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lunch, and tea breaks, to Gudrun Kiesmuller for answering all my questions (even the
frequently asked questions), and to all the Ph.D. students in the OPAC department
for cheering each other up during hard times occurring in this four year project.

Finally, I want to thank my friends and family for their continuing support and interest
in my work. I especially want to thank Vincent for all his love and help. The last
thank goes to Jasper, my little miracle, for reminding me with his always beautiful
smile of the better things in life.

Judith Spitter,

April 2005

v





Contents

1 Introduction 1

1.1 The SCOP problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Motivation and background . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.2 Planned lead time concept . . . . . . . . . . . . . . . . . . . . . 6

1.2.3 MP models for the SCOP problem . . . . . . . . . . . . . . . . 10

1.3 Problem statement and research questions . . . . . . . . . . . . . . . . 12

1.4 The experimental framework . . . . . . . . . . . . . . . . . . . . . . . 12

1.5 Research design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.6 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2 Two LP models for solving the SCOP problem 19

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 Production dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4 Linear Programming model . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4.1 Uncapacitated LP model . . . . . . . . . . . . . . . . . . . . . 24

2.4.2 Cumulative capacity constraints . . . . . . . . . . . . . . . . . 24

2.4.3 Balanced capacity constraints . . . . . . . . . . . . . . . . . . . 26

2.5 Comparing the models . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.5.1 Experimental design . . . . . . . . . . . . . . . . . . . . . . . . 26

2.5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

vii



viii CONTENTS

3 Early vs late production during the planned lead time 33

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2 The use of capacity; an example . . . . . . . . . . . . . . . . . . . . . 34

3.3 Work-in-process inventory . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3.1 Objective functions for early and late production . . . . . . . . 37

3.4 Numerical study using a rolling schedule . . . . . . . . . . . . . . . . . 38

3.4.1 Experimental setting . . . . . . . . . . . . . . . . . . . . . . . . 38

3.4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.5 The 18-item model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.6 Conclusion and further research . . . . . . . . . . . . . . . . . . . . . . 45

4 Factors which influence the optimal planned lead time 47

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.2 Factors influencing the planned lead time . . . . . . . . . . . . . . . . 48

4.3 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.3.1 Experimental setting . . . . . . . . . . . . . . . . . . . . . . . . 49

4.3.2 Hypotheses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.3.3 Experimental parameters . . . . . . . . . . . . . . . . . . . . . 51

4.3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.4 The 18-item model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5 Early availability of produced items 59

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.2 LP model with early production . . . . . . . . . . . . . . . . . . . . . 60

5.3 Immediate availability of produced items . . . . . . . . . . . . . . . . . 61

5.3.1 Mathematical representation of the model . . . . . . . . . . . . 61

5.3.2 Experimental setting . . . . . . . . . . . . . . . . . . . . . . . . 63

5.3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.4 Early availability of produced items when needed . . . . . . . . . . . . 65

5.4.1 Mathematical representation of the model . . . . . . . . . . . . 65

5.4.2 Experimental setting . . . . . . . . . . . . . . . . . . . . . . . . 68

5.4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68



CONTENTS ix

5.5 The 18-item model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6 Balance allocation of shortages 73

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.2 Illustration of the allocation policies . . . . . . . . . . . . . . . . . . . 75

6.3 Mathematical representation of the allocation policies . . . . . . . . . 77

6.3.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.3.2 Allocation rules . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.3.3 Lower bounds for allocation rules . . . . . . . . . . . . . . . . . 82

6.3.4 Quadratic objective function . . . . . . . . . . . . . . . . . . . 83

6.4 MP models with balanced allocation vs SBS concept . . . . . . . . . . 84

6.4.1 Synchronized base stock control concept . . . . . . . . . . . . . 84

6.4.2 Numerical experiment . . . . . . . . . . . . . . . . . . . . . . . 85

6.4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.5 Numerical experiment with capacitated supply chains . . . . . . . . . 87

6.5.1 Experimental design . . . . . . . . . . . . . . . . . . . . . . . . 87

6.5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.6 The 18-item model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

7 Conclusions and future research 97

7.1 Main research findings . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

7.1.1 Optimal usage of planned lead time concept . . . . . . . . . . . 98

7.1.2 Performance of LP versus stochastic strategies in rolling sched-
ule setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

7.1.3 General conclusion . . . . . . . . . . . . . . . . . . . . . . . . . 100

7.2 Future research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

7.3 Retrospect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

References 103

A The equivalence of the two sets of capacity constraints 107



x CONTENTS

B The equivalence between physical and echelon inventory balance 111

C Strict allocation 117

Summary 119

Samenvating 122

Curriculum Vitae 126



Chapter 1

Introduction

1.1 The SCOP problem

In the last decade of the twentieth century, Supply Chain Management (SCM) emerged
as a new management concept. This management concept deals with the integration
of planning, executing, and controlling all activities associated with the transporta-
tion, transformation and storage of goods from raw materials to end-users, as well as
the associated information flows, in order to minimize total supply chain costs while
satisfying customers demand. Intrigued by the problems and experiences that have
emerged from business practice, Supply Chain Management has become a very visible
and influential research topic in the field of operations research.

In this thesis we concentrate on only one part of SCM, namely the problem of co-
ordinating material and resource release decisions in the supply chain such
that predefined customer service levels are met at minimal cost. We refer to
this coordination problem as the Supply Chain Operations Planning (SCOP) prob-
lem. For solving this problem, we make use of various mathematical programming
methods and additionally build on results from multi-echelon inventory theory.

Let us discuss the three key features of the Supply Chain Operations Planning (SCOP)
problem one-by-one, starting with the supply chain. First, we view the supply chain
as a network, with suppliers delivering raw material and customers buying produced
goods, see figure 1.1 for an example. To produce an end item, raw material must
undergo several transformation activities, implying that raw materials transform into
components, components into subassemblies, subassemblies into assemblies, and as-
semblies into finished products ready to be distributed. These transformation ac-
tivities can be both physical, such as manufacturing or assembly activities and non-
physical such as the transportation from one location to another.

1
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Figure 1.1: An example of a Supply Chain.

In this thesis we assume that supply chain structures have the following characteristics

• transformation activities may be preceded by multiple transformation activities,

• transformation activities may be succeeded by multiple transformation activities,

• resources have restricted capacity,

• holding costs of downstream items increase (i.e. added value is positive after each
transformation activity), and

• lot sizes and setup cost are neglected.

Furthermore, we assume a make-to-stock environment, allowing us to produce without
knowing customer demand exactly.

The second key feature of the SCOP problem is the coordination of material and
resource release decisions. The SCOP function, depicted in figure 1.2, determines
a production plan, i.e., the releases of both materials and resources, whereby we
explicitly consider coordination of all release decisions simultaneously in a multi-item,
multi-period setting. Special in our approach is way we apply the concept of planned
lead times, time intervals in which the production of an order must take place: by
which we decouple material release from resource consumption over time. Thus the
capacity required to produce an order can be consumed at any point in time during
the planned lead time. Former MP models with planned lead times can only be found
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customer demand
(forecast)

//

//

//

material release
decisions

capacity release
decisions

SCOP

Figure 1.2: Supply Chain Operations Planning.

in Negenman (2000) and De Kok & Fransoo (2003). In example 1.1, we explain the
release decisions of material and resources for one item using simple tables.

Example 1.1 In this example we consider one item, namely item X. Item X is pro-
duced on a capacitated resource, that can only produce 15 units of item X in one
period. Furthermore we assume that item X has a planned lead time of 2 periods. In
table 1.1, the release decisions of orders are calculated and in table 1.2 we see how
orders are allocated to a resource.

Period
Item X 0 1 2 3 4 5 6
Gross requirements 20 5 23 5 25 10
Projected on-hand 28 8 3 -20
Net requirements 20 5 25 10
Order receipts 20 5 25 10
Order release 20 5 25 10

Table 1.1: Material release.

In table 1.1, we calculate the order release decisions based on the gross requirements
for 6 successive periods. Projected on-hand are those items that are on stock at the
current time. At the current time we have 28 units of item X on stock, which is
enough to satisfy the gross requirements for the first two periods. To satisfy the gross
requirements of the remaining periods, we need to produce item X. The number of
units we have to produce is given by the net requirements. The order receipts indicate
when the orders are produced and the order releases indicate the period in which we
may start the production of an order. We assumed a planned lead time of 2 periods.
The actual production time of item X is just one period, so items are either waiting
one period before being produced or are produced immediately and wait for one period
afterwards.

In table 1.2, we see that the order releases are copied for table 1.1. These are the
number of items we have to produce. However we can only produce 15 units per period.
We assume that there were no order releases in the past, that influence the capacity
allocation. In period 1, there is an order release of 20 units, 15 units (maximal
capacity of the resource) are produced immediately while 5 units remain waiting. These
5 units are produced in period 2 while the 15 units already produced are waiting the
remainder of the planned lead time. In period 2, there is an order release of 5 units,
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Item X 1 2 3 4 5 6
Order release 20 5 25 10
Capacity 15 15 15 15 15 15
Waiting before production 5 0 10 5 0
Production 0 15 5 5 0 15 10 5 5
Waiting after production 0 15 5 15 5
Order receipt 0 0 20 5 25 10

Table 1.2: Resource release.

since we still have a capacity of 10 units left, these are produced immediately and wait
in period 3 before they can be used. In period 3, we have again an order which is
larger than the maximal capacity, so we produce 15 units in period 3 and 10 units in
period 4. In period 4, we have an order of 10 units. Since we only have a capacity
of 5 units left, 5 of the 10 units are produced in period 4 and 5 units are produced in
period 5. So, now we also have the resource release decisions, these are given in the
line “Production” in table 1.2.

The last key feature of the SCOP problem is the objective of meeting customer service
levels at minimal cost. As service levels we a predefined non-stockout probability for
all end items. With this objective we can measure and compare the performances,
namely the total cost, for different SCOP functions. The performance of each SCOP
problem is measured using a rolling schedule to incorporate the impact of stochastic
end item demand (cf. figure 1.3). In accordance with the make-to-stock assumption,
production plans are made assuming a demand forecast. For the successive periods
(t, t + 1], (t + 1, t + 2], . . ., (t + T − 1, t + T ] the SCOP is determined based on a
forecast of the demand, whereby t is the current time and T is the planning horizon.
Then, only the first period of the production plan is actually implemented by releasing
both materials and resources due to be released in that first period. Directly after
the first period, actual customer demand is known and a new production plan, based
on the actual net inventory levels, a possibly updated forecast of future demand,
and the outstanding orders generated by previous plans, is made for the coming
planning horizon. The planning horizon for the SCOP function is in most industries
several months with weekly time buckets. In some industries, e.g., bulk chemicals,
this function may have a horizon as short as a couple of weeks with daily buckets,
whereas in other industries, e.g., pharmaceuticals, the horizon may be as long as a
couple of years with monthly time buckets.

Note that instead of shifting the planning horizon after each period, you can also shift
only after, e.g., four periods. In this case the first four periods of the determined pro-
duction plan are implemented, and only after the fourth period the a new production
plan based on the actual demand of the last four periods and the demand forecast for
the coming time horizon is calculated. Most probably this reduces the nervousness of
the system, however the reaction time on deviations from customer demand forecast
decreases. In this thesis we restrict ourself by shifting the planning horizon after each
period.

The outline of this introductory chapter is as follows. In section 1.2 we describe the



1.2. Motivation and background 5

 

The SCOP plan is 
determined for the 

planning horizon (t,t+T] 

The SCOP plan is 
implemented for period 

(t,t+1] 

Actual demand of period 
(t,t+1] is known 

Inventory levels at time 
t+1 are adjusted to actual 

demand 

 
t = t+1 

Figure 1.3: Rolling schedule concept.

motivation of the research and discuss the introduced planned lead time concept and
literature on mathematical programming models to solve the SCOP problem. The
problem statement and research questions are formulated in section 1.3. In section 1.4
we discuss the experimental framework we use to compare different SCOP functions.
In section 1.5 the used methodology is discussed and we conclude with an outline of
the thesis in section 1.6.

1.2 Motivation and background

1.2.1 Motivation

In this thesis we study the Supply Chain Operations Planning problem under de-
mand uncertainty. Solving this problem is highly complex, and optimal control is
even beyond mathematical tractability. Current research considers either tractable
uncapacitated stochastic models of limited structural complexity (e.g. optimality of
echelon order-up-to-levels for serial structures have been derived by Clark & Scarf
(1960), for convergent structures by Rosling (1989), and for divergent structures by
Diks & de Kok (1999)) or mathematical programming approaches to solve determin-
istic instances (e.g. Billington et al. (1983), Hopp & Spearman (2000), and Belvaux
& Wolsey (2001)).

To incorporate demand uncertainty while dealing with complex supply chain struc-
tures, we use mathematical programming (MP) models (see section 1.2.3 for an



6 Introduction

overview of MP models) in a rolling schedule context. We refer this policy whereby
MP models are used in a rolling schedule context as the MP based policy. Although
the rolling schedule heuristic possibly results in non-optimal solutions, it is extremely
relevant from a real-life perspective. In practice, expectations of future demands
change, and current orders may be cancelled, delayed or expedited. Furthermore,
production planning in a rolling schedule setting is a core element of the Material
Requirements Planning (MRP) approach, see Bertrand et al. (1990). Moreover, a
study of Blackburn & Millen (1980) in which the impact of a rolling schedule imple-
mentation on the performance of lot sizing methods for single-level assembly systems
are examined, concludes with the following quote:

It is hoped, . . ., that future studies of new and old lot sizing methods will
examine performance in a rolling schedule framework.

A recent rolling schedule study can be found in Stadtler (2003). In this paper a new
time decomposition heuristic for solving multi-item, multi-level lot sizing problems
for general product structures with single and multiple constrained resources as well
as setup times is proposed. In this heuristic, lot sizing decisions are made sequentially
within a internally rolling planning interval, while the capacities are considered over
the entire planning horizon.

However not only customer demand, but also processing times are uncertain. In order
to assume a 100% due date reliability, we introduce the planned lead time concept.
The planned lead time is a time interval in which a released order must be produced,
and it may consist of multiple periods whereby in each period a part of the order may
be produced. In the next section, we discuss the importance of the planned lead time
concept by positioning the SCOP problem in the planning hierarchy and by discussing
the impact of demand uncertainty in the context of finite resource capacity.

1.2.2 Planned lead time concept

This section is defined into two parts. In the first part, we define planned lead times
and explain the difference with the lead times in former MP models. In the second
part we position the SCOP function in the Planning Hierarchy, and describe the role
of planned lead times between planning levels.

Defining planned lead times

The phenomenon of lead times in manufacturing has been extensively studied. For
an overview of this literature, which strongly relies on queuing network theory, we
refer to Suri et al. (1993) and Buzacott & Shantikumar (1993). From this literature
we learn that only a small part of the lead time is typically processing time, while
its major part is waiting time. The waiting time is caused, as Karmarkar (1987)
points out, by capacity restrictions at the resources, lot sizes, release times of batches
and coordination of release times, sequencing at machines, production mix and the
heterogeneity of items. Waiting time can occur both before and after the actual
transformation activity.
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By defining the planned lead time, we incorporate all variables determining the wait-
ing time in a deterministic way. We fix the lead time for every item, and require
that orders are finished within that time. Furthermore we assume that each item is
transformed, (e.g. manufactured, assembled, or transported) within one period, while
it waits the remainder of the planned lead time either before transformation or after
transformation for the remainder of the planned lead time. Only after the planned
lead time has elapsed a complete order becomes available for further use. Hence, the
actual transformation of an item takes place in an arbitrary period during the planned
lead time.

The introduction of planned lead times can also be seen as adding safety time to the
problem. The planned lead time obviates the fluctuation in demand and increases the
reliability of production units. One can argue that instead of safety time, safety stocks
should be added to the problem. However, then the assumption that the production
units have a 100% due date reliability cannot be held any longer. Furthermore, re-
search of preference between safety time and safety stock in MRP systems is not
conclusive. For example Whybark & Williams (1976) found in their simulation stud-
ies, that uncertainty in timing of demands or in timing of replenishments resulted
in safety time being preferable to safety stock, while uncertainty in the quantity de-
manded or quantity produced resulted in safety stock being preferable to safety time.
And by contrast, Grasso & Taylor (1984) found that safety time was never preferable
to safety stock. However, since they only tried a couple of safety time alternatives,
it is possible that some other choice of safety time might have outperformed sys-
tems with safety stock. Furthermore Buzacott & Shantikumar (1994) showed with
a stochastic models that for single stage manufacturing system which is controlled
by MRP, safety time is preferable to safety stock if there is a good forecast of future
required shipments. If only the mean demand can be predicted, the models suggest
that either safety stock of safety time can be used. Because earlier research is not
conclusive and the advantage of decoupling material release from capacity allocation
we advocate the use of planned lead times.

Until now, most of the MP models for solving production planning problems have
zero-length or fixed lead times, see e.g. Billington et al. (1983), Chung & Krajewski
(1984), Hopp & Spearman (2000), and Tempelmeier (2003). These fixed lead times,
sometimes also called planned lead times, are modelling minimal lead times or delays,
where capacity is allocated at this fixed time offset. In the model introduced in
this thesis, capacity can be allocated at any period in time during the planned lead
time interval. The introduction of planned lead times with multi-period capacity
consumption thus provides an additional degree of freedom, since it decouples material
release from resource consumption over time. Only in Negenman (2000) and De Kok
& Fransoo (2003), this planned lead time concept is used before. However they did
not exploit the extra flexibility created with planned lead times.

Note that we assume that each transformation activity is performed in one period,
hence minimum transformation times longer than one period (e.g. when drying paint
or transportation overseas) are not considered. However, these minimum transforma-
tion times can be taken into the model easily by defining latest starting times.
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Positioning SCOP in the Planning Hierarchy

In figure 1.4, we depicted the position of Supply Chain Operations Planning in the
Planning Hierarchy. We see that SCOP is positioned above the production unit con-
trol functions that are responsible for controlling lead time in a particular production
unit of the supply chain (cf. Bertrand et al. (1990)). The information passed from
the SCOP problem to the production unit control functions are the release decisions
of the each items and its due date, i.e. its release date plus its planned lead time.
The detailed production schedule is made on the level of the production unit control
functions. On the SCOP level however, a capacity check for the released orders is
already done.

Next to the SCOP function, an order acceptance function may be introduced in the
control loop in order to control the total amount of work accepted by the supply chain.
However we assume a make-to-stock environment, whereby all customer demand is
satisfied either directly from stock or later by backorders.

Finally, a parameter setting function needs to coordinate the safety stocks, planned
lead times, and workload parameters of the Supply Chain. In the remainder of this
subsection we focus on the relation between the SCOP function and the production
unit control functions.
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Figure 1.4: Position of Supply Chain Operations Planning in the Planning Hierarchy
(adapted from De Kok & Fransoo (2003), page 618).

In this thesis we compare various SCOP functions based on the inventory cost,
whereby we assume that lot sizing and setup time restrictions are irrelevant at the
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SCOP level. More precisely, when we assume that in each period for all items a posi-
tive quantity is released, we can refrain from considering fixed set up or ordering cost.
Implicitly this means that the planning period must be sufficient long. Note that
especially for items upstream in the supply chain a long planning period dampens
the fluctuations in the stochastic demand. However the stochastic demand still has a
large impact on the production planning of downstream items, especially when they
are produced on capacitated resources. In many practical applications lot sizing is
not an issue at the SCOP level. Either because of sufficiently high manufacturing
flexibility, or because of the time aggregation into weekly of monthly buckets. We
believe that lot sizing restrictions either should take place on the aggregate planning
level or on the level of production unit control functions. In the former, lot sizing
restrictions are considered when defining the parameter settings, e.g. items can or
cannot be produced in a certain period. In the latter, lot sizing restrictions are a part
of the detailed production schedules.

Apart from the mathematical complexity of applying detailed scheduling on a supply
chain wide scale, we also have to deal with the asymmetry in information. Information
asymmetry basically entails the fact that when making a decision at a higher level,
the amount and quality of information may be different from when the lower decision
is made (later), and again different from when the actual execution of the decision is
taking place. As a consequence of this information asymmetry, the actual schedule
may be very different from the projected detailed schedule constructed to make the
supply chain plan, because it is difficult to forecast producing times and schedules
may depend heavily on actual order releases. In fact more detailed scheduling of
materials will then lead to additional constraints on the operational level. Hence we
consider the production unit control functions as black boxes which have to realize a
set of targets set by the SCOP function. The targets are set by the released orders
and their due dates. The due dates are defined by the planned lead times of an order.

At the SCOP level we have to deal with demand uncertainty. In Karmarkar (1993)
the impact of demand uncertainty in the context of finite resource availability is
extensively discussed. Released work orders queue either before a production de-
partment and/or within a production department at resources. The former is the
case when applying workload control policies as proposed by Bertrand et al. (1990)
and Hopp & Spearman (2000), or input/output control policies such as the MRP-
I concept. The latter results from both demand and processing uncertainty. It is
well-known that such queuing or waiting times account for 60%-80% of the total
throughput time of work orders. We emphasize here that such waiting times cannot
be explained by deterministic models. Since MP models do not take uncertainty into
account, it is necessary to incorporate the impact of uncertainty through exogenous
input variables, i.e. planned lead times and safety stocks. Only with reasonable due
dates, and thus reasonable planned lead times, it is possible to find feasible schedules.
Though planned lead times enable reliable due dates of work orders, the phenomenon
of load-dependent customer order lead times cannot be resolved. The customer order
process is exogenous and stochastic, so that available resources may be insufficient to
guarantee a fixed or customer-specific lead time. In that case the only way to meet
customer lead time requirements with high probability is to hold safety stocks. Thus
our approach towards dealing with temporary increases in customer demand is in line
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with the workload control principles of Bertrand et al. (1990) and Hopp & Spearman
(2000) who advocate to protect the production environment against temporary over-
loads and thereby shift excess throughput time from the production department to
the customer order desk.

1.2.3 MP models for the SCOP problem

In section 1.2 we have stated that the aim of the SCOP problem is to ensure that the
release of materials and the allocation of resources is done such that customer service
levels are met at minimal costs. The first widely implemented concept to coordinate
the release of materials is the Material Requirement Planning (MRP) concept, see
e.g. Orlicky (1975), Vollmann et al. (1988), and Baker (1993). The major drawback
of MRP, mentioned by many authors, e.g. Buxey (1989), Bertrand et al. (1990), and
Baker (1993), is the lack of capacity constraints.

Since capacities are not considered, MRP has been extended to MRP-II (Wight
(1981)). However, in MRP-II capacity and material violations can only be detected,
but not resolved automatically (Hopp & Spearman (2000)). To cope with capacity
constraints and material availability constraints mathematical programming (MP)
models have been introduced. Voß & Woodruff (2003) illustrate the relationship be-
tween the MRP and MRP-II concepts and the mentioned deficiencies of MRP-II by
formulating mathematical optimization models.

Although MP models for the planning of the release of materials and the allocation
of resources were not very successful in practice at the start, see Shapiro (1993), some
major disadvantages have been resolved today. Increasing computer power and more
efficient algorithms make problems of realistic size and complexity solvable in a rea-
sonable amount of time. Even more important is the fact that the anchoring of MRP
systems in industry seems to be less and less solid, due to the growing awareness of the
deficiencies of MRP, see Shapiro (1993) and Hopp & Spearman (2000). Consequently,
knowing the performance of the SCOP function in a practical context (simulated with
a rolling schedule) and understanding its behavior is extremely relevant.

The SCOP problem can be seen as a multi-item multi-level capacitated lot sizing
problem (MLCLSP). Literature reviews of mathematical programming approaches
for production planning and supply chain planning can be found in Shapiro (1993),
Baker (1993), and Erenguc et al. (1999). The MLCLSP formulation is a more general
formulation than the SCOP problem, and can be be used for a variety of planning
problems in the Supply Chain Planning hierarchy. If MLCLSP is used for the SCOP
problem, it is assumed that material release is not decoupled from resource consump-
tion, as in the case of planned lead times. In the remainder of this section we review
some papers concerning MLCLSP.

The first approach that formulates an LP problem, originates from Billington et al.
(1983). Similar models can be found in Chung & Krajewski (1984) and Hopp &
Spearman (2000). These models plan the orders in detail. The exact amount to be
produced on prespecified discrete points in time is determined. For each time bucket,
i.e. the time between two successive decision points in time, a known capacity measure
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serves as an upper bound on the production. Specific to this kind of modelling is that
the actual production lead times of the orders, as they arise as a result of the finite
capacity, are outputs of the model and depend on the size of the order and the available
capacity only.

In the review by Erenguc et al. (1999), a number of MP models that include the notion
of planned lead times is given. But none of these formulations distinguishes between
the planned order and the capacity usage, which is important to model manufacturing
flexibility by avoiding inefficient usage of available resources in accordance with the
planned lead time concept.

Belvaux & Wolsey (2001) focus on MP models that lend themselves to efficient so-
lutions with commercial mixed integer programming (MIP) software. They derive
problem specific necessary inequalities that improve the performance of MIP solvers.
Furthermore they make a distinction between problems where planning occurs infre-
quently, i.e. big bucket problems, and problems where planning occurs frequently, i.e.
small bucket problems. In big bucket problems many setups for many different items
occur during the single planning period under consideration, and in the small bucket
problems we see typically a small number of setups for a limited number of items
where multiple planning periods are considered. Hence models for the big bucket
problems differ from the models for small bucket problems. The SCOP problem can
both be seen as a small and a big bucket problem. A small bucket problem because
planning occurs frequently, typically every week. A big bucket problem because we
assume that in each period a positive quantity is release for all items, such that lot
sizing restrictions and setup times do not play a role in the supply chain operations
planning.

Other MP approaches for solving the MLCLSP are based on Lagrangean relaxation
of either the capacity constraints or the inventory balance equations or both, see
e.g. Tempelmeier & Derstroff (1996) and Özdamar & Barbarosoglu (2000). Relaxing
the capacity constraints and introducing Lagrange multipliers associated with those
constraints reduce the MLCLSP to a number of independent uncapacitated problems.
If also the inventory balance equations are replaced, a number of single item lot sizing
problems is obtained. The solutions to these independent problems are tied together
by an iterative procedure for the Lagrange multipliers based on the calculation of
subgradients.

This concludes the brief survey of MP models for the solving an instance of the
SCOP problem. The major difference between our approach and earlier research is
the interpretation of lead time. While the majority of MP models have fixed lead
time with capacity allocation at this fixed time offset, the LP model we introduce has
planned lead times creating additional flexibility by decoupling the order release from
the capacity usage.
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1.3 Problem statement and research questions

The aim of the research presented in this thesis is to make a contribution to the
development of more effective rolling schedule approaches for solving the Supply Chain
Operations Planning problem.

In order to meet this goal the following two questions are investigated.

1. Can we use the planned lead time concept to improve the performance of deter-
ministic SCOP functions?

With the introduction of the planned lead time concept order release decisions and
capacity allocation decisions are decoupled. An item may be produced at any time
during its planned lead time. Thus, additional flexibility is created by the introduction
of planned lead times. To make a proper use of the created flexibility, the following
three sub-questions are investigated in a rolling horizon context.

1a. What is the influence of production timing on the performance of the model?

1b. Which factors influence the length of the optimal planned lead time?

1c. Should items be available for further production steps directly after production,
i.e., before the end of their planned lead time?

Besides mathematical programming methods applied within a rolling schedule con-
text, there also exists stochastic models such as echelon stock (or base stock) control
concepts as introduced by Magee (1958) and Clark & Scarf (1960) for solving the
SCOP problem. These stochastic SCOP functions work very well for relative sim-
ple supply chain structures without capacity restrictions. If we can tighten the gap
between stochastic and deterministic SCOP functions for uncapacitated situations,
the deterministic SCOP function used in a rolling schedule can be a good alternative
for large arbitrary supply chain structures with capacity restrictions. Hence we also
investigated the following question.

2. How well do deterministic SCOP functions perform while using a rolling schedule
to incorporate demand uncertainty compared to stochastic SCOP functions, and
how can we tighten a possible gap?

1.4 The experimental framework

In this thesis various SCOP functions are compared. To make a proper comparison
we define a costs structure and a performance criterion, similar as done in De Kok &
Fransoo (2003). The cost structure is defined by the long-run average of the inventory
plus work-in-process costs per period, and given by
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C̄ = lim
T→∞

1
T

T−1∑
t=0

N∑
n=1

αi

(
Iit + Îit + Īit

)
(1.1)

where αi are the holding costs, Iit are the physical inventory levels, Îit are the work-in-
process levels before production, and Īit are the work-in-process levels after production
of item i at time t, ∀i, t. For the precise definitions of these variables and parameters
we refer to chapters 2 and 3.

