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Faster Universal Modeling for Two Source 
Classes 

Ali Nowbakht* and Frans Willems 

Eindhoven University of Technology, Eindhoven, The Netherlands 

Abstract. The Universal Modeling algorithms proposed in [2] for two 
general classes of finite-context sources are reviewed. The above meth
ods were constructed by viewing a model structure as a partition of 
the context space and realizing that a partition can be reached through 
successive splits. Here we start by constructing recursive counting al
gorithms to count all models belonging to the two classes and use the 
algorithms to perform the Bayesian Mixture. The resulting methods lead 
to computationally more efficient Universal Modeling algorithms. 

1 Introduction 

We review the Universal Modeling algorithms proposed in [2] for two finite
context source classes: Class-l and Class-II. These algorithms were developed in 
the framework of a generalization of the Context-Tree Weighting (CTW) algo
rithm [1] and perform a recursive weighting of all models. A close look into the 
workings of the methods for Class-l and Class-II reveals that some of the models 
are being counted in repeatedly. This results in excessive storage and a higher 
computational complexity than strictly needed. Using an approach based on 
counting algorithms inside the original methods we can remove these repetitions 
and therefore reduce the complexity without sacrificing the performance. 

2 Universal Source Coding Overview 

The purpose of Source Coding is to represent sequences in the most compact 
way. This representation is called a (source) code and each (binary) sequence 
xi = Xl,"" XT of length T is represented by a (binary) codeword c(xf) of 
length L(xf). According to the concept of entropy of Shannon the ideal code
word length is related to the probability of the sequence P(xf) by the following 
expression Lid(xf) = -log2 P(xf) bits. The probability of a sequence depends 
on the characteristics of the information source which generated it. In the Uni
versal Source Coding setting the characteristics of the information source are 
unknown and therefore the probability P(x'f) has to be estimated from the 
sequence xi and any other available information . 

.. Supported by Technologiestichting STW under project EEL4643. 
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Finite-Context Sources These sources are characterized by the fact 
their current state (parameter) is determined by the current context informat· 
through some function (3(.). For each sequence symbol Xt there is a cont~on 
symbol Ut available. Therefore we can express the instantaneous probability: 
P(Xt = 1) = 1-P(Xt = 0) = Ofj(ud for t = 1, ... , T where Ut E U = {I, ... , V} 
the context space and Ok E [0,1] is a parameter. The probability of the whol 

T T T e sequence would be P(XI = Xl ) = TIt=1 P(Xt = Xt). 

Structure and Parameters The Source Model consists of two parts, namel 
the Model Structure (determined by the function (3(.)) and the Source Param y 
ters specified by the Parameter Vector e = {Ok, k = 1, ... , K} (K is the numb: 
of parameters here). The Structure specifies which groups of contexts correspond 
to the same stat~ ~parameter), these are called Context-Sets. The structure can 
be seen as a partItIon of the context space into disjoint subsets. The parameter 
define the probability distribution for every state. A Source Class is a collectio~ 
of structures that satisfy some restrictions on the allowed context-sets i.e. only 
some groups of contexts can correspond to the same state. 

l!ni~ers.al Model - Bayesian Mixture A Universal Model is a probability 
dlstnbutlOn that fits any source model. A conceptually straightforward way to 
construct such a universal model is to perform the Bayesian Mixture. 

Pc(xi) = L PM(M)P(xf I M) (1) 
MEM 

In the above expression Pc (xi) is the universal probability assigned to string xT. 
It is constructed by weighting (averaging) p(xf I M), the probabilities assign~d 
by each structure M from source class M, with the a-priori probability of that 
structure PM(M). P(x[ I M) = TI~l Pe(Sd, where PeeS) is an estimate for 
the probability of the subsequence corresponding to all symbols which where 
generated with context U E S ~ U. Here model M partitions U into K cells Si. 

3 Universal Modeling for Class-I 

Class-I is the most general source class one can think of since it makes no 
restrictions whatsoever on the composition of the context-sets. 

