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Qualitative analysis of a one-dimensional laminar flame

by

J.H.M. ten Thije Boonkkamp

Abstract. In this report we discuss the combustion equations governing a one-dimensional, stationary
and laminar flame. An important parameter for these equations is the Lewis number Le, which is the
ratio of the coefficients for thermal conduction and mass diffusion. In the case Le = 1, referred to
as the equidiffusive case, the combustion equations reduce to a single equation for the temperature.
A qualitative analysis of the solution of the equations ( mass flux, temperature, mass fractions and
specific enthalpy) is presented both for the equidiffusive and the non-equidiffusive case.

Key words. Laminar flame, isobaric approximation, combustion equations, Lewis number, specific
enthalpy, Shvab-Zeldovich variables.
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1 Introduction

The flow ofa reacting gas mixture plays a central role in combustion theory. Laminar flames constitute a
very important class of reacting flow problems, because they are often used in the numerical simulation
of burners. In order to predict the behaviour of a burner, in terms of e.g. fuel consumption and NO x­

formation, one must be able to compute the flames in such a burner. The numerical computation
of laminar flames in complex two- or three-dimensional burners is a difficult task and requires both
advanced numerical techniques and powerful computers. In the last two decades, substantial progress
in numerical flame simulation has been achieved and a lot of papers about this have been written; see
e.g. [4, 10,5].

However, numerical computation of a laminar flame usually doesn't give much insight in its
structure. Therefore, we consider as a model problem a one-dimensional, laminar flame, which is
accessible to analysis. The purpose of this paper is to analyze this flame using simple mathematical
techniques, and in such a way gain insight in the structure of one-dimensional flames. Moreover,
laminar flames in simple burner geometries can sometimes be considered as (nearly) one-dimensional,
so even simulations of one-dimensional flames have been carried out [6].

The governing equations for laminar flames are derived from the conservation laws of reacting flow
systems, and reduce to a set of ordinary differential equations for a one-dimensional and stationary
flame. In laminar flame theory, the isobaric approximation is employed, Le. the pressure is assumed
to be almost constant, which is justified for low Mach number flow. As a consequence of the
isobaric approximation, these equations can be split into the so-called combustion equations and the
hydrodynamical equations. In a solution procedure, the mass flux, the mass fractions of the chemical
species and the temperature are computed first from the combustion equations, and subsequently the
hydrodynamical equations are solved for the density, velocity and pressure. In order to further simplify
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(2.1)

the model, we assume that only one irreversible chemical reaction takes place in the flame. This is
not true, however, the global behaviour of a flame can often be modelled quite adequately by a single
reaction.

An important parameter in the analysis is the Lewis number Le, which is the ratio of the thermal
diffusion coefficient and the mass diffusion coefficient. In the equidiffusive case, Le. Le = 1, all mass
fractions can be expressed in the temperature and the set of equations reduces to one single equation
for the temperature. For the case Le =1= 1 on the other hand, N equations have to be solved, with N
the number of species in the flame.

The contents of the paper is the following. In the next section, the governing equations of a
one-dimensional, stationary, laminar flame are presented. The underlying assumptions are stated
explicitly. Boundary conditions for a stoichiometric flame are given in Section 3. In Section 4, the
non-dimensional combustion equations are derived. A qualitative analysis of these equations for the
case Le = 1 is given in Section 5. Finally, in Section 6 this analysis is generalized for the case Le =1= 1.

2 Governing equations

Consider a one-dimensional, stationary and laminar flame in a combustible mixture consisting of N
different chemical species, denoted by A1 i (i = 1, ... , N). In the theory of laminar flames, it is
customary to make the following assumptions [9]:

1. Fick's law of mass diffusion holds.

2. The gas mixture is inviscid.

3. External forces are negligible.

4. Fourier's law of heat conduction holds.

5. The heat flux as a consequence of concentration gradients (Dufour effect) and, conversely, mass
diffusion as a consequence of a temperature gradient (Soret effect) are negligible.

6. Pressure-gradient diffusion is negligible.

7. Radiation is negligible.

8. The gas mixture is an ideal gas.

Under these assumptions, the equations for the above mentioned flame read [9, 8]:

d
-(P1l) = 0,
dx

(2.2)

(2.3)

(2.4)

d d d}~
-(pYi1l) = -(pD-) +Wi, i = 1, ... , N,
dx dx dx

d 2 d]J
-(pu ) = --,
dx dx

d d dT d N dY dp
-(phu) = -(A-) + -(pDL:h·_J

) +1l-,
dx dx d:z: d:z: . I J d.?; da;

.1=

N

(2.5) ]J = pRT/W, W-
1 = L:Yj/Wi'

j=1
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The dependent variables in these equations are the mass density p of the mixture, the mass-weighted
average velocity u of the mixture, the mass fractions 1~ of species Mi, the hydrostatic pressure p, the
specific enthalpy II, of the mixture and the (absolute) temperature T. Physical/chemical quantities in
(2.1)-(2.5) are successively, the binary diffusion coefficient D of all pairs of species, the reaction rates
Wi of species Mi, the thermal conductivity A, the specific enthalpies hi of species Mi, the universal
gas constant R and the molecular weights Wi of species Mi. W in (2.5) is the average molecular
weight of the mixture. Equations (2.1) and (2.2) describe, respectively, conservation of mass for the
mixture as a whole and for each species individually. Momentum and energy conservation of the
mixture are expressed by the equations (2.3) and (2.4), respectively. Finally, (2.5) is the equation of
state of the mixture.