The inventory and its associated cost are necessary to ensure sufficient customers
service. Customer service levels have to be defined for all items with independent
demand, i.e. for all end items. We define E as the set of all end items. As performance
criteria we choose ϕi, i ∈ E defined as

ϕi = lim
t→∞

P{Iit > 0}, i ∈ E non-stockout probability (1.2)

Likewise the case of C̄ we assume existence of ϕi. Notice that ϕi is identical to the
P3-measure defined in Silver et al. (1998). For each SCOP functions P we want to
solve the following problem Pϕ:

min C̄(P)
s.t. ϕi(P) ≥ ϕ∗i , i ∈ P (1.3)

whereby ϕi indicates the desired minimal customer service level. It is implicitly
assumed that the SCOP problem P satisfies its set of material and resource constraints
derived in the coming chapters.

The SCOP problem is solved by deterministic model instances embedded in a rolling
schedule setting. Hence the the concept of service level constraints does not make
sense. In order to still ensure that within the deterministic setting of the problem
priority is given to satisfaction of exogenous demand, we use beside linear holding
costs also linear backorder cost (c.f. De Kok & Fransoo (2003)). Assuming that
expensive items are more important than cheap items we assume that the cost per
item i backlogged at the end of a period is βi. This yield to the following objective
function

min
t+T∑

s=t+1

N∑

i=1

αiIi,s−1 +
t+T∑

s=t+1

∑

i∈E

βiBi,s−1 (1.4)

with E all end items, βi the backorder cost of item i, and Bis the backorders of item
i at time s. In this thesis we assume βi À αi.

This objective function does not completely solve our problem. We want to deter-
mine feasible plans that satisfy customer service level constraints at low cost, since
it is easily seen that the above problem yields the same solution for any value of βi

larger than some value β0
i . This implies that with this objective function we obtain

customer service levels that may not satisfy our objective. To obtain the service level
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constraints we require additional decision variables. Following the inventory manage-
ment literature (cf. Silver et al. (1998)) we introduce the concept of safety stocks in
order to cope with demand uncertainty

Si : safety stock parameter of item, i, i = 1, 2, . . . , N

In order to control the customer service levels we modify the objective function as
follows,

min
t+T∑

s=t+1

N∑

i=1

αi(Ii,s−1 − Si)+ +
t+T∑

s=t+1

∑

i∈E

βi(Si − Ii,s−1)+ (1.5)

Although objective function (1.5) does not represent the real inventory holding costs
and backorder costs, it still reflects the tradeoff between inventory holding and back-
order costs. On top of that the safety stock parameters control the service levels.
With the following lemma this becomes even more obvious.

Sample path lemma
Suppose a sample path of the demand process and a sample path of the forecasting
process are given. Furthermore assume that for all end items

Ii,t = Si, i ∈ E

Then the solution to the problem expressed in terms of the material order releases
Ris and the capacity claims Vius (the definitions of these decision variables are given
in chapter 2) with objective function (1.5) subject to the LP constraints (also given
in chapter 2 is the same for each value of Si, i ∈ E, for all s ≥ t, with t is the current
time.

The proof of the sample path lemma is based on induction. Given the initial inventory
levels it is clear that the objective function (1.5) implies an optimal solution (Ris,Vius)
at t = 1 based on demand forecast that is the same for any value of Si. This implies
that the solution (Ri,1,Viu,1) at t = 1 based on the actual demand is the same for any
value of Si. But then Ii,1 −Bi,1 − Si is the same for any value of Si. This argument
can be repeated for any value of t. For a formal proof we refer to Kohler-Gudum &
de Kok (2001).

Corollary to the sample path lemma
The problem Pϕ for the SCOP function defined by the LP constraints and the ob-
jective function (1.5) have a unique solution Sii∈E , where each Si, i ∈ E, can be
determined independent of all other Sj , j ∈ E,j 6= i.

Noticing that the objective function (1.5) is identical to (1.4) with Si = 0, i ∈ E, the
corollary to the sample path lemma justifies the following procedure.

1. Run a discrete event simulation of the system with Si = 0, where at the start of
each period t = 1, 2, . . ., we solve the LP based on the forecast of the demand.
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2. From the discrete event simulation compute the empirical distribution function of
Iit −Bit − Si.

3. Given this empirical distribution function compute S∗i , such that the required end-
item service level is achieved.

4. Run another simulation with S∗i in order to compute C̄(P).

1.5 Research design

The aim of this thesis is to make a contribution to the development of effective linear
programming models for solving the Supply Chain Operations Planning problem. In
this section we describe the steps that we have taken to reach this goal.

First of all we have to mention that already a lot of work has been done in this
research area. The number of mathematical programming approaches for solving the
SCOP or related problems is high (reviews on MP models can be found in Shapiro
(1993), Baker (1993), and Erenguc et al. (1999)). However, these MP approaches are
only solved for instances based on a forecast of customer demand. Since we consider
demand uncertainty, we study an MP approach in a rolling schedule setting.

The LP model we use in this thesis originates from Negenman (2000). In chapter 3 of
his thesis, he introduces a based LP policy for solving the SCOP problem, whereby
the capacity restrictions are taken into consideration in an iterative way. We adapted
this model such that the capacity constraints are a part of the LP model. We used
this model instead of any other, because we liked the idea of planned lead times which
decouple the order release from the capacity usage. This decoupling of order release
from capacity usage not only gives a better reflection of the real-life situation, but we
expected that by using the extra flexibility of planned lead times the performance of
the LP based policy also would increase.

Throughout the thesis we explored various ways to improve the performance of the
LP stategy. After each adjustment we studied the adjusted LP based policy under
demand uncertainty. Since an analytic study on the performance of the model is
impossible, we use a discrete event simulation to gain insights in the behavior of the
decision variables.

In order to obtain good estimates for the different performance statistics we succes-
sively computed a number of m periods. To obtain m we computed the total cost per
period. The value of m was determined such that the average costs have a relative
error of at most 0.025 and a confidence level of 95% using a standard procedure, see
Law & Kelton (2000). The difference in performance between the various parameter
settings, especially between the “low” and the “high” value of a certain input pa-
rameter, is sufficient to be relevant for obtaining insights. Hence, all conclusions are
based on conservative estimates of the significant effects.

For the simulation studies we used small, well-chosen supply chain structures. The
reason we use small structures is twofold. First, it is easier to find relations between
input parameters, decision variables, and the performance when the product structure
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is not too complicated. Second, the number of variables and constraints in the LP
representation of the supply chain depends on the size of the supply chain. Larger
supply chains means larger LP models, and larger LP models gives long computational
times solving the LP problem. Since we use several simulation studies to gain insights
in the performance of a certain LP model used in a rolling schedule concept, the
computation time of an instance should be short to avoid extremely time consuming
experiments.

Besides being small the supply chain structures must be representative. Hence, in
chapters 3 and 6, we used the so-called W-structure. This 5-item structure consist
of two end items, and each end item consist of a specific and a common child item.
Thus the chosen supply chain consist of both divergent and convergent parts as most
real-life supply chains have, therefor this supply chain is a good choice to measure
the performance of the adjusted models. In chapters 4 and 5, this W-structure was
not sufficient to study the mutual relations between items produced on capacitated
resources Hence in these chapters we use an other set of supply chain structures. In
chapter 4 the representativeness of these supply chain structures is discussed. In all
experiments we vary the squared coefficient of variation of the demand distribution,
the utilization rate of the resources and the cost structure. Furthermore at the end
of chapters 3, 4, 5, and 6, we show for the same 18-item supply chain setting with
both divergent and convergent parts and a limited set of different input parameters,
the savings made with the proposed adjustments in that chapter.

1.6 Outline of the thesis

The remainder of this thesis is organized as follows. In chapter 2, two equivalent
LP models with planned lead times for solving the SCOP problem are introduced.
The difference between the two models is the translation of the capacity restrictions
into constraints for the LP model. The computational times of the two models are
compared for different supply chain structures using different LP solvers. This chapter
is based on Spitter et al. (2005a).

In chapter 3, which is based on Spitter et al. (2005b), we take a closer look at the
planned lead time concept. We compare early and late production in a rolling schedule
setting. With early production we mean that the production starts as soon as possible
after the order is released. This limits the amount of unused capacity. By late
production the production starts as late as possible to obtain lower work-in-process
costs. We show that for items produced on resources with high utilization rates early
production is beneficial.

In chapter 4, which is based on Spitter et al. (2003), we look at the factors influencing
the optimal length of planned lead times. Similar to queuing theory we see that
the variability of the demand and the capacity of the resources influence the optimal
length of the lead time. Unfortunately a third factor, namely the difference in costs
between end items and items produced on capacitated resources, plays a key role in
determining optimal planned lead times. Therefore, predictions on the optimal length
of planned lead times are hard to make beforehand.
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In accordance with the planned lead time concept, orders are only available for suc-
ceeding production steps at the end of the planned lead time. Thus items may wait
several periods before they can be used in succeeding production steps. Hence, in
chapter 5, we developed a model in which items are available directly after produc-
tion. Results of a test cases using supply chain structures with optimal planned lead
times, show us that immediate availability does not seems to improve the performance
of the model. Therefore we adjust the model, such that items are only available before
the end of their planned lead time if they can avoid or reduce backorders. The same
test cases now show an improvement in the performance of the LP based policy.

In chapter 6 we concentrate on the allocation of materials. In divergent parts of the
supply chain child items have to be allocated among different parent items. In this
chapter we put allocation rules into the LP model forcing the model to balance the
allocation of child items. Another method for balanced allocation is replacing the
linear objective function by a quadratic one. For uncapacitated supply chains, the
allocation strategies are compared with the base stock policies, described in De Kok
& Fransoo (2003), for supply chains with infinite resource capacity. We see that by
using allocation strategies the existing gap in performance between stochastic SCOP
functions and deterministic SCOP functions used in a rolling schedule context is
tightened. For capacitated supply chains the performance of the allocation strategies
is measured by comparing the inventory costs between the models with and without
allocation strategies.

Finally in chapter 7 we complete this thesis by summarizing the results, formulating
conclusions, and giving some recommendations for future research.





Chapter 2

Two LP models for solving
the SCOP problem

2.1 Introduction

The basic problem of Supply Chain Operations Planning (SCOP) is to ensure that,
given the constraints of the system, i.e. resource and material availability constraints,
the best possible quantity of every item is released at the best possible time, such that
customer levels are met at the lowest cost. Often Material Requirements Planning
(MRP) systems are used for solving the SCOP problem, see, e.g., Orlicky (1975),
Vollmann et al. (1988), Bertrand et al. (1990), and Hopp & Spearman (2000). The
MRP logic has a major drawback. As mentioned by many authors, e.g. Buxey (1989)
and Krajewski & Ritzman (1993), MRP logic does not take capacity constraints into
account. As MRP systems do not provide a solution to this fundamental issue, it must
be handled by human interventions, such are usage of safety stocks and replanning.

In this chapter, we propose two alternative formulations of a Linear Programming
(LP) model to solve the SCOP problem. Compared to earlier developed mathematical
programming models, e.g. see Billington et al. (1983), Chung & Krajewski (1984),
Hopp & Spearman (2000), Voß & Woodruff (2003), and Tempelmeier (2003) for a
comprehensive overview, the proposed LP model differs through the introduction of
so-called planned lead times with multi-period capacity consumption. In Billington
et al. (1983), Chung & Krajewski (1984), and Hopp & Spearman (2000), it is assumed
that orders released at the start of a period are also processed in that period. In our
model we assume that orders released at the start of a period must be processed
before the given planned lead time expires, i.e. before its due date. The capacity
required to produce the order is consumed during the planned lead time interval,
i.e. capacity consumption in multiple periods is allowed. Billington et al. (1983) also
introduce so-called planned lead times, yet these planned lead times are modelling
minimal lead times or delays, where capacity is allocated at this fixed time offset. In
the model presented in this chapter capacity can be allocated at any point in time
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within the planned lead time interval. The introduction of planned lead times with
multi-period capacity consumption thus provides an additional degree of freedom,
since it decouples material release from resource consumption over time. In general,
introducing additional degrees of freedom allow for lower-cost solutions. When setting
cost-optimal planned lead times we also have to take into account, besides the inven-
tory at the stockpoints, the work-in-process inventory. In the models of Billington
et al. (1983), Chung & Krajewski (1984), Hopp & Spearman (2000), and Tempelmeier
(2003), only the inventory at the stockpoints are of interest when finding cost-optimal
settings. In this chapter we restrict ourselves to the formulation of the LP model as
such. The question of setting cost-optimal planned lead times is “extremely” complex
and requires an extensive experimental study, which is left for further research. In
chapter 4, initial results of this issue can be found. Note that since the end item
demand is stochastic and the proposed model is deterministic, the SCOP problem is
solved using a forecast of the end item demand during the planning horizon. If the
planning horizon is sufficiently long seasonal effects can also be taken into account.

We assume that released orders are available at their due date (i.e. at the end of the
planned lead time) only. Thus the shop executing the orders is modelled at the SCOP
level by anticipating the throughput times of items and the resource availability of
bottlenecks. We assume a 100% due date reliability from the shop because material
and resource constraints are incorporated in the model. This particular anticipation
assumption is in line with the literature on controlled Work in Progress (cf. Bertrand
et al. (1990) and Hopp & Spearman (2000)). This literature recognizes the fact that in
the context of periodic planning, throughput times of released orders may be multiple
periods, due to complex routing along multiple resources and due to queueing at those
resources. For an extensive discussion of the concept of anticipation in the context of
hierarchical planning, we refer to Schneeweiss (2003) and De Kok & Fransoo (2003).
We notice that Negenman (2000) was the first to propose a model with planned lead
times with multi-period capacity consumption and applied this model to a two-level
hierarchy, where the top level is modelled as described in this chapter and the base
level is modelled as a flow shop.

Our LP model does not allow for inclusion of lot sizing constraints and set-up cost.
However, in principle our modelling of the planned lead times with multi-period ca-
pacity consumption can be incorporated into multi-level lot sizing problems, yet the
algorithmic consequences are clearly a subject for further research.

The remainder of this chapter is organized as follows. In Section 2.2 we consider the
production dynamics. The notation which is used throughout this thesis is introduced
in section 2.3. In section 2.4, the uncapacitated linear programming model with
planned lead times is given, in sections 2.4.2 and 2.4.3 two sets of capacity constraints
are given. The two models are compared on their computational times in section 2.5.
In section 2.6, conclusions can be found.
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2.2 Production dynamics

Consider the assembly department of item i. At time t a work order of quantity
Rit is released. For each work order there exists a planned lead time τ i restricting
the department in the following way: a work order released at time t will only be
available for the next stage at time t + τ i, i.e. the finished units can be used to fulfill
independent or dependent demand at time t + τ i, but not before. Execution of the
work order consists of several consecutive steps during the time interval (t, t + τ i].

First, after releasing the work order, all its respective amounts of components are
gathered. If item j is a component of i and we need hji units of j for the production
of a single unit of item i, hence for the whole work order hjiRit units of component
j are needed at time t.

During the time period (t, t + τ i] the work order is executed. For all resources, and
in the successive periods (t, t + 1], (t + 1, t + 2], . . . , (t + τ i − 1, t + τ i] the capacity
constraints should be met. Notice that the released work order Rit can be split up
and that each part may be produced on several resources that can operate in parallel.

The capacity needed for producing one unit of item i equals pi, so the total capacity
for the released work order Rit equals piRit. The capacity constraints imply that for
each available resource during each appropriate time period the amount of work of
the released work order Rit is not higher than the available capacity.

Finally, at time t + τ i, Rit units of items i are released and available. The actual
completion of the complete work order can be before time t + τ i, depending on the
outcome of the actual detailed planning and execution, but we assume that the work
order is not available before time t+ τ i. At time t+ τ i the Rit units are either stored
at the inventory of i, or directly passed to fulfill dependent or independent demand.
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Figure 2.1: Inventory position of item i for a number of periods.
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In figure 2.1, the inventory position of item i during a few periods is given. Assume
a certain amount of inventory at time t− 1, and observe the changes to the inventory
in time slot t, i.e. in period (t − 1, t]. We simplify the model by assuming that all
changes occur just before time t. First, if item i is an end item then there can be
exogenous demand Dit from customers. Second there might be endogenous demand
from parent items of i. Third, orders Ri,t−τ i

released at time t − τ i are received.
Hence the inventory position at time t is equal to Ii,t−1 −Dit −Git + Ri,t−τ i

.

2.3 Notation

The notation introduced in this section is needed for the formulation of the LP model
for solving the SCOP problem. The notation is used throughout the whole thesis.
Additional notation needed in succeeding chapters for the adjustment of the intro-
duced LP models can be found in the concerned chapter.

Input parameters

t : t ∈ NI , the current time.

T : T ∈ NI , the planning horizon. The time period [t−τ i, t+T ] is divided in a starting
time t− τ i and T + τ i time slots s, defined as (s− 1, s], s = t− τ i + 1, . . . , T .

N : N ∈ NI , the number of different items. The items are labeled 1, . . . , N .

pi : pi > 0, the capacity required for producing one unit of item i, i = 1, . . . , N . We
assume this is the same for each of the facilities that could assemble i.

H : H = (hij)1≤i,j≤N , hij ∈ NI , is the matrix representing the bills of material, i.e.,
hij is the number of units of item i needed for the production of a single unit of
item j. We assume that the matrix H is lower triangular and that the diagonal
of H contains only zero elements. This implies that no item can be (directly or
indirectly) a component of itself.

τ i : τ i ∈ NI , τ i ≥ 1, i = 1, . . . , N , the planned lead time of item i.

αi : αi > 0, i = 1, . . . , N, the inventory costs of holding one unit of item i.

βi : βi ≥ 0, i = 1, . . . , N , the costs due to backordering, i.e., the unit penalty costs
induced by backorders of item i.

Dis : Dis ∈ NI , i = 1, . . . , N, s = t, . . . , t + T − 1, the exogenously determined demand
for item i during time slot s.

L : L ∈ NI , the number of different resources. The resources are labeled 1, . . . , L.

cms : cms ∈ NI ,m = 1, . . . , L, s = t + 1, . . . , t + T , the maximum assembly time
available on resource m in time slot s.

Ri : the set of resources that can be used by item i, i = 1, . . . , N .
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Ii,t−1 : the inventory of item i at time t− 1, i = 1, . . . , N .

Bi,t−1 : the amount of backorders of item i at time t− 1, i = 1, . . . , N .

Ris : the planned orders of item i already determined at time t−τ i, t−τ i+1, . . . , t−1,
i = 1, . . . , N , s = t − τ i, . . . , t − 1. These orders become available at time t, t +
1, . . . , t + τ i − 1, respectively.

Vims : the capacity claimed at resource m during time slot s for producing (part of)
the orders Ri,t−τ i

, Ri,t−τ i+1, . . . , Ri,t−1, i = 1, . . . , N , m = 1, . . . , L, s = t − τ i +
2, . . . , t.

Zisu : the part of planned order Ris of item i released at time s and already executed
in time slot u, i = 1, . . . , n, s = t− τ i + 1, . . . , t− 1, u = s + 1, . . . , t.

Decision variables

Iis : the inventory of item i at time s, i = 1, . . . , N , s = t, . . . , t + T − 1.

Gis : the requirements of item i at time s to produce its parent items, i = 1, . . . , N ,
s = t, . . . , t + T − 1.

Ris : the planned orders of item i at time s, i = 1, . . . , N , s = t− τ i, . . . , t + T − 1.

Bis : the backorders of item i at time s, i = 1, . . . , N , s = t, . . . , t + T − 1.

Vims : the capacity allocated to item i at resource m in time slot s, i = 1, . . . , N ,
m = 1, . . . , L, s = t + 1, . . . , t + T .

Zisu : the part of the planned order Ris of item i released at time s and executed in
time slot u, i = 1, . . . , n, s = t, . . . , t + T − 1, u = s + 1, . . . , s + τ i, u ≤ T .

Note that the characterization of the variables Iis, Gis, Ris, Bis, Vims and Zims

depends on s. If s < t these variables are inputs to our model, if s ≥ t they are
outputs of our model.

2.4 Linear Programming model

For solving the SCOP problem, we introduce a linear programming model with
planned lead times. First we give the LP model without the capacity constraints.
and in sections 2.4.2 and 2.4.3 capacity constraints are added in two separate ways.
In section 2.4.2, the capacity restrictions are modelled with cumulative constraints
and in section 2.4.3 balance equations are used. The equivalence between these two
sets of capacity constraints can be found in appendix A.



24 Two LP models for solving the SCOP problem

2.4.1 Uncapacitated LP model

The aim of the SCOP problem is to minimize the inventory costs, hence the inventory
costs belong to the objective function of the LP model. To ensure also that the
exogenous customer demand is satisfied, as explained in section 1.4, we add backorder
costs to the objective. This yields to the following objective function

min
t+T∑

s=t+1

N∑

i=1

αiIi,s−1 +
t+T∑

s=t+1

N∑

i=1

βiBi,s−1 (2.1)

Since we minimize the inventory and the backorder costs, we have to know the in-
ventory status. The net inventory Iis − Bis of item i at time s is equal to the net
inventory at time s − 1 plus the received order Ri,s−τ i which is released at s − τ i,
minus the exogenous and endogenous demand of item i during time slot s, thus

Iis = Ii,s−1 + Ri,s−τ i −Dis −Gis + Bis −Bi,s−1, i = 1, . . . , N, s = t, . . . , t + T − 1
(2.2)

The endogenous demand is equal to the summation over all order requests of parent
items, and given by

Gis =
N∑

j=1

hijRjs, i = 1, . . . , N, s = t, . . . , t + T − 1 (2.3)

The following constraint ensures that the number of backorders cannot increase more
than the exogenous demand. Since there is not an exogenous demand for intermediate
items, this constraint also ensures that backorders can only occur at end items.

Bis −Bi,s−1 ≤ Dis, i = 1, . . . , N, s = t, . . . , t + T − 1 (2.4)

The decision variables must be all equal to or larger than 0, so the following boundary
constraints are also added to the model.

Ris, Bis, Iis ≥ 0, i = 1, . . . , N, s = t, . . . , t + T − 1 (2.5)

Note that although the planning horizon equals t + T , solutions are only obtained up
to time t + T − 1. This is due to the fact that values of Ri,t+T only depend on future
inputs determined after time t + T .

2.4.2 Cumulative capacity constraints

As already mentioned, we give two sets of capacity constraints, namely cumulative
capacity constraints and balanced capacity constraints. Both sets of capacity con-
straints give equal minimal costs, only the allocation of orders to the resources is
different. We begin with the cumulative constraints. In the cumulative capacity con-
straints, the required capacity for order Ris of item i at time s is divided over the
so-called capacity claims Vims. Capacity can only be claimed from resources that are
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able to produce item i. Inequality (2.6) ensures that capacity is not claimed before
the request is made and inequality (2.7) sees to it that the requests are produced
within their planned lead time. We assume here that the production of an order does
not start before all earlier requests have been fulfilled. We explain these inequalities
in example 2.1.

∑

u:−τ i< u≤ s

piRiu ≥
∑

m∈Ri

∑

u:−τ i+1< u≤ s+1

Vimu i = 1, . . . , N, s = t−τ i+1, . . . , t+T−1

(2.6)∑

u:−τ i< u≤ s

piRiu ≤
∑

m∈Ri

∑
u:−τi+1< u≤ s+τi,

u< t+T

Vimu i = 1, . . . , N, s = t−τ i+1, . . . , t+T−1

(2.7)

Example 2.1 We explain inequalities (2.6) and (2.7) with an example. Assume that
for a certain item the planned lead time is equal to 3 and that this item is produced
on resource u. Assume furthermore that there are no orders or capacity claims from
the past, and pi = 1. Then we have

V1 ≤ R0 ≤ V1 + V2 + V3 (2.8)

V1 + V2 ≤ R0 + R1 ≤ V1 + V2 + V3 + V4 (2.9)

V1 + V2 + V3 ≤ R0 + R1 + R2 ≤ V1 + V2 + V3 + V4 + V5 (2.10)

· · · (2.11)

For simplicity, only the time indices are used. In (2.8) we see that capacity for order
R0 can be claimed in time slots 1, 2, and 3. In (2.9) it is immediately clear that
capacity for order R1 can be claimed up to time slot 4, it is not so clear that capacity
for this order cannot be claimed before time slot 2. Assume that capacity is claimed
for R1 in time slot 1. Since production of an order does not start before all earlier
orders are produced, all the capacity needed for order R0 is also claimed in time slot
1. Thus the capacity claim V1 consist of the whole order R0 plus (a part of) order R1.
This is in contradiction with the left-hand-side of inequality (2.8). Hence capacity for
order R1 cannot be claimed before time slot 2.

The capacity claim Viut is the capacity allocated to some items i at resources u during
time slot t. The total capacity claimed on a certain resource during a time slot cannot
exceed the capacity of that resource, which is ensured by the following inequality

∑

i:m∈Ri

Vims ≤ cms m = 1, . . . , L, s = t + 1, . . . , t + T (2.12)

Capacity claims are always equal or larger than 0, so the following boundary constraint
is also added to the model.

Vims ≥ 0, i = 1, . . . , N, m = 1, . . . , L, s = t + 1, . . . , t + T (2.13)
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2.4.3 Balanced capacity constraints

In this section the capacity constraints are met by using balanced capacity constraints
instead of the cumulative capacity constraints. An order Rit can be produced during
whole its planned lead time. Therefore, the order can be split in several parts depen-
dent on the length of the planned lead time. And each part of the order is produced
in a separate time slot. Mathematically, this is given by

piRis =
∑

u:s+1≤u≤ s+τi,
u≤ s+T

Zisu, i = 1, . . . , n, s = t− τ i + 1, . . . , t + T − 1 (2.14)

Then, the items
∑

u:s−τ i≤u<s Zius, released in periods s− τ i, s− τ i +1, . . . , s− 1 and
produced in time slot s, are allocated to a feasible resource m.

∑

u:s−τ i≤u<s

Zius =
∑

m∈Ri

Vims, i = 1, . . . , n, s = t + 1, . . . , t + T (2.15)

Of course, the total capacity
∑

i:m∈Ri
Vimt claimed on resource m during time slot s

cannot exceed the capacity of that resource, thus
∑

i:m∈Ri

Vims ≤ cms m = 1, . . . , L, s = t + 1, . . . , t + T (2.16)

Again we have a set of boundary equations such that negative values do not occur

Vims ≥ 0, i = 1, . . . , n, m = 1, . . . , L, s = t + 1, . . . , t + T (2.17)

Zisu ≥ 0, i = 1, . . . , n, s = t, . . . , t + T − 1, u = s + 1, . . . , s + τ i (2.18)

The only difference between the two models is the way in which orders are allocated to
the available capacity. Hence the models only differ in work-in-process cost, inventory
costs are equal for both models. Therefore, the models are only compared on their
computational times. The results can be found in the next section.

2.5 Comparing the models

The computational time of LP models depends on many factors. Some of these
factors are related to the LP matrix, such as the number of variables, the number
of constraints, the number of non-zero elements in the LP matrix, and the “shape”
of the number of non-zero elements in the LP matrix. The computational time is
also dependent on the method used for solving the LP model. In section 2.5.1 the
supply chain under consideration is given and in section 2.5.2 the results are given
and discussed.

2.5.1 Experimental design

For the comparison of the two LP models, the supply chain must be large enough such
that the computational time is at least a few seconds. This lightens the comparison
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and the sight effects of system activities (of the computer) can be neglected. Of course
we also wish to have the new features, namely multi-period capacity consumption
created by planned lead times longer than one period and capacity allocation whereby
several different items can be produced on the same resource and a resource can
produce several different items, in the supply chain. Hence, for the comparison of the
LP models we used a supply chain with 263 items, including 20 end items (see figure
2.2). The structure of the supply chain is convergent and consists of 5 levels, 20 end
items on the first level, 30 items on the second level, 45 items on the third level, 67
items on the fourth level, and 101 items on the fifth level. Each item in the supply
chain is used in at most one other item and consists of at least one other item. There
are a finite number of resources on the first, third and fifth level. The number of
resources on each level is equal to the number of items on that level divided by two.
So on average one resource can be used by two different items. We assume a time
horizon of 15 time slots, thus T = 15.

level 5
101 items

51 resources

level 4
67 items

level 3
45 items

26 resources

level 2
30 items

level 1
20 items

10 resources
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Figure 2.2: Scheme of the supply chain structure.
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For the distribution of the end item demand we assume a gamma distribution with a
mean of 50 units and a squared coefficient of variation of 0.25. There is no exogenous
demand for components.

