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In an analysis of the reliability of heat exchangers, a number of causes of 
failure and a number of potential failure patterns were identified. To allow a 
simplification of the analysis, five independent groups of failure causes were 
defined and formed the basis of a competing risks model. Further, lack of data 
and poor quality data required the experience of 'experts' to be used in a 
quantitative way through Bayesian methods. Lastly, to simplify the elicitation 
of the prior densities, a shape, scale and location parameter model for the 
failure time distributions was adopted. 

INTRODUCTION 

As part of a general review of reliability in a chemical 
process plant, a study of the reliability of heat 
exchangers was undertaken.1 The heat exchangers fall 
into two groups: critical and noncritical. The critical 
exchangers operate at high temperatures and press- 
ures, and any fault requires an immediate shutdown of 
the plant; the noncritical exchangers operate under 
less extreme conditions and can tolerate some faults (a 
few leaking pipes, for example) without requiring a 
stop in production. Safety regulations also require 
regular testing of the plant, and a good record of 
uninterrupted and hazard free operation allows the 
required intervals between assessments to be ex- 
tended, in other words, a saving on shutdown and 
testing costs. 

The study of the heat exchangers began with an 
examination of past failure and maintenance data. It 
became clear at this stage of the study that a number 
of factors made the recorded data useless without the 
mediation of a complex model, or without the 
incorporation of the experience and knowledge of the 
users. The problems with the data were manifold: 
recorded events were not always well defined, there 
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were very few observations associated with any 
particular failure cause or mode, and there had been a 
continuous change in the design and the process 
conditions of the exchangers. However, there was 
among the maintenance engineers, design engineers 
and plant operators, a significant amount of 
knowledge and experience about the performance of 
the equipment under different conditions, the effects 
of design changes, and the performance of similar 
equipment in other plants. 

The reliability problem is to specify a conditional 
reliability for each heat exchanger given its past 
failure history, its maintenance history and any 
changes in conditions or design. The function, ~ ( t  I to) 
defines the reliability for a period t into the future, 
given information today, to. There are a number of 
ways of incorporating explanatory variables into a 
model to reflect the effects of such things as 
temperature, pressure, choice of material and 
maintenance policy. In reliability analysis, the 
proportional hazards model 2,3 or the accelerated 
failure time model 2'4 are often used to show explicitly 
the influence of explanatory variables on the hazard 
rate or reliability. However, the data available in the 
current study could not support the estimation of 
parameters in these two particular models. A third 
approach, commoner in epidemiology, is through the 
use of competing risks models, s some proportional 
hazards models are also competing risks models, and 
sometimes stratification is used in proportional 
hazards models to give a model which lies between the 
two. Competing risks models are able to work without 
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requiring independence between the causes or types 
of failure, but are then hard to interpret and difficult 
to estimate. In this study, a competing risks 
framework with independent failure modes was 
chosen for the underlying failure model. 

In the second stage, it was necessary to incorporate 
the information available within the plant into the 
model. This was done by using a straightforward 
Bayesian method after eliciting prior distributions of 
the parameters of interest from the 'experts'. A 
second function of the Bayesian approach is to lay the 
basis for the evaluation of the performance of the 
experts as judges of failure behaviour and to quantify 
their performance. Through establishing 'scores', 
which measure the effectiveness of an expert, a 
feedback element can be incorporated to help the 
'experts' to improve their own performance over time. 
In the long run the interaction between the experts 
and the data is the most important feature of this 
approach. A good and systematic method of data 
collection and analysis opens the door to better 
decision making. 

COMPETING RISK MODELS 

In a competing risks model with independent failures 
there are n failure types defined, and each failure type 
is described by the distribution, reliability function, 
density or hazard rate denoted by F~, Ri, f~ or hi, 
respectively, where 

F/(t) = ~[Ti <-- t] 

Ri(t) = 1 - F~(t) 

dF~ 
fi(t) dt 

~(t) 
hi(t) = 

Ri(t) 

for i = 1 . . . . .  n, and Ti is the time of failure due to 
the i-th cause. The model assumes that the times of 
failure, as random variables, are Ti and that the 
observed time of failure is then one of the T~. The 
time of failure is thus the minimum of the failure 
times T r = min(T1, T2, T3 . . . .  , T~). Because the 
failures are assumed to be independent it follows that 

~[Tf > t] = ~[Ti > tVi] = I-I Ri(t) 
i = l  

so that 

~( t )  = ~ RiO) (1) 
i = l  

and the hazard rate for the process is simply the sum 
of the individual hazard rates 

h(t) = ~ hi(t) (2) 
i = l  

Conversely, the marginal distributions are the F~. 
When a satisfactory grouping into independent failure 
modes is possible, the competing risks model permits 
the analysis of each group separately so long as the 
parameters of the failure distributions of each group 
are functionally independent. Moreover, the Bayesian 
analysis for each group may also be performed 
separately. After the failure distributions for each 
group have been established they may be combined 
according to eqn (1) or (2) to give an overall reliability 
function or hazard rate. Expert judgment also enters 
into this part of the model through the experts' 
definition of the groups and the assumption of 
independence. 

