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Theo A. Arentze, Aloys W. J. Borgers
and Harry J. P. Timmermans

An Efficient Search Strategy for Site-Selection
Decisions in an Expert System

This paper describes an algorithm for spatial search, which is used in an expert
system for site selection. The algorithm, named ProfMat, is able to find the best
site in the area of interest even when the number of possible sites is large and
many decision criteria are involved. Compared to commonly used search proce-
dures, ProfMat improves the efficiency of spatial search in two ways. First, the
best site is identified through an iterative rather than a linear process of selec-
tion and evaluation of optional sites. Second, an area is searched by narrowing
down the focus to increasingly smaller areas and, thus, sites are evaluated as
much as possible groupwise. The ProfMat procedure is illustrated by analyzing
the problem of retail site selection. A comparison with alternative search proce-
dures shows that ProfMat considerably reduces the evaluation costs needed to
find the best site. The implementation of the algorithm in an expert system
shows how ProfMat can be used in combination with specialist’s knowledge to
solve site-selection problems. The efficiency of the procedure allows considering
large sets of optional sites, so that it may improve the quality of the outcome.

1. INTRODUCTION

The selection of sites for locating an activity generally involves the evaluation
of optional sites on several suitability criteria. Viewed this way, site selection
can be approached as the problem of selecting one or more alternatives from a
given set of discrete choice alternatives (possible sites) based on a common set
of criteria, which is known as the discrete multi-criteria-decision-making (or in
short, MCDM) problem. Discrete MCDM problems have received a lot of
attention both in the fields of spatial planning (for example, Keeney 1980;
Voogd 1983; Janssen 1991; Massam 1993} and business management (see
Sawaragi, Inoue, and Nakayama 1986; Kirkwood 1992). In this research field, a
large variety of methods has been developed for combining scores across crite-
ria to arrive at an overall suitability score. The appropriate method depends on
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characteristics of the decision problem, such as, for example, the goals of the
decision maker and the measurement scale of data involved (for a review, see
Ozernoy 1986). Discrete MCDM methods help decision makers to judge the
suitability of specific sites, but they do not specify a search procedure for iden-
tifying the best sites from a given choice set.

As Keeney (1980, p. 15) has argued, in many cases there are too many pos-
sible sites in the study area to allow a thorough evaluation of all options. Often,
part of the sites can easily be identified as being inappropriate by using one or
more all-or-nothing (screening) criteria. However, even after eliminating sites
that do not meet these criteria, the number of remaining sites may still be too
large to permit an exhaustive search. A possible strategy would be to use addi-
tional screening criteria, to further reduce the choice set. However, this would
introduce the risk of eliminating some or all of the best sites. Keeney concludes,
therefore, that this problem requires the balancing of the costs and effort of
evaluating a large number of options against the risk of eliminating suitable
candidates. Given this balance, a more efficient site-selection procedure means
a larger set of sites that can be considered and a smaller probability of remov-
ing suitable sites from the choice set. Due to this mechanism, improving the
efficiency of the selection strategy may lead to better outcomes.

This paper introduces an efficient algorithm for identifying the best site from
a given set of optional sites. The algorithm gives the same solution that would
be generated by an exhaustive search procedure, but reduces search costs. The
best site is identified through an iterative process of selection and evaluation of
candidates and through focusing on increasingly smaller areas within the study
area. The algorithm is implemented in an expert system. The system can be
used to solve site-selection problems when it is complemented with knowledge
specific for the activity to be located and the area to be searched. There-
fore, the system is best viewed as an expert system for site-selection problems
in general.

The paper is organized as follows. The first section briefly reviews search pro-
cedures used in existing systems for site selection, to situate our approach in a
wider context. The next section introduces the algorithm we propose and illus-
trates the way it operates by analyzing a retail-site-selection problem. Further-
more, a comparison with alternative search procedures is made, to demonstrate
the efficiency of the algorithm, Next, the generic expert system based on this
algorithm is described. Finally, some conclusions and possible ways for future
research are discussed.

2. REVIEW OF SEARCH STRATEGIES

A variety of search procedures are used in existing geographic information
systems (GIS), decision support systems, and expert systems for site selection.
In addition, several search procedures have been suggested in applied studies
on location planning. In this section, we will briefly review these search proce-
dures and place our approach against this background. We emphasize that in
this study we focus on problems of selecting single sites, in contrast to prob-
lems of optimizing location configurations for networks of activities. Therefore,
we will not consider procedures for locating networks, such as algorithms for
solving location-allocation models (see Ghosh and Rushton 1987; Malczewski
and Ogryczak 1990).

To deal with large choice sets, most studies suggest a two-staged procedure
for finding the best sites. The aim of the first stage is to select candidate sites
for further consideration. Then, in the second stage, the candidates are eval-
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uated in depth to identify the best sites. Various strategies have been proposed
for narrowing down the choice set in the first stage. First, in many cases it is
appropriate to select feasible sites (or to eliminate alternatives) based on one
or more screening criteria (Keeney 1980, p. 29; Tversky 1972; Mercurio 1984).
This strategy has been used for site selection in a GIS environment (Carver
1991) and in several expert systems described in the literature (for example,
Findikaki 1990; Suh, Kim, and Kim 1990; Han and Kim 1990, Rouhani and
Kangari 1990).

Second, Reitsma (1990) suggests selecting the sites for which the attribute
profile matches a set of requirements. The requirements explicitly depend on
the characteristics and interests of the activity to be located. Reitsma stresses
the importance of considering the attributes of a location as a set rather than
individually, since locations with different attribute profiles may meet the same
set of requirements. If the number of sites selected is larger than one, a second
stage follows, wherein the best site is identified based on optimization criteria
(for example, trading potential). This site-selection procedure has been imple-
mented in the software REPLACE (Reitsma 1990) using decision support sys-
tem, GIS, and expert-system technology.

Third, the spatial information system ISIS developed by Diamond and Wright
(1988) supports a two-staged procedure, where the aim of the first stage is to
select from a given choice set the subset of noninferior sites. Sites that are out-
performed by at least one other site on all relevant criteria (objectives) are in-
ferior, irrespective of the relative importance of objectives, and are eliminated
from the choice set. In the second stage a final choice is made by (subjectively)
weighting objectives.