The planned lead times of the items on the first four levels are arbitrarily set to 1 or
2. The lead times of suppliers are a bit longer, we have set the planned lead times of
the items on the lowest level arbitrarily to 4 or 5.

The inventory costs αi of holding one unit of item i during a time slot t are equal for
all time slots and consist of the summation of inventory costs of the preceding items
and some additional value that depends on the level of the item. The unit penalty
costs βi induced by backorders of item i during time slot t are set to 10 αi.

As starting values we have assumed that there are neither inventories nor backorders
for any item. Furthermore we have assumed that the pipelines are filled with the
average demand per period.

In the experiments we consider four different settings, namely the setting as given
above, a setting with higher variation, a setting with a higher commonality factor,
and a setting in which the number of resources are doubled.

Initial setting

The number of constraints, the number of variables, and the number of non-zero
elements of the initial setting are given in table 2.1. We programmed the LP models
such that only the variables influencing the optimal production plan are considered;
if an item is produced on a resource with infinite capacity, defining variable Vims

is unnecessary since there will always be enough capacity available. Reducing the
number of constraints, we have substituted equations (2.3) in equations (2.2) during
the implementation.

Number of Number of Number of
constraints variables non-zero elements

LP-CUM 14175 14325 119640
LP-BAL 14175 22605 55710

Table 2.1: Number of constraints, variables, and non-zero elements in the LP models.

Higher variation in demand

In the initial setting the end item demand follows a gamma distribution with a mean
of 50 units and a squared coefficient of variation of 0.25. In the experiments with
higher variation, we increased the squared coefficient of variation from 0.25 to 2.

Higher commonality factor

In the initial setting, each item in the supply chain is used in at most one other item
and consists of at least one other item, i.e. an item has at most one parent item.
We say then that the commonality factor is equal to 1. In this setting we increase
the commonality factor to 1.5. This means that on average each item has 1.5 parent
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items. The number of parent items of a child item is not restricted, and parent and
child items do not have to be on successive levels.

If we study equation (2.3), we observe that if a child item has more than one parent
item, the endogenously determined demand, Git, consists of more than one order
request. Hence the number of non-zero elements in the LP matrix increases, see table
2.2.

Number of Number of Number of
constraints variables non-zero elements

LP-CUM 14175 14325 121613
LP-BAL 14175 22605 57683

Table 2.2: Number of constraints, variables, and non-zero elements in the LP models
when the commonality factor is 1.5.

Double number of resources

In the last setting the number of resources is doubled. Every item on the levels 1, 3,
and 5 is now produced on its own resource. For the number of constraints, the number
of variables, and the number of non-zero elements in the LP matrix the differences are
minimal, see table 2.3. Note that, because we doubled the number of resources and
simultaneously restricted the number of resources an items can be produced to one,
the number of variables is not changed. We explain this with an example. Assume
there are two products and one resource, then we have the variables V1,1,t and V2,1,t.
By doubling the resources each item is produced on its own resource and we have the
variables V1,1,t and V2,2,t, so the number of constraints is not changed.

Number of Number of Number of
constraints variables non-zero elements

LP-CUM 15360 14325 119520
LP-BAL 15360 22605 55590

Table 2.3: Number of constraints, variables, and non-zero elements in the LP models
when doubling the resources.

2.5.2 Results

The experiments have been executed on a Toshiba Satellite Pro 4600 with a 750 Mhz
Intel Celeron Processor. The LP models are solved using the CPLEX 6.6 solver. For
a large number of supply chain settings, we have recorded the computational time for
solving the models. The models are solved by four different solver options, namely
the Primal Simplex, the Dual Simplex, the Primal-Dual Barrier, and the Network
optimizer. The results can be found in table 2.4. Besides the initial setting given in
the previous section, we have also recorded the computational time when the variation



30 Two LP models for solving the SCOP problem

in the demand is higher, when the commonality factor is higher, and when the number
of resources are doubled.

In table 2.4, we observe that the Dual Simplex option is fastest for all supply chain
settings. This is also the solver option with the least difference in computational time
between the different supply chain settings. Furthermore we see that for the Dual
Simplex option LP-BAL is solved approximately twice as fast as LP-CUM.

For most experiments LP-BAL is solved faster then LP-CUM. Only if the Network
Simplex option is used, LP-CUM is solved faster for some of the settings.

Another result is that the computational time of the settings with a higher common-
ality factor is longer then the computational time in the initial setting. Only for the
Dual Simplex option, the difference is small. The Barrier option solved the setting
with a double number of resources significantly faster then the initial setting. This is
not the case for the other solver options.

When we look at the utilization rates of the resources we see a slight tendency to
longer computational times if the utilization rates are higher. This is the case for all
used solver options.

From the results we can conclude that the Dual Simplex solver option is most suitable
for this kind of problems. When solving the SCOP problem, the model using equality
constraints for capacity restrictions (LP-BAL) is preferable.

2.6 Conclusion

In this chapter we propose to incorporate the concept of planned lead times with multi-
period capacity consumption in the formulation of quantitative models for Supply
Chain Operations Planning. This concept implies that work orders released at the
start of a period must be completed before the due date, i.e. before the end of
the planned lead times, but can be processed in any period between date of release
and due date. So by adding planned lead time, which allow multi-period capacity
consumption, to the model additional flexibility is created compared to the original
models with fixed lead times.

We have shown that the concept of planned lead times with multi-period capacity con-
sumption can be elegantly incorporated into an LP model of the general capacitated
assembly problem. We proposed two alternative LP models. In the first formulation,
LP-CUM, the capacity restrictions are incorporated using cumulative inequalities. In
the second formulation the cumulative inequalities are replaced by balance equations.
From a set of experiments with various supply chain settings and 4 different solver
options, we conclude that the Dual Simplex solver option finds the optimal solution
for the SCOP problem fastest. Using the Dual Simplex option LP-BAL solves the
problem faster than LP-CUM.
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Utilization rate of Initial Higher Higher Double
the resources, setting variation commonality number of

on level factor resources
1 3 5 C B C B C B C B
Primal Simplex

50% 50% 50% 7.5 3.1 6.7 3.1 29.5 4.3 7.6 2.9
90% 50% 50% 7.3 3.2 6.6 3.1 23.0 5.7 7.4 3.1
50% 90% 50% 8.6 3.8 7.6 3.4 26.4 6.0 7.8 3.1
50% 50% 90% 8.6 3.6 7.3 3.3 28.2 6.1 8.5 3.1
90% 90% 50% 8.3 4.0 7.7 3.5 37.1 8.2 7.3 3.3
90% 50% 90% 8.2 3.6 7.0 3.3 39.6 7.4 7.7 3.3
50% 90% 90% 10.0 3.9 8.1 3.6 30.9 8.0 9.1 3.3
90% 90% 90% 9.2 4.1 7.7 3.6 45.2 10.9 8.1 3.3

Dual Simplex
50% 50% 50% 4.0 2.2 4.4 2.6 4.6 2.7 4.0 1.9
90% 50% 50% 4.0 2.2 4.4 2.6 4.7 2.8 4.1 1.9
50% 90% 50% 4.5 2.6 4.7 2.7 5.5 3.0 4.2 2.1
50% 50% 90% 4.2 2.5 4.7 2.7 4.9 2.9 4.2 2.4
90% 90% 50% 4.4 2.5 4.7 2.8 5.6 3.0 4.1 2.0
90% 50% 90% 4.1 2.5 4.6 2.7 5.0 3.1 4.3 2.0
50% 90% 90% 4.6 2.7 5.0 2.8 5.8 3.2 4.3 2.5
90% 90% 90% 4.5 2.6 5.0 2.8 5.8 3.3 4.2 2.0

Barrier
50% 50% 50% 12.5 9.4 13.2 8.8 31.7 23.4 6.0 3.8
90% 50% 50% 13.3 9.9 14.5 9.2 37.5 28.2 6.9 4.4
50% 90% 50% 14.9 11.4 14.5 10.3 38.0 32.1 7.0 4.5
50% 50% 90% 13.5 10.0 12.6 8.6 32.5 26.2 6.1 3.9
90% 90% 50% 14.9 12.1 14.6 10.0 42.9 31.0 6.9 4.4
90% 50% 90% 12.7 9.7 13.1 9.6 37.6 28.0 6.9 4.4
50% 90% 90% 14.6 11.1 14.2 13.2 42.6 34.7 7.0 4.5
90% 90% 90% 14.8 11.2 14.6 9.2 51.0 30.3 7.1 4.4
Network Simplex
50% 50% 50% 4.8 6.5 5.3 6.1 11.1 9.2 4.0 3.4
90% 50% 50% 4.5 6.5 5.3 6.6 12.0 7.6 4.1 3.3
50% 90% 50% 5.0 6.8 6.0 7.9 9.4 8.7 4.3 3.4
50% 50% 90% 4.7 5.9 5.2 6.9 9.1 9.2 4.3 3.7
90% 90% 50% 5.1 7.7 6.3 7.4 10.7 9.2 4.1 3.3
90% 50% 90% 4.8 5.7 5.6 6.7 7.9 8.4 4.2 3.5
50% 90% 90% 5.2 6.6 6.3 6.8 8.7 7.3 4.5 3.5
90% 90% 90% 5.0 6.4 5.8 6.8 8.2 8.6 4.2 3.3

Table 2.4: Computational times in seconds for several Supply Chain settings and
several solution methods for both LP-CUM (C) and LP-BAL (B).





Chapter 3

Early vs late production
during the planned lead time

3.1 Introduction

The Linear Programming models for solving the Supply Chain Operations Planning
problem introduced in the previous chapter are typically used in a rolling schedule
setting, where periodically plans are derived based on forecasts of future demand.
When the forecast and the actual demand do not correspond, even a seemingly optimal
production plan can turn out to be a poor production strategy. In this chapter we
increase the performance of the LP model in a rolling schedule setting by exploiting
the features of planned lead times. Planned lead times are defined such that an order
is produced within the planned lead time, and only at the end of the planned lead
time the order becomes available for further use. Although a part of the order may
be finished earlier, this part is assumed to be work-in-process (WIP) at the factory
floor, and is not available before the end of its planned lead time.

In the models of, e.g., Billington et al. (1983), Chung & Krajewski (1984), and Belvaux
& Wolsey (2001), it is assumed that orders requested at the beginning of a period
are processed in that period, or are processed in a multitude of periods whereby the
production actually takes place during the whole time interval. So, when solving their
mathematical programming models, the production of an order always begins as late
as possible to avoid large inventory. Since we use the planned lead time concept,
we have an additional decision parameter, namely the timing of production during
the planned lead time. When producing as late as possible the WIP costs are low,
since holding child items is in general cheaper than holding parent items. But when
producing early, a part of the resource capacity is still available for the remainder of
the planned lead time, and since we work in a rolling schedule setting with demand
uncertainty, this leftover capacity can be used to satisfy future demand. So, early
production can decrease the safety stocks required to satisfy given service levels.
The net effect of these two opposites, late production to avoid WIP costs and early
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production to prevent capacity loss, is not clear. Therefore we set up experiments to
develop a deeper understanding. In this chapter, we compare early production with
late production for different input parameters.

The remainder of this chapter is organized as follows. In the next section, we show
with an example the influence of the production timing on the available capacity.
In chapter 2 we did not include the work-in-process cost when solving the SCOP
problem, hence in section 3.3 we show how we can calculate them after each iteration
step (of the rolling schedule). In section 3.4 early and late production are compared in
a numerical experiment, and we end this chapter with conclusions in the last section.

3.2 The use of capacity; an example

We investigate how the timing of production influences the costs of inventory and
work-in-process. As mentioned earlier, by producing at the beginning of the planned
lead time we may have some capacity left at the end. Since we work with a rolling
schedule and assume demand uncertainty, this capacity might be useful in the coming
period. In this section we give an example to illustrate two different approaches of
using the available capacity.
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Figure 3.1: Network flow model at t = 0. Producing late is shown in figure A and
producing early in right figure B.

We visualize the capacity use using a network flow model. Consider the production of
an item i with planned lead time τ i = 2 on a single resource m. The capacity cmt of
that resource is equal to 50 during each time slot. The model is optimized for a time
horizon of 3 periods and the requests Rit are known for the coming 3 periods. We
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assume that the capacity required for producing one unit of item i is 1, thus pi = 1.
In figure 3.1, we show the flows in the network. R̂it is the part, of an earlier request
Rit, that is not produced yet. We have R̂i,−1 = 25; this part of the earlier request
Ri,−1 has to be produced at t = 0. At t = 0, we also have a new request Ri,0 of
25 items. We still have a capacity of 25 items left, so we can choose to produce the
complete order now or in the next period, which correspond with producing early
and producing late respectively. In figure 3.1, the figure A shows the capacity use if
producing late and the figure B if producing early.

If we look at the used capacity, we see that the available capacity at t = 0 is used
completely if we decide to produce early. By producing late we still have half of the
capacity left, which never can be used again.

We study production planning models with a rolling schedule setting. Hence we
calculate an optimal production plan for a certain horizon based on demand forecast.
After a period, we know the actual demand of that period, and the parameters of the
model are adjusted according to the actual demand. For the coming time horizon a
new production plan is calculated.
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Figure 3.2: Network flow model at t = 1. Producing late is shown in figure A′ and
producing early in figure B′.

In figure 3.2, we shifted the time horizon with one period. Since we already met this
request at t = 0, we see in figure B′ that R̂i,0 = 0 for the case of early production. For
the case of late production, we still have to produce 25 items. Now we consider Ri,1,
and we want to know the largest request possible. In the case of early production,
figure B′, we still have all capacity available at t = 1 and at t = 2. Since we have
a planned lead time of 2 periods, we have two periods to meet the request. So the
largest request possible is 100 items. In the case of late, figure A′, production we still
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have to finish an earlier request of 25 items, so the largest possible request is 75 items.

We have seen that early production increases the number of possible requests, this is
beneficial in models with demand uncertainty. By producing early the safety stock
might be become smaller. A disadvantage of early production is the additional work-
in-process inventory costs. In the LP model, given in chapter 2, the work-in-process
is not included. In the next section we give formulas to calculate the work-in-process
inventory. However we do not include them into the LP model. It is not desirable to
include them, since we study the specific scenarios whereby production starts as late
or as early as possible.

3.3 Work-in-process inventory

The production of an item takes place during its planned lead time. For an item i
this means that it is in stock until there is a request for it. At that time this item is
taken out of the stock and waits to be used. At a certain moment during its planned
lead time the item is transformed into its parent item j together with the other child
items of j. This parent item has to wait during the remaining lead time before it is
put into the stock of items j. Waiting as child item before production is generally
less expensive than waiting as parent item after production, due to the fact that
production adds value in the form of labor, resource usage etc. Thus producing early
might reduce the safety stock levels, while it increases the work-in-process inventory
costs. In this section we give expressions for the amount of work-in-process inventory.
Towards this end we define:

Îis : the work-in-process inventory of item i at time s waiting after being produced,
i = 0, . . . , N , s = t, t + 1 . . . , t + T − 1.

Īis : the work-in-process inventory of item i at time s waiting to be used in production,
i = 0, . . . , N , s = t, t + 1 . . . , t + T − 1.
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Figure 3.3: Inventory and work-in-process inventory of item i.

In figure 3.3 the three inventory points of an item i are shown. The work-in-process
inventory Îis waiting after production of item i at time s, is equal to the inventory
Îi,s−1 plus the items that have been produced during time slot s minus the items at
the end of their planned lead times. These are the items Ri,s−τ i which are added to
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the inventory Iis of item i at time s. In equations (3.1) the work-in-process inventory
balances of Îis are given.

Îis = Îi,s−1 +
∑

m∈Ri

Vims −Ri,s−τ i
, i = 1, . . . , N, s = t, . . . , t + T − 1 (3.1)

The work-in-process inventory Īis waiting before production is equal to the inventory
position of the previous period plus the total requests of parent items for child item
i at time s minus that part of the request that had gone into production at time s.
In equations (3.2) the work-in-process inventory balance of Īis are given. Note that
these equations are non-existent for the end items. Since, they do not have parent
items, they cannot get a request from them.

Īis = Īi,s−1 + Gis −
N∑

j=1

∑

m∈Rj

hijVj,m,s+1, i = 1, . . . , N, s = t, . . . , t + T − 1 (3.2)

Note that these two sets of work-in-process inventory balances are not added to the
LP model with an accompanying cost function. By adding the work-in-process costs
to the objective function, the LP strategu will find, for each instance, the optimal
production plan with minimal cost. However, in this chapter we look at the extreme
cases of early and late production in a rolling schedule setting.

3.3.1 Objective functions for early and late production

In the previous section we have seen that the work-in-process costs are not considered
in the LP model. Hence, the actual production of a released order can take place
during an arbitrary time within the planned lead time. To restrict the model to early
or late production, an additional term is added to the linear objective function (2.1).
The capacity claims Vims reflect the usage of capacity, early production give large
claims for small s and late production give large claims for large s. Hence the capacity
claims should be added to the objective function, whereby the accompanying costs are
relatively expensive for small s if we have late production and relative large costs for
large s if we have early production. However, the additional costs for capacity claims
must be small, such that optimal release strategy is not influenced by the timing of
production. The objective function for late production becomes

min
t+T∑

s=t+1

N∑

i=1

αiIi,s−1 +
t+T∑

s=t+1

N∑

i=1

βiBi,s−1 +
t+T∑

s=t+1

N∑

i=1

L∑
m=1

(T − s)εVims (3.3)

whereby ε reflects a very small cost. We see that claiming capacity at the beginning
of the time horizon is a bit more expensive than at the end of the time horizon. Since
the objective function is minimized, production starts late. For producing as early as
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possible we change the objective in a similar way, see equation (3.4). The capacity
claims at the end of the time horizon are more costly, so production starts early.

min
t+T∑

s=t+1

N∑

i=1

αiIi,s−1 +
t+T∑

s=t+1

N∑

i=1

βiBi,s−1 +
t+T∑

s=t+1

N∑

i=1

L∑
m=1

sεVims (3.4)

3.4 Numerical study using a rolling schedule

In this section we study the performance of the standard LP strategy, i.e. the LP
model given in chapter 2 in a rolling schedule context, compared with the two extreme
cases of early and late production in a rolling schedule setting. For a fixed time period
early production is always more costly, because of the higher work-in-process cost.
However, in a rolling schedule with early production the leftover capacity can be used
to satisfy future demand. And this can reduce the inventory costs. In section 3.4.1
we present the experimental setting in which we compare the performance of these
three models, and the results of the comparison are given in section 3.4.2.

3.4.1 Experimental setting

For the comparison of the three models we use a simple arbitrary supply chain struc-
ture which makes a distinction between specific and common child items. The so-
called W-structure, see figure 3.4, consists of both divergent and convergent parts.
The two end items consist both of one specific child item and one common child item.
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Figure 3.4: Studied supply chain.

For each parent item, we assume that one unit i of each child item is needed for the
production of a single unit of the parent item j, thus hij = 1 for all i = 1, . . . , N and
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for all j = 1, . . . , N whereby j is a parent item of item i. The capacity requirement
pi for producing one item i is equal to one for all items. The number of resources is
equal to the number of items, i.e. items are produced on dedicated resources. The
raw materials (items 3, 4, and 5) are delivered by suppliers at the end of the planned
lead time.

Initially we start with 24 test cases, whereby the planned lead time τ i is equal to 2
periods for all i. The 24 test cases are divided into 4 scenarios. The 4 scenarios are
given in table 3.1. In each scenario the items are assembled on resources with limited
capacity. We study utilization rates of 0.7, 0.75, 0.8, 0.85, 0.9, and 0.95. Furthermore
we assume that βi = 10αi for all i = 1, . . . , N .

cv2
1 = cv2

2 α1 = α2

scenario 1 0.25 10
scenario 2 0.25 15
scenario 3 2 10
scenario 4 2 15

Table 3.1: Parameter settings for four different scenarios

In a fifth scenario, instead of looking at increasing utilization rates, we look at in-
creasing planned lead times to get insight in the influence of the planned lead time on
the production strategy. In scenario 5, we have cv2

1 = cv2
2 = 0.25, α1 = α2 = 15, and

the utilization of the resources are set equal to 0.9. The planned lead time increases
from 1 until 6 periods.

As already mentioned we study this supply chain structure in a rolling schedule.
For the planning horizon T=10, the optimal production plan is calculated based on
the mean demand. After a period is ended, the actual demand is known and the
parameters are adjusted to this demand (cf chapter 1). The actual demand follows
a gamma distribution with mean 100. Safety stocks are selected such that in 95%
of the time no backorders occur. In chapter 1 the selection procedure of the safety
stocks is discussed.

3.4.2 Results

To measure the performance of the models with late and early production, we take
the inventory and the work-in-process costs. In figures 3.5 and 3.6, the relative and
the actual difference in cost between the standard model and the adjusted models is
given. In table 3.2 the required safety stock to meet the service level of 95% non-
stockout probability, for scenarios 2 and 4, are given. We see that the required safety
stocks are lower for early production compared with late production.

The results show us that in general producing as soon as there is available capacity
during the planned lead time is cheaper then producing as late as possible. Especially
for cv2

i = 0.25 and an utilization rate of 90% the savings obtained by early production
are high. Only in scenario 2, for the relative low utilization rates it is more expensive
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Figure 3.5: Relative difference of inventory and work-in-process costs of producing
late and producing early compared with the standard LP model of chapter 2.

to produce early then late. This is due to the combination of small utilization rates
and high holding cost of the end items. If the utilization rate is low, it is less necessary
to save up capacity for worse times, because it is less likely to run out of capacity. On
the other hand, the work-in-process cost for producing an item just-in-time is equal
to 10 (with late production two raw materials have to wait the first period of the
planned lead time), while the work-in-process cost for producing an item in the first
period the work-in-process costs are 15 (one end items have to wait the last period
of the planned lead time). So we although the safety stocks for early production are
less (see table 3.2) then for late production, the savings are less than the additional
work-in-process cost and producing late is cheaper.

Furthermore we see that for utilization rates of 95% the differences in inventory costs
are small. This is caused by a lack of flexibility; the utilization rate is so high that
there is less flexibility in the timing of production. Requests are forced to be produced
late, because earlier request are not finished yet. Especially, if the variation in the
demand is high, flexibility is desired, and the lack of it forces the models to produce
late and the differences in costs become small.

If we look at the standard LP strategy, we see that this model is never the cheapest
in the four scenarios. In the standard LP model there is not an explicit strategy for
the timing of production, so the safety stock is not explicitly low like when producing
early, while the work-in-process inventory costs are not as low as when producing late.
However remark that there might be cases in which the LP strategy performs better,
since early and late production are just two extreme cases. A combination of these
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Figure 3.6: Difference of inventory and work-in-process costs of producing late and
producing early compared with the standard LP model of chapter 2.

production strategies might be optimal.

Note that the safety stocks, see table 3.2, of the identically distributed end-items
strongly differ. Apparently the used CPLEX solver, although the holding and back-
order costs of both end items are equal, always favors item 1 when allocating the
available child items. This allocation problem is also noticed in Negenman (2000)
and in De Kok & Fransoo (2003). In chapter 6 of this thesis, we discuss the allocation
problem thoroughly.

In scenario 5 we have a setting with a squared coefficient of variation equal to 0.25
and holding costs of end items equal to 15. We have set the utilization factor equal
to 90% for all the resources and we increase the planned lead times from one period
to six periods. Because of the long planned lead times the time horizon is increased
to 20 periods. The results are plotted in figure 3.7.

First of all the total inventory and work-in-process costs are equal for all three models
if the planned lead time is equal to one period. This result is not remarkable, since
shifting with production timing is not possible for this value of the planned lead time.

Furthermore we see that the relative difference between the standard model and
the model whereby production starts as late as possible increases rapidly for longer
planned lead times. The explanation for this phenomenon is simple. Due to the long
planned lead times, there is a lot of work-in-process. To minimize the accompanying
cost, production should start as late as possible.

At last we see that for long planned lead times, any strategy is better then producing
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Scenario 2 Standard Early Late
Utilization rate Item 1 Item 2 Item 1 Item 2 Item 1 Item 2

70% 205 225 203 216 209 228
75% 208 228 203 223 213 240
80% 215 246 208 233 225 266
85% 229 302 216 266 252 320
90% 314 431 279 374 346 448
95% 688 913 646 866 717 940

Scenario 4 Standard Early Late
Utilization rate Item 1 Item 2 Item 1 Item 2 Item 1 Item 2

70% 874 1061 866 1033 900 1068
75% 1004 1271 990 1253 1022 1293
80% 1166 1577 1155 1559 1193 1609
85% 1422 1982 1418 1966 1467 2027
90% 2135 2748 2129 2739 2183 2808
95% 5578 6243 5568 6243 5602 6261

Table 3.2: Required safety stocks of the end items, for scenarios 2 and 4, to guarantee
a service level of 95% non-stockout probability.
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Figure 3.7: Relative difference of inventory and work-in-process costs of producing
late and producing early compared with the standard LP model of chapter 2.

as soon as their is available capacity. Because of the long planned lead times, early
produced items have to wait several periods before they can be used to satisfy end item
demand. This results in high work-in-process cost. The achieved savings in safety
stocks when using early production are cancelled out by the large work-in-process
costs.

Summarizing the results we can conclude that production as soon as their is available
capacity is beneficial if resources have high utilization rates and planned lead times
are not too long. In these cases the additional work-in-process costs when using an
early production strategy are small compared with the savings in safety stocks.
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3.5 The 18-item model

To gain a better insight in the performance of the proposed adjustments to the stan-
dard LP strategy, we perform simulation studies with the same supply chain structure
and parameter setting at the end of every chapter. For these simulation studies we
use a supply chain structure with 18 items, namely 4 end items, 7 intermediate items,
and 7 begin items. Each intermediate item consist of one begin item, and each end
item consist of three intermediate items of which one specific item, one semi-common
item, and one common item. This supply chain structure is given in figure 3.8.
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Figure 3.8: Schematic representation of 18-item model.

We assume that the demand for the end-items is stationary. More precisely, demand
for end-item i in consecutive periods is i.i.d. We also assume that the demand pro-
cesses for different end-items are uncorrelated. The mean demand is 100 for all end
items. To get insight into the impact of demand variability on the performance we
vary the squared coefficient of variation cv2

i for each end-item i as 0.25 and 2.

Furthermore we assume that there are three capacitated resources in the supply chain.
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All intermediate items are produced on these resources, whereby the specific items,
the semi-common items, and the common items are produced on separate resources.
To get insight into the impact of resource utilization, we vary the utilization rates
(ρs, ρsc, ρc) as follows

(0.85, 0.9, 0.95) resource producing common intermediate items high utilization rate,
resource producing specific intermediate items low utilization rate

(0.95, 0.9, 0.85) resource producing common intermediate items low utilization rate,
resource producing specific intermediate items high utilization rate

To gain insight into the impact of the cost structure, we also vary the holding costs
(αf , αs, αsc, αc, αbs , αbsc , αbc) as follows

(240, 20, 40, 60, 10, 20, 30) large added value at the end items

(240, 30, 60, 90, 10, 20, 30) large added value at the intermediate items

For the planned lead times we assume the items produced on the bottleneck resource,
i.e. the resource with the highest capacity, have a planned lead time of 2 periods. All
other items have a planned lead time of 1 period. Thus, only for the items produced
on the bottleneck resource there is a flexibility in the timing of production.

