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On two-graphs, and Shult's characterization of 

s~mplectic and orthogonal geometries over GF(2) 

by 

J.J. Seidel 

I. Introduction 

A graph satisfies the triangle property whenever, for each pair of ad

jacent vertices u and v, there exists a vertex f(u,v) adjacent to u and to 

v, such that every further vertex is adjacent to one or three of the verti

ces u, v, f(u,v). Shult [9J proved that the only regular graphs having the 

triangle property are the void graphs, the graphs obtained from the symplec

tic and the orthogonal geometries over GF(2), and the complete graphs. The 

present paper gives a different proof of this result, together with a slight 

generalization. If regularity is replaced by the condition that no vertex is 

adjacent to all other vertices, then the same class of graphs is obtained, 

except for the complete graphs. For further generalizations we refer to a 

forthcoming paper by Buekenhout and Shult [2J. 

The present proof is based on matrix methods. It uses the notion of re

gular two-graphs. This notion has been introduced by G. Higman, and was in

vestigated by Taylor [IOJ. Regular two-graphs correspond to switching class

es of graphs whose (I ,-I)-adjacency matrix has 2 eigenvalues, cf. [7J. The 

relation between these notions and Shult's theorem is illustrated by the 

coincidence of Shult's first induction step, and the author's determination 

[6J of all graphs with the eigenvalues -3 and 2s + 1. 

The present paper is self-contained. Section 2 collects the definitions 

and some theorems on regular two-graphs and on switching of graphs, includ-

1ng another result by Shult [8J. In section 3, symplectic and orthogonal 

geometries over GF(2) and their two-graphs are reviewed, on the basis of [IJ 

and [IOJ. Section 4 consists of the proof of Shult's theorem. In the final 

section 5 this theorem is applied to a problem originating from Lie algebras 

of characteristic 2, proposed by Hamelink [4J. 
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2. Regular two-graphs

Let 0 denote a finite set of n elements. Let o(i) denote the set of all

i-subsets of O. An ordinary graph (Q~E) consists of a vertex set Q and an

edge set E c Q(2).

Definition 2.1. A two-gra~h (Q,~) is a pair of a vertex set Q and a triple
3)set ~ c Q ,such that each 4-subset of 0 contains an even

number of triples of ~.

For any W E Q, the triple set ~ of any two-graph (Q,~) is determined by its

triples containing w. Indeed, {w l ,w2 'w3} E ~ whenever an odd number of the

other 3-subsets of {w,w l ,w2 'w3} belongs to ~.

Given any graph (Q,E), let ~ be the set of the triples from Q which

carry an odd number of edges of E. Then (Q,~) is a 2-graph. Indeed, it is

easily checked that for any graph on 4 vertices the number of its subgraphs

on 3 vertices having an odd number of edges is even.

Definition 2.2. The switching class of graphs belonging to the two-graph

(Q,~) is the set of all graphs with vertex set Q, which have

~ as the set of triples of vertices carrying an odd number

of edges.

Given any two-graph (Q,~), its switching class of graphs is obtained as

follows. Select any W E Q, and partition Q \ {w} into any 2 disjoint sets

QI and Q2' Let E consist of the following pairs:

{w,w l }, for all wI E QI
{wl,wi}, for all wl,wi EQI' with {w,wl,wi} E ~ ;

{w 2,wZ}, for all wz,wzE Q2' with {w,wZ,wZ} E ~ ;

{w l ,w2}, for all wI EQI' w2 E 0Z' with {w,wI'wZ} , ~ •

Then (Q,E) belongs to the switching class of (Q,~). Conversely, every graph

of the switching class of (Q,~) is obtained in this way.
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Definition 2.3. The derived graph, with respect to W E ~, of the two-graph

(~,6) is the graph on ~ \ {w} in which 2 vertices are adja

cent whenever, together with w, they form a triple of 6.

The switching class of (~,6) contains each of its derived graphs extended

by the isolated vertex w. Indeed, take ~I = ~ in the above construction.

With respect to any labeling of ~ any graph (~,E) is described by its

(-I, I)-adjacency matrix A as follows. The elements of A are a .. = 0 for all
~~

i E ~,a = -I for adjacent x,y E ~, and a for non-adjacent u,v E ~.xy u,v
Thus, A is a sYmmetric matrix with zero diagonal of the order n. If (~,E)

has the adjacency matrix A, then any graph (~,E') in its switching class

has the adjacency matrix

A' = DAD ,

for some diagonal matrix D of order n with diagonal elements ~ I. ObV{ou$ly,

A' and A have the same spectrum. We shall say that (n,E') is obtained from

(~,E) by switchin~ with respect to the vertices of n which correspond to the

elements -I of D.

Definition 2.4. A two-graph (n,6) is regular with the parameter k, whenever

each pair from n is contained in a constant number k of

triples of 6.

Theorem 2.5. A two-graph is regular if and only if the adjacency matrix of

any graph in its switching class has 2 eigenvalues.

