EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

Evolution of finite populations in dynamic environments

Citation for published version (APA):

Liekens, A. M. L. (2005). Evolution of finite populations in dynamic environments. [Phd Thesis 1 (Research TU/e
/ Graduation TU/e), Biomedical Engineering]. Technische Universiteit Eindhoven.
https://doi.org/10.6100/IR592105

DOI:
10.6100/IR592105

Document status and date:
Published: 01/01/2005

Document Version:
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

* A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOl to the publisher's website.

* The final author version and the galley proof are versions of the publication after peer review.

* The final published version features the final layout of the paper including the volume, issue and page
numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain
* You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:

openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023


https://doi.org/10.6100/IR592105
https://doi.org/10.6100/IR592105
https://research.tue.nl/en/publications/4276a37d-95e4-4ef1-9172-c7fb8a403c68

Evolution of Finite Populations
in Dynamic Environments



CIP-DATA LIBRARY TECHNISCHE UNIVERSITEIT EINDHOVEN
Liekens, Anthony M.L.

Evolution of Finite Populations in Dynamic Environments / by Anthony
M.L. Liekens. - Eindhoven : Technische Universiteit Eindhoven, 2005.
Proefschrift. - ISBN 90-386-2637-1

NUR 922

Subject headings: co-evolution / dynamic environments / evolutionary
game theory / finite population size / genetic algorithms / genetic
drift / Markov models / population genetics

\NS"I’[(U

4’«
UND g e

The work in this thesis has been carried out under the
auspices of the research school IPA (Institute for Pro-
gramming research and Algorithms), IPA dissertation
series 2005-11

S V"“Ou,

—

’) o
A, o°
"*(1 \*

Front cover image based on “Predestination” (1951) by M.C. Escher.

Back cover image represents a simulation of the evolution of a population of
r = 19 individuals with mutation rate y = 0.04, according to the evolutionary
model of Rock-Paper-Scissors as laid out in section 6.7 of this text.

Copyright (© 2005 by Anthony M.L. Liekens

Printed by Printservice Technische Universiteit Eindhoven, Eindhoven, the
Netherlands



Evolution of Finite Populations
in Dynamic Environments

PROEFSCHRIFT

ter verkrijging van de graad van doctor
aan de Technische Universiteit Eindhoven,
op gezag van de Rector Magnificus, prof.dr.ir. C.J. van Duijn
voor een commissie aangewezen door het College voor Promoties
in het openbaar te verdedigen
op dinsdag 5 juli 2005 om 16.00 uur

door
Anthony Mariette Louis Liekens

geboren te Sint-Niklaas, Belgiée



Dit proefschrift is goedgekeurd door de promotoren:

prof.dr. P.A.J. Hilbers
en

prof.dr. E.H.L. Aarts

Copromotor:
dr.ir. H.M.M. ten Eikelder



Contents

Introduction

Infinite and Finite Populations

2.1 Models of Populations . . . . ... ... ... ...
2.2 Research Fields of Interest . . . . . .. ... ... ... ......
2.3 Outline and Methodology . . . . . .. ... ... ... .. ...

Models of Haploid and Diploid Populations

3.1 The Simple Genetic Algorithm . . . . . . . ... ... ... ....
3.2 Search Spaces . . . . . . . . . . ...
3.3 Population Space . . . . . .. ...
3.4 Selection . . . . ...
3.5 Genetic Operators . . . . . . . . . . .. . ..
3.6 Constructing New Populations . . . . .. .. ... ... ... ...
3.7 Transient and Long Run Behavior . . . . .. .. ... ... .. ..
3.8 Numerical Methods . . . . .. ... ... ... .. .........

Static Fitness Environments

4.1 Introduction . . . . . . . . .. ...
4.2 One Locus, Two Alleles, No Selection . . . . .. ... ... ....
4.3 One Locus, Two Alleles, Selection . . . . . ... ... ... ....
SUMMATY . . . . o vt e e e e e e e e e

Explicitly Dynamic Fitness Environments

5.1 Imtroduction . . . . . . . ... .o oo
5.2 Deterministically Alternating Fitness Functions . . . . ... ...
5.3 Stochastically Alternating Fitness Functions . . . . . .. ... ..
5.4 Alternating the Deleterious Allele . . . . . . ... .. ... ....
5.5 Results. . . . . .. oo
Summary ... Lo e

Frequency Dependent Fitness Environments

6.1 Introduction . . . . . . .. .. ... ...
6.2 Frequency Dependent Fitness . . . . .. . ... ... ... ...,
6.3 Neutral Game . . . . . .. .. ... ...
6.4 Hawk-Dove . .. ... .. .. .. ... ...
6.5 Prisoners’ Dilemma . . . . . . . .. ... ... ... L.

[y

oo © ot Gt

25
26
30
32
34
39
41
90

59
99
60
70
7



6.6 Coordination Game with Risk Dominance . . . .. .. ... . .. 115

6.7 Rock-Paper-Scissors. . . . . . .. . ... ... ... ... ... 120
Summary ... ... oo e e e 130
7 Co-Evolutionary Fitness Environments 133
7.1 Introduction . . . . . . . . .. .. ... 133
7.2 Finite Population Models of Co-Evolution . . . ... ... .. .. 134
7.3 Results. . . . . . . . . 139
Summary ... ... e 145
8 Conclusions and Discussion 147
A Enumerating Populations 153
B Coupling of Finite Markov Models 157
B.1 Properties of Markov Models . . . . . . .. ... ... ... ... 157
B.2 Combinations of Markov Models . . . . . . ... ... ....... 160
B.3 Alternation of Markov models . . . . . . . ... ... ....... 163
Bibliography 164
Nederlandse Samenvatting 175
Woord van dank 177
Curriculum Vitae 178

vi



Chapter 1

Introduction

In this work, we are interested in the long term evolutionary behavior of small
populations of haploid and diploid individuals in dynamic fitness environments.
In this chapter, we introduce these concepts and give an outline of the text.

Small populations. This work is concerned with the mathematical modeling of
evolutionary dynamics in small populations. In biological evolution, fitter indi-
viduals are selected from a population to produce a new population of offspring at
repetitive generations through the processes of inheritance and variation of traits.
Evolution is a stochastic process, since reproduction of individuals contains ran-
dom elements. The influence of random variation or fluctuations of genes is much
larger in small populations than in large populations.

