeleton is discussed. The infinitedef@ima-

tion assumption for the solid skeleton simplifies the equations. It is shown that this
model in the absence of ions reduces to a two-component system.

To verify the numerical solutions for this model we need to derive a seh-of a
alytical solutions for the reduced system of equations. Chapter 3 is detmthis
fact. We set ourselves the task of deriving a set of analytical solutmmthé one-
dimensional four-component model. We derive the analytical solutionthéotwo-
component mixture model which is simpler and then generate the solution for the
four-component model.

In chapter 4, the two-component model is considered. In our model isisatiée
to obtain approximations of the fluid flow and ions flow that fulfil the consttoma
equations. In finite element simulations, these quantities are generally caldojate
differentiation of the electro-chemical potential solutions. This approachleza
to violation of the mass conservation principle. We propose a mixed formulation f
the two-component mixture. The existence and unigueness for the solditiba o
discretised system is proven. We introduce the mixed hybrid technique. ugltho
the hybridization method reduces the number of degrees of freedom, iorieue
tations we only have to compute inverses of element-wise block diagonal rsatrice
The derived algorithms are tested for two type of examples: a one-dimahsimm
solidation experiment and a two-dimensional footing problem. The resulthéor
first problem is verified with the analytical solutions derived in chapter 3.

In chapter 5, the mixed variational formulation for the four-component iinede
considered. The existence and unigueness after discretisation inasphtiene for
the solution of the linearised system is proven. Using the MHFEM technique fo
our model, we still have an indefinite system but the advantage is that the numbe
of degrees of freedom will be reduced. In fact, for a three-dimeasimmblem this
number will be reduced from 15 to 6 degrees of freedom.
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Chapter 2

Thermodynamic modelling of deformabler
saturated porous media

I n many branches of engineering, for example, in chemical engineeringriata
science, and soil mechanics, as well as in biomechanics, the reactionseofaina
systems undergoing external or internal loading must be studied andbgespre-
cisely in order to be able to predict the responses of these systems.q8eibiyg

the most important point of the investigation is to determine the composition of the
body, because one must know the physically and chemically differing miatdrat
constitute the system under consideration. The material systems in thesefields
engineering can be composed in various ways. Solids can contain clodexpan
pores. The pores can be filled with fluids and, due to the material propeftire
solids and the motions of the fluids, there are maybe interaction between the con
stituents.

Because the exact description of the locations of the pores (empty or filled w
fluids) and the solid material is practically impossible, the heterogeneous sidiopo
can be investigated using the volume fraction concept. This concept rasttis
effect that “smeared” substitute continua with reduced densities for tick eswd
fluid phases arise which can then be treated by the mixture theory.

Reflections on the fundamentals of mechanics, which were already forhtdate
a great extent in the eighteenth and nineteenth centuries, have be&teosmh the
last decades, beginning in the 1950s. These results form the basis efmumh-
tinuum mechanics, which makes a consistent treatment of gaseous, liqiishlah
bodies possible. Modern continuum mechanics was essentially formedibgd#il.

In two books (Truesdell and Toupin, 1960) and (Truesdell and N&B5). and in
numerous articles, he and his disciples laid down their ideas and createsed clo
continuum theory. However, their work is not undisputed.

Moreover, Truesdell was the scientist who reformulated and extendexiiture
theory. After the fundamental work of Stefan, Duhmen, Gibbs, Rayndilsnann,
and Lohr, it was Truesdell (Truesdell, 1957) who introduced locklrz® equations

* Parts of this chapter will be appeared in ESAIM: Mathematical ModellingNuntierical Analysis
(Malakpoor et all, 2006)
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for mass, momentum, and energy of arbitrary constituted mixtures. Thesebala
equations are referred to the individual constituents in consideratiolh afugpling
terms. Truesdell used as a basis of his derivations certain principled) laker have
been adopted as so-called “metaphysical principles”:

1 All properties of the mixture must be mathematical consequences of pfegper
of the constituents.

2 So as to describe the motion of a constituent, we may in imagination isolate it
from the rest of the mixture, provided we allow properly for the actions ef th
other constituents upon it.

3 The motion of the mixture is governed by the same equations as is a single
body.

In Truesdell’'s description of mixtures (Truesdell and Toupin, 1966 b proper
statement for the moment of momentum balance equation and a generalizatien of th
entropy inequality for mixtures were missing. With respect to Truesdell's naxtur
theory, (Kelly, 1964) developed distinct balance laws on the basis dumg@amental
balance equation, thus allowing a clear assignment of the effects resuttimgtie
partial balance equations to the mechanical quantities of the mixture. Corgtra
moment of momentum balance, Kelly proposed moment of momentum supply terms,
thus admitting unsymmetrical partial stress tensors.

In the early 1960s, a thermodynamic approach to the constitutive theory was

enerally unknown, until (Coleman and Noll, 1963) as well as (Colemarvirel,
1964) introduced the development of thermodynamic restrictions from thapgrin-
equality. This application of the entropy inequality to heterogeneous mateaissad
exceptional difficulties.

It was later pointed out that the entropy inequality postulated by (Bowe§¥7)19
was the first correct version of the entropy inequality for mixtures. Tdwelbpment
of the mixture theory was brought to an end to a certain extent already irathe e
1970s, namely in so far as the fundamentals developed up to that time haveegma
valid up to today.

In the theory of mixtures (Bowen, 1976), one porous solid skeletonkandl
miscible or immiscible pore-fluids are considered. The motivations and exaofples
mixtures can be found in many branches of science and engineering dike/&sti-
gation of the coupled solid deformation and pore-fluid flow behaviour isgjeace,
the well-known consolidation problem of soil mechanics, in applicationseroing
the exploitation of natural gas and oil reservoirs, or in biomechanicéllgmos like
the investigation of swelling and shrinking of cartilaginous tissues or inteiveal
disks, which is the main item of this work. For the case of saturated poroua rtteel
main idea is the representation of a saturated porous medium as the sitjpergas
time and space, of two continua or phases; the first representing théoskelease,
the second the fluid phase. The fluid volume fraction of a given volume isatfee r
of the non-solid volume to the total volume and is denoteghby

As mentioned above, in the theory of mixture there is no measure to get any mi-
croscopic information. Therefore it is convenient to combine the theomyixtures




with the concept of volume fractions. By this procedure, basically defitiiaghe-

ory of porous media, one can find an excellent tool for the descriptiagenéral
immiscible multiphasic aggregates, where the volume fractions are the meakures o
the local portions of the individual phases of the overall medium.

It seems that Morland (Morland, 1972) was the first scientist to use tueneo
fraction concept in connection with the mixture theory. In 1966, howeVkts
(Mills, 1966) had already used the volume fraction concept for incorsjiresmix-
tures of two separated Newtonian fluids. In this article, Mills also formulated the
incompressibility condition in such a way that he assumed the real densitieshof b
constituents to be constant, i.e., that the sum of the volume fractions was@quoal
In the volume fraction concept, it is assumed that the porous solid alwayslsnad
control space and that only liquids contained in the pores can leave ttrelspace.

The basis of the description of porous media, using elements of the thawoix-of
tures restricted by the volume fraction concept, is the model of a macroduoogyc
where neither a geometrical interpretation of the pore structure nor tlot lexa-
tion of the individual components of the body (constituents) are consid&tgers,
2002), (Hassanizadeh, 1986a) and (Hassanizadeh, 1986b)rodéed from the as-
sumption that the constituents are “smeared” over the control space thetpisds
by the porous solid, i.e., that each substitute constituent occupies the totalevof
space simultaneously with the other constituents.

In this chapter, we consider a continuously deformable saturated powexiam.

This type of saturated porous media can be observed in numerous solidmtsch
problems and is studied since many years in civil engineering. It is als@dtud
biomechanics to model the coupling between fluid flow and mechanical loading in
cartilage or skin.

Many biological porous media exhibit swelling and shrinking behavioumahe
contact with salt concentrations. This phenomenon, observed in caditaggels, is
caused by electric charges fixed to the solid, counteracted by congisgacharges
in fluid. These charges result in a variety of features, including sweléregtro-
osmosis, streaming potentials and streaming currents. We distinguish between th
components and the phases in this way that the components are considbeed to
continua related to the same macroscopic volume measure for all componens (in
case a solid, a fluid, anions, and cations), and phases are contirted teltheir own
real volume measure (in our case solid and fluid). Mixture theory (Bod280)
is a framework, in which the model integrates mechanical deformations ads, loa
diffusion, convection and chemical reactions of different solutes.

An earlier study from geomechanics presents biphasic models, thaibdettr
solid-fluid interactions. These models can not describe osmotic effecish Wwave
a major influence on the behaviour of tissues. Osmotic effects are modelled in a
triphasic model (Lai et al., 1991) and (Gu et al., 1997) and in a four-comupt
mixture theory (Huyghe and Janssen, 1997), (Frijns, 2001) anch(€hal., 2006).

In the four-component mixture theory a deformable and charged ponedtum is
saturated with a fluid with dissolved cations and anions.

The solid skeleton and fluid are assumed to be intrinsically incompressible and
therefore a non-zero fluid flux divergence gives rise to swelling ankage of the
porous medium. Alternatively, a gradient in fluid pressure, ion condsmmsaor
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voltage results in flow of the fluid and ions (Frijns, 2001).

In this chapter, we construct the model of four-component porous ialaier
Lagrangian coordinates of the skeleton. Such a description, particuisefyl in
computer-aided solutions, has not been used yet for multi-phase systearss the
skeleton is usually described in Eulerian coordinates.

This chapter is outlined as follows. In the next two sections, we presekirtee
matic consideration and the balance laws. Section 3 is devoted to constitutae eq
tions. In section 4 we present the set of field equations for the Lagradgicription
for the four-component system. In some detail, the transformation of tregieqs to
the reference configuration of the skeleton is discussed. The sixthrsectievoted
to the Donnan equilibrium and boundary conditions. In section 7 we assuiime a
finitesimal deformation for the solid skeleton and we derive the simplified eqsatio
In section 8 we present the reduction to a two-component system.

2.1 Kinematic

The swelling and shrinking behaviour of cartilaginous tissues (like intestveal
disc) can be modelled by a four- component mixture theory in which a defidema
and charged porous medium is saturated with a fluid with dissolved ions. Within th
concept of mixture theory, we consider a porous solid skeleton and an iibhaisc
pore-fluid. The idea is to present the saturated porous medium as @asigien of
deformable phases that occupy the same domain in the three-dimensicrelaspa
timet. In other words, we assume that different phases exist simultanediedgia
point in space. Cartilaginous tissues are assumed to consist of two phaswsil
phase and a fluid phase. In cartilaginous tissues, the fluid phase caidistee
components: liquid, cation and anion. We use the abbreviatemd f respectively
for the solid phase and the fluid phase. The symbols and — stand for liquid,
cation and anion, respectively (cf. Figure 2.1).

microstructure volume fractions continuum model
anions
cations

solid

Figure 2.1.Micro-structure and macroscopic model

Definition 2.1. A body{? is a set whose elements can be put into bijective correspon-
dence with the points of a regidhof a Euclidean point space. The elementQ @fre
called particles and? is referred to as a configuration @?; the point in{2 to which

a given patrticle off? corresponds is said to be occupied by that particle.
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Figure 2.2.Motion of a multi-component mixture.

Definition 2.2. A mixture can be considered as a superposition of deformable phases,
that occupy the same domain in the three-dimensional space at.time

In order to represent the motion of the mixture, quantities associated with the
motions of the phases and the mixture as a whole must be defined.

Definition 2.3. Consider a porous media with the constitueats= s,/,+ and —.
LetQ* denotes the current configuration of theth constituent, whose domain®
and boundanyi"™® are shared with other phases at timeThe kinematics in porous
media theory are based on two fundamental assumptions:

1 The regiong?® coincide and every positioxis occupied by particles of every
single constituent at the same time.

2 Each constituent follows an independent motion and has a fixed butasieer
arbitrary reference configuratiof2§ occupying a domainig at timet,.

Define the motion
x = X (X% 1) 0% % [0,T) = Q, a = s,01,+,—, (2.1.1)

whereX“ is the position of the particle of the-th constituent in its reference con-
figuration, tis the time and is the spatial position occupied at timdy the particle
labeled byX®.

As illustrated in Figure 2.2, each spatial poist of the current configuration
is, at any timet, simultaneously occupied by material particles (material points)
P>, These particles proceed from different reference positions att#jntaus, each
phase is assigned to its own motion function as mentioned above. As a rashlt, e
spatial pointx can only be occupied by one single material pdist of each phase.
The functiony® is the deformation function and the assumption of unique motion
functions, where each material poift* of the current configuration has a unique
reference positiolX“ at timet, requires the existence of the unique inverse motion
function ().
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Define the deformation gradient of the solid phase by

aXS —1 —1 8XS
S(X$ _ VS = S =V s — .
F ( 7t) vX X 8X37 (F ) <X7t) \Y (X ) Ox
A transfer from the current configuration to the reference configuratigossible by
using the determinant of the gradient deformation as defined by

(2.1.2)

J5(X5,t) = det F* > 0. (2.1.3)
Define the right Cauchy-Green strain tengband Green strain tensa by

C(X*,t) = (F5TF5, (2.1.4)

£(X*, 1) = %(c _7). (2.1.5)

Easily it can be seen that is symmetric positive definite.

Definition 2.4. The true density for the-constituent is defined as the mass of the
a-constituent per unit volume of the-constituent and is denoted by:. The bulk
densityp® is the mass of tha-constituent per unit volume of the mixture. The quan-
tity

e (x,t) = Z;g 2 (2.1.6)

is called the volume fraction of the-constituent. Physically® represents the vol-
ume of thex-th constituent per unit volume of the mixture.
The velocity oiX“ is defined by

a aﬁ et
Vo= (X0). (2.1.7)

The density of the fluid phase is defined by
ol = Z 0P (2.1.8)

B=l,+,—
The velocity of the fluig/ is defined by
1
vl = p—f Z v, (2.1.9)
B=l,+,—

The density of the mixture is defined by

p= Z pe. (2.1.10)

aszl’J’»?*
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The velocity of the mixture is defined by
1
v=— Z pve. (2.1.11)
P a=s,l,+,—

If ¥ is any scalar function ok and ¢, the derivatives ofl following the motion
generated by andv® are, respectively,

DU o
o - vy, (2.1.12)
DO O

AR Ry 2.1.13
Dt ar TVYY ( )

2.2 Balance equations

In mixture theory and porous media theory, balance equations like bal&ntass,
balance of momentum, and moment of momentum, as well as balance of energy must
be established for each constituent in consideration of all interactionsxdachal
agencies. This means that all quantities resulting from long- and shg-effects
that influence the individual constituents, as well as the interaction efbetteeen
the constituents, have to be considered in the balance equations.

Before stating the balance and constitutive equations in the next secti@oywe
sider the following assumptions:

1. The mixture is incompressible, which means that both fluid and solid are in-

compressible. Hence, andp{; are uniform in position and constant in time.
In other words, volumetric changes of the porous medium are taken into ac-
count.

2. We assume that no chemical reactions exist between phases andcessou
sinks exist.

3. We neglect the inertia effects and body forces.
4. The process are assumed to be isothermal.

5. The mixture is assumed to be saturated, i.e,

O+l =1. (2.2.1)

The volume fraction of the ions is neglected compared to those of the solid and
the fluid (dilute solution),

P+ m0=9/= > ¢ r¢ (2.2.2)
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6. Itis assumed that the solid matrix is entirely elastic and initially isotropic. The
shear stress associated with mixture deformation is assumed to be negligible in
the fluid phase. We assume that the porous medium is initially homogenous and
thereforep® is initially uniform. For our binary porous mediup = ¢/ ~ ¢!
indicates porosity and note that = 1 — .

Conservation of mass for the phaseand f implies
Op®
ot

Summing up these two equations for= s, f, and using the saturation assumption
(2.2.1), the incompressibility constraint condition reads

+ V- (V) =0, a=s, [ (2.2.3)

V. (ql n VS> —0, (2.2.4)

where the specific discharge relative to the solid phase is defined by
qd =0 (Vl — v3> . (2.2.5)

Note that the fluid velocity is a weighted average of the velocity of the liquid and
the velocities of the ions. Since we are interested in the situation in which theere ar
far more water molecules than ions, we approximate the velocity of the fluid by the
velocity of the liquid,v/ ~ v’

The conservation of mass for the dissolved ions implies

dpc?

wherec? is the molar concentration of iofi per unit fluid volume and/? is the
average velocity of iorf. Define the molar fluxy® relative to the fluid with

o’ = P (vP —vh. (2.2.7)

After neglecting body forces and inertia effects, the momentum balancs th&e

form
V.o +7n4=0, a=s1+,—, (2.2.8)

whereo“ is the partial stress tensor of constituenisr® is the momentum interac-
tion with constituents other tham The momentum balance for the mixture reads

m+rl+at+7 =0, (2.2.9)

Hence

V.io=V-0°+V-0!+V.-07+V.07 =0, (2.2.10)
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whereo represents the Cauchy stress tensor of the mixture.

The balance of moment of momentum requires that the stress tensersym-
metric. The partial stresses* are symmetric, if no moment of momentum interac-
tion between constituents occurs (a proof can be found in (Bowen,)19#6this
work we shall assume all partial stresses to be symmetric.

Electroneutrality requires

et + 27 + 2/l =0, (2.2.11)

wherez?, 3 = +, —, is the valence of the dissolved igh For a mono-valent salt,
2T = 1andz~ = —1. The superscripfc stands for fixed charge, i.e. the attached
ionic group, thus:/* denotes the molar concentration of the ions attached to he solid
skeleton per unit fluid volume.

The conservation of fixed charge reads

dpcle

o TV (e cfev®) = 0. (2.2.12)

In order to gain restrictions for constitutive equations, the second laweomib-
dynamics (entropy inequality) has been usefully applied in continuum miashan
in mixture theory and, in particular in the theory of porous media. Following the
isothermality and incompressib I|t conditions, the entropy inequality for a umit vo
ume of the mixture reads (Bo 1976):

o DU
_; i ( ©“ Di +0%:Vv® — 7% . VO‘> >0, (2.2.13)

whereU“ is the free energy density for theconstituent per unit volume of the-th
constituent and is defined iy ¥ = ), wherey® is the Helmholtz free energy of
constituenty per unit mixture volume.

DefineWW to be the Helmholtz free energy of the mixture by

W=J0 Y wr=J0 Y o (2.2.14)
a=s,l,+,— a=s,l,+,—
We try to rewrite the entropy inequality (2.2/13) per initial mixture volume. Note that

D3 Js
Dt

= JV - v, (2.2.15)

Material time differentiation of?” with respect to the solid motion gives

DIW Ds
S AN ‘p saan L D (2.2.16)

Dt Dt
a=s,l,+,— a=s,l,+,—
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Evidently,
DSy DYy«
= g, (v —v©@ 2.2.17
SO,
Dy DWW
718 a - _ S
I3 e o 5 TV
a=s,l,+,—
DSQOOC
S «
+ > oY
a=s,l,+,—
- J° Z PPVUP . (vP — o).
B=l,+,—

The definition of the material time derivative in (2.1.13) and the incompressibility
assumption (2.2]3) imply that

JS Z Do po

Dt
a=s,l,+,—
— J Z N 8(’004 + POV % . v
ot 4
a=s,f,+,—
— Js Z T &Pa + g (V . (()OCVVS) _ (pcxv . VS)
ot
a=s,f,+,—
= —JV.v* Z U — J* Z AV ((pﬁ(vﬁ —VS)>
a=s,f,+,— B=l,+,—
0p”
s T RN

=0
= -Wwv.vi-J Y vy, (@ﬁ(vﬁ—vs))'

p=l+,—
Thus
Dy DSW
s o _ s (WP P B_S) 2.2.1

By using equations (2.2.8) and (2.2.10) we have

Z o%:Vv® = Z ocVv® + Z o’ V(P —v*)

a:'37lz+77 a:'37lz+77 ﬂ:le’»:*
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= oVv’+ Z V- (Jﬂ(vﬁ —VS)>
B=l+,—
— Z V.o v*+v° Z V.o“
a=s,l,+,— a=s,l,+,—
0
= oVv®+ Z V- (oﬁ(vﬁ—vs)> + Z v,
B=l+,— a=s,l,+,—
(2.2.19)

therefore the entropy inequality with respect to the initial state of porous tedeb
the following form

_D*w
Dt

+ JPo : Vv — J* Z V- (IOB S (vP = vs)> > 0. (2.2.20)
B=l,+,—

whereX” is thechemical potentialensor per unit mixture volume for thizconstituent
and is defined by
KP=yPT —0®, p=1+,—. (2.2.21)

2.3 Constitutive equations

Mixture theory (the basis of porous media theory) is closed, i.e., the nunfler o
known fields is equal to the sum of the balance equations and the constéqtiae
tions. In porous media theory, therefore, one has to look for additionstens
in order to close the system of field equations by introducing constitutiva-equ
tions. These equations connect certain mechanical or thermodynaman#itis
via material-dependent constants and must be provided with a Lagrangeliergltip
for the evaluation in process of the entropy inequality. If the equation irsxis
a constraint of the motion, then the Lagrange multiplier will become an unknown
reaction force.

However, it is not sufficient to only fulfil the requirement. Rather more-gen
eral “principles”, which were developed in continuum mechanics shoaifdlfilled.
They are:

e Principle of material frame-indifference or objectivity, or in some literature
known as principle of change of observer. This principle states thatethe r
sponse of any material must be independent of the observer.

e Principle of dissipation. This principle states that the constitutive relations
must satisfy the reduced entropy inequality (2.2.20) for all values of tireir a
guments (Coleman and Noll, 1963).

e Principle of equipresence. (Truesdell and Toupin, 1960). This stiatesf a
variable is used in one constitutive relation of a problem, it should be used in
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all the constitutive relations for that problem (unless, its presence clictsa
some other law or axiom).

Note that the entropy inequality should hold for all mixtures satisfying the balan
laws, incompressibility and electro-neutrality.

Due to the objectivity principle, we refer the current description of the mextar
the initial state of the porous solid.