Proof. Let (n,E), with adjacency matrix A, be in the switching class of

(n,6). For any adjacent x,y E n, let p(x,y) denote the number of the verti

ces which are adjacent to x and non-adjacent to y. For any non-adjacent

u,v E n, let q(u,v) denote the number of the vertices which are adjacent to

u and non-adjacent to v. The regularity condition of (n,6) says that

k = q(u,v) + q(v,u) = n - 2 - p(x,y) - p(y,x) •
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On the other hand, the elements of the matrix (A - PII)(A - P2I). for any

real PI and Pz' with PI ~ PZ' are

PIP Z + n - on the diagonal

PI + P + n - Z - 2(p(x,y) + p(y,x» for a = -I ;Z xy

-(p + PZ) + n - Z - 2(q(u,v) + q(v,u» for a = I .I uv

We now relate PI and P2 to k and n by

It follows that (n,~) is a regular two-graph with the parameter k, if and

only if

We close this section with a criterion for 2-transitivity of two-graphs,

due to Shult [8J. For any graph (n,E) with adjacency matrix A. let

n = {x} u nun'
x x

A

denote the partition of (n.E) into x e n, the subgraph on the set n of the
x

vertices adjacent to x, and the subgraph on the set n' of the vertices nonx
adjacent to x.

Theorem 2.6. Let (n u {w},~) be any two-graph, and let (n.E) be its derived

graph with respect to w. Suppose (n,E) admits a transitive au

tomorphism group. Suppose that, for any x € n, there exist au

tomorphisms cr of the subgraph on n , and T of the subgraph onx
n' such thatx'

Then (n u {w},~) is a regular two-graph admitting a doubly

transitive automorphism group.
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Proof. Extend (n,E) by the isolated vertex w, and switch the resulting graph

with respect to the vertices of n • The graph thus obtained has the same ad
x

jacency matrix as (n u {w},E) if wand x are interchanged, and nand n' are
-1 -1 x x

taken in the order a nand T n', respectively. Therefore, (n u {w},~) ad-
x x

mits an automorphism which interchanges wand x. From the transitivity of

(n,E) it follows that (n u {w},~) admits an automorphism which fixes wand

maps any yEn onto any ZEn. This implies that the two-graph admits a 2

transitive automorphism group, and hence is regular.

Remark 2.7. The notion of two-graph may be defined in terms of 2-dimensio

nal cocycles, cf. [IOJ, [IIJ. D.G. Higman [IIJ showed that theorem 2.6 has

an extension to cocycles of arbitrary dimension ~ 2.

Remark 2.8. Any two-graph may be interpreted as a dependent set of equian

gular lines in Euclidean space of some finite dimension, and conversely,

cf. [I 2J.
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3. Symplectic and orthogonal geometries over GF(Z)

Let V = V(Zm,Z) denote the vector space of dimension Zm over GF(Z), the

binary field. V carries a symplectic geometry whenever it is provided with

a non-degenerate, alternating, bilinear form, that is, a form B: V x V-+ GF(2)

such that, for all x,y,z E V,

ev V B(u,x) = 0) -> (x = 0); B(x,x) = 0
UE

B(x + y, z) = B(x,z) + B(y,z) •

Calling a plane ~n V(2m,2) hyperbolic whenever it is spanned by vectors u

and v with B(u,v) = I, we observe thay V(2m,2) is a direct product of hyper

bolic planes:

V = H ~ H ~ ••. ~ H .

The linear transformations of V(Zm,2), leaving B invariant, constitute the

symplectic group. This group acts transitively on the vectors of V \ {oJ.

Definition 3.1. The symplectic two-graph r = r(2m,Z) consists of the set V

of the vectors of V(Zm,2), and the set ~ of the triples of

distinct u,v,w E V satisfying

B(u,v) + B(v,w) + B(w,u) = 0 •

Theorem 3.2. r(2m,2) is a regular two-graph, with the parameters

k = 22m-1 - 2 , Pz = I - 2
m

for an even number of triples, and (V,~) is a two-graph. Let

Proof. For x
l
,x2,x3 ,x4 E V and x IZ3 = B(xt,xZ) + B(xZ'x3) + B(x3 ,x t ), etc,

we have

Hence xh '" =
~J

G denote the symplectic group extended by the translations of V(2m,2). Then

G acts 2-transitively on (V,~), hence (V,~) is regular. For any ufO the

set {x E V I B(u,x) = O} contains 22m-1 elements. This implies k = 22m-t - 2.

The eigenvalues PI and P2 follow from theorem 2.5.
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Definition 3.3. The ~ymplectic graph S(2m,2) is the derived graph of L(2m,2)

with respect to O. It has the vertex set V \ {O},and any u

and v are adjacent whenever B(u,v) = O.

Theorem 3.4. The order and the eigenvalues of S(2m,2) are

n = 22m - 1 , Po = 2 , P = 1 + 2
m

1 '

Proof. The matrix of the values of the bilinear form, taken on the vectors

of V(2m,2),

B = [B(u,v)] V V
UE ,VE

is related to the adjacency matrix A of S(2m,2) by

2B - J + I = [~
-J

since this matrix has the eigenvalues 1 + 2m, it follows that

Aj = 2j ,

which implies the theorem.