As an illustration of such fluctuations, consider coin tosses which, on average,
produce heads and tails equally. It is however unlikely to produce heads and tails
in an equal number when a coin is tossed only a few times. As more coins are
tossed, the expected result is closer to this equal ratio of heads and tails. There
is a probability of one in eighteen that a series of 10 coin tosses turns out to have
80% or more heads. The chance of throwing 80% or more heads in a series of 100
coin tosses is only about one in 1.8 billion.

Such sampling effects are also of importance in small breeding populations.
Assume a parent population which has a given proportion p of a specific allele
for a given gene, and alleles are passed on to the next generation without any
interference of natural selection. In similarity with the coin tossing example,
there is a higher probability of ending up with a child population that has a
proportion p' that is further away from p if this offspring population is small. Since
the offspring population is a random sample of the parent population, a small
population is subject to larger fluctuations of allele frequencies. If the frequencies
of alleles in the offspring population diverge from the parent population, the
population is said to have genetically drifted away from the initial frequencies.

As the proportion of an allele in a small population drifts up and down over the
course of successive generations, the population may eventually become fixated,
i.e., the proportion of the allele in the population ends up in 0, as the allele
disappears from the population, or 1, as the allele becomes the only allele in the
population. For smaller populations, this effect of fixation occurs, on average,
earlier than in larger populations. Only through a mutation, the population can
escape from this state of fixation.

Small populations may thus introduce frequencies of alleles that seem at odds
with natural selection. In small populations, the evolutionary dynamics of natural
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selection and drift are both at work. In this text, we study the dynamics of small
populations in a set of differing environments that determine the forces of natural
selection. For each of the specific environments, we study how the evolutionary
forces of selection and drift influence the observed dynamics.

Dynamic environments. The focus of this thesis is the dynamics of small
populations in environments that change over time.

Commonly, mathematical models to study the evolutionary dynamics of a
population assume an environment that does not change over time. In such envi-
ronments the absolute fitness — the capability to produce offspring — of a specific
genotype is kept fixed over time as the population evolves. In evolutionary sys-
tems with such static fitness environments, the population of individuals initially
explores mutant genotypes to find those genotypes that generate a high fitness.
A high mutation rate in the reproductive process of the individuals allows for
exploration of the genotype space, as new mutant genotypes are frequently intro-
duced into the population. Once the population has genotypes with high fitness,
the population may exploit these advantageous alleles. A population is said to
converge, or become fixated for a genotype if the proportion of the genotype
increases in the population and no further noticeable exploration of mutant geno-
types takes place. A low mutation rate allows the population to better converge
to a certain genotype. Note that the genotype to which the population converges
is not necessarily the optimal genotype.

In contrast with such environments that assume a fixed absolute fitness for a
genotype over time, there are numerous examples of environments in nature that
change over time, and have their effect on the fitness of individuals of a certain
genotype. Differing weather patterns, or sudden shortages of resources may have
their temporary effects on the fitness of genotypes. Because of such environmental
changes, a deleterious genotype may become advantageous, and vice versa.

Similarly, an individual’s fitness may be dependent on the other individuals
of its population. As an example, consider environments that assume fitness
sharing, i.e., individuals in the population with the same genotype experience a
fitness penalty. As the population evolves over time and the composition of the
population thus changes over time, the fitness of a specific genotype may fall or
rise as more or less individuals of that genotype are present in the population.

The fitness of a genotype in one population may also be dependent on another
evolving population, i.e., in the co-evolution of two coupled populations. As an
example, consider the capability of running quickly in populations of foxes and
hares. If the population of foxes evolves a way to run faster, the fitness of hares
decreases as a result of the evolutionary progress of the foxes. The fitnesses of
foxes and hares are dependent on the evolutionary dynamics of the opponent
population and as a result, the absolute fitnesses of genotypes in co-evolution
change over time.



In dynamic fitness environments, the emphasis is more on the continuing ex-
ploration of the genotype space, rather than on exploitation of genotypes with
high fitness, since the fitnesses of individuals constantly change. In contrast with
populations in static environments, these populations require mechanisms to bet-
ter track changes in the environment, and constantly explore the genotype space
for genotypes with high fitness. The populations may not be able to converge
to optimal genotypes in the long run as was the case with static fitness environ-
ments, but may, even in the long run, require a high amount of exploration, and
thus a higher rate of mutation in order to perform optimally. In this thesis, we
study how small populations behave in the long run as their fitness is subject to
continuous change.

Models of infinite populations are commonly used to study the evolution-
ary dynamics of populations. For fitness functions that remain static over time,
Markov models of finite populations have been successfully adopted to study the
influence of drift on the predictions of infinite models. In this thesis, we adopt an
experimental mathematics approach with Markov models to study the influence
of finite populations and drift in environments that change over time.

Focus disciplines. The contents of this thesis relates to three closely related
scientific disciplines.

Firstly, population genetics studies the evolutionary dynamics of biological
populations. The relation to the contents of this thesis is self-explanatory. Sec-
ondly, evolutionary game theory is concerned with the dynamics of populations
evolving strategies for games. In these evolving populations, individuals play
simple games against other members of the population in order to gather fitness.
Individuals that adopt strategies with high payoffs for the game, and thus a high
fitness, can spread in the population. As a direct result of this construction, the
fitness of an individual is dependent on the composition of the population, and
is consequently dependent on the evolutionary dynamics of the population. We
study the behavior of small populations for a set of such small games. Thirdly,
genetic algorithms are computer simulations of evolving populations, that can be
adopted to find approximate solutions for optimization problems. Recently, op-
timization problems that change over time, and implementations of co-evolution
have gained interest in the applications of the search technique. The theoretical
study of models of genetic algorithms may give insights in how to design and
develop good optimizers and are consequently also of interest to this text.

In evolutionary game theory and genetic algorithms, it is common practice
to study the dynamics of populations with haploid individuals. In population
genetics, which studies the evolution of higher order species, diploid populations
are commonly assumed. At the construction of our models, we consider both
haploid and diploid reproduction cycles such that we can compare their expected
performances in small populations, and in dynamic fitness environments.