Defining volume fractions

Y = Jp*, a=s,l,+,—, (2.3.1)
per unit initial volume, we can rewrite the balance equation (2.2.3) as follows:

D3o~

Di + IV - (p*(v* =vT) =0, a=s,l+,—. (2.3.2)

We shall denoteb/ by ®. By introducing a Lagrange multipligr for the incom-
pressibility constraint (2.2.4), the entropy inequality (2.2.20) takes the form

DS
- DI:V—}—JS(O'—}—pI) LV J(—K - peT) - V(VE - v0)
- J° Z P V(v =) + J(=V - K 4+ pVy) - (vI = v¥)
f=+,—
Iy VK (v —vi) >0 (2.3.3)
B=+,—

The electro-neutrality condition (2.2.11) in the initial state takes the followinm for
Ozttt + Pz + zfcgpocgc =0. (2.3.4)
It is easy to check that

D3P
Dt

After combining [(2.3.4) and (2.3.5), we obtain another constraint for theen
inequality as:

Y (gpcﬁ(vﬁ - v5)> —0, V8=, —. (2.3.5)

1 S
P (z%ﬁ(vﬁ v )) —0. (2.3.6)
SV
Here we use that 5
V= g4 (2.3.7)
@

whereVﬂ is the molar volume of the constituefts = I, +, — andd! = c—c¢t —c.
Herec is the molar concentration of the fluid phase, which is assumed to be uniform
and constant.
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The equation (2.316) can be written in another form as:

V(@ +etd)+ 2 V(T +ed) =0. (2.3.8)

In (2.3.5), the presence of molar volurfi@ shows a link betweep? andyc®. For
the constitutive equations, our attempt is to introduce them not dependerit lout
onyc?. As we will see late” will help us for this purpose.

Introducing the restriction equation (2.3.6) into inequality (2.3.3) by means of a
Lagrange multiplier\, yields:

D*W
- 5+ J* (o +pI) : Vv + J (K + ppT) : V(v — v)
B
+ J° Z (—Kﬁﬁ—i— Z?gﬁl’) V(P —v?)
= Vv
B=+,—
+ J(=V- K +pVe) - (v —vF)
BN
+ Js Z <_V ICP + ZﬁV(pB) . (Vﬁ —v®) > 0. (2.3.9)
o 4

To close the system, we choddé o+pZ, —Kl—l—gopl', —Kﬁ+zg—§gpﬂl' (B=+,-),

—V-K'+pVypand—V-K° + Zé—ﬁvwﬁ (8 = 4, —) to be the constitutive variables,
i.e., they are functions of a set of independent variables (the constivatiizbles are
thus the dependent variables). We choose as independent variabl@setn strain
& (cf. (2.1.5)), and the Lagrangian forms of the volume fractions of the liquidi
the ions®”, and the relative velocitiee’ = (F*)~'(v® —v*), 3 =1,+, —. Thus

W = W(E, % vP), (2.3.10)

1 ~
o+pT = L FSE v (F), (2.3.11)
—K'+ppT = fstl(&éﬁ,vﬂs)(fs)T, (2.3.12)

_K:/g + jgpﬁl— = Fskﬂ(gaq)ﬁavﬁs)(fs)T’ /8 = +’_’ (2313)
Vv
~1
VKl +pVy = FK(E 8% v), (2.3.14)

B
VK + 0V = FK(E,0° V), =+, - (2.3.15)
%
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We apply the chain rule for the time differentiationidf, hence we have

DsW 8W DSS Z aWDSqﬁ Z oW DSvﬁS
Dt ' acbﬁ "Dt 8vﬁs

- fawm) e r Y an CCEY)

o0& o0Ps
ﬁ:l7+7
OW  DsvPs
+ Z v D (2.3.16)
Here we use that
DsE s\T' S s
D = (F5) VviFe.

We insert the equatioh (2.3.16) in (2.3.9). This results into

(Js(a—i-pl') _F %VZ(F) ) Vv —

oW
+ J* (—K:l - <p+ aq») gol') V(v —v¥)

B8
+ J* E: (—Kﬁ—l-(Z)\-i-ng)[;> BI>:V(V5—VS)
1%

=t~
Z 9. (v —v®) >0,
B=l,+,—
where
ow
I vl o
ff = -V IC—I—(p—I— (‘M))VSD’
8 _ _ogb ([FALOWNC 5 s
7 = v1€+<vﬁ+6(w Ve, B=+,—.

It follows from (2.3.10),/(2.3.14) and (2.3.15) that

£ = F5E0(€, 08 v0%), B=1+,—. (2.3.17)
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By a standard argument (Coleman and Noll, 1963), (213.17) is satisfied dray if
1 ow

o+pL = ﬁfsa—g(}'S)T, (2.3.18)
gvv;; = 0, B=1+,—, (2.3.19)
Kl = (p+%) T, (2.3.20)
BN oW
B (AL 9V B — 4
K <vﬁ + &pﬁ) PILT, B=+,-, (2.3.21)
and
Yoo (v >0 (2.3.22)
B=l,+,—

Equation|(2.3.18) shows that the stress of the mixture can be derivedheostrain
energy functionl minuspZ. It can be seen that hegepresents the hydrostatic
pressure acting on the mixture (Bowen, 1980). Equation (2.3.19) shenthéhstrain
energy does not depend on the relative velocities. Define the chemieaitip’
per unit fluid volume and the electro-chemical potentid) 5 = +, —, per mol of
ion (3, such that

Kl = i, (2.3.23)
K = o’u’T, B=+,-. (2.3.24)
Therefore equations (2.3.20) and (2.3.21) imply that

0%, ; (2.3.25)
JC - R V4 — _
u’ o= AzF + M)ﬁv , B=4+,—.

It has been shown (Huyghe and Janssen, 1997) that the mulfiiaeT be interpreted
as the electrical potential of the medium multiplied by the constant of Faraday, i.e
A = F¢.

We use the residual inequality (2.3.22) to establish

e % 0)=0, B=1+—. (2.3.26)

It is natural to refer to the state whev& = v* = v~ = 0 as the state of thermo-
dynamic equilibrium. Equation (2.3.26) shows that local interaction forceisan
this state. In the approximation where the departures from the'§tabé = 0 (V,

is the gradient in initial configuration) and®® = 0, for 5 = [, +, —, are assumed to
be small,|(2.3.17) can be approximated by

7= 3" BT -v%), B=1I+ -, (2.3.27)
y=l+,—
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where ~
B3 s ot’ v s\T'
= Fo S (E20)(F) By =1+~ (2.3.28)
Given (2.3.22) and (2.3.27), we can conclude fBais a positive symmetric semi-
definite matrix.
Substituting (2.3.25) into equation (2.3.27) and using the approximatiffhwé
get the classical equations of irreversible thermodynamics:

=o'Vt =3 BV =),

8 2.3.29)
Yo _ By (v s o (
ﬁvﬂ =2y, BTV =), B= 4

As itis assumed in the previous section, we restrict our considerationgheiisal,
non-reacting mixtures where the solid phase is homogeneous. For suchuaemix
that consists of four-component, the Helmholtz potential is expresseduas af @in
elastic energy¥z(£) and a mixing energyV (®?) for 3 = 1, +, —, Huyghe and
Janssen (1997). Define

o+ -
W(E,®,@%,®7) = (up+ RTc)® + puf — + pig —
1% 1%
ot O
Pe— — — —
ot O vt v
+ RT(®c— — ——) | V.V
V V dc
Pt o+
+ RITY— <ln - - 1)
\% dcV
D -
+ RIT — <ln — - 1) + Wg(E). (2.3.30)
Vv dcV

In this relation:

Mf) is the initial electro-chemical potential of the fluid phase,

ug is the initial electro-chemical potential of igh

% e (0, 1] is the osmotic coefficient of iod, which is uniform and constant,

c is the molar concentration of the fluid phase, which is assumed to be uniform
and constant,

R is the universal gas constant,

T is the absolute temperature, which is uniform and constant since the materi-
als are assumed to be isothermal.
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The constitutive equations (2.3/18) and (2.3.29) that fulfil the secondfléveomo-
dynamics are

1, _ oW

Z = —F—(FHT 2.3.31

o+p S F g (F (2.3.31)

—'Vi = > BY( -V, B=l+,-, (2332
y=Ul+,—

with i =y, i =y V7, (B =+, -).
By using equations (2.3.25) and (2.3.30) we simplify the equations for theelec
chemical potentials

ot O~
oW e
I _ ow - _ l
W =p+ 9% p+ o+ Rlcln Te
L BT (@* . qf)
o \yt v
TT o+ T~
RiJr — Rif , (2.3.33)
V' o V o
and
ot O
o i
B_ B vP o~ LB B _
W _ZF£+6<I>/3V = ZPF{+py — RTIn T
Ps
+ RIT®In —5. b=+ — (2.3.34)
dcV
After linearising the logarithm terms and using (213.7) we have
po~ p4ph— RTTFet +T7¢)
8 2.3.35
TS ,u€+zﬁF§+RTP31n%, B=+,—. ( )

In (Molenaar et .al, 1999) the components of the friction matrix are relateiffte d
sion coefficients of fluid and ions and it can be shown that

Bt = Q- (BH' + Bl—), (2.3.36)
B — _pBl i—4 _ (2.3.37)
Bil — —gpiRT(VzDi)_l, =+, —, (2338)

BT = o0, (2.3.39)
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whereK is the permeability and)’ is the ion diffusion tensor in free water. Manip-
ulation of the second equation in (2.3.32) yields

Vv == " POVI, B=1+,-, (2.3.40)
y=l,+,—

with
PP =P (BT, By =1+, .

P = (P95, + — can be derived as:

+ —_
., @ ) @
p_| g VDT (e K&
@ RT ©? )
K2 jrgd L Sy
® ® RT ®

(2.3.41)
Now by using(2.3.40) we can derive the specific dischafgend the ion fluxes;’
in terms of the electro-chemical potentji,

d=pW-v) = - Y Pwp
’Y:l:+77

K, _ . e
= —E(Vu“rsﬁvu“rw Vi)

= —K(Vil+ctvut +evu), (2.3.42)
and
s 3 g
o’ =5 -v) = L -v) - St - v
% % %
1 _
= - § P67V,u7—c’8ql
V ’Y:l7+7_
D8P
= =Ty’ =, —. 2.3.43
ap VM B =+, ( )

The above relations are called the extended Darcy’s law and Fick’s law.

Assuming the electro-neutrality (2.2.11), if we put (2.3.35) into (2.3.42) and
(2.3.43), then the extended Darcy’s law and the Fick's law can be statednis te
of the variable, ¢’ and¢ as follow:

d = —K(Vp-—zle/°FVY),

F
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From physical considerations (Huyghe and Janssen, 189@hd.” are continuous

even if ¢/¢ is not. Therefore we choose the electro-chemical potentials to be the
primal variables.

Remark 2.5. Define the activityf? by
Cﬁ rf-1
17 = () . B=+,— (2.3.45)
C

Then based on the definition of the electro-chemical potentials and on ttteoele
neutrality assumption, the secondary variabtésp and¢ are expressed as

1 1 4¢? T pd =g
8 _ __ = _fe.fe = cnfc)2 H Ho H Ho
¢ = g5 +2\/(zf cfe) +f+f_ exp T :
(2.3.46)
p = p—ph+RT (TTet +T7¢), (2.3.47)
1 BB
& = — ,ﬁ—ug—RTlnfc . B=+—. (2.3.48)
PE c

The ion concentrations’ are clearly positive. For numerical stability, it is preferable
to use the expression for voltage with= — if 27¢ is positive and vice versa.

2.4 Reformulation in Lagrangian coordinates

From now, we omit the superscript ‘from F° and.J* and %z. For a scalaw, a
vectora and a tensofZ, the following relations hold for gradient and divergence
operators in the reference configuration and the current confignré@badwick,
1999, page 59).

F IVoa = Va,
1
jvo.(Jf-*la) = V-a,
1
jVo~(J.7-"’1T) = V-T.

Define the displacement field in Lagrangian and Eulerian form by

UX,t) = x(X,t)—X,
u(x,t) = x—X(x,t),
respectively.

Let us choose the configuratidly, C R3 of the solid skeleton at the initial
instant of timet, as the reference configuration for the Lagrangian description. The
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reference configuration need not to be a stress-free configuratidact, the stress
I1, is defined in the reference configuration and obeys the momentum balance

Vo -1l = 0.

Defineyy andy = 1 — ¢ as the initial porosity and the initial volume fraction
of the solid phase, respectively. Recall the Lagrangian form of thebalequation

in (2.3.2):
DJp*

Dt
It can be easily seen that the above equation is equivalent to

IV (V=) =0, a=sl+, -

DJp®
Df + Vo - (J.’Fflgoa(vo‘ — vs)) =0, a=s,1,+,—.
Fora = s we have Do
Df =0, or ¢°J=yp.

whereyj is the solid volume fraction in the reference configuration. This gives

1 _
p=1-p'=1- -7 (2.4.1)
J
Fora = [ we obtain
DJy I
—r Q= 2.4.2
Dt + VU 07 ( )
where
o =JF q. (2.4.3)

By using definitions/(2.2/5), (2.2.7) and equation (2.3.2), we have

DJyc?

JV - (q° + Pq) =0 =4, —.
Dt +JV-(d”+cq)=0, 8=+,

The ions balance in Lagrangian form takes the following form

DJpc?

B +Vo- (@ + o) =0, g=+,-, (2.4.4)

where
o’ =JF 14", /=4 - (2.4.5)

In the Lagrangian form| (2.2.12) is expressed as

DJpcle
JD@; =0, or cpcfcchochJfl, (2.4.6)




2.5. Total set of equations 27

wherecgc is the fixed charge concentration in the reference configuration. From
(2.4.1) follows,
()™ =(J =5,

therefore

el = cffpo(J — g3) " (2.4.7)

Define the first and second Piola-Kirchhoff stress tensors by

In = JoF T,
S = JFloF T,

respectively. Then equation (2.2.10) in Lagrangian form takes the fiolgpform

Vo-II=0 or V,-(SF') =0, (2.4.8)

The constitutive relation (2.3.31) is given by

1 oW _,

Considering this relation, the second Piola-Kirchhoff stress is exptdgse

ow

S=1FT= e —pJC 1, (2.4.9)

where the right Cauchy-Green tengbis defined in[(2.1.4).
It is easy to check that the Lagrangian form of equations (2.3.42) aBdi®) is

O = —K(Voul + ¢tVou + ¢ Vou),
~ 0
D 6590 (2.4.10)
RT VON 9 ﬁ +7 )
where
o J.’F'_lK]:_T’ (2.4.11)
1156 — !].7:—1D/3_7:'—T7 8=+, —. (2.4.12)

2.5 Total set of equations

The combination of the deformation of the porous media and the flow of the fidid a
ions in the Lagrangian description results into the following set of equations:
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Balance Equations

Vo-(S.'FT) = 0,

DJ
T;D + Vo . Q)«l = 0,
D g
Ve (@ ) = 0, =t
— : (2.5.1)
Constitutive Equations
ow
— —pJcl = S8
_ ag p b
—K(Vou' + Vo + ¢ Vop~) = @
’1360590
_ B — @l -4
RT VO/L O ) B +, .

2.6 Donnan equilibrium and boundary conditions

In order to solve the above system of equations, we need to pose thearpwon-
ditions. This can be achieved by suitably combining the essential conditiops, fo
1 andU and the natural conditions for the normal componen®/éfs = 1, +, —,
andsS.

Consider the case that the porous medium is in contact with an electrottetiiag
solution, given that the pressusg,;, the voltage,,,; and the ion concentrations,
are known. The bathing solution contains no fixed charges,dhys= c,., = Cout-
Since the electro-chemical potentials are continuous at the boundary,

,uén = Méut? (2.6.1)
= b (2:6.2)
o = Hou (2.6.3)

wherey! and/,wat are the electro-chemical potentials in the outer solution. Assume
It =TI, =Tandl'}, =T, , = 1, then the combination of the above relations

out —

and the relations expressed|in (2.3.35) provide

:uén = /’Lé) + Pout — 2RTcout7 (264)

Cout

W = ug+ F2 ey + RTIn o B=+,-, (2.6.5)

where,cout, Pout aNdE,,: are the ions concentration, fluid pressure and the electri-
cal potential of the outer solution, respectively. Equation (2.6.5)3fet +, — in



2.7. Reduction to infinitesimal deformation 29

combination with[(2.6.2) and (2.6.3) imply

2 +C

B ¢ B B B c .
Ho + g + BT =258 = 0y fguy = fy & Py = 1o + g + RTT In =25,

Therefore, we have

2 + .—\T7
Cout __ [ CinCin
2 < 2 ) : (2.6.6)
Easily we can see that
T =pin —Pout = RT (D(c}, +¢;,) = 2cout) , (2.6.7)
RT . copuct ™t
mn — Sou s = T, 2.6.8
5 6 t F,Zﬁ n (Ciﬁn)r ﬁ + ( )

In the above relationsy is the osmotic pressure (Richards, 1980) &pd— &, is
the Donnan voltage between the inner and outer solution. It is also callecketinstN
potential (Gu et al., 1999), (Helfferich, 1962).

Let Q be an open domain iR", n = 1,2, 3, then defin€); = Q x (0, T for
T > 0 and consider the seF; andI'}) (and similarlyl'y’ andI")Y) to be two disjoint
open subsets of the total bounddry= 0, such thal' Y NTY = g andT2uTrY =T
for « = u andp. We assume

measl'? >0 fora =u,p. (2.6.9)

From the above statements we can get the following boundary conditions:

Boundary Conditions
U =0 onT? x (0,77,
pt =, onl) x(0,T],
pt o=y, onT) x(0,7],
poo= pm,  onTL % (0,1], (2.6.10)
n-(8F") = gi  onTy x(0,7],
n-¢® = 0 onI')Y x (0,7,
n-0&"= 0 onI') x (0,7,
n-® = 0 onI')Y x (0, 7.

2.7 Reduction to infinitesimal deformation

In this section we keep all the assumption from the previous sections, balsae
assume infinitesimal deformation for the solid phase.

In the infinitesimal theory of elasticity it is assumed that the components of the
displacement vector and their spatial derivatives are infinitesimal of 8tefiller so
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that we neglect products and squares of these quantities in comparisdhaeiitiirst
powers (Fliigge, 1958, page 6). Using this approximation we find the deformation
tensor and the strain tensor as

1
F=I+VyU, &= 5(VOU + (VoU)T), (2.7.1)

whereU = x — X is the displacement vector. Recall equation (2.4.1), since the solid
phase is assumed to have infinitesimal deformation, the Taylor linearisatidit for
atF = Iimplies

1 0J
Trl-(5=2= : -Z)=1- - U.
J P0F )| 5y (F ) Vo
In the above relation, we use the relation (Holzapfel, 2000, page 41)
——=JF T 2.7.2
oOF 7 ( )
Putting the linearised form of ~! into (2.4.1) results into

lo=1-(1—p)(1-V,-U).| (2.7.3)

Also remember the relation for fixed charges density in (2.4.7) given by
cl® = o (J — ).

From the assumption of infinitesimal elastic deformation for the solid phaseathe T
lor linearisation for the functiofJ — ¢§) ! atF = T results into

1 aJ
J—gp) !~ 1—¢S—1—<8>‘ (F-T
(J = #0) (1= p) T=w?oF )|, ( )
_ 8010 _ V(:O'QU, (2.7.4)
0
Hence
e =l (1 - V?P'OU> . (2.7.5)

We choose a linear elastic material and therefore the elastic energy pattedorm
As
We(€) = us€ - €+ (Vo U)?, (2.7.6)

where); andyu are the Lard stress constants.
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In the next step we will rewrite the equations in the infinitesimal deformation
regime. Starting from the force balance and the related constitutive eq2ib8)
we have

oW
Vo - ((%,J-‘T) ~Vo-(pJF =0,
or V- <8;ng> —JVp=0,
W
or Vo- <%8}'T> —JF V=0,

By using (2.7.1) the last equation is reduced to

Vo - (21€ + AsVoU) = Vop + Vo - ((21€ + A VoU) VoUT)
+ VoUTVop — V- UVip+ Vo - UV UTVip = 0.

Assuming infinitesimal deformation for the solid phase, all terms except thafids
second terms vanish and finally we have

Vo 2us€ +AsVo-U) —Vop=0.
Note that from[(2.7.3), we have

Jp=(14+Ve-U)(1—(1—¢0)(1—-Vp-U))=Vq-U-+ gp.

The permeabilitfc and diffusion tensorév)ﬁ are considered to be isotropic tensors
represented by scalar multiple of the identity. To make the notations simpler, we
change notations according to the following table:

N
s C

ﬁﬁ’ﬁ:+7_ ’Aé
D B=+—| K

Old notations | Vo | D/Dt | &%, 3 =1,
New notations| V | 9/0t | q%, 5 =1

Table 2.1.New notations for infinitesimal deformation
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Now the total set of equations is given by:

Conservation Equations
0 = V.-o—Vp,
oV -
= Siv. d,
ot
(V- -u+ (po)cﬂ

"= ot +V-(a”+7d), p=+-,

Constitutive Equations
1
= 2us&+ M\tr€, €= 5(Vu + (Vul)),

qd = —-K(Vu+ctvut +cVu),
DP
q T eC v, pB=+,-,

Secondary Equations
p = 1-(1—-po)(1-V-u)

cfc _ Cgc 1 . v -
1 0 (2.7.7)
6 _ __— _fe.fe .
c’ = 2zﬁz ¢+
1 4c? e il el
_ 2 0 0
p = p—ph+RT(TFet+T7¢),
1 B8
5 ZﬁF M :U’O RTII’I c )7 ﬁ +7 9
Boundary Conditions
u =0 onT? x (0,77,
pho= o, onI'? x (0,7,
pto= g, onl) x (0,71,
b= g, only x (0,11,
gi = n-(o(w)-p)  onTy x (0,71,
n-qg =0 onI')Y x (0,7,
n-qt= 0 onI')Y x (0,7,
n-qg = 0 onF:f)Vx(O,T}.

2.8 Reduction to two-component model

In this section, we shall specialise the results from the four-componentytihe a
binary mixture of a solid and a fluid. By neglecting the ion contributions and the
influence of all electrically charged particles in the four-component makelso-
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called two-component mixture model, (is also known in literature as the biphasic
model) is derived (Biot, 1941) and (Bi 72).