The vector space V(2m,2) carries an orthogonal geometry, whenever it is

provided with a quadratic form, that is, a form Q : V + GF(2) such that

Q(O) = 0, and

Q(x + y) + Q(x) + Q(y)

is a non-degenerate, alternating, bilinear form.

Theorem 3.5. Essentially, there are 2 quadratic forms, viz.

Q+(x) - ~ ~ + ~ ~ + + ~ ~ wl.°th 22m+1 + 2m- I zeros,·
- "'1"'2 "'3"'4 ••• "'2m-I"'2m

2 2 ° 2m-I m-I= ~I + ~2 + ~1~2 +.,.+ ~2m-l~2m' w~th 2 - 2 zeros,
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Proof. Let V(2m,2) carry an orthogonal geometry, and let B be the associat

ed bilinear form. Then, for all u,v E V we have

Q(u + v) + Q(u) + Q(v) = B(u,v) .

The hyperbolic planes of V(2m,2) are of two types:

type D: Q(u) = Q(v) = 0, Q(u + v) = I, with Q(x) = ~1~2

type E: Q(u) = Q(v) = Q(u + v) = I, with Q(x) = ~i + ~; + ~1~2

for x = ~Iu + ~2v. We may write either

V(2m,2) = D ~ D ~ •• , ~ D. or V(2m.2) = E ~ D ~ ••• ~ D •

Indeed, let V(4,2) be spanned by u,v,w,t, with B(u,v) = B(w.t) = I, all other

values of B zero, and Q(u) = Q(v) = Q(w) = Q(t) = I. Then {u +v +w, V + w}

and {u + w + t, u + t} span planes of type D. and V(4.2) = E ~ E = D ~ D.

This proves the first assertion. In order to count the number of zeros of

Q+(x), and of Q-(x), we first observe that these numbers add up to 22m, as

a consequence of

+
Q (x + e) = I + Q (x) , for e = (1,1.0 •••• ,0) •

and for all x E V. Now D ~ D ~ ••. ~ D consists of the vectors x + y, X € X,

Y E Y, where X and Yare m-dimensional subspaces of V(2m,2) on which the

form Q+ vanishes. The number of vectors x + y with Q+(x + y) = B(x,y) = °
equals

. 2m f 2m- I .J.. 1 h fV1Z. or x = 0, and for each x r 0. Th1s comp etes t e proo •

Definition 3.6. The orthogonal two-graph £ consists of theQ (2m. 2) • £ = +.-.

set Q£ := {x E V I Q£(x) = Ol. and the set of the triples

of distinct u,v,w E rl satisfying

B(u,v) + B(v,w) + B(w,u) = ° .

Definition 3.7. The orthogonal graph 0£(2m.2). £ = +.-. is the derived graph

of n£(2m.2) with respect to 0. Is has the vertex set

n£ \ {Ol, and any u and v are adjacent whenever B(u,v) = 0.
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Theorem 3.8. E are regular with then (2m,2) two-graphs, parameters

2m-} (2m + m-} _ 2m +
n = } ) , p] = + 2 , P2 = for n (2m, 2) ;,

2m-} (2m 2m m-} -(Zm, Z) •n = - ] ) , p] = ] + Pz = } - Z , for n,

Proof. nE(Zm,2) are sub-two-graphs of ~(Zm,Z). We now apply theorem Z.6. The

graph OE(Zm,Z) has a transitive automorphism group (in fact, the orthogonal

group). For any x € nE \ {OJ, let nand n' be as in theorem Z.6. The map-
x x

pings cr y + y + x, Y € n , and T : z + Z, Z € n' are automorphisms of the
x x

subgraphs on n , and on n', respectively. The second condition of theoremx x
Z.6 is satisfied, since

B(y + x, z) = B(y,z) + ] •

It follows that nE(Zm,Z) admits a Z-transitive automorphism group (in fact,

the symplectic group), and is regular. In order to determine k for n+(Zm,Z)

we take any UFO, Q+(u) = 0, and use the m-dimensional X and Y on which Q+
+vanishes. The number of vectors x + y such that x € X, Y € Y, Q (x + y) = 0,

B(u,x) = B(u,y) equals

viz. for x = 0, for each x i {O,U}, and for x = u. This proves

k = ZZm-2 + Zm-} - Z ,

+from which the eigenvalues of n (Zm,Z) follow. By taking complements in the

hyperplane B(u,x) = 0 we find for n-(Zm,Z)

k = 2Zm- Z - Zm-] - 2 •

Theorem 3.9. The order and the eigenvalues of Eo (Zm,Z) are

2m-} m-}
2

m-}
1

m-}
1

_ Zm
n = 2 + 2 - 1, Po = - 2 , p] = + 2 , Pz = ,
for E = +.- ,

2m-1 m-] 2 + m-l 1 Zm ]
m-]

n = 2 - Z - } , Po = Z , p} = + P2 = - Z ,•
for E =
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Proof. As the proof of theorem 3.4.