Furthermore, several authors (Breheney 1988; Mercurio 1984; Ghosh and
McLafferty 1987; Khosaka 1989) in retailing research have suggested hierarchi-
cal search procedures. Ghosh and McLafferty argue that for finding locations
with high trading potential, three levels of scale should be distinguished. From
high to low level these are market areas (for example, city areas), areas at inter-
mediate level (say, market sectors), and sites. They advocate a top-down proce-
dure, wherein market areas, market sectors, and sites are selected in a step-wise
process. Mercurio describes a similar procedure in a (hypothetical) case of
locating department stores, but he distinguishes shopping areas as an extra
level in between the market-sector and site levels.

Finally, we can distinguish a group of methods that focuses on the problem of
identifying promising or interesting alternatives as a first stage in site selection.
To this end, various techniques are proposed. We mention genctic algorithms
{Guimaraes Pereira, Peckham, and Antunus 1993}, potential measures {Brehe-
ney 1988), and mathematical programming (see Brill et al. 1990). These meth-
ods do not guarantee finding the best site, but instead focus on the generation
of alternatives that are likely to be good. Since, this problem is outside the
focus of this paper, we will not further discuss these approaches here in any
detail.

A common characteristic of the procedures reviewed above is the separation
of the selection (reducing the choice set) and’ evaluation of candidate sites in
distinct phases. However, such a linear procedure is inadequate in cases where
the evaluation reveals shortcomings of the alternatives selected to such an ex-
tent that the decision maker (or in short, DM) wishes to reconsider candidates
eliminated in the previous phase. Generally, the DM should be able to recon-
sider a selection made each time evaluation results are obtained. The procedure
proposed in this paper supports such an iterative process of selection and eval-
uation (see Figure 1). An iterative procedure is not only more effective, but can
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Two-staged procedure lterative procedure
choice set choice set
selection of selection of )

feasible sites currently best site |
thorough evaiuation evaluation of
of all selected sites selected site
best site best site

F1c. 1. Two-staged versus Iterative Procedures of Site Selection

also improve the efficiency. Evaluation costs can be reduced by selecting in
each cycle the most promising option (given the currently available informa-
tion) for evaluation.

Hierarchical procedures reduce evaluation costs in another way, namely, by
utilizing the organization of sites in areas at different hierarchical levels. Evalu-
ating areas means evaluating sites within that area as a group. Consequently,
searching from high- to low-area level means maximally benefitting from a
groupwise evaluation of sites. The procedure developed in this study combines
an iterative and a hierarchical search strategy, to minimize evaluation costs. In
contrast to existing hierarchical procedures, the iterative search process does
not irreversibly proceed from top to bottom. The principle of iteration implies
a tentative search process. If the evaluation of sublocations reveals short-
comings of an area, the process may return to a higher level to investigate an
alternative area and so on. The next section gives a formal description of this
iterative and hierarchical search procedure.

3. THE SEARCH ALGORITHM PROFMAT

The algorithm ProfMat (Profile Matcher) selects, from a given set of optional
sites, the site that best matches a prespecified (ideal) attribute profile. Option-
ally, but not necessarily, the sites are ordered in groups (for example, areas) at
different hierarchical levels (for example, area levels). This section discusses the
assumptions and specification of ProfMat, respectively. Furthermore, an analy-
sis of a retail-site-selection problem illustrates the application and operation of
ProfMat. Finally, a comparison with alternative search procedures demonstrates
the relative efficiency of the algorithm.
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3.1 Assumptions

Locations are described in terms of the attributes that determine their suit-
ability for a particular activity. These attributes form the profile of the site (see
Findikaki 1990). On the other hand, an ideal attribute profile is specified, which
reflects the objectives of the DM in locating the activity. The suitability of a
specific location is expressed as the degree of similarity between the observed
and ideal profile. The degree of similarity is considered a continuous variable
called matching factor, MF. The MF is a function of the a priori MF and the
diserepancy between observed and ideal attribute scores, as tollows:

MF; = MF" — Z;f;(Xy) (1)
where:

MF; is the MF score of the ith location;
MF{ s the a priori MF of the ith location;
Xi; is the jth attribute score of the ith location;

fi is the jth function defining the discrepancy (in MF units) between a score
and the jth ideal score;

fi{X) =0, if X is unknown.

The second term on the RHS expresses the decrease in MF caused by observed
discrepancies with the ideal profile. The function f; incorporates both the ideal
score (or class of scores) and a way of measuring the degree of mismatch (dis-
crepancy) with observed scores. The specification of f; depends largely on the
scale used to measure the attribute. If j is a quantitative (rational or interval)
attribute, determining the degree of mismatch involves the steps of calculating
the difference between observed and ideal score and rescaling this difference to
units MF. The latter step can be decomposed in a standardization and a weight-
ing operation, to account for differences in measurement unit and relative impor-
tance across attributes, respectively. Standardization can be achieved by rescaling
observed discrepancies on all attributes to a common zero-one scale. If the attrib-
ute concerned is not linearly related to MF, standardization involves the extra step
of transforming the rescaled discrepancy to a linear scale.
Rescaling an observed discrepancy to a zero-one scale can be realized by

Xideal _ %
Dy = ke @
i J

where
Dy; is the discrepancy on a zero-one scale of the ith location regarding the jth

attribute;
Xy =Xy XTN< X< Xme

= X Xi; > Xy

= X?m X,‘j < X;-mn
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Xideal s the ideal score of the jth attribute;
mg min
X7 > X,

The ideal score, X;*%, equals the maximum score, X797 if j is positively related
to MF, and is set to the minimum score, X;“i“, if j is negatively related to MF.
Otherwise, if the attribute has first positive and then negative returns, or vice
versa, the ideal score is set to the optimum in between the range of j. In any
case, the minimum and maxmum scores on the jth attribute must be known.
We emphasize that it is not necessary to know the actual range of scores on an
attribute for determining the extremes. The extremes are set to levels within
which the DM wishes to differentiate alternatives on MF. The range specified
does not necessarily correspond with the actual range of the attribute, but defines
the minimum and maximum decrease in MF possible on the attribute.