Context-Sets and Structures If the size of the context space is n there are 
(;) possible context-sets of size s. Hence, in total there are I::=1 (:) = 2n - 1 
different subsets. The number of different model structures is the number of 
distinct partitions of the context space into disjoint subsets. In general, N (n, p) 
the number of partitions of a context space of cardinality n into p subsets can be 
expressed as N(n,p) = M~~,p) where M(n,p) defines the number of partitions 

into p labeled subsets and is defined recursively M(n,p) = pn - I:f':11 mM(n, i). 
The total number of structures in Class-I is thus I:~=1 N(n, i). 

The Arbitrary Splitting Method 

h uld be obvious from the preceding section, it is infeasible to calculate 
s ~an Mixture (1) by summing all models one by one. Therefore Willems Bayesl . . . . 

1 oposed the Arbitrary Spl~ttmg (AS) method m [2] as an alternatIve. We 
a . pr briefly the AS method. For each of the possible context-sets V a record 
hold which keeps two probabilities: the Estimated Probability Pe(V) and the 

Weighted Probability Pw(V). . . . 
PeeD) is an estimate for the prob~bihty of the subsequence correspondmg to 

an ymbols which where generated WIth context U E V. 
~he weighted probability Pw(V) is defined as the uniform weighting of the 

estimated probability and the weighted probabilities of all substru?tures ~hich 
ult by splitting V (into two subsets). The set lI(V) of all pOSSIble sphts of 

~~ntext-set V is defined in the following manner 

lI(V) = {(St,~) : SI # 0,SI # V,~ = V \ SI} 

The weighted probability is expressed as 

Pe(V) + I:(Sl,S2)EII(V) Pw(Sr)Pw(S2) 
Pw(V) = 21V I-l (2) 

The Universal Model is defined as Pc(xf) = Pw(U) and includes all models in a 
recursive way. 

Computational Complexity For a certain subset V we need according to 
expression (2) 21v1- l - 1 additions and 2lvl - l multiplications. Note that we are 
just counting the operations needed to calculate Pw(V) when all involved terms 
are already available. Summing up over all subsets will give the total complexity. 
Remember that for a context space of cardinality n there are (:) subsets of size 
s. The total number of additions is therefore 

N~~(n) = t (n) (28-1 _ 1) = 3
n 

- 2
n
+l + 1 

s~ s 2 

and the total number of multiplications 

NAB ( ) _ ~ (n)2S-l _ 3n
-l 

mu/ n -~ S --2-
8=1 

Model Multiplicity There are many ways to arrive at a partition by means 
of successive splitting. Consider a model with p parameters Le. a partition of 
the context space into p cells. We can easily write down the following recursive 
formula for p,(P) the number of different ways we can arrive at this particular 
model 

for p even 
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Fig.!. All ~ontext-Sets for Class-I with U = {a, b, c}. Splits are shown for new m h 
(only filled Imes) and AS method (all lines). et ad 

E..::.! 

I'-(P) = t (~)I'-(i)I'-(P-i) 
i=1 z 

for p odd 

with 1'-(1) = 1. 

Ex~mple 1. In figure 1 the 1'-(3) = 3 successions of splits leading to structure 
SI - {a} ~ = {b} S3 = {c} can be appreciated. 

3.2 El: A New Universal Modeling Method 

From the preceding section it should be clear that for the AS method it 
holds that ~he. number of times a structure is included in the Universal Model 
explodes wIth It~ number of parameters. This observation motivates the search 
for methods WhICh perf~rm t~e Bay?sian Mixture without repeating models in 
the s~m and hence savmg arIthmetic operations. We start by introducing an 
algorIthm to count all models in Class-I. Let a(n) be the number of models in 
Class-~ for a context space of size n. Let us begin counting all models by selecting 
an ~bltrary context x E U, and consider all models where x forms a context-set 
on hIS own. Since there are n -1 contexts left, there will be a( n -1) such models. 