In this thesis, the emphasis is on predictions that relate to population genetics.
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However, since evolutionary game theory and genetic algorithms are also based
on models of evolution, the predictions for the different disciplines are thus also
relevant to each other. The models and notation adopted are based on those
commonly used in genetic algorithms. One model thus serves as a means to study
the evolutionary dynamics for the three focus disciplines. It should be noted that,
in the text, the jargon of the different disciplines comes together, and specific
concepts borrowed from one discipline often relate to a similar concept of another
discipline. E.g., a phenotype space of population genetics relates to a search space
of an optimization problem of a genetic algorithm, etc. At the mathematical level
of abstraction in this text, the distinction between the different models vanishes.

Thesis outline. Chapter 2 gives an overview of models that assume infinite and
finite population size. We review the relevant literature from our three focus
disciplines and give an overview of the methodology applied in this thesis. In
Chapter 3, we construct finite and infinite models of haploid and diploid popu-
lations in static fitness environments. In Chapter 4, we give some examples of
how the finite population models behave in static fitness environments, to build
up a basic understanding of how finite populations behave in the absence of a
dynamical fitness environment. In Chapter 5, we develop models and analyze
the behavior of systems where the dynamics of the fitness function is defined ex-
plicitly. Chapter 6 studies finite population models that are subject to frequency
dependent selection, defined in similarity to the models commonly adopted in
evolutionary game theory. In Chapter 7, we construct and study models repre-
senting the co-evolution of finite population models. Chapter 8 summarizes and
discusses the conclusions of this thesis.



Chapter 2

Infinite and Finite Populations

Many models that are used to study evolving systems, assume infinitely large
populations. Biological populations are in many cases indeed very large, such that
the approximation by infinitely large populations often offers valid predictions of
the behavior in very large populations. As a surplus, the assumption of infinite
populations simplifies the mathematical modeling. There are, however, many
cases where populations are small, and where the approximation of infinitely large
populations is no longer valid. In these small populations, the stochastic sampling
in each generation plays an important role. Random sampling of individuals leads
to stochastic fluctuations in frequencies of alleles within such populations. This
effect is called genetic drift. The effect of genetic drift is more evident in smaller
populations, and not existent in infinitely large populations.

This chapter introduces the effects of finite population size in comparison to
models of infinite population size. We give an overview of existing literature
with respect to such models in population genetics, evolutionary game theory
and the study of evolutionary algorithms. We also introduce the experimental
mathematics methodology adopted in this thesis.

2.1 Models of Populations

2.1.1 Infinite populations

Populations are collections of organisms of a particular species, possibly in a
specific geographical location. Commonly, biological populations whose dynamics
are studied are generally large. The world population is currently estimated to
be around 6.4 billion people, the population of doves in Northern America is
estimated to be around 475 million, and many penguin species’ populations range
from 100 thousands to several millions, to give just a few arbitrary statistics.

When parents give birth to children, and if the chances of the sexes of these
children are 50% males and 50% females, then we also expect that, within very
large populations of descendants, the expected ratio among these children’s sexes
is very close to one. This is according to the law of large numbers, which ex-
presses that in a series of independent equal trials with the same probability p of
success (e.g., p is the probability of being female) in each trial, the chance that
the proportion of successes deviates from p converges to zero as the number of
trials increases and goes to infinity, see e.g., Feller (1968). In other words, as
populations’ sizes increase, the effects of random sampling in these populations
vanish.
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Similarly, we can model a very large (haploid) population where 50% of the
population has a certain hereditary characteristic. Assuming there is no selective
pressure on the given trait, parents are uniformly selected from this population.
If paired parents have this characteristic, it is inherited by their child, and if only
one of the parents has the characteristic, then we assume that it is inherited by
one out of two of their children. Consecutive generations of very large populations
maintain the initial ratio of 50% : 50%.

The stochastic effects of random sampling are faint enough that they can be
ignored by assuming an infinite population size. Consequently, if models are to be
built to study the dynamics of very large populations, an infinite population size
can justifiably be assumed, ignoring the faint stochastic effects of sampling. As a
surplus, the assumption of infinitely large populations simplifies the mathematics
of the models, as random sampling and the stochasticity it produces can be
disregarded.

2.1.2 Finite population models

Models with infinite population size predict expectations of frequencies of alle-
les, or representative populations according to the deterministic dynamics of the
system, where no random sampling is present. A model that assumes a finite pop-
ulation size is stochastic by nature, since a population is sampled at each genera-
tion. For a stochastic model of finite populations, the expectation of frequencies
of alleles in the population in the next generation is equal to the frequencies of
the corresponding deterministic infinite model. By implying a finite population
size, the dynamics of variance of this expectation should also be considered. As
populations are smaller, the stochastic, variational effects of repetitively sampling
consecutive populations may overwhelm the predicted expectations of the infinite
population model.

As in the previous section, consider a small (haploid) population where 50% of
the individuals have a certain heritable characteristic on which no selective pres-
sure is exerted, and where children inherit one of the genes that determine their
parents’ characteristics for that trait. As generations are constructed repeatedly
by combining random parents, fluctuations in allele frequencies appear, because
of the stochastic nature of sampling a new small population at each generation.
Populations diverge, or drift away from the initial frequencies, until they become
fixated in either one of the alleles. A population is said to be fixated if all of the
individuals in the population are of the same type. This is in contrast with an in-
finite population model, which would remain at a constant proportion of 50% for
either allele. This effect of dropping the assumption of infinitely large populations
is known as genetic drift, and was first introduced by Wright (1931). Genetic drift
is the stochastic effect of random sampling in finite populations, which causes fre-
quencies of genes to diverge from the expected deterministic dynamics of infinite
populations.
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Figure 2.1: The effect of population size r on the rate of divergence and the time to fixation
of populations, with no selective or variational pressure. Multiple simulations with the same
population size were started with a ratio of 1 : 1 alleles, and are plotted in each figure.

Figure 2.1 shows simulations of this example with varying population sizes
r. As r increases, the rate of divergence becomes more slowly, and the time to
fixation becomes longer. However, no matter how big the finite population size,
fixation will occur, if no evolutionary forces — such as selective or mutational
pressure — are present. Genetic variability is lost randomly over time because of
drift. Wright (1931) has shown that the rate of loss in variation is 1/r at each
generation. Kimura & Otha (1969) elaborately study the time to fixation using
diffusion equations, with the time to fixation of a locus with two alleles being
approximately 1.4r, if the initial generation has 50% of either allele.