If the jth attribute is linearly related to MF, the standardized discrepancy
simply equals the rescaled discrepancy:

Dj; = Dyj (3}

where Dj; is the standardized discrepancy of the ith location on the jth attribute.
Alternatively, if j is an exponential function of MF, the following standardiza-
tion function can be used:

ng = (Dij)a a> 1l (4)

This exponential function attenuates small discrepancies (near zero) and magnifies
large discrepancies (near one). In fact, equation (4) summarizes a sef of standard-
ization functions, one for each value of exponent a > 1. The larger @ the stronger
the attenuation and magnification effects are, that is, the stronger the all-or-
nothing character of discrepancies. Finally, an attribute may have an S-shaped
relationship with MF. Then, the following standardization function is useful:

D;;- = sin(% ?tDi'j). (5)

This function attenuates both small and large discrepancies, whereby the attenua-
tion effect increase as discrepancies approach the extremes (zero or one). -

After standardization, the discrepancy, D}, of each attribute is expressed on a
zero-one scale, which is linearly related to MF. Therefore, the decrease in MF is
simply found by weighting the discrepancy according to the relative importance of
the jth attribute:

Ji{(Xip) = w; Dy (6)

where f;(X;;) is the decrease in MF of the ith location on the jth attribute; w; is
the weight of the jth attribute.

The discrepancy functions described above can be used only for attributes
that are a regular (linear, exponential, or S-shaped) function of MF. In case of
quantitative attributes for which no such function exists, the DM should define
classes of scores with the same impact on MF and specify a decrease in MF for
each class. Also, if j is a qualitative (nominal or ordinal} attribute, it is not pos-
sible to use a standard discrepancy function. Then, similarly, the DM should
specify a decrease in MF for each possible score of the jth attribute. An irregu-
larly shaped discrepancy function can be defined by a set of if-then rules (a
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logic-based model), which relates decreases in MF to specific scores or classes
of scores of an attribute. In sum, many different specifications of the discrep-
ancy function are possible, dependent on the nature of the attribute con-
cerned, In site-selection problems, the set of relevant attributes is typically
heterogeneous, including both quantitative and qualitative attributes. There-
fore, the discrepancy functions should be defined for specific attributes or
groups of attributes.

In the suitability function [equation (1)] a best-scenario strategy is adopted,
in the sense that an attribute is assumed to match the ideal unless there is
evidence of the contrary. Formally, this implies that the discrepancy function,
f, returns a zero value if an attribute score is unknown. Consequently, in any
stage of the search process, the MF score reflects the maximum score of a loca-
tion: evaluating an unknown attribute score may lead to a decrease in MF, but
cannot result in an increase in MF. Thanks to this best-scenario assumption, not
necessarily all locations need to be evaluated thoroughly to identify the best
site. Search can be terminated the moment the currently best site has heen
fully evaluated.

The a priori MF (the first term on the RHS) is an exogenous constant, which
expresses the a priori preference for a site (the suitability judgment if all attri-
bute scores are unknown). A priori preferences may exist if not all relevant
attributes are included in the attribute profile. Then, the a priori MF is differ-
entiated across locations according to their performance on missing attributes.
However, normally there are no a priori preferences. Then, the a priori MF of
locations is set to the same arbitrary level {for example, zero).

As cxpressed by equation (1), the MF of locations is determined by summing
up discrepancies across attributes. The additive form of the suitability function
assumes that a mismatch on one attribute can be evaluated independently of
other attribute scores. In other words, interactions between attributes are as-
sumed to be absent. We emphasize that this assumption of independent attri-
butes does not limit ProfMat to cases where interactions between suitability fac-
tors are absent. Instead, it requires that attributes are defined in such a way
that they are independent. A possible strategy to arrive at a set of independent
attributes is to list all relevant factors and, next, to define combinations of in-
teracting factors as single attributes. (In the extreme case where all factors
interact, only one attribute would result, which can be interpreted as site suit-
ability.) Therefore, the independence of attributes is not an assumption on the
state of affairs in the real world, but rather a matter of definition. As such, it
does not limit the applicability of the method.

ProfMat assumes the general case, where alternatives are organized in groups
at one or more hierarchical levels. A pure hierarchy is assumed, that is, an alter-
native cannot belong to more than one group at higher level. Attribute j is con-
sidered to be related to level n if alternatives within groups at level n have the
same score on j, whereas alternatives between groups differ on j. In a spatial
context, groups can often be defined by delineating (contiguous) areas. Then,
groups of different order correspond to areas at different levels of scale. In
the following, we will assume the special case of such a geographically defined
hierarchy, although ProfMat is general for all kinds of hierarchies. The de-
finition of MF [equation (1)] can be generalized for a hierarchy of options, as
follows:

ME=man(MFk) ke 5; S,;ﬁ@

b4 MF;-&‘D - EJfJ(XlJ) Si = @ (7)
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(0) initialize the a-priori MF of optional sites
(1)  seti to the study area
set Best Alternative to the second best sublocation of |
(2) if i has sublocations
then
- if the Best Alternative is better than the best sublocation of i
then
- poto(l)
else
- if not all attributes of the best sublocation of { are known
then
- evaluate the first unknown attribute of the best sublocation of i
- goto(2)
else
- if i = study area
then
- set Best Alternative to the second best sublocation of i
- set i to the best sublocation of i
- goto(2)
else
- select i

F1G. 2. The ProfMat Algorithm

where §; is the set of sublocations of the ith location, and j is the jth element of
the set of all (including the higher-level) attributes, and other elements are
defined as above. In words, if location i has sublocations, then the MF of i equals
the MF of the best sublocation, otherwise (i is a location at the lowest level), the
MF of ¢ equals the a priori score minus the total of discrepancies across all
(including higher-level) attributes. This rule expresses the idea that an area is as
suitable as the most suitable subarea and that the suitability of lowest-level loca-
tions is a function of all (including higher-level) attributes. So, the MF of higher-
order locations is recursively defined in terms of the MF of their sublocations.
Therefore, to evaluate the MF of a higher-order location, the MF of all subloca-
tions must be determined and so on, until the lowest level is reached. When the
MF of the lowest-level locations are known, the locations one level higher are set
to the maximum MF of their sublocations and so on, until the highest level is
reached. Finally, we note that the a priori MF of higher-order locations is derived
from the a priori MF of their sublocations. Therefore, only the a priori MF of
lowest locations need to be specified.