THE BAYESIAN BACKGROUND 

In this section, only a single failure time distribution is 
mentioned; however, in view of the competing risks 
assumptions this causes no problem, for each failure 
group may be treated separately and the results 
recombined at the end. This approach also requires 
the experts to give independent assessments of the 
priors for each failure group. 

A standard Bayesian approach was used with the 
data entering through a likelihood and the judgment 
entering through the prior density, the combination of 
the two yielding the posterior density. 6 In this paper, 
attention is focused on predictive distributions since 
they are functions of the data alone and, moreover, 
allow probability statements to be about system 
performance. For the user of this approach, estimates 
for parameters themselves are of less interest. The 
method was extended in a natural way to deal with 
several priors obtained from a number of experts and 
to provide a weight or score for each expert that 
reflected the quality of that expert in describing failure 
behaviour. 7 Thus an expert whose assessment was 
close to the observed failure behaviour should receive 
a higher score than one whose assessment is far from 
the actual events. In short, the closer the mode of the 
prior and the likelihood, the higher the score. 

One parameter model 

To simplify both the elicitation process s and 
calculations, a discrete prior was chosen for the 
parameter of interest. Further, in the interests of 
elicitation a shape, scale and location parameter 
family of distributions was used for the failure model. 
Such a family is defined by a distribution, G(t; fl), 
with a single shape parameter, fl, and mean/~(fl). A 
derived distribution, G1 is obtained by affine 
transformations of the time variable, namely, 
u = {t - r/O}, giving Gl(t) = G(u; fl). More impor- 
tantly, in this context, r represents a 'guarantee 
period' in which no failure can take place, and the 
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mean of the derived distribution, # ' ,  is given by 

~'  = o~( f l )  + 3, 

so that 

0 = (~' - z)lt*(fl) 

Questions about the shape parameter and location 
parameter can be put as questions about mean, /~', 
and the equation inverted to give a prior for O. 

In this particular problem the shape parameter fl 
has been taken as a fixed value and interest centres on 
0 and 3. The influence of the shape parameter will be 
discussed later. The prior density for 0 is used to 
define the guarantee period • as well as the posterior 
density. There are n experts each of whom specifies 
the prior for 0 by choosing a discrete distribution as 
follows. Each expert specifies in an interview a prior 
distribution for the mean value of the lifetime of the 
component. The expert is offered m intervals (not less 
than 3 and not more than 10) and asked to specify the 
probability that the mean of the life distribution lies in 
a particular interval. The intervals are [0, ax], 
[al, a2] . . . .  , [am-l, am] where, in principle, am is 
infinite, but is here simply taken large enough to 
encompass all reasonable mean values. Expert j 
specifies a probability mass function Pik where PSk is 
the probability that the mean, /z', of the distribution 
lies in an interval [ak_l, ak]. The location parameter is 
defined as 

t = min{max{ak I Pik = 0}} 
j k 

and the scale parameter lies in the interval 

[ a k - 1  ~ "[ a__k - -  ~ ]  

~,(fl) , ~,(fl) J 

with probability Pjk. In other words, the location 
parameter is taken as the lowest plausible time in the 
opinion of the experts at which a failure can occur. 

Let the prior for expert i be P,-k, and the likelihood 
given a parameter value in the k-th interval be 
lk = likelihood (data ] Ok), set si = EkPiklk, where s,. is 
referred to as the score for expert i, then the Bayes 
formula for the posterior of expert i is 

p *  = P iklk 

si 

This one parameter model is particularly easy to 
formalise as follows: 

Intervals for prior 

For calculating 
means 

[0,  a l ]  , [ax,  a2] . . . . .  
[am-l, am] 

---- ( a l ,  a2 . . . .  , t im) T 

where as = ~saj-x + (1 + ~s)as 
for some ~s • [0, 1] 
a n d j  = 1 • • -m 

P r i o r  f o r  expert i Pi = (Pil,  Pi2 . . . . .  Pim) 

L i k e l i h o o d  l = (li, 12, • • • , lm)  T 

Overall prior ~ = (P0)nm 

Score vector s = (Sl, s2 . . . . .  sn) r 

then s = ~ l  

Setting S = diag(si), L -- diag(lj) 

u~ = (1, 1 . . . . .  1) r, 
a vector of n l 's  

and Um= (1, 1 , . . . ,  1) r, 
a vector of m l 's.  