Note that in this case the electroneutrality condition (2.2.11) is not used any-
more. Furthermore, the ions conservation (2.4.4) and Fick’s law in (2.diap-
pear. Darcy’s law in (2.4.10) is simplified by removing the concentration regre
terms. Therefore, we have

Conservation Equations

Constitutive Equations

1
= 2usE+ NHE, E= 5(Vu + (Vul)),
q = —KVp,

: (2.8.1)
Secondary Equation

p = 1-=(1—¢o)(1-V-u)

Boundary Conditions

u =0 onT'2 x (0,T),
p = 0 onTD x (0,77,
gl = n-(c(u—p)  only x(0,7],
n-qg =0 onIY x (0,7,

2.9 Conclusions

In this chapter the swelling of charged porous media, like hydrated tissoneslslled

by means of mixture theory. Considering four components for the mixturesaled,
fluid, cation and anion, we derived a set of balance equations for aanponent
and for the mixture. The Lagrangian form of the second law of thermodigsa
completes the set of equations by means of constitutive equations. Theagzae
rewritten in a Lagrangian description. Such a description is useful in ctarpided
solutions. The boundary conditions are given to complete the model. Atreduc
infinitesimal deformation simplifies the reduced system and finally we havershow
that by neglecting the ions contribution we come up with the well-known Biot Byste
of equations.
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Chapter 3

An analytical solution of incompressible
charged porous media

Cartilaginous tissues are soft hydrated tissues with strong swelling andk-shrin
ing properties. This swelling and shrinkage behaviour of cartilaginousesss
is caused by the flow of water that is bound to the charged solid skeletorradp
tissue. The driving mechanism is an interplay of mechanical, chemical actdicdé
forces. Swelling and shrinkage can be modelled by a four-componentrmitte-
ory described in the previous chapter in which the deformable and chamyeus
medium is saturated with a fluid with dissolved cations and anions.

The solid skeleton and fluid are assumed to be intrinsically incompressible and
therefore a non-zero fluid flux divergence gives rise to swelling dnkage of the
porous medium. Alternatively, a gradient in the fluid pressure, ion cdrat@ns or
voltage results in flow of the fluid and ions. To verify the numerical solutians f
this model we need to derive a set of analytical solutions for the redwystens of
equations.

In earlier work (Meerveld et al., 2003), a set of analytical solutions een
derived to verify the finite element solution of model. However, in mass batanc
(Meerveld et al., 2003, equation 2), the time derivatives of volume fraxtoa con-
sidered instead of their material time derivatives. This can only be done ifahe

rangian coordinate is considered (cf. 2.4). Also the diagonalisétioa@tel etal.,
2003, equation 36) produces complex eigenvalues, therefore theaxbsailution se-
ries are no longer valid. In fact, the equations in this case are of hylgetjyoe.

In this chapter, we set ourselves the task of resolving this problem aivihdea
set of analytical solutions for the one-dimensional four-component madefollow
(Terzaghi, 1923) and (Biot, 1956) to derive a coupled system ofsiiffuequations.
This leads to the analytical solutions for the two-component mixture model end th
generates the solution for the four-component model.

* parts of this chapter have published Zeitschrift fir Angewandte Mathematik und Mechanik
(Malakpoor et al., 2006)
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3.1 Analytical solution for the one-dimensional two-component
model

In this section we consider the two-component model of solid and fluid (2.8tl3
model has been widely studied for the consolidation problem (Terzag?®) Ehd
(Biot, 1956). A one-dimensional version of this model reads

Conservation Equations

?u  Op

= 25 s) 9 47

0 (M+)\)ay2 9y
2 2
0 = u g0
otdy Oy?

Secondary Equation

du (3.1.1)

u = 0 onT? x (0,7,

p = 0 onI' x (0,77,
g“— = o onry x (0,7},
y

dp N

ay =0 onl," x (0,7

The momentum balance is integrated in the y-coordinate and is equal to

ou N
s+ Ng) e —p = gV 1.2
(M+/\)ay P =9y (3.1.2)

In an experiment setup, for consolidation an instantaneous loag-&, is consid-
ered (Figure 3.1). Therefore

N

gl (t) = —foH(t — to) = 8;; = —fod(t —to).

Hence after differentiating (3.1.2) inwe have,

Pu _Op_ — fod(t — to). (3.1.3)
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force=f,
\4
D O
y=1L Y
@ -0 op _ |
Oy dy >
sample
u=0
T o ST ST S S S _
et S, eeoe i y=0
SIS TS

Figure 3.1.Schematic representation of the confined compression experiment.

Substituting this in the mass balance gives

op 0’p
i (2us + )\S)Ka—yQ + fod(t — to). (3.1.4)

Using separation of variables, the solution/of (3.1.4) is given by

A 1 (247w 2n+1 \* (t —to)
p(y,t)—wnzzo%JrlSln( 5 Ly>eXp<—< 5 7r> & fo,
(3.1.5)
where
L2
K (205 + As)

The equations (3.1.2) and (3.1.5) in corporation with the boundary consligive:

8L > 1 n+1mw
= 1— - -
) <2us+xs>w2§<2n+n2< s (757 1))

on+1 \?(t—t
(exp (— < ”2 7r> ( = °)> - 1) fo. (3.1.6)
Finally the liquid flowq' is

o0 9 B

n=0

A two-dimensional version of the plane stress experiment is considerestaii ih
(Kaasschieter and Frijns, 2003).
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3.2 Analytical solution for the one-dimensional four-component
model

Within the concept of mixture theory, we consider a porous solid skeletamim-
miscible pore-fluid. As mentioned in the previous chapter, the solid skeletbitLéah
are assumed to be intrinsically incompressible. Assuming infinitesimal deformation
for the solid phase, a four-component mixture theory in a Lagrangiasrigéen is
given in which a charged porous media is saturated with a fluid with dissoatexhe
and anions (2.7.7).

Following the notations in table 2.1, conservation equations for each constitue
implies

oL
ot
wherex®® = JFH(v® — v®) andd® = Jp.
The mass flux is measured per unit of area of the reference configufatithe
solid phase. Equatioh (3.2.1) far= s gives
Jo* = ¢}, (3.2.2)

wherey} is the initial volume fraction of solid phase. Equation (3.2.2) together with
the saturation assumption implies

+ V(%) =0, a=s,l,+, —, (3.2.1)

1—@5
-2

Since the solid phase is assumed to have infinitesimal deformation, the Taylor lin-
earisation for/~! at F = I implies

1 0J
RV [ el
7= ()

In the above relation, we usé = I + Vu and

ol =1-p*=1- (3.2.3)

(F-I)=1-V-u,
F=I

0F = JFT, (3.2.4)

After inserting the linearised form of ~! into (3.2.3) we have
o =1-(1—¢l)1=V-u). (3.2.5)

As a consequence of this formula, we have

o/ = ol +1tr E(u). (3.2.6)

Electroneutrality requires

et 27 4+ 2 =0, (3.2.7)
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wherez?, 3 = +, —, is the valence of the dissolved igh The superscriptfc’
stands for fixed charge, i.e., the attached ionic group, thtislenotes the molar
concentration of the attached ions per unit fluid volume.

The conservation of fixed charge in the Lagrangian form reads

olefe = gogcgcJ_l, (3.2.8)

wherecgc is the initial fixed charge concentration. Hence the electroneutrality condi-
tion in the initial state takes the following form

+p+ —p-
Il —o. (3.2.9)
% %
Note that 5
VP = ¥ (3.2.10)

_90]”

therefore after differentiating in time the electroneutrality condition (3.2.9)bman
written as:

28 008 o0&
F——— =¢— 2.11
Z Vﬁ ot Eat’ (3 )
5:+)7

wheree > 0 is a small departure from electroneutrality. In fact, this assumption is
needed for a mathematical reason.

Based on (2.3.32), the constitutive equation to comply the second law of thermo
dynamics is given by

~e"Vif = > BYFT(V =), B=1+,-, (3.2.12)
y=l,+,—

whereji! = i, i = ;ﬁ/Vﬁ, B = (B?)g,=1+., is the friction matrix. Based on
(Molenaar et al., 19998 is defined as

¢2

Nd +(1-=7)?B**"+(1-7)?B~ —-(1-r)B™t —(1-7r)B—~
B = —(1—r)B+Tt B+t 0 )
—(1-7)B " 0 B
| (3.2.13)
an
L— g %Z, (3.2.14)
B

o= ZEE LW g L (3.2.15)

1% = J + arng’
7 oas
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In the above relation,
B = WSROV’ D), g=+,—, (3.2.16)

whereD? > 0 is the ion diffusion in free watel) < r < 1 is the hindrance factor
and it is assumed to contain all physical phenomena reducing ionic diffcesi®@and
identical for cation and anion diffusioml” is the Helmholtz free energy of the porous
medium. For such a mixture that consists of four-component, the Helmholtgyener
W is expressed as a sum of elastic energy and a mixing energitfoconstituent,

B3=1+,—,(2.3.30).

_ ot _P~
W(E & &%, &7) = (uy+ RTc)® +M5r% + 1 7
ot o~
Pc— — — —
+ - = T ==
+ RT(Pc— % - f—) In 14 14 1
V V dc

ot ot
+

-
K i
+ RIT"— (m - 1) + Wg(E). (3.2.17)

In this relation:

- ub is the initial electro-chemical potential of the fluid phase,
- ug is the initial electro-chemical potential of igh

- TP € (0,1] is the osmotic coefficient of cation and anion for= +, —, re-
spectively which is uniform and constant. Here we assilime= I'~ and we
denote it byl".

- ¢ is the molar concentration of the fluid phase. Since ion concentrations are
small,c is assumed to be uniform and constant,

- \s andpuy are the Larg stress constants,
- Ris the universal gas constant,

- T is the absolute temperature, which is uniform and constant, since the state is
assumed to be isothermal,

- Wg is the elastic energy and is defined by

_As

Wg(€) 5

(tr E(0))? + ps&(u) : E(n). (3.2.18)
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With the prescribed energy’, the relations (3.2.14) and (3.2.15) are postulated as

pto= jgh4p— RTT(c +¢), (3.2.19)
BF¢  RIT . P
o= ﬁ§+g+flni, B=+, - (3.2.20)

Remark 3.1. It is easy to see that froif8.2.7) (3.2.19)and (3.2.20)we have

>+~ ~ =~ -~
1 1 + ot _
Cﬁ = _ﬁzfccfc + 2\/(chch)2 + 4C2 exXp V (IUJ MO )R_C;IE/ (M ’u'O )’
(3.2.21)
for 6 =+, —, and

p = jg'—fiy+RIT(ct +¢7), (3.2.22)
8
V RIT (P

— L (B _iB_ ., _ hl -1
£ = zﬁF<u Ho =P~ 5 lnc>, B=+,—  (3.2.23)

The above formulas will be needed to derive initial and boundary values’{qy
and¢.

In the following lemma, we will show that the matrR® is symmetric positive
definite.

Lemma 3.2. B is a symmetric positive definite matrix.

Proof. The symmetry property is trivial. Define the diagonal matrix
D = diag(1 —r,1,1),

then
(')? _ _
D 'BD ' = g+ B g . (3.2.29)
~B~~ 0 B~

The diagonal elements @ 'BD~! are all positive and the absolute value of each
diagonal element is greater than or equal to the sum of absolute values rdrth
diagonal elements in its row (greater in the first row), therelre'BD ! is an
irreducible diagonally dominant matrix, henBe ' BD ! is positive definite. This

is enough to prove the positive definiteness of the marix |

Note that from equation (3.2.12), we can obtain a relation for the fluxes as:

PP%0s = — Z PYVRY, B=1+,—, (3.2.25)
y=l,+,—

whereP = JN(FIBF) !N andN = diag(¢', o1, 7).
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Remark 3.3. Since the determinant of the deformation gradi&nis positive, based

on Lemma 3.2B is a symmetric positive definite matrix. Therefbrés a symmetric
positive definite matrix too.

Differentiating the equations (3.2./14) and (3.2.15) in time and using the fdct tha
the energy functiodV = W (&, ®,®*, &) gives:

0 iy _ O |OW O oW 901
ol P = e {ag ot 2. 907 o ] (3:2:20)
y=l,+,—
0 (p ZFEY _ 0 |OW 0E oW oT| oy L
a\" ") T eer | 9E ot T 4= owiar P T

(3.2.27)

Observation of| (3.2.17) reveals that the first terms on the right-hand sidime
preceding two equations vanishes. This results into

0

~l _ Iy
o7 = p) >, Wi, (3.2.28)
y=l,+,—
0 PFE 0Py
58 _ ByE = _ _
o (u Vﬁ> >ow o b=+ (3.2.29)
y=b+,—

2

o°w
Whel’eWﬁ7 == m andW = (Wﬁ’y)/@77:17+’_.

Note thatW is a symmetric positive semi-definite matrix, indeed, from (3.2.19)
and|((3.2.20), the matriXV is of the form

1<<1>*+‘1>) 1 1
ATV eyt ev

<I>11/ oV
I 0 D
oV oV
Define the diagonal matriN = diag (®, &+, ®~), then
LA SR S
Vi v vV
~ B i Pt
o~ o~
— 0
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Itis easy to see th& WN is symmetric positive semi-definite of rank two with zero
eigenvectorgl,1,1)7. Thus,W is symmetric positive semi-definite of rank two.
The preceding relations can be written as:

o 2 o[ I o [ p
ot | 22| i+ | —-FE 2.32
Wi P at | K- at<§>’ (3.2.32)
i
where
1 0
Z+
F=| 0 & |. (3.2.33)
0 Fz
3

In order to solve the above system of equations, we need to pose bpapdditions.
This can be achieved by suitably combining the essential condition® fart, i~
andu and the natural conditions for the normal componentstt (5 = [, +, —)
ando.

Consider the case that the porous medium is in contact with an electroineutra
bathing solution, given that the pressurg;, the voltageé,,; and the ion con-
centrationsc,,; are known. The bathing solution contains no fixed charges, thus

= ¢, = cout- Since the electro-chemical potentials are continuous at the

Cout o
boundary (Huyghe and Janssen, 1997),
i = Fout (3.2.34)
i = g (3.2.35)
G, = figus (3.2.36)
wherejil andﬂfm are the electro-chemical potentials in the outer solution. Assume
It =TI, =Tandl}, =T, , = 1, then the combination of the above relations
and the relations expressed|in (3.2.19) and (312.20) provides
T = PDin — Pout = RTF(C;; +¢;,) — 2RT cout, (3.2.37)
and
2 + .~ \T
Cout CinCin
2 = <C2> : (3.2.38)
RT . coypct 1
in — Qout — 1 s =Ty 3.2.39
5 5 t FZB n (Cfn)r ﬁ =+ ( )

In (3.2.37), is the osmotic pressure (Richards, 1980).[In (3.2.89)— & de-
scribes the jump on the electrical potential. It is called the Nernst potentialGug.
et .al, 1999) and (Helfferich, 1962). By using the electroneutrality itiwmi(3.2.7),
we derive the Donnan equilibrium concentration of ions as

B fc fc cnfc o _
Cin = 7 226 t3 \/Zf cloy +aftf-c2,. B=+—,  (3.2.40)
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8 -1
fﬂ: <C> ) ﬂ:'f_a_
C

Using (3.2.18)+(3.2.19) we can derive the boundary values for thér@lelhemical
potentialsit, andji’ as

where

by, = i+ Pout — 2RT Cour, (3.2.41)

. ~ F2P RT | coy

:U’Zﬂn = Ng + Pout + p—y gout + py In t, ﬂ =+, —. (3242)
%4 \%4 c

We can summarize all the above statements to the following boundary conditions:

u = 0 on (99,)% x (0,7, (3.2.43a)

io= i, on(99,)) x (0,1, (3.2.43b)

pt o= on (99,)2 x (0,77, (3.2.43c)

o= i,  on(9%,)) x (0,17, (3.2.43d)
n-(ow)—p = gl  on(@)Y x (0,7, (3.2.43¢)
nqg = 0 on (994,)5" x (0,77, (3.2.43f)

n-q" = 0 on (99,)s x (0,77, (3.2.43g)

n-q = 0 on (99, x (0,77, (3.2.43h)

where the seté)9;,)” and(99,)Y (and S|m|IarIy(6Qt0) and(aQtO)jf ) to be two
disjoint open subsets of the total boundafy,,, such tha(aﬂto)g N (8Qt0)2’ =
and(9%,)" U (094,)Y = 8y, for a = u andp.

3.2.1 One-dimensional configuration

In this section, we reduce the total set of equation to a one dimensionajwaiion.
The momentum balance in (2.8.1):

0%u  Op

52 B = (3.2.44)

(215 + As) 75

Following Terzaghi (Terzaghi, 1923), the momentum balance equation g ael
in the z-coordinate into

0
(205 +As) 5 = (0 = pin) = g (3.2.45)
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whereg! from (3.2.43¢) is the external load on the sample. In the experimental
setup, for consolidation an instantaneous mechanical loadihg-dt, is considered
and the external mechanical loading remains unaltered for free swellegefbre,

ogN (t
gu (t) = — foH(t — to) = gat() = —fod(t —to).
After differentiating((3.2.45) irt, we have
d0ou Jdp

The one-dimensional form of equation (3.2.6) gives- (pg + % Differentiating

ox
with respect to time gives

o 9 ou
5 = 550" (3.2.47)
Then (3.2.46) converts to
L _op 0% Jo s — to). (3.2.48)

2/15—1—)\5&_5: 205 + s
Combining this equation and the electroneutrality equation (3.2.11) results into:

o
O(v)=wr? fob(t—t0) (1
Heat(€>_F 3t<$+)+2us+As<0)’ (3.2.49)
where
Hem < KA A ) (3.2.50)

In this part, we assume that the matixs constant. In fact, this assumption is made
to linearise the problem. After substituting the constitutive equation (3.2.25) in the
balance equation (3.2.1), we derive the following relation betwig&and i’

P ) l
0 0
Tl et | =P | at |. 2.
5 ( @) Pax2< ) (3.2.51)

Now (3.2.32),[(3.2.49) and (3.2.51) imply that

9 l L
2 ( + >+f05(tto) ( 0 ) . (3.2.52)

If we define
E=W +FH_'FT, (3.2.53)

=

==

l
82
+ _ —1nT
) = (W+FH'F') Py (

=
=

==
==
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the previous equation can be written as:

l

1
T+ fod(t —to) ( 8 ) : (3.2.54)

=

o[ P 52
Eg_ ox2

+
Il
=
w
==

Lemma 3.4. E is a symmetric positive definite matrix.

Proof. It has been shown thalV is symmetric positive semi-definite of rank two
with zero eigenvectof®, &+, ®~)7. On the other hand, matrifH_'F? with

- T
zero eigenvecto(O, %’_ ) —f%z:) is symmetric positive semi-definite of rank two.
ThereforeE is symmetric positive definite. |

In the next step, we modify the coupled system (3.2.54) by using the above
lemma. SinceéE~! is a symmetric positive definite matrix, it can be decomposed
into E-! = GG, whereG is a non-singular matrix. The matrik = G- "PG~!
is symmetric positive definite, thus it decomposes\ass MAM ! whereM is a
non-singular matrix corresponding to the eigenvectorA ghndA a diagonal matrix
corresponding to the eigenvaluesAaf DefineM; = G~'M and

n f
nt | =M! ;:ﬁ , (3.2.55)
n- [

then the coupled system (3.2/54) can be modified into:

onP 9?nP
—— =) t =1+, - 3.2.56
(9t 8372 +g( )7 B 7+a 9 ( )
with
gt) =fo D> MP(t—to), (3.2.57)
=1+,

3.2.2 Consolidation and free swelling experiments

In this section, the analytical solutions are derived for consolidatior, dveelling.

We assume constant material parameters and small deformation with respact to
initial steady reference statetat t,. The homogeneous sample is placed frictionless
in a holder. Figure 3.2 illustrates the experimental setup. At the battem0, the
sample is in contact with a glass filter saturated by a sodium chloride solution. An
impermeable piston is placed on the top of the sample; L, where an external
mechanical load is applied. The sample was made out of a hydrogel. A bathing
solution flowed through a porous glass filter at the bottom of the sample.
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F

confining

ring

piston

T

glass filter
® O ®

Figure 3.2.Schematic representation of the experimental set-up

fluid
channel

oil film

Consolidation

In the consolidation experiment, we apply a load on the piston to be eqyiéd)te-
—foH(t — to), with H(t — to) the Heaviside function andy, > 0. We assume a
sufficiently small value forfy to ensure thaWw andP are constant in time. For the
reference values of electro-chemical potentials we choose

T ou
i = 2RTeow, il = — 2 gy Cout. (3.2.58)
v’

Now from (3.2.34)4(3.2.36) and assuming that; = 0 and&,,; = 0, we obtain zero

values for the inner electro-chemical potentials, ﬂél: 0,6=1,+,—.
The initial and boundary conditions for the displacement, fluid pressieetrieal
potential and electro-chemical potentials with respect to the steady redes¢ate

t =1g are:

[ @t ] = [0 0 0],
O r 1 4
oy LA AT (L) = [00 0],
[ pt o (ete) = [ Ay B A ]
[p é U](O,t) — [pin fzn O],
[ p 5 U ](CE,tO) = [ DPto gto 0 ]7
where[ i, i fa |=1f0 0 0
In fact assuming the above initial condition, we attempt to solve the system

(3.2.56) withg(t) = 0.
Givenﬁfn andﬁfo, (8 =1,+,—), the values ofp;y, &»] and[py, &, | respectively

can be calculated by Remark B.1.
The method of separation of variables is applied to solve (3.2.56) in comdsp
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50
ing with the boundary and initial conditions. The solutions are:
~1 ~1l
p(x,t) 1& 1 Mm+1m Fty
et _ : -1 =+
at(x,t) | =— Z sin ( x) M; R, M; fiy ,
~_ 2 1 2 L L0
( i (x,t) ) Tzt T
(3.2.59)
in whichR,, is a diagonal matrix with
g m+1 \2N\(t—
R = exp (- ( ”; 77) A (tLQ t°)>, i=1,4 (3.2.60)

Using relation((3.2.49), (3.2.51) and (3.2.54) and after time integration we hav

D AT 1 (2, 1) ApT-1 h
<£> = H_ F'E at(x,t) | —H_'F E " foH(t — to) < 0)
) 0
)

1, H(t—1t 1
+ OH 1f02li+)? ( ! ) + ().
By using the initial condition fop and¢ att = tg, the functionf; (z) is equal to
—_ Pt _ fO
= (2 )-(F):
Therefore we have
p 1T p—1 Pl(gj?t)_'uf bt
<£>:H;FE— ,f+(;c,t)—ut0 +<£t§>.
o iy,

By plugging equation (3.2.59) into the above identity we obtain

p(x7t) Hfl T 714 - 1
—H'FTEZ
( ( ) ¢ 7rZ:2n+1><

n=0
iy
o + 1 0
sin (2 T )My (R, - DM | iy |+ Be ). @2.6)
2 L L &to
to

After integration in space of equations (3.2.45) we have

u(z,t) = 2Msl+)\s /Ox(p — pin) dx — foH(t — to)x + fa(t).