The simulation study is performed as described in section 1.4. The safety stocks are
chosen such that we obtain a non-stockout probability of 95%. The results of this
study can be found in table 3.3, whereby the relative differences are calculated by

∆early vs standard =
C̄standard − C̄early

C̄standard
, (3.5)

∆late vs standard =
C̄standard − C̄late

C̄standard
, (3.6)

and

∆early vs late =
C̄late − C̄early

C̄late
(3.7)

If we look at the results the first thing we notice is that for all but two cases the model
with production as soon as possible performs best. Production as late as possible is in
two cases better then the standard LP strategy, but always worse then producing as
soon as possible. While in previous experiments in this chapter LPstandard was never
the best, in this experiment it gives the lowest inventory cost in two experiments.
The explanation of these results are twofold. First early and late production are
extreme cases to get insight in the problem, thus other production strategies might
be better is some cases. Second, since both the specific intermediate items and the
semi-common intermediate items are produced on one resource, the production timing
of the different items is also an issue. Additional studies can be carried out to measure
the influence of the production sequence of various items on the performance of the
SCOP function.
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Early Late Early
vs vs vs

cv2
i (ρs, ρsc, ρc) (αs, αsc, αc) standard standard late

0.25 (0.85, 0.9, 0.95) (20, 40, 60) 11.76% 3.58% 8.49%
0.25 (0.95, 0.9, 0.85) (20, 40, 60) 8.16% -2.36% 10.25%
2 (0.85, 0.9, 0.95) (20, 40, 60) -0.30% -3.15% 2.65%
2 (0.95, 0.9, 0.85) (20, 40, 60) 1.33% -4.37% 5.40%

0.25 (0.85, 0.9, 0.95) (30, 60, 90) 8.33% 4.14% 4.43%
0.25 (0.95, 0.9, 0.85) (30, 60, 90) 7.38% -2.03% 9.18%
2 (0.85, 0.9, 0.95) (30, 60, 90) 0.89% -5.12% 5.72%
2 (0.95, 0.9, 0.85) (30, 60, 90) -1.39% -5.18% 3.63%

Table 3.3: Relative difference between the three strategies: the standard LP strategy,
the LP strategy with early production, and the LP strategy with late production

Furthermore we see that comparatively the largest saving can be achieved if the
squared coefficient of variation is small. When the squared coefficient of variation
is high customer demand is very whimsical, i.e. the amount of demand is either
high of low. If the demand is low for several periods, it is better to produce late.
However is the demand is high, all capacity must be used and production starts as
soon as possible. Hence by choosing one of the extreme production strategies, the
performance of the SCOP function does not increase considerately.

Comparing the results on cost structure, we again see that for the cost structure with
a high added value at the end items the relative savings in performance are higher
for early production versus standard LP strategy. In these cases the savings in safety
stock cost are relatively high compared to the additional work-in-process cost when
producing as soon as possible.

Last, we see small differences between having the bottleneck machine, i.e. the machine
with highest utilization rate, producing specific of common intermediate items. In
general the savings are less, when the specific items are produced on the bottleneck
machine. In these cases the sequence of producing the four specific items also plays
role.

3.6 Conclusion and further research

In this chapter we studied the timing of production within the planned lead time of
an item in a rolling schedule setting. For this study, we used the LP model introduced
in chapter 2. We adjusted the objective function of this model to influence the timing
of production within the planned lead time. We considered two extreme production
strategies, namely production as soon as there is available capacity and production
as late as possible. Producing early has the benefit that safety stocks are lower. Less
unused capacity is thrown away at the end of a period so there is more capacity left
over for the coming periods. This means that fluctuation in the actual demand can
be handled more easily and less safety stocks are necessary. A disadvantage is that
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the work-in-process inventory costs are higher than when producing late, because
stocking a whole item is more expensive than stocking the materials it consists of.
Producing late can be compared with the models of Billington et al. (1983), of Chung
& Krajewski (1984), and of Belvaux & Wolsey (2001). In these models the lead time
is variable and calculated according to the demands on available capacity. To avoid
high inventory, orders are produced just in time.

In this chapter we studied a well-structured two echelon supply chain , whereby all
items had a planned lead time of two periods, and we studied the 18-item model
whereby only the items produced on the bottleneck resource had a planned lead time
of two periods, all other items had a planned lead time of one period. For these
two structures we can conclude that in general producing early is cheapest, only if
the added value of the production step is too high and/or the planned lead times
are too long, the work-in-process inventory costs for producing early become so high
that producing late is more beneficial. For larger, multi-echelon supply chains more
research has to be done, but the general idea still holds. If the savings in safety stocks
are larger than the additional work-in-process costs, early production is advisable.
Since work-in-process inventory can be found at every level of the supply chain, and
safety stocks only at the highest level, early production should be restricted to the
items produced on resources with high utilization rates.

We have seen that for utilization factors of 95%, the flexibility in the timing of produc-
tion is very low. By increasing the planned lead times, the flexibility in the timing of
production also increases. However, long planned lead time give high work-in-process
costs. Hence, an interesting research topic is the determination of optimal planned
lead times for arbitrary supply chains with uncertain demand. In the next chapter
we identify factors which influence the optimal planned lead time.



Chapter 4

Factors which influence the
optimal planned lead time

4.1 Introduction

In chapter 2, we introduced an LP model with planned lead times for solving the
Supply Chain Operations Planning problem. The reason we use planned lead times
is two-fold. First, by using planned lead times we can incorporate all kind of queue-
ing effects. As Karmarkar [1987] points out, on the scheduling level several other
variables besides the capacity, affect the queueing behavior in complex production
environments. These variables are, amongst others, lot sizes, release times of batches
and the coordination of these release times, sequencing at machines, production mix,
and the heterogeneity of items. Furthermore, linear programming models are applied
in a rolling schedule setting, where periodically plans are derived based on forecasts
of future demand and other exogenous information. The difference between the ac-
tual demand and its forecast induces the typical queueing behavior that arises when
finite resource availability is confronted with stochastic resource requirements. This
queueing behavior cannot be made endogenous to a deterministic model.

Secondly, by using planned lead times additional flexibility in the timing of production
is created. While in models without planned lead times production starts always
starts as late as possible in order to meet customer service levels at minimal costs, in
the model with planned lead times the production can, e.g., already start immediate
after an order is released if there is capacity available. Note that orders in this
model are released earlier than in the former models, e.g. Billington et al. (1983),
Chung & Krajewski (1984), and Hopp & Spearman (2000)), because of the (longer)
planned lead times. In the previous chapter, we have shown that producing early,
especially when utilization rates are high, is beneficial. By producing early, not only
the amount of unused capacity is reduced, but also the safety stocks. Since early
production increases the work-in-process costs, the correct setting of planned lead
times is important.

47



48 Factors which influence the optimal planned lead time

In this paper we investigate the setting of planned lead times when using LP strate-
gies. Our research question in this chapter is: Which factors influence the planned
lead times, and how? Our approach to this research question is both analytical and
experimental. We first identify factors influencing the planned lead times by using
queueing theory and previous research. Then we formulate testable hypotheses about
the interesting experimental settings we created. We use the LP model with discrete
event simulations to test these hypotheses.

4.2 Factors influencing the planned lead time

In this section we investigate which factors influence the optimal planned lead time.
Since waiting time plays an important role in the lead time, we first discuss the
expected waiting time for a single server queue when using queueing theory.

We consider a GI/G/1 queue, where the service time and the inter-arrival time be-
tween the orders have a general distribution. When an order arrives and the server
is busy, the order waits in a queue. When all orders that arrived earlier have been
finished, the waiting order is produced. So, we have a first in, first out (FIFO) system.
Assume that the distribution of the service times is also general. Let the inter-arrival
distribution A have mean 1/λ and variance σ2

a, and let the service distribution G
have mean 1/µ and variance σ2

g. For a stable system we must have 0 < ρ = λ/µ < 1.
Let cv2

a = λ2σ2
a and cv2

g = µ2σ2
g, cv2 is the squared coefficient of variation. We are

interested in the average waiting time of this system. The approximation for the
waiting time, which was first investigated by Kingman (1962), and is given by:

Wq =
λ(σ2

a + σ2
g)

2(1− ρ)
(4.1)

In our SCOP function it is assumed that demand occurs once per period, the demand
distribution is general and we only know the expected demand E[D] and the squared
coefficient of variance cv2

d. The orders derived from the demand are produced in
order of arrival, and the utilization rate ρ of the server is known. There is a demand
for products at the beginning of each period, so the inter-arrival time of orders is
deterministic and equal to one period. Thus we have a variance of σ2

a = 0 and, since
E[A] = 1/λ, λ = 1. The service time per unit is fixed, so the service time of an
order only depends on the size of the order. Hence, the coefficients of variation of the
distribution functions of both the demand and the server are equal, thus cv2

g = c2
d.

Further we know that σ2
g = cv2

g/µ2 = cv2
d/µ2 and ρ = λ/µ = 1/µ, thus σ2

g = ρ2cv2
d.

The expected waiting time is now given by:

Wq =
ρ2cv2

d

2(1− ρ)
(4.2)

In (4.2), we see that the waiting time is dependent on the utilization rate of the
machine and on the coefficient of variation. Both higher utilization rates and higher
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variance in the demand increase the waiting time. Hence, the utilization rate and the
coefficient of variation are two factors influencing the planned lead time.

So far we have identified two factors influencing the planned lead time, a third factor
can be found in chapter 3. There we studied the timing of production. We considered
early and late production within the planned lead time. The timing is amongst
other factors dependent on the holding costs of the items. Producing early is only
beneficial if the safety stocks savings are larger than the increased work-in-process
costs. For planned lead times a similar reasoning is applicable. Longer planned lead
times can reduce the safety stocks and thus the involved costs, however on the other
hand the work-in-process inventory and thus the involved costs increase with longer
planned lead times. So the difference between the holding costs of the end items
and the holding costs of the items produced on capacitated resources is also a factor
influencing the optimal length of the planned lead times.

4.3 Numerical experiments

In this section we look at the three factors, identified in the previous section, which
have influence on the optimal planned lead time in an experimental setting. The
chosen supply chain structures for the experiments are discussed in section 4.3.1. In
section 4.3.2, we pose hypotheses about the setting of the planned lead time. The
parameter setting in the experiments are discussed in section 4.3.3 and the results
can be found in section 4.3.4.

4.3.1 Experimental setting

As we have seen in equation (4.2), long waiting times only occur if the utilization rate
of a resource is sufficiently high. Hence, to make the experiments interesting, we use
capacitated resources with high utilization rates. In the experiments we investigate
the optimal planned lead times for various parameter settings. For each parameter
setting we first have to find the optimal planned lead time, which means that for each
parameter setting we have to try several different planned lead times to identify the
optimal one. Since finding optimal planned lead times is time consuming, we restrict
ourself to small supply chain structures with at most two capacitated resources. In
the experiments we use three different supply chain structures, see figure 4.1. The
items produced on capacitated resources are indicated with a circle, we are interested
in the optimal planned lead time of these items. The planned lead times of the other
items are set equal to one period, whereby we assume that this is optimal because
waiting times at uncapacitated resources are very small.

The three chosen supply chain structures are representative for all kind of supply chain
structures. Structure 1 is a very simple serial supply chain structure with only one
capacitated resource. Since there is only one capacitated resource the optimal planned
lead time is only influenced by the identified factors, and not by other capacitated
resources. Of course, the effects of more than one capacitated resource in one supply
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chain is also an interesting topic. Hence we distinguish two other situations. In the
first situation, structure 2, we have a convergent structure where two child items are
processed on two different capacitated resources and used in the same parent item.
The optimal planned lead times are influenced by each other because production
of the parent item is only possible if all child items are available. In the second
situation, structure 3, we have a serial structure with two capacitated resources. In
this situation, the endogenous demand of the child item is influenced by the production
rate of the parent item, and the production rate of the parent item is, among other
factors, influenced by the length of its planned lead time. So the optimal planned
lead time of the upstream items is influenced by the optimal planned lead time of the
downstream items.

11
11

11

11
11

11

11
11

11

°°
°°
°°

°°
°°
°°

°°
°°
°°

11
11

11

11
11

11

11
11

11

11
11

11
11

11
11

°°
°°
°°

°°
°°
°°

°°
°°
°°

°°
°°
°°

°°
°°
°°// // // //

//

//

//

//

JJJJJJJJJJJ

$$ttttttttttt

:: //123 1

2

3

4

5

structure 1

structure 2

g̀afbecd

g̀afbecd

g̀afbecd

11
11

11

11
11

11

11
11

11

11
11

11

°°
°°
°°

°°
°°
°°

°°
°°
°°

°°
°°
°°// // // // //1234

structure 3

g̀afbecd g̀afbecd

Figure 4.1: Studied supply chain structures.

We assume a one-to-one production ratio, where one unit of each child item is needed
for the production of a single unit of a parent item. The capacity requirement pi for
producing one item i is equal to one for all items. The raw material is delivered by
suppliers. We assume that these suppliers deliver exactly at the end of the lead time,
so we do not have work-in-process inventory costs for these items.

We study these supply chain structures in a rolling schedule setting, as discussed in
chapter 1. Safety stocks are selected, with the method discussed in chapter 1, such
that in 95% of the time no backorders occur.
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4.3.2 Hypotheses

In section 4.2, we distinguished three factors, namely the variation in demand, the
utilization rate of the resources, and the holding cost structure in the supply chain,
which influence the optimal planned lead time. In this section we pose hypotheses,
to be tested in a rolling schedule setting, based on these three factors.

Hypothesis 1 The optimal planned lead time of an item is longer if the utilization
rate of the resource it is produced on is higher.

Hypothesis 2 The optimal planned lead time of an item is longer if the variation in
the demand is higher.

In the approximation of the waiting time, equation (4.2), we see that higher utilization
rates and more variation result in longer waiting times. Thus, these two hypotheses are
consistent with the findings in section 4.2. Hence, we expect that the optimal planned
lead time increases if the utilization rate and/or the demand variation increase.

Hypothesis 3 The optimal planned lead time of an item is longer if the difference
in holding costs between this item and the end item is larger.

Since longer planned lead times may reduce the safety stocks and thus the involved
costs, longer planned lead times also create more work-in-process costs. Hence, the
relation between the savings of the safety stocks reduction and the additional costs
of increased work-in-process inventory influences the optimal planned lead time. So,
we expect that the optimal lead time is longer if the difference between safety stock
cost and the work-in-process costs is large.

4.3.3 Experimental parameters

To verify the posed hypotheses, we use simulation studies. The factors we investigate
are the squared coefficient of variation, the utilization rate of the resources, and the
holding cost structure. Finding optimal planned lead times is time consuming; for a
certain parameter setting the simulation must be executed sufficient times with dif-
ferent planned lead times, and the planned lead time creating lowest cost is optimal.
Hence, the number of experiments we can carry out within a limited time is restricted,
so we have to choose the parameter settings carefully.

Squared coefficient of variation

In hypothesis 1, it is claimed that more variation in demand results in longer opti-
mal planned lead times. Hence, in the experiments we vary between a small squared
coefficient of variation, and a large squared coefficient of variation. As specific values
we use cv2

1 = 0.25 and cv2
1 = 2.
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Utilization rate of resource

Hypothesis 2 states that high utilization rates result in long optimal planned lead
times. Hence, in the experiments we investigate different utilization rates, see table
4.1. For supply chain structure 1, we look at 4 increasing utilization rates and expect
to find increasing optimal planned lead times. In structures 2 and 3, we consider equal
and unequal utilization rates for the two capacitated resources in order to study the
influence of the capacitated resources on the optimal planned lead times of the items
produced on these capacitated resources.

Structure 1 Structure 2 Structure 3
Item 2 Item 2 Item 3 Item 2 Item 3
ρ2 = 0.85 ρ2 = 0.85 ρ3 = 0.85 ρ2 = 0.85 ρ3 = 0.85
ρ2 = 0.88 ρ2 = 0.88 ρ3 = 0.85 ρ2 = 0.88 ρ3 = 0.85
ρ2 = 0.91 ρ2 = 0.88 ρ3 = 0.88 ρ2 = 0.85 ρ3 = 0.88
ρ2 = 0.94 ρ2 = 0.88 ρ3 = 0.88

Table 4.1: The utilization rates used in the experiments.

Holding cost structure

We characterize the holding cost structure by the added value per production level.
We consider 3 holding cost structures for supply chain structures 1 and 2, and 4 hold-
ing cost structures for supply chain structure 3, see table 4.2. In each cost structure a
large added value is added to the holing cost on a different level in the supply chain.
For example, in holding cost structure A of supply chain structure 1 the large added
value is added when the end item is produced, i.e. the holding costs are low for items
2, and 3 and high for item 1, while in structure C stocking item 3 is already expensive.

Item 1 Item 2 Item 3 Item 4 Item 5
Structure 1 A 6 2 1

B 6 5 1
C 6 5 4

Structure 2 A 8 2 2 1 1
B 11 5 5 1 1
C 11 5 5 4 4

Structure 3 A 7 3 2 1
B 7 6 2 1
C 7 6 5 1
D 7 6 5 4

Table 4.2: The holding costs for the different items used in the experiments.

We perform the experiments with all combination of the parameter settings per supply
chain structure, so in total, we have 2 ∗ 4 ∗ 3 = 24 different parameter settings for
supply chain structure 1, 2 ∗ 3 ∗ 3 = 18 different settings for supply chain structure 2,
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and 2 ∗ 4 ∗ 4 = 32 different settings for supply chain structure 3.

4.3.4 Results

The results of the experiments, namely the optimal planned lead times, for the three
supply chain structures with various parameter settings are given in table 4.3.

cv2
1 = 0.25 cv2

1 = 2
str. item ρ A B C D A B C D
1 2 0.85 1 1 1 8 1 1
1 2 0.88 2 1 1 10 1 1
1 2 0.91 3 1 1 17 1 1
1 2 0.94 4 1 1 31 1 1
2 2 - 3 0.85 - 0.85 1 - 1 1 - 1 1 - 1 5 - 5 1 - 1 1 - 1
2 2 - 3 0.88 - 0.85 2 - 1 1 - 1 1 - 1 8 - 4 4 - 1 4 - 1
2 2 - 3 0.88 - 0.88 1 - 1 1 - 1 1 - 1 9 - 9 1 - 1 1 - 1
3 2 - 3 0.85 - 0.85 1 - 1 1 - 1 1 - 1 1 - 1 1 - 1 1 - 1 1 - 1 1 - 1
3 2 - 3 0.88 - 0.85 1 - 1 1 - 1 1 - 1 1 - 1 3 - 1 1 - 1 1 - 1 1 - 1
3 2 - 3 0.85 - 0.88 1 - 1 1 - 1 1 - 1 1 - 1 1 - 5 1 - 5 1 - 2 1 - 1
3 2 - 3 0.88 - 0.88 1 - 1 1 - 1 1 - 1 1 - 1 1 - 1 1 - 1 1 - 1 1 - 1

Table 4.3: Optimal planned lead times.

Let us first look at supply chain structure 1, we see clearly that hypotheses 1 and 2
hold for the used parameter setting with holding cost structure A. Both for higher
demand variation and higher utilization rates the optimal planned lead times increase.
For cost structures B and C, the optimal planned lead times are all equal to one
period. Apparently the difference in holding cost between the end item and the item
produced on the capacitated resource is too small and the savings in the safety stocks
are cancelled out by the additional work-in-process cost.

Supply chain structure 2 with cost structure A and high demand variation gives
optimal planned lead times longer than one period. So higher demand variation
increases the length of optimal planned lead times if the added value is high at the
highest supply chain level. Looking at the utilization rates it is not so obvious that
hypotheses 2 is true. If the utilization are of both resources are equal and both
utilization rates increase with equal amount, the optimal planned lead times indeed
also become longer. However, if only the utilization rate of one of the resources
increases, the optimal planned lead time of the items on the other resource may
even decrease (cf. (ρ2, ρ3) = (0.85, 0.85) with (ρ2, ρ3) = (0.88, 0.85) for holding cost
structure A and cv2

1 = 2). Thus next to the three identified factors which influence
the optimal planned lead times, also other capacitated resources have influence on
the optimal planned lead time of an item produced on a capacitated resource. In
figure 4.2, we give the inventory costs of various planned lead times for the parameter
setting with cv2

1 = 2, (ρ2, ρ3) = (0.85, 0.85), and holding cost structure A. We see
that for symmetric supply chain structures the optimal planned lead times should be
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Figure 4.2: Cost for different planned lead times.

equal, and that the minimal cost are reached if (τ2, τ3) = (5, 5).

For most parameter settings in supply chain structure 3, the optimal planned lead
times are equal to one period. Thus possible costs savings by reduction in safety
stocks are cancelled out by the additional work-in-process costs. Furthermore we
see that if the optimal planned lead time is longer than one period, then only the
item produced on the resource with the highest utilization rate has a ‘long’ optimal
planned lead time. We see also that the optimal planned lead times are longer if
the most upstream resource has the highest utilization rate, compare for example
(ρ2, ρ3) = (0.85, 0.88) with (ρ2, ρ3) = (0.88, 0.85). These results are not surprising,
since the holding cost of upstream items is lower, the additional work-in-process costs
caused by longer planned lead times are also lower.

Having planned lead times with multi-period capacity consumption is a feature of the
models introduced in this thesis. However, if we set the planned lead times equal to
one period, the model is comparable with former models such as defined in Billington
et al. (1983), in Hopp & Spearman (2000) and in Tempelmeier (2003). In table 4.4, we
give the relative difference in inventory plus work-in-process cost between using the
optimal planned lead times and planned lead times equal to 1 period, the difference
is given by

cost for τ equal to 1 - cost for optimal τ

cost for optimal τ
× 100% (4.3)

First of all, we see that savings up to 33.7% can be reached. Furthermore we see that
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cv2
1 = 0.25 cv2

1 = 2
str. item ρ A B C D A B C D
1 2 0.85 - - - 7.6% - -
1 2 0.88 3.56% - - 14.6% - -
1 2 0.91 7.82% - - 21.6% - -
1 2 0.94 19.13% - - 33.7% - -
2 2 - 3 0.85 - 0.85 - - - 1.3% - -
2 2 - 3 0.88 - 0.85 0.2% - - 8.5% 3.7% 1.3%
2 2 - 3 0.88 - 0.88 - - - 4.7% - -
3 2 - 3 0.85 - 0.85 - - - - - - - -
3 2 - 3 0.88 - 0.85 - - - - 2.0% - - -
3 2 - 3 0.85 - 0.88 - - - - 5.5% 5.4% 0.5% -
3 2 - 3 0.88 - 0.88 - - - - - - - -

Table 4.4: Relative difference in inventory plus work-in-process costs between the op-
timal planned lead times and planned lead times equal to 1 period.

the holding costs again play an important role in determining the optimal planned
lead times. While in supply chain structure 1, with cv2

1 = 2 and ρ2 = 0.94, the
optimal planned lead time of 31 periods gives savings of 33.7% for cost scenario A,
in scenarios B and C the optimal planned lead time is equal to 1 period. So no
savings are reached by longer planned lead times in these two scenarios. Although
the safety stocks decrease by the longer planned lead times in these scenarios, the cost
savings of the decreasing safety stocks are smaller than the increase in work-in-process
cost caused by the longer planned lead times. So longer planned lead times are only
beneficial if the added value between the item produced on the capacitated resource
and the end item is large enough.

ρ = 0.85 ρ = 0.88 ρ = 0.91 ρ = 0.94
cv2

d = 0.25 0.60 0.81 1.15 1.84
cv2

d = 2 4.82 6.45 9.20 14.73

Table 4.5: Approximated waiting times using equation (4.2).

In section 2, we determined an approximation for the waiting times in a single item,
single server queue. With this approximation we determined factors influencing the
optimal planned lead times. Although the customer demand distribution differ from
the endogenous demand distribution upstream in the supply chain, we still investigate
if the approximated waiting times, obtain with equation (4.2), are usable approxima-
tions of the optimal planned lead times. In table 4.5, the approximated waiting times
for different demand distributions and utilization rates are given.

In table 4.6, the relative difference in inventory plus work-in-process costs between
the optimal planned lead times and the planned lead times derived by rounding up
the approximated waiting times is given. The relative difference is calculated by
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cv2
1 = 0.25 cv2

1 = 2
str. item ρ A B C D A B C D
1 2 0.85 - - - 1.2% 3.2% 12.9%
1 2 0.88 3.56% - - 3.8% 1.3% 12.5%
1 2 0.91 0.90% - - 9.2% 0.6% 12.4%
1 2 0.94 14.64% - - 20.8% 0.9% 13.5%
2 2 - 3 0.85 - 0.85 - - - - 4.8% 15.5%
2 2 - 3 0.88 - 0.85 0.2% - - 1.4% 4.3% 10.8%
2 2 - 3 0.88 - 0.88 - - - 0.6% 3.2% 15.4%
3 2 - 3 0.85 - 0.85 - - - - 4.1% 17.2% 31.8% 40.0%
3 2 - 3 0.88 - 0.85 - - - - 6.4% 14.1% 28.9% 34.5%
3 2 - 3 0.85 - 0.88 - - - - 7.7% 15.3% 24.1% 32.4%
3 2 - 3 0.88 - 0.88 - - - - 7.3% 16.8% 16.8% 43.4%

Table 4.6: Relative difference in inventory plus work-in-process costs between the op-
timal planned lead times and approximated planned lead times.

cost for approximated τ - cost for optimal τ

cost for optimal τ
× 100% (4.4)

We see that, since differences up to 40% are reached, the approximated waiting times
are not suitable for determining good planned lead times. So we have to conclude that
extended research has to be carried out to find heuristics for determining good planned
lead times. In these studies not only the variation in demand and the utilization rate
of the resource, but especially the holding cost structures must be taken into account.
We have seen that holding cost structures play a key role in determining the optimal
planned lead times. Longer planned lead times can decrease the safety stock costs,
but this is only advantageous if the work-in-process costs do not increase faster.

4.4 The 18-item model

In the previous chapter we introduced the 18-item model, we saw that for most
examined cases producing as soon as there is capacity available for the released item is
cheapest. In this chapter we use simulation studies to determine the optimal planned
lead times for the model with early production, whereby we assumed that items
produced on the same machine have equal planned lead times. This is justified since
the demand for all end-items in consecutive periods is i.i.d. and the mean and squared
coefficient of variation are equal for all end items. The results are given in table 4.7

Also for the supply chain chapter we see that the optimal planned lead times are
longer than one period. Furthermore we see that high variation and/or high added
value at the end item level results in long optimal planned lead times. In the last
column of table 4.7, we see the relative difference between the model with planned
lead times equal to one period and the model with optimal planned lead times. This
difference is given by
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cv2
i (ρs, ρsc, ρc) (αs, αsc, αc) (τs, τ sc, τ c) ∆

0.25 (0.85, 0.9, 0.95) (20, 40, 60) (1, 1, 2) 7.72%
0.25 (0.95, 0.9, 0.85) (20, 40, 60) (2, 1, 1) 11.88%
2 (0.85, 0.9, 0.95) (20, 40, 60) (1, 2, 8) 17.67%
2 (0.95, 0.9, 0.85) (20, 40, 60) (9, 2, 1) 14.21%

0.25 (0.85, 0.9, 0.95) (30, 60, 90) (1, 1, 2) 3.18%
0.25 (0.95, 0.9, 0.85) (30, 60, 90) (2, 1, 1) 10.05%
2 (0.85, 0.9, 0.95) (30, 60, 90) (1, 1, 3) 6.46%
2 (0.95, 0.9, 0.85) (30, 60, 90) (8, 1, 1) 11.76%

Table 4.7: Optimal planned lead times, and the relative difference between the model
with planned lead time equal to one period and the model with the optimal planned
lead time.

∆ =
C̄τ i=1 − C̄τ i=τ∗i

C̄τ i=1
. (4.5)

We see that, especially in the cases whereby the added value at the end item level is
high, the savings are considerable. So we can conclude that spending time in finding
optimal of at least good planned lead times is worthwhile.

4.5 Conclusions

In this chapter we focussed on the factors which influence the optimal planned times
when using the SCOP function in a rolling schedule setting with demand uncertainty.
Notice that on one hand the work-in-process cost increases when using longer planned
lead times, but on the other hand in most case the longer planned lead times give
a reduction in safety stock, and thus in the related cost. Hence finding the optimal
planned lead times is equivalent to finding the optimal balance between work-in-
process and safety stocks cost.

From queueing theory we know that the waiting time depends on the variance of the
inter arrival times and on the utilization rate of the server. Since lead times consist
for a large part of waiting time, we investigated if these two factors also have influence
on the optimal planned lead time. A third factor we considered is the holding cost of
the items in the supply chain. If the safety stocks are very expensive compared with
the work-in-process cost, the optimal planned lead time is probably longer than if the
difference in cost is small.

We studied these three factors in a numerical study with discrete event simulation for
three specific supply chain structures. For all three structures we can conclude that
both higher demand variation and higher utilization rates of the resources increases
the optimal planned lead time. However the holding cost structure plays a key role in
determining the optimal safety stocks. Safety stocks can decrease by longer planned
lead times if the variation in demand and/or the utilization rate of the resources is
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high, but this is only advantageous if the additional work-in-process cost are smaller
that the reduction in safety stock cost.