The vectors u~ and Um are useful for computing 
sums, with these definitions we have 

l = Lure 
and 

S = SUn 

The posterior densities can be summarised as an 
unnormalised version, ~x, and a normalised version, 
~o, where 

~b x = ~L 

~0 = S - l ~ b  1 =S-I~L 

The estimates of the posterior mean are then simply 

i= ~0a 

We evaluate the underlying failure density, f,  at an 
arbitrary value of t and define 

fk = f ( t  l Ok) 

f =  (fx, f2 . . . . .  fro) r 

SO that the predictive density for each expert 
evaluated at t is given in the vector: 

/= ol 
In general, if we define a list of q arbitrary times 

(tl, t2 . . . . .  tq) at which the predictive density or 
reliability is required, and a row vector 

fk = ( f ( t l  ] Ok), f ( t2  ] Ok) . . . . .  f ( tq  ] Ok) ) 

f~'(fki)mq 
then the predictive densities 7 are given by 

i= >of 
In the same way, if ! represents the reliability matrix 
with the same evaluation points as t 

= (Rki) = (R(t, I Ok))mq 

then the predictive reliability is 

~ =  @08 

A single weighted posterior density 
The most natural way to construct a single posterior 
density from ~0 is to construct a weighted sum using a 
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weight vector w = ( w l ,  WE . . . . .  Wn) to yield a 
posterior 

P=W~o 

Because of the paucity of data, the lack of suitable 
comparisons, and the different backgrounds of the 
experts, the scores of the experts were used rather 
than calibration by the method of 'seed variables'. 7 
The weights wi should reflect the performance of the 
experts and the easiest way to do this is to choose 
wiocsi and to calculate an appropriate norming 
constant so that the sum of the weights is 1, in our 
notation wun = 1. Now 

S~o = (Su,)~o = u~S~o = u~S~o 
= urS (S - '~L)  = u r ~ L  = urn1 

showing that this version of the posterior is simply the 
sum of the unnormalised posteriors. To find the 
appropriate norming constant, calculate the sum 

sT~oUm = uT( ~LUm) = uTs 

Thus, the norming factor is the sum of the scores 
Isl = r,7=lSi. To conclude, the weighting vector is 
simply w = sr/Isl. 

In summary: 

Weight vector 
Posterior density 
Posterior mean 
Predictive density 
Predictive reliability 

w =sUIsl 
P = w ~ 0  

= w~ 
p--w! 
~ = w ~  

Within the Bayesian scheme the elegance of the 
approach breaks down a little when we consider the 
hazard rate. It is easiest to show the problem in a 
general case. Consider a model f ( t  I O) with likelihood 
l(data I 0) and prior g(O) for 0. The posterior for 0 
given by 

/(data I O)g(O) g(0 [ data) = 
f /(data I O)g(O) dO 

a predictive density 

f ( t  I da ta )  -- f f ( t  I O)g(O I data) dO 

and predictive reliability 

/~(t [ data) = fR(tl O)g(O I data) dO. 

The reliability and the density stand in the correct 
d . 

relationship to each other, that is, f = - ~ [ R ] ,  

because we can differentiate under the integral sign 
with respect to t. The model hazard rate is 

h ( t [ O ) = - ~ l n { R ( t [ O ) } ,  the hazard rate for the 
t l I  

predictive distribution is 

d 
/~(t I data ) = - ~ l n ( / ~ ( t  ] data)}, 

and clearly 

data) #= f h ( t  I O)g(O I data) ~(t I dO 

because 

d l n { f R ( t l O ) g ( O l d a t a ) d O }  

d{ f ln[R( t[O)]g(Oldata)dO}.  

d 
In short, the operator ~ which transforms a reliability 

function into a density is linear and commutes with 
integration in the present model, and the operator 
d 
--In which transforms a reliability function into a 
dt 
hazard rate is nonlinear and does not commute with 
integration. 