Obviously, the mass fractions li and the reaction rates Wi satisfy

N

(2.6) LYj = 1,
j=l

N

(2.7) L Wj = O.
j=1

This latter equation means that overall mass is neither created nor destroyed by chemical reactions.
Because of (2.6) and (2.7) only N equations from (2.1) and (2.2) are linearly independent. Thus, the
total system (2.1)-(2.5) consists of N + 3 linearly independent equations. However, there are N + 4
independent variables, namely the mass density p, the velocity u, N - 1 mass fractions li, the pressure
p, the specific enthalpy II, and the temperature T, and therefore one extra equation is needed. This
equation is the thermodynamic identity

N

(2.8) II, = L1jhj.
j=1

The specific enthalpies hi in (2.8) are defined by the caloric equation of state

(2.9) hi = h? + rT
Cp,i( T )dT,iTo

where h? is the specific heat of formation of species M i at some reference temperature To and Cp,i

is the specific heat at constant pressure of species j\;f i. Equation (2.8) defines II, as a function of
1~ (i = 1" . " N) and T through equation (2.9).

In order to specify the reaction rates Wi, we make the assumption:

9. Only one irreversible chemical reaction occurs in the mixture.

If we write this reaction as

N N
(2.10) L Ilr,jMj ----+ L IIp,j)\;fj,

.i=l ,i=1

with vr,i and IIp,i the stoichiometric coefficients of species M i, appearing as a reactant and as a product
respectively, then, according to the law of mass action, Wi is given by

(2.11) tv' = l'V(11 . -II .)k rrN (P1.~i)vr'J, 'p,' r,' H1.
,i=1 .J
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From (2.7) and (2.11) it follows immediately that

N N

(2.12) LVr,jWj = LVp,.iWi'
j=! j=!

The specific rate constant k in (2.11) is given by the Arrhenius' expression

(2.13) k = Ae-E / RT , A = Bye",

with A the frequency factor and E the activation energy for the reaction in (2.10).
Equation (2.1) implies that the mass flux m = pll is a constant. Taking this into account, the

conservation equations (2.1)-(2.4) reduce to

(2.14) m = pu,

(2.15) mY/ = (pDY/)' + 'Wi, i = 1, ... ,N -1,

(2.16)
, ,

11/,1/. = -p ,

N

(2.17) mh' = (_\T')' + (pD L h)~;)' + up'.
j=!

In these equations we used the prime symbol ' to denote differentiation, and we shall adhere to this
notation in the following.

The energy equation (2.17) can be simplified by making the assumption:

10. All chemical species Mi have constant and equal specific heats at constant pressure.

Then, also the specific heat cp of the mixture, defined by

N

(2.18) cp = LYjCp,j,

j=!

is equal to this constant. The specific enthalpies h and hi, defined in (2.8) and (2.9), are in this case
given by

N

(2.19) h = L }jhJ +cp(T - 10),
j=1

(2.20) hi = h? +cp(T - To).

Substituting (2.19) and (2.20) into (2.17) and taking a linear combination with the equations (2.15) to
eliminate the species diffusion term, gives the equation

N

(2.21) mCpT' = (AT')' - L 'lDjhJ + lip'.
j=!

An important quantity is the specific heat of combustion Q, which is defined as [2]

(2.22) (t.V'JWj ) Q = t.(V'J -Vp,.i)Wjh1,

thus Q is the heat per unit mass of reactants released by the reaction in (2.10). In combustion theory,
the following usually holds:
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11. The reaction in (2.10) is exothermic, i.e. Q > O.

Substituting equation (2.11) for the reaction rates Wi into the reaction term - 2:f==1 wjhJ, and using
equation (2.22) for Q, it is easy to see that equation (2.21) can be rewritten as

(2.23) mCpT' = (AT')' + (t v
"
,jWj) Qw + up'.

J=I

The variable win (2.23) is defined as

(2.24) w = Wi = kIT (P}j) I/r.J ,

Wi(Vp,i - Vr,i) j=l tVj

i.e. w is the number of moles produced by the reaction in (2.10), per unit volume and per unit time, of
any species for which Vp,i - Vr,i = 1. In the following, w will be referred to as the reaction rate for the
reaction in (2.10).

The equations to be solved are (2.14), (2.15) (for N - 1 different species), (2.16), (2.17) (or
equivalently (2.23)) and (2.5). One of the difficulties associated with this set of equations is the
presence of the mass fractions 1~ in the equation of state (2.5). In order to circumvent this problem,
we assume:

12. W is constant, say HI = 111 .

The value of nT is a characteristic value of ltV corresponding to a constant composition of the mixture.
Assumption 12 only holds for the unimolecular reaction R ----,' P, and is otherwise reasonable if the
molecular weights Wi do not differ too much. This assumption is also quite good for combustion
processes in air.