Genetic drift may have an important impact on the evolutionary history of
a population. In a population bottleneck, where a population is suddenly re-
duced in size, dramatical changes in the allele frequency of the population may
be introduced. Many of the advantageous alleles may become removed from the
population, because of an “unlucky” sample of alleles at the time of the popula-
tion bottleneck.

A similar effect is known as the founder’s effect, and occurs when a small pop-
ulation of individuals migrates to start a new population. Only a small sample
of the alleles of the original population may be present in the new population. In
extreme cases, founding populations may give rise to speciation and the evolu-
tion of a new species. More commonly, the founder’s effect may introduce genetic
diseases. As an example, the Amish populations in the United States have grown
from a small migrating group, tend to marry within this group, and exhibit
polydactyly (extra fingers and toes) more commonly than the United States pop-
ulation at large. It is assumed that the initial population of Amish settlers had a
high proportion of individuals with this genetic pathology, allowing it to be more
prominent in the current population.

Genetic drift has become an important part of the current understanding of



8 Chapter 2. Infinite and Finite Populations

evolution, and has led to the neutral theory of evolution, or the neutral theory
of molecular evolution, introduced by Kimura (1968) in the 1960s and 1970s
and given full account in (Kimura 1986; Kimura 1994). The theory has become
complementary to Darwinian evolution. In the Darwinian view, evolutionary
progress is primarily based on variation of traits among individuals and natural
selection of beneficial traits.

When studying biological evolution at the molecular level, a greater part of
single nucleotide mutations are selectively neutral, i.e., they have no effect on
the phenotypic expression. At a first level, the genetic code, and the translation
of triplets of nucleotides to amino acids with certain characteristics is relatively
error-proof — see for example the related work in (Bosnacki, ten Eikelder, &
Hilbers 2003). Silent mutations are mutations that do not change the resulting
amino acid, and are possible since multiple codons exist for most amino acids.
On a higher level, changing an amino acid in the peptide chain that makes up
a protein, is in a large part of the cases not deleterious for the function of the
protein. This second type of mutations, where the new amino acid is chemically
similar to the one it is replacing, are called neutral mutations. Ng & Henikoff
(2002) find that 75% of single nucleotide mutations do not lead to changes in the
functionality of a protein. As a result of these available fail safe mechanisms in
molecular biology, many mutations do not affect an individual’s functionality, and
are thus selectively neutral, or nearly-neutral, such that these mutations are not
subject to (or insignificantly subject to) pressure of natural selection. Through
genetic drift, new alleles (as a resulting product of silent or neutral mutations)
may increase their frequencies in the population. Most probably, these mutations
fade away and are lost, but they may also become fixated in the population,
as a result of drift. As such, silent and neutral mutations can accumulate in
the population, without affecting the fitness of the individuals, causing genomes
and populations to evolve, complimentary to the Darwinian evolution of traits
subject to natural selection. Note that we say that a population evolves if its allele
frequencies change over time. The process of mutations that become fixated is
thus also considered as evolution, even if the adopted changes are only apparent
on the genotypic level.

The theory of neutral evolution can be adopted, for example, as a molecular
clock, to determine how long isolated populations of the same species have been
separated, as the rate of accumulated neutral and silent mutations is the same
for both separated populations. Also, neutral and silent mutations may build up
in a population as a hidden source of variation, letting the populations explore
phenotypes which are otherwise unreachable, giving rise to neutral networks in
phenotype space on which the population can evolve neutrally, see e.g., Eigen et
al (1989) or Barnett (1997).
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2.2 Research Fields of Interest

Models of infinite and finite population size have been studied in population
genetics, evolutionary game theory and the theoretical study of the dynamics of
evolutionary algorithms. In all three of these research fields, the development
of models with finite population size emerges years, or even decades after the
main principles have been laid down in models with infinitely large populations.
We give an overview of these disciplines, and illustrate a selection of the main
concepts and principles with infinite and finite population size, because of their
relevance to this thesis. Note that this literature overview is concise, despite its
length. The list of literature referenced is far from complete. The concepts and
principles in this overview are selected based on their relevance to the rest of the
text.

2.2.1 Population genetics

Theoretical population genetics studies the dynamics of frequencies of alleles in
biological populations under the influence of evolutionary forces, such as natural
selection and variation. Overviews can be found in Hartl (1997, 2000) and Ewens
(2004).

Infinite populations. We shortly review three fundamental concepts of popula-
tion genetics — Mendelian inheritance, the Hardy-Weinberg principle and Price’s
equation — and then elaborate on the fact that these concepts explicitly assume
infinitely large population sizes.

Quantitative studies of dynamics in populations started historically with the
experiments on the reproductive properties of peas by Gregor Mendel (1865).
Mendel’s observation showed that — after cross-pollination and repeated self-
pollination of pea plants with two characteristics of a certain trait (i.e., flower
color or seed shape and color) — the frequencies of properties of the trait consis-
tently have a ratio of 3 to 1. In his studies, Mendel discovered that inheritable
units are discrete characteristics —i.e., inheritable traits don’t blend when parents’
traits are recombined, as suggested by Darwin (1859) — and that each individual
possesses two of these characteristics, i.e., they are diploid.

Only shortly after the rediscovery of Mendel’s paper by Hugo de Vries and
others in 1901, the first and possibly most important concept in population genet-
ics, the Hardy-Weinberg principle, was independently discovered by Hardy (1908)
and Weinberg (1908). A diploid population, whose ratio of AA:Aa:aa individuals
is according to p? : 2pq : ¢, remains in this equilibrium if no evolutionary forces,
such as selective or mutational pressure, act on the population.

Fischer’s fundamental theorem of natural selection (Fischer 1930), and its
generalization, Price’s covariance and selection equation (Price 1970; Price 1972),
state that the rate of increase of mean fitness over time is exactly equal to the
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variance of fitness in the population at that time. More generally, Price’s equation
expresses the rate of change of various characteristics of a population, of which
mean fitness is just one.

All three of these important principles, which can be found in any popula-
tion genetics text book are expressed or derived in a context of infinitely large
populations, where populations are represented as collections of frequencies of
individuals. Stochastic effects of random sampling on these principles are not
directly implied, as the infinite population models are treated as deterministic
models in their basic form. The concepts express the expected behavior of the
systems, or typical expected populations, while ignoring the variances caused
by random sampling in finite populations, and possible accumulation of these
variances over time.