So far we have only considered the models with x forming a subset. Let us 
now add all models where x is joined by one of the other n -1 contexts, say y. 
Now {x,y} form a context-set and there are thus n - 2 contexts left. Therefore 
there ar? (n -1). a(n - 2) such models. By continuing in this way we can write 
a recurSIve formula for a(n) namely 

a( n) = ~ (n ~ 1) a( n - 1 -i) 
i=O Z 

with a(O) = 1. 

Obviously it must be true th~t a(~) = 2:;=;1 N(n,p). The above algorit~m 
b sed to perform the BayesIan MlXture. FIrst of all we define a set of sphts 
e ueric context-set V S;;;; U. This set is formed by all splits used in the above 

a gen when applied on 'D. Consider an arbitrary element x E 'D. We define 

(3) 

ne'D) contains all possible splits, the same as II(V), the difference is that here 
we ask that the sets containing x are called SI or what is the same that all SI 's 

ust have a common element. 
III Note that [J(V) includes the void split (V,0) which II(V) does not, and 
therefore the number of splits is \[J(V)\ = 2Ivl -

l
. 

The new method works in the following way. Again we have records holding 
the estimated probability Pe('D) for all possible context-sets in Class-I. But now 
instead of having a weighted probability attached to all (2fi -1) context-sets we 
only need it for the context-sets which will be further split (the 2

fi- 1 
- 1 sets 

called S2 in (3)). Only for these context-sets we define P/(V) probabilities 

P (V) = 2:(SbS2)EO(V) Pe(SI)P/(~) 
I 2lvl-l 

where P/(0) = 1. This reduces the storage need for keeping the weighted prob
abilities to the half. 

We define the Universal Model as Pc(xf) = P/(U) and now each model is 
included only once in the sum since there is only one possibility to arrive at a 
partition through successive splits. 

Example 2. The new method results in removing the dashed splits in figure 1. 

Computational Complexity For a certain subset V we need according to the 
above expression 21VI- 1 - 1 additions and 21VI- 1 multiplications. Summing up 
over all subsets for which a weighted probability is necessary will give the total 
complexity. Note that for a context space of cardinality n there are only (fi;l) 
context-sets of size 8 which have a PI (.) attached. The total number of additions 
is therefore 

and the total number of multiplications 

N~;I(n) = ~ (n ~ 1)28
-

1 = N~~l(n -1) 

In summary, this new approach increases the speed with respect to the AS 
method by a constant factor and reduces the storage need for keeping the 
weighted probabilities to the half. 
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4 Universal Modeling for Class-II 

Class-II is defined by first considering a lexicographical ordering on the 
text space U. Since we have defined U == {1, ... , n} the lexicographical UCClerln .. 
is the usual ordering of the natural numbers. The only allowed partitions of the 
context space (because of the ordering it is now a line) are those which divide it 
into intervals, each forming a context-set. We introduce the following notation 
for specifying context-sets (i --+ j) == {u E U : i :5 u :5 j} where i,j E U and 
j ~ i. 

Context-Sets and Structures Note that for a context space of size n there 
are n(

n
2+I) possible context-sets and that there are (;::::D different structures 

having p parameters. This means that in total there are E;=1 (;=D = 2n - 1 possible structures in Class-II. 

4.1 The Lexicographical Splitting Algorithm 

Although Class-II is a small class compared to Class-I it still includes an 
exponential number of structures making the brute-force approach to calculat_ 
ing the Bayesian Mixture infeasible. Therefore Willems et. al [2] proposed the 
Lexicographical Splitting (LS) algorithm. We describe the LS method briefly. 
For a context space of size n there is for each of the n( n2+I) possible context
sets (i --+ j) a record which keeps two probabilities : the Estimated Probability 
Pe((i --+ j» and the Weighted Probability Pw«i --+ j». Pe((i --+ j» is of course 
the same as in the methods for Class-I. The weighted probability Pw((i --+ j» 
is also defined in the same manner but its mathematical expression has to be 
adjusted to Class-II. 

p, «. --+ .» = PeCCi --+ j» + Et:! Pw«i --+ k» . Pw«k + 1 --+ j» for J' > i 
w 2 J . '+1 J -2 

(4) 
IT j = i we define Pw«i --+ i» = Pe((i --+ i». The Universal Model is Pc(xi) = 
Pw(U) = Pw«1 --+ n». 