3.2 Specification

The ProfMat algorithm is represented verbally in Figure 2 and schematically
in Figure 3. The process starts at the highest level by setting the current loca-
tion i to the study area. Area i is searched through an iterative process of select-
ing the sublocation with the highest MF and evaluating the first unknown attri-
bute of that sublocation. The MF of each sublocation is calculated using equation
(7). As implied by this equation, the MF of a location equals the MF of the best
sublocation. Therefore, initially, when all attribute scores are unknown, the MF
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START

set i to study area

yes Alternativa

better than

evaluate first
unknown attribute
of BSl

set | to BSi BSl = best sublocation of |

ﬁ

Fi1. 3. Schematic Representation of the ProfMat Algorithm

of areas equals the a priori MF of their best site. Unless a priori preferences
exist, the initial MF scores of the best sublocations of ¢ are the same and the
first one is selected as the best alternative and will be evaluated on the first
unknown attribute. A discrepancy on an area attribute causes a decrease in the
MF of all sites within that area [the second part of equation (7)]. Consequently,
the MF of the best site of the area and therefore the MF of the area itself will
also decrease to the same extent. Therefore, if evaluation of the first attribute of
the best sublocation of i reveals a discrepancy, the MF of the currently best
sublocation and also the MF of all its descendants (locations at lower levels)
decrease accordingly. Then, the best sublocation may lose its priority, with the
consequence that another sublocation will be selected as the currently best sub-
location in the next eycle and so on. This process continues until all attributes
of the currently best sublocation are known (have been evaluated). If the best
sublocation has sublocations, then the current location i is set to the best sub-
location. Setting i to its best sublocation means narrowing down the focus to a
smaller area. This smaller area, i, is then searched in the same way by repeat-
edly selecting the best sublocation of i and evaluating the first unknown attri-
bute. Again, if the currently best sublocation has been fully evaluated and has
itself sublocations, then i is set to this sublocation and the whole foregoing
process is repeated from this lower-level location.

In going downward the MF of the best sublocations decrease monotonically
as evaluation reveals morc and morc discrepancies. Since the suitability of
areas equals the suitability of their best sublocation, the MF of the higher-level
areas currently being searched tend to decrease as a consequence, If an area at
a higher level loses priority, then the process tracks back to the higher level,
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where the alternative area that has gained priority is selected for further evalu-
ation and so on. So, the process keeps track of the “best alternative,” that is, the
second best subarea of the study area. The best alternative is considered as an
additional option each time a selection has to be made. Selecting this alterna-
tive means tracking back to the top level to select an alternative path.

The process stops when a sublocation is selected of which all attributes are
known and that does not have sublocations itself. A sublocation that meets this
condition is indeed the best option, since it is better than the best alternative
and has been completely evaluated. In sum, ProfMat evaluates attributes one
at a time from high- to low-location level. In focusing on increasingly smaller
areas, the branch being searched may lose priority. Then, the process tracks
back to investigate an alternative path that has become more promising. The
process stops when the currently best site has been completely evaluated,
which is then identified as the delinite best site.

3.3 Ilustration

The first step in the ProfMat procedure is the specification of the site selec-
tion problem in terms of relevant attributes and attached discrepancy functions,
dependent on the objectives of the DM. Next, the optional locations in the area
of interest are identified at different location levels and ProfMat is run to find
the best site. In this section, we illustrate both the problem specification and
the operation of the ProfMat procedure using a case of retail site selection.
The problem specification is derived from Ghosh and McLafferty (1987) and
Mercurio (1984), but it should be noted that we have adjusted and simplified
the problem specification somewhat for illustration purposes. A hypothetical
location hierarchy is used to demonstrate the steps of the ProfMat procedure.

The Problem. In this example, we consider the problem of finding one or
more sites with high trading potential in a given market area. For reasons of
convenience, we assume that the choice of the market area is fixed, although
in real problems of this kind several optional market areas will be considered
on attributes such as retail saturation and market expansion potential (Ghosh
and McLafferty 1987). The location attributes that are generally relevant for
determining trading potential are listed in Table 1. More attributes may be

TABLE 1

The Set of Location Attributes

Attribute Level Model/Factors Scale

Sales potential market sector —population size three-point scale
—growth rate
—income
—profile

Competition level market sector —number of shops three-point scale

—total selling space
—competitive strength

Regional accessibility shopping area —access to public transport five-point scale
—access to main road
—level of street congestion
—quality of access to streets

Retail environment shopping area —number of branches five-point scale
—total selling space
—quality of presentation

Site accessibility site —availability of parking space five-point scale
—aquality of ingress/egress

Trading potential site —spatial interaction model cantinuous
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relevant in specific problems of this type, particularly, at the level of sites, but
this list is commonly appropriate and suffices to demonstrate our approach.

The attribute list relates to three location levels. From high to low, the loca-
tion levels involved are market sectors, shopping areas, and sites. Market sec-
tors are the subareas of a market area (for example, city area) that define poten-
tial trade areas of new stores. They are delineated based on natural barriers
{for example, highways) and spatial interaction patterns of the population.
The attributes sales potential and competition level determine the attractive-
ness of market sectors. Shopping areas, one level lower, are concentrations
of shops and are defined by drawing proximity bands around existing (and
planned) retail facilities. Regional accessibility and retail environment are con-
sidered the relevant attributes of shopping areas. Finally, sites are locations at
the lowest level. Optional sites are evaluated on site accessibility and trading
potential.