We also looked at supply chain structures with two capacitated resources, and we saw
that the resource with the highest utilization rate has the longest optimal planned
lead time. If the resources are serial, the optimal planned lead time of the resource
with the lowest utilization rate has an optimal planned lead time of one period. For
symmetric supply chains, the optimal planned lead time of two items is equal if they
are both produced on resources with equal utilization rates.

At last we determined the optimal planned lead times that belong to the 18-item
model. Also here we see that higher demand variation gives longer optimal planned
lead times. Furthermore we saw that the cost savings are higher when their is a high
added value downstream in the supply chain.

LP models with planned lead times with multi-period capacity consumption are not
common. Most models, see e.g. Billington et al. (1983), Hopp & Spearman (2000)
and Tempelmeier (2003), have a fixed lead time where capacity is allocated at this
fixed time offset. If we set the planned lead time in our model equal to one period, it
is comparable with those common models. We can conclude that using planned lead
times give better results as long as they are well-chosen.

Finding optimal planned lead times is very time consuming, especially for large supply
chain structures. Hence in future research there may be looked for an heuristic to
find good planned lead times. For large supply chain structures you can probably
restrict yourself to find good or even optimal planned lead time of the items produced
on capacitated or bottleneck resources only. All other planned lead times can be set
equal to one period.



Chapter 5

Early availability of produced
items

5.1 Introduction

In the previous chapters, items are only available for further usage at the end of their
lead times. When produced at the beginning of its planned lead time an item may wait
a large part of its planned lead time while possibly needed downstream. To avoid this
unnecessary, or even undesirable waiting time, we adapt the LP model introduced in
chapter 2, whereby we assume that production starts as soon as possible (see chapter
3). The first remedy proposed is to adjust the LP model, such that items are available
for further usage as soon as they are produced. Thus the flexibility of multi-period
capacity allocation remains in the model, but produced items do not have to wait the
remainder of the planned lead time before they can be used in succeeding production
steps. We test this model using the supply chain structures introduced in chapter 4
which have optimal planned lead times longer than one period.

As an alternative remedy, we adjust the LP model, and make items available before the
end of their planned lead time if they are actually needed in succeeding production
steps. This means that produced items are only available early if backorder are
avoided or reduced. Again the model is tested.

The remainder of this chapter is organized as follows. We start with a brief overview
of the model presented in chapter 2, with the adjustments made in chapter 3 in
order to produce as soon as their is available capacity. In section 5.3, the model
with immediate availability of items after being produced and the performance of
this model is discussed. And in section 5.4, we discuss the model and its performance
whereby produced items can be used in proceeding production steps before the end
of their lead time if necessary. We end this chapter with conclusions in section 5.6.

59
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5.2 LP model with early production

In this section we briefly discuss the LP model, introduced in chapter 3, whereby
production of items always starts as early as possible. We give the mathematical
model and a brief explanation whereby we concentrate on the objective function and
those constraints that play a role when we want to release items early.

The LP model with early production is given by

min
t+T∑

s=t+1

N∑

i=1

αisIi,s−1 +
t+T∑

s=t+1

N∑

i=1

βisBi,s−1 + ε

t+T∑
s=t+1

N∑

i=1

∑

m∈Ri

sVims (5.1)

subject to

Iis = Ii,s−1+Ri,s−τ i−Dis−
N∑

j=1

hijRjs+Bis−Bi,s−1, i = 1, . . . , N, s = t, . . . , t+T−1

(5.2)∑

u:−τ i< u≤ s

piRiu ≥
∑

m∈Ri

∑

u:−τ i+1< u≤ s+1

Vimu i = 1, . . . , N, s = t−τ i+1, . . . , t+T−1

(5.3)∑

u:−τ i< u≤ s

piRiu ≤
∑

m∈Ri

∑
u:−τi+1< u≤ s+τi,

u< t+T

Vimu i = 1, . . . , N, s = t−τ i+1, . . . , t+T−1

(5.4)∑

i:m∈Ri

Vims ≤ cms m = 1, . . . , L, s = t + 1, . . . , t + T (5.5)

Bis −Bi,s−1 ≤ Dis, i = 1, . . . , N, s = t, . . . , t + T − 1 (5.6)

Ris, Bis, Iis ≥ 0, i = 1, . . . , N, s = t, . . . , t + T − 1 (5.7)

Vims ≥ 0, i = 1, . . . , N, m = 1, . . . , L, s = t + 1, . . . , t + T (5.8)

Constraints (5.2) are the inventory balances for all i = 1, 2, . . . , N and s = t, t +
1, . . . , t+T −1 and constraints (5.3), (5.4), and (5.5) deal with multiple capacity allo-
cation. Constraints (5.6) ensure that the number of backorders can only increase by
the exogenous demand for the concerned item. The last two constraints are boundary
constraints. By adding the term ε

∑t+T
s=t+1

∑N
i=1

∑
m∈Ri

sVims to the objective func-
tion, the capacity allocation is done such that capacity is allocated to released items
as soon as their is capacity available. Focussing on the inventory balance (5.2), we see
that the net inventory Iis−Bis at time s is equal to the net inventory Ii,s−1−Bi,s−1

at time s − 1, minus endogenous and exogenous demand plus the incoming orders
Ri,s−τ i . These orders are released a planned lead time ago, and produced during its
planned lead time. At time s the order is available for further production steps or the
satisfy customer demand. In the coming two subsections we adjust the LP models
such that order become available before the end of their planned lead time. So, it is
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clear that the decision variable Ri,s−τ i
have to be replaced by other, yet to define,

variables.

In chapter 3 we introduced inventory balance equations for work-in-process. We
made a distinction between released items waiting until they are produced, see equa-
tion (5.9), and items that are already produced but have to wait until the end of the
planned lead time before they are available for succeeding production steps, see equa-
tion (5.10). In this equation, the number of work-in-process items Îis waiting until
the end of their planned lead time at time s is equal to the number of work-in-process
items ÎI,s−1 at time s−1 plus the items produced during time slot s minus the orders
Ri,s−τ i

released a planned lead time ago. When we make items available before the
end of their planned lead time, it is clear that the again Ri,s−τ i will be replaced by
other, yet to define, variables.

Īis = Īi,s−1 +
N∑

j=1

hijRjs −
N∑

j=1

∑

m∈Rj

hijVj,m,s+1, i = 1, . . . , N, s = t, . . . , t + T − 1

(5.9)

Îis = Îi,s−1 +
∑

u∈Ri

Vius −Ri,s−τ i , i = 1, . . . , n, s = t, . . . , t + T − 1 (5.10)

with

Īis : the work-in-process inventory of item i at time s waiting to be used in production,
i = 0, . . . , N , s = t, t + 1 . . . , t + T − 1.

Îis : the work-in-process inventory of item i at time s waiting after being produced,
i = 0, . . . , N , s = t, t + 1 . . . , t + T − 1.

5.3 Immediate availability of produced items

In this section we consider a LP strategy whereby items are available as soon as
they are produced. In section 5.3.1 the changes in the mathematical representation
of the LP model are given. We are especially interested in the performance of this
strategy compared with the standard LP strategy. Hence in section 5.3.2 and 5.3.3
an experimental setting with its results is discussed.

5.3.1 Mathematical representation of the model

In the previous section, we have mentioned that the inventory balance, and the work-
in-process inventory balance after production changes if we adjust the LP model such
that items are available for further usage immediately. In this section we discuss these
changes, and we also adjust the objective function.
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Inventory balance

The original inventory balance,

Iis = Ii,s−1 + Ri,s−τ i
−Dis −

N∑

j=1

hijRjs + Bis −Bi,s−1,

i = 1, . . . , N, s = t, . . . , t + T − 1, (5.11)

states that the net inventory, Iis−Bis, at time s is equal to the net inventory, Ii,s−1−
Bi,s−1, at time s plus released orders, Ri,s−τ i

, minus endogenous and exogenous
demand,

∑N
j=1 hijRjs + Dis. The orders, Ri,s−τ i

, are released a planned lead time
ago and are produced during this planned lead time. If the order is produced at the
beginning of the planned lead time, it has to wait several periods until the end of its
planned lead time. In this section, instead of waiting until the end of the planned
lead time, we release items immediately after production. We know that during time
slot s, capacity

∑
m∈Ri

Vims is allocated at the available resources for the production
of item i. Hence at the end of time slot s these items are produced and ready for
future production steps. Since we want these items to be available for further usage
immediately after production we have to replace the incoming orders, Ri,s−τ i , in
the inventory balance by the produced orders,

∑
m∈Ri

Vims. So, the new inventory
balance becomes

Iis = Ii,s−1 +
∑

m∈Ri

Vims −Dis −
N∑

j=1

hijRjs + Bis −Bi,s−1,

i = 1, . . . , N, s = t, . . . , t + T − 1 (5.12)

Work-in-process inventory balance

Since items are available for further usage immediately after production, we no longer
have work-in-process waiting the remainder of the planned lead time. Hence the
work-in-process inventory balance after production is no longer needed. Note that,
we still have work-in-process waiting to be produced, so the work-in-process inventory
balance before production remains in the model.

Objective function

In chapter 3, we show that in a lot of situations, especially when capacity utilization
is high, early production is beneficial for the inventory costs. Early production means
that requested orders are produced as soon as there is available capacity. To ensure
early production we adjusted the objective function, in chapter 3 by

min
t+T∑

s=t+1

N∑

i=1

αisIi,s−1 +
t+T∑

s=t+1

N∑

i=1

βisBi,s−1 +
t+T∑

s=t+1

N∑

i=1

∑

m∈Ri

εsVims (5.13)

Unfortunately, this objective function is not suitable when items are available imme-
diately after production. When items are made available for further production or to
satisfy customer demand, they turn up as inventory, and as we can see in the objective
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function, inventory is costly. So when solving the production planning problem, the
LP model makes a plan in which the production, and thus also the availability, is as
late as possible (avoiding large inventory). To avoid this scenario, we have to add
additional cost to the production of items. Items can be released at most a planned
lead time minus a period (τ i−1) before the end of the planned lead time (actual pro-
duction takes place within one period), and if not used for further production, these
items spend at most (τ i − 1) periods longer as inventory. We have to compensate for
the time additionally spend as inventory, so the objective function becomes

min
t+T∑

s=t+1

N∑

i=1

αisIi,s−1 +
t+T∑

s=t+1

N∑

i=1

βisBi,s−1 +
t+T∑

s=t+1

N∑

i=1

∑

m∈Ri

((τ i − 1)αis + εs)Vims

(5.14)

whereby αis and βis are chosen such that

(τ i − 1)αis < 10βis, i = 1, . . . , N, s = t, . . . , t + T − 1 (5.15)

5.3.2 Experimental setting

In this section we five the supply chain structures with appropriate parameter settings
to measure the performance of the strategy in which items are available for further
usage immediate after production. We measure the performance by comparing the
inventory and work-in-process cost of the LP strategy including early production with
the LP strategy including early production and early availability.

For a fair comparison of the performance between the LP strategies, the choice of
the planned lead time is important. If the planned lead times are extremely long,
early availability of produced items most probably improves the performance of the
model. And if the chosen planned lead times are already too small, early availability
is not an issue. Hence, we use supply chain structures of which we know the optimal
planned lead times, see chapter 4. If the optimal planned lead time is equal to one
period, items are always available immediate after production. Hence, in this research
we only use the experimental cases whereby the optimal planned lead time is longer
than one period. In figure 5.1 the used supply chain structures are given. The circles
indicate those items which are produced on capacitated resources.

We assume a one-to-one production ratio, where one unit of each child item is needed
for the production of a single parent item. The capacity requirement pi for producing
one item i is equal to one for all items. The planned lead times of the items produced
on uncapacitated resources are all set equal to one period. The inventory cost of the
various items are given in table 5.1.

The performance of the early release strategy is studied using a rolling schedule set-
ting, see chapter 1. The time horizon is chosen such that it is longer than the cumu-
lative lead time, and the actual demand on end items follows a gamma distribution
with mean 100. For each experiment we vary the squared coefficient of variation of
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Figure 5.1: Studied supply chain structures.

item 1 item 2 item 3 item 4 item 5
structure 1 6 2 1
structure 2 8 2 2 1 1

Table 5.1: The holding costs used in the experiments.

actual demand and the utilization rate of the capacitated resources. Per parameter
setting we use three values for the planned lead time of the items produced on the
capacitated resources, namely the optimal planned lead times, the optimal planned
lead times minus one period, and the optimal planned lead time plus one period. The
optimal planned lead times for each parameter setting are given in table 5.2.

Structure 1 Structure 2
cv2

1 ρ2 τ2 cv2
1 (ρ2, ρ3) (τ2, τ3)

0.25 0.88 2 0.25 (0.88, 0.85) (2, 1)
0.25 0.91 3 0.25 (0.91, 0.85) (3, 1)
0.25 0.94 4
2 0.85 8 2 (0.85, 0.85) (5, 5)
2 0.88 10 2 (0.88, 0.85) (8, 4)
2 0.91 17 2 (0.88, 0.88) (9, 9)
2 0.94 31 2 (0.91, 0.85) (19, 1)

Table 5.2: Parameter settings used in the experiments.

5.3.3 Results

The results of the experiments can be found in table 5.3. In this table the relative
differences, see equation (5.16), between the model with and without the immediate
availability of produced items are given.
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∆ =
C̄standard − C̄immediate

C̄standard
(5.16)

Structure 1 Structure 2
cv2

1 ρ2 ∆τ∗i−1 ∆τ∗i ∆τ∗i +1 cv2
1 (ρ2, ρ3) ∆τ∗i−1 ∆τ∗i ∆τ∗i +1

0.25 0.88 0% -6% -4% 0.25 (0.88, 0.85) -5% -1%
0.25 0.91 -10% -16% -13% 0.25 (0.91, 0.85) -14% -12%
0.25 0.94 -19% -26% -26%
2 0.85 -12% -12% -10% 2 (0.85, 0.85) -5% -5% -7%
2 0.88 -20% -21% -19% 2 (0.88, 0.85) -13% -15% -16%
2 0.91 -31% -31% -31% 2 (0.88, 0.88) -16% -15% -15%
2 0.94 -40% -39% -38% 2 (0.91, 0.85) -14% -12%

Table 5.3: Relative difference, for all parameter settings, between the model with and
without immediate availability after production.

We see only negative results. This means that the inventory cost of the LP strategy
with early production are lower than of the strategy with immediate availability of
produced items. So, availability of produced items immediately after production
does not give the desired results. Furthermore we see that the results are worse if
the optimal planned lead times become longer (compare table 5.2 with table 5.3.
Apparently, the savings achieved by the introduction of the optimal planned lead
time are cancelled out when items are available for further usage after production.
A possible explanation is that when items are available immediately after production
the maximal number of available items per period is equal tot the capacity of the
resource per period. Hence the release of orders larger than the maximum capacity
per period, which is commonly with longer planned lead times, makes not longer
sense.

5.4 Early availability of produced items when needed

Another option to avoid undesired waiting of produced items is to make these items
available before the end of their planned lead time, but only when needed to avoid
or reduce backorders. This implies that parts of an orders are available earlier, while
the rest of the order waits the remainder of the planned lead time. The mathematical
representation of this model is given in section 5.4.1. The experimental setting to
measure the performance of the model is given in section 5.4.2, and the results can
be found in 5.4.3.

5.4.1 Mathematical representation of the model

Again we have to adjust the inventory balance, the work-in-process inventory balance
after production and the objective function. To keep track of the number of items
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already used in succeeding production steps and the number of items waiting the
remainder of the planned lead time, we first defined additional notation. Thereafter
the changes in the model are discussed one by one.

Additional notation

Input parameters

γis : γis < βis, i = 1, . . . , N, s = t + 1, . . . , t + T , the fictive costs for releasing item i
during time slot s.

Decision variables

Xis : the items i at time s of order Ri,s−τ i which remain as work-in-process until the
end of the planned lead time, i = 1, . . . , N , s = t, . . . , t + T − 1.

Yisu : items i used before the end of their planned lead time at time s of order Riu,
i = 1, . . . , N , s = t, . . . , t + T − 1, u = s + 1, . . . , s + τ i − 1.

Inventory balance

The released order Ris can split up by the items used before the end of the planned
and the items that remained as work-in-process until the end of the planned lead
time, by

Xis = Ri,s−τ i −
s−1∑

u=s−τ i+1

Yi,u,s−τ i i = 1, . . . , N, s = t, . . . , t + T − 1 (5.17)

Xis are the items of the released order Ri,s−τ i which remain waiting until the end
of the planned lead time and

∑s−1
u=s−τ i+1 Yi,u,s−τ i are the items of order Ri,s−τ i that

are used in succeeding production steps before the end of the planned lead time.

Hence, in the inventory balance

Iis = Ii,s−1+Ri,s−τ i−Dis−
N∑

j=1

hijRjs+Bis−Bi,s−1, i = 1, . . . , N, s = t, . . . , t+T−1,

(5.18)
the order Ris must be replaced by the items

∑s−1
u=s−τ i+1 Yisu which are needed in

succeeding productions steps and the items Xis which waited until the end of their
planned lead time. The inventory balance is now given by

Iis = Ii,s−1 + Xis +
s−1∑

u=s−τ i+1

Yisu − Dis −
N∑

j=1

hijRjs + Bis −Bi,s−1,

i = 1, . . . , N, s = t, . . . , t + T − 1 (5.19)
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Work-in-process inventory balance

Since parts of an order may be released earlier, the work-in-process inventory balance
after production

Īis = Īi,s−1 +
N∑

j=1

hijRjs −
N∑

j=1

∑

m∈Rj

hijVj,m,s+1, i = 1, . . . , N, s = t, . . . , t + T − 1

(5.20)
also changes. In the above balance equation, the work-in-process inventory position
after production Îis at time s is determined by adding produced items

∑
m∈Ri

Vi,m,s

and subtracting order Ri,s−τ i from the work-in-process after production inventory
position at time s−1. Since the order Ri,s−τ i

is split up, the work-in-process inventory
balance after production becomes

Îis = Îi,s−1 +
∑

m∈Ri

Vi,m,s −
s−1∑

u=s−τ i+1

Yisu −Xi,s i = 1, . . . , N, s = t, . . . , t + T − 1

(5.21)

The work-in-process inventory after production give the number of produced items
waiting the remainder of their planned lead time. Hence this quantity gives the maxi-
mum number of items which can be used for succeeding production steps if necessary.
So, this quantity must be known during the optimization process. Therefore, we have
to add this work-in-process balance to the list of constraints of the LP model instead
of calculating the work-in-process inventory afterwards.

Objective function

The aim of this model is to make produced items available for succeeding production
steps before the end of their planned lead times, but only if they are needed for further
production or customer sales. This means that produced items are only available
before the end of their planned lead time if they can avoid or reduce backorders. We
can reach this goal by adding an additional term to the objective function. This
additional term should penalizes early availability of produced items if they are not
needed to avoid backorders. Hence the cost factor for early availability must be smaller
than the backorder costs, otherwise it is cheaper to have backorders. So the original
objective function

min
t+T∑

s=t+1

N∑

i=1

αisIi,s−1 +
t+T∑

s=t+1

N∑

i=1

βisBi,s−1 +
t+T∑

s=t+1

N∑

i=1

∑

m∈Ri

εsVims (5.22)

is replaced by

min
t+T∑

s=t+1

N∑

i=1

αisIi,s−1 +
t+T∑

s=t+1

N∑

i=1

βisBi,s−1 +
t+T∑

s=t+1

N∑

i=1

∑

m∈Ri

εsVims

+
t+T∑

s=t+1

s−1∑
u=s−τ i+1

N∑

i=1

γisYi,s−1,u (5.23)
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with

γis < βis, i = 1, . . . , N, s = t, . . . , t + T − 1 (5.24)

5.4.2 Experimental setting

To measure the performance of this new model, whereby produced items are only
available earlier if they are needed to avoid or reduced backorders, we use the same
parameter setting as given in section 5.3.2, so the model is tested for various values of
the squared coefficient of variation, for various utilization rates, and various planned
lead times.

5.4.3 Results

In this section we discuss the results of the test cases, the results can be found in table
5.4. In this table the relative differences, see equation (5.25), between the model with
and without early availability of produced items.

∆ =
C̄standard − C̄necessary

C̄standard
(5.25)

Structure 1 Structure 2
cv2

1 ρ2 ∆τ∗i−1 ∆τ∗i ∆τ∗i +1 cv2
1 (ρ2, ρ3) ∆τ∗i−1 ∆τ∗i ∆τ∗i +1

0.25 0.88 0% 5% 17% 0.25 (0.88, 0.85) 1% 13%
0.25 0.91 -1% 7% 16% 0.25 (0.91, 0.85) 1% 11%
0.25 0.94 -1% 6% 13%
2 0.85 6% 9% 14% 2 (0.85, 0.85) 1% 2% 4%
2 0.88 4% 7% 10% 2 (0.88, 0.85) 0% 1% 3%
2 0.91 9% 12% 14% 2 (0.88, 0.88) 3% 5% 7%
2 0.94 21% 22% 24% 2 (0.91, 0.85) 2% 3%

Table 5.4: Relative difference, for all parameter settings, between the model with and
without early availability after production when necessary.

We see all positive results for the cases with optimal planned lead times. This implies
that the model whereby produced items can be used before the end of their planned
lead time to avoid or reduce backorders, gives lower costs than the LP strategy with
early production whereby each produced item has to wait the remainder of its planned
lead time before it can be used. Note, that there is not a clear correlation between the
savings and the parameter settings. Only for the cases whereby the items produced
on capacitated resources have a planned lead time equal to the optimal planned lead
time plus one period, the savings are relative high. This high reduction in cost is an
indication that the optimal planned lead times may be longer when the early release
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strategy is used. To confirm this thought, we plotted for increasing planned lead time
the inventory cost of the case with cv2

1 = 0.25 and ρ2 = 0.94. The result can be found
in figure 5.2.
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Figure 5.2: Cost for different planned lead times.

When we look at figure 5.2, we see that the LP strategy with early release strategy
has an optimal planned lead time of 4 periods, while for the LP strategy with the
early release and the early availability strategy the optimal planned lead times is equal
to 6 periods. Apparently, additional flexibility created by longer planned lead times
can reduce the inventory costs if produced items can be used for further production
if needed. Furthermore it is clear that if the planned lead times are too long, early
availability of produced items is always better. Also the opposite is true: if the
planned lead time is smaller than the optimum planned lead time the model with the
early availability strategy performs worse.

5.5 The 18-item model

Also in this chapter we look at the performance of the 18-item model taking into
account the adjustments we made to the model. We only look at the model in which
items are available before the end of their planned lead time if the are needed to avoid
or reduce backorders. We use the parameter setting given in chapter 2. However, for
the planned lead times we use the optimal planned lead times determined in chapter
4. The results can be found in table 5.5, whereby the one but last column gives the
relative difference between the LP strategy with early production and the LP strategy
with early production and availability for optimal planned lead times, given by

∆τ i=τ∗i =
C̄τ i=τ∗i − C̄necessary

C̄τ i=τ∗i

, (5.26)
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between the LP strategy with early production using optimal planned lead times and
the adjusted strategy with early production and early availability of released orders
when necessary. In the last the relative difference between the standard LP strategy
with planned lead times equal to one period and the early availability strategy using
optimal planned lead times, given by

∆τ i=1 =
C̄τ i=1 − C̄necessary

C̄τ i=1
, (5.27)

between the standard LP strategy and the adjusted strategy with early availability
of released orders when necessary.

cv2
i (ρs, ρsc, ρc) (αs, αsc, αc) ∆τ i=τ∗i ∆τ i=1

0.25 (0.85, 0.9, 0.95) (20, 40, 60) 13.58% 20.25%
0.25 (0.95, 0.9, 0.85) (20, 40, 60) 10.16% 20.83%
2 (0.85, 0.9, 0.95) (20, 40, 60) 14.09% 29.27%
2 (0.95, 0.9, 0.85) (20, 40, 60) 21.30% 32.49%

0.25 (0.85, 0.9, 0.95) (30, 60, 90) 9.59% 12.46%
0.25 (0.95, 0.9, 0.85) (30, 60, 90) 9.52% 18.62%
2 (0.85, 0.9, 0.95) (30, 60, 90) 12.81% 18.44%
2 (0.95, 0.9, 0.85) (30, 60, 90) 16.75% 26.54%

Table 5.5: Relative difference between the strategies with early production and early
availability and the strategy with early production and optimal planned lead times, and
between the strategy with early production and early availability and the standard LP
strategy (with planned lead times equal to one period).

Again we see large savings, especially when we compare the adjusted model with the
standard LP strategy. This standard LP strategy is comparable with former MP
model with fixed lead times (e.g. Billington et al. (1983), Hopp & Spearman (2000),
and Belvaux & Wolsey (2001)). Hence when using LP models in a rolling schedule
setting, planned lead times with early availability of released orders when necessary
to avoid or reduce backorders are a good way to incorporate demand uncertainty.

5.6 Conclusions

In chapter 1 we defined the planned lead time such that items can be produced during
their planned lead time, and if they are finished before the end of there planned lead
time, they have to wait until the end of their planned lead time before they can be
used in the next production step. In this chapter we have investigated two strategies
whereby the early produced items are released before the end of their planned lead
time. In the first strategy items are made available for further production steps or
customer demand as soon as they are produced. And in the second strategy items
are only made available when they are necessary to avoid or reduce backorders.

When measuring the performance of the two models it is important to use optimal
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and nearly optimal planned lead times. With relative long planned lead times it is
always better to make items available before the end of their planned lead time, and
with relative short planned lead times it makes no sense to even shorten your planned
lead times by making produced items available early. We consider three values for
the planned lead time in the experiments, namely the optimal planned lead time
(found in chapter 4), the optimal planned lead time plus 1, and the optimal planned
lead time minus 1. The results show that for all cases the model whereby items
are available immediately after production is worse, and the model whereby items are
available after production when necessary to avoid or reduce backorders is better than
the standard LP strategy. Furthermore we have seen that if items are available early
when needed to avoid or reduce backorders, their optimal planned lead times becomes
longer than in the LP strategy with early production but without early availability.





Chapter 6

Balance allocation of
shortages

6.1 Introduction

In the previous three chapters we improved the performance of the original LP model
formulated in chapter 1 by introducing planned lead times with multi-period capacity
consumption. In this chapter the focus shifts to material allocation from child items
to parent items. In chapter 3, we noticed an imbalance in the allocation of materials.
This imbalance is also detected in De Kok & Fransoo (2003). They also showed
that the LP-based SCOP function is outperformed by a so-called synchronized base
stock (SBS) policy developed by De Kok & Visschers (1999). The SBS policy uses
allocation mechanisms, derived from the analysis of divergent systems (c.f. Van der
Heijden et al. (1997), Diks & de Kok (1998), Diks & de Kok (1999), and De Kok &
Visschers (1999)) in general supply chain structures. However, the results of De Kok
& Fransoo (2003) are restricted to uncapacitated supply chains, because SBS policies
do not take into account capacity restrictions. The focus of this chapter is to develop
LP strategies for capacitated SCOP problems with allocation policies. We restrict
ourselves to material allocation and assume a one-to-one relation between item and
resource. The introduction of allocation policies into the LP model implies that we
add additional constraints. Therefore the optimal solution to the new problem may
have a higher cost than in the original formulation. However, the LP model is part of
a rolling schedule implementation. We will show that, despite the increase in costs on
an instance, the actual costs incurred under uncertainty can be substantially lower.
In example 6.1 we show how material allocation can decrease your actual costs when
the actual demand differs a little from the actual demand.

Example 6.1 Consider a small supply chain with three items, of which two end items
(A & B). Both end items are supplied by the third item (C). For both end items, the
inventory costs are equal to 1 per unit on stock and the backorder costs are equal to
10 per unit short. Assume that item C has 150 units available for the production of

73



74 Balance allocation of shortages

the two end items, and the expected demand of the two end items for item C is 100
units each. So there is a shortage of 50 units. In table 6.1 the available items are
allocated in two different manners. In case I, item A receives 100 items and item B
only 50, and in case II both end items get 75 items. In the lower table we see that,
although the costs for both given allocation policies are equal when considering the
forecast, the allocation policies do play a role when the actual demand turns out to be
a little different from the forecast.

Item Forecast demand Allocation Inventory Backorders Costs
Case A 100 100 0 0 0

I B 100 50 0 50 500
Case A 100 75 0 25 250
II B 100 75 0 25 250

Item Actual demand Allocation Inventory Backorders Costs
Case A 98 100 2 0 2

I B 102 50 0 52 520
Case A 98 75 0 23 230
II B 102 75 0 27 270

Table 6.1: Amounts of inventory, backorders and costs for different allocation policies
of example 6.1.