Computational Complexity We look now at the complexity of computing the 
weighted probability for a generic context-set of size d. Suppose that all weighted 
and estimated probabilities involved have been updated already, in that case we 
need d - 1 additions and d multiplications as can be Seen from (4). Note that 
for a context space of size n there are n - d + 1 context-sets of size d. 

N LS() ~ ( 1) ( 1) (n -1)n(n + 1) add n =L n-s+ . s- = 6 
8=1 

N LS ( ) _ ~ ( 1) _ n(n + 1)(n + 2) 
mul n - L n - s + . s - 6 

8=1 
The complexity is thus D(n3 ). 

• 2 All Context-Sets for Class-II with U = {I, 2, 3}. Splits are shown for new 
!~~hod (only ruled lines) and LS method (all lines). 

M d 1 Multiplicity This section is based on the observation that the LS 
alg~ri~hm arrives at some models through different splits. More pre~isely suppose 
a model having p parameters. The number of ways J.L(P) we can arrlve at a model 
with p parameters is given by the Catalan Numbers 

P-l. . 1 (2P - 2) 
J.L(p) = LJ.L(2)' J.L(p - 2) = p p-I 

i=1 

with J.L(I) = 1. 

Example 9. In figure 2 the J.L(3) = 2 successions of splits leading to structure 
81 = {1} ~ = {2} S3 = {3} can be appreciated. 

4.2 E2: A New Universal Modeling Method for Class-II 

As for Class-! we start by finding an counting algorithm for Class-II. Let 
ben) be the number of models in Class-II for a context .space of .size n .. We can 
write an expression for all structures in function of the SIze of theIr first mterval. 
ben) = L~::-o1 b(i) with b(O) = 1. Obviously ben) = 2n - 1 . •• . . . 

Therefore we define instead of the weighted probabIlItIes, Fast Wezghtmg 
probabilities PI(')' Note that now we do not need to store a PI in each of 
the n(n+I) records corresponding to all context-sets (i --+ j) for i = 1, ... , nand 
j ~ i. fo calculate PI «1 --+ n» we only need n PI's, namely those corresponding 
to context-sets (i --+ n) for i = 1, ... , n. 

where PI«n+I --+ n» = 1 by convention. The Universal Model is simply defined 
as Pc(xi) = PI(I --+ n). 

Example 4. The new method results in removing the dashed splits in figure 2. 
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Computational Complexity The only difference with respect to the 
for the LS method is that now for a context space of size n there is only 
context-set of size d which has a weighted probability attached. 

N E2 ( ) _ ~ ( 1) _ (n -1)n 
add n -L.. s- - 2 

8=1 

N E2 ( ) _ ~ _ n(n + 1) 
mul n - L.. s - 2 

8=1 

Which are of order O(n2 ). 

In summary, this new method reduces the complexity from O(n3 ) to O( 
and the storage need for keeping the weighted probabilities from n(n

2
+1) to n. 

5 Conclusions 

We have introduced new methods to perform the Bayesian Mixture for Class
I and Class-II. The difference to the earlier proposed methods of [2] can be best 
appreciated in the Model Multiplicity. In our methods each model can be reached 
through a unique succession of splits and therefore is included only once in the 
Universal Model. As we have shown, in the earlier methods this was not the 
case. 

The new methods exhibit a lower computational complexity and storage need. 
In the case of Class-I the reduction is by a constant factor. For Class-II we go 
from O(n3 ) to O(n2 ) in complexity and from O(n2 ) to O(n) in the storage need 
for the weighted probabilities. Here n represents the size of the context space. 
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