A choice has to be made for the hazard rate. 
However, since Bayesian formalism works completely 
naturally for the densities and the distributions, the 
most logical thing to do is to define the hazard rate 
from the current version of the distribution. In our 
formulation, the model has a hazard rate h( t lO  ) = 
f(t, l 0) 

Each expert (labelled i) has a predictive 
Rft[ 0)" 
hazard rate: 

~ki A i  

and the overall predictive hazard rate is 

While this may be a shortcoming in terms of an 
elegant formalism it is clear that the only sensible 
thing to do is to work with the densities and reliability 
functions and then to calculate the appropriate hazard 
rates. 

Lastly, it is useful in assessing the future to have an 
estimate of the remaining life of the component. In 
this case, we need to calculate the life expectancy at 
time t (also called the residual mean life) defined as 

#(t) = ~[T [ T > tI - t = - ~  R(u) du 

With the predictive reliability available we have an 
estimate of the life expectancy as 

O(t) = (Ri)-' ~, RiAti for t s <_ t <-- t]+ 1 
t~>-t/ 
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Updating the model 
As new data become available the likelihood must be 
updated, and continuing with the notation above, 
write the likelihoods in a diagonal matrix, then the 
likelihood updated from time tr to a + 1 is 

Lo~+l = L'Lo~ 

the likelihood matrix for data accumulated up to time 
o~ multiplied by the likelihood matrix, L' ,  of the new 
observations. While the data are accumulated the 
score vector can be updated as 

So~+l = ~ L a + l U m  

and the weight vector as 

T T w~+l=s~+l/Is~+d, with Is~+d =u.s~+~ 

The score vector provides feedback to the experts who 
must also periodically update their prior in the light of 
new data and in the light of known changes in design, 
maintenance or operating conditions. In this case the 
prior is updated from ~ to ~ '  and the rest of the 
changes follow through naturally in imitation of the 
arguments above. The hope is that over a long period 
of time the experts will improve their judgment of 
priors by using the weights as a measure of 
performance, and so in the ideal steady state situation 
the weights should be equal, that is w= = u,/n. 

Two parameter model 

In this situation much of the neat formalism of the one 
parameter model is lost. However, it is clear that the 
construction of the predictive density and the 
reliability function weighted by the scores of the 
experts should follow the route given above. Suppose 
the model density is f ( t  [ fl, O) and that we again work 
with discrete priors. Write the prior for expert e as 

p~. = probability[fl • Ii, t9 • J/] 

where/ /and Jj denote the intervals for the parameters 
used in the elicitation process. Let li/be the likelihood 
evaluated for the i-th and j-th intervals of fl and O, 
then the posterior for expert e is 

_ 10p  
q - -  

Se 
where se = ~i,/lijP~ is the score for expert e. In line 
with the one parameter model write: 

Prior ~e = (PD 
Likelihood L = (lq) 
Scores s = (Se) 
Unnormalised posterior ~ = ~ ® L where ® 

denotes a pointwise 
multiplication 
Zij =Xi] ° yq 

Normalised posterior ~0 = ~ 
Se 

In line with the above the appropriate posterior to use 
is the sum of the unnormalised posteriors scaled by 
the total score, Isl = Eese, that is, 

1 

The predictive density at time t is a double sum: 

7(t) = 2 f 'q°f(t l fi ,  0/) 
i,j 

where ~ =  (Pi/) and /~i and 0j are representative 
values/~i • / i  and 0i • J/. The other results follow easily 
by analogy with the one p~arameter model. 

CASE STUDY 

Here we report on the application of the above 
approaches to a reliability analysis of the critical heat 
exchangers. The study was carried out in three stages: 
the definition of risk groups, the elicitation of priors, 
and the consolidation into an overall reliability 
function. 

Risk groups 

Five risk groups were defined. The division into risk 
groups is, of course, arbitrary, but was based on 
extensive interviews with engineering, operational and 
maintenance management at the plant. The aim was 
to produce a division into groups, which can plausibly 
be regarded as statistically independent. The kind of 
criteria used to define the groups were: 

(a) Is the cause internal to the plant or external to 
the plant? 

(b) Is the cause controllable or not controllable? 
(c) The cause is a function of intensity of use. 

These gave rise to the five defined groups: 

1. Design and manufacturing faults. For example, 
problems concerned with materials, and errors in 
manufacture. They are associated with early 
failure. 

2. Startup faults. As the name implies, these faults 
occur immediately on or shortly after startup. 
Many human errors, such as a spanner left in the 
exchanger after maintenance, fall in this 
category. 