3.2. Analytical solution for the one-dimensional four-component model 51

Assumingz = 0 and considering the boundary conditiaf0,¢) = 0, we obtain
f2(t) = 0. Lett = t7, then we have

Pty = Pin — Jfo-
Using the above fact and plugging (3.2.61) into the relation:for

1

8L 1
t 1 O YH'FTE1 22y — —
u(z,t) = ( JH. 7T27;)(2n+1)2><

2005 + As
2 1 ,uto
<1 p ( ”; Z:c)) Mi(R, DM | iy, | (32:62)
:uto

Given equations (3.2.25) and (3.2.59), the flugés®s, 3 = [, +, — are equal to

£ (x, t to
[ ) S (2 e emae 3
)

12
o &% (x,t
(3.2.63)

Free swelling

In the next experiment, we change the concentration of the externaloatios.
Considering the reference values for the electro-chemical potentials equzé to
zero, the equations (3.2.41) and (3.2.42) yields the following boundatyiretial
conditions for the free swelling experiment:

Latomt a0 = [ A, Al oA,
O . 4
ap LA AT (L) = [0 0 0],
[ﬂl [L+ ﬂ_]($,t0) = [/lfto ﬂtt) /1;0]7
{p 5 U](O,t) = [pin gm 0},
[ p 5 U ](.T,t()) - [ DPto gto 0 ]7
in which iy, =0, 8 =1,+,—, and
fit, = —2RTAcou,
_l’_
it = Ly Coullg),
VT cour(ty) (3.2.64)
/jb_ _ RTI Cout(t[—)‘r)
" Vv Cout(tg)

Acoyz IS the change in the external concentration %ndndta are the time just after
and beforg, when chemical loading is applied.
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leenu and Mt , B =1,+, —, the values ofp;,, &»] and[py, &,] respectively

can be calculated by Reméu—kB 1
The change in the external concentration is considered sufficiently simhltlsat

firstly, W andP are considered to be constant in time and secondly, the change of

the electro-chemical potentials of the ions is approximately linear.
We follow the same outline as in the consolidation experiments to derive the

solution of the equation (3.2.56) with the above initial and boundary conditidris
gives

~1
H (:L',t) 4 >
el |-ty
i (x,t) T =0
m + 1 i
n< ”; Zx)ManMl_l} i | (3.2.65)
lu’in
p(x,t) 114 E 1
H'F'E 3.2.66
<£(x,t)> Z2n+1 ( )
~1
2 1 Hin,
sm< nt 2x>M1(I Ro)M;' | 7, |
luin
1 L 1
u(z,t) = ——(1 0 )H;lFTE’18—
25 + As 2 2n + 1)
o+ 1 i
(1 — co8 ( n2—i— j_iaf;)) M;(I-R,)M;! ,L:L:EL : (3.2.67)
Iuin

Like the consolidation problem, the flux¢§* are derived and are equal to

/s
Pt (z,t) 2 X om+1
Gt t) | == cos (o= Ta ) PMiR M | g
s 9 L in
&5 (x,t) n=0 [,
(3.2.68)
3.2.3 Results

In this section, the results for the consolidation and the free swelling aserpyed.
As mentioned in the previous section, an uniaxial confined swelling and essipn
experiment performed on a cylindrical sample of cartilage substitute. Thiplea
with the diameter of 4 mm and the height of approximately 1 mm was put in an



3.2. Analytical solution for the one-dimensional four-component model 53

insulating confining ring. A piston on the top of the sample was loaded mecliginica
A bathing solution flowed through a porous glass filter at the bottom of thelsap
change of the salt concentration of this solution generates a change iauhédany
of ion concentrations and electro-chemical potentials as well as pressdik®ltage.
During the experiment, the mechanical and chemical load were variedrddsp
by them, two numerical simulations are considered.
For both computations, the parameters in table 3.1 are considered:

Parameter Unit Value
25 + As MPa 4 x 103
K m*N-ts! 1.0x10718
cfe mol m—3 —2 x 102
Cout mol m—3 1 x 102
@ 0.2
D+t m?s! 13.3 x 10710
D~ m2s! 20.3 x 10710
R Jmol ! K1 8.3145
T K 293
F C mol! 06484.6
r 0.9
€ CZN“4m 106
r 0.4

Table 3.1.Material parameters

Considering the above material parameters, the three eigenvalues in 256

A o= 23324x107'm?s!
Ao = 4.0x107"m?s
A3 = 1.8x1079m?sl.

For the consolidation experiment, an inward for¢g,= 5 MPa is applied to the
left no-flow boundary, and at the right rigid boundary, the porousiumeds in con-
tact with an electro-neutral bathing solution. All boundary conditions esembed.
Note that in this experiment, all the unknowns change immediatetly -at ¢y s,
thus another equilibrium will be established in the end. At the final equilibriuen, th
electro-chemical potentiajg®, 5 = [, +, —, have the same value as the value in the
initial state. However, the stress and fluid pressure have changed,tssporous
medium is compressed. Figure 3.3 displays the solutions. As it can be saendghe
for consolidation to occur is approximately- to ~ 0.16 h.

For the free swelling experiment, the initial and boundary conditions argecho
In this experiment, we decrease the external salt concentration with a snmalhéa
from cour = 1 x 102 mol m=3 to cpyr = 0.995 x 102 mol m=3. Therefore, as on
(3.2.42)i° changes accordingly. The displacement, pore pressure, electriealpo
tial, electro-chemical potentials and ion concentrations are displayed inefFagéir
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The pore pressure increases from the initial value to the maximum yatu@.0041
MPa att — ¢to ~ 0.09 h.

3.2.4 Conclusions

The analytical solutions are derived for consolidation and free swellipgrénents

to verify the numerical finite element solutions. The governing equationslere
fined in Lagrangian coordinates. We assume an infinitesimal deformaticthdor
solid skeleton and a sufficiently small change in the external salt contientr8y
choosinge from interval10~> < ¢ < 10~ the results do not change for both cases.
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Chapter 4

Mixed and hybrid finite element solution for
two-components

hile searching for a quantitative description of physical phenomena,nthe e

gineer or physicist establishes generally a system of ordinary or pditial
ferential equations valid in a certain region (or domain) and imposes on ttisnsy
suitable boundary and initial conditions. At this stage the mathematical model is
complete, and for practical applications “merely” a solution for a particetosnu-
merical data is needed. Here, however, come the major difficulties, as eyt
simplest forms of equations, within geometrically trivial boundaries, araldepof
being solved exactly with available mathematical methods.

To enlist the aid of the most powerful tool developed in this century - the digita
computer - it is necessary to recast the problem in a purely algebraiciforotying
only the basic arithmetic operations. To achieve this, various forms of tiatien
of the continuum problem defined by differential equations can be Wissdch a dis-
cretisation the infinite set of numbers representing the unknown functiomaotions
is replaced by a finite number of unknown parameters, and this procesgsnémnal,
requires some form of approximation.

Of the various forms of discretisation that are possible, one of the mogtisise
the finite difference process. Another method that is often used in marsicahy
applications is concerned with various trial function approximations fallindgeun
the general classification of finite element methods. It has been showewat
finite difference processes can be included as a subclass of this nmanalgheory
(Ciarlet, 1978).

The name “mixed method” is applied to a variety of finite element methods that
have more than one approximation space. Typically one or more of thesspiage
the role of Lagrange multipliers to enforce constraints. The name and many of
the original concepts for such methods originated in solid mechanics whees it
desirable to have a more accurate approximation of certain derivativdispifice-
ment. However, for the Stokes equations that govern viscous fluid flewdtural
Galerkin approximation is a mixed method (B&ka, 1973), (Babika and Aziz,
1973), (Brezzi, 1974), (Fortin, 1977) and (Brezzi and Fortin,1)99

57
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As it was mentioned, in a mixed formulation the gradient of the solution is in-
troduced as a separate dependent variable of which the approximatemglst $n a
different finite element space than the solution itself.

The main advantage of this method is that it suffices to use finite elements of class
C"Y whereas finite elements of clag8 would be required for conforming methods.
Another advantage (from the point of view of fluid mechanics and in paaticur
two- and four-component mixture model) is that the present method not @itisy
a continuous approximation of the solution, but also of the derivativesedfdhution
(which, in addition need to be computed).

The mixed finite element method has been extensively used for the solution
of parabolic equations arising in different application fields. The mixed felite
ment method was proposed for two-dimensional problems by (Raviart aohds,
1977), (Thomas, 1977) and (Roberts and Thomas, 1991), andtBld¢ for three-
dimensional problems @télec, 1980) and (Bkelec, 1986).

Cartilaginous tissues are soft hydrated tissues with strong swelling ainklesipe
properties. This swelling and shrinkage behaviour of cartilaginous Sdsumused
by the flow of water that is bound to the charged, solid skeleton of the pdisaue.
The driving mechanism is an interplay of mechanical, chemical and eledticalks.

In chapter 2 a finite deformation four-component model has been deov&ccount
for osmaotic effects. To account for finite deformation the set of equatsomsgtten in

Lagrangian coordinates. This leads to a system of coupled time depenatelimear
equations together with boundary conditions.

In our model it is desirable to obtain approximations of the fluid flow and ions
flow that fulfil the conservation equations. In finite element simulations (\@mnL
etal., 2003), these quantities are generally calculated by differentiattbe efectro-
chemical potential solutions. This approach may lead to violation of the mass con
servation principle.

The mixed finite element method provides an attractive framework for this type
of problems by simultaneously approximating flows and electro chemical pdsentia
Flows computed by mixed finite elements automatically satisfy the “divergenek fre
property, both locally and globally, and the corresponding normal flickiSeguaran-
teed to be continuous across inter-element boundaries. In this chapt@Exgefinite
element variational formulation is derived for the set of coupled equatiessrib-
ing the two-component model in general dimensions. Only the lowest-ordedmix
method will be considered, first, because higher order-methods resdtrie con-
ceptual complications and, second, because the lowest-order methatpiaredively
easy and straightforward to use for practical problems.

It is more useful to propose the mixed method first for the linear two-comyone
model (2.8.1). In fact this will give a basis from which to continue the mixed otkth
for the four-component model.

This chapter is outlined as follows. In the first section preliminary definitidns o
function spaces are given. In section 2 we propose a mixed formulatiadhefawo-
component mixture. In this section the existence and uniqueness for thetidisd
system is proven. In section 3 we introduce the mixed hybrid techniquéo&dds
devoted to numerical results for given examples.
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4.1 Notations and Preliminaries

In this section we will introduce some notations and definitions crucial for theanix

formulation (Ciarlet, 1978).

Throughout this articlef) shall denote a bounded, open, connected sub&&t of
n = 1, 2,3, with a Lipschitz continuous boundafy(Ciarlet, 1978,]9. 12).

DefineQr = Q x (0,7] for T > 0 and consider the sefs] andT'}Y (and
similarly '’ andI")\) to be two disjoint open subsets of the total boundary 09,
such that - ~

ronry =pandT? UTY =T for o = u,p.
We assume
measl'? >0 fora =u,p.

L?(9) is the set of all Lebesgue measurable scalar functfon® — R such that

1/2
1o = ( / fde> < .

L2(Q) is the set of all Lebesgue measurable vector functfon@ — R” such that

1/2
f]lo = </ yf|2dx> < 0.
Q

Let k£ be a nonnegative integer, thé&f () denotes the Sobolev space,
HA Q) ={ve L?(Q): D" e L*(Q) forall|a| <k},

equipped with the norm o]l = Z D00
|| <K
In the above definition

dlaly

D= —i-——
(07 Qn ?
Ox' -+ Oz

n
a=(ay, - ,a,) € N"with |a| = Zai,
i=1

where differentiation is to be understood in the weak sense.

Let C3°(€2) denote the space of all infinitely differentiable scalar functigns
Q — R with compact support if2. We denote by} () the closure of the space
C°(Q) in H*(Q). Moreover if we define

ol =) [1D%0o.

|ae|=k

Note that| - |; and|| - ||, are equivalent norms i/ ().
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We denote by7 ~*(Q) the dual space t&l}(Q). For f € H=*(Q),

floe= sup LY

0AvEHE(Q) [[v]l&

defines the related norm, whefe-) denotes the duality pairing betweéh* (1)
andHE(Q).

Letk = 1, for o € H'(Q2), the traceypp = ¢|r is well-defined and is iiL?(T).
In other words there exists a constéhtdepending only of, such that

lellor < Cliglh forallp € H(Q).
The image of the above trace mapping is denoted by
HY2(D) = {ypp:pc H(Q)},
and is a Hilbert space with norm

= ] f . = .
W2 = _inf Ll v = 100}

Define the functional space
H(div;Q) = {q € L*(Q): V-q € L*(Q)},

and the inner product

(d1,92)div:0 = / (d1-92+V-qiV-q2) dx forall qi,q2 € H(div; ).
Q

The spacéd{ (div; 2) with this inner product is a Hilbert space. The nornHidiv; €2)
will be defined as
1/2
Hq”diV§Q = (q7q)div;Q'
If @ € H(div;{2), then the trace,yq = n - q, wheren is the outward normal td,
is well defined (Brezzi and Fortin, 1991, Lemma l11.1.1) and we denote

H YD) = {yvq: q € H(div; )}
with norm

_ijor = inf ) = forall p € H-Y/2()}.
el =1 /2, qef}&iv;m{”an(d Q) 1 U =TN] 1 ()}

We shall use the following version of Green’s formula:

/(@V-quVsa'q)dXZ/cpq-nds,
Q T
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forallq € H(div;Q) andy € H(Q) .
We also define the following linear spaces:

Vv = {ue(H'(Q)":u=00nTY}
) = {peH'(Q):9=00nT}},
HY1) = {/\ e HY2(T): )\ = OOnPj}},
) = {q€H(diviQ2) :n-q=00nT)},
) = {MGH‘l/Q(F):MZOOnFQ’}.

4.2 A mixed variational formulation for the two-component
model

Saturated porous media, such as saturated solids and sands, are maslalleeb-
phase mixtures composed of deforming solid skeleton and saturated pdse Tla
numerically simulate the interaction of the fluid skeleton with the pore fluid, the
media are modelled as porous continua, in which a representative elenhemievo
around any mathematical point in the medium is always assumed to contain the solid
phase and porous fluid phase. Based on this, the two-component mfmteiigated

in (2.8.1). In recent years, a lot of effort has been dedicated to threncal treat-
ment of this model. The numerical treatment of this model by the Taylor-Hoid fin
element was studied by (Murad and Loula, 1992) and (Murad and Lb®@a). This
work was continued with a detailed analytical investigation in (Murad and Eeom
1996). A general reference for the use of the finite element methoddfantmerical
simulation of fluid flow and deformation processes in porous media is the meyplogr
(Lewis and Schrefler, 1998). Our purpose in this section is to study thelmigéhod

for the coupled flow problem (2.8.1):

Conservation Equations
0 = V.o0o—Vp,

oV -u
= e V9

Constitutive Equations
1
o = 2uE+NIE, €= §(Vu + (Vul)),
q = —KVp,
Secondary Equation
p = 1-(1—p)(1—-V-u)
Boundary Conditions

u =0 onTZ x (0,T],
p = 0 onI'2 x (0,77,
gh = n-(o(u)—p)  onTy x(0,7],
n-.q = 0 onI')Y % (0, T,
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where, we omitted the superscrigtom ¢’ in (2.8.1).

4.2.1 Variational formulation

For the preliminary step of defining a spatially semi-discrete approximate sotation
our initial boundary value problem, we write the problem in weak form. Camsid
the flux g and the flux spacéiy(div; 2), the above system of equations can be
formally written as a first- order system whose mixed variational formulativesgi
rise to the following system of variational equations:

Find (u, q,p) (,t) € V x Hy(div; Q) x L?*(Q), such that

/(Q/LSS(u):g(u)+)\SV-uV~u) dx—/pV~udx:/ gl ads,
Q Q ry

(4.2.1a)
1
/q-(ldx—/pv-qu:(), (4.2.1b)
K Jo Q
—/V-q;ﬁdx—/ 8V-uﬁdX:0’ (4.2.1¢c)

for all test functiong i, q, p) € V x Hy(div;Q) x L?(©2) andt > 0. Note that the
solution is time-dependent.
Define

a(u,@) = /Q(Q,usg(u):8(ﬁ)+)\sv-uv-ﬁ)dx,

b(u,p) = —/QV-updx,
_ 1 _
c(q,q) = K/Qqqu,
d(ébp) = /qupdxa
f@ = [ el-ads

then the problem (4.2.14)-(4.2.1c) can be rewritten as follows:

Find (u,q,p) € V x Hy(div; Q) x L?(Q) such that
) o bmp)
F‘i%ﬂl#‘gfﬂzﬂ)l

a"m P )

a(u,ua

f(w), (4.2.2)

Y
Y

0
0
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for all test functionsgi, g, p) € V x Hy(div; Q) x L?(92) andt > 0.

We shall use the implicit Euler scheme for time discretisation.As#lbe the time
step andu,, q,, p,) the approximation of the solution vectau, q,p) att = t,, =
nAt. Then the system of equations (4.2.2) resulting from backward Euler is:

Find (u,,, qn, pn) € V x Hy(div; Q) x L?(2) such that

______ th(upy) = f(u), (4.2.3)
r ST —= 1
Ate(qn,q) (tAd(G e = 0,
b(unap)lj___A_Id_(gmﬂll :b(unflap)a

for all test functiong, g, p) € V x Hy(div; Q) x L?(Q).
Define two new bilinear forms

A(u,q;1,q) = a(u,a)+ Ate(q, q), (4.2.4)
B(u,q;p) = b(u,p)+ Atd(q,p), (4.2.5)
and the linear forms
F(a) = (0, f(w)",
Gn(p) = b(un—1,p),
then (4.2.3) is rewritten as

Find (u,,, qn, pn) € V x Hy(div; Q) x L?(2) such that

o o _ 4.2.6
A(Un, 4 0, @) +B(@, @ pn) =F (1), (4.2.6)

]B(unaqmﬁ) :G<]§)7

for all test functiong i, @, p) € V x Hy(div; Q) x L?*(9). Note that

gn(p) = B(up-1,0;p).

Hereafter, we shall study the numerical methods for solving (4.2.6).derdo
simplify the notation, we shall omit the subscriptn the sequel.

4.2.2 Existence and uniqueness

The above problem is a saddle point problem. For the existence and nessuef
the solution for/(4.2.6) we abstract the key futures of a general saduliegroblem.
This analysis can be found in (Brezzi and Fortin, 1991, Section Illf)pagh the
exposition in/(Brenner and Scott, 1994, Section 11.2) is more comprekensi we
will mainly follow the later analysis.

Let V and@ be Hilbert spaces with inner produdts-)v, (-, -)o and associated
norms|| - ||v, || - [, respectively. Define two bilinear forms

a(-,+):VxV =R,
b(-,-): VxQ—R.
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It is natural to assume that these forms are continuous:

a(u,v) < |lall||ullv||v]y forallu,v €V,

b(u,p) < [bllllullvlple forallueV,peQ.

We denote by * andQ* the dual spaces df and(@), respectively and further sup-
pose that bounded linear functionglss V* andg € Q* are given. We investigate
the existence and uniqueness of a solution of the saddle point problem:

Find (u,p) € V x @ such that

a(u,v) +b(v,p) =(f,v)y=v, vEV, (4.2.7)

b(u7 q) :(97 Q)Q*,Q ) qc Q

Denote byAd : V — V*andB : V — Q* the bounded linear operators associated
with the bilinear formsu(-, -) andb(-, -) according to

(Au,v)y=y = a(u,v), w,veV,
(BU,Q)Q*VQ = b(’l}, Q)a v E V7q € Qa
and
Fv) = (f,v)v-v,
G(Q) = (ga Q)Q*,Q7

then the saddle point (4.2.7) can be equivalently written as the followingrsyasite
operator equations
Au + B'p F in V*,
Bu G in Q*. 7

The kernels of the operat@ and B* are defined by

ker(B) = {ueV|b(u,q) =0forall ¢ € Q},
ker(B*) = {qe€ @|b(u,q) =0forall ueV},

(4.2.8)

Theorem 4.1(Existence and uniqueness resultet V' and @ be Hilbert spaces and
leta(-,-) : V xV — Randb(,-) : V x @ — R be bounded bilinear forms with
associated operatord : V — V*and B : V — Q* such that there holds:

(i) The bilinear forma(-, ) is ker(B)-elliptic, i.e., there exists a constant > 0
such that
a(vo,v0) > allvoll3,  wo € ker(B).

(i) The bilinearb(-, -) satisfies the inf-sup condition

. b(v,q)
inf >
geQ\ker(B*) v [[0[lv [|q]lQ\ker(B7)
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Then for anyf € V* andg € Im(B), the saddle point problert%.2.7) admits a
solution(u,p) € V x @, whereu € V' is uniquely determined and < @ is unique
up to an element dfer(B*). Moreover one has the bounds

< - * 1 e - * 4.2.

fulle < 207y + (14121 Ziale- (4.29)
@\ker(B7) = 3 a 32 «

Proof. See for example (Brezzi and Fortin, 1991, Chapter 2). [ |

Now we return to the saddle point problem (4.2.6). We equip the spage
Hy (div; ©2) with a norm

vz (4.2.11)

Il (w,a)llls = (lall + llallzv:q)
To prove theker(IB)-ellipticity of A, we need the following lemma.