The attributes have different measurement scales. The trading potential of
sites is a quantitative attribute, which is measured as predicted turnover using
a spatial interaction model. The other attributes are measured on a five-point or
three-point ordinal scale. These qualitative attributes may be evaluated based
on logic-based models or the judgment of the retailer concerned.

Attached to each attribute is a discrepancy function [f; in equation (7)],
which returns a decrease in MF given an attribute score. In this example, all
attributes (continuous or discrete} are assumed to be linearly related to MF.
Therefore, the linear discrepancy function [composed of equations (2), (3),
and (6)] is used for all attributes. The minimum and maximum scores of dis-
crete attributes are fixed (that is, one and five for the five-point scale and one
and three for the three-point scale). The extremes of trading potential, the con-
tinuous attribute, on the other hand, is set by the retailer {or analyst) to the
range within which he or she wishes to differentiate between alternatives. The
ideal score of competition level is set to a minimum level and the ideal scores of
the other attributes, which are positively related to MF, are set to maximum
scores. Finally, the attribute weights are set according to the relative impor-
tance of attributes for determining trading potential.

The Procedure. Having specified the set of attributes and attached discrep-
ancy functions, the next step is to identify the optional locations at the differ-
ent location levels involved. First, the optional market sectors are defined by
subdividing the market area in smaller areas (based on natural barriers and spa-
tial interactions). Then, optional shopping areas within market sectors are
defined by delineating concentrations of existing shops. Finally, the candidate
sites are identified by an in-field inspection of the shopping areas.

To illustrate the operation of the algorithm, we consider the example location
hierarchy which is schematically shown in Figure 4. Market M encompasses
eight optional sites (S to Sg) which are grouped in four shopping areas (§A4;
to SA,) and two market sectors (MS; and MS,). The scores associated with
each location denote the initial MF and decreases in MF, respectively. The ini-
tial MF of areas equals the initial MF of best sublocations and the initial MF of
sites equals the a priori MF. In this example, we assume that the retailer has
formulated a priori preferences based on attributes (for example, the intercep-
tion rate and visibility of sites) that are not included in the suitability function.
The a priori MF of sites is set by the retailer in correspondence with the exist-
ing a priori preferences. Decreases in MF follow from nonoptimal attribute
scores and are the outcome of evaluation.

The search process starts at the highest level by setting the current location i
to the market area M. The best sublocation, MS} (MF = 10), is selected for
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M

Fi1c. 4. Schematic Example of a Hierarchy of Options

evaluation and the best alternative is set to the second best market sector,
which is MS; (MF = 8). Evaluation of the first attribute (sales potential) of
MBS, reveals a discrepancy, which causes a decrease of one MF unit for all sites
within MS; and, consequently, also for all shopping areas within MS, and
for M8, itself. After this evaluation step, the set of sublocations of i (= M) is
reconsidered to identify the best option. M) is still the best option and is re-
selected for evaluating the next unknown attribute (competition level). This
time the MF of M8, and also all descendants of MS; decrease with two units.
In the next cycle, MSy (MF = 8) is selected for evaluation and the best alter-
native is set to M8 (MF = 7). Evaluation of the first attribute of M'S; does not
lead to a decrease in MF, so that this option keeps priority and is reselected in
the next cycle. Also the evaluation of the second attribute of M.S; in the next
cycle does not lead to a decrease in MF. Since the best sublocation (= MS;)
of i has been completely evaluated, the focus narrows down by setting i to
MS; and the same process is repeated from this lower-level location. The set
of sublocations (5§43, MF =8, and SA;, MF =5) and the best alternative
(MS), MF =7) are considered to identify the best option. In the cycles that
follow, SAj; is evaluated first on the first attribute (regional accessibility, de-
crease in MF = 1, new MF =7, keeps priority) and next on the second attri-
bute {retail environment, decrease in MF =1, new MF = 6, loses priority). At
this stage, the best sublocation (SA43, MF = 6) is outperformed by the best
alternative (M $;, MF = T7) and, consequently, the process tracks back to the
top level by setting i to the superlocation (= M) of the best alternative. Again,
the best sublocation (MS;, MF =7) and the best alternative (MS;, MF =
6) are determined. Since all attributes of the best sublocation (= MS1)} are
known, the focus narrows down by setting i to this sublocation. The same
cycles of selecting and evaluating the best sublocation follow from this lower-
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level location. After having evaluated the first attribute (regional accessibility}
of SA; (decrease in MF = 3, new MF = 4, loses priority), the first attribute
of SA; {decrease in MF = 0), and the second attribute (retgil environment)
of SA; (decrease in MF =0}, all attributes of the best sublocation (SAj,
MF = 6) are known and the focus further narrows down by setting i to this
best sublocation, SA;. After having evaluated the first attribute (site accessibil-
ityy) of S3 (decrease in MF = 2, new MF = 4, loses priority}, the best subloca-
tion (Sy, MF = 5) is worse than the best alternative (MS,, MF = 6}, so that
the process tracks back to the top level by setting i to M. From M, the focus is
narrowed down first to MS; and next to SA4;, which are the currently best and
completely evaluated sublocations. After having evaluated both attributes of Sg
(no decreases in MF, MF = 6), it is still the best sublocation and better than
the best alternative (MS1, MF = 5). Since S has no sublocations and has
been fully evaluated, it is finally selected as the best site.

Discussion. The example illustrates several general properties of the ProfMat
procedure. First, options with a higher a priori MF have a higher priority for
evaluation. Therefore, a priori preferences influence the initial direction of the
search process. Second, the attributes of a location are evaluated from high to
low level, Higher-level attributes are not necessarily more important, but they
are more informative since they relate to larger groups of sites. So, considering
attributes in this order means evaluating sites as much as possible groupwise.
From the point of view of efficiency, this way of ordering attributes is better
than an ordering based on relative importance, as used in other hierarchical
methods (for example, Tversky 1972). Third, the selection of the best subloca-
tion is reconsidered each time an attribute has been evaluated. This property
implies that evaluation efforts are always directed to the most promising op-
tion. Fourth, not necessarily all locations need to be fully evaluated for finding
the best site (for example, Si, Sy, S4, S5, S7 and Ss were skipped). If the currently
best site is fully evaluated (all attribute scores are known), it is known to be the
best, even if alternative locations are only partly evaluated. The best-scenario
assumption implies that the MF of locations reflect the maximum scores possi-
ble. Evaluating additional attributes of alternatives cannot lead to increases in
MF and, therefore, cannot change the outcome. ProfMat reduces the expected
number of attribute evaluations by directing evaluation efforts exclusively to the
most promising (the currently best) location and most informative (from high-
to low-level) attributes in each stage of the search process.