Theorem 3.10. The switching class of the symplectic two-graph E(2m.2) con

tains strongly regular graphs with the parameters

n = 22m
PI = I + 2m

Po = P2 = - 2m
• •

n = 22m
Po = PI = ) + 2m

P2 = I - 2m
• •

Proof. Let A be the adjacency matrix of the symplectic graph S(2m.2). extend

ed by the all-adjacent vertex O. We switch this graph with respect to the

vertices of V \ n£, so as to obtain a graph with the adjacency matrix A'.

Partitioning according to

V = {O} u (n£ \ {O}) u (V \ n£)

we put A and A' in the following form:

A =[ -~
.T .T]

t~
.T

lJ-J -J -J

B C A' :: B -c
CT

D _CT
D-J

The adjacency matrix A' applies, since it has constant row sums

Theorem 3.11. The subgraph of the symplectic graph S(2m,2) on the set V \ n£

is strongly regular with the parameters

2m-I m-I 2m I m-I forn = 2 - 2 , PI :: 1 + Po = P2
:: - 2 • £ = + ., ,

2m-I m-I m-I
1 2

m forn = 2 + 2 , Po :: PI :: 1 + 2 • P2 = - £ =,

The graph belongs to a regular two-graph isomorphic to
-£n (2m,2).
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Proof. Comparing the matrices A and AI mentioned in theorem 3.10 we observe

that the subgraph of S(2m,2) on V \ ~E, which has the adjacency matrix D, is

regular with Po = I - E2m- l
• In addition, I~-EI = Iv \ ~EI, and any tripel

{u,v,w} c V \ ~E has an odd number of edges if and only if

B(u,v) + B(v,w) + B(w,u) = 0 •

This implies the proof of the theorem.

Definition 3.12. A graph (~,E) satisfies the triangle property, whenever for

each adjacent u,v E ~ there exists a vertex f(u,v) E ~, ad

jacent to u and to v, such that every further x E ~ is ad

jacent to one or three of u, v, f(u,v).

Theorem 3.13. The symplectic graph S(2m,2) and the orthogonal graphs

OE(2m,2) satisfy the triangle property.

Proof. For any distinct vertices u,v with B(u.v) = 0 the vertex u + v serves

as f(u,v). Indeed, u + v is adjacent to u and to v, and any vertex

x , {u,v,u + w} satisfies

B(u,x) + B(v,x) + B(u + v, x) = 0 •
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4. Characterization of the symplectic and orthogonal graphs

ShultIs theorem states that, essentially, the symplectic and orthogonal

graphs are characterized by the triangle property. This will be proved in

theorem 4.15, after a series of lemma's.

Hypothesis 4.1. The graph (n,E) satisfies the triangle property 3.12. The

graph (n,E) is not a void graph, and no vertex is adjacent

to all other vertices.

Lemma 4.2. Given any adjacent u,v E n. there is exactly one f(u,v) E n. adja

cent to u and to v, such that every further x E n is adjacent to

one or three of u, v, f(u.v).

Proof. Suppose that two distinct f(u,v) and f'(u.v) apply. Then the triangle

property implies that f and f' are adjacent. Let f" be a vertex adjacent to

f and to f' as required by the triangle property. We shall show that £" is

adjacent to all other vertices, contrary to hypothesis 4.1. Indeed. arrange

the vertices l {u.v,f} into the sets P (adjacent to u, to v, to f), Q (only

adjacent to u), R (only adjacent to v), S (only adjacent to f). Because of

the triangle property, the vertices of each of these sets are adjacent to f",

and so do the three remaining vertices. This conflicts to hypothesis 4.1, so

the lemma is proved.

The following figure F is used frequently in the sequel. We shall apply

the triangle property without further mentioning. The integer k will denote

twice the cardinality of the set K.

dc

x
or
~

~

x

Zl ~
Z

L K N

w
o
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Let any c,d E n be non-adjacent. Let K, L, M, N be the sets of the vertices

which are adjacent to c and to d, adjacent to c and not to d, adjacent to d

and not to c, non-adjacent to c and to d, respectively. Then K # ~ since

(n,E) is not a void graph. For any x E K there are unique x' := f(x,c) E L

and x" := f(x,d) E M, which are adjacent to x but mutually non-adjacent. For

any adjacent x,y E K we have adjacent x' ,y' E L, and x",y" E M. For any non

adjacent X,Z E K we have non-adjacent x' ,z' E L, and x",z" E M. Furthermore,

we have adjacent x,y', and x' ,z", and non-adjacent x,z', and x' ,y". Finally,

any n E N is adjacent to x, and non-adjacent to x' and to x", or conversely.

Lemma 4.3. Let c,x,y be any mutually adjacent vertices of (n,E), with

c # f(x,y). Then

f(f(c,x),y) = f(c,f(x,y» •

Proof. Since c # f(x,y), there is a vertex d adjacent to x and to y, and non

adjacent to c. Referring to figure F we call f(c,x) = x', f(x,y) = s,

f(c,s) = Sf. We have to show that f(x ' ,y) = s'. Now any vertex u is adjacent

to one or three of x,y,s. It follows that u is adjacent to one or three of

x' ,y,s'; this is easily checked for the vertices u of N, K, L, M, {c}, {d}.