Finite populations. Early on, it was observed that fluctuations of allele fre-
quencies appear in populations with finite population size, and that populations
may become fixated in a certain allele. Finding the probability of fixation was first
studied by Fischer (1922) and Haldane (1927), and later adapted on by Fischer
(1930), who suggested the usefulness of models that assume finite populations to
study this and similar problems.

Wright (1931) was, based on the ideas proposed by Fischer (1930), first to
develop a finite Markov chain to model the dynamics of a finite population, con-
taining individuals with one locus and 2 alleles for that gene. The models use
the same assumptions as the Hardy-Weinberg principle — no selection or varia-
tion are present — with the exception of a finite and constant population size r.
Each of the possible populations represents a state of the model. In a generation,
parents are randomly selected from the population, and a new non-overlapping
population of child individuals is produced. The probabilities that populations
change their allele frequencies from one generation to the next, is written as a
transition probability matrix T'. Element T); represents the transition probability
to move from a population with ¢ instances of a certain allele to j instances of
the allele in one generation. The transition matrix for one locus with two alleles
is a matrix with 27 + 1 rows and columns. The individuals are represented at
their haploid state, by their gametes, therefore requiring twice as many (plus one)
states as the size of the population of diploid individuals. If the distribution over
the states of the system is given by x, then the distribution at the next generation
is given by Tx. Subsequent distributions can be used to study the dynamics of
the population. See also Ewens (2004) for an updated mathematical overview of
Fischer and Wright’s results. We give an elaborate overview of these and similar
models, and revise one of Wright’s initial results in Chapter 4.

The Wright-Fischer model can be approximated by a diffusion model as devel-
oped by Kimura (1955, 1964). Kimura (1957, 1962) and Crow & Kimura (1970)
have elaborately used these diffusion models to study the problem of fixation of
alleles. Roughly summarizing their results, the fixation probability for deleterious
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alleles grows as the population size becomes smaller, which is, again, in line with
the results of populations on which no selective pressure is exerted. Kimura’s de-
velopment of the neutral theory of molecular evolution follows from these results
as discussed in Section 2.1.2.

2.2.2 Evolutionary game theory

Evolutionary Game Theory (EGT, overviews can be found in (Weibull 1995; Hof-
bauer & Sigmund 1998)) studies the dynamics and equilibriums of games played
by populations of players. The strategies players employ in the games determine
their interdependent payoff or fitness. In contrast with the traditional applications
of game theory, the players do not act rationally when choosing their strategies
(Dixit & Nalebuff 1993; Bierman & Fernandez 1997; Fudenberg & Tirole 1991;
Fudenberg & Levine 1998), but act instead according to a preprogrammed behav-
ior pattern. A strategy for playing the game is encoded in an individual’s genome,
which can evolve over time while repeatedly playing a game against other players
in a population. Evolutionary game theory was introduced by John Maynard
Smith & George Price (1973) and given full account by Maynard Smith (1982).
A game is represented by a payoff matrix A, where element A;; represents the
payoff received by a player employing strategy ¢ when facing an individual adopt-
ing strategy j. The fitness of an individual is determined by the expected payoff
received when playing the game against other individuals in the population. The
reproductive success of an individual is thus not only determined by the individ-
ual’s genome, but also by the frequencies of strategies in the population. We say
that the fitness of an individual is frequency-dependent on the composition of the
population. Note that when the population evolves, these frequencies change over
time. Consequently, the expectations of payoff, and thus the fitness and selective
pressure imposed on a strategy changes over time as evolution proceeds.

Infinite populations. A common model to study the dynamics of frequencies
of strategies adopted by these populations is based upon replicator equations. A
replicator equation is a system of differential equations, defined by the per capita
growth of a strategy, according to the payoff received by the individuals play-
ing the strategy. Replicator dynamics assumes continuous time, i.e., overlapping,
infinite populations, asexual reproduction, complete mixing, i.e., all players are
equally likely to interact in the game, and strategies breed true, i.e., strategies are
transmitted to offspring proportionally to the payoff achieved. For an overview,
see for example Hofbauer & Sigmund (Hofbauer & Sigmund 1998). Evolution-
ary game theory is closely related to agent-based computational economics, see
e.g., Tesfatsion (2001) as it can serve as a model for the dynamics in social and
economic simulations.

A central concept of EGT is the evolutionarily stable strategy (ESS), first
proposed by Taylor & Jonker (1978). If a population of individuals all play
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a certain strategy, and it can not be invaded by any mutant strategy, because
this mutant strategy would be selected against in competition with all other
individuals, then the strategy used by all of the individuals in the population is
an ESS. The ESS is closely related to the Nash equilibrium in classic game theory.
If players are assigned a strategy for a game such that no player can benefit by
changing his strategy while the other players keep their strategies unchanged,
then that set of strategies constitute a Nash equilibrium.

Finite populations. The ESS is described in a context of infinitely large pop-
ulations. Indeed, as small populations are considered, there is a small, but non
zero probability that the mutant strategy takes over the population that plays
the ESS. Indeed, there is a small non zero probability that a population of dele-
terious mutants is sampled within a generation, instead of a population of ESS
players, because of stochastic sampling. This probability is small, but increases
as the size of the population decreases. Consequently, the important concept of
evolutionary stability of strategies does not take stochastic sampling effects in
small populations into account.

Foster & Young (1990) were first to question the ESS criterion in stochastic
environments. The ESS principle says that a small divergence of the ESS will
eventually die out. However, a system doesn’t always return to the initial state
if a perturbation, e.g., a mutation to a deleterious allele or strategy — occurs.
Even in an infinite population with variation, the ESS remains under pressure of
continuous perturbations. Instead of the ESS, Foster and Young propose stochas-
tically stable equilibriums. A state is a stochastically stable equilibrium if, in the
long run, it is almost certain that the system is in the neighborhood of the state,
as stochastic noise — i.e., variation through mutation or stochastic effects of finite
populations — goes to 0. As an example, Foster and Young consider the game
with payoff matrix

a=(10).

