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As is well known, hard-sphere crystals of the fcc and hcp type differ very little in their thermodynamic
properties. Nonetheless, recent computer simulations by Pronk and Frenkel indicate that the elastic response to
mechanical deformation of these two types of crystal are quite different �S. Pronk and D. Frenkel, Phys. Rev.
Lett. 90, 255501 �2003��. By invoking a geometrical argument put forward by Martin some time ago �R. M.
Martin, Phys. Rev. B 6, 4546 �1972��, we suggest that this is largely due to the different symmetries of the fcc
and hcp crystal structures. Indeed, we find that elastic constants of the fcc hard-sphere crystal can be mapped
onto the equivalent ones of the hcp crystal to very high accuracy, as a comparison with the computer simulation
data of Pronk and Frenkel shows. The same procedure applied to density functional theoretical predictions for
the elastic properties of the fcc hard-sphere crystal also produces remarkably accurate predictions for those of
the hcp hard-sphere crystal.

DOI: 10.1103/PhysRevE.72.067104 PACS number�s�: 62.20.Dc, 82.70.Dd

In a recent publication �1�, Pronk and Frenkel report
on a computer simulation study of the elastic properties of
fcc and hcp crystals of hard spheres. They find the various
elastic constants to differ by up to 20%, despite that
the thermodynamic properties of both types of hard-sphere
crystal are barely distinguishable. Indeed, the free energies,
pressures and compressibilities of the two crystal types
deviate from each other by less than 0.1% for conditions
not too far removed from the melting point �1�. In this work,
we point out that the difference in the elasticity of fcc
and hcp hard-sphere crystals is less surprising than claimed
by Pronk and Frenkel, and that it can be explained by
the geometry of the packing of the particles within each
lattice type.

The relation between the elastic moduli of hcp and fcc
crystals have been studied theoretically and experimentally
by a number of authors �2–6�. Of particular interest is
the work of Martin �4�, who derived an approximate trans-
formation of the elastic moduli of the fcc crystal to those of
the hcp lattice, making use of the fact that both lattice types
can be constructed from tetrahedral units. The tetrahedral
blocks in the fcc lattice are equally oriented, while the hcp
lattice can be built up from two tetrahedra oriented differ-
ently from each other and from the fcc tetrahedron. The
transformation of any tensor in the fcc system of coordinates,
defined as usual along the cubic axes, to either of the two
representations of this tensor in the trigonal geometry of the
hcp crystal can be made by two simple rotations R�1� and
R�2�, where
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This suggests that the transformation of the elastic moduli
tensor, CFCC, from the fcc geometry to that of the trigonal

geometry of the hcp lattice, C̄HCP, could simply be the aver-
age �or superposition� of the two trigonal tensors �6�,

C̄ijkl
HCP =

1

2
�Rir

�1�Rjs
�1�Rkt

�1�Rlu
�1�Crstu

FCC + Rir
�2�Rjs

�2�Rkt
�2�Rlu

�2�Crstu
FCC� ,

�2�

where the subscripts have their usual meaning. It so happens,
however, that the two unequal tetrahedra of the hcp lattice
are not independent, but attached to each other. Hence, the
elastic response of the hcp lattice to an external strain should
be the combined response of both tetrahedra, not just a
simple average, implying that Eq. �2� requires a correction
for the internal strain that the connectedness of and interac-
tion between the tetrahedra produces. We refer to Ref. �4� for
further details.

The resulting strain-corrected expression for the elastic
moduli tensor of the hcp lattice, CHCP, reads �4�
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Cijkl
HCP = C̄ijkl

HCP − �ijrs�C̄rstu
HCP�−1�tukl, �3�

where C̄ijkl
HCP is given by Eq. �2� and � is a correction tensor

identical to it except that the difference is taken instead of
the sum. There are six independent elastic moduli in the
trigonal representation. The relations between the elastic
moduli of the fcc lattice and the ones in the trigonal repre-
sentation are expressed in the following formulas �using the
standard Voigt notation�:

C̄11 = �C11
FCC + C12

FCC + 2C44
FCC�/2,

C̄12 = �C11
FCC + 5C12

FCC − 2C44
FCC�/6,

C̄13 = �C11
FCC + 2C12

FCC − 2C44
FCC�/3,

C̄14 = �C11
FCC − C12

FCC − 2C44
FCC�/3�2,

C̄33 = �C11
FCC + 2C12

FCC + 4C44
FCC�/3,

C̄44 = �C11
FCC − C12

FCC + C44
FCC�/3. �4�

The elastic moduli of the hcp lattice can then be calculated
from the following relations:

C11
HCP = C̄11 − C̄14

2 /C̄44,

C12
HCP = C̄12 + C̄14

2 /C̄44,

C13
HCP = C̄13,

C14
HCP � 0,

C33
HCP = C̄33,

C44
HCP = C̄44 + C̄14

2 /� 1
2 �C̄11 − C̄12�� . �5�

The mapping of CFCC onto CHCP implicit in Eqs. �4� and �5�
agrees well with experimental data on ZnS, a compound that
can crystallize both in an fcc and in an hcp lattice �4�. In fact,
the mapping works very well for fcc and hcp crystals of hard
spheres too, as we demonstrate next.