By lemma 4.2 the proof is completed.

Remark 4.4. The present lemma 4.3 will serve to show that addition (to be

defined) is associative. Analogously, the following relation for any quadran

gle c,x,d,z in (n,E) may be proved

f(f(c,x),f(d,z» = f(f(c,z),f(d,x» •

Lemma 4.5. (n,E) is a regular graph of valency k.

Proof. The subgraphs on K, on L, on M are isomorphic. Hence the valencies of

any non-adjacent c and d are equal, viz. k = ZIKI. This implies that the va

lency of every vertex equals k, since no x E K is adjacent to all of N, L, M.

Lemma 4.6. The subgraph on K of (n,E) satisfies hypothesis 4.1; the subgraph

on K u N satisfies the triangle property.
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Proof. Any x.y € K have f(x.y) € K. and so do any x.y € N. Any x € K. Y € N

have f(x.y) € N. No x E K is adjacent to all of K \ {x}. since otherwise x

would be adjacent to all of L and of M. contrary to lemma 4.5. We shall see

later that there may exist x E N adjacent to all of (K u N) \ {x}.

Lemma 4.7. The graph (n u {w},E). where w is an additional isolated vertex,

belongs to a regular two-graph (n u {w},~) with the parameter k.

Proof. Let ~ be the set of the triples of n u {w} which carry an odd number

of edges from (n u {w},E). Since (n.E) is regular. wand any c € n are on k

triples of ~. Any non-adjacent c,d € n are on IKI + IMI = k triples of ~.

Referring to lemma 4.2 we observe that. as a consequence of the regularity

of (n,E). the sets Q. R. S have equal cardinality. Hence any adjacent u,v € n

are on 1 + 1 + (k - 2) = k triples of ~. corresponding to w. f(u.v), and the

vertices of PuS.

Lemma 4.8. The regular two-graph (n u {w},~) contains a graph whose adjacency

matrix A, when written on the sets {w} u K, {c} u L, {d} u M, N,

takes the following form:

B -B -B C

-B B -B C
A - I =

-B -B B C

CT CT CT
D

Proof. Referring to figure F, we switch the graph (n u {w},E) with respect to

the vertices of K. The graph thus obtained has three isomorphic subgraphs on

{w} u K, on {c} u L, on {d} u M. The mutual adjacencies of these subgraphs are

complementary to the adjacencies within each subgraph. Any n E N is adjacent

to all or none of x E K, Xl € L, x" E M. Thus, we arrive at the adjacency ma

trix of the lemma.
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Lemma 4.9. For the eigenvalues A, ].l, and the order n of A - lone of the fol-

lowing holds, for some integer m ~ I :

m-I = _2m 2m-I m-I
case I A = 2 , ].l n = 2 + 2,

case II . A 2m ].l = _2m n = 22m ;. , ,

case III: A = 2m+1
].l = _2m

n = 22m+1 - 2m
•, ,

Proof. From theorem 2.5 and lemma's 4.5, 4.7 we know that the eigenvalues of

A - I are even integers, A ~ 0 and ].l, say. Hypothesis 4.1 implies A I 0, since

(n,E) is not the complete graph. From tr A = 0 we have ].l ~ -2, and ].l = -2 if

and only if (n,E) is the void graph. Substitution in

(A - I - AI)(A - I - ].lI) = 0

of the matrix A - I of lemma 4.8 yields

0, _B2 + (A + ].l)B + CCT
= 0 ,

D2 - (A + ].l)D + A].lI + 3CTC = 0, BC + (A + ].l)C = CD •

It follows that

(2B - AI)(2B - ].lI) = 0, 4CCT + 2(A + ].l)B + A].lI = 0 •

THence the eigenvalues of B are {~A,~].l}, and those of CC are

This implies:

~A even; ~].l even; 0 < ~A $ -].l ~ 2A $ -4].l •

Now, by use of lemma 4.6, we repeat the process for the regular two-graph on

K u {w}, with the matrix B. Then the eigenvalues are halved again. By iterat

ing m - 1 steps, say, we finally end up with the void graph, that is, with

].l = -2 and 0 < ~A ~ 2 $ 2A $ 8, whence A = 1,2,3,4. However, the case A = 3,

].l = -2 cannot occur, since no matrix with the eigenvalues A = 6, ].l = -4 exists.

Indeed, if it would exist then n = I - (I + A)(I + ].l) = 22, and the integer

multiplicities ].ll' ].l2 would satisfy

].ll + ].l2 = 22, 6].l1 - 4].lZ = -22 ,



- 16 -

which is impossible. So we are left with ultimate matrices of the following

three types:

case I A = 1, ~ = -2, n = 3

case II A = 2, ~ = -2, n 4

case III A = 4, II = -2, n = 6

that is, with the void graphs on 2, 3, 5 vertices, respectively, extended by

the isolated vertex w. Going up m - 1 steps, we arrive at the statement of

the lenuna.