Lemma 4.2 (Korn’s second inequality)Let Q ¢ R? be an open bounded set with
smooth boundary. In addition, suppose thgtC 02 has positive two-dimensional
measure. Then there exists a positive nunaip€r I'y) such that

/ E(u) : E(n) dx > ¢(Q,To)||ul)? forallue V. (4.2.12)
Q

Proof. See for example (Brezzi and Fortin, 1991). [

Using Korn's inequality, we show that the bilinear fornis ker(B)-elliptic on
V x Hy(div; Q). The definition of the subspager(B) implies that

V-u+AtV-q=0 forall (u,q) € ker(B). (4.2.13)
Using Korn’s inequality, we get
A((u,q),(u,q)) = a(u,u)+ Atc(q,q)
2usel[ullf + X[V - ul[§ + K Atlal
2usclul[f + As(AL?|IV - alfg + K Atllal
« (HUH% + Hquﬁlv,ﬁ)
al (wa)llf,

v

AV

(4.2.14)

for all (u, q) € ker(B) and wherex = min(2usc, A\s(At)%, K ~1At).
The second condition in Theorem 4.1 is inf-sup condition:

wp | Ble(uw)

> Bllgl|, forall ¢ € L*(), (4.2.15)
(wa)evxHy(div:) Il a)lllx
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where we assume implicitly that the left side has to be evaluated onlly#ory)||; #
0. We restrict the supremum to a subset of functiédsy), therefore we obtain a
lower estimate fof3:

d
At sup (¢,q)

> fllgllo, forall g € L*(). (4.2.16)
qeHy (divi) 1alldivie

We need the following lemma to prove this inequality:

Lemma 4.3. There exists a positive constafitsuch that for ally € L?(Q) there
exists a functioqy € Hy (div; 2) satisfying

—V-q=g¢q
and
allaivie < Cllgllo-
Proof. Letq € L?(12), then by the Lax-Miligram Theorem (Brenner and Scott, 1994,
Theorem 2.7.7) there exists a unighes H1,(Q2) satisfying
{—A<I> =q in Q,
Vé.n =0 onl).

If we defineq = V&, thenq € Hy(div; ) and we have
/ qVddx = / q®dx forall ® € H5(Q).
Q Q
By choosing® = ®, we have

Il = /Qq@ dx < lqljolI®llo < C(2)llgllolIV o,

where the last inequality was derived by the Poigdaequality (Brenner and Scott,
1994, Proposition 5.3.5). |

Letq € L?(2), then by above the lemma there exists a funcéjon H y (div; )
suchthat-V - q = g and
lallaivie < Cligllo
for some constant’. Use the fact that

d(d,Q)=—/QV-<iqu=/Qqu><:!qu,

thus

d(q,q) - A d(q,q) _ At

At sup > — llllo-

q€Hn (div;Q) ||quiv;Q B ||61||diV;Q

Therefore the inf-sup condition holds for all < %f The following result follows
immediately from Theorem 4.1.
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Theorem 4.4. The saddle point probleif#.2.6)

Find (u,q,p) € V x Hy(div; Q) x L?(Q) such that

(a),
(P);

A(u, ﬁ, q) +B(u, q;p)
B(u, q;p)

has a unique solution. moreover one has the bounds

F
G

B\ Gl

1 A
Il < 2171+ (150 Sisiancn. @217
A A A
Ionlzoprtsr < 5 (14 P ) 1ta+ UL (1 T2 g
(4.2.18)

4.2.3 Mixed finite element approximation

Assume thaf is a polygon (n=2) or a polyhedron (n=3). We denoteZhya tri-
angulation ofQ2 by n-simplicesT" of diameter not greater than (7" is a triangle or
rectangle fom = 2, a tetrahedron or block for = 3), where

Q= U T.
TET,

For the definition of a triangulation, see (Ciarlet, 1978, page 38), fanpia We
shall also use the notation:

- measI’ = the Euclidian measure df in R™ (geometric area i = 2, geo-
metric volume ifn = 3),

hr = the diameter ofl’, which in case of a triangulation by simplices, is just
the length of the longest edge,

pr = the radius of the circle inscribed i if n = 2, or of the sphere inscribed

inT if n=23,
- h=maxhy.

A family of triangulations{7}, : h > 0} is said to be regular if

infh =0, inf minp—T > 0.
h>0 h>0 TET, hr

Now in order to state a finite element formulation of problem (4.2.6), it is nacgss
to define finite-dimensional subspacespfH y (div; ) and L?(9).
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Let H(div; 7},) be the space of square-integrable vectorial functipresL?(£2),
whose divergences are square -integrable on every sub-d@maify,, i.e.

H(div; 7)) = {q € L3(Q) : q|r € H(div;T) forall T € 7}, (4.2.19)
with norm
1/2
lallaiviz, = [ lalls+ > IV-alzlg] - (4.2.20)
TE€T),

The following lemma gives a characterization of the function&in(div; €2).
Lemma 4.5. A functionq € H(div; 7,) is in Hy(div; ), if and only if

> / dny-qds=0 forall® e H5(Q).

TeTy or

Proof. (=) Letq € H(div;7;) and suppose that the above inequality holds. Define
f e L*Q) by
flr=V-qlpr foralT <7,

then

/Qfédx = Z/Tv-q|T<I>dx

TeT),
= Z/ @nT-qu—Z/q~V<I>dx
TeT;, 7T TeT, /T
= —Z/ q- Vo dx
TeT), or

_ _/q.V<I>dx forall ® € C5°(9).
Q

Thereforef = V - q and thugy € H (div; 2). Finally Green’s formula implies

/@n-qu: Z/ dny-qds=0 foral ®<c HH(Q),
r Ter, JOT

thusn - q = 0 onT'%,. Thereforeq € Hy(div; ).
(<) Letq € Hy(div; ), thenq € Hy(div; 7;,) and

Z/aTcI)nT.qu:/Fq)n-qu:O forall ® € H}(Q).
TT,
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The following lemma gives an abstract view for the approximation of the pnoble
(4.2.6). It provides the conditions for the existence and uniquenes® afbroxi-
mated solution.

Lemma4.6.LetV), C V, W, C Hy(div;Q)andQ;, ¢ L?(Q) be finite dimensional
subspaces. Denote by

Ap Ve xW, — Vi X Wy,
By : Vi x Wy, — Oy,

the bounded linear operators associated with the bilinear féremdB restricted to
the finite dimensional subspacis x W, and Q;,. Consider the following problem:

Find (uh, qh,ph) € Vn, x Wy, x Qp, such that

A(up, qp; ap, qp) +B(ap, aripn) = f(ag),
B(up, an; or) = g(Pn),

for all test functionguy, qn, pr) € Vi x Wy X Q.
In the same way as for the continuous problem, we define a closed selispg x
Wh:
ker(IEBh) = {(uh,qh) EVy, X Wy : B(uh,qh;qh) = (for all qn € Qh}
If div V), + div W), = Qy,, then
1. ker(By,) C ker(B),

2. Aisker(By,)-elliptic, i.e., there exists an > 0 such that
Ap(ap, apsup,an) = o ||| (wy,ap) 7 forall (ug, qp) € ker(By),

3. B satisfies the LBB condition, i.e., there exist8 & 0 such that

B(up, an; qn)
sup — T

> Bllqn|| forall g, € Qp,
(nsam) Vi xwy, Il (ans an)llly

Proof. See (Brezzi and Fortin, 1991, p.138) [

Existence and uniqueness of the solutian, a, pr) € Vi, x Wy, x Qy, follows,
as in the continuous problem, directly from Theotem 4.1. Additionally, wedesive
error estimates in the terms of approximation properties of the spac®s;, andQ;,.

Theorem 4.7.1f div V, + div W), = Qp,, then the mentioned saddle point problem
in the above lemma has a unique soluti@, g5, pr) € Vi X Wy, x Qj. Moreover,
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if (w,q,p) € V x Hy(div;Q) x L?(Q) is the solution of probleni.2.6) then we
have the following estimates:

) - ) S C inf ) - ~7~ )
I1(w, a) = (un, gn)lllx L Il(a,q) — (@,q)|lx

(u,q) - (161)\\1) |

- < C| inf —pllo + inf
o=l < € (int Ip=alo+  inf )

whereC'is a generic constant that depends®ng, ||A| and||B||.

Proof. See (Brezzi and Fortin, 1991, proposition 11.2.6-7). [

4.2.4 Raviart-Thomas-Nedelec elements

Remember the given triangulatidp for Q. TakeT € 7, and letk > 0 be an integer.
Define
P¥(T): the space of polynomials of degree k.

the dimension of*(T') is §(k + 1)(k + 2) and# (k + 1)(k + 2)(k + 3) for n = 2
andn = 3, respectively.
Define polynomial spaces on the faces of the elements to be:
RMOT) = {p € L*(AT) : o|r € P*(F) forall F c 9T},
wheredT" denotes the boundary @f, and F' denotes a face &f. The dimension of
RF(OT)is3(k+1) and2(k+1)(k+2) for n = 2(triangles) anch = 3(tetrahedrons),
respectively. We can now define the Raviart-Thoma&sE\ec elements. For each
k>0,let
RT™(T) = {¢ + qx : x € T where¢ € (P*(T))" andq € P*(T)}.
It can be easily seen that the dimensionRaf* (T') is given by

(k+1)(k+3) for n = 2 (triangles),
$(k+1)(k+2)(k+4) forn =3 (tetrahedrons).

dim RT*(T)) = {
Theorem 4.8. LetT € 7;,. then
divP*(T) + divRT*(T) = P*(T).
Moreover, for anw € RT*(T)
V- nT|3T € Pk(aT),

wheren; denotes the outward unit normal frafhon o7'.
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Proof. LetT € 7. The first statement is trivial from the definition of the polynomial
and Raviart-Thomas-&télec spaces. Let € RT*(T) andx € 9T, then

(v -nr)(x) = ¢(x) - nr(x) + q(x)x - n7(x),

wheregp ¢ (P*(T))" andq € P*(0T). Now x - ny(x) is constant on each face
F € 0T, and thereforer - ny|sr € P*(0T). [ |

To uniquely define a function iRT*(T) we have:

Theorem 4.9.LetT € T;, andv € RT*(T). If
/ v-nrpds = 0 forall ¢ € PH(OT),
o
/v ~pdxds = 0 forall ¢ e (P*YT))",
T

thenv = 0.

Proof. See (Brezzi and Fortin, 1991, proposition 111.3.3). [

Theorems 4.8 and 4.9 imply that we can use the following degrees of freedom
uniquely define a function € RT*(T) (see Figure 41):

e The moments of order up toof v - ny on each facé” of 7', i.e.
/ v-nrpds @€ PHOT).
F
e The momentum of order up to— 1 of vonT, for k > 0, i.e.

/ v-pdx e (PHaT)".
T

4.2.5 The lowest order Raviart-Thomas element

The most interesting case from the computational point of view is the lowdst or
Raviart-Thomas element, i.é:,= 0, especially when we can not expect hight regu-
larity of the solutions of the continuous problem. We start with defining a lagsikb
function of RT" on a reference element.

Let T" be the convex hull of. suitably chosen point&,, ¢ =1, ..., L, thatis

L L
T:{&:ng;o<@<1,Z@:1}. (4.2.21)
1 1
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Figure 4.1. RT°(T) (left) and RT*(T) (right).

Define the affine map
x=F,(X) =B,%+b,, %eT, (4.2.22)
whereB,, € R”f” such thadet B,, > 0, andb,, € R".
Define P(T") as theL-dimensional space of polynomials (for triangles= 3

and for tetrahedrong = 4) spanned by the basis functiogs, i = 1,..., L, such
that

Pi(X;) = 04 (4.2.23)
Now, defineP!(T) as theL-dimensional space spanned by
i(x) = gi(x), i=1,...,L. (4.2.24)

It is well known that
/ w; dx = / p; det By, dx. (4.2.25)
T T

Also
Vei(x) =B;TV@(x) forallxeT. (4.2.26)
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SinceV consists of vectorial functions, the following subspaces are defineg-to a
proximate each component of functions in this space.

T) = {peL*Q):¢lrc PYT) forall T € T,}, (4.2.27)
T,) = PL(T,)nHY(Q), (4.2.28)

Pp(Th) = {p€R(Th): =0 onTy} (4.2.29)
Leté;, i = 1,...,1, be the edges (n=2) or faces (n=3)DBf and RT°(T") be the

I-dimensional space of linear vectorial functiainen 7 such that ;. - i is constant
oné;,i=1,...,1. The basis functions for this space argi = 1, ..., I, such that

J

Define RT°(T') be the space spanned by the basis functions
vi(x) = (det B,) 'B,v;(x), xeT, (4.2.31)

that is,
RT(T) = {(det B,) 'B,a, e RTO(T)} . (4.2.32)

Theorem 4.10. Leti € L2(T) and¢ € L2(T).
u(x) = (det B,)) 'Bpt,  o(x) = (%),

then the following equalities hold:

/u-wdx = /ﬁ-V@d&forallﬁeLz(T),@eHl(T), (4.2.33)
T T

/w.udx = /@V-ﬁdxforallgaeL?(T),ﬁeH(div;T),
T

T
(4.2.34)
/ onp-uds = / ong -adsforall ¢ € Hl(T), ae H(div;T),
oT oT
(4.2.35)
whereny and n; are the outward normals t67" and 8T, respectively.
Proof. For a proof, see (Thomas, 1977, proposition II-5.2 and 11-5.4). [ |

From equation (4.2.35) it follows that,if € H(div; T, thenu € H(div;T) and

V-u(x) = (det B,) "'V - a(%). (4.2.36)
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T T2
no
4 | 3 3 n1
ng <—j 1 ng <
1 I 2 = 1° 2 &
ny ns

Figure 4.2. Two-dimensional mixed reference elements.

Note by Theoremn 4.10 and relation (4.2.32), for ewery RT°(T'), ny-u is constant
on the edges (n=2), or faces (n=3)i =1, ..., I. A
As an example of the two-dimensional space, we consider the tridagleith the

coordinates
R 0 1 0
X; - y s .
(o) () ()

The basis functions foP! (7)) and RT°(Tr) can be obtained as:

N

Gi(X) : 1 — 21 — 22, T, To,

PN 21 1 —1 I
vi(x): (. ), N . )
€T X9 Tro — 1

Moreover, the affine map which transforriis to any triangle with verticeﬁ;{),

1=1,2,3,is
F(f() _ T2 : xr1 X3 : X ?1 + T .
Y2—Y1 Ys—U €9 Y1

As another example consider the rectarifiewith
. 0 1 1 0
X - 3 ) ) .
0 0 1 1

{]\:{0(9”) = if z, (4.2.37)

Define two functions
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75
Therefore, the basis function fét! (T") associated with the nodg is
Gi(%) = Ny, 1) (21) Nz, 2)(£2).-
The basis functions foRT(7) associated witl;, i = 1,2, 3,4, are
as) (B (0) (F 0 0
(] M 0 ) i‘2 b O ) :%2 _ 1 )
respectively. Any parallelogram with vertices(;%), 1 =1,2,3,4, can be defined
with the transformation
F(%) = To — X1 T4 — 1 1 T .
(X) < Y2 —Y1 Y4—UY1 To + Y1

In three-dimensional space, we consider two reference elements &agbe with
the coordinates

0 1 1 0 0 1 1 0
0 0 0 0 1 1 1 1
then the basis function associated with the nkdes taken as

$i(%) = Nz, 1) (21) Nx, (2) (£2) Ng, 3 (E3).

The Raviart-Thomas basis function associated with the normal viegtoe= 1, . . ., 6,
is

1 0 0 1 —1 0 0
\Afi . 0 s i’Q s 0 s 0 s .ﬁ'g -1 N 0 .

0 0 T3 0 0 I3 —1

The second example will be a tetrahedfgnwith the coordinates

0 1 0 0
0 0 0 1
The basis functions foP! (1) and RT°(Tr) can be obtained as:

~

Oi(X) 1 1 — 21 — To — T3, T1, T2, T3.

3?1 SAU1 —1 ﬁ?l .%1
\%’22 fg ,2 :i‘g ,2 fg*l ,2 fg .
T3 T3 t

and

T3 T3 —1
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Figure 4.3. Three-dimensional mixed reference elements.

The detail and the overview of other possible choices for the refesdaneent!” can
be found in (Kaasschieter and Huijben, 1992).
We define the Raviart-Thomas spaces

RT° (7)) = {uel?(Q): ulp e RTYT) forall T € 7;,}, (4.2.38)
RT)(T;) = RT°(Ty)N H(div;Q), (4.2.39)
RT§N(Th) = RI®\(T;) N Hy(div; Q). (4.2.40)

Further,p in L?(7},) is approximated by piecewise constant functions. Therefore,
let M°(T) be the one-dimensional space of constant scalar functioffs ts basis
function isy, wherey(x) = 1 forx € T.

Letx;,i =1,...,I, be numbered nodes of the triangulatione 7;, : x ¢ ff};
&y, be the collection of edge@: = 2) or faces(n = 3) of sub-domaing” € 7p,; e},

j=1,...,J, bethe numbered edgés = 2) or facesn = 3)of {e € 7}, : e ¢ ff}
andTy, k =1,... K, be the numbered sub-domainsigf We assume thif is the

union of some: € &,. The same assumption holds I?)f.
The finite-dimensional spadéT&N(Th) is spanned by linearly independent vec-
torial basis functions;, i = 1, ..., J, such that

/nj~vids:5ij, i,j=1,...,J,
€j

where the normal vectat; is the normal toe; pointing fromTj, to 7;, & > [, if
ej = T}, N Tj, and outward it; C ff.
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The multiplier spacé/®,(7y,) is defined as

M (T;) = {A € L*(Q) : A|p € M°(T) forall T € 7} (4.2.41)
Its basis functions are,, k = 1, ..., K, such that
l/Jk(X) =0, xe€T, kilI=1,...,K. (4242)

4.2.6 The resulting saddle point problem
The variational problem (4.2.2) is approximated by

(Whs ans pr) € (Pp(Th))" x RT N (Th) x M21(Th).
The functionsuy,, q; andpy, are expressed as
wy(x,t) = Y d(t)wi(x),
an(x,t) = > a;(t)vi(x)

ph(xa t)

I
(]~
ish
=
=
=
=
XeJ

Substitution in the discrete variational formulation, gives

d
2‘% + By = 3, (4.2.43)
where
00 0 A 0 B
21:(000), Bv-| 0 C D
BT0 0 0 DT o
and
y = [ﬁvéiaf)]Ta
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In the above formulation,

a = [a--- L0,
(~1 = [q~17"' 7€7J]T7
f) = [ﬁh"' 7]3K]T)

Aij = / (2u58(wi) : S(W]) + AV -w; V- Wj) dx,
Q

Bij = —/V'Wﬂ/deX,
Q
1
Cij = ? QVZ"deX,
Dij = —/V-ijidx,
Q

Fi = / gﬁf - W; ds.
ry

We shall use the implicit Euler scheme for time discretisation. Aebe the time
step and(uy,,, qn 0, Phn) the approximation of the solution vectony,, gy, py) at
t = t, = nAt. Then the system of equations resulting from backward Euler is

A 0 B u, F
0 AtC AtD an | = 0 : (4.2.44)
BT AtDT 0 f)n Bﬁn—l
Also it can be rewritten as
A B (8, )" (F,0)"
) Hn = 2 4.2.45
<IBT 0) ( Pn Bu,_1 )’ ( )
where
A 0 B
Ax:< 0 Atc), B:(AtD) (4.2.46)

In (4.2.45), obviouslyA is symmetric positive definite because of he ellipticity of
bilinear formA. On the other hand, from the LBB condition it follows that the block
B has full rank. Indeed, ip € RX such thaiBp = 0, from LBB condition it follows
thatB(w;, v;; p,) = 0. Therefore

B(uh,qh;ph) =0 forall (uh,qh) €V, x Wy,

and the LBB condition implieg, = 0, i.e.,p = 0.

From above we can see that the block matrix in (4.2.45) is symmetric and non-
singular. However, this matrix is not positive definite. Indeed, take R and set
w = eBp € R/*/. Then we have

(w. p) (]?T 1§> ( VIZ ) =w'Aw + 2w’ Bp = ep” (eB"AB + 2B"B) p.
(4.2.47)
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The matrixB'B is symmetric positive definite andB” AB is positive definite if

e > 0. If we chooses < 0 with || sufficiently small, the right-hand side of (4.2/47)
becomes negative. This shows that the system is an indefinite system. fdoise}y
we have the following theorem.

Definition 4.11. Let A be a linear transformation o™ represented by a matriA.
If there is a vectoh # x € R™ such that

Ax = )x,

for some scalar\, then \ is called the eigenvalue ok with corresponding (right)
eigenvectox. The eigenvalues of a matri are called its spectrum, and is denoted
by spec(A).

For a square matrixA, the square roots of the eigenvaluesdof A are called singu-
lar values ofA.

Theorem 4.12.Let0 < Anin < Amaz D€ the minimum and maximum eigenvalues
of A and let0 < 0in < 0maz be the minimum and maximum singular valueof
then we have

A B _ _
spec( < IBT 0 )) - [/"Lmin7 lu’max] U [Iu’:’r_zin7 N%ax]? (4248)

where

Mr_mn - 1/2 (Amm - )‘zmn + 40maz) <0

M;uzx = 1/2 <)‘ma:v - ma:r: + 40 n) O

M;;/m = Amin,

M;rmax = 1/2 (Amax - maa: + 4Umaaz> > 0.
Proof. See (Rusten and Winther, 1992, Lemma 2.1). [

4.3 Hybridization of the mixed method

Fraeijs de Veubeke (Fraeijs de Veubeke, 1965) and (Fraeijs de k&ul®77) intro-
duced a hybrid method for the mixed formulation in order to simplify the solution of
the algebraic system that must be solved in the procedure. In Kaassemdtelui-
jben (1992) a mixed-hybrid finite element discretisation is used to solve antampor
class of problems in mathematical physics that involves equations of the form

{q = 7AVIU'7
% q= f7
whereA is a symmetric and uniformly positive definite second order tensor. It can

be seen that the mixed formulation of the above system leads to a saddlerpbint p
lem. Using the hybridization technique, the mixed finite element method results in a
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system of linear equations with a sparse and symmetric positive definiteccar@si
matrix.

Despite to this fact, the hybridization method reduces the number of dedrees o
freedom. Furthermore, in the computations we only have to compute inverses o
element-wise block diagonal matrices.

In this section the hybridization technique is used for two-component model.
First we introduce a hybridization procedure for the mixed formulation. Wilis
simplify the solution of the algebraic system that must be solved in the prazedur
The idea behind hybridization is to relax the continuity requirement for thablas
q. This will require to enlarge the Raviart-Thomas space in whichsought and to
introduce Lagrange multipliers to enforce the continuity of the normal comypaie
q across the inter-element boundaries.

Define

E)={eec& eCT}. (4.3.1)

We assume that? is the union of some € &7
The hybrid formulation will make use of Lagrangian multipliers belonging to the
spacel?(&,) that is defined to be the product space

L*(&) = [] £*o7). (4.3.2)
TeT,

Recall thatMO(e), e € &, Is the space of constant functions en Define the
multiplier spaces

MO (&) = {A=(Aees, € H2(|J €)1 Ae € MO(e) forall e € &},
ecéy

(4.3.3)
M° p(&) = {NeM’(&):A=0 on TD} (4.3.4)

The following lemma is an immediate consequence of the above definitions.
Lemma 4.13. Supposey € RT?,(7;), thenq € RTg y(75) if, and only if,

> / Ang-qds =0 forall A e M% ,(&).