Allocation problems only occur in the divergent parts of arbitrary supply chains.
For pure divergent systems allocation rules have received considerable attention. An
overview on this line of research, where allocation policies are determined to mini-
mize holding and shortage costs, is given by Axsäter (2003). Eppen & Schrage (1981)
introduced a fair share allocation rule, based on equal stock-out probability at end-
stockpoints, for a two-echelon system without intermediate stocks. In De Kok (1990)
the Consistent Appropriate Share (CAS) rationing policy, with the fill rate (the frac-
tion of demand delivered immediately from stock on hand) as service criterion, for
2-echelon systems is introduced. With the CAS rationing policy inventory is allocated
to the local stockpoints based on safety stock ratios. Verrijdt & de Kok (1996) have
modified the CAS rationing policy to cope with significantly differing fill rate targets.
In Verrijdt & de Kok (1995) the CAS rationing policy is generalized for arbitrary
divergent N-echelon systems where only end-stockpoints are allowed to hold stocks.
A generalization of the CAS rationing policy for 2-echelon divergent systems is the
Balanced Stock (BS) rationing introduced by Van der Heijden (1997). In Van der
Heijden et al. (1997) this allocation rule is extended for general N-echelon distribution
systems where all upstream, downstream and intermediate stockpoints are allowed to
hold stock. In De Kok & Fransoo (2003), a correction of the formula for allocation
fractions is given for non-identical successors.

In this chapter we extend the LP model introduced in chapter 2 with linear alloca-
tion rules. These linear allocation rules divide shortages among the parent items by
predefined allocation fractions. In a second model the allocation rules are relaxed by
introducing lower bounds for the amount of shortages that have to be allocated to par-
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ent items. Furthermore we introduce a model, whereby the linear objective function is
replaced by a quadratic objective function. The idea behind this is, that similar to the
linear allocation rules, the quadratic objective function ensures a balanced rationing
of the shortages among the paren items. Under a linear objective function shortages
are typically rationed among “cheap” parent items, while “expensive” items do not
take part in the shortages at all.

In De Kok & Fransoo (2003), it is shown that the standard LP strategy is outper-
formed by the so-called SBS policy. In this chapter, we compare the SBS policy with
the introduced LP strategies with allocation policies. We see that the SBS policy still
performs a little better, but the differences are small. Since, the SBS policy is only
suitable for uncapacitated supply chains, the introduced LP strategies with allocation
policies provide the required generality needed to handle arbitrary capacitated sup-
ply chains. Hence, at the end of this chapter we also measure the performance of the
standard LP strategy with the LP strategies with allocation policies for capacitated
supply chains and various allocation fractions.

The remainder of this chapter is organized as follows. In section 6.2 the three different
allocation policies are introduced and formulated as mathematical models. In section
6.4, the different allocation policies for uncapacitated SCOP problems are compared
with the SBS policy. In section 6.5, the performances of the different allocation
policies, in capacitated supply chains, are examined by comparing the strategies with
allocation policies with a standard LP strategy. The conclusions are presented in
section 6.7.

6.2 Illustration of the allocation policies

In this section we introduce the three models with allocation policies with an exam-
ple. In the first model, allocation of material takes place by adding linear allocation
rules, as constraints, to a standard LP model. These linear allocation rules allocate
shortages of a child item to its parent items by a predefined ratio. The second model
also uses linear allocation rules, but instead of allocating all shortages by a specific
ratio, lower bounds are given for the amount of shortages that have to be allocated
to a parent item. In the third model, balanced allocation of child items is enabled by
a quadratic objective function.

The allocation policies are illustrated with simple MP models. The models are given
in table 6.2 and are depicted in figure 6.1.

Standard LP model

The standard LP model is not depicted in figure 6.1. However, it is equal to the
pictures of the model with allocation rules, but without lines a and b. Line z is the
line on which the optimum value of the LP model lies. So, we see that in the model
min x + y, the whole line segment between A and B is optimal. And for the model
min 3x + 4y, the optimum value lies in point B.
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Standard Allocation Lowerbound Quadratic
min x + y min x + y min x + y min x2 + y2

x + y ≥ 5 x + y ≥ 5 x + y ≥ 5 x + y ≥ 5
x ≥ 1 x ≥ 1 x ≥ 1 x ≥ 1
y ≥ 1 y ≥ 1 y ≥ 1 y ≥ 1

5x + y ≥ 15 5x + y ≥ 12.5
x + 5y ≥ 15 x + 5y ≥ 12.5

min 3x + 4y min 3x + 4y min 3x + 4y min 3x2 + 4y2

x + y ≥ 5 x + y ≥ 5 x + y ≥ 5 x + y ≥ 5
x ≥ 1 x ≥ 1 x ≥ 1 x ≥ 1
y ≥ 1 y ≥ 1 y ≥ 1 y ≥ 1

5x + y ≥ 15 5x + y ≥ 12.5
x + 5y ≥ 15 x + 5y ≥ 12.5

Table 6.2: Models corresponding figure 6.1.

Allocation rules

In the model where we minimize x + y, all points on the line between A and B give
optimum values. To restrict the LP solver to one point we add allocation rules, rep-
resented by lines a and b. Now, the optimum is in point C. For the model minimizing
3x+4y with allocation, the optimum is also found in point C. The objective function
value of this point is higher than the value of point B, which is the optimum for the
standard LP model. So in cases with unequal cost, allocation rules can increase the
costs. However, in a rolling horizon setting, the inventory costs can still decrease, see
example 6.1 and the results in section 6.5.2.

Lower bounds

In the model minx+y with lower bounds the allocation rules are relaxed. In stead of
a fixed optimum in point C, the LP solver can choose any point on the line between
points C and D. For the model min 3x + 4y, the lower bounds put the optimum in
point D, which value is greater than point B, but smaller than the value of point C
in the model with allocation rules.

Quadratic

A completely different method to dictate the solver to one point on the line AB, is by
replacing the linear objective function x + y by the quadratic function x2 + y2. The
optimum, point C, is found on the point where line x + y = 5 is touching circle z.
This point corresponds with point C in the model with allocation rules. The model
min 3x + 4y is replaced by min 3x2 + 4y2, the optimum E can be found on the oval
z and lies a little lower on line AB then point C in the upper picture.
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Figure 6.1: An example of a linear and a quadratic programming model.

6.3 Mathematical representation of the allocation
policies

6.3.1 Notation

For the mathematical representation of the allocation policies we need additional
notation. The notation concerning the product structure is illustrated in figure 6.2.
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Figure 6.2: Schematic representation of product structure.
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System layout

ech(i) : all items that constitutes the echelons of item i, i = 1, . . . , n (e.g., ech(4) =
{1, 2, 3, 4}).

prec(i) : set of preceding items of item i, i = 1, . . . , n (e.g., prec(3) = {4, 5}).

succ(i) : set of succeeding items of item i, i = 1, . . . , n (e.g., succ(4) = {2, 3}).

E : set of all end items (e.g., E = {1, 2, 6}).

Ei : all end items in ech(i), i = 1, . . . , n (e.g., E8 = {1, 6}).

Ec
i : all item which are not end items in ech(i), i = 1, . . . , n (e.g., Ec

8 = {3, 5, 8}).

Input parameters

qij : allocation fraction from item i to item j, whereby i ∈ prec(j), i = 1, . . . , n, j =
1, . . . ,m.

h̃ij : the number of units i incorporated in a single unit of item j, i = 1, . . . , n, j =
1, . . . , n.

kij : kij ∈ NI , the number of different routes between i and j, i = 1, . . . , n, i /∈ E, j =
1, . . . , n. The routes are labelled 1, . . . , kij .

τ̂ ijl : cumulative lead time from product i to product j via route l, i = 1, . . . , n, i /∈
E, j = 1, . . . , n, l = 0, . . . , kij .

ĥijl : number of products i incorporated in a single unit of item j via route l, i =
1, . . . , n, i /∈ E, j = 1, . . . , n, l = 0, . . . , kij .

D̂is : cumulative demand of item i at time s, i = 1, . . . , n, i /∈ E, s = t, . . . , t+T −1.

Decision variables

Ĩis : the echelon inventory position of item i at time s, i = 1, . . . , n, s = t, . . . , t+T−1.

S−is : shortage of item i at time s to satisfy the needs of the parent items of i, i =
1, . . . , n, i /∈ E, s = t, . . . , t + T − 1.

S+
is : slack of item i at time s to satisfy the needs of the parent items of i, i =
1, . . . , n, i /∈ E, s = t, . . . , t + T − 1.
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6.3.2 Allocation rules

To apply the allocation rules, we incorporate echelon stocks into our mathematical
model. The concept of echelon stock has been introduced by Magee (1958) and Clark
& Scarf (1960). With these echelon stocks we can determine shortages of child items
and allocate them to the parent items.

Echelon stock

Echelon stocks are added to the model by an echelon inventory balance equation,
derived in this section. We start by giving the definition of the echelon inventory
position of Diks (1997):

Definition The echelon stock of an item equals the sum of its physical stock plus the
amount in transit to or on hand at its downstream items minus possible backorders
at its end items. The echelon inventory position of an item equals its echelon stock
plus all material in transit to that item.

Mathematically the echelon inventory position is given by

Ĩis = Ii,s−1 +
n∑

j=1

s∑
u=s−τj+1

hijRju +
n∑

j=1

hij Ĩjs−Bis i = 1, . . . , n, s = t, . . . , t+T −1

(6.1)

The parameter h̃ij , the number of units i incorporated in a single unit of item j, is
introduced to calculate the summation of the demand of all end items of ech(i) at
time t. So, we have

∑

j∈Ei

h̃ijDis =
∑

j∈Ei

hijDjs +
∑

j∈Ec
i

hij

∑

k∈Ej

h̃jkDks i = 1, . . . , n, s = t, . . . , t + T − 1

(6.2)

The echelon inventory position of item i at time s is determined by the echelon
inventory position of that item at time s−1 plus the orders requested minus the total
demand of the end items of ech(i). So, the echelon inventory balance is given by

Ĩis = Ĩi,s−1 + Ri,s−τ i −
∑

j∈Ei

h̃ijDjs −Dis i = 1, . . . , n, s = t, . . . , t + T − 1 (6.3)

Since the echelon inventory position and the physical inventory position are related
to each other in a 1-1 fashion, the echelon inventory balance (6.3) must be equivalent
to the physical inventory balance (2.2). In appendix B it is shown to be true.
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Determination of shortages

With the echelon inventory position we are able to determine the shortages. We have
to realize that, since we deal with arbitrary supply chain structures, two or more
items can be used in the same product but in a different way. For example a screw
can be used in a intermediate item, but can also be used to fasten the intermediate
item to the end item. So there are two screws incorporated in the end product which
follow different routes. Since the cumulative lead time of between screw and end item
might be different in different routes, the number of routes kij from item i to item j
and the cumulative lead time τ̂ ijl from item i to item j via route l are calculated.

The total future demand for i /∈ E is then calculated by

D̂is =
∑

j∈Ei

kij∑

l=0

s−τ̂ ijl∑
u=s+1

ĥijlDju, i = 1, . . . , n, i /∈ E, s = t, . . . , t + T − 1 (6.4)

The shortage (slack) of item i /∈ E is defined by the negative (positive) difference
between the available amount of item i and the desired amount of item i.

S−is︸︷︷︸
shortage

− S+
is︸︷︷︸

slack

=
n∑

j=1

hijD̂j,s+τj −
n∑

j=1

hij Ĩj,s+τj

︸ ︷︷ ︸
desired amount of item i

− Ii,s−1 −Ri,s−τ i︸ ︷︷ ︸
available amount of item i

,

i = 1, . . . , n, i /∈ E, s = t, . . . , t + T − 1 (6.5)

Allocation of shortages

When there are not enough units of a child item available to satisfy the demand of its
parent items, the shortage is divided among all the parent items. So, a parent item
can only get its total future demand minus its echelon stock (i.e., this is its demand
for child items) minus a fraction of the shortage, see inequality (6.6).

hijRj,s−τj ≥ hijD̂js − hij Ĩjs − qijS
−
i,s−τj

∀i ∈ prec(j)

j = 1, . . . , n, s = t, . . . , t + T − 1. (6.6)

whereby
qij ≥ 0, i = 1, . . . , n, j = 1, . . . , n (6.7)

n∑

j=1

qij = 1, i = 1, . . . , n (6.8)

Notice that in inequality (6.6), the parent can at least order its demand minus a
fraction of the shortage. In the LP model, this ensures that the parent item can order
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more then necessary (e.g. to avoid backorders in the future) when there is slack. In
appendix C, it is shown that for pure divergent supply chains equality holds if there
are shortages. For arbitrary supply chains this is not true. The order Rjt can even be
smaller than inequality (6.6) indicates, namely when the ordered amount is restricted
by the available number of other child items of parent item j. The model is able to
ignore constraint (6.6) by adding slack and shortages to the problem, such that the
difference between slack and shortages remain equal.

Objective function

By adding constraints (6.3), (6.5), and (6.6) to the linear programming model of chap-
ter 2 we are not finished. When optimizing the problem, the LP solver compensates
any shortage with imaginary slack, such that the order request are not restricted.
So, we have to penalize slack by adding a cost component for slack in the objective
function. The penalty for imaginary slack must be high enough so that it is not
beneficial to create it, but must not be so high that having slack is more costly than
backorders. Thus, the related costs should be smaller than the minimum backorder
costs, but cannot be too small. Hence, we subtract small ε costs of the backorder
costs, and use that as penalty costs for creating imaginary slack. So, we consider the
following objective function

min
T∑

t=1

n∑

i=1

αiIi,t−1 +
T∑

t=1

n∑

i=1

βiBi,t−1 +
T∑

t=1

n∑

i=1

(
min
j ∈Ei

βjt − ε

) (
S+

it + S−it
)

(6.9)

whereby ε is a very small number.

Allocation fractions

The determination of allocation fractions, qij , has received considerable attention in
literature. We consider four different allocation fractions. The first allocation fraction
is based on the number of parent items, shortages are allocated proportional to the
number of parent items by

q
|N |
ij =

1
|succ(i)| i = 1, . . . , n, j = 1, . . . , n (6.10)

In the second allocation fractions we also take the mean demand of the parent items
into account. This allocation fraction with

µj =
∑

k∈Ej

E[Dk] j = 1, . . . , n

is given by

qµ
ij =

µj∑
k∈succ(i) µk

i = 1, . . . , n, j = 1, . . . , n (6.11)

The third allocation fraction arises from Eppen & Schrage (1981). They introduce a
fair share allocation rule for a two-echelon system without intermediate stocks. The
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allocation rule ensures that the end-stockpoint probabilities are equalized. Defining

σj = σ


 ∑

k∈Ej

Dk


 j = 1, . . . , n

the allocation fraction of Eppen & Schrage (1981) is represented by

qES
ij =

σj∑
k∈succ(i) σk

i = 1, . . . , n, j = 1, . . . , n (6.12)

Van der Heijden (1997) determined linear allocation policies minimizing the prob-
ability of imbalance. Imbalance is the allocation of a negative quantity from an
intermediate stockpoint to at least one of its successors. De Kok & Fransoo (2003)
corrected an error in the analysis of Van der Heijden (1997) and they obtained the
following expression for the allocation fraction

qHKF
ij =

σ2
j

2
∑

k∈succ(i) σ2
k

+
µ2

j

2
∑

k∈succ(i) µ2
k

i = 1, . . . , n, j = 1 (6.13)

6.3.3 Lower bounds for allocation rules

In the second allocation policy, the strict allocation rules are relaxed by introducing
lower bounds. So, instead of fixing the number of items allocated to parent items, as
done in constraint (6.6), we adjust the constraint such that at least a percentage of
order determined by (6.6) is allocated to the specific parent item. The lower bound
is realized by adding a percentage to constraint (6.6) as follows

hijRj,s−τj ≥ (1− γ)(hijD̂js − hij Ĩjs − qijS
−
i,s−τj

) ∀i ∈ prec(j)

j = 1, . . . , n, s = t, . . . , t + T − 1. (6.14)

whereby

qij ≥ 0, i = 1, . . . , n, j = 1, . . . , n (6.15)

n∑

j=1

qij = 1, i = 1, . . . , n (6.16)

0 ≤ γ ≤ 1 (6.17)

Notice that γ = 0 gives the LP model with strict allocation policies, and for γ = 1
the model correspond to the standard LP model.
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6.3.4 Quadratic objective function

In the previous sections we balanced the allocation of shortages by adding allocation
rules to the LP model. In this section we balance the allocation by replacing the
linear objective function by a quadratic objective function.

The objective function in SCOP function becomes

min
t+T∑

s=t+1

n∑

i=1

α̃iI
2
i,s−1 +

t+T∑
s=t+1

n∑

i=1

β̃iB
2
i,s−1 (6.18)

where α̃i and β̃i for i = 1, . . . , n are constants to indicate the relations between the
inventory and backorder costs of the items.

Note that we can approximate the quadratic objective function by a piecewise linear
one. Using a piecewise linear objective function brings some additional complica-
tions. First of all, the number of steps and the associated cost per step have to be
decided on. This implies some additional decision variables. And second, the number
of constraints in the model increases rapidly by an increasing number of steps. In this
chapter we leave the piecewise linear objective function out of consideration.

Weight factors in quadratic objective function

In this section we consider three different kind of weight factors. The first set of
weight factors is equal to the used cost structures. Thus

α̃i = αi i = 1, . . . , n (6.19)
β̃i = βi i = 1, . . . , n (6.20)

The two other sets of weight factors are inspired by the allocation fractions of Eppen
& Schrage (1981) and of Van der Heijden (1997) and De Kok & Fransoo (2003), so
instead of only cost we also take the demand distribution into account. The weight
factors are chosen such that the inventory and the backorder costs of one item per
period are higher for items with smaller allocation fractions. The weight factors are
given by

α̃ES
i =

(
min

j∈prec(i)

∑
k∈Ej ,k 6=j σk∑

k∈Ej
σk

)
α2

i i = 1, . . . , n (6.21)

β̃
ES

i = 10α̃ES
i i = 1, . . . , n (6.22)
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and

α̃HKF
i =

(
min

j∈prec(i)

∑
k∈Ej ,k 6=j σ2

k∑
k∈Ej

σ2
k

+

∑
k∈Ej ,k 6=j µ2

k∑
k∈Ej

µ2
k

)
α2

i

i = 1, . . . , n, t = 1, . . . , T (6.23)

β̃
HKF

i = 10α̃HKF
i i = 1, . . . , n (6.24)

6.4 MP models with balanced allocation vs SBS
concept

De Kok & Fransoo (2003) show that synchronized base stock (SBS) concepts performs
better than existing LP strategies, for uncapacitated supply chains with stochastic
demand. In this section we compare this SBS concept with the introduced math-
ematical programming models with allocation policies. In the first section the SBS
concept is discussed, and in section 6.4.2 the experimental setting, also used in De Kok
& Fransoo (2003), for comparing the model is given. We conclude with the results of
the comparison.

6.4.1 Synchronized base stock control concept

The synchronized base stock (SBS) control concept, introduced by De Kok & Visschers
(1999), is a class of policies that can be applied to general supply chain structure.
The allocation mechanisms used in the SBS concept are derived from the analysis of
divergent systems (c.f. Van der Heijden et al. (1997)). With the SBS concept it is
possible to characterize the optimal policy for non capacitated situations under i.i.d.
exogenous demand, and near optimal policies can be found numerically.

From De Kok & Fransoo (2003) we learn that the SBS concept considerable outper-
forms the LP-based concept. Explanation for the superiority of the SBS concept was
found in the way LP tends to prioritize items in case of shortage of upstream avail-
ability instead of rationing among the items that need this upstream availability. The
models proposed in this chapter have allocation policies for rationing these shortages.
Hence, we compare the stochastic SBS concept with the deterministic MP models
with allocation policies using a rolling horizon.

In the numerical comparison we restrict to the situations with infinite resource avail-
ability, since the SBS policy cannot deal with finite resources. Results for capacitated
systems are only available for single item, single stage systems (see e.g. De Kok
(1989)), serial systems (Tayur (1993)), or for divergent systems where only the most
upstream stage is capacitated (see De Kok (2000)).
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6.4.2 Numerical experiment

For the comparison of the SBS concept and the MP strategies with allocation policies,
we use the same experimental setting as De Kok & Fransoo (2003). We consider the
product structure consisting of the 11 items given in figure 6.3. The 11 item product
structure consists of 4 end-items. All end-items contain common component 11. End-
items 1 and 2 share component 9, while end-items 3 and 4 share component 10. And
each end-item contains a specific component.
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Figure 6.3: Schematic representation of 11 item model.

We assume that the demand for the end-items is stationary. More precisely, demand
for end-item i in consecutive periods is i.i.d. We also assume that the demand pro-
cesses for different end-items are uncorrelated. The mean demand is 100 for all end
items. To get insight into the impact of demand variability on the choice of a SCOP
function we vary the squared coefficient of variation cv2

i for each end-item i as 0.25,
0.5, 1 and 2. The costs structure is as follows

αi = αf = 100 inventory costs end-items, i=1,2,3,4

αi = αs = 10 inventory costs specific components, i=5,6,7,8
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αi = αsc = 30 inventory costs semi-common components, i=9,10

αi = αc = 50 inventory costs common components, i=11

For the planned lead times we have analogously to the costs structure the following
variables

τ i = τf planned lead time end-items, i=1,2,3,4

τ i = τs planned lead time specific components, i=5,6,7,8

τ i = τsc planned lead time semi-common components, i=9,10

τ i = τ c planned lead time common components, i=11

We vary the planned lead times (τs,τsc,τ c) as follows (1,2,4), (4,2,1) and (1,4,2). The
safety stocks are chosen such that we obtain a non-stockout probability of 95%.

6.4.3 Results

The results of the comparison between the SBS concept and the LP strategies with
allocation policies are given in table 6.3. First of all we remark that the inventory
costs for the standard LP strategy found by De Kok & Fransoo (2003) are larger than
the results we found. The differences are caused by a mistake in the implementation
of the LP strategy by De Kok & Fransoo (2003). Although the results of the standard
LP strategy are better than in De Kok & Fransoo (2003), the difference between the
SBS concept and the standard LP strategy is still significant, and using allocation
policies might give better results.

Supply chain inventory cost
cv2

i (τs, τsc, τ c) SBS LPst ∆LP LPalloc ∆alloc QP ∆QP

0.25 (1,2,4) 71682 79477 10.9% 73458 2.5% 73332 2.3%
0.25 (4,2,1) 76476 78133 2.2% 78853 3.1% 76765 0.4%
0.25 (1,4,2) 73550 80620 9.6% 74197 0.9% 74172 0.8%
0.5 (1,2,4) 104448 115227 10.3% 106923 2.4% 106679 2.1%
0.5 (4,2,1) 112316 114659 2.1% 115696 3.0% 113381 0.9%
0.5 (1,4,2) 107616 115386 7.2% 108376 0.7% 108362 0.7%
1 (1,2,4) 152203 168533 10.7% 158101 3.9% 157752 3.6%
1 (4,2,1) 165328 169122 2.3% 170590 3.2% 167180 1.1%
1 (1,4,2) 157034 169030 7.6% 159588 1.6% 159722 1.7%
2 (1,2,4) 218551 247578 13.3% 233044 6.6% 232392 6.3%
2 (4,2,1) 245998 249849 1.6% 250075 1.7% 247705 0.7%
2 (1,4,2) 228789 247571 8.2% 235761 3.0% 235694 3.0%

Table 6.3: Inventory costs of different SCOP functions.
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Looking at the results we see that with uncapacitated resources, the allocation pol-
icy with quadratic objective function outperforms the strategy with allocation rules.
Furthermore we see for the cases where specific items have a planned lead time of
four periods, the performance of the quadratic model is only a little better, and the
performance of LPalloc even worse, than the performance of the standard LP strat-
egy. If the specific items have the longest planned lead time, they are the bottlenecks
of the system, this means that the (semi-)common items do not have an allocation
problem. So, for supply chain structures where shortages can be allocated to several
parent items, linear allocation rules improve the performance. But in those supply
chain structures without an actual allocation problem, interference of allocation rules
diminish the performance of the LP strategy. On the other hand for the problems
where the common item has the longest planned lead time, the common item is the
bottleneck, and allocation rules improve the performance of the LP strategy.

In the last column of table 6.3, the relative difference between SBSsim and the best
allocation policy, namely QP , are given. We see that SBS policies still outperforms
the mathematical programming models, but the differences are small. The largest
differences are found when the common planned lead time is equal to four periods, so
apparently the SBS concept better exploits the commonality. From the discussion in
De Kok & Fransoo (2003) it follows that this may be caused by better parameter set-
tings. The echelon stock control policy allows for implementing “push” policies where
upstream stocks are zero, while the LP strategy tends to build up stock upstream. A
possible explanation for this is that the LP strategy aims at satisfying the end item
demand forecast. After satisfying this forecast remaining stocks of components are
not used for assembly of end items, because stocks of components are cheaper than
stocks of assembled end items.

6.5 Numerical experiment with capacitated supply
chains

In the previous section it turned out that the SBS policy still outperforms MP based
concepts. However the differences are small, and the SBS policy is restricted to unca-
pacitated problems. Hence, MP based concepts are good alternatives for capacitated
problems. In this section the performance of the allocation policies is measured by
comparing them with the standard LP strategy.

6.5.1 Experimental design

Allocation problems only occur in divergent parts of the supply chain. Hence, for the
experiments we need a supply chain with a divergent part. We have chosen a so-called
“W-structure”, whereby we have two end items, and each of these end items consist
of a common and a specific item. The “W-structure” is given in figure 6.4. We use
the “W-structure” instead of a pure divergent structure to show that the allocation
policies also work if the allocation of common child items is restricted by the number
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of specific child items.
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Figure 6.4: Schematic representation of 2-echelon system.

We consider a one-to-one relation between items and resources, i.e. each item is
produced on its own resource. For simplicity we number the resources according to
the number of the item it produces. The end items are produced on uncapacitated
resources, while the specific and common child items are not. In the results, see
section 6.4.3, of the comparison between the SBS and the MP models with allocation
policies we have seen that if the specific items have long planned lead times the
allocation policies did not have any effect on the inventory cost. Long lead times are
comparable with high utilization rates of resources. Hence we restrict the experiments
to test cases whereby the common item is production the resource with the highest
utilization rate. In section 6.2, we have seen that the cost structure of the end items
plays an important role in finding an optimal solution. For equal cost the optimal
solution could be found on a whole line segment, while in the case of unequal cost we
found only one optimal solution. Hence we consider two cost-structures, and expect
large reductions in inventory cost especially when the costs of end items are equal.
To identify more situations in which allocation policies reduce the inventory costs, we
also look at the following settings

• equal vs. unequal mean demand,

• equal vs. unequal squared coefficient in variation of the demand, and

• several utilization rates for the specific and common child items.

The used input parameters are given in 6.4.

All possible parameters yield 3∗25 = 96 cases, but due to the symmetry of the supply
chain system the number of cases can be reduced to 78. The performance of the
models is tested with a discrete event simulation of 26, 000 time periods. The models
are solved using a CPLEX solver.
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Parameter Description Values
µ1 The mean demand per period at item 1 50
µ2 The mean demand per period at item 2 50, 100
c2
1 The squared coefficient of variation at item 1 0.25, 2

c2
2 The squared coefficient of variation at item 2 0.25, 2

α1 Holding costs of item 1 25, 50
α2 Holding costs of item 2 25, 50
τ1 Planned lead time of item 1 1
τ2 Planned lead time of item 2 1
ϕ1 Service level of item 1 0.95
ϕ2 Service level of item 2 0.95
ρ1 Utilization rate of resource 1 ∞
ρ2 Utilization rate of resource 2 ∞

Parameters Description Values
(α3, α4, α5) Holding costs of items 3, 4,and 5 (10,10,10)
(τ3, τ4, τ5) Planned lead times of items 3, 4,and 5 (1,1,1)
(ρ3, ρ4, ρ5) Utilization rates of resources 3, 4,and 5 (0.8, 0.85, 0.8)

(0.9, 0.95, 0.9)
(0.9, 0.99, 0.9)

Table 6.4: Parameter values.

6.5.2 Results

The performance of each strategy with allocation policies is determined by the rela-
tive difference in inventory costs between the model with and the model without an
allocation policy. In table 6.5, the average, the maximum, and the minimum relative
differences are given. Note that “QUANT” correspond with the allocation fraction
q
|N |
ij and “MEAN” with the allocation fraction qµ

ij .