Lenuna 4.10. For m ;::: 2, in the three cases we have the following eigenvalues:

matrix case I case II case III

A - I Zm-I _2m 2m _2m Zm+l _2m, , ,

B
m-2 m-I m-I m-l 2m _2m- I2 ,-2 2 ,-2 ,

D
m-I m-2 m-I m-I 2m- I _2m2 ,-2 2 ,-2 ,

[:T :] m-I m-I o 2m _2m 2m _2m2 ,-2 , . ,

All matrices belong to regular two-graphs, except for the last

matrix in case II.

Proof. We refer to the proof of lenuna 4.9 for the equations for B, e, D. In

case II these imply

eeT
= 22m-2 I eTc D2 B2

= 22m-2 I [:T :J [:T :J~ :] =• ,

= [: :}zm-z .

h iB el h h' 102m 2m 'h hI' I' " 22m-2ence LeT rJ as t e e1genva ues , ,-, W1t t e mu t1P 1c1t1es ,

2m-3 m-2 2m-3 m-2 ,
2 - 2 ,2 + 2 ,respect1vely. In case I, from the eigenvalues of B

T Tthose of ee , of e e, and of D are calculated. Then we observe that
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hold, by

of [:T
1
... T

e lmlnatlng B. D. CC c.

:1. Case III is treated

respectively. This yields the eigenvalues

likewise.

Definition 4.11. A symplectic set Sm in (n.E) is a set of 2m vertices

{cl ••••• cm' dl ••••• dm} all of which are adjacent except for

the pairs {c .•d.}. i = 1•••• ,m. A maximal clique is a clique
1 1 ~

(= complete subgraph) whose vertices are not all adjacent

to any further vertex of n.

Lemma 4.12. (n,E) contains symplectic sets S • and maximal cliques of length
m

2
m

- 1. Such a maximal clique. together with the isolated vertex

w, may be viewed as a vector space V(m.2). Any vertex of (n.E) is
m-l m-ladjacent to 2 - 1. and non-adjacent to 2 vertices of any

maximal clique not containing that vertex.

Proof. Take any non-adjacent cI,d l E nj consider its set K according to fi

gure Fj take any non-adjacent c
2

,d2 E Kj and iterate this process. At the

final step we have for c and d a choice between 2. 3, 5 non-adjacent ver-
m m

tices, in the cases I. II. III. respectively. This follows from the end of

the proof of lemma 4.9. The resulting set {cl ••••• cm.d1 ••••• dm} is symplectic.

The set {cl ••••• c } forms a clique. Define c. + c. to be the unique vertex
m 1 J

f(c.,c.), for i F j = I, ••••m. It is adjacent to anyck • and it does not
1. J

coincide with ck because of the corresponding dk • For any k F i.j. define

(c. + c.) + ck to be the unique f((c. + c.).ck). The associative law holds
1. J 1. J

because of lemma 4.3. The vertex c. + c. + ck does not coincide with a vertex
1. J

already obtained. because of the corresponding vertex from the set {dI •••••dm}.

Thus proceeding, we arrive at 2m - 1 distinct vertices L~=l Yici' with

y. E GF(2) not all zero. These constitute a projective space PG(m - I. 2)
1.

wi th the lines
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Indeed, lemma 4.3 expresses the axiom of Pasch, cf, [3J. p, 24. Adjoining

the isolated vertex w as the origin. we arrive at the vector space V(m.2).
m

Any d l • non-adjacent to c l ' is adjacent to the vertices ~i=2 Yici and non-

d ' h' ma Jacent to t e vert1ces c 1 + ~i=2 Yici'

Lemma 4.13. In .case II the graph (O,E) is the symplectic graph S(2m.2).

Proof. Let S = {cl, •••• c .dl, •••• d } be a symplectic set. constructed as inm m m
lemma 4.12. With respect to the n~n-adjacent c l and d l we define the set K.

L, M, N as in figure F. From lemma's 4.6 and 4.10 we know that the subgraph

on K u N satisfies the triangle property. but fails to be strongly regular.

Hence there exists a vertex e l belonging to N (not to K). which is adjacent

to all other vertices of K u N. There is just one such el' since it is ob

tained from S by reversing the construction of lemma 4.12 as follows: start-m
ing with cm and d

m
, going up to c 2 and d 2, and leaving the pairwise non-ad-

jacent cl,dl,e l • As a consequence, to any non-adjacent cl.d l E 0 there exists

a unique e l such that every vertex of 0 \ {cl,dl.e l } is adjacent to one or

three of {cl,dl,e l }. Now let

c = {~~ 1 y, c . I y, E GF (2) }, D = {~~ 1 0, d . I 0, E GF (2) }1= 1 1 1 1= 1 1 1

be the maximal cliques obtained from the vertices of the symplectic set S •m
Considering each of these maximal cliques as a vertex space V(m,2) \ {OJ,

we shall prove that 0 u {w} is the direct product V x V. Any c E C and d E D

determine a unique third vertex: for non-adjacent c and d this is the vertex

e referred to above; for adjacent c and d this is the vertex f(c,d) according

to the triangle pr9perty. In either case, any further vertex of 0 is adjacent

to one or three of c, d, and its third vertex. We claim that each g E 0 \ (C u D)