The frozen speed of sound aj, i.e. the speed of sound at constant composition of the mixture, is
given by [9]

fJE
(2.25) a1 = Vp'

with I = cp/cv the specific heat ratio and Ma = u/aj is the corresponding Mach number. Now we
make the following assumption:

13. The flow is highly subsonic, i.e. I Ma I~ 1.

This assumption is the basis of a further simplification of the equations. From equation (2.16) we can
easily derive the equation

211.' p'
(2.26) IMa - + - = 0,

11. P

from which we conclude that fractional changes in the pressure are very small for I Ma I~ 1. Thus, we
can write p = Po +6p with Po a constant pressure and I 6p / Po I~ 1. In the isobaric approximation based
hereon, the pressure is dealt with as follows. In (2.5) p is simply replaced by Po, in (2.16) p' = (Op)'
is substituted and in (2.23) the pressure term up' is omitted altogether. This last approximation can be
made plausible as follows. Taking into account the relation R/W = cp - cv , with Cv the specific heat
at constant volume of the mixture, and using (2.5),(2.16) and (2.25), equation (2.23) can be simply
rewritten as
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The term mcp ( ')'2"1 Ma2T) , comes from the pressure term up' in (2.23) and can be neglected for highly

subsonic flow. Consequently, also the term up' in (2.23) can then be omitted. For a further discussion,
see e.g. [2, 3].

The final equations to be solved read:

(2.28) 1n = pu,

(2.29) mY/ = (pDY/)' + (1/p,i - vr,i)lViw, i = 1, ... , N - 1,

(2.30) 111.11.' = -(bp)',

(2.31) mCpT' = (.IT')' + (t.V"j Wj) Qw.

(2.32) Po = pRT/W,

with the reaction terms in (2.29) and (2.31) expressed in w. The density p can be eliminated from
(2.29) and (2.31) by virtue of (2.32) and hence these equations only contain the variables m,Yi and T
as unknowns. Equations (2.29) and (2.31) are often referred to as the combustion equations. Once we
have computed the combustion variables m,J~ and T from these equations, we successively compute
p from (2.32), 11. from (2.28) and Dj) (and p) from (2.30). These latter equations are often called the
hydrodynamical equations. In the remainder of this paper we only consider the combustion equations.

3 Boundary conditions

In this section we discuss boundary conditions for the combustion equations (2.29) and (2.31). The
reaction rate w in these equations can be written as a function of 1~ (i = 1, ... , N) and T:

W
= k. (PoH1) LIT N (~) II,.,] N

(3.1) IT, /I,. = '""'" /I,.,j,RT . W' ~
J=l J j=1

with the specific rate constant k~ defined in (2.] 3). For the specific heat of combustion Q we can write,
cf. (2.22),

N

(3.2) Q = - L rjh~,
j=l

with the quantities ri defined by

N

(3.3) 1'i = (IJp,i - II",;)W;/(L /I,·,.iWi)'
.i=l

It is obvious that

N

(3.4) I>j = 0,
j=1

according to (3.3) and (2.12).
Suppose, the combustion equations are defined on lR. We introduce the notation

foo = limx ......oo f(x) and f-co = Iim.v...... - co .f(:I;) for a generic variable f. For the sake of simplicity
we assume that reactants and products are distinct, thus:
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14. There are N r reactants Mi, i == 1"", NT> and N p == N - N r products Mi,
i==Nr +l,···,N.

Obviously, Vr,i t= 0 and Vp,i == 0 hold for the reactants in (2.10), and Vr,i == 0 and Vp,i t= 0 for the
products. The following relations for the ratios 1'i can be readily verified:

Nr

(3.5) L r j == -1,
j=1

N

(3.6) L rj == 1.
j=Nr+l

Furthermore, it is clear that ri < 0 for the reactants and ri > 0 for the products. To further simplify
the discussion, we assume that for x -+ -00 there are no products, i.e.

15. Y;,-co == Ofori == N r +1", ·,N.

The physical relevant solution of (2.29) and (2.31) is bounded for:r -+ ±oo and consequently all
derivatives should then vanish. Equations (2.29) and (2.31) imply that W == 0 should hold for
:1: -+ ±oo. However, W- co t= 0 but very small; typically W- co == O(e- IO ). This means that there is
no bounded solution to (2.29) and (2.31). In physical terms, this means that the gas mixture, which is
flowing in the positive x-direction, is forced to react all the way in from x == -00, so that by the time
a finite x is reached, the combustion would be complete. This problem, which is a pure mathematical
altefact, is called the cold-boundary difficulty [2,9]. Therefore, the reaction rate w is multiplied with
the Heaviside function H (T - Tign ), i.e. the reaction rate is set equal to 0 for T below some ignition
temperature Tign > T- co ; see also Section 5. On the other hand, from the condition Woo == 0 we
conclude that at least one of the reactants is depleted for .1: -+ 00. We even assume that all reactants
are depleted:

16. Yi,oo == 0 for i == 1"", Nr.

Thus, the flame defined by the chemical reaction in (2.10) is stoichiometric because of the assumptions
14-16.