The Efficiency of the Procedure. The major cost factor in site-selection proce-
dures is the collection of data needed for identifying candidate locations and
evaluating location attributes. Compared to an exhaustive and flat search (eval-
uating all locations on all attributes), ProfMat reduces the number of attribute
evaluations (and therefore the data needs) by using an iterative and hierarchical
search strategy. To obtain an indication of the relative efficiency of ProfMat, we
have compared ProfMat to alternative search procedures on the total number
of attribute evaluations performed in a representative sample of site-selection
problems (cases).

Four different search procedures are compared: (i} an iterative and hierarch-
ical search (ProfMat); (ii) an exhaustive and hierarchical search; {iii) an iterative
and flat search; and {iv} an exhaustive and flat search. In exhaustive procedures
(ii and iv) all locations are evaluated on all attributes. In contrast, in iterative
procedures (i and iii) the currently best location is selected and evaluated on
an unknown attribute (one at a time) in a cyclic process until all attributes of
the currently best location are known. Furthermore, a distinction can be made
between hierarchical and flat search procedures. As opposed to flat search, in
hierarchical procedures {in combination with either an exhaustive or an itera-
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TABLE 2 )
The Number of Attribute Evaluations in Twenty Cases of a 10° Tree and a 5¢ Tree
iterative, exhaustive, iterative, exhaustive,
hierarchical hierarchical flat flat
search search search search
103 tree mean (% of max) 102.6 (1.71) 2220 {37.00) 2231.6 (37.19) 6000 (100}
stand. dev. 51.0 0 481.9 0
range 149 0 1724 0
5% tree mean (% of max) 125.2 (2.50) 1510 (30.20) 2391.3 {47.83) 5000 (100}
stand. dev. 68.4 0 498.0 0
range 298 0 1610 0

tive procedure}, locations are evaluated as groups rather than individually on
higher-level attributes.

To obtain a representative sample of cases, we considered two types of loca-
tion hierarchies. The first hierarchy has three levels and ten locations per area
(at each level) and is referred to as a 10° tree. The second hierarchy consists of
four levels and five locations per area (at each level) and is referred to as a 5*
tree. So, the 107 tree has a total of 1,000 sites ordered in groups of ten sites at
three levels, whereas the 5! tree has a total of 625 sites ordered in groups of five
sites at four levels. In both hierarchies, two attributes are associated with each
level. For each tree, a sample of twenty cases was obtained by twenty times
assigning random discrepancy values (between 0 and 9 MF units) to location
attributes. The 2 + 20 cases were analyzed using each of the four procedures,
whereby the total number of attribute evaluations was counted. Of course, all
procedures gave the same selection outcome; therefore, their efficiency can be
compared. Table 2 shows the results.

The number of evaluations of the exhaustive procedures does not depend
on the actual attribute profiles of locations. In the flat search variant (iv) the
number of evaluations required are 1,000 * 3 * 2 (= 6,000) and 625 % 4 * 2
(= 5,000) for the 10® tree and 5* tree. On the other hand, in the hierarchical
search variant (ii) the number of evaluations in the 10° is (10 + 10% + 10%) +
2 = 2,220 and in the 5* tree (5 + 5% + 5% + 5%) % 2 = 1,510.

In iterative procedures (i and iii), the number of evaluations needed depends
on the attribute profiles of locations. To find the best site in each of the twenty
cases of a 107 and a 5* tree, a flat search strategy (procedure iii) requires, on
average, 2231.6 and 2391.3 evaluations in the 10% tree and the 5 tree. For the
hierarchical search procedure (i), these figures are 102.6 and 125.2.

Using the exhaustive and flat search (the fourth column) as a reference, the
introduction of an iterative search strategy reduces the average number of
attribute evaluations to 37.19 percent (in the 10% tree) and 47.83 percent (in
the 5 tree). For the introduction of an hierarchical search strategy, these
figures are 37.00 percent and 30.20 percent. The combination of the iterative
and hierarchical strategy (ProfMat) results in a considerable efficiency improve-
ment. On average, only 1.71 percent and 2.50 percent of the total of possible
attribute evaluations are needed in the 103 tree and 57 tree.

4. A GENERIC EXPERT SYSTEM

As several authors (Ortolana and Perman 1990; Wright 1990; Curry and Mou-
tinho 1992) have argued, expert system techniques are useful for developing
computer-based systems for site selection. Site selection generally requires the
combination of several factors (for example, population characteristics) for de-
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termining the suitability {for example, sales potential) of candidate locations
(for example, market sectors). Often, quantitative models (for example, spatial
interaction model) or generally applicable methods (for example, a weighted
mean) can be used for factor combination. However, in many cases the com-
bination of factors requires qualitative reasoning based on knowledge specific
for the problem at hand. Expert systems (or knowledge-based systems) provide
the means for modeling qualitative knowledge. Also, quantitative models can be
used in these systems, possibly, by including calls to external procedures (pos-
sibly, written in a procedural language). Therefore, expert systems are poten-
tially useful for modeling site-selection problems and have been proven to be
successful in several studies (for example, Findikaki 1990; Suh, Kim, and Kim
1990; Han and Kim 1990}.

In this study we have implemented ProfMat in an expert system using Prolog.
When complemented with knowledge specific for a certain site-selection prob-
lem, the system finds the best sites (possibly in interaction with the user) using
the ProfMat procedure. Therefore, the system is best viewed as a generic expert
system for solving large site-selection problems. The problem-specific knowl-
edge is provided by a prespecified knowledge base and, complementarily, by
the user during a consultation session. In this section we discuss the functional-
ity of the system by describing the structure of the input knowledge base and
the user-system interaction during consultations.