TETh or

A spatial semi-discrete approximation by considering the hybridization tewéniq
is:

Find (wn, dn, ph, M) (4 8) € (PH(Th))" x RT2 () x M2y (T) x M2y ()
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such that;

/ (2us&(up) : E(up) + AV -upV - uy) dx — / ppV -y, dx
Q Q

= / gy -y, ds, (4.3.53)
ry
cJywain= 3 ([ e [ or-aa)
T qn - dn dx — phV - qp dx — )‘hnT - qp ds | = 07
K Jo Tg T ar
h
(4.3.5b)
OV -
-y / V - qnpn dx—/ Vat“"ph dx =0, (4.3.5¢)
TeT, VT Q
Z / np - th\h ds = 0, (4.3.5d)
TeT;, 70T

for all test functions(ay,, @n, . An) € (PL(Tn))™ x RT?((T;,) x MY (7) x
M, ,(&r) andt > 0.

Letx;,i = 1,...,1, be numbered nodes of the triangulatione 7, : x ¢ ff};
T., k =1,..., K, be numbered sub-domainshf andegT),j =1,...,J7) bethe
edgegqn = 2) or faces(n = 3) of T for eachT” € 7},.

Recall that the finite-dimensional spaBd™,(7;,) is spanned by linearly inde-

pendent vectorial basis function§T),j =1,...,J0, T €T, such thatv§T) has
its support inl” and

/m ng v ds =05, G =1,...,J7.
€

Thus a functiory € RT?,(7;,) hasJ ™) degrees of freedom per sub-domdire 7j,

andintotal/ = > ;.7 JT) degrees of freedom ifi;,. The degrees of freedom of
q in the sub-domaifl” € 7; are equal to

. P — (T)
/e(.T)nT qds, j=1,...JY.

J

Recall that the finite-dimensional spatg , (7;,) is spanned by the linearly indepen-
dent scalar basis functions,, k = 1,. .., K, such that((4.2.42) holds.

Lete, I = 1,...,L, be the numbered edg¢s = 2) or faces(n = 3) of
{e€eé&e¢ ff}. The finite-dimensional spacMﬂl’D(Sh) is spanned by the
linearly independent scalar basis functiopsl = 1, ..., L, such that

nl(X):éll/, X e ey, l,l/:1,...,L.
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Therefore a function\ € MEI’D(E,L) has one degree of freedom per edgel =

1,..., L, which is equal to its constant value ep
Now by definition, functionssy,, q;, p and\;, are expressed as

I

w,(x,t) = Zﬁi(t)wl(x),
z;1

an(xt) = D q(t)vi(x),
j=1
K

ph(xt) = Y Pr(t)r(x),
k’zl~

At = Y M(t)ym(x)
(=1

Substituting this in the mixed-hybrid variational formulation gives

dy
- —
mdt +By =7,

where2l and®B are

0
Q[: OT
0

oo OO
oo OO

0 0 CDE 3
0 _

0)’ %(ODTOO) and {
0 oET00

In the above formulations,

Nl =1]

> T

= [le ,ﬂn[] )
= (g, .44,
= [P, 0k]",
= o]t

(4.3.6)
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Eik = / n;-v; dS,
€k

F, = / gl w; ds.
Yy

Theorem 4.14. (D|E)"C~!(D|E) is a symmetric positive definite matrix.

Proof. C is symmetric positive definite and|E)”C~!(D|E) is symmetric posi-
tive semi-definite. To prove the positive-definiteness, we need to shawIihE)
has full rank. Suppose

N7 ~
(D|E) (f),A) = 0= Dp+EX=0.
But

Dp+EA=0< v/ (Dp+EX) =0 forall veR’/

& Z (/phv-vhdx—/ )\hnT-vhd:;) =0 forall thRTgl(’Th)
oT

TeTy
& Z / pr — Ap)nr - vy ds =0 forall v, € RT® 1(71)
TeTy, or
& pp=XM\,0ndT forall T €T, < p,=0inQ, /\h:00nUe
e€E)
& p=0, A=0,
Therefore we have
T ~
(Df) + EA) c! (Df) + EA) >0 (4.3.7)
for all (p, A) € RE+E\{0}. |

In the sequel the hybridization technique will be proceeded. Note thaystens
(4.3.6) can be considered as

Au+Bp! =F,
Cq+ (DIE) (

( ’ >dtu+ DE)Tq (8)

In the system (4.3.8) is a symmetric positive definite matrix and can be inverted at
the finite element level. Therefore the second equatian in (4.3.8) implies

(4.3.8)

— M
N——

q=-C '(DE) < 2 ) . (4.3.9)
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Using (4.3.9) and the third equation in (4.3.8) we get

BT \ d_ T-1 P _ (0O
( 0 )dt — (DIE)"C (D|E) )=o) (4.3.10)
In the next step we solve the above equationgoiTo do this, we need to state the
following lemma.

Lemma 4.15. DT C~'D is a symmetric positive definite matrix.

Proof. SinceC is a symmetric positive definite matri)” C~'D is symmetric pos-
itive semi-definite. In order to prove that this matrix is positive definite, welree
find the null space of it.

Let Dp = 0, then

Z /phV vy dx =0 forall v, € RT°,(T,).
TeT), T

vy, is assumed to be continuous inside each eleietiierefore the above summa-
tion will reduce to each elemefit. With an appropriate choice af;,, we can take
V - v, to be equal to 1 i7", therefore we have

/phdx:o forall T € 7y,
T

Hence
prlp =0 forall T € 7.
This results in the symmetric positive definitenes®diC—'D. |

Now by applying the above lemmga,can be derived as

p=DIC'D)! <—DTC_1E5\—|—BTjtﬁ>. (4.3.11)

If we substitute/(4.3.11) in system (4.3.10), then this system reduces to

(%ﬁ>+<§é% iﬁg)(%ﬁ>:(g>, (4.3.12)

wherel, 2(; andl3 are

A, = BMOICc'D)'BT, (4.3.13)
A, = -BMO'C'D)'D'C'E, (4.3.14)
A; = —-E'Cc'DMO’C'D)'D'C'E+ETC'E.

(4.3.15)
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Remark 4.16. Note that in computation ¢f;, (> and®(3, the inverse of the matrix
DC~'D is needed.

Remark 4.17. From Theorem 4.14 it follows that

n"Asn = (Dn, + Eny)" C' (Dn, +Eny) > 0 forall n, € R*\{0},
(4.3.16)
where
n =—(DC'D)"'D'C'Eny, 1= (ny,m).

Therefore; is a symmetric positive definite matrix.

Remark 4.18. By using the above remark, we can take one more step to solve the
system for

A =2 ala, (4.3.17)
hence the syste(@.3.12)is reduced to
71 T d ~ ~
(21 + AU A7) SjutAu=F (4.3.18)

I:etting At be the time step andi,, S\n) the approximation of the solution vector

(a,A\) att = ¢, = nAt. Then the nonlinear system of equations (4.3.12) resulting
from backward Euler is:

A+2[1/At Ao 1:1n+1 B F"‘Q(lﬁn/At

Remark 4.19. Frijns (Frijns, 2001, page 54) has shown that oscillations in the solu-
tion of discretised system

(A1 + AoA AT + AtA) 1 = ALF + (g + Ao AD) 6,44

can occur when matrifl; + 2203 2% + At A is not an M-matrix. This matrix will
be an M-matrix if
h2

At > Atgig = ——
~ 6K (21 + Ns)

(4.3.20)

whereh is the mesh size.

4.4 Numerical Simulations

In this section the element contributions to the matrices and right-hand sides in
(4.3.12) are computed. Remember the given trianguldfjoof Q and the reference

elementl’ in (4.2.21).
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The element contribution to the elasticity matdxandB can be calculated in
a standard way. To calculate the element contribution to the mattloge need to
consider the following analysis. Considering (4.2.31) we have

(T) _ (T) (), _ A(TY A g n
(CJ<T)><J( >)j _/Tvi "V dX—/TC( )Vz"deX, (4.4.2)

where R
CT)(z) = (det B,)'BIB,,
and
Vi(%) = (det B,)B; v (x), xeT.
Note that the local basis functioris, i = 1, ..., J(I), only depend on the reference
element’". If the notations
S — 5 (% AT _ [ AT)
(%) = [0y, and O =g
are used, then
/ D vyax =360 (A, (4.4.2)
T k=1 1=1
where the matrices

((Akl)J(T)XJ(T))i]' — /T@ikﬁjl d)A( (443)

only depend on the reference eleméntNote thatc(T) = Cl(k andAy; = Ay, thus

(CEIZ;T ) J T>> Z Ckk (Akk);; + Z Z Ckl (Agt + Ag)yj s (4.4.4)
k=1 =1

where all matrices in the summations are symmetric. In (Kaasschieter and Huijben
1992) an overview of the matrice&,, and Ay + Ay, k # [, corresponding to

various choice of the reference eleméhis given.
Using Green’s formulal, (4.2.30) and (4.2.35), simple formulas can beedifior
the element contributions of the remaining matrices and right-hand sides in2(4.3.1

namely
T
(00,,). = /v v dx = —

(T) _ )
(EJ(T>><J(T)> - /<T> np - ds = Ok,

The computation of DT C~!D)~! is essential when determining the matri@s

(1 =1,2,3)in (4.3.13)4(4.3.15). This matrix is a diagonal matrix and it can thus be
computed at the finite element level. The matri@gsare obtained by assembling
their element contributions.

(4.4.5)
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4.4.1 Example 1: One-dimensional confined compression pradrh

In this section the numerical solutions are calculated for given examplegerifg
the method, solutions are compared with the analytical solutions from chapter 3

A one-dimensional confined compression experiment is consideredhdrhe-
geneous sample with the diameter of 4 mm and the height of approxinfatelyt
mm is put in an insulating conforming ring. A piston on the top of the sample is
loaded mechanically. Figure 4.4 illustrate the experimental setup. In thisievguey
we apply load on the piston to be equalfta) = — foH(t — to), with H(t — tp) the
Heaviside function ang, > 0. The following parameters are taken:

Parameter Unit Value
205 + s MPa 4% 103
K m*N-'s! 1.0x10"'8
© 0.7
fo MPa 5

Table 4.1.Material parameters

We use arectangle in which only vertical displacement (direction of fasad)owed
with 40 vertical elements and one horizontal element. The variation of wagsr pr
sure, displacement along theaxis and the fluid flow are shown in Figure 4.4. For
t — tI, the pressure shows a large gradients. This is due to the fact that thle-Diric
let boundary conditiop = 0 aty = L contradicts with the asymptotic behaviour
p — foast — tg. Frijns [Frijnz,’ml, page 54) has shown that the time step in-
fluences the choice of an initial grid. In fact, the time step should be largertiiea
critical time step using above material parameters

h2

At > At = ——— 2L ———.
= Bcerit 6K(2,Uzs + As)

This shows that to have a smaller time step we do need to refine our mesh. The

L?-norm for the global error in the displacement solution at the final time ace als
calculated and it appears that the erraPight) and©O(h?) (Frijns, 2001).

4.4.2 Example 2: Two-dimensional footing problem

The second example is a two-dimensional footing problem as given in (Vamd
Loula, 1994). The simulation domain isax 5 mm block of porous medium. At
the basis of this domain the medium is assumed to be fixed and impervious, while
at the upper left part of the domain (fourth of the total length) we apply toathe
f(t) = —foH(t — to), with H(t — to) the Heaviside function anfh = 5 MPa.

The material parameters are taken like the consolidation problem from table 4.1
The mixed hybrid finite element uses the non-uniform grid which is more gkfirar
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(a) Schematic representation of the consolidation problem. (b) Analytical-MHFEM comparison of the displacement.
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(c) MHFEM solution for fluid pressure gt= L. (d) MHFEM solution for fluid flow.

Figure 4.4. Analytical-MHFEM comparison of the displacement, fluid pressure and fllow for the consolidation problem.
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force

q-n, =0

ugy =0

q-n, =0
Uy =0

Figure 4.5.Mixed finite element mesh for the footing problem.

the upper left part. This problem is described in detail for the elastic ¢idaton

problem in (Murad and Loula, 1994). The described geometry with thedsny

conditions are described in Figure 4.5. The numerical results for the flegspre at
different times are shown in Figure 4.6.

In the mixed formulation the flow is calculated as a primary variable, therefore
the approximation of no-flow at the boundaries is more accurate than theki@ale
method. In fact, in the Galerkin method flows are calculated from fluid pressud
the displacement as secondary variables.
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(e) Fluid pressure dt= 3000 s. (f) Fluid pressure at = 5000 s.

Figure 4.6.MHFEM solution for the fluid pressure of footing problem.






Chapter 5

Mixed and hybrid finite element solution for*
four-component

n the previous section we gave a detailed overview on the mixed formulatitrefor

two-component model. The solid-fluid interactions cannot describe thetimsmo
effects, which have a major influence on the behaviour of tissues. fOoneréhe
objective of this chapter is to study the mixed variational formulation to deraet a
of solutions for four-component model given in chapter 2.

Like the two-component model, also here it is desirable to obtain approximations
of the fluid flow and ions flow that fulfil the conservation equations.

In finite element simulation (van Loon et al., 2003), (Ehlers et al., 200Bh)e(s
etal., 2005b) and (Ehlers et al., 2006) these quantities are computedergmifation
of the electro-chemical potential solutions. This approach may lead to violaftion
the mass conservation principle.

The mixed finite element method provides an attractive framework for this type
of problems by simultaneously approximating flows and electro-chemicaltpadten
Flows computed by mixed finite elements automatically satisfy the “divergenek fre
property, both locally and globally, and the corresponding normal flla fseguar-
anteed to be continuous across inter-element boundaries. The mixed l&nitene
method has been extensively used for the solution of parabolic equatisimg an
different application fields. The mixed finite element method was proposddde
dimensional problems by (Raviart and Thomas, 1977), (Thomas, 18@{Raberts
and Thomas, 1991), and byéekelec for three-dimensional problemsétilec, 1980)
and (Necelec, 1986). In this article the mixed finite element variational formulation
is derived for the set of coupled equations in general dimensions. Calipwest-
order mixed method will be considered, first, because higher order-detiesult
in some conceptual complications and, second, because the lowestraithed is
comparatively easy and straightforward to use for practical problems.

In steady-state flow problems, i.e., elliptic equations, the system derived fro
mixed formulation becomes indefinite. A common solution method discussed in the

* Parts of this chapter will be appeared in ESAIM: Mathematical ModellingNuntierical Analysis
(Malakpoor et al|, 2006b)
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previous chapter is the so-called mixed-hybrid finite element (MHFEM) igcien
Through the definition of an extra variable representing the presselenaént edges,
MHFEM gives rise to a symmetric positive definite matrix with good conditioning
properties. Using the MHFEM technigue for our model, we still have an initefi
system but the advantage is that the number of degrees of freedom wéitibeed.
In fact, for a three-dimensional problem this number will be reduced fténo 6
degrees of freedom. Note that in our case the equations are time depandemn-
linear, therefore a choice for time integration and a nonlinear solver iede®de use
some techniques to tackle this problem. In chapter 3 analytical solutionsvare gi
for linearised problem. Finally the results are validated for confined dioiasion
and free swelling experiments using the analytical solution.

5.1 The coupled mixed formulation

Remember that,

1. In four-component mixture theory a deformable and charged poneaum
is saturated with a fluid with dissolved cations and anions.

2. The solid skeleton and fluid are assume to be intrinsically incompressible.

w

We assume that no chemical reactions exist between phases andaes sou
sinks exist.

We neglect the inertia effects and body forces.
The materials are assumed to be isothermal.
The mixture is assumed to be saturated, i.e., (2.2.1) holds.

It is assumed that the solid matrix is entirely elastic and initially isotropic.

© N o o &

We assume infinitesimal deformation for the solid phase.

Let © be an open domain iR", n = 1,2,3. DefineQy = Q x (0,7] for T > 0,
and consider the sely; andT")}' (and similarlyI"2 andI')) to be two disjoint open

subsets of the total boundafy= 02, such thal'’? NT'Y = ¢ andT’? UTY =T for
a = u andp. We assume medy’ > 0 for a = u, p.

Remember the definitions of the spadég (), V and Hy(div; Q) in section
4.1:

V = {ue(H'Q)":u=00nT}}
) = {@GHI(Q):wz()OnFZ?},
Hy(div;Q) = {q€ H(div;Q) :n-q=0o0nT)'},
)

{u e H V(D) : u:()onl“;v}.
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The total set of equations describing the four-component model is @i @n7.7):

Conservation Equations

Constitutive Equations
1
= 2u&+Ntr€, &€= 5(Vu + (Vu®)),

d = -KVu+ctvut +c V),
DP
q RT¥C VP, B=+,—,

Secondary Equations
¢ = 1-(I—po)(I1—-V-u)

cfe = cgc 1_V-u
1 %0
B8 — __— fepfe
c 2262 ¢’
4c? pt =g T =g
2 0 0
+ (zfecte) +f+f_ exp BT :

p = p—ph+RT(Tret +T7¢),

BB
¢ = op (W -m-rrntE) p—
Boundary Conditions

u =0 onTZ x (0,7,
pho= o, onT') x (0,77,
:U'Jr - /’L;; onT,’ x (OvT]7
B = My oanD x (OvT]v
gl — m-(o(u)—p)  onl x (0,7],
n-q = 0 onTY x (0,7,
n-q-= 0 OHF%X(O,T],
n-q = 0 Onfg\’x((),T].

For the preliminary step of defining a spatially semi-discrete approximate sotation
our initial boundary value problem, we write the problem in weak form. We thice
a mixed variational formulation of the problem with the related boundary conditio

Defineqfot = q° + A for 3 = +, —. Then the mixed variation formulation of the
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problem reads:

/Q 2us€(u) : E(u) + AV -uV - u) dx — /Qulv ‘udx =
/Q (RT(I‘JFCJr +T7¢) —p — pm> V-udx+ / g) . ads, (5.1.1a)

K/q qu+/Vu q dx + Z / AvpP - § dx = (5.1.1b)

B=+,—
RT
/q qﬁdx+/w @ dx =0, 8=+,— (5.1.1c)
/v o't dx—/ OV Ut g — 0, (5.1.1d)
o ot
. 3
—/V'qmtuﬁdXZ/ A(V -u+ po)c Pdx, f=+,—, (5.1.1e)
o o ot

whereq® = q7, — ¢q.

Note that the solution is time dependent. After summing up equations (5.1.1b)
and (5.1.1d), using the fact thafot is in Hy(div; Q) and applying the Green’s for-

mula the above problem is rewritten as:
Find (u,q’, qf, arors phs 7)) (1) € V x Hy(div; Q) x Hy(div; Q) x
Hy(div; Q) x L2(Q) x L*(Q) x L*(Q), such that
(
/ (2pE(0) : E(@) + AV - uV - 1) dx — / SV - dx =
Q Q

/ (RT(F+C+ +T7¢) — b fpm) A\ ﬁdx+/ gl ads,
Q ry
(5.1.2a)

L[ RT / (Ao — %d) - (@ — °d)
_ . d - O O d
K/Qq q' dx+ Z 5 /. o x

/MV q' dx — Z / v CItoth

B=t,—

:—/ phn-gds — > / P gl ds, (5.1.2b)
I‘D D
B=—+,— D

/v o dx—/ 8;“”1 dx =0, (5.1.2¢c)

. G
_/ Vg’ dx = / OV =+, - (51.20)
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for all test functiong @, @', G5y, Gyop, 21 7, 1) € VX Hy(div; Q) x Hy (div; ) x
Hy(div; Q) x L2(2) x L*(Q) x L?(Q) andt > 0. Note that the solution is time
dependent.

Denote the tripl€q’, q;°,, a;o,) and (¢!, u*, 1~) by q and u, respectively, and
define:

a(u,u) = /9(2/158(u) c€(a) + AV -uV-u)dx,

b(u,/]l) = _/V'ulal an
0
I N RT [ (dgee — a") - (dp — )
c(q,q) = K/Qq -q dx + Z DB/Q ocB dx,
B=+,—
d(ai) = - [ -l dx
Q
dﬂ(qtﬁotﬂﬂﬁ) = _/Qv'qtﬁotuﬁ dX7 /8:+7_7
F(u) = /Q<RT(F+C++Pc)—ué—pm)v-udx—i—/N gh . ads,
Fu
— _ l —| 163 _
Fi(a) = —/ HipDh - Q- — Z / i - Qyor, 4S5
Iy p=+,— 1%
B = [(V-utpdide 5=+

then the problem (5.1.2a)/- (5.1/2d) can be rewritten as follows:

Find (u,q', afyy, dpo, ', 17, 17) € V x Hy(div; Q) x Hy(div; Q)
x Hy (div; Q) x L*(Q) x L*(Q) x L*(©) such that
a(u, ) r————- _I_"L‘_b(_ﬁ.:_lél_)_ _____________ » F(a),
= Lol 1 _ gy = _
. p—cle ) grd (al )b (G p D4 (Ggpt )= F1(@), (5.1.3)
atw ‘Z)I +d'(d', 1) | =0,
d
| d*(qi,t,ﬁ*)l @,
N d .
| d (Qior, /1)l =gt (),

for all test functiongt, @', Gy, Grors 21, 17, 1) € Vx Hy(div; Q) x Hy (div; Q) x
Hy(div; Q) x L2(Q) x L*(Q) x L*(Q) andt > 0.