1S the third vertex of a unique pair c E C, d E D. Indeed, suppose g is the

third vertex of c' E C, d' E D and of cIt E C, d" E D. Any x E C different

from c' and c" is adjacent to c' and to c". Therefore, x is adjacent to 0 or

2 of {g,d'}, of {g.d"}, whence of {d',d"}. It follows that each of the 2m-3

vertices x E C is adjacent to f(d'.d"). However, this is in contradiction to

lemma 4.12. This proves our claim. It follows that each of the 2
2m

vertices
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of n u {w} is a unique element of the direct product V x V, hence is a vec

tor of the vector space V(2m,2). For any two distinct vertices their unique

third vertex acts as their sum. The form B(x,y) is defined by its values 1

for any distinct non-adjacent x,y € n, and 0 otherwise. Bilinearity follows

from

B(x,y + z) + B(x,y) + B(x,z) = 0 •

Thus, V(2m,2) carries a symplectic geometry, and (n,E) is the symplectic

graph.

Lemma 4.14. The graph (n,E) is the orthogonal graph O+(2m,2) in case I, and

the orthogonal graph O-(2m + 2, 2) in case III.

Proof. Referring to lemma 4.8 we take

B -B -B C

-B B -B C
A - I =

-B -B B C

C
T CT CT

D

2
2m-1 m-l

as the matrix, of order + 2 ,belonging to a graph of case I. By

lemma's 4.6 and 4.10, the subgraph on K u N satisfies the triangle property

and contains no vertex adjacent to all other vertices. Lemma 4.13 implies

that 2m-2order 2 ,represents symplectic geometry V(2m - 2, 2)

with the bilinear form B(x,y), which equals 0 for adjacent, and 1 for non

adjacent vertices x,y € n. We shall first prove that the submatrix B, which
2m-3 m-2 +is a case I matrix of the order 2 + 2 ,represents 0 (2m - 2, 2) ex-

tended by an isolated vertex. To that end we consider the dissection of

V(2m - 2, 2) into the disjoint parts K u {w} and N. If B(x,y) = 0 then x € K,

Y € K imply x + y E K, and x E N, Y € N imply x + y € K, whereas x E K, yEN

imply x + yEN. Hence the characteristic function Q of N satisfies

Q(x + y) + Q(x) + Q(y) = B(x.y) •
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We also have to verify this formula for B(x,y) = I, so for mutually non-adja

cent x, y, x + y. For x e K, y E K we cannot have x + y E K since we are in

case I. Now consider x E N, YEN, and suppose x + y E K. Choose any Z E K

non-adjacent to x + y, then z is adjacent to x and non-adjacent to y, say,

and z + (x + y) E N, However, x + zEN is adjacent to YEN, whence

y + (x + z) E K, a contradiction. Hence x E N, yEN imply x + yEN. In ad

dition, x E K, YEN imply x + y E K, This completes the verification of the

formula; Q is a quadratic form, and the matrix B corresponds to the orthogo-
+nal graph 0 (2m - 2, 2). We still have to show that the matrix A - I of order

22m. I + 2m- I is imbeddable in a case II matrix of order 22m, as the matrix B

was imbedded in [:' :l This becomes clear from the following block matri-

ces, which are the same up to permutation of rows and columns;

B -B -B C -c C C -B

-B B -B C C -c C -B

-B -B B C C C -c -B
I

D I -D -D -D
_______ - - - - - - 1 - _

_CT CT CT -D D -D -D CT

-B -B -B

-D

-D

-c

-D

-D

c

D

-D

c

-D

D

c B

B -c -B C -B C -B C

_CT D CT -D CT -D CT -D-- - -- ---.- ------j
I I-B C I B -c I -B C -B C
I I

CT _CT I

CT CT-D D I -D -D, I
1______ -- __1__ - ------

-B C
I I

C-B C I B -C I-B
I

CT CT I

_CT I

CT-D -D I D I -DI
I I1_ _ _ _ _ _ _ _ _ ._ - - - - - -

-B C -B C -B C I B -C
I,

CT -D C
T

CT I T
D-D -D I -C
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These matrices, of order 22m, represent symplectic geometry of dimension 2m.

This is seen from the second matrix, when switched with respect to the dia

gonal blocks D. Now the imbedding of A - I is evident, and the lemma is prov

ed for the case I. The case III is treated by use of (cf. the proof of theo

rem 3.5)

- +Q (x + e) = Q (x) + 1 • for e = (I. 1.0 •••••0) •

Summarizing 4.1 through 4.14 we have proved the following theorem.

Theorem 4.15. The only graphs satisfying the triangle property. in which no

vertex is adjacent to all other vertices. are the void. the

symplectic. and the orthogonal graphs.
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5. A problem by Hamelin~

Hypothesis 5. 1.

i) r is a spanning subset of symplectic space V(2m,2), m > 1 ;

ii) r is not the join of 2 disjoint non-void orthogonal subsets;

iii) Yi ((u + V E r) <==> (B(u,v) = 1) ) •
U,VEr

Hamelink (private communication, see also [4J) proposed the question which

sets r satisfy hypothesis 5.1. We shall answer this question by applying

Shult's theorem 4.15. B. Fischer (private communication) has observed that

this question is answered also by results of McLaughlin [5J.