This type of game, which only has strictly positive payoffs on its diagonal, is
called a coordination game, with both of the strategies being Nash equilibriums.
A single mutant individual in an otherwise uniform population has a very small
chance of survival. Both strategies are an ESS of the coordination game. How-
ever, if variation is considered, then populations involved in this game are mainly
attracted to adopt strategy 2. Foster and Young show that populations with
the second strategy are the stochastically stable equilibrium of the coordination
game. The authors make the observation that including stochastic perturbations
has its consequences for understanding the stability of evolutionarily stable strate-
gies. However, the proposed method (via minima of potential functions) is not
practical when concrete strategies are studied and the influence of their stochas-
tic perturbations must be interpreted. The authors conclude that it would have
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been interesting to study the stochastically stable equilibriums for specific data
of mutation rates and variations of reproductive success. In Chapter 6, we study
such particular games and their strategies, although finite Markov models are
adopted for the study instead of the proposed use of potential functions.

Games with a balance between payoff dominance and risk dominance have
been used to study the effects of stochasticity on the evolutionary stability of
strategies. As an example, consider the game with payoff matrix

5 1
A= ( > ) |

Both strategies are, in similarity with the coordination game, an ESS of the game.
In this game, strategy 1 payoff dominates strategy 2, since with strategy 1, more
payoff can be earned than with strategy 2. On the other hand, strategy 2 risk
dominates the first strategy, as the risk of losing payoff as a result of mutations in
the population is higher for strategy 1 (payoff could drop from 5 to 1) as compared
to the risk involved when opting for strategy 2 (payoff difference is 4 to 3). Games
with risk dominance, like the one given above, is the subject of Harsanyi & Selten
(1988). Kandori, Mailath & Rob (1993) and Robson (1996) have studied effects of
finite population size on the ESS of games with risk dominance. Migkisz (2005a)
has studied the limit behavior of finite population models in these games, for a
set of cases with specific generational transition rules. The main conclusion is
the observation that for an arbitrary low mutation rate, and a small population
size, the population prefers the strategy with risk dominance. As the population
size increases, the population undergoes a transition from choosing for the risk
dominating strategy to the payoff dominating strategy. Miekisz concludes that
for studying a specific model and the limit behavior of a system, it is important
to take the population size and mutation rate into account. We investigate this
conclusion in Chapter 6. Miekisz has also extended this study to other games,
such as spatial games and games with more than 2 players, see e.g., Migkisz
(2005b, 2004a, 2004b, 2004c).

Fogel et al (Fogel & Fogel 1995; Fogel, Fogel, & Andrews 1997; Fogel, An-
drews, & Fogel 1998) and Ficici & Pollack (2000a) have studied finite population
effects of evolutionary dynamics on the stability of evolutionary stable strategies
of the Hawk-Dove game (see Chapter 6) empirically. Using simulations of the
evolutionary systems, behaviors have been observed that are unrelated to an evo-
lutionary stable strategy. They have suggested that ESSs may not provide a good
expectation of a finite population’s behavior. In Chapter 6 we present an exact
Markov model approach to answer the same questions for a larger set of games,
adapting Ficici’s initial work (Ficici & Pollack 2000a). We adopt genetic drift,
and the causes of genetic drift, as an explanation of these observations.

Nowak & Sigmund (2004) have also expressed the importance of finite popula-
tions when evolving strategies for games. Nowak et al (2004) have used a Moran
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process (Moran 1962) to model the behavior of a population involved in the iter-
ated prisoners’ dilemma, which also incorporates the time to fixation and invasion
coefficient of strategies in finite populations. See also (Taylor, Fudenberg, Sasaki,
& Nowak 2004) for more applications of this model for different games. Nowak et
al have shown that within a finite population, cooperative strategies — a strategy
that is at cost of the individual, but beneficial for its contenders — may invade
a population of non-cooperating individuals, given that the population is rela-
tively small. This is in contrast with the common belief of evolutionarily stable
strategies, which says that defectors are stable against invasion by cooperators.
Cooperation, however, is fairly common in nature, and finite population sizes may
explain how a cooperating strategy can become fixated through random sampling
in a small population. In similarity with their models, Nowak et al suggest the use
of Wright-Fischer models to further study the behavior of finite populations in
cooperation-defection games. We provide such a study of the prisoners’ dilemma
in Chapter 6.

It should be noted that the study of finite population effects in evolutionary
game theory has only been established in the recent years.

2.2.3 Evolutionary algorithms

In evolutionary algorithms — such as Genetic Algorithms (GAs), evolution strate-
gies, or genetic programming — heuristics to find approximate solutions of op-
timization problems are inspired by evolutionary mechanisms such as selection,
inheritance and variation through recombination and mutation (Goldberg 1989;
Mitchell 1996; Koza 1992). The typical implementation is a computer simulation
of an evolving population of candidate solutions for a given optimization problem.
Candidate solutions are selected from the population according to their fitness,
and selected individuals are coupled to produce a new generation of candidate
solutions through recombination (crossing over) and variation (mutation). This
generational process is then repeated until a satisfactory solution for the problem
is produced, or another termination condition is fulfilled.

The objectives of the theoretical research of evolutionary algorithms are com-
monly different from the goals in population genetics. Studies in population
genetics mainly focus on studying the dynamics of a given population with a pre-
determined reproduction scheme, i.e., including selective pressures and mutation
rates. Since GAs are mainly applied in engineering environments, theoreticians
in the GA community search for optimal parameters of the optimization process
— rates of mutation and selection schemes — such that the optimization algorithm
can find (near-)optimal solutions of combinatorial optimization problems in the
least amount of time. In the study of GAs, time is generally expressed in num-
bers of fitness function evaluations. Indeed, in practical optimization problems,
the evaluation of fitness — required for selection — is usually computationally ex-
pensive. This is in contrast with population genetics, which measures time in
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numbers of generations. In nature, the determination of biological fitness is in
parallel, where the evaluation of fitness in GAs is a computationally costly task.
As a result, parameters in GA models may differ greatly from the parameters in
population genetics. As an example, the rate of mutation in population genetics
is usually low enough (close to 0) such that it may be ignored, or that the limit as
the mutation rate goes toward 0 is usually sufficient to make predictions. In GAs,
mutation rates are generally higher. Similarly, a GA practitioner has to decide on
population sizes and selection schemes to devise algorithms with the least amount
of fitness evaluations. As another contrast with research in population genetics,
GAs have been developed to solve optimization problems that have multiple loci
and are hard because of deceptivity and high rates of interactions among the loci,
see e.g., Naudts and Verschoren (Naudts & Verschoren 1999), Naudts (1998) and
Suys (1999). As a consequence of these differences, models used in the study of
population genetics is not always applicable for adoption by GA practitioners,
and specific adaptations of these models are required to serve these specific goals.