The boundary conditions for the mass fractions li are completely determined by the stoichiometry
of the flame. The mass fractions obviously satisfy

Nr

(3.7) L }~i,-oo == 1,
j=l

N

(3.8) L Yj,oo == 1.
.i=Nr+l

Further, integration of the equations (2.29) and taking into account assumptions 15 and 16 gives,
respectively,

(3.9) mY;,-oo == llr,iWin, i == 1, ... , N,.

for the reactants and

(3.10) mY;,oo == /lp,iWin, i == iV,. + 1, ... , N

7



(4.1)

for the products. In (3.9) and (3.10) n = f~oo H (T - Tign )wdx, thus n is the total number of moles
produced by the reaction in (2.10), per unit area and per unit time, of any product for which Vp,i = 1.
The set of equations (3.7) and (3.9) constitute Nr + 1 linear independent equations for the unknowns
}'i,-oo (i = 1" .. , N r ) and n. The solution of this system is

(3.11) }~,-oo = -1'i, i = 1, ... ,Nro

N r

(3.12) n=m/(Lvr,jWj).
j=1

Likewise, the product mass fractions }~,oo and n can be computed from the system (3.8) and (3.10):

(3.13) }~,oo = ri, i = N r + 1, ... , N,

N

(3.14) n=m/( L IJp,.iWi)·
j=Nr+1

The expressions for n in (3.12) and (3.14) are equal by virtue of (2.12).
Finally, consider the boundary conditions for the temperature T. Integration of (2.31) over JR

gives

(3.15) mcv(l~ -1'-00) = (t, V,olV;) Qn.

Summation of the equations (3.9), using (3.7), and substitution of the result into (3.15) then gives

Q
(3.16) Too - T- oo = -.

cp

Since Q > 0, we see that Tcx) > T- cx.•

4 Non-dimensional equations

In order to make the combustion equations (2.29) and (2.31) and the thermodynamic identity (2.19)
dimensionless, we need representative values of the variables involved. Let j denote this representative
value of the variable j, then the associated dimensionless (scaled) variable 1* is defined by 1* = j / j.
However, the mass fractions }~ are not scaled since they are dimensionless already and instead of T*
we use the normalized dimensionless temperature 19 = (T - T_oo)/T.

An important parameter in the non-dimensional equations is the Lewis number Le, which is defined
by

Le = A/Cp ,
pD

i.e. Le is the ratio of the diffusion coefficients A/Cp in (2.31) and pD in (2.29), respectively. To
simplify the non-dimensionalization, we employ the final assumption:

17. Le and A are constant.
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Following [2], the non-dimensionalization is based on the following set of representative values:

_ _ A - Q _ cppoW - -
(4.2) 111,;Z; = -_-, T = Tx> - T- oo = -, p = QR ' E, II. = Q.

n7,Cp cp

In (4.2), 1'h is a characteristic mass flux and x is the diffusion length of equation (2.31) [9]. The choice
of l' is suggested by (3.16) and pis then computed from the ideal gas law (2.32). For E several choices
are possible and will be specified later.

The scaled combustion equations then read

3 * d'l? dZ'I? *( )
(4.) m -d = d-z +s 'I?,Y1,"',YNT ,

x* x*

(4.4) * dYi 1 dZYi *(.<1 r ,')
n7'-

d
=-L-dz+ris 1I,11,···,lNT •

x* e x*

In the following we will omit the asterisk * and differentiation will again be denoted by a prime (I).
The precise form of the chemical source term s(17, Yl, ... , YNT) depends on E. The obvious choice
E = R1' wou ld give

Nr

(4.5) s( 17, Y1,' • " YN
r

) = D 1(17) e-E /(,9+P) II It,j,
i=1

with

(4.6)

(4.9)

and with (3 = T-00/1' the non-dimensional temperature of the unburnt gas. Another choice is
E = RT00' which is often used in activation energy asymptotics [2, 9]. In this case, s( 'I?, Y1, ••• , YN

T
)

can be written as

Nr

(4.7) s('I? Y ... Y ) - D (17)e- E (I-'9)/(l9+P) II y"T,j
~ , I, , NT, -. 2 ) ,

J=I
with D Z(19) = D 1(19)e-E. Note that in the derivation of (4.7) a term e-E is separated from the
Arrhenius' factor. In the limit E -!- 00 it is then assumed that D2( 'I?) = Const ::j:. 0, so that
s( fJ, Y1, ••• , YNT) -!- 0 except in the region where 17 = 1 - O( I / E). The straightforward limit
E -!- 00 would give s(17, YI , ... , YNT) -!- 0 everywhere and the chemical reaction would be completely
eliminated from the formulation. For E -!- 00, only values of D 2( 'I?) for 'I? close to 1 are of importance,
since for values of 19 away from 1 the source term s( 17, Y1, ••• , YN,.) is virtual1y 0 due to the exponential
term. Therefore, D 2( fJ) is often replaced by D2( I) and this number is referred to as the Damkohler
number Da, although there are several Damkohler numbers [7]. An expression for the Damkohler
number Da. is

(4.8) Da = Dz(l) = + (I=IJr'Jl~i) k IT (~oo)"T,j,
m cp J=I J=I IV)

with k = BT::Oe-E. Da can be interpreted as the ratio of a diffusion time to a reaction time [2].
The non-dimensional version of the thermodynamic identity (2.19) becomes

1 N
II. = Q L l~ih~ + 17 - 190,

J=l

9



with 'l?o = (To - T_oo)/T the normalized scaled reference temperature. Next, we will derive an
alternative expression for h, in which it only depends on the reactant mass fractions Yi (i = 1" .. , N r)
and the normalized temperature 'l? To that purpose, the product mass fractions Yi (i = N r +1", ., N)
have to be expressed in terms of the reactant mass fractions.