If we look at the results we see average reductions in inventory costs of more than
20%. The best performance is reached by using a quadratic objective function; the
average reduction exceeds 25%. Looking at the maximum reductions, savings of
65% can be made. Unfortunately, there are also cases in which the inventory costs
become larger when using allocation policies. However, the number of cases with
negative results is small. We noticed that negative results only in cases with totally
unequal parameter settings of the end items and high utilization rates of the resources,
whereby the highest cost correspond with the item having the biggest demand and
highest variation. Apparently too much shortages are allocated to these items when
using allocation policies. Using a quadratic objective function with weight factors
based on the allocation fractions discussed in Eppen & Schrage (1981) and in De Kok
& Fransoo (2003), no negative results occur at all.

Furthermore we see that allocation fractions which also takes the variance in the de-
mand into account perform better than both q

|N |
ij and qµ

ij . Especially in the worst case
scenario with unequal demand and coefficient of variance the results are depressing,
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Average Maximum Minimum
Allocation QUANT 18.83% 65.43% -48.65%
Allocation MEAN 20.27% 65.51% -26.43%
Allocation ES 21.66% 65.45% -4.73%
Allocation HKF 21.79% 65.51% -14.85%
Lower bound 25% QUANT 18.83% 65.43% -48.65%
Lower bound 25 % MEAN 20.27% 65.51% -26.43%
Lower bound 25% ES 18.89% 65.36% -48.41%
Lower bound 25% HKF 20.28% 65.38% -26.15%
Quadratic 24.28% 66.94% -13.49%
Quadratic ES 26.73% 67.60% 0.71%
Quadratic HKF 26.98% 67.42% 0.68%

Table 6.5: Average, maximum, and minimum relative difference in inventory costs,
compared to the standard LP strategy.

so it is worthwhile to use more sophisticated allocation fractions. The differences
between the allocation fractions of Eppen & Schrage (1981) and De Kok & Fransoo
(2003) is very small, but in general qHKF

ij gives better results. The performance of the
allocation policies with lower bounds is equivalent to the performance of the model
with linear allocation rules. Hence in the remainder of the chapter we only focus on
the allocation policy with linear allocation rules.

In the models with quadratic objective functions we distinguished three different sets
of weight factors. In the first set the weight factors are similar to the weight factors
in the linear objective function and the other two sets of weight factors are inspired
by the allocation fractions of Eppen & Schrage (1981) and De Kok & Fransoo (2003).
We see that the weight factors in which we also take the mean and variance of the
actual demand into consideration performs better, but the differences with the first
set of weight factors is small (around 2%). Hence using a quadratic objective function
is a good and robust alternative for using linear objective functions.

Since we noticed, in section 6.1 that allocation problems typically occur in situations
with equal inventory costs for the end items, we separately give, in figure 6.5, the
performances of the models with allocation policies for both equal and unequal inven-
tory costs. Indeed, we see large reductions when the holding costs of the end items
are equal, but for unequal holding cost the reductions are still considerable. Notice
that the difference between the model with linear allocation rules and the model with
quadratic objective function is larger when the holding costs are unequal. So, when
using the linear allocation rules too much shortages are allocated to the expensive
parent item.

In figure 6.6, we give the performance of the allocation policies for different utiliza-
tion rates. We see that cost savings are primarily made if the utilization rates of the
resources are high. Since shortages occur more often when the utilization rates are
high, the savings are higher when allocation policies are used. Hence, for (ρ3, ρ4, ρ5) =
(0.8, 0.85, 0.8) the savings are only 5% while for (ρ3, ρ4, ρ5) = (0.9, 0.99, 0.9) the sav-
ings are more than 35%.
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Figure 6.5: Relative difference between allocation policies and the standard LP strategy
for equal and unequal costs.
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Figure 6.6: Relative difference between allocation policies and the standard LP strategy
for different capacities.

In figures 6.7 and 6.8, we separated the results by equal and unequal demand and
equal and unequal squared coefficient of variation respectively. We see that the allo-
cation rules preform slightly better if the demand of the end items is unequal. The
difference in performance between equal and unequal squared coefficient of variance
are small. Apparently, in the LP strategy without allocation rules not enough short-
ages are allocated to the item with highest demand. If we compare the models with
linear allocation and different allocation fractions, we see that q

|N |
ij also does not al-

locate enough shortages to the item with the highest demand. Furthermore we see
clearly that allocation fractions that consider both the mean demand and the demand
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Figure 6.7: Relative difference between allocation policies and the standard LP strategy
for equal and unequal mean.
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Figure 6.8: Relative difference between allocation policies and the standard LP strategy
for equal and unequal squared coefficient of variation.

variation perform better.

We also look at the time needed per test case. The experiments are done on a
computer with a 2.00 GHz Intel Pentium 4 processor. In table 6.6, the used time is
shown. Of course the standard LP strategy is fastest, since this is the smallest model.
However, on the second place we see the QP strategy. This is most convenient, being
the strategy using allocation rules with the best performance.
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Model Time
Standard 514 sec.

Allocation rules 764 sec.
Lower bound 773 sec.
Quadratic 672 sec.

Table 6.6: Time needed per test case.

6.6 The 18-item model

For the last time, we look at the 18-item model. In this section we compare the
LP strategy with early production and optimal planned lead times with the intro-
duced strategies with allocation rules. The results are given in table 6.7, whereby
∆alloc(τi=τ∗

i
)
, and ∆QP(τi=τ∗

i
)

are given by

∆alloc(τi=τ∗
i
)
=

C̄early(τi=τ∗
i
)
− C̄alloc(τi=τ∗

i
)

C̄early(τi=τ∗
i
)

, (6.25)

and

∆QP(τi=τ∗
i
)
=

C̄early(τi=τ∗
i
)
− C̄QP(τi=τ∗

i
)

C̄early(τi=τ∗
i
)

. (6.26)

cv2
i (ρs, ρsc, ρc) (αs, αsc, αc) ∆alloc(τi=τ∗

i
)

∆QP(τi=τ∗
i
)

0.25 (0.85, 0.9, 0.95) (20, 40, 60) 8.49% 11.43%
0.25 (0.95, 0.9, 0.85) (20, 40, 60) 7.20% 9.25%
2 (0.85, 0.9, 0.95) (20, 40, 60) 9.08% 9.10%
2 (0.95, 0.9, 0.85) (20, 40, 60) 7.06% 8.57%

0.25 (0.85, 0.9, 0.95) (30, 60, 90) 8.15% 10.31%
0.25 (0.95, 0.9, 0.85) (30, 60, 90) 7.40% 9.85%
2 (0.85, 0.9, 0.95) (30, 60, 90) 15.14% 13.78%
2 (0.95, 0.9, 0.85) (30, 60, 90) 4.25% 4.83%

Table 6.7: The relative difference between the LP strategy with early production and
optimal planned lead time and the strategies with allocation rules and optimal planned
lead times

Again we see savings, when we use allocation policies. The savings are highest when
the utilization rate of the resource producing the common item is equal to 95%. But
also if the resource on which the specific items are produced have an utilization rate is
95% the savings are remarkable. Notice that in the 11-item model, section 6.4, there
were not much savings when the specific items had the longest planned lead time.
This difference may be caused by the difference in the number of items per resource.
In the 11-item model the specific items were all produced on their own resource,
however in the 18-item model all four specific intermediate items are produced on
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one resource. The allocation policy apparently gives an indication of the amounts in
which the specific items must be produced in case of capacity shortages.

Remark that the experimental setting with cv2
i = 2, (ρs, ρsc, ρc) = (0.85, 0.90, 0.95),

and (αs, αsc, αc) = (30, 60, 90) is the only case that LP strategy with linear alloca-
tion rules performs better than the strategy with quadratic objective function. This
deviant result might suggest that when using allocation rules, the optimal planned
lead times change. To prove this idea, we determined the optimal planned lead time
for the allocation policies and compare the results with the LP strategy with early
production and optimal planned lead times. The results can be found in table 6.8.

LPalloc

cv2
i (ρs, ρsc, ρc) (αs, αsc, αc) (τs, τsc, τ c) ∆alloc (τs, τ sc, τ c)

0.25 (0.85, 0.9, 0.95) (20, 40, 60) (1, 1, 2) 10.92% (1, 1, 1)
0.25 (0.95, 0.9, 0.85) (20, 40, 60) (2, 1, 1) 7.37% (1, 1, 1)
2 (0.85, 0.9, 0.95) (20, 40, 60) (1, 2, 8) 10.87% (1, 1, 3)
2 (0.95, 0.9, 0.85) (20, 40, 60) (9, 2, 1) 11.16% (3, 1, 1)

0.25 (0.85, 0.9, 0.95) (30, 60, 90) (1, 1, 2) 14.32% (1, 1, 1)
0.25 (0.95, 0.9, 0.85) (30, 60, 90) (2, 1, 1) 9.02% (1, 1, 1)
2 (0.85, 0.9, 0.95) (30, 60, 90) (1, 1, 3) 15.14% (1, 1, 3)
2 (0.95, 0.9, 0.85) (30, 60, 90) (8, 1, 1) 7.45% (5, 1, 1)

QP
cv2

i (ρs, ρsc, ρc) (αs, αsc, αc) (τs, τsc, τ c) ∆QP (τs, τ sc, τ c)
0.25 (0.85, 0.9, 0.95) (20, 40, 60) (1, 1, 2) 14.50% (1, 1, 1)
0.25 (0.95, 0.9, 0.85) (20, 40, 60) (2, 1, 1) 10.97% (1, 1, 1)
2 (0.85, 0.9, 0.95) (20, 40, 60) (1, 2, 8) 14.26% (1, 1, 3)
2 (0.95, 0.9, 0.85) (20, 40, 60) (9, 2, 1) 18.83% (3, 1, 1)

0.25 (0.85, 0.9, 0.95) (30, 60, 90) (1, 1, 2) 16.77% (1, 1, 1)
0.25 (0.95, 0.9, 0.85) (30, 60, 90) (2, 1, 1) 11.76% (1, 1, 1)
2 (0.85, 0.9, 0.95) (30, 60, 90) (1, 1, 3) 18.85% (1, 1, 1)
2 (0.95, 0.9, 0.85) (30, 60, 90) (8, 1, 1) 13.33% (1, 1, 1)

Table 6.8: The relative difference between the LP strategy with early production and
optimal planned lead time and the strategies with allocation rules and their optimal
planned lead times

We see that indeed the optimal planned lead time when using allocation rules differ
from the optimal planned lead times of the LP strategy with early production. Re-
markable results are found for the cases with cv2

i = 2 and (αs, αsc, αc) = (20, 40, 60).
In these two cases the savings made by using allocation rules are larger if the specific
item is produced on the bottleneck resources, while in all other cases the savings are
highest if the common item is produced on the bottleneck resource. These large sav-
ings in case with cv2

i = 2 and (αs, αsc, αc) = (20, 40, 60) are not only caused by the
allocation policies, but also by the larger reduction in planned lead times. Hence we
conclude that when using allocation policies the optimal planned lead times become
shorter.
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6.7 Conclusion

Supply Chain Operations Planning problems of multi-item, multi-echelon systems
with demand uncertainty can be solved using Linear Programming models in a rolling
horizon setting. Negenman (2000) and De Kok & Fransoo (2003) noticed that LP
strategies do not seem to find the right balance in the allocation of stock among the
different items. In this chapter we focussed on material allocation in LP models, using
the LP model introduced in chapter 2. Notice that although capacity allocation is also
a part of this model, in this chapter we restricted ourselves to material coordination.

In this chapter we include material allocation policies in the LP model by adding
linear allocation rules to the LP model. The linear allocation rules allocate shortages
of a child item to all its parent items. To identify shortages, the echelon inventory
position is added to the model. In the second model the linear allocation rules are
relaxed by introducing lower bounds for the amount of shortages allocated to the
parent items. A third strategy for solving the allocation imbalance is by replacing
the linear objective function by a quadratic one. Note that, by the introduction of
allocation policies, additional constraints are added to the LP model. Therefore the
optimal solution to the problem may have a higher cost then the original solution.
However, the LP model is part of a rolling schedule implementation. We have shown
that, despite the increase in cost on an instance, the actual costs incurred under
uncertainty can be substantially lower.

In De Kok & Fransoo (2003) it is shown that for supply chains with infinite capacity
and identical end items, the so-called synchronized base stock (SBS) policies outper-
form MP models. De Kok & Fransoo (2003) state that LP-based concepts do not
seem to find the right balance in allocating stock among the different items. Hence,
in this chapter we compared the SBS policy with the introduced MP models with
allocation policies. The results are quite promising. Especially the model with the
quadratic objective function closes the gap between SBS and LP. Since the strategy
with quadratic objective function (QP strategy) is, in contrast to the SBS policy,
applicable to capacitated problems the QP model is a good alternative for problems
that cannot be solved by the SBS policy.

Furthermore we measured the performance, compared to the standard LP strategy, of
the allocation policies for capacitated supply chains. For the experiments we used a
so-called “W-structure”, with two end items whereby each item is consist of a specific
and a common child item. The results show us that models with allocation policies
perform better than the standard LP strategy, whereby the QP strategy performs
best. The QP strategy gives not only lower inventory cost, it also is faster in solving
the SCOP problem.

As already mentioned capacity allocation is not taken as part of the model. Although
it may turn out that capacity allocation is no longer an issue when material allocation
rules are used, it is still an interesting topic for future research.





Chapter 7

Conclusions and future
research

7.1 Main research findings

In this thesis we studied rolling schedule approaches to solve the Supply Chain Oper-
ations Planning (SCOP) problem. The SCOP problem is the problem of coordinating
the material and resource release decisions while obeying capacity restrictions in a
supply chain such that predefined customer service levels are met at minimal costs.
The SCOP problem assumes that customer demand and processing times are stochas-
tic. In this thesis we restricted ourself to stochastic demand only. The aim of this
research is to make a contribution to the development of more effective approaches
for solving the SCOP problem. Towards this end we introduced, in chapter 2, a linear
programming (LP) model with planned lead times. The reason we use an LP model,
or MP models in general, is twofold. First, MP models can easily be incorporated in
existing Advanced Planning Systems (APS), which provide an appropriate framework
for putting OR developments in practice (see Fleischmann & Meyr (2003)). Second, a
big advantage over multi-echelon concepts is the possibility to add constraint, such as
lot-sizing and capacity constraints to the problem. While the multi-echelon concept
can only be used for uncapacitated supply chains and some strictly defined capaci-
tated supply chains, MP models can be used for all kind of problem. To incorporate
stochastic customer demand in the deterministic LP model, we studied the LP model
in a rolling schedule context. While using this model we pursued the goal of the
research by elaborating on the following two research questions.

1. Can we use the planned lead time concept to improve the performance of deter-
ministic SCOP functions?

By introducing planned lead times, additional flexibility is added to the model, namely
by decoupling the capacity allocation decision from the order release decision. Hence
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we were interested if we could use this additional flexibility to reduce the inventory
cost of the model.

Besides mathematical programming models applied in a rolling schedule context, there
also exist stochastic models to solve the SCOP problem, such as echelon stock (or
base stock) control concepts introduced by Magee (1958) and Clark & Scarf (1960).
These stochastic models can only solve uncapacitated supply chain structures and
a few specially designed capacitated supply chain structures. In De Kok & Fransoo
(2003), it is shown that the stochastic models obtain lower cost than the deterministic
SCOP functions. To tighten the gap between these two approaches, we ask ourself
the following question:

2. How well do deterministic SCOP functions perform while using a rolling schedule
to incorporate demand uncertainty compared to stochastic SCOP functions, and
how can we tighten a possible gap?

In the following subsections we summarize our conclusions regarding these questions.

7.1.1 Optimal usage of planned lead time concept

In chapter 2 we formulated a linear programming model with planned lead times.
These planned lead times consist of one or more periods in which a released order
must be produced. We assumed that the production of one item always can be done
within one period, and that an order can be split up in several parts. Each part
is produced during one period of the planned lead time. This approach of planned
lead times decouples the order release from the capacity usage, and creates additional
flexibility in the model. The decoupling of the order release decision from the capacity
usage by using planned lead times is new. In former MP models, see e.g. Billington
et al. (1983), Hopp & Spearman (2000), and Tempelmeier (2003), the lead time is
assumed to be equal to zero of fixed. These fixed lead times are modelling minimal
lead times or delays whereby capacity is allocated at this fixed time offset.

In chapters 3, 4, and 5, we studied the planned lead time concept and its possibilities
thoroughly. In chapter 3 we looked at the timing of production during the planned lead
time. We considered two situations, namely the situation in which production starts
as soon as there is available capacity and the situation in which the production of items
starts as late as possible. Starting the production as late as possible seems cheapest,
since stocking child items is less expensive than stocking parent items. However,
since customer demand is uncertain and the LP model is used in a rolling schedule
concept saving capacity for later might also be a good strategy. Experiments show
that especially for items produced on resources with high utilization rates, starting
the production as soon as there is capacity available, is most effective

Planned lead times have to be determined beforehand, however strategies to find
values of the planned lead times which minimize the cost are not available. In chapter
4 we have discovered three exogenous factors influencing the optimal planned lead
time. From queuing theory we already knew that the utilization rate of the server and
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the variability in demand influences the waiting time. Since waiting time is a large part
of a lead time, it is not surprising that both mentioned parameters also influence the
optimal planned lead time. Higher utilization rates and/or larger demand variability
increases the the optimal planned lead time. However, the holding costs structure of
the supply chain plays the leading role in determining optimal planned lead times.
Increasing the planned lead time has two effects. First, the safety stocks may decrease.
Second, the amount of work-in-process increases. Thus longer planned lead times
are only advantageous if the additional work-in-process costs are outweighed by the
savings in safety stocks.

Planned lead times are defined such that released items are available for succeeding
production steps at the end of their planned lead time only. Items produced before
the end of the planned lead time, wait the remainder of the planned lead time. In
chapter 5 two strategies are given which make it possible to use produced items before
the end of their planned lead time. Under the first strategy items are made available
for further usage directly after production. Experiments showed that this strategy
does not improve the performance of the LP strategy. When items are available
immediately after production, the maximal number of available items per period is
equal to the capacity of the resources. This decreases the variability in the number
of available items per period. Hence, the number of available items do not follow the
fluctuation in the demand as closely as when items are available at the end of their
planned lead time. This increases the number of backorders, which results in higher
inventory costs. In the second strategy the produced items are only available before
the end of their planned lead time if needed to avoid or reduce backorders. It turned
out that when using planned lead times that are optimal or longer, reductions in costs
are made. If the planned lead times are smaller then the optimal planned lead times,
using this strategy increases the costs. With smaller planned lead times there is less
flexibility in the capacity usage and backorders occur more often. Hence, the number
of times items have to be released before the end of their planned lead times increases,
and if it happens too often the number of items available per period becomes equal to
the maximum capacity per period. In the first strategy we already showed that this
increases the cost. If the planned lead times are longer than the optimal planned lead
times, the strategy shortens the actual lead time and this gives a reduction in cost.

7.1.2 Performance of LP versus stochastic strategies in rolling
schedule setting

In De Kok & Fransoo (2003) it is shown that LP strategies are outperformed by
stochastic base stock policies for uncapacitated supply chains. They noticed, and
so did we in chapter 3, that the safety stocks for identically distributed end-items
strongly differ. Apparently the LP solver always favors one item over another, when
ties must be broken. To solve this problem, we introduce two types of allocation
strategies in chapter 6. In the first strategy, linear allocation rules are added to
the model. These allocation rules divide shortages of a child item among the parent
items using predefined allocation fractions. In the second strategy the linear objective
function is replaced by a quadratic one. The LP strategies with an allocation policy
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are again compared with stochastic base stock policies. The results show that the LP
policies are still outperformed by the stochastic base stock policies, but the differences
are small. This suggest that these adjusted LP strategies are good alternatives for
capacitated supply chain structures for which the SCOP problem cannot be solved
by stochastic base stock policies.

We also compared the performance of the strategies with an allocation policy with the
standard LP strategy for capacitated supply chains. The results show that the models
with an allocation policy perform better. A last remarkable result is that for both
uncapacitated as capacitated supply chains replacing the linear objective function by
a quadratic objective (QP strategy) gives better results than adding linear allocation
rules to the LP model. The QP strategy does not only give lower inventory costs, it
is easy to implement and it also can be solved efficiently by existing software.

7.1.3 General conclusion

A general conclusion of this thesis is that existing LP models can be used to solve
Supply Chain Operations Planning problems with demand uncertainty by using them
in a rolling schedule context. Although LP models give optimal production plans for
a fixed planning horizon, in a rolling schedule context whereby the customer demand
is uncertain, these plans are most probably not optimal. In this thesis we showed
that the performance of the model can be improved by the introduction of planned
lead times. The proper coordination of the timing of production within the planned
lead time can reduce the cost even more. The performance can also be improved by
using allocation strategies for allocating shortages among parent items. It turned out
that the models with a quadratic objective function and linear constraints are most
suitable for solving the SCOP problem; they give the lowest inventory costs of the
studied approaches, and can be solved in a reasonable time.

7.2 Future research

In chapter 4 of this thesis, we studied factors which influence the optimal planned
lead times. We learned that the variation in demand and the utilization rates of the
resources influence the value of the optimal planned lead time. However, the cost
structure plays the key role in determining optimal planned lead times. We found
optimal planned lead times by comparing the inventory costs of simulation studies
for various planned lead times. This procedure is very time consuming. Hence,
an interesting research topic is to find a heuristic, based on these three factors, to
determine optimal or nearly optimal planned lead times. Note that longer planned
lead times gives more flexibility in capacity allocation. Hence, if it is possible to
estimate the safety stocks based on the utilization rate and demand variation, and
if it is possible to estimate the effects on the safety stock obtained by the additional
flexibility in capacity allocation created by longer planned lead times, it might be
possible to find good planned lead times by balancing the safety stock savings and
the increased work-in-process inventory cost. However if more than one item in the
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supply chain is produced on a capacitated resource, there is also a dependency between
the optimal planned lead times, i.e., the planned lead time of one item influence the
optimal planned lead time of another item.

With the introduction of allocation strategies we tighten the gap between the better
stochastic base stock policies and the policy based on linear programming models for
uncapacitated supply chain structures. Although the gap between the two models is
not too big, it is still interesting to tighten the gap even more. From the discussion
in De Kok & Fransoo (2003) it follows that this existing gap may be caused by better
parameter settings in the echelon stock control policy. The echelon stock control
policy allows for implementing “push” policies where upstream stocks are zero, while
the LP strategy tends to build up stock upstream. A possible explanation for this is
that the LP strategy aims at satisfying the end item demand forecast. After satisfying
this forecast remaining stocks of components are not used for assembly of end items,
because stocks of components are cheaper than stocks of assembled end items. By
adjusting the LP strategy such that instead of stocking at upstream levels more items
are stocked at downstream levels the gap might be even more tightened.

In this thesis we studied only relatively small supply chain structures. To see the
full effect of all modifications to the standard LP strategy one should compare the
inventory cost of the standard LP strategy with the inventory cost of the adjusted LP
strategy in a real-life situation. For large supply chain structures, having planned lead
times longer than one period is only profitable for those items that are produced on
tightly capacitated resources. Early availability of these items decreases the inventory
costs, but early production is only beneficial if the difference savings in safety stocks
cost are larger then the additional work-in-process inventory cost.

To create additional flexibility in the timing of production we used the planned lead
times concept. These planned lead times can be seen as adding safety time to the
model. An alternative for safety time is safety stock. Hence an interesting research
topic is the introduction of safety stocks at upstream items. It will be a challenge to
find optimal safety stocks for every items on the supply chain. Backorders are only
allowed at the end item level, so a method is needed to to measure the shortages of
child items that are now resolved by backorders on the end item level.

If one of the LP strategies or the QP strategy is used in a real-life setting the needed
safety stocks must be determined beforehand. An interesting study is to determine
good safety stocks, while taken into account future demand. Throughout this thesis
we have seen that the needed safety stocks are reduced by every adjustment we made
in the LP model, so the needed amount of safety stock is dependent of many factors.
Hence simple rules to determine safety stocks may not be sufficient.

A last mentioned interesting research topic is the relation between SCOP and the
unit control function. In this thesis we assumed an 100% due date reliability from
the unit control functions, but what happens if the unit control functions are not for
100% reliable? Which information should be exchanged between the two levels to
reach customer service levels at minimal cost?
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7.3 Retrospect

The original idea of this research wa to develop effective concepts to solve Supply
Chain Operations Planning problems of capacitated supply chain structures under
demand uncertainty.

Capacity constraints and all kind of other restrictions of the supply chain can easily be
added to an LP model. However, an LP model can only solve deterministic problems.
Hence, in order to use the easiness of LP but simultaneously incorporate demand
uncertainty, we investigated the performance of an LP model in a rolling schedule
concept.

In the proposed LP problem, we introduced planned lead times with multi-period
capacity allocation and studied the possibilities of the created additional flexibility.
It turned out that the inventory costs reduce by a proper use of these planned lead
times.

We also studied the use of allocation policies within the SCOP concept. These allo-
cation policies allocate shortages of a child item fractionally, taken into account the
mean and variance of the demand distribution, among its parent items. We have seen
that allocation policies, especially the QP strategy, improve the performance of the
SCOP concept considerably.

In retrospect we may conclude this work by stating that capacitated SCOP problems
with demand uncertainty can easily solved by MP models, especially the model with
quadratic objective function, in a rolling schedule setting.
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Appendix A

The equivalence of the two
sets of capacity constraints

In this appendix we prove the equivalence between the two sets of capacity constraints
from sections 2.4.2 and 2.4.3. Without loss of generality we assume all variables
determined in the past are equal to zero and we consider the time horizon t = 0, . . . , T .

Theorem A.1 If we assume that a work order is not produced before all earlier work
orders of that item are finished then constraints

∑

s:−1< s≤ t

piRis ≥
∑

m∈Ri

∑

s:0< s≤ t+1

Vius i = 1, . . . , n, t = 0, . . . , T − 1

and
∑

s:−1< s≤ t

piRis ≤
∑

m∈Ri

∑
s:0< s≤ t+τi,

s≤T

Vims i = 1, . . . , n, t = 0, . . . , T − 1

are equivalent to constraints

piRit =
∑

s:t+1≤ s≤ t+τi,
s≤T

Zits, i = 1, . . . , n, t = 0, . . . , T − 1 (A.3)

and ∑
s:t−τi≤s<t,

s≥ 0

Zist =
∑

m∈Ri

Vimt, i = 1, . . . , n, t = 1, . . . , T (A.4)

Proof Constraints (A.1) and (A.2) ⇒ constraints (A.3)and (A.4): With constraints
(A.1) and (A.2) the part of the released work order Rit executed in time slot s can
be the determined. If we define Zits as
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Zits : the part of the planned work order release of item i requested on at time t and
executed in time slot s, i = 1, . . . , n, t = 0, . . . , T − 1, s = t + 1, . . . , t + τ i, s ≤ T .

then

Zits = min{(
∑

m∈Ri

Vims −
∑

r:s−τi≤ r< t,
r≥ 0

Zirs)

︸ ︷︷ ︸
available capacity

, (piRit −
∑

r:t<r<s

Zitr)

︸ ︷︷ ︸
needed capacity

} (A.5)

The “available capacity” consists of the total capacity claim in time slot s minus the
capacity already allocated to earlier released work orders. The “needed capacity”
consists of the needed capacity of released work order Rit minus the capacity already
allocated to this work order. Since (A.1) and (A.2) hold there is always enough
capacity claimed for the released work orders and

∑
s:t+1≤ s≤ t+τi,

s≤T

Zits = piRit, i = 1, . . . , n, t = 0, . . . , T − 1 (A.6)

Remains to show that constraint (A.4) also holds. Looking at the definition of Vimt

Vimt : the capacity allocated to an item i at resource u in time slot t, i = 1, . . . , n,
m = 1, . . . , L, t = −τ i + 2, . . . , T .

and the definition of Zits, we see that constraint (A.4) always hold by definition.

Constraints (A.3)and (A.4) ⇒ constraints (A.1) and (A.2): We first concentrate on
showing that constraint (A.1) holds.

Since Zits ≥ 0 for i = 1, . . . , n, t = 0, . . . , T − 1, s = t + 1, . . . , t + τ i, s ≤ T , we have
shown that (A.1) holds, if we show that

∑

0≤s≤t

piRis =
∑

s:1≤s≤t+1

∑

m∈Ri

Vims +
∑

r:t−τ i+2≤r≤t

∑
q:t+2≤q≤r+τi,

q≤T

Zirq (A.7)

holds.