We shall use the implicit Euler scheme for time discretisation.Asbe the time
step andu,, @, qf'; . Qror.ns K Hat - 1y ) the approximation of the solution vector
(u,d, aiy, dgeq, 1, w7, 17) att = t, = nAt. Then the system of equation (5.11.3)
resulting from backward Euler is:
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Find (Wn, Qs Aot rot.ns s it in ) € V X Hy(div; Q) x Hy (div; Q)
x Hy (div; ) x L2(Q) X LZ(Q) X LZ(Q) such that
a(un7ﬁ) ________ = 7_Hn_) [ e e i F’n(u)v
A cni.q_ ) #Atdiq_y.un_) A Al G T Erét_d_(gm_u_nl.— AtFi (),
I -1 _1
una/"’ I +A}£d (qn7 ) I _b(u’ﬂ 1, f‘ )7
I Atd (qtot ’m/’L ) - ‘7:2 Tl(ﬁ )
LA (Qegr g 2 ) = Faoulli’),
(5.1.9)

for all test functiongu, @', Qs Qror. 21, 17, 1) € Vx Hy(div; Q) x Hy (div; Q) x
Hy(div; Q) x L2(Q) x L%(Q) x L*(9), where
FR(A%) = Fyo(@®) = Py i (%), B=+,—.
where
Fui) = [ (7wt o) i dx, 5=+,

Note that the dependency @f(q,, q), F.(a), F1 .(q )and]—“f (a*) tonis because

of ¢, andc:. Note that also we need some iteratie procedure to solve the nonlinear
system of equations. Let us define two forms

An(u,q;u,q) = a(u,u)+ Atey(q,q), (5.1.5)
B(u,q;r) = bu, ') + Atd'(d, 7") + Atd* (ai,, i)
+ Atd (qp i), (5.1.6)
and forms

Gra(a) = (Fu(w), AtF(@)"
Gonl) = (buna, i), 5 (50), 77 (7))

then (5.1.4) is rewritten as

Find (W, an, 2,,) € V x (H (div; Q)3 x (L2(Q))?

o o _ 5.1.7
An(um qn; 4a, Q) —{—IEB(u, q; Hn) :Gl,n(u)7 ( )

B(u,, qn; it) =Gan(it),

for all test functiongu, q, ) € V x (Hn/(div;Q))3 x (L*(2))3.

As we can see the mixed variational formulation of the four-component model
also can be written as a saddle point problem but the main difference Ilethise
system and the system in (4.2.6) is that here the bilinear forms are functign-of
andc.

Let skip the subscript in the above system and assume that™ andc™ are
given, then we have the following theorem:
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Theorem 5.1. Consider the saddle point problef®.1.7) Assume thap, ¢ andc™
are given, then

(i) The bilinear formA is ker (B)-elliptic, i.e., there exists a positive constant
a(p, ¢t ¢™) such that

A(u,qsu,q) > o (u,q)lll1, forall (u,q) € ker (B).
where

B 1/2
I, @)lls = (11l + o' B + o live + i) -

(i) The bilinearB satisfies the inf-sup condition

B(u,q; p)
sup _

> B||pllo forall pe (L*())>.
qe(Hy (div;2))3 Il(w, q)lll1 [elo (L*(9))

Proof. To prove the first part, we follow the proof in (4.2.14). Tdke q) € ker (B),
then we have

/V-uﬁldx—i—At(/V-ql/]ldx+/v-qggt/j+dx+/V-qt_otﬁ_dx):(),
Q Q Q Q

forall o = (@', 5, n~) € (L?(Q))3. This results into

V-u+AtV-q =0, (5.1.8)
V- Qi =0, (5.1.9)
V- qp, = 0. (5.1.10)
It is easy to see that
c(q,q) = / qC'*q dx, (5.1.11)
Q
where
1 RTct  RTc™ RT RT
K + Dty + D-¢ Dte Dy
cH = AT ELZUN— . (5.1.12)
D+ Dtpct
BT M S
D¢ D=pc~

But C'* is symmetric positive definite. Indeed, if we defiNe= diag (1,ct,c7),
then we have

¥ N RTcT ¢ N RTc ¢ RTct¢ RTc o
K D+ N D~ D_i‘_*' D~
O’NCHEN = _RIcty RTcmp 0
D+ D+
RTc 0 RTc

D~ D~
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In Lemma 3.2 we proved that this matrix is symmetric positive definite.

Now let us continue the proof dfer (B)-ellipticity of the bilinear formA. Take
(u,q) € ker (B), then by using Korn’s inequality (4.2.12) and equations (5.1.8) -
(5.1.11) we have

A(u,q;u,q) = a(u,u) + Ate(q, q)
=1
q
— [ £ £ AV w? dx o+ A [ (dafan)CE | ad,
@ @ Aot
> 2pscllullf 4+ Al|V - ullf + CAL(IQ |G + lagsel1§ + llagelId)
2 2uscljul|y s Ullg q llo Yot llo Qtotllo
> 2pscfullf + A(A? |V - ' [I§ + CAL(|d 1§ + lagse lFiv + 1ot l|Fiv:e)
> ol (u,q)l, (5.1.13)
wherea = min (2usc, As(At)2, C) andC = C(p,ct, 7).

To prove the second part (inf-sup condition), we restrict the supretounsubset of
functions(0, q),

111 +it -
At sup d'(q’, 1) + d" (Ao, #) +d (Qop it ™)

> B,
qe(Hy (div;Q))3 HquiV;Q

for all p € (L*())3. Easily it can be seen that the above supremum is greater or
equal than

A s MDD sup (o)
aety (divie) 19 ldivo al €Hy (diviQ) [t laivi
+ sup d- (q;)m /-L_)

Aior EH N (div;2) ||q1;)t Hdiv;Q

In fact, we split the inf-sup condition to three inf-sup condition for eaaingonent,
liguid, cation and anion. Following the proof for Theorem/ 4.4, we have aildgund
for each of the above terms, therefore

At sup @) A (@ 1) + d (i 1)
q€(Hy (divi))? lallaiv:e
> o+ B et o+ B llu llo

- N 1/2
> B (a3 + 103 + 13
= Bllello- (5.1.14)

Therefore the inf-sup condition holds for @l < . This proves the second part of
the theorem. [ |
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Remark 5.2. Following the above theorem, we can conclude that given™ andc™
the solution for the syste(B.1.7)exists and is unique. Moreover, one has the bounds

1 A
lwal < 2P+ (1452 e, eaas)

A A A
Iilzzopern < 5 (14 150 ) 1710+ B0 (14 20 e, 026

where

ker(B*) = {p € L*(Q) | B(u,q; ) =0 forall (u,q) €V x Hy(div; )} .

5.2 Hybridization of the mixed method

In this section, hybridization technique is used for the four-componenemtle
introduce a hybridization procedure for the mixed formulation. This will simplify
the solution of the algebraic system that must be solved in the procedueeddédn
behind hybridization is to relax the continuity requirement for the variagiesnd

qfot across the internal edges. This will require to enlarge the Raviart-Thgpaas

in which ¢ andqfOt are sought and to introduce Lagrange multipliers to enforce the

continuity of the normal component of andqfOt across the inter-element bound-
aries.

From the algebraic point of view, systems resulting from hybridization béea
rather transparent sparsity structure. Thus, the hybridization caartsédered as a
specific matrix stretching technique

In chapter 4 in detail we discussed the hybridization technique for a linear time
dependent two-component model. Despite to the fact that four-comporoetel is
nonlinear, it can be considered as three copies of Darcy’s probleadinted byq'
andqﬁ .

tot

Using hybridization technique we introduce three Lagrange multiplier to ensur
the continuity ofq’ and qfot across internal edges. As we have seen in the previ-
ous chapter the Hybridization technique will reduce the number of unkadavthe
displacement vector and the Lagrange multiplier. In four-component nveslelx-
pect to end-up with displacement and three Lagrange multipliers as unkndis
section is devoted to this fact.

Define

E)={eec& eCT}. (5.2.1)

We assume that? is the union of some € &7
Let andum, both inL2(Q), be piecewise constant approximationgff and
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ufn, such that

/(ggn “ubyds = 0 forall ec £, e TP, (5.2.2)

e

/(ﬂfn—ufn)ds = 0 forallec&l, ecT? p=+,— (5.23)

The hybrid formulation will make use of Lagrangian multipliers belonging to the
spaceL?(&y,) that is defined to be the product space

L*(&) = [] L*(o7). (5.2.4)
TeT,

Recall thatMO(e), e € &, is the space of constant functions en Define the
multiplier spaces

MO (&) = {X=(A)ecs, € H(| Je): Ae € MO(e) forall e € &},

ecly,
(5.2.5)
MY p(&n) = {ANeM®(&):A=0 on I}, (5.2.6)
MO (&) = {hneM2y(&n): A=, on T}, (5.2.7)
MO 5(&) = {AeM%(&):A=p), on TP}, g=+, - (5.2.8)

The following lemma is an immediate consequence of the above definitions.

Lemma 5.3. Suppose; € RT?,(7;,), thenq € RTg \(75) if, and only if,

2/ Anr-qds =0 forall A e M, (&)
TeT), or

Mixed hybrid variational problem

A spatial semi-discrete approximation by considering the hybridization tea@risq
as follows.

Find (uh,qé,qi)t,h,qgt,h,u%,u;f,u;,AZ,AZ,A;) (-,1) € (P(Tn))" x RT (T;,) %
RTO (Tp)xRT? () x M2 (Tp,) x M2 (Tp) x M2 | (Tp,) XMgl,l(Eh) XM91,+(5h) X
M?, (&), such that
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/(2u55(uh) : 8(1_1h) + AV -, Ve flh) dx — / /fhv -y, dx
Q Q
= / (RT(FJFC;Lr +I7¢,) - uf) —pm> V -uy dx +/ gy, ds,
Q FuN
(5.2.9a)
1 / o g dx+ Z RT / (qtﬁot,h - cgqlh)(qtﬁot,h - dyal,) dx
il L.g bl
K Jo Pl DF Jq oncy
- Z (/ uﬁlV-qﬁldx—/ /\%nT-qﬁlds>
Tez, \IT oT
- S ([ iveabgax- [ nrads) | <o
p=+,— |Tem, VT ar
(5.2.9b)
-y / V- d il dx —/ ava't“’% dx = 0, (5.2.9¢)
TeT), T Q
B B AV - up + 90)c, s
B Z / V- Qo i, dx:/ ot iy, dx, B =+,—,
TeT), T Q
(5.2.9d)
> / ny - gy N, ds =0, (5.2.9e)
> / ny-qp Ay ds =0, B=+,—, (5.2.9f)
TeT), or

for all test functions(ﬁh,qlh,q:;t’h,q;)tvh,ﬁﬁl,ﬁ;,ﬂ,;jﬁl,};}g) € (PL(Tn))"
RT91(77L)XRT91(77L)XRT91(771)XM91(771)><M91(77L)><M91(771)XMELD(Sh X
MBl,D(gh) X MELD(Eh) andt > 0.

Note that in the above variational formulation the valuesdpandc, are calcu-
lated from the secondary equations mentioned in (2.7.7).

Letx;,i =1,...,I, be numbered nodes of the triangulatione 7;, : x ¢ ff};
Ti k =1,..., K, be numbered sub-domainsBf ande'””, j = 1,..., J™), be the

J
edgeqn = 2) or faces(n = 3) of T" for eachT” € 7},.

Recall that the finite-dimensional spaB&™, (7;,) is spanned by the linearly in-
dependent vectorial basis functiovnjg),j =1,...,J0, T e 7, such thatng)
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has its support ifi’ and

/m nt'V§T) ds =65, j,j'=1,...,0J7.

J

Thus a functiorg € RT?,(7;,) hasJ ™) degrees of freedom per sub-domdire 7j,
andintotalJ = > ;.7 JT) degrees of freedom ifi;,. The degrees of freedom of
q in the sub-domaifl” € 7 are equal to

. P — (T)
/e(.T>nT qds, j=1,...J% .
J

Recall that the finite-dimensional spat€ , (7,) is spanned by the linearly indepen-
dent scalar basis functions,, £k = 1, ..., K, such that/ (4.2.42) holds.
Lete, I = 1,...,L, be the numbered edg¢s = 2) or faces(n = 3) of

{leeé& e ¢ ff}. The finite-dimensional spaCMELD(Sh) is spanned by the
linearly independent scalar basis functiopsl = 1, ..., L, such that

m(x) =0y, x€ey, LI'=1,... L.

Therefore a function € M°, ,(€,) has one degree of freedom per edgel =
1,..., L, which is equal to its constant value en
Now by definition, functionsy, i, i, dl,, a’, ., X and\; are expressed as

un(x,t) = Zﬂi(t)wi(x),
a,(xt) = Y di(t)vi(x),
qtﬁot,h(x’t) = thﬁot,j(t)vj(x)’ B=+, -,
K
ph(a,t) = D i ()vr(x),
k=1

K
ppxt) = S Ekx), 8=+,

k=1
L
M t) = A+ Y N(Ome(x),
(=1
L

Mt = A+ S N tmx), =+ -,
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where)’

wmn’

6 =1,+,—, are defined by

N =P onTP

Jé] 0 m m P>
o€ MZ2,(&,) and )\fn -0 on Ug e\l“{,j.

ecéy,

Substituting this in the mixed-hybrid variational formulation gives

_.dy _ _ d® _
A(pn, ¢, ¢ )E +B(on. ¢, )y = Flen, ) + E(“"’“ aren),
(5.2.10)

where2 (¢, ¢, ;) andB (¢, ¢, ¢; ) are

m(@haczacﬁ)zj =
0, i #5, j#1,

%(Wha 627 C}:) =

A__0_____ o _____ O __B 0 _0__0 _0_ 0
0(C"( h/cﬁ) C'(gp) C(py) D 0 0 E 0 O
0} C'*(pn) C*(gnef) 0 0 D 0 0 E 0
01C (pn)___0 __C(erg)i0 0 D__0__0_ FE
0| DT 0 0 |

0| 0 DT 0 |

0) 0 0 DT |

0 i ET 0 0 i 03(K+L) x3(K+L)

0| 0 ET 0 |

OL__0___ __ O _____ EL__i

respectively, and

y o= |8d ks G A AT AT
(encioe) = |F.Fy,F{F1,0,0,0,0,0,0]

&(on, ¢/ c;) = [0,0,0,0,0,Ff,F;,0,0,0]" .
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In the above formulations,

a = [ﬂl---,ﬂnﬂT,
a = la..al,

Ae = ldirs ol B=+
o= Ay, "

po= @ it B=+
No= L AT
B

= [S‘Ifa 75‘€]T7 ﬂ:—'_v_)

A
Aij = / (2/1,58(Wi) : 5(W]) + AV -w; V- Wj) dx,
Q

Bz’j = —/V'Widx,
T;
C” 3 - 1 d RT Cﬁvi-de
S YA R T
RT ViV
C’lbf((ph) = _Dﬁ/f\l :0}1, J dX, B: +7_7
RT ViV,
Cﬁﬁ(aphcf) = ﬁ/ - 5] dx, [B=+,—,
D Q ©pcy,
Dij = —/TV'VZ'CZX,
J

Eik = / n;-v; ds,
€k

F, = / <RT(F+C; +17¢,) — ,uf) - pm) V- w; dx +/ gg -w; ds,
Q

ry
(F)i = _/ﬂénn'vi ds,

r
(F?)L = - / ﬂzﬁnn © Vi dS, ﬂ =+,

T

(Fy)ilpncy) = /:F(V'uh+</?0)0§dxa B=+—

Remark 5.4. From now in our notations, we omit the dependencies of the matrix and
right-hand side functions tgy,, c;, ¢, - We keep in mind that this is just to make our
formulas more readable.
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Define

ct ¢t ci- D 0 O E 0 0
¢=| Cc+ Cctt o ,©:<0D0>, e:<0E0>.
Cl— 0 Cc—— 0 0 D 0 0 E

(5.2.11)
Theorem 5.5. (D|&)T¢ ! (D|&) is a symmetric positive-definite matrix.

Proof. € is symmetric positive-definite and®|&)” ¢! (D|&) is symmetric posi-
tive semi-definite. To prove the positive-definiteness, we need to shawan&)
has full rank. Suppose

~] ~ ~_17T
@le) @' ara- XA =0,
then
Di' +EX =0,
Dat +EA =0, (5.2.12)
Di~+EX =0
Since

Dial +EX =0 & vI(Dial +EX) =0 forall veR’

= Z (/ uﬁlV-vhdx—/ )\lhnT-vhds> =0 forall thRTgl(Th)
oT

& Z /8T(u§1 —X)ng-v,ds =0 forall v, € RT°,(T3)

& pp=X,ondT forall T €T, pf=0inQ, X, =0on| Je
ecéy,

where

)\ﬁl(x, t) =

Therefore we have
(DA + AT € H(DA + EAy) >0 (5.2.13)
forall (A1, Ag) € R3E+D\ {0}, [
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In the sequel the hybridization technique will be proceeded. Note thatyiens
(5.2.10) can be considered as

Au+ Bl =F,
~
, it
q e 0
€l aly |[+@E)] 5t [=]0 ],
flt_ot 5\+ 0
A (5.2.14)
BT 0
0 ql F;’_
0 d . o _d | Fy
o |zt ®@¢ ( Dot ) “at| o
0 qtot 0
0 0

In the system (5.2.14F is symmetric positive definite matrix and can be inverted at
the finite element level. Therefore the second equatian in (5.2.14) implies

~1
y nt
q e
( ot ) =-¢'@e) | | (5.2.15)
Qtot 5\+
5
Using (5.2.15) and the third equation iin (5.2.14) we get
T it 0
B il
0 ol FJ
0 d . _ K d N
0 au—(g\e)% ‘(@e)| § == | ¢ (5.2.16)
0 A 0
A 0

In the next step we solve the above equationfdr i+, 2~]7. To do this, we need
to state the following lemma.

Lemma 5.6. D7 ¢~ 1D is a symmetric positive definite matrix.
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Proof. Since€ is symmetric positive definited? ¢ ~1® is symmetric positive semi-
definite. In order to prove that this matrix is positive definite, we need to fiadti
space of it.

Let®i’® =0,8=1,+,—, then

> / P vy, dx =0 forall v, € RT(T), B=1+,—,.
TeT), T
vy, Is assumed to be continuous inside each elerfettierefore the above summa-

tion will reduce to each elemefit. With an appropriate choice af,, we can take
V - v, to be equal to 1 i7", therefore we have

/Mﬁdx:o forall Te7,, B=1I+,—.
T

Hence
uf’T:O forall TeT,, B=I+,—.

This results in the symmetric positive definitenesdfe 1. |

Remark 5.7. It can be seen thaD’ ¢ ~1® is similar to a block diagonal matrix. In
fact, we need to define an appropriate permutation matrix. Détiadéter reordering
the rows of an identity matriXs; 37, based on the vectdnd, L + 1,2L + 1,2, L +
2,2L+2,---,L,2L,3L). Then it can be seen that the matBX®” ¢~ '®)Pis

a block diagonal matrix and ha&™ blocks which are3 x 3 matrices and the inverse
is block diagonal too. This will imply that the inverse ®f ¢ '® has the same
pattern asD’ ¢ 1D.

Now by applying the above lemma and using equation (5.2[16)4a", =] can
be expressed as

—

i A
[l,+ — (@Tq:—l@)—l 7©T€—1€ 5\-‘-
® . A (5.2.17)
B 0
+ 0 %ﬁ —% F;
0 F,

If we substitute/(5.2.17) in the system (5.2.14), then this system reduces to

45
dt 0
(5 ) Car )| 2 (- (0) (%) a &
0 al 2 5 0 )\ g )
-

(5.2.18)
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wherel, 2(; and®l3 are

BT
A, = (B 0 0)(@%1@)1( 0 ) (5.2.19)

0
A, = —(B 0 0)@DTe D) (DTete), (5.2.20)

Az = —(¢fe'D)@D'e D) '(DTe )+ (eTee).
(5.2.21)
&1 andg, can be derived as

F = (B o o)®dTeld) (5.2.22)
3 = —(¢felm)@Te D)L (5.2.23)

Remark 5.8. From Theorem 5J5 it follows that

n"Asn = (Dny + Eny)" € (Dny + Eny) >0 forall n, € RSK\{(g}z, 20

where
m=—-(@¢'D)DIe €, n=(n,m).

Therefore; is a symmetric positive definite matrix.

Remark 5.9. By using the above remark, we can take one more step to solve the

system for
0
ol g 32% ( Fy )] , (5.2.25)

Xl
It —1
o dt F

A
whence systeifb.2.18)is reduced to

0
d . N _ d
(A1 + oA AL) Py Al = (F1 + A1 F2) - ( gi ) | (5.2.26)
2

Remark 5.10. Note that in computation &ft;, 2(, and®(3, the inverse of the matrix
D¢ 1D is needed. In Remark 5.9 we have seen that this inverse can be calculated
per finite element. This is an important fact in using the hybridization technique

Let At be the time step anéﬁ", A AT 5(’”) the approximation of the solution

A ; i
vector (u,A ,>\+,)\ ) att = t, = nAt. Then the nonlinear system of equation
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(5.2.18) resulting from backward Euler is:

1 - 1 1 - 1
2( ¢n+1 +,n+ c ,n+ 2[ SOTH_I +,n+ 7Ch,n—i-

< Au"‘H + s O
0 r ”H chmtl —ntl n+1 cHntl ol
20, Ch ' Cp, —2A3 Ch » Cpy

antl _gn
§ S\,nt+1 B ( F, > 51 (ot gt ot
5‘+,n+1 0 3 (pz—i-l C; n+1 c,?"“
5\—,%4—1
0
Fy (¢, *”*17@7"“)—@ AR
x A (5.2.27)
£ (a7t ) < (et
At

The assumption thatff, 8 = +, —, andyy, are known transforms the system into a
linear one. Forp;, the value at the old time step is taken. Thus the valug &t the
old time level is known and therefore the differenge— ¢, by electro-neutrality.
Definect = ¢t + ¢, then the solutiorﬁf from (5.2.17) and (5.2.27) for fixecﬁ,

3 = +,—, can be denoted symbolically ks, i1;) = A~'(c)b(c), whereA
andb represent the matrix and right-hand side of the linear system. &ifowan
be computed by the third relation in the secondary equati02.7.7)cﬁ.e_.—,
f(uh,uh,ch) Ergo, we obtain the non-linear system

e =f(A T (&hHb(ch), i) - (5.2.28)

This system can be solved by an iterative procedure for non-linetarsy(see Algo-
rithm 1).

In each iteration a linear system has to be solved. It should be obsered th
different scales are apparentfin (5.2.18) that will result in a poorliedamatrix in
the linear system. Therefore the mathAxis replaced by the scaled matiXAD,
where the diagonal matriR is defined by

D — diag L L RTL RTL
At(2ﬂs + )\s)’ K’ D"‘(,O()Cgc7 D_QO()COC .
HereL is a representative length scale.

(5.2.29)

5.3 Numerical simulations

In this section the element contributions to the matrices and right-hand sides in
(5.2.18) are computed.
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Algorithm 1 Solving the nonlinear system (5.2.27) by using iterations
Givenyy, cf’” and givene

criteria<= 1
while criteria> ¢ do .
fen fc Pp — ¥0 >
c =cy expl|l ——r——
h 0 @wo(1 — o)

+,n +,n -n ¢ fen .
d," <=c," — ¢, {=¢,~" by electroneutrality

" = (G + d "))
C}:,n — Ch no C+,n
(ﬁn+1’ 5\’7"“, At 5(’”“) < solve thdinear system|(5.2.27)

([Ll,n-i-l, [jl,+’n+1, [L—,n-&-l) ~ use equatioﬁWJ.?)