Consider equation (4.4) for a reactant M i r (iT E {I, ... , Nr }) and for a product M i p (ip E
{Nr+1, ... , N}). In order to eliminate the chemical source terms, we take a suitable linear combination
of both equations, and get the differential equation

which is subject to the boundary conditions

The solution of the boundary value problem (4.10)-(4.11) is obviously

(4.12) 1" y, - 1" Y = 1" 1"1.," t p 1.)1 l'r t r 1.}) ,

and subsequently summation over all reactants gives

Nr

(4.13) Yip = 1'ip (1 - L}~i)' i p = N" + 1, .. ·,N.
j=1

Splitting the sum in (4.9) into a reactant part and a product part and substitution of (4.13) into this
equation gives

1 N
r

( N ) 1 N
(4.14) 11. = - L h~ - L 1'l h? }~i + -:- L 1'jh~ + 'l? - t90 .

Q j=1 I=N,.+1 Q j=Nr+1

Using (3.2) and (3.5) the above equation can be rewritten as

Analogously to the derivation of (4.12) one can proof that 1'i t Yi2 - l'i2}~t = 0 for any two reactants
Mil and Mi2' and therefore the second sum in (4.15) cancels. The final expression for 11. is then

N r 1 N

(4.16) 11. = L }'~i + Q L 1'.ih~ + t9 - 'l?o.
j=1 j=Nr+1

5 Qualitative analysis for the case Le = 1.

For Le = 1, the combustion equations reduce to

and these equations are subject to the boundary conditions

(5.3) t9_ 00 = 0, t900 = 1,
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(5.4) Yi,-co == -ri, Yi,co == 0, i == 1"", N ro

(5.5) Yi,-co == 0, Yi,co == 1'i, i == N,. + 1,···,N.

For the chemical source term s( {J, Y1,"', YNr ) we adopt the model (cf. (4.7))

N,.

(5.6) s( {J, Y1, ••• , YN
r

) == Da e-E (I-19)/(H,6) II yt,j·
j=1

The unknowns in the boundary value problem (5.1 )-(5.5) are the mass flux m, the normalized temper­
ature {J and the mass fractions Yi.

We can eliminate the source term from all equations but one. To that purpose, we introduce the
Shvab-Zeldovich variables Zi, which are defined by [9]

(5.7) Zi == ri{J - Yi, i == 1", ·,N.

It is easy to see that the Shvab-Zeldovich variables satisfy

(5.8) mZ: == Zi', i == 1"", N,

(5.9) Zi,-co == Zj,co == ri, i == 1, .. " N n

(5.10) Zi,-co == Zi,oo == 0, i == N,. + I"", N.

The solutions of (5.8)-(5.1 0) are evidently Zj == l"i for i == 1"", N,. and Zi == 0 for i == N,. +1, ... , N.
Consequently, Yi == -ri(1 - {J) for the reactants (i == 1,···,N,.) and Yi == ri{J for the products
(i == N,. + 1", .,N). Substituting)~ == -ri(1 - 19) (i == I", ·,Nr ) into (5.6), it is clear that the
equation for {J reads:

Nr

(5.11) 111.19' == 19" +8(19),8(19) == Da1'(1 - 19)"re-E (I-t9)/(t9+,6), l' == II(-rjyr,J.
j=1

Once m and {J are computed from the boundary value problem (5.11) and (5.3) the mass fractions Yi
can easily be obtained.

For x -+ -00 (cold boundary), 17' and 17" should vanish in order to ensure that {J-co == O.
However, this is impossible since 8(0) ¥ O. Therefore, the boundary value problem (5.11) and (5.3)
is improperly posed. A remedy to this cold-boundary difficulty is to introduce an ignition temperature
{Jign (0 < {Jign < 1), i.e. multiply the source term 8(17) in (5.11) with the Heaviside function
H ({J - {J ign); see also Section 3. Further, note that 17 is invariant under the translation x ~ x +c for
arbitrary c. Therefore, we impose the extra condition 17(0) == 19i9n . Thus, in the sequel of this section
we will consider the following boundary value problem for 17:

(5.12) m{J' == {J" + H( {J - 19i9n )8( 19),

The existence and uniqueness of the solution of (5.12)-(5.13) is proven in [1].
The chemical source term in (5.12) is a production term for heat, as is stated in:

Lemma 5.1 Let s(19) be defined in (5.11), then S(l9) > Ofon7 ¥ 1.
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Proof. The proof is trivial if V r is even. Therefore, suppose /),. is odd and assume there exists an
XQ such that s( t9( xQ)) < 0, and consequently 19(.'ro) > 1. Because '19(0) < 1,'1900 = 1 and '19 is at
least twice continuously differentiable for '19 > I, there exists an x 1 such that t9( x I) > I, '19'( x I) = 0
and t9"(xI) < 0 ('19 assumes a maximum at XI)' This is impossible because of (5.12). Now suppose
s( t9(xo)) = 0, or t9(xo) = I, for some xo. Similar to the previous case, the conditions t9'(xo) > 0 or
t9'(xo) < 0 lead to a contradiction, so that t9'(xo) = 0 should hold. From (5.12) it follows that also
t9"(xo) = O. Repeatedly differentiation of (5.12) then gives 19(n)(xo) = 0 for n 2: 1. This implies that
t9(x) == I, which is in contradiction with the boundary condition at :I; = O. 0

Some properties of m, '19 and 1~ are formulated in the following theorems and corollaries.