3. Wear and tear other than in pipes. Failures of 
baffles and supports, etc. 

4. Wear and tear in the pipes. Corrosion, leaking 
seals, erosion in bends. Careful consideration 
has to be given to the assignment of events as 
consequences of group 3 or group 4 causes. 

5. Incidental faults. Consequences of events outside 
the subject of interest. For example, blockage by 
contamination coming from another part of the 
plant. 
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Groups 1, 2 and 5 refer to a pipe bundle within a heat 
exchanger, or the heat exchanger as a whole; groups 3 
and 4 refer to individual pipes. 

Elicitation 

The elicitation process has been outlined above with 
respect to the one parameter  model. Failure groups 3 
and 4 were assumed to be described by three 
parameter  Weibull distributions with shape parameter  
2. A prior for the mean life within failure groups 3 
and 4 was obtained in interviews with the experts, and 
there was no confusion in the minds of the 
interviewees about what was requested (they knew the 
difference between mean, median and mode).  

For failure groups 1 and 2, a failure chance was 
given because this is so near to being a discrete part of 
the overall life distribution; this approach implies a 
memoryless discrete distribution with the chance of 
failure depending on the number of startup attempts 
in a given period. The discrete memoryless distribu- 
tion is the geometric distribution and it is used to 
calculate the chance of a successful startup given the 
number of attempts in a period. After  the transient 
period where the chance of a failure during a startup 
plays a role, the reliability function for groups 1 and 2 
is taken as constant, in other  words for the rest of the 
time it is only necessary to consider groups 3 to 5. 9 
The effect of the discrete distributions would be seen 
as discontinuities in the overall reliability function. 

For group 5, the failure time was assumed to be 
exponential because it seemed reasonable to regard it 
as a sum of external independent causes. In this case 
too an estimate of the mean time to failure was used, 
in keeping with the approach for groups 3 and 4. 

The choice of a shape parameter  fl = 2 for the 
Weibull distributions was largely determined for 
pragmatic reasons. It was clear from what data were 
available that some aging was taking place in groups 3 
and 4; Pitner 1° showed that a Weibull fitted well in an 
analysis of heat exchangers used in nuclear power 
stations; the value of 2 is conservative over the period 
up to the mean life. Lastly, since there was in some 
instances only one failure observed in these groups, 
we must take either an arbitrary value for some 
parameters,  or use a prior distribution. The use of a 
prior for more than one parameter  leads us into as yet 
unresolved difficulties of elicitation. One way to 
resolve the difficulties of elicitation is to attempt, 
through a mind experiment,  to obtain a description of 
a whole dis t ibut ion function, but then the Bayesian 
approach must also change somewhat,  with the 
experts' distribution fimctions playing the r i l e  of the 
model distribution function. 11 

Example 

In this study, there were 11 experts, called A to K. In 
a series of interviews the experts gave their estimates 

of the prior distribution of the mean life of a 
particular heat exchanger in the presence of only one 
of the defined causes of failure. In this early stage the 
priors for 11 critical heat exchangers have been 
obtained, and there are plans to extend the study to 
less critical heat exchangers and other  components.  
To illustrate the application of the approach, an 
analysis for one of the critical heat exchangers is 
carried through. The example is very simplified, but 
serves to show the outputs analyses and outputs 
available from the model. The unit of time throughout  
is 1 month. 

For failure groups 1 and 2, the mean of the experts '  
opinion of the failure chance per startup was taken, 
and for both groups this chance was assessed as 0.058. 
This corresponds to using a deterministic prior, as for 
group 5. 

The model reliability function for groups 3 and 4 
was assumed to be a Weibull: 

with density 

f(tl~, 0)= t--~) exp / } and fl=2 

The priors for groups 3 and 4 are given in Tables 1 
and 2. The intervals for the priors in both cases are 
defined by al = 24, a2 = 48, a 3 ----- 72, a 4 ---- 96, as = 120 
and a 6 = 180. The last value is rather arbitrary and is 
used because, in practice, the last interval cannot 
extend to infinity. Suppose that the available data 
consist of an observation period of 90 months, which 
was terminated by a failure associated with group 4. 
Thus, the likelihood for group 4 is the density function 
evaluated at the single time t = 90, and for group 3 it 
is the reliability function evaluated at time t = 90. The 
location parameter,  ~, for group 3 is easily seen from 
Table 1 to be 24, and in group 4 it is zero. 