In Fig. 1, we have plotted the relative difference between
the various moduli of the fcc and hcp crystals of hard
spheres, �ij �	Cij

FCC−Cij
HCP	 /Cij

FCC, as a function of the di-
mensionless crystal density �S�3 with � the diameter of the
spheres, using the computer simulation data of Pronk and
Frenkel �obtained from Table I of Ref. �1�� and the prediction
of Martin, given by Eqs. �1�–�5� �4�. The deviation between
the two is within the numerical error of the computer simu-
lations �not shown for clarity� �1�. Hence, we can conclude
that the approximate theory outlined above, and which is
based entirely on a geometric argument, explains the differ-
ence between the elastic moduli of fcc and hcp crystals. In
other words, geometry plausibly explains the found differ-
ences in elastic behavior of fcc and hcp crystals of hard

spheres. This makes these differences not as surprising as
previously claimed �1�.

In order to further verify Eqs. �1�–�5�, we calculate the
elastic moduli of the hcp hard-sphere crystal using results for
the elastic moduli of fcc crystals of hard spheres obtained
from density functional theory �DFT� �7�. We use the predic-
tions of the modified weighted-density approximation DFT,
MWDA DFT, because they are known to agree very well
with the results of computer simulations �7�. Classical DFT
has its roots in the quantum mechanical theory and makes
use of the fact that the Helmholtz free energy F is a unique
functional of the density distribution ��r� for all positions r
in the system. This functional F��� can be represented as a
sum of an ideal functional Fid��� for noninteracting particles
and an excess-free energy Fex���, which arises due to the
inter-particle interactions, so F���=Fid���+Fex���. The equi-
librium single-particle density can be calculated by the mini-
mization of F���. The expression for the ideal part of the free
energy Fid��� is known exactly,

Fid��� =
 dr ��r��ln ��r� − 1� , �6�

while the excess free energy is not and requires �often ad
hoc� approximations. The MWDA DFT uses the following
expression for it

1

�SV
Fex��� = fex

L ��̃� , �7�

where fex
L ��̃�r�� is the excess free energy per particle of a

uniform liquid, V is the volume of the system, �S is the

FIG. 1. Relative difference �ij �	Cij
FCC−Cij

HCP	 /Cij
FCC between

the various elastic moduli of hcp and fcc crystals of hard spheres as
a function of the dimensionless density, �S�3, where � denotes the
hard-sphere diameter. Shown are the results of the computer simu-
lations of Pronk and Frenkel for the two crystal types �1�, indicated
by the open symbols ��ij�, and those obtained by applying the rela-
tions Eqs. �1�–�5� to the simulation results for the fcc crystal, indi-
cated by the closed symbols ��ij� �.
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density of the solid phase, and �̃ is the so-called uniform
weighted solid density, defined as

�̃ =

 dr 
 dr���r���r��w̃�r − r�, �̃�


 dr���r��
. �8�

The equation for the weighting function w̃�r−r� , �̃� adopts in
Fourier space the form

− kBTĈL
�2��q,�L� = 2

�fex
L ��L�
��L

ŵ̃�q,�L� + �L

�2fex
L ��L�

�2�L
�q,0,

�9�

with �L the density of the fluid phase, q the momentum trans-

fer, ĈL
�2��q ,�L� the Fourier transform of the direct correlation

function of the particles in the fluid phase, and ŵ̃ the Fourier
transform of the weighting function.

The weighting function should satisfy the condition that

the direct correlation function of the uniform liquid ĈL is
equal to the direct correlation function of the solid if the
liquid and solid densities are the same, ��r�=�L, i.e., the
solid is treated as an inhomogeneous liquid. As usual, we
presume the density distribution ��r� to be Gaussian and
centered around the lattice points. The direct correlation
function of the fluid phase can be obtained by solving the
Ornstein-Zernike equation for classical fluids invoking, e.g.,
the Percus-Yevick closure. Finally, the excess free energy per
particle fex

L is calculated from the Carnahan-Starling equation
of state. The results of the MWDA for the freezing of the

hard-sphere system show very good agreement with com-
puter simulations �7�.

The elastic moduli tensor obtainable from DFT and
Hooke’s law reads

Cijkl = � 1

V

�2F

��ij��kl
�

�=0
, �10�

where �ij denotes the elements of the strain tensor. For cubic
symmetry the desired expressions for the elastic moduli are
quite straightforward, e.g., see Ref. �7�. The predictions of
the MWDA DFT for the elastic moduli of the fcc crystal
show the best agreement with simulations in comparison to
other DFTs �7� and seem therefore to be the most suitable for
our purpose. The results of the mapping of the fcc moduli,
calculated by means of the MWDA DFT, onto the hcp
moduli are presented in Fig. 2, again as a function of the
dimensionless density of the spheres. The agreement with the
results of the computer simulations of Pronk and Frenkel �1�
is quite good for all moduli except C13, for which it is not as
impressive but still satisfactory.

In conclusion, we believe to have demonstrated that the
difference in elasticity between the fcc and hcp crystals of
hard spheres is largely caused by the geometrical differences
of these two types of crystal lattice. Even when the thermo-
dynamic properties of fcc and hcp crystals are indeed similar
to the point of being virtually indistinguishable, there is in
fact no reason for their elastic properties to be similar too.
The reason is that similarities in the free energy landscape at
long wavelengths do not preclude differences at short wave-
lengths. Indeed, short wavelength distortions contribute
much more significantly to the elastic constants than to the
free energy itself �8�.

FIG. 2. Elastic moduli Cij in units of kBT /�3

�7�, as a function of the dimensionless crystal
density, �S�3. Here, � represents the particle ra-
dius and kBT the thermal energy. Represented by
the open symbols are the results of the mapping
of the fcc moduli calculated by means of the
MWDA DFT onto the hcp moduli, using the re-
lations Eqs. �1�–�5�. Indicated by the closed sym-
bols are the results of the MD computer simula-
tions of Pronk and Frenkel �1�.
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