Theorem 5.2 Suppose the mass flux m satisfies (5.12), then m > O.

Proof. Since '19 is bounded for X -+ ±oo, '19'-00 and 19'00 should vanish. Integration of (5.12) over the
whole real axis gives

m = I: H(t9(x) - t9ign)s(t9(x))dx,

and from Lemma 5.1 it is evident that 111 > O.

Theorem 5.3 Suppose 19 satisfies the boundary value problem (5.12)-(5.13), then

(5.14) t9'(x) = 100
em(",-y)H(19(y) - 19 i9n )s(17(y))dy.

Proof. Equation (5.12) can be rewritten as

(t9'e- mx )' = _e-mx H(19 - t9 ign )S(19).

Integration of this equation over (x, 00) then gives (5.14) because 111. > O.

Corollary 5.4

o

o

(i) 19(x) = t9ignemX for x ~ O.

(ii) 19 is strictly increasing and 19i9n < 19(:/:) < 1 for:/: > O.

(iii) ~(x) = -riC 1 - 19i9ne'nx) (i = 1"", N r ) and Yi(:I:) = ri17igllemx (i = NT + 1" .. , N) for
x ~ o.

(iv) The reactant mass fractions are strictly decreasing and 0 < ~(x) < -ri(1 - t9ign) (i =
1, ... , N r ) for x > O. Likewise, the product mass fractions are strictly increasing and rit9ign <
~(x) < ri(i = N r + 1, .. ·,N)for:r > O.

Because of this corollary, the boundary value problem (5.12)-(5.13) can be restricted to x 2: 0:

(5.15) 111.'19' = '19" +s( '19), x > 0,

The second boundary condition in (5.1 6) can be obtained by integrating (5.12) over ( -00,0).

Theorem 5.5 Suppose '19 satisfies the boundary value problem (5.15)-(5.16), then 0 < '19' < m.

12



Proof. The proof of iJ' > 0 is trivial. From (5.14) we can deduce the inequalities

iJ'(x) = 100

em(X-Y)s(iJ(y))dy <100

s(17(y))dy ~ 100

8(iJ(:z:))dx,

where we have used that m > Oands(17(y)) > O. Integrationof(5.15) over (0,00) gives

m = 100

s(iJ(x))dx,

which completes the proof. 0

Corollary5.6 rim < Yi'(x) < Oforthereactants(i = 1, .. ·,Nr ) and 0 < Yi'(x) < rim for the
products (i = N r + 1, .. " N).

A priori estimates for m are given in:

Theorem 5.7 Let

(
I )!

in. = 21. s( iJ)d17
19,971

and m be the massflux in (5.15)-(5.16),thel1

I
(5.17) in. < 171. < -7-in..

1 ign

Proof. Multiplying equation (5.15) with 1,17 or 17', and subsequently integrating the resulting equation
over (0, 00) gives, respectively:

(5.18) m = 100

s(iJ(:z:))d:z:,

1 100 100

(5.19) -m(l +17;gn) = - 17'(;I:)2d;l; + s(17(:z;))iJ(x)dx,
2 0 0

The inequality m. < i11,jiJign follows immediately from (5.20). Subtracting (5.19) from (5.18) and
adding the difference to (5.20) gives

1 I 11 100

.-2m = - s(19)d17 + 8(17(;z:))(1 - 17(x))d:z:,
111. 19;9n 0

and because s( 19) > 0 and 19 < 1 the inequality 171 > ih holds. 0

We conclude this section with a theorem about the enthalpy.

Theorem 5.8 The flow is isel1thalpic, i.e. It is constant, and

1 N r

(5.21) h = - Q.t; 1'jhJ - 190 .

Proof. Define Z = Ef~1 Yj + iJ. Summation of equation (5.1) and the equations (5.2) for all reactants
Mi, (i = 1" .. , N r ), and using (3.5), gives the following boundary value problem for Z:

mZ' = Z",

Z-oo = Zoo = 1.

The solution hereof is Z = 1, and combining this with (4.16) and (3.2) then gives (5.21). 0

13



6 Qualitative analysis for the case Le =I=- 1.

The complete boundary value problem for the general case Le =f. 1 reads:

(6.1) mi)' = {j" + H( '19 - 'I9 jgn ) s( '19, Yi,"" YN r ),

(6.2) mY/= ;e~"+H('I9-'I9i9n)rjs('I9,Yi""'YNJ,

(6.3) '19- 00 =0, '19(0) = 'I9ign, '19 00 = 1,

(6.4) Yi,-oo = -ri, Yi,oo =0, i = 1,"', N n

(6.5) Yi,-oo =0, Yi,oo = ri, i = Nr +1", ·,N,

with the chemical source term s( '19, Yi, ... , YNr ) defined in (5.6). Note that the ignition temperature
'19ign is introduced in (6.1) and (6.2) in order to circumvent the cold-boundary difficulty. The existence
and uniqueness of the solution of a similar system of equations for laminar flames is established in
[11]. Using the relation rilY£2 = 7'i21i[, which holds for any two reactants Mi[ and Mi2' one can
prove that s({j, 1'1, ... , l'NT) 2 O. This proof is analogous to the proof of Lemma 5.1 and is therefore
omitted.

The following two theorems are straightforward extensions of Theorem 5.2 and 5.3, and therefore
their proofs are omitted.