Infinite populations. In the study of the dynamics of genetic algorithms, Hol-
land (1975) has proposed the schema theorem as a foundation to express the power
of genetic algorithms with bit string representations of candidate solutions. The
schema theorem says that schemata (patterns of bit strings) with above-average
fitness increase in frequency in the genetic algorithm over time, thereby explaining
the power of a genetic algorithm. Many criticisms have questioned the explana-
tory capabilities of the schema theorem. Radcliffe (1992), for example, discusses
instances of specific problems with non-linearity between the genotype space and
phenotype space, showing that schemata were unable to describe the dynamics
in the genetic algorithm. Altenberg (1995) gives an overview of these critiques
and shows how Price’s equation can be used to adapt the schema theorem, and
to express the performance of a GA in terms of mean fitness, instead of in the
growing frequency of schemata with above-average fitness.

Vose & Liepins (1991) have constructed a dynamical systems model to study
the dynamics of a GA, using the infinitely large populations to approximate the
dynamics of finitely large populations. A population is represented by its con-
stituent frequencies of individual types from the search problems’ search space,
thus represented by a stochastic vector. Selection and recombination operators
are mathematically represented with matrices, and the eigenvalues and eigenvec-
tors of the matrices can be used to study the fixed points of the populations’
search space. The selection and reproduction operators acting upon the infinite
populations are deterministic, giving a unique population in each of the genera-
tions for an initial population that starts the chain. In the limit of increasingly
larger populations, this model is thus mathematically exact. For a more elaborate
account, see Vose (1999b).
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Finite populations. In the genetic algorithms community, there is little aware-
ness of the effects of random genetic drift in the evolution with small populations.
Populations of 1000 individuals are generally considered large in this community,
and the average population size used by practitioners is around 100. This number
is an estimated median of the population sizes used in papers of the real world ap-
plications track (RWA) in the proceedings of GECCO 2004 (Deb 2004). Around
50% of the applications in this track use a population size of 100 or smaller.

This number is very small in relation to the search spaces of the examined
optimization problems, and not considered as being large for a population ge-
neticist. In evolutionary algorithms with small population sizes, the algorithm
can converge prematurely. Because of lack of diversity, caused by exploiting a
small sample of relatively fit individuals in the initial generations of the search
process, the population gets fixated, or stuck in local optima of the search space.
As populations become smaller, these effects of random genetic drift in evolu-
tionary search in an optimization problem is indeed more evident, affecting the
algorithm’s performance.

Nix and Vose (Nix & Vose 1992) developed, as a follow-up to Vose and Liepins’
infinite population model, a finite population version of the dynamical systems
model. The finite Markov model is described in large extent in Vose (1999b),
Rudolf (1998) and Schmitt (2001). The model is similar to the Wright-Fischer
model (Wright 1931; Fischer 1930), but has been developed independently. The
Nix and Vose model assumes — in contrast with the Wright-Fischer model —
haploid, multi locus individuals.

Similarly to the Wright-Fischer model, each possible population configuration
of a given population size is represented by a state of the finite Markov model. The
transition probability matrix describes the probabilities to go from one state — a
population with a given number of instances of each genotype — to any other. The
transient and limit behavior, described implicitly by the transition probability
matrix, of a distribution over all states can be studied to provide insights on the
influence on the long run behavior of population size, and other parameters of
the evolutionary model.

Note that since all possible population compositions must be accounted for in
this model, the resulting transition probability matrices easily become too large
to handle. The study of the models is consequently limited to small genotype
search spaces and small population sizes. As a consequent concern, it is hard
to discuss the scalability of results obtained from these models, for increasing
problem and population sizes. We discuss this problem, and review possible
solutions for compressing the transition probability matrices in Chapter 3.

De Jong et al (1995) provide an initial analysis of transient behavior in these
models for specific (small) optimization problems, in order to understand the
properties of genetic algorithms being used as function optimizers. They con-
clude that an exact closed form analysis of the Markov models is generally too
hard, because of the complexity in constructing these models. However, the ex-
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perimental mathematics approach taken provides insights into the workings of a
GA. The methodology of this thesis follows a similar approach to studying the
limit behavior of evolutionary systems.

Van Kemenade et al (1998) construct transmission function models to study
the importance of several stochastic elements in a genetic algorithm. They con-
firm the correctness of their model by analyzing varying selection methods and
conclude that the finiteness of a population strongly influence the behavior of a
genetic algorithm.

Vitdnyi (2000) adopts finite Markov models to suggest a method for construct-
ing evolutionary systems with small population size that have a high probability
of converging to the optimal solution of an optimization problem in polynomial
time. The construction requires rapid mixing of the Markov model represent-
ing the evolutionary search algorithm, i.e., the second largest eigenvalue of the
probability transition matrix should be suitably bounded away from 1, and the
Markov process must have a steady state distribution of the process with a high
probability of populations with optimal solutions. In contrast with De Jong’s
work, the author provides a formal analysis of an example evolutionary system,
instead of relying on the experimental mathematics approach. It is however dif-
ficult to construct an algorithm that satisfies both conditions, but the proposed
methodology formally paraphrases the requirements for a good design of an evo-
lutionary algorithm — high speed of convergence to a high probability of optimal
individuals — in terms of finite Markov models of evolutionary algorithms.

Vose & Liepins (1991) note that fixed points of the model outside the space
of the model govern the transient dynamics of the evolutionary algorithm. The
model is attracted to these fixed points before continuing its path to the fixed
points within the state space. This gives rise to periods of stasis in the evolu-
tionary dynamics, intermitted by rapid innovations, i.e., these external attracting
states lay at the basis of the punctuated equilibria in evolution. Van Nimwegen
et al (1997) show that this effect is further amplified in finite populations, and
identify the epochs of stasis with the flow’s metastable fixed points, giving exact
predictions of stasis. Van Nimwegen et al (1998, 1999) also provide further anal-
ysis, and analyze the punctuated equilibria behavior of a genetic algorithm with
the royal road fitness function. It is concluded that epochal evolution is the result
of interplay between the finite population flow given by the heuristic function of
the infinite population model, and coarse-graining of the state space because of
finite population size. The authors also relate these results to the predictions of
the neutral theory of molecular evolution of Kimura (1986).