Lastly, for group 5, the experts were asked to give a 
single estimate of the mean of an exponential 

Table 1. Priors for Group 3 Causes 

Expert Interval 

1 2 3 4 5 6 

A 0.0 0-0 0-0 0.3 0.4 0-3 
B 0.0 0.0 0.0 0.0 0.2 0-8 
C 0.0 0.0 0.0 0.0 0.0 1.0 
D 0.0 0.0 0.0 0.0 0.2 0.8 
E 0.0 0.4 0.4 0-2 0.0 0.0 
F 0.0 0-0 0.0 0.0 0.0 1.0 
G 0-0 0.05 0.1 0.15 0.2 0-5 
H 0-0 0-0 0-25 0-5 0-25 0.0 
I 0.0 0.0 0.0 0.0 0.2 0-8 
J 0.0 0-0 0-0 0-2 0-4 0.4 
K 0-0 0.0 0.0 0.0 0.5 0.5 
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Table 2. Priors for Group 4 Causes 

Expert Interval 

1 2 3 4 5 6 

A 0-0 0.0 0-0 0.3 0-4 0-3 
B 0-0 0-0 0.0 0.5 0-5 0.0 
C 0-0 0.5 0.5 0-0 0.0 0.0 
D 0.0 0.0 0.0 0-0 0.2 0.8 
E 0.0 0-0 0-0 0.3 0.4 0.3 
F 0-0 0.5 0.5 0-0 0.0 0.0 
G 0.05 0.1 0.15 0-2 0.2 0.3 
H 0-0 0.0 0.0 0.0 0-5 0.5 
I 0.0 0.0 0.0 0.0 0-25 0.75 
J 0.0 0.0 0.0 0.2 0.4 0.4 
K 0.0 0-0 0.1 0.2 0.3 0.4 

distribution, that is, a deterministic prior was used for 
the scale parameter of a Weibull distribution with 
shape parameter 1. This task was less demanding for 
the experts, but preserved the general approach and 
allows the priors to be updated later. Although the 
model is exponential in form, the predictive density is 
a mixture of exponentials with a nonconstant hazard 
rate. The chosen mean times between failures were 60, 
96, 120, 60, 240, 60, 600, 120, 240, 60 and 120 months 
respectively. The lack of data meant that a likelihood 
function, uniform over the parameter values, was 
used. 

In Fig. 1, the predictive reliability functions, density 
functions and hazard rates are shown. In Table 3 can 
be seen the failure groups 3 and 4; the lack of data 
shows in the even weighting given to the experts, the 
weights being generally close to 1/11. However, the 
more pessimistic estimates given by E and H show up 
in their lower weights. In Fig. 2, the overall predictive 
functions for groups 3-5 are shown. Figures 1 and 2 
ignore the discrete part of the distribution, but this is 
easily applied as a correction to figures obtained from 
the graphs or by calculation. For example, the 

Table 3. Weights for Experts 

Expert Group 3 Group 4 
weights weights 

A 0.09 0-10 
B 0.11 0-12 
C 0.11 0.10 
D 0.11 0-07 
E 0-03 0"10 
F 0"11 0.10 
G 0.09 0.09 
H 0.06 0.08 
I 0.11 0.07 
J 0.09 0.09 
K 0.10 0.09 

reliability after 72 months follows from the reliability 
of 30% evaluated for groups 3-5 and the reliability for 
the one initial startup and three (on average) other 
startups. The reliability after 72 months is 

R(72) = 0.30(1 - pl)(1 - -  p 2 )  3 

= 0.30 x 0.942 x 0.9423 = 0.16 

a reliability of 16%. The hazard rate is affected 
additively by the terms I n ( 1 - P l )  and 31n(1-P2) and 
the mean residual life is unaffected as a predictor so 
long as the startups may be assumed to have 
happened in the past so that they cancel out in the 
conditioning required to assess the residual mean life. 

It is also interesting to calculate the conditional 
reliability, given that the plant has been working 
without problem for a given time. In this example, the 
conditional reliability, given that the plant has run for 
36 months without problem, is required. Because we 
assume that initial startups have all occurred in the 
past, the reliability function for group 1 remains 
constant at its value at time t = 36 and cancels out of 
the problem during the conditioning. 

To approximate the behaviour of group 2 with failure 
probability of 0.058 per demand, an exponential 
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Fig. 1. Plots for groups 3-5. Fig. 2. Overall measures of reliability. 
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analysed, and also one in which the experts will be 
asked to update their priors in the light of data and 
the weights assigned to their priors. Lastly, the 
presentation of information is through an interactive 
system on a personal computer and so allows failure 
patterns to be seen more easily through graphs like 
those used above than from tables of probabilities. 
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