Theorem 6.1 Suppose the mass flux m satisfies (6./ ) and (6.2), then m > O.

Theorem 6.2 Suppose '19 and Yi (i = 1"", N) satisfy the boundary value problem (6.1)-(6.5), then

(6.6) '19'(:1:) =100

em(X-Y)JI(1?(Y)-19jgn)S(19(Y),YI(Y)"",YNr(y))dy

and

(6.7) 1i'(x) = riLe 1= eLem(x-y) H(l?(Y) - 19 j9n ) s( l?(Y), Y1(y),···, YNr(y))dy.

Corollary 6.3

(i) l?(X) = 'I9jgnemX fora:::; O.

(ii) {) is strictly increasing and {)ign < {)(:I:) < 1fora: > O.

(iii) Yi(x) = -ri + GjeLemx (i = I,· .. ,Nr ) and 1i(x) = GjeLemx (i = N r + 1, .. ·,N)for
x ::; O. The integration constants satisfy 7'j ::; Gj ::; 0 for i = 1"," N r , 0 ::; Gi ::; rj for
i = N r +1", ·,N and'Lf::1 Cj = O.

(iv) The reactant mass fractions are strictly decreasing and 0 < li(x) < -7'i +Ci
(i = 1"", N r ) for x > O. Likewise, the product mass fractions are strictly increasing and
Gj < Yi(x) < ri (i = N r + I,···,N)for:r > O.

When the solution of (6.1 )-(6.5) is known for x > 0, then this solution is also known for x ::; 0
because of Corollary 6.3. Therefore, we restrict ourselves to the following boundary value problem,
defined on (0, 00):

(6.8) m{)' = 19" + s(1?, 1'1," ., YN
T

), x > 0,
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(6.9) mY/ = ;eY/' + ris(t9,Yl,···,1~v,.),.1: > 0,

(6.11) Yi'(O) - Le m(1~(O) + rd = 0, 1~.00 = 0, i = 1,· .. , NT,

(6.12) Y/(O) - Le m~(O) = 0, ~,00 = 1'i, i = NT +1,···, N.

The boundary conditions for t9' and Y/ at x = 0 are obtained by integrating (6.1) and (6.2), respectively,
over ( -00,0).

Theorem 6.4 Suppose 19 and l'i (i = 1" .. , N) satisfy the boundary value problem (6.8)-(6.12), then
0< 19' < m, TiLem, < Y/ < 0 (i = 1,·· ·,NT) and 0 < Y/ < 1'iLe1n (i = NT + 1" ··,N).

Proof. We only proof the inequalities for the reactants; the other inequalities can be proven anal­
ogously. It is trivial that Y/ < 0 for i = 1"", NT' From Theorem 6.2 we see that JIi'(x) =
riLe Ix

oo eLe m(x-y) s(19(y), YI (y), ... , lArr (y) )dy > 1'iLe Iooo s( t9( .1:), Yi (a:), ... , l rNr(x) )dx, where
we have used that Ti < 0 (i = 1,"',NT ), m > 0 and s(t9(a:),y,(x)"",YNr (X)) ~ O. Lastly,
integration of (6.8) over (0,00) gives m = I(~ s( t9( a:), Y,( :1;), .. " YNr ( x) )dx, which completes the
~~ 0

Consider the Shvab-Zeldovich variables Zi defined in (5.7). Using these variables, we were able
to proof the equalities 1~ = -1'i(1 - 79) (i = 1"", NT) and l'i = 1'it9 (i = NT + 1,· .. , N) for the
equidiffusive case Le = 1. In the general case Le =1= I these equalities do not hold anymore. Instead,
lower and upper bounds for the mass fractions can be derived, based on bounds for the Shvab-Zeldovich
variables. From (6.8) and (6.9) the following two equations for Zi can be easily obtained:

(6.13) mZ~ = Z" + (1 __1 )y"
'~ ~ . Le ~,

6 ' 1" ( 1)"( .14) mZ· = -Z· + 1 - - 1'·t9
~ Le ~ Le ~ .

The boundary conditions for Zi are given in (5.9)-(5.10).
Bounds for Zi are given in the following two lemmas.

Lemma 6.5 For the Shvab-Zeldovich variables Zi (i = 1,···, NT) the following inequalities hold:

(6.15)

(6.16)

1 •I Z· - 1" 1< 11 - - 11·
~ ~ - Le t"

I Zi - Ti I :s; I Le - 1 I Ti( t9 - 1).

Proof. To prove the first inequality, we integrate (6.13) over (-00, x). Using the boundary conditions
(5.9), this gives

m(Zi - Ti) = zI + (1 - L
1

)Y/'
e

This equation can be rewritten as
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Integration of this latter equation over (:/;,00) then yields

Zi - ri = (1 - ;e) LX) em(X-Y)1";'(y)dy,

from which the above inequality can be easily derived, since m > O.
Similarly we can deduce

Zi - ri = ri(Le - 1)100

eLem(X-Y)'l'J'(y)dy

from equation (6.14) and the boundary conditions (5.9). From this equation the inequality (6.16) can
easily be obtained. 0

The following lemma holds for the Shvab-Zeldovich variables Zi (i = NT + 1, ... , N) corresponding
to the products. The proof is completely analogous to the proof of Lemma 6.5 and is therefore omitted.