Definition 5.2. (r,E) is a graph whose vertex set f satisfies hypothesis

5.1, any 2 vertices being adjacent whenever they are ortho

gonal.

Theorem 5.3. The only graphs (f,E) satisfying definition 5.2 are the comple

ments of the triangular graphs on 2m + I, and on 2m symbols,

and the graphs of theorem 3.11.

Proof. (f,E) is not a complete graph, by ii). Let a,b E f be any non-adja

cent vertices. From the set {a,b,a + b} c f there are or 3 vertices which

are adjacent to any further x E f. Therefore, f \ {a,b,a + b} is partitioned

into the following 4 disjoint subsets: Q (the vertices # a + b non-adjacent

to a and to b), Qa (the vertices # b non-adjacent to a and to a + b), Qb
(the vertices # a non-adjacent to b and to a + b), 6 (the vertices adjacent

to a, to b, to a + b). If x runs through Q, then x + a runs through Q , anda
x + b runs through Qb' The subgraphs on these 3 sets are isomorphic, since

for all x,y E Q we have

B(x,y) = B(x + a, y + a) = B(x + b, y + b) .

No vertex t E 6 is adjacent to all vertices of Q. Indeed, let 6' be the set

of all such vertices t. Any Z E 6 \ 6' is non-adjacent to some x E Q, and

to x + Z E Q, so z is the sum of 2 elements of Q. Hence any t E 6' is adja

cent to all elements of f \ 6', and ii) implies 6' = 0. No vertex x € Q is
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adjacent to all vertices of ~ \ {x}. Indeed, if so. then x would be adjacent

to all vertices of'~, and the vector x + a + b would be orthogonal to all

elements of f, contrary to i). These observations imply that ~ ~ 0, and that

V(2m,2) is spanned by ~ u {a} u {b}.

The subgraph on ~ satisfies the triangle property. Indeed, for any ad

jacent x,y € ~ the vertex «x + a) + y) + b belongs to ~, and is adjacent

to x and to y. By

B(x + Y + a + b. u) + B(x,u) + B(y.u) = B(a + b. u)

any further u € ~ is adjacent to I or 3 from {x.y,x + y + a + b}. Now we are

in a position to apply theorem 4.15 on the subgraph on ~. Since ~ has to span

a subspace of dimension 2m - 2. we distinguish the following cases:

Case I. The subgraph on ~ is the void graph on 2m - 1. or on 2m - 2 vertices.

Then the vertices of the sub graph on ~ correspond to the unordered pairs from

~, two vertices of 6 ~eing adjacent whenever the corresponding pairs have no

element of ~ in common. This graph is called the ~omplement of the triangu

lar graph on I~I symbols, cf. [6J. It follows that (f.E) is the complement

of the triangular graph on '2m + I, or on 2m symbols~

Case II. The subgraph on ~ 1S the symplectic graph S(2m - 2, 2). This case

is impossible. Indeed, the vector space V(2m,2) contains the set

~a+b := {x + a + b I x € ~} ,

h ' h' d' , , . h 22m-2w 1C 1S 1sJ01nt to f. If ~ would carry the symplect1c grap on -

vertices, then ~, ~ , ~b' ~ b' together with a, b, a + b, and 0, woulda a+
exhaust V(2m,2), leaving 6 = 0, which is impossible.

Case III. The subgraph on ~ is the orthogonal graph O£(2m - 2, 2). Let

c,d € ~ be non-adjacent, then c + d € 6. We partition ~ \ {c.d} into the 4

disjoint sets K, L. M, N, as we did 1n figure F. For any k € K the element

a + b + c + d + k = «b + c) + k) + (a + d)
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belongs to ~. For any n E N the elements

c + n, d + n, a + b + c + d + n

belong to ~. Indeed, any n E N is non-adjacent to some x E K. and

a + b + c + d + n = (a + b + c + d + x) + (x + n) •

In view of lemma's 4.9 and 4.10 this amounts to a total of

I I I I 2m-5 m-3 2m-5 m-3I + K + 3 N = I + 2 + £2 - 1 + 3(2 - £2 ) =

2m-3 m-2= 2 - £2

distinct elements of ~. These elements exhaust ~. since the disjoint sets

exhaust V(2m,2), where ~ := {z + p
p

have

Z E ~}. Hence r. and V \ (r u {O}).

2m-1 m-I2 + £2 , d 2Zm-1 Zm-1 Ian - £ -,

elements, respectively. It follows that the subgraph on n u ~ satisfies the

triangle property, whence is the symplectic graph S(2m - 2, 2). Indeed,

consider

a + b + c + d + x + z = 0 c ,d En.

If any c + d E ~ is adjacent to any x E n, then x E K or x E N, and Z E ~

serves as the third vertex. If any c + d E ~ is adjacent to any Z E ~, then

x E n serves as the third vertex. This e~plains the structure of the sub

graphs on n, on 6, on r, and on V \ (r u {a}). Now the theorem is proved by

reference to theorems 3.11 and 4.14.
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