4.1 Structure of the Domain-Knowledge Base

Table 3 summarizes the ProLog predicates available for building the prob-
lem-specific knowledge base. A distinction can be made between predicates
related to the attributes involved (the ideal specification) and predicates that
describe the optional locations. These two components of the knowledge base
will be described in turn.

The following predicates are available for defining the attribute-related
knowledge:

attribute_subset(Level, Attr_list);
attribute_score(Attribute, Location, Score);
atiribute_discrepancy(Attribute, Score, Discrepancy);
relevant_prop(Attribute, Prop_list).

TABLE 3
Summary of the Predicates of the Input Knowledge Base

Predicates

attribute subset (Level, Attr list)
defines for a location level the relevant location attributes
attribute score (Attribute, Location, Score) (optionally)
defines for an attribute the evaluation of the attribute score, given the location
attribute discrepancy (Attribute, Score, Discrepancy) (optionally)
defines for an attribute the decrease in MF, given the attribute score
relevant prop (Attribute, Prop list) (optionally)
defines for an attribute the characteristics that are relevant for user’s evaluation of the attribute
score
location option (Location, Level, Subloc list)
defines for a location the location level and the set of sublocations
a priori MF (Site, Score)
defines for a lowest-level location the a priori MF
location data (Location, Property, Score) (optionally)
defines for a location characteristic the score
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The predicate attribute_subset lists the attributes per location level. For ex-
ample, the fact,

attribute_subset(market_sector, [sales_potential, competition_level]),

defines the relevant attributes at the market-sector level in the retail-site-selection
problem described in the former section. The position of attributes in the list
defines the priority for evaluation. So, in the search process attributes are eval-
uated in the order they are listed in Attr list.

The predicate attribute_score(Attribute, Location, Score) can be used to de-
fine functions for evaluating attribute scores; it binds the variable Score with a
specific score, given bindings of Attribute and Location. The definition of
this predicate typically consists of a set of rules that relates scores to location
characteristics. For example, the rule,

attribute_score(retail_environment, Location, moderate):-
location_data(Location, number_of_branches, X),
focation_data(Location, total_selling_space, Y),
location_data(Location, quality_of _presentation, Z),

X>5X<8,
Y > 4500, ¥ < 6000,
Z = excellent,

relates a moderate retail environment of Location to a specific combination of
number of branches, total selling space, and quality of presentation. Or, in proce-
dural terms, the retail environment of Location is set to moderate if Location
meets the specified conditions. In case of quantitative attributes, functions may
take the form of a mathematical model, such as a spatial interaction model for
estimating sales potential. If large calculations are involved, mathematical func-
tions are typically built in by a call to a routine written in a procedural language.

The predicate attribute_discrepancy(Attribute, Score, Discrepancy) is avail-
able for defining discrepancy functions [ f; in equation (7)]; it binds the variable
Discrepancy with a specific discrepancy, given bindings of Attribute and Score.
For example, the rule,

attribute_discrepancy(regional _access, medium, 2),

relates a decrease in MF of two units to medium regional accessibility. Or, in
procedural terms, Discrepancy is set to two units if the regional accessibility is
medium. Standard methods for calculating discrepancy scores are realized by gen-
eral, rather than attribute-specific predicates, such as,

linear_discrepancy(Weight, Score, MaxScore, MinScore, IdealScore,
Discr):-
standard_discr(Score, MaxScore, MinScore, IdealScore, D),
Discr = Weight  D.

Linear_discrepancy can be used for attributes, which are linearly related to MF.

The predicate standard_discr binds D with the discrepancy on a zero-one scale.
Alternatively, attribute scores or discrepancies may be defined in interaction

with the user, rather than by built-in functions. ProfMat assumes that this is the
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case if built-in functions are missing. So, the interactive way of evaluating an
attribute is realized simply by not including an evaluation function for that
attribute. When an attribute is evaluated interactively, ProfMat will try to find
data (stored in location_data) in the knowledge base relevant for evaluating that
attribute. These data are then displayed on the screen simultaneously with a
prompt to enter a value, to support the user’s decision.

The predicate relevant_prop(Attribute, Prop_list) can be used to define the
relevance of location factors to an attribute. The elements of Prop_list refer to
the variable Property in location_data. Every time the user is asked to enter an
attribute score, ProfMat presents the data stored in location_data referred to by
relevant_prop. So, for example, if number of shops, total selling space, and
competitive strength are relevant for evaluating the competition level of mar-
ket sectors, the fact

relevant_prop(competition_level, [number_of_branches,
total_selling_space, competitive_strength])

is included in the fact base. Then, ProfMat displays the properties listed to sup-
port the evaluation of the competition level of a market sector.

The second component of the knowledge base describes the optional loca-
tions in the area to be searched, using the following predicates:

location_option(Location, Level, Subloc_list);
a_priori_MF(Site, Score);
location_data(Location, Property, Score).

The predicate location_option stores for each location the identifier, level, and the
list of (identifiers of) sublocations. The study area itself is considered the highest-
level location. For example, the following fact defines the study area as a list of
optional market sectors:

location_option(market_A, study_area, [market_sector_Al,
market_sector_AZ2]).

where study_area is the reserved keyword that indicates the starting point of
the search. Lowest-level options are characterized by an empty sublocation list.
Finally, the predicate location_data stores values on location factors (properties)
needed for evaluating location attributes, such as

location_data(shopping_area_A, number_of_branches, 7),

The predicates described above make up the problem-specific knowledge,
which is input to the ProfMat system. During the search process, ProfMat
adds to this knowledge-based evaluation results using the following predicate:

location_ profile(Location, MF, Score_list, Discr_list).