Lemma 6.6 For the Shvab-Zeldovich variables Zi (i = N,. + 1" . " N) the following inequalities
hold:

(6.17) IZil~ll- ;e 1 (1'i- 1";),

(6.18) I Zi I~ I Le - 1 11'i(1 - 19).

A straightforward combination of the inequalities in (6.15)-(6.18) gives the following bounds for
the mass fractions 1"i.

Theorem 6.7 The reactant and product mass fractions in (6.8)-(6.12) satisfy, respectively,

and

(6.20) fie Le )1'i( 1 - 19) ~ 1'i - Yi ~ fu( Lc )l'i(1 - 19) (i = N,"+ 1, .. " N),

with the functions II and Itl defined by

{
y, 0 < y < 1 { 2 - Y, 0 < Y < 1

II(Y) = .....JL y> 1 ,lu(Y) = y>_ 1
2y-l' - y"

Using the inequalities in Theorem 6.7, we can derive the following bounds for the mass flux m.

Theorem 6.8 Let

in = (2Darll e-E(J-19)/(19+,6)(1_19)"'rdiJ)!, r = TI(-1'j)"'r,j,
,9,gn )=1

and m be the mass flux in (6.8)-(6.12), then

(6.21) II(Lcyr/2 ii1, < m <~ ftl(Lct,.j2 1h.
lII9n

Proof. Analogous to the proof of Theorem 5.7, we can prove the inequalities

(6.22) 2 [I s(iJ,YI, ... ,l'Nr )d19 < m2 < f- rl
s(iJ,Yi,·",1"Nr)diJ.

J19,gn 1 19n J'9;gn

Combining (6.22) with the inequalities of Theorem 6.7 then gives the bounds for m.
Bounds for the enthalpy II. are given in the following theorem.
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Theorem 6.9 Let h = -~ 2::f";;l T.ih~ - 19o• i.e. h. is the specific enthalpy for Le
following inequalities hold:

_ 1 N r _

(6.23) 11, - (- - 1) LYj ::; 11, ::; 11"

Le j=l

(6.24) h - (1 - Le)(1 - lJ) ::; 11, ::; h.,

fora < Le < 1, and

_ _ 1 N r

(6.25) 11,::; 11,::; 11, + (1 - -) LJ~i'
Le .

.7=1

(6.26) h.::; 11, ::; h + (Le - 1)(1 - lJ),

for Le > 1.

Proof. From (6.1) and (6.2) we can deduce the following differential equation for 11,:

1 N r

(6.27) mil,' = 11," +(- - I) ""' 1'11.Le . LJ .J
.J=l

Furthermore, 11, fulfils the boundary conditions

11,-= = 11,00 = h..

First we integrate (6.27) over (-00,:1:). This integrated version of (6.27) can be written as

I N r

((11, - h)e-ma.')' = (1- _)e-ma.,,,",y'.
Le LJ .7

.7=1

Integration of this latter equation over (:I:, 00 ) then gi ves

_ 1 N
r 100

11, - 11, = (- - I) L em (.r- 1J )Y!(y)dy.
Le . J ,. .

.7= .

I, then the

from which (6.23) and (6.24) can easily be obtained since 111 > aand since the reactant mass fractions
Yi (i = 1"", N r ) are strictly decreasing. An alternative differential equation for 11" which can be
derived from (6.1) and (6.2) is

1 1
mil,' = -11," + (1 - -)lJ".

Le Le

The proof of (6.25) and (6.26) now proceeds in exactly the same way as the proof of (6.23) and (6.24).
o
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Appendix: Nomenclature

A frequency factor ((mollm3) l-v
T Is)

af frozen speed of sound (m/s)

B constant in frequency factor ((mol/m3)I-vT I(KO's))
cp specific heat at constant pressure of gas mixture (JI (kg K))
Cp,i specific heat at constant pressure for species M i (JI (kg K))
CV specific heat at constant volume of gas mixture (JI (kg K))
D binary diffusion coefficient for all pairs of species (m2Is)
Da Damkohler number
E activation energy (llmol)
h specific enthalpy of the gas mixture (J/kg)
hi specific enthalpy of species .;\1 i (J/kg)
h? specific heat of formation of species M i at a reference

temperature To (J/kg)
k specific rate constant ((mol/m 3)I-uT Is)
Le Lewis number
m mass flux (kg/(m2s))
Ma Mach number
N total number of chemical species present
P hydrostatic pressure (N/m2 )

Po constant approximate pressure (N/m 2)

Q specific heat of combustion (J/kg)
R universal gas constant (JI (mol K))
ri mass of species Mi per unit mass of reactants, produced by the chemical reaction
T (absolute) temperature of the gas mixture (K)
u mass-weighted average velocity of the gas mixture (m/s)

W average molecular weight of the gas mixture (kg/mol)
lUi reaction rate of species M i (kgl (m3s))
Wi molecular weight of species M i (kg/mol)
li mass fraction of species M i

a exponent determining the temperature dependence of the frequency factor
I specific heat ratio of the gas mixture
op perturbation of the constant pressure Po (N/m 2)

A thermal conductivity (J/(m s K))
Vr,i stoichiometric coefficient for species M i appearing as a reactant
Vp,i stoichiometric coefficient for species M i appearing as a product
p mass density ofthe gas mixture (kg/m3)

w reaction rate for a single reaction (moll (m\))
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