By using iteration we show that (A.7) holds. First we show that it is true for t = 0.
For t = 0 equation (A.7) becomes:

piRi0 =
∑

m∈Ri

Vim1 +
∑

r:−τ i+2≤r≤0

∑
q:2≤q≤r+τi,

q≤T

Zirq

=
∑

m∈Ri

Vim1 +
∑

q:2≤q≤τi,
q≤T

Zi0q (A.8)

From constraint (A.3) we derive that

piRi0 =
∑

s:1≤s≤τi,
s≤T

Zi0s (A.9)
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and constraint (A.4) gives us
Zi01 =

∑

m∈Ri

Vim1 (A.10)

so we have
piRi0 =

∑

m∈Ri

Vim1 +
∑

s:2≤s≤τi,
s≤T

Zi0s (A.11)

which is equal to equation (A.8).

Now we assume that equation (A.7) is true for t and prove that it is also true for t+1.
∑

0≤s≤t

piRis =
∑

s:1≤s≤t+1

∑

m∈Ri

Vims +
∑

r:t−τ i+2≤r≤t

∑
q:t+2≤q≤r+τi,

q≤T

Zirq

=
∑

s:1≤s≤t+1

∑

m∈Ri

Vims +
∑

r:t−τ i+2≤r≤t

Zi,r,t+2

+
∑

r:t−τ i+3≤r≤t

∑
q:t+3≤q≤r+τi,

q≤T

Zirq

=
∑

s:1≤s≤t+1

∑

m∈Ri

Vims +
∑

m∈Ri

Vi,m,t+2 − Zi,t+1,t+2

+
∑

r:t−τ i+3≤r≤t

∑
q:t+3≤q≤r+τi,

q≤T

Zirq

=
∑

s:1≤s≤t+2

∑

m∈Ri

Vims − piRi,t+1 +
∑

s:t+3≤s≤t+τi+1,
s≤T

Zi,t+1,s

+
∑

r:t−τ i+3≤r≤t

∑
q:t+3≤q≤r+τi,

q≤T

Zirq

=
∑

s:1≤s≤t+2

∑

m∈Ri

Vims − piRi,t+1

+
∑

r:t−τ i+3≤r≤t+1

∑
q:t+3≤q≤r+τi,

q≤T

Zirq (A.12)

Thus, we see that equation (A.7) also holds for t + 1
∑

0≤s≤t+1

piRis =
∑

s:1≤s≤t+2

∑

m∈Ri

Vims +
∑

r:t−τ i+3≤r≤t

∑
q:t+3≤q≤r+τi,

q≤T

Zirq (A.13)

The only thing left to show is that inequality (A.2) also holds. By substituting
constraint (A.4) in (A.3), we get:

piRit =
∑

s:t+1≤ s≤ t+τi,
s≤T

Zits =
∑

s:t+1≤ s≤ t+τi,
s≤T

(
∑

m∈Ri

Vimt −
∑

r:s−τi≤ r< t,
s≤T

Zirs −
∑

r:t< r< s,
s≤T

Zirs)

≤
∑

s:t+1≤ s≤ t+τi,
s≤T

∑

m∈Ri

Vimt (A.14)
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From inequality (A.14) it is easy to see that also (A.2)holds.
2



Appendix B

The equivalence between
physical and echelon
inventory balance

In this section we show that the echelon inventory balance introduced in section 6.3.2
is equal to the physical inventory balance given in the model in section 2.4.

Theorem B.1 The physical inventory balance

Iis = Ii,s−1 + Ri,s−τ i −Dis −Gis + Bis −Bi,s−1, i = 1, . . . , n, s = t, . . . , t + T − 1
(B.1)

is equal to the echelon inventory balance

Ĩis = Ĩi,s−1 + Ri,s−τ i −
∑

j∈Ei

h̃ijDjs −Dist, i = 1, . . . , n, s = t, . . . , t + T − 1 (B.2)

.
Proof The physical inventory balance (B.1) ⇒ the echelon inventory balance (B.2).
We start with substituting the expression for the echelon inventory position

Ĩis = Iis+
n∑

j=1

s∑
u=s−τj+1

hijRju+
n∑

j=1

hij Ĩjs−Bis i = 1, . . . , n, t = 0, . . . , T−1 (B.3)

into the physical inventory balance, thus

Ĩis −
n∑

j=1

s∑
u=s−τj+1

hijRju −
n∑

j=1

hij Ĩjs + Bis = Ĩi,s−1 −
n∑

j=1

s−1∑
u=s−τj

hijRju

−
n∑

j=1

hij Ĩj,s−1 + Bi,s−1 + Ri,s−τ i −Dis −
n∑

j=1

hijRjs + Bis −Bi,s−1 (B.4)
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112 The equivalence between physical and echelon inventory balance

By rearranging the terms, we get

Ĩis = Ĩi,s−1 +
n∑

j=1

hij(
s∑

u=s−τj+1

Rju −
s−1∑

u=s−τj

Rju −Rjs + Ĩjs − Ĩj,s−1)−Dis + Ri,s−τ i

(B.5)

which is equal to

Ĩis = Ĩi,s−1 +
n∑

j=1

hij(Ĩjs − Ĩj,s−1 −Ri,s−τ i) + Ri,s−τ i −Dis (B.6)

If i is an end item, then hij = 0 for all j = 1, . . . , n, and equality (B.6) becomes

Ĩis = Ĩi,s−1 + Ri,s−τ i −Dis (B.7)

this is the echelon inventory balance, since
∑

j∈Ei
h̃ijDjs = 0 for end items i.

So for end items we have proven that the physical inventory balance (B.1) ⇒ the
echelon inventory balance (B.2).

Now assume that for all parent items (B.1) ⇒ (B.2) holds, thus

∀j ∈ Vi : Ĩjs = Ĩj,s−1 + Rj,s−τ i −
∑

k∈Ej

h̃jkDks −Djs (B.8)

then equation (B.6) becomes

Ĩis = Ĩi,s−1 + Ri,s−τ i −Dis −
n∑

j=1

hij(
∑

k∈Ej

h̃jkDks + Djs) (B.9)

Ĩis = Ĩi,s−1+Ri,s−τ i−Dis−
∑

j∈Ei

hij(
∑

k∈Ej

h̃jkDks+Djs)−
∑

j∈Ec
i

hij(
∑

k∈Ej

h̃jkDks+Djs)

(B.10)

Ĩis = Ĩi,s−1 + Ri,s−τ i −Dis −
∑

j∈Ei

hijDjs −
∑

j∈Ec
i

hij

∑

k∈Ej

h̃jkDks (B.11)

and by substituting the expression for the total demand of item i incorporated in the
end items of ech(i) at time t.



B. The equivalence between physical and echelon inventory balance 113

∑

j∈Ei

h̃ijDis =
∑

j∈Ei

hijDjs +
∑

j∈Ec
i

hij

∑

k∈Ej

h̃jkDks (B.12)

we finally get

Ĩis = Ĩi,s−1 + Ri,s−τ i
−Dis −

∑

j∈Ei

h̃ijDjs (B.13)

So, if the assumption “(B.1) ⇒ (B.2) for all parent items” holds, then we have proved
that the physical inventory balance ⇒ the echelon inventory balance.

We still have to prove that indeed (B.1) ⇒ (B.2) holds for all parent items. Par-
ent items are

1. end items, or

2. child items of other parent items

We know that (B.1) ⇒ (B.2) is true for end items. For child items it is true if it is
true for parent items. Since, in the end, parent items are end items. The theorem is
also true for child items.

To proof the theorem, we also have to proof that echelon inventory balance (B.2) ⇒
the physical inventory balance (B.1). We start by substituting the expression for the
echelon inventory position (B.3) into the echelon inventory balance, then we get

Iis +
n∑

j=1

s∑
u=s−τj+1

hijRju +
n∑

j=1

hij Ĩjs −Bis = Ii,s−1 +
n∑

j=1

s−1∑
u=s−τj

hijRju

+
n∑

j=1

hij Ĩj,s−1 −Bi,s−1 + Ri,s−τ i −Dis −
∑

j∈Ei

h̃ijDjs (B.14)

rearranging the terms gives

Iis = Ii,s−1 + Ri,s−τ i −Dis + Bis −Bi,s−1 −
∑

j∈Ei

h̃ijDjs

+
n∑

j=0

hij(
s−1∑

u=s−τj

Rju −
s∑

u=s−τj+1

Rju − Ĩjs + Ĩj,s−1) (B.15)
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Iis = Ii,s−1 + Ri,s−τ i −Dis + Bis −Bi,s−1 −
∑

j∈Ei

h̃ijDjs

+
n∑

j=0

hij(Rj,s−τj
−Rj,s − Ĩjs + Ĩj,s−1) (B.16)

Iis = Ii,s−1 + Ri,s−τ i
−Dis + Bis −Bi,s−1 −

n∑

j=1

hijRjs

+
n∑

j=0

hij(Rj,s−τj − Ĩjs + Ĩj,s−1)−
∑

j∈Ei

h̃ijDjs (B.17)

By substituting the echelon inventory balance into this expression, we get

Iis = Ii,s−1 + Ri,s−τ i −Dis + Bis −Bi,s−1 −
n∑

j=1

hijRjs

+
n∑

j=0

hij(Dis +
∑

k∈Ej

h̃jkDks)−
∑

j∈Ei

h̃ijDjs (B.18)

Iis = Ii,s−1 + Ri,s−τ i −Dis + Bis −Bi,s−1 −
n∑

j=1

hijRjs

+
∑

j∈Ei

hijDis +
∑

j∈Ec
i

hijDis

+
∑

j∈Ei

hij

∑

k∈Ej

h̃jkDks +
∑

j∈Ec
i

hij

∑

k∈Ej

h̃jkDks

−
∑

j∈Ei

h̃ijDjs (B.19)

Since
∑

j∈Ec
i
hijDis = 0 and

∑
j∈Ei

hij

∑
k∈Ej

h̃jkDks = 0, we get

Iis = Ii,s−1 + Ri,s−τ i −Dis + Bis −Bi,s−1 −
n∑

j=1

hijRjs

+
∑

j∈Ei

hijDis +
∑

j∈Ec
i

hij

∑

k∈Ej

h̃jkDks −
∑

j∈Ei

h̃ijDjs (B.20)

Finally by substituting (B.12), we get
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Iis = Ii,s−1 + Ri,s−τ i
−Dis −

n∑

j=1

hijRjs + Bis −Bi,s−1 (B.21)
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Appendix C

Strict allocation

Theorem C.1 In a pure divergent supply chain holds

hijRj,s−τj = hijD̂js − hij Ĩjs − qijS
−
i,s−τj

∀i ∈ prev(j)

j = 1, . . . , n, s = t, . . . , t + T − 1. (C.1)

if

Iis = Ii,s−1 + Ri,s−τ i −Dis −Gis + Bis −Bi,s−1, i = 1, . . . , n, s = t, . . . , t + T − 1
(C.2)

Gis =
n∑

j=1

hijRjs, i = 1, . . . , n, s = t, . . . , s + T − 1 (C.3)

Bis −Bi,s−1 ≤ Dis, i = 1, . . . , n, s = t, . . . , t + T − 1 (C.4)

S−is − S+
is =

n∑

j=1

hijD̂j,s+τj −
n∑

j=1

hij Ĩj,s+τj − Ii,s−1 −Ri,s−τ i ,

i = 1, . . . , n, i /∈ E, s = t, . . . , t + T − 1 (C.5)

hijRj,s−τj ≥ hijD̂js − hij Ĩjs − qijS
−
i,s−τj

∀i ∈ prev(j)

j = 1, . . . , n, s = t, . . . , t + T − 1. (C.6)

n∑

j=1

qij = 1, i = 1, . . . , n (C.7)

Ris, Bis, Iis ≥ 0, i = 1, . . . , n, s = t, . . . , t + T − 1 (C.8)

S+
is = 0, i = 1, . . . , n, i /∈ E, s = t, . . . , t + T − 1 (C.9)
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Proof We proof this theorem by showing that

hijRj,s−τj
> hijD̂js − hij Ĩjs − qijS

−
i,s−τj

∀i ∈ prev(j) (C.10)

leads to a contradiction. Since S+
is = 0, we have

S−is =
n∑

j=1

hijD̂j,s+τj
−

n∑

j=1

hij Ĩj,s+τj − Ii,s−1 −Ri,s−τ i (C.11)

Furthermore,

hijRj,s−τj
> hijD̂js − hij Ĩjs − qijS

−
i,s−τj

∀i ∈ prev(j) (C.12)

by summing over all parent items, we get

n∑

j=1

hijRj,s−τj >

n∑

j=1

hijD̂js −
n∑

j=1

hij Ĩjs −
n∑

j=1

qijS
−
i,s−τj

∀i ∈ prev(j) (C.13)

Since
∑n

j=1 qij = 1, the inequality becomes

n∑

j=1

hijRj,s−τj >

n∑

j=1

hijD̂js −
n∑

j=1

hij Ĩjs − S−i,s−τj
∀i ∈ prev(j) (C.14)

and thus
n∑

j=1

hijRjs >

n∑

j=1

hijD̂j,s+τj −
n∑

j=1

hij Ĩj,s+τj − S−is ∀i ∈ prev(j) (C.15)

and by substituting equality (C.11) in the above inequality, we have that

n∑

j=1

hijRjs > Ii,s−1 + Ri,s−τ i ∀i ∈ prev(j) (C.16)

Notice that
∑n

j=1 hijRjt = Git. Now we can substitute (C.16) in the inventory
balance (C.17), and we get

Iis < Ii,s−1 + Ri,s−τ i −Dis − Ii,s−1 −Ri,s−τ i + Bis −Bi,s−1

= −Dis + Bis −Bi,s−1

i = 1, . . . , n, i /∈ E, s = t, . . . , t + T − 1 (C.17)

Since constraint (C.4) holds, we get Iis < 0 which is in contradiction with the under
bound (C.8) for the inventory Iis.

2



Summary

Supply Chain Operations Planning (SCOP) involves the determination of an exten-
sive production plan for a network of manufacturing and distribution entities within
and across organizations. The production plan consist of order release decisions that
allocate materials and resources in order to transform these materials into (intermedi-
ate) products. We use the word item for both materials, intermediate products, and
end-products. Furthermore, we consider arbitrary supply chains, i.e. the products
produced by the supply chain as a whole and sold to customers consist of multiple
items, where each item may in turn consists of multiple items and where each item
may be used in multiple items as well. The aim of SCOP is not only to obtain a
feasible production plan, but the plan must be determined such that pre-specified
customer service levels are met while minimizing cost.

To obtain optimal production plans we use a linear programming (LP) model. The
reason we use an LP model is twofold. First, LP models can easily be incorporated
in existing Advanced Planning Systems (APS). Second, while the multi-echelon in-
ventory concept can only be used for uncapacitated supply chains and some special
cases of capacitated supply chains, capacity constraints but also other restrictions can
easily added to LP models. In former mathematical programming (MP) models, the
needed capacity was allocated at a fixed time offset. This time offset was indicated
by fixed or minimum lead times. By the introduction of planned lead times with
multi-period capacity allocation, an additional degree of freedom is created, namely
the timing of capacity allocation during the planned lead time. When using the LP
model in a rolling schedule context, timing the capacity allocation properly can reduce
the inventory cost.

Although the number of studies on MP models for solving the SCOP or related
problems are carried out by various researchers is enormous, only a few of these
studies use a rolling schedule. Production plans are only calculated for a fixed time
horizon based on the forecast of customers demand. However, since customer demand
is uncertain, we emphasize the use of a rolling schedule. This implies that a production
plan, based on sales forecasts, is calculated for a time interval (0, T ], but only executed
for the first period. At time 1, the actual demand of the first period is known, and the
inventory status of the consumer products are adjusted according the actual demand.
For time interval (1, T + 1], a new production plan is calculated.

In this thesis, we studied the proposed LP strategy with planned lead times in a
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rolling schedule setting whereby we focused on the following topics:

• timing of production within the planned lead time,

• factors influencing the optimal planned lead time,

• early availability of produced items, i.e. availability of items before the end of their
planned lead time, and

• balanced material allocation.

In the first three studies we explore the possibilities of using planned lead times.
In the first study, timing of production, we compare the situation whereby released
items are produced as soon as there is available capacity with the situation whereby
released items are produced as late as possible within the planned lead time. If items
are produced as soon as possible, there is more capacity left for future production.
Since we work with uncertain customer demand whereby demand may be larger than
expected, this capacity might be very useful. A drawback of production as soon
as possible are the additional work-in-process cost. The results of simulation studies
show that if the utilization rates of resources and/or the variation in demand are high,
producing early is better. However this is only the case if the added value between
the concerned item and the end item is high.

The second study deals with factors influencing the optimal planned lead time. From
queuing theory it is already known that the variance in demand and the utilization rate
of the resources determine the waiting time. More variation and/or higher utilization
rates give longer waiting times. Since lead times consist for a large part of waiting
time, these two factors most probably also influence the length of the optimal planned
lead time. For a set of representative supply chain structures we showed that this was
indeed the case. With longer planned lead times, the flexibility in capacity allocation
is higher. Additional flexibility gives lower safety stocks, but longer planned lead times
also means more work-in-process. Hence, an important third factor which influence
the optimal planned lead time is the holding costs structure.

When using planned lead times, early produced items have to wait the remainder
of their planned lead time. This seems contradictory, especially if these items are
necessary to avoid or reduce backorders. Therefore we adapt the standard LP model
in two ways. In the first model, items are made available for succeeding production
steps directly after they are produced. And in the second model, produced items
are only made available for succeeding production steps if they are needed to avoid
or reduce backorders. Experiments showed that the first model does not improve
the performance of the standard LP strategy. The advantages of planned lead times
longer than one period are nullified by early availability of produced items. The
second model indeed improves the performance of the standard LP strategy, but only
when the planned lead times are optimal or longer.

Comparing the introduced LP strategy with a so-called synchronized base stock pol-
icy under the assumption of infinite capacity, it turned out that the LP strategy is
outperformed by the base stock policy. In order to obtain a better performance, we
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added linear allocation rules to the LP model. With these allocation rules shortages of
child items are divided among the parent items using a predefined allocation fraction.
A second way of balanced allocation of child items is obtained by replacing the linear
objective function by a quadratic one. The results of a well-chosen set of experiments
showed that although the synchronized base stock policy also outperforms the ad-
justed LP strategies, the difference in performance is small. Hence, the adjusted LP
strategies are good alternatives for large, capacitated supply chain structures which
cannot be solved by synchronized base stock policies. Comparing the model with
linear allocation rules with the model with quadratic objective function, the prefer-
ence is given to the latter model. This model does not only give the lowest inventory
costs, it also has the shortest computation time. Furthermore, this model can easily
be implemented and solved by existing software.

Summarizing the main results of this thesis, we conclude that deterministic LP models
can be used to solve the SCOP problem with stochastic demand by using the LP
model in a rolling schedule concept. By using optimal planned lead times with multi-
period capacity allocation, early production during the planned lead times, and early
availability of needed produced items before the end of the planned lead time, we
can decrease the inventory costs. The costs can also be reduced by using allocation
strategies to allocate shortages among parent items proportionally. Especially the
results for the model with quadratic objective function are promising.





Samenvatting

In Supply Chain Operations Planning (SCOP) gaat het om het bepalen van een uit-
gebreide productieplanning voor een netwerk van productie- en distributiebedrijven,
zowel binnen als tussen organisaties. Een goede productieplanning zorgt ervoor dat
producten en componenten aanwezig zijn op het juiste moment, op de juiste plaats, en
op efficiënte wijze. We gebruiken het woord component voor zowel grondstoffen, half-
fabrikaten, als eindproducten. We beschouwen supply chains waarbij de producten
die verkocht worden aan de consument uit meerdere componenten bestaan. Elk com-
ponent kan op zijn beurt ook uit meerdere componenten bestaan, en elk component
kan worden verwerkt in meerdere andere componenten. SCOP heeft niet alleen als
doel een uitvoerbare productieplanning te genereren, maar de planning moet zodanig
zijn dat de klantenservice een van tevoren vastgesteld niveau bereikt terwijl de kosten
zo laag mogelijk gehouden worden.

Voor het verkrijgen van optimale productieplanningen gebruiken we een lineair pro-
grammering (LP) model. De reden dat we voor een LP model kiezen is tweeslachtig.
Ten eerste kunnen LP modellen eenvoudig opgenomen worden in de bestaande ‘Ad-
vanced Planning Systems’ (APS). En ten tweede kan in LP modellen op eenvoudige
wijze capaciteit en andere beperkingen worden toegevoegd. Dit is niet het geval in
multi-echelon voorraad modellen die dan ook alleen voor supply chains met oneindige
capaciteit en een aantal specifieke gecapaciteerde supply chains, gebruikt kunnen
worden. In eerdere mathematische programmerings (MP) modellen werd de beno-
digde capaciteit toegekend gedurende een vast tijdsinterval, en dit tijdsinterval wordt
bepaald door de vaste of minimale doorlooptijd. Met de introductie van geplande
doorlooptijden, waarbij capaciteitgebruik gedurende meerdere periodes mogelijk is,
wordt een extra vrijheidsgraad gecreëerd, namelijk de beslissing wanneer tijdens de
geplande doorlooptijd de benodigde capaciteit wordt toegekend aan de vrijgegeven
orders. Wanneer LP wordt gebruikt in een rollende horizon context, kunnen de voor-
raad kosten gereduceerd worden door op het juiste moment capaciteit toe te kennen
aan een vrijgegeven order.

Hoewel het aantal onderzoeken naar MP modellen voor het oplossen van het SCOP
en aanverwante problemen groot is, is het aantal onderzoeken waarbij een rollende
horizon gebruikt wordt klein. In de meeste onderzoeken wordt de productieplanning,
gebaseerd op een voorspelling van vraag naar artikelen, alleen berekend voor een vaste
tijdshorizon. Echter, omdat de vraag van klanten onzeker is, leggen wij de nadruk
op het gebruik van een rollende horizon. Dit houdt in dat er een productieplanning,
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gebaseerd op vraagvoorspelling, wordt berekend voor de tijdsinterval (0, T ], maar
alleen de beslissingen voor de eerste periode worden daadwerkelijk uitgevoerd. Na de
eerste periode is de werkelijke vraag bekend en worden de voorraadniveaus aangepast
aan deze vraag. Daarna wordt er voor de tijdsinterval (1, T + 1] een nieuwe produc-
tieplanning berekend.

In dit proefschrift onderzochten we het voorgestelde LP model voorzien van geplande
doorlooptijden, waarbij we ons concentreerden op de volgende onderwerpen:

• moment van produceren tijdens de geplande doorlooptijden,

• elementen die de optimale geplande doorlooptijden bëınvloeden,

• vroegtijdig beschikbaar maken van geproduceerde producten, dat wil zeggen het
beschikbaar maken van geproduceerde producten voor het eind van de geplande
doorlooptijden, en

• evenwichtige materiaal toekenning.

In het eerste onderzoek, het moment van produceren, vergelijken we de situatie waar-
bij vrijgegeven orders worden geproduceerd zodra er capaciteit is met de situatie
waarbij vrijgegeven orders zo laat mogelijk binnen de geplande doorlooptijden ge-
produceerd worden. Als items direct worden geproduceerd, blijft er meer capaciteit
over voor toekomstige productie. Aangezien we met onzekere vraagprocessen werken,
waarbij de werkelijke vraag groter kan zijn dan de verwachte vraag, kan deze be-
waarde capaciteit erg nuttig zijn. Een nadeel van zo vroeg mogelijk produceren is de
grotere kosten van onderhanden werk. De resultaten van de simulatie studie wijzen
uit dat als de bezettingsgraad van machines en/of de variatie in de vraag hoog zijn,
zo vroeg mogelijk produceren goedkoper is. Echter, dit is alleen het geval wanneer de
toegevoegde waarde tussen het betreffende component en het eindproduct groot is.

In het tweede onderzoek bekijken we de elementen die de optimale geplande door-
looptijden bëınvloeden. Van wachttijdtheorie weten we dat de variatie van de vraag
en de bezettingsgraad van de machines de wachttijd bepalen. Meer variatie en/of
hogere bezettingsgraden resulteren in langere wachttijden. Aangezien doorlooptij-
den voor een groot gedeelte bestaan uit wachttijd, bëınvloeden deze twee elementen
waarschijnlijk ook de optimale lengte van de geplande doorlooptijden. Voor een aantal
representatieve supply chain structuren laten we zien dat dit inderdaad het geval is.
Langere geplande doorlooptijden zorgen voor meer flexibiliteit in het toekennen van
capaciteit aan vrijgegeven orders. Deze extra flexibiliteit zorgt voor lagere veilighei-
dsvoorraden, dus ook de kosten voor het aanhouden van veiligheidsvoorraden gaan
omlaag. Echter, langere geplande doorlooptijden zorgen voor meer onderhanden werk
met bijbehorende kosten. Vandaar dat de kostenstructuur van de supply chain een
derde belangrijk element is die de optimale lengte van de geplande doorlooptijden
bëınvloedt.

Wanneer we geplande doorlooptijden gebruiken, moeten geproduceerde producten
wachten tot het eind van hun geplande doorlooptijd. Dit lijkt tegenstrijdig, vooral als
deze producten nodig zijn om tekorten te vermijden of te verminderen. Daarom passen



Samenvating 125

we de standaard LP strategie op twee manieren aan. In het eerste model worden pro-
ducten beschikbaar gemaakt voor verdere productie zodra ze geproduceerd zijn. En
in het tweede model worden geproduceerde items alleen maar beschikbaar gemaakt
voor het eind van de geplande doorlooptijd als ze nodig zijn om nabestellingen te
voorkomen of te verminderen. Experimenten tonen aan dat het eerste model niet het
gewenste resultaat, namelijk lagere kosten, geeft. De voordelen van geplande door-
looptijden worden tenietgedaan door het direct beschikbaar zijn van geproduceerde
producten. Het tweede model verbetert inderdaad de prestatie van de standaard LP
strategie, maar alleen als de geplande doorlooptijd de optimale lengte of langer heeft.

Vergelijken we de gëıntroduceerde LP strategie met het zogenoemde ’synchronized
base stock’ concept voor kleine supply chain structuren zonder capaciteit restricties,
dan blijkt dat de LP strategie slechter presteert dan het ’synchronized base stock’
concept. Om de prestatie van de LP strategie te verbeteren, voegen we lineaire al-
locatie regels toe. Met deze allocatie regels wordt het tekort aan deelcomponenten
verdeeld over alle opvolgende componenten waarbij gebruik gemaakt wordt van vooraf
gedefinieerde allocatie fracties. Een tweede manier om deelcomponenten evenwichtig
toe te kennen aan alle opvolgende componenten, wordt bereikt door de lineaire doel-
functie te vervangen door een kwadratische doelfunctie. Experimenten tonen aan
dat het ’synchronized base stock’ concept nog steeds beter presteert, hoewel de ver-
schillen klein zijn geworden. We kunnen dan ook concluderen dat de verbeterde
LP strategieën goede alternatieven zijn voor grote, supply chain structuren met ca-
paciteit restricties die niet opgelost kunnen worden door het ’synchronized base stock’
concept. Vergelijken we het model met lineaire allocatie regels met het model met
kwadratische doelfunctie, dan moeten we concluderen dat laatstgenoemde model de
voorkeur heeft. Niet alleen geeft het de laagste kosten, het heeft ook de kortste reken-
tijd en is op eenvoudige wijze te implementeren in en op te lossen door bestaande
programmatuur.

Vatten we nog even de belangrijkste bevindingen uit dit onderzoek samen, dan con-
cluderen we dat deterministische LP modellen gebruikt kunnen worden voor het
oplossen van het SCOP probleem met stochastische vraag door de modellen te ge-
bruiken in een rollende horizon. Door gebruik te maken van optimale doorlooptijden
waarbij capaciteitgebruik gedurende meerdere periode mogelijk is, kunnen we met
vroeg produceren gedurende de geplande doorlooptijd, en met het beschikbaar stellen
van geproduceerde componenten die nodig zijn voor het eind van de geplande door-
looptijd, de voorraadkosten reduceren. Een andere manier om de kosten te verkleinen
is het gebruik van allocatie strategieën waarbij tekorten verdeeld worden over verschil-
lende producten. Vooral het model met een kwadratische in plaats van een lineaire
doelfunctie is veelbelovend.
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