The variable Score_list contains the scores and Discr_list the discrepancies of the
attributes listed in Attr_list of attribute_subset. MF represents the MF of Loca-
tion, Before starting the search process, a set of L facts of this type is created to
store the profile of L location options, whereby Score_list and Discr_list are ini-
tialized with unknown values and zero values, respectively. During the search
process location_profile is updated every time evaluation results are obtained,
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4.2 User Interaction

The first step in a consultation session is the specification of the input-knowl-
edge base that defines the site-selection problem. Then, the system evaluates
optional locations according to the ProfMat procedure. When 4 location attrib-
ute is needed while it is unknown, the system tries to find the needed value by
searching the knowledge base for appropriate facts (location_data) or evaluation
functions (attribute_score or attn’bute_discrepancy). If this search fails, the sys-
tem starts a procedure for an appropriate interaction with the user. In case of
an attribute score, the system first searches the relevant_prop facts and upon
success the location_data facts, to collect supportive data. Collected data, if
any, are displayed in an information window. In case of a discrepancy score,
the presented information consists of the score on the concerning attribute.
Simultaneously, a dialogue window is opened to prompt the user for entering
the needed value. Each time the system asks for a value, information can be
obtained on the reason of the question. This information consists of the profile
of the option under evaluation in terms of the score, ideal score, and discre-
pancy of all attributes at that level and the higher levels.

If the stop condition is met, that is, if the site with the highest MF is fully
evaluated, the system presents the name, MF, and attribute-profile of the
selected site. Optionally, the next-best solution is generated by repeating the
procedure, whereby the a priori MF of the selected (best) site is set to some
minimum value, so that it is ignored in the subsequent search process. This
can be repeated to generate the third-best solution and so on.

The degree of user interaction in evaluating options depends on the specif-
ication of the input knowledge base. The system works in a noninteractive
mode, if functions are built in for evaluating attribute scores and discrepancies
for all attributes. In the other extreme, if evaluation functions and (references
to) relevant data are lacking, the scores and discrepancies on all attributes are
determined by the user without supportive information. Many variants are pos-
sible in between these extremes. In one variant, which may be useful in some
situations, the system evaluates (and presents) attribute scores and the user de-
termines the corresponding decreases in MF. In another typical variant the user
decides both on the scores and discrepancies of attributes and the system pro-
vides data for supporting the decisions. Through the specification of the input
knowledge base, the user is able to prescribe the desired type of evaluation
per attribute.

5. CONCLUSIONS AND DISCUSSION

The ProfMat algorithm developed in this study selects from a given set of
optional sites the site that best matches a specified ideal profile. The procedure
differs from most commonly used procedures for site selection in two respects.
First, an iterative rather than linear process of selecting and evaluating can-
didate sites is used. Second, rather than using a flat search, the study area is
searched at different levels of scale, from high to low level. The iterative and
hierarchical procedure typically results in a tentative search process of narrow-
ing down the focus to increasingly smaller areas and returning to higher levels
to investigate alternative paths. This recursive process stops if the currently best
site is fully evaluated.

This procedure improves the efficiency of the site-selection process, without
affecting the quality of the outcome. The best option may be identified without
having evaluated all options completely. Unknown attributes are assumed to be
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ideal, so that partly evaluated options can be excluded if they are outperformed
by any other completely evaluated alternative. The procedure makes sure that
evaluation efforts are always directed to the most promising option and the
most informative attribute. Consequently, the expected number of attribute
evaluations is reduced to a minimum.

Given the size of the choice set, the efficiency improvement of the search
process leads to a reduction of costs associated with data collection and compu-
tation. On the other hand, given a certain amount of resources available for
search, the efficiency improvement enables the DM to consider a larger choice
set. The latter is significant in many site-selection problems, where the size of
the choice set is limited by available resources. Then, by allowing larger choice
sets, the ProfMat procedure may improve the quality of the solution. Further-
more, the ProfMat procedure probably corresponds more closely to the gen-
erally iterative nature of the human decision-making process and the top-down
orientation of human spatial search. Therefore, the incorporation of ProfMat in
a decision support system (DSS) or expert system for site selection may improve
the accessibility and face validity of the systems.

ProfMat addresses the multicriteria, single-site problem. It cannot be used to
find the optimal location of a network of activities (Lawrence and Ostresh
1978). However, in real-world situations, networks are rarely developed from
scratch. Instead, the problem is often to find an additional facility to expand
an existing network. ProfMat is useful for these problems, especially if the num-
ber of potential locations is large.

ProfMat has been implemented in an expert system for site selection. The
user of the system specifies the problem-specific knowledge using a prespe-
cified set of Prolog predicates. The system controls the input knowledge to
solve specific problems using ProfMat and supports various modes of evaluat-
ing options varying from highly interactive to noninteractive. Currently, the sys-
tem does not provide facilities for supporting the development and main-
tenance of the knowledge base. Both the user [riendliness and accessibility of
the system would be improved by adding an interface between user and knowl-
edge base that insulates the user from implementation details.

Furthermore, the usefulness of the system could be improved by adding
facilities for supporting the interactive evaluation of attributes. First, the user
should be able to query any supportive information from an area database. Sec-
ond, the user-system interaction should take place through a map of the study
area. Then, data queries and data presentations by the user or the system would
be linked to the concerning locations on the map.

In case of selection problems that are considered too ill-structured to formal-
ize the search procedure, a DSS provides a more appropriate problem-solving
environment than an expert system. In a DSS approach, the user would control
the ProfMat type of search and the system would provide supportive informa-
tion. The expert system and DSS approaches can be integrated as two optional
modes of the same (hybrid) system. The user of such a system is able to choose
between a system or user-controlled search process, dependent on the complex-
ity of the problem.

Finally, the ProfMat procedure, whether system or user-controlled, would
benefit from facilities available in most existing GIS. First, GIS provides data-
base management functions for storing, managing, and querying location, attri-
bute, and topologic data, which describe the study area. Second, functions for
spatial analysis typically available in GIS can be used for identifying candidate
locations {for example, overlay-analysis, selection functions), for defining sub-
areas (for example, regionalization or geographic-based functions) and for gen-
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erating attribute data (for example, network analysis, spatial interaction models,
aggregation functions). Finally, GIS visualization tools can be used for produc-
ing maps for user-interfacing, display, and report purposes. The integration of
ProfMat in a GIS would not only be beneficial for ProfMat, but would also
enhance the usefulness of GIS for spatial search.
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