(grt &bt &t < use the secondary equations'in (2.7.7)

criteria< ming—, _ [|&;" " — ™|

B.n ~B,n+1 o

c, <:ch+1 ,5_4_7_

P = Py
end vyhlle .
cg’n—’_ = 5§’n+

n+1 ~n+1
Pn =Py

The element contribution to the elasticity matix and B in (5.2.18) can be
computed in an standard way. For element contribution to the matflégss, v =
l,+,—,recall (4.4.4)

T A(T) A(T)
(CS(%)XJ(T))ij - c](“k (k) + Z Z cl(fl (Agt + Ay

where all matrices in the summations are symmetric are given in (Kaasschidter an
Huijben, 1992).

As an example we takg to be a parallelogram, where= 2 and.J(*) = 4, thus
we have

2 0 -1 0 0 1 0 -1
1 0O 0 0 O 1 1 0 -1 0
A11=6 10 2 o0 | A12+A21:Z 0 -1 0 1 )
0O 0 0 O -1 0 1 0
0 0 0 O
~1fo0o 2 0 -1
AQQ—E 0 0 0 0
0o -1 0 2



5.3. Numerical simulations 113

Another example is a triangle whene= 2 and J() = 3,

1 1 -1 1 1 1 -1 -1
Ayl = — -1 3 -1 , Ao+ A9y = — -1 -3 3 ,
21 -1 1 2\-1 3 -3

L/ 11 -1
Ap=—| 1 1 -1 .
12\ 1 1 3

Using Green’s formulal, (4.2.30) and (4.2.35), simple formulas can beedifior
the element contributions of the remaining matrices and right hand sides ing5.2.1
namely

(T) _ (T) 7o _
(DJ<T>X1>Z' a _/TV'VZ' dx = —1, (5.3.1)
(6o = [ mr st ts = (5:32)
€k
— [ if e; c TD
Fﬂ = Mln? I § p == T . . .
! {0 otherwise *© ~ b (5.3.3)

The computation of®7 ¢~ '®)~! is essential when determining the matri@s

(1 =1,2,3) in (5.2.19) -(5.2.21). This matrix is a block diagonal matrix (Remark
5.9) and it can thus be computed at the finite element level. The magicese
obtained by assembling their element contributions. The right-hand side¥ggto
and§, can be computed in an analogous way.

5.3.1 Confined consolidation and free swelling

In this section, numerical solutions are calculated for confined consolidatid free
swelling. To verify the method, solutions are compared with the analytical sofutio
from chapter 3.

The homogeneous sample is placed frictionless in a holder. Figure 5.1 illgstrate
the experimental setup. At the bottam= 0, the sample is in contact with a glass
filter saturated by a sodium chloride solution. An impermeable piston is placieon
top of the sampley = L, where an external mechanical load is applied. The sample
was made out of a hydrogel. A bathing solution flowed through a poross §leer
at the bottom of the sample.

Consolidation

In the consolidation experiment, we apply a load on the piston to be eqyi&dte-
—foH(t — to), with H(t — to) the Heaviside function angly, > 0. The external
concentration is kept constant during the test.

For the reference values for the electro-chemical potentials we choose

ph = 2RTCous, p = —RTIn 2. (5.3.4)
C
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I piston I

| sample [fE
@O0/ @ © ©0

@ .
glass filter
&% o ()

confining
ring

Figure 5.1. Schematic representation of the experimental set-up

oil film

By Donnan equilibrium, we know that the electro-chemical potentials are ecomt

at the boundary, i.eyfn = uffut, 6 = 1,4+, —, where subscripts ‘in’ and ‘out’ stand

for inner and outer solution, respectively.

Assume
F+ =1, =1, F;rut =T =1 Dot =0, Eu =0,
then
l l
Hin = Hout
= Hé + pout — 2RTT puicout = 0,

C
=yl + 2P Fépus + RTT s In ?ut —0, B=+.—

Therefore, the initial and boundary conditions for the displacementlantt@chemical
potentials with respect to the steady reference state are:

W w00 = [0 0 0],

Lol ™ owm Jyto) = [ty my ey |
u(0,t) = 0
u(y,to) = 0

where[ pub pf gy J=1/fo 0 0]

: (5.3.5)

Free Swelling

In free swelling experiment, initially the tissue sample is at equilibrium with the
external bathing solution with concentratiofn, (¢, ). Att = t;, the concentration
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of the external solution at the bottom of sample decreases @, ) instantaneously.
This lowering of the concentration causes the tissue to swell to a new equiiibriu
state.

For the reference values of electro-chemical potentials we choose

ph = 2RTcoy, 1 = —RTIn "2 (5.3.6)
C

The initial and boundary conditions for the displacement and electro-chépaten-
tials with respect to the steady reference statet are:

Lt opt opm [0t = [k owd ow
Lub ™ wm Jwte) = [ty mdh mgg |
u(0,t) = 0,
u(y,to) = 0, (5.3.7)
in which ) = 0,8 =1,+,—, and
ph, = —2RTAcou,
t)
£ = Ry “llo)
Hin ot (£7) (5.3.8)
(1)
j7 = RTIn=t0)
Cout(to)

Acout = cout(ty) — cout(ty ) Wherets andt, are the time just after and befotg
when chemical loading is applied.

Results
In this section, the results for the confined
consolidation and the free swelling arg parameter Unit value
prescribed. For both computations, thes, 5, MPa 1% 103
parameters in the table are taken. These g m*N~'s'  1.0x107'®
two experiments are taken from (Frijns, ¢/ mol m~? —2 x 10?
2001) and our aim is to validate the nu-  cout mol m~? 1 x 10
merical solutions by analytical solutions ¥, Y, oL
described in chaptér 3. DT ms o 133107
As mentioned in the previous section, % Jmopl Kot 20'2 ;ﬁg
an uniaxial confined swelling and comr T K 203
pression experiment is performed onja F C mol™* 96484.6
cylindrical sample of cartilage substitute. r 0.9

This sample, with the diameter of 4 mm
and the height of approximately 1 mm is

put in an insulating conforming ring. A piston on the top of the sample is loaded me-
chanically. A bathing solution flows through a porous glass filter at the batfdhe
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sample. A change of the salt concentration of this solution generates gecimatine
boundary of ion concentrations and electro-chemical potentials as wpteasure
and voltage.

During the experiment, the mechanical and chemical load are varied.dddpir
this, two numerical simulations are considered.

Note that the problems of confined consolidation and free swelling are iene d
mensional with variation in thg direction only. Considering the extension of our
model to higher dimensions, we would prefer to implement these one-dimehsiona
models in a horizontally-fixed displacement two-dimensional geometry. Wea use
rectangle in which only vertical displacement (direction of force) is allowwth
32 vertical elements and one horizontal element. Successively, 30 inteofe20
seconds, 10 of 50 seconds and 7 of 100 seconds are used for timetigion.

Analytical solutions for displacement, fluid pressure, electro-chemicehgials
and flows for both of problems have been derived in chapter 3. Rapteive results
from mixed hybrid finite element are compared to these solutions.

For the consolidation experiment, an inward foffge= 5 MPa is applied to the
top no-flow boundary, and at the bottom rigid boundary, the porous mmeidiin con-
tact with an electro-neutral bathing solution. All boundary conditions aseribed
in (5.3.5).

The implicit Euler backward scheme is used for the time discretisation. The non-
linear system (5.2.26) is solved based on iterations:for The criteria for conver-
gence of this iteration i$0~'2. The average iterations for this problem is 10 iteration
per time step and it is reduced from 15 iterations in the beginning to one when sa
ple reaches equilibrium. We use a direct solver for the linear system. tlrafdaect
solver for our one-dimensional problem is a good choice but we arecagiahe
fact that for higher-dimensional problems an iterative solver shouldohsidered.
Note that in this experiment, all the unknowns change immediately=at, s, thus
another equilibrium will be establish at infinite time. At the final equilibrium, the
electro-chemical potentials®, 3 = [, +, —, have the same value as the values in the
initial state. However, the stress and fluid pressure have changed,tssporous
medium is compressed, Figures 5.2 and 5.3 display the comparison betweeathe
Iytical solution and mixed hybrid finite element solutions for confined constdida

For the free swelling experiment, the initial and boundary conditions arsecho
from (5.3.7). In this experiment, we decrease the external salt coatientwith a
small amount frome,,; = 1 x 102 mol M3 t0 ¢y = 0.995 x 102 mol m—3. The
displacement, pore pressure, electrical potential, electro-chemicaliptgemd ion
concentrations are displayed in Figures 5.4/and 5.5. The pore prassg@ses from
the initial value to the maximum value0041 MPa at0.1648 h.

The results obtained, despite the relative coarseness of the meshesgeagaqd.

As it was expected from the mixed method, the fluid flow and ion inflows and out-
flows are equal per element and per time step. All functions were written inLMR
and were run on a pentium 1V (2.66 GHz).

In order to understand the nature of the mixed hybrid method, CPU chearies w
placed in the program at several points. First CPU time that is require@atecand
assemble the element matricég, .ssem) IS measured; then the time to solve the
matrix system of equations,(,,.); write primary variables and compute secondary
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Figure 5.2. Analytical-MHFEM comparison of the solutions for the confined consolidetih

variables likep, ¢t (turite); time for iterations to converge,(,niincar)-

Due to the nature of the hybridization method, the element matrix computation
time and the inverse of the block diagonal matrix to get the global matrix is markedly
smaller than the same procedure in the finite element code. Another reasbe fo
hybrid method’s better performance is the relatively shorter time requiredno ¢
pute the right-hand side at each iteration and each time step. This is due totthe fa
that(®T¢1®)~! in (5.2.22) and (5.2.23) is computed per element in forming the
stiffness matrix. Thus the force vector is computed from stored elemenhvkEves
¢ andc? at the previous time step independently for each element. In contrast, the
right-hand side for the finite element method (van Loon et al., 2003) is comhpute
at the global level, requiring the multiplication of the entire stiffness matrix. &her
fore the finite element method needs more CPU time due to the size of the matrices
involved.

In conclusion, for the large problems for which a three-dimensional gegrise
considered, the hybrid method offers significant advantages in bothnbard of
storage required and the CPU time to obtain a solution.
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5.3.2 Two-dimensional free swelling

In this section, a mixed hybrid finite
elements for two-dimensional four-
component model is developed.

We consider the swelling cylinder
to test the two-dimensional hybridiza-
tion method. We choose an axisym-
Figure 5.6. Experiment on hydrogel disc (J. M.MEetrc geometry as_deSC”bed below.
Huyghe, 1999) A cylinder of height0.5 mm and

radiusl mm is in equilibrium with an
external salt solution. The external concentration is reduced4r6m 102 mol m—3
to 4 x 102 mol m~3. A change of the salt concentration of this solution generates a
change at the boundary of ion concentrations and electro-chemicatiptgeas well
as pressure and voltage.

For this computation we take; = 0.4688 MPa, \; = 0.3125 MPa, gof =07
and the other parameters are unchanged.

The intersection of the cylinder through the center is made in order to illustrate
the swelling. For the boundary conditions of this rectangular shape iotiensgwe
consider no horizontal displacement at the bottom left corner and rnicaledis-
placement in the bottom. The bottom and top plane are considered impermeable.
While the external salt concentra-
tion is reduced, the cylinder starts t
shrink at the top surface where th
salt concentration and the medium a
in contact. This is due to the fac
that the ions need less time to diffus
than the liquid, therefore an ions flow
takes the liquid out of the sample an
shrinkage happens. Further, the con
putation shows that after 6 hours th
cylinder has regained its initial shape
however it is enlarged. Figure 5.7

shows the shrinkage period and fol- ° ! * time[h] ° ¢
lowing swelling period at the side sur
face. Figure 5.7.u, on the top right point.

As it was expected for the higher
dimensional geometry the number of iterations for the nonlinear solver ig lerge
comparison with the one-dimensional case. But thanks to the hybridizatibn tec
nique for less amount of storage it requires. Note that the nonlinearrsakes
more iterations for the period ions are diffusing (the shrinkage periad),da while
the hydrogel returns to its initial shape, the number of iterations is reducexdeto
iteration near final time.

Figure 5.8 (a-f) displays the swelling at different times.
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(@ t=360s (b) t =3600s
(c) t=7200s (d) t = 10800 s
(e) t = 18000 s (f) t = 21600 s

Figure 5.8.Fluid pressure at intersection of cylinder for several times.
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5.3.3 Opening cracks in the intervertebral disc

Low back pain is common in today’s society.
Seventy-five percent of all people will expe-
rience back pain at some time in their lives.
Some of the common causes of back problems
are disc injury (e.g., herniation and internal
disc disruption) and degenerative discs.

The intervertebral disc serves as a shock
absorber, load distributor and spacer. As we
age the disc normally undergoes degenerative
change. The disc loses its ability to hold water,
resulting in decreased ability to absorb shock
and a narrowing of the nerve openings in the
sides of the spine, which may pinch the nerves.
The result is increased disc stiffness often ac-
Figure 5.9.Schematic of a herniated disc Companied by back and |eg pain.

The loss of proteoglycan in degenerate
discs has a major effect on the disc’s load-bearing behaviour. With fgsoteo-
glycan (and therefore fixed charges), the osmotic pressure of théatisand the
disc is less able to maintain hydration under load; degenerate discs haveravaw
ter content than normal age-matched discs, and when loaded they lobé dreig
fluid more rapidly, and the discs tend to bulge.

Disc herniation occurs when the annulus fibrous breaks open ors;raltdwing
the nucleus pulposus to escape. This is called a Herniated Nucleus Ru{pidéR)
or herniated disc.

A herniated lumbar disc can press on the nerves in the spine and may eause p
numbness, tingling or weakness of the leg called "sciatica”. Sciatica afibcist
1-2% of all people, usually between the ages of 30 and 50.

A herniated lumbar disc may also cause back pain, although back pain alone
(without leg pain) can have many causes other than a herniated disc.

In (Wognum et al., 2006) the influence of decreasing osmotic pressutkeo
opening of cracks in the intervertebral disc is studied, both experimentadlyha-
merically. The numerical solutions are derived from finite element methedp@ag
displacement, fluid pressure, electro-chemical potentials, electricaltjgdamd vol-
ume fractions to be unknowns.

In our work, we consider the mixed finite element formulation with the hybridiza-
tion technique. In fact, the mixed variational method has been shown to bblsuita
for this kind of problem, when a crack tip is considered inside the domainmiixed
method owes its popularity to its local (element-wise) mass conservation fyrapelr
the simultaneous and accurate approximation of variables of physicalsntere.,
potentials and flows. The mixed method for the four-component model lasues
ber of unknowns by using the hybridization technique and is stable nearahk
tips. We consider a two-dimensional rectangular geomietry0.5 mm with al mm
long crack in the center as it is described in Figure 5.10.

The up and bottom of the sample are fixed, the left side and the crack can mov
freely. We assume that initially the crack is closed at equilibrium with the exXterna

herniated disc
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Figure 5.10.Schematic representation of the crack problem.

bathing solution with concentratiory,:(t,) = 1.5 x 102 mol m=3. Att = t{,
the concentration of the external solution at the left side of sample incrdase
cout(tg) = 2 x 10*> mol m~3 instantaneously (Wognum et al., 2006).

The following parameters are taken:

Parameter Unit Value
2ts + s MPa i
K m*N~ts ! 028x1071°
cle mol m—3 —2x 10?
Cout mol m—3 1.5 x 102
%) 0.8
Dt m?s! 13.3 x 1071
D~ m?s! 20.3 x 1071
R Jmolrt K1t 8.3145
T K 208
F C mol™! 96484.6
r 0.9

Table 5.1.Material parameters

Figure 5.11 shows the displacement changes for both crack top poitheteft
side of the domain. The numerical simulations for the opening crack arensimow

Figure 5.12.

5.4 Conclusions and future directions

Assuming infinitesimal deformation for the solid phase, four-component iiagle

of biological tissues is derived in chapter 2. This results in a coupledrmeystaon-
linear parabolic differential equation. For the numerical experiments it & that

an accurate approximation of the flows can be determined by the mixed finite ele-
ment method. The benefit of the mixed method are apparent for problemsowih r
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Figure 5.11.Displacement for the top crack and left side.

tensors of hydraulic conductivity (for example confined compressiahsarelling
method) and especially if the domain is subdivided into very flat sub-domains.

Of course, if one is interested in an accurate approximation of the potendal, th
the conforming finite element is preferable with a non-uniform time discretisation
with a larger steps near the equilibrium. The number of required iterationdvi® so
the nonlinear system is reduced for one-dimensional experiments.

Using the hybridization technique, the mixed finite element method still results
in an indefinite system but will less number of degrees of freedom. We uaéote
for solving the nonlinear system derived after taking the Backward Baleeme for
the time integration. This algorithm has been tested for one-dimensional @dnfin
consolidation and free swelling experiment and the results has been dravifle
analytical solutions.

A two-dimensional swelling and opening crack problem is tested by using hy-
bridization method. Note that for higher dimensional problem we are aWargmg
an iterative solver to solve the system of equations. even more a riglongliéoner
is needed for our indefinite system. The implicit time discretisation is uncondition-
ally stable, but still we should be careful in choosing the time step to avoidbi®ss
oscillations.
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(@)t =500s (b) t =2000s
(c) t = 4000 s (d) t = 8000 s
(e) t = 10000 s (f) t = 12500 s

Figure 5.12.Fluid pressure for opening crack problem at several times.



Summary

Mixed Finite Element for Swelling of Cartilaginous Tissues

M any biological porous media exhibit swelling and shrinking behaviour vilen
contact with salt concentrations. This phenomenon, observed in caritehe
hydrogel, is caused by electric charges fixed to the solid, counteractentiespond-
ing charges in fluid. These charges result in a variety of featuresdingswelling,
electro-osmosis, streaming potentials and streaming currents.

Mixture theory is a framework, in which the model integrates mechanicat-defo
mations, loads, diffusion, convection and chemical reactions of diffecduates.

An earlier study from geomechanics presents biphasic models that detwib
solid-fluid interactions. These models cannot describe osmotic effectsaaima-
jor influence on the behaviour of tissues. Therefore to account footis effects
this is modelled by a four-component mixture theory.

In the four-component mixture theory a deformable and charged paredaim
is saturated with a fluid with dissolved cations and anions. Four components ar
defined: solid, liquid, cations and anions. Balance equations for eacpa®nt as
well as for the mixture are given. Together with the second law of thernadigs,
the constitutive equations are given.

This theory results in a coupled system of nonlinear parabolic differestiad-
tions together with an algebraic constraint for electroneutrality.

In this model, it is desirable to obtain an accurate approximation of the fluid and
ions flow. Such an accurate approximation can be determined by the mixed finite
element method.

We consider the numerical solution of the mentioned problem using a mixed
discretisation by Raviart-Thomasékelec elements on two- and three-dimensional
domains.

The solid displacement, fluid and ions flow and electro-chemical potentials are
taken as degrees of freedom. This results into a first-order nonlinesoralg equa-
tion with an indefinite coefficient matrix.

The hybridization technique is then used to reduce the list of degreesenfdm
and to speed up the numerical computations.

The mixed hybrid finite element method is validated for small deformations using
analytical solutions for one-dimensional confined consolidation and sgelliwo-
dimensional results are shown for a swelling cylindrical hydrogel sanmal®pening
cracks in intervertebral disc.
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Samenvatting

V eel biologische poreuze media vertonen zwel- en krimpgedrag wanezeird
contact komen met zoutoplossingen. Dit fenomeen, dat in kraakbeeg-en h
drogel wordt waargenomen, wordt veroorzaakt door elektrisatiadan die aan de
vaste stof gebonden zijn, die door overeenkomstige ladingen in de vioeistdén
tegengewerkt. Deze ladingen resulteren in een verscheidenheid rezhijreselen,
met name zwelling, electro-osmose, stromingspotentialen en elektrische steoming

De mengseltheorie is een raamwerk, dat mechanische deformaties, ladiiigen
fusie, convectie en chemische reacties van verschillende opgelosenstuéfgreert.

Een eerdere geomechanische studie stelt tweefasenmodellen voor,idierde
actie beschrijven tussen vaste stof en vloeistof. Deze modellen kunnenisgmeo
effecten, die een belangrijke invioed op het gedrag van weefselghghiet beschri-
jven. Daarom wordt dit gemodelleerd met de vier-componentenmengsadtioso
osmotische effecten te beschouwen.

In de vier-componentenmengseltheorie is een vervormbaar en geladsrs po
medium verzadigd met een vloeistof met opgeloste kationen en anionen.ovfier ¢
ponenten worden gedefinieerd: vaste stof, vloeistof, kationen enamnidde bal-
answetten voor elke component evenals voor het mengsel wordevegeggamen
met de tweede wet van de thermodynamica worden de constitutieve vergelijking
gegeven.

Deze theorie resulteert in een gekoppeld stelsel niet-lineaire paralaolikich
ferentiaalvergelijkingen tezamen met een algiotze voorwaarde voor elektroneu-
traliteit.

In dit model is het wenselijk om een nauwkeurige benadering van de tdbeis
en ionenstroom te verkrijgen. Een dergelijke nauwkeurige benadesingvirden
verkregen met behulp van de gemengde eindige elementenmethode.

We beschouwen de numerieke oplossing van het bovengenoemdeepnaipe
bruikmakend van gemengde discretisatie met Raviart-ThonéableL elementen op
twee- en driedimensionale domeinen.

De deformatie, vloeistof- en ionenstroom, en de elektrochemische potewbiaal
den genomen als graden van vrijheid. Dit resulteert in een eerste otdmeare
algebrasche vergelijking met een indefinieteafficientenmatrix.

De hybridisatietechniek wordt vervolgens gebruikt om de lijst vrijheiddgn te
verkleinen en de numerieke berekeningen te versnellen.

De gemengdhybride eindige elementenmethode wordt voor kleine vervaming
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gevalideerd met hulp van analytische oplossingen voor eendimensionzdetse
consolidatie en zwelling. Tweedimensionale resultaten worden getoondeeoor
monster van zwellende cilindrische hydrogel en het openbarsten insistusrvelsc-
hijf.
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