Recognizing the complexity of enumerating all populations in a Markov model,
Prugel-Bennett (2003) has proposed statistical mechanics approaches to studying
finite population models, by giving concise descriptions of the distributions. Al-
though the descriptions are approximations of the exact behavior of the systems,
the models provide an accurate description of the behavior. It is concluded that
infinite population models can provide worse descriptions of the behavior than
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the proposed models, even for very large populations, for example for deceptive
and epistatic fitness functions that make optimization problems hard for genetic
algorithms.

Alkemade et al (2005) provide a first step in relating the processes in agent
based economics with evolutionary algorithms. In economic modeling, evolution-
ary algorithms are often used to simulate the evolution of economic strategies,
although the realism of relating a social or economic simulation to an evolutionary
algorithm is often questioned (Chattoe 1998). The parameters of the evolution-
ary algorithm — such as population size and learning rates — are often directly
related to the economic model studied, but they note that small population size
of the economic model hinders the learning in the population. The authors con-
clude that parameters from agent based models should be treated separately to
construct robust simulations of agent based models with evolutionary algorithms.
This observation is similar to the observations made of random sampling being
the cause of genetic drift in finite evolutionary models. It would be interesting to
investigate how effects of random sampling in economic and social studies would
relate to the effects of random genetic drift in evolutionary systems, adopting
Markov models similarly to the methodology of finite evolutionary systems, by
extending the bounded rationality present in Darwinian selection.

2.3 Outline and Methodology

In this thesis, we develop finite Markov models of finite haploid and diploid pop-
ulations in dynamic, game theoretic and co-evolutionary fitness environments.
Using an experimental mathematics approach to study the models, we analyze
the long run behavior of the systems by computing the limit distributions of the
Markov models for specific parameters, such as population size, dynamic char-
acteristics of selective pressure, variational pressure, ploidy and dominance. We
compare the predicted behavior of the finite population models with predictions
of corresponding infinite population models, which allow us to discuss the influ-
ence of finite population size on the behavior of populations in dynamic fitness
environments. The following sections elaborate on the concepts that constitute
our methodology, and provide an outline of the text.

2.3.1 Finite Markov models of finite populations

A stochastic process representing an evolutionary system is a sequence of random
events or variables in time

P(0) = P(1) = P(2) — ... (2.1)

where each of the random variables P(g) represents a population, i.e., a state
of the system, at time step or generation g. The population, or state in which
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the system resides at one time step is influenced by the previous states of the
system. Moreover, in an evolutionary system, the population P(g) at one time
step only depends on the population P(g — 1) of the previous time step. We say
that there is no memory of earlier time steps in the sequence. Such a system,
without memory, is a Markov process, and the sequence of states is a Markov
chain.

In a deterministic model with infinite populations, P(g) is uniquely defined by
its predecessor P(g—1). In a stochastic system, there is a probability distribution
over all states, which is a function of the state in the previous time step. With
finite populations, defined over a finite genotype space, the state space 7 of all
populations is finite, and the Markov chain is consequently said to be finite. For
each population P € 7, a distribution over 7 describes the probabilities to transit
in one time step from P to any of the populations in the next time step. We can
describe the system with a |7| x || transition probability matrix 7', where a row
or column corresponds to a state P. A column gives the distribution over the
states at the next time step if the current population is P.

If x(g) is a probability distribution over the states — i.e., a stochastic vector
of size |w| — then the distribution at the next time step is given by the discrete
version of the Chapman-Kolmogorov equation (Papoulis & Unnikrishna 2002)

x(g) = Tx(g — 1) = T9x(0). (2.2)

The distribution over the states at time step g is thus uniquely defined by the
transition probability matrix 7" and the initial distribution x(0) over the states
at time step 0.

If the transition probability matrix 7" of the Markov model is ergodic, than
there exists a unique stochastic eigenvector x* of matrix 7', with corresponding
eigenvalue 1, according to the Perron-Frobenius theorem, see Appendix B. This
stochastic eigenvector describes the limit, or steady state distribution over the
states of the system, independent of the initial distribution over the states of the
system. The limit distribution thus gives the probability for each of the states of
the model, that the system ends up in this state. The limit behavior of a finite
Markov model can be adopted to analyze the distribution over the states of the
system in the long run. By properly analyzing the eigenvector, with corresponding
eigenvalue 1, of the transition probability matrix, information can be gained on
the behavior of evolutionary systems.

2.3.2 Ploidy

The models we develop in this text have their applications in both population
genetics, game theory and genetic algorithms. Generally, population genetics is
based on the reproduction scheme of higher order species. Consequently, their
models represent the evolution of populations of diploid individuals. This is in
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Figure 2.2: Schematic representation of sexual reproduction in diplo-haplont (top) and haplo-
diplont life cycles.

contrast with evolutionary game theory and genetic algorithms, where individuals
are generally assumed to be haploid. Since both haploid and diploid populations
are of relevance to this text, we construct finite Markov models of both haploid
and diploid populations in Chapter 3. Here, we shortly review haploid and diploid
reproduction for the reader who is unfamiliar with ploidy.

In population genetics, each diploid individual has two homologous chromo-
somes, or twice the amount of genotypic information when compared to haploid
individuals. Such single stranded individuals are the subject of research in ge-
netic algorithms. For a certain gene, a diploid individual thus stores two, possibly
different alleles. The alleles may thus disagree on the outcome of the phenotypic
expression of the gene. Such conflicts are resolved in biological individuals on a
biochemical level. Because of cascades of chemical reactions and reactants, alleles
in both genomes are expressed, but their quantitative influence on the phenotypic
expression differs. This results in a dominance and recessiveness relation between
homologous alleles. If both alleles are similar, or homozygous, the phenotypic
result is indisputable, but when they differ, i.e., when the alleles are heterozy-
gous, their phenotypic expression is determined by their dominance relation. As
an example, consider the gene determining eye color. The allele for brown eyes
dominates the allele for blue eyes. Consequently, the allele for blue eyes can only
be expressed if it is not paired with an allele for brown eye color.

When two diploid individuals are selected to interact in sexual reproduction,
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both individuals create haploid gametes through the process of meiosis, a cellular
process that forms the basis of sexual reproduction. During meiosis, the individ-
uals undergo gene duplication — which might cause mutations in their genotypes
— and chromosomes are split up and merged together through the process of
crossover. Next, the cell divides into 4 haploid daughter cells, each containing
half a (mutated) copy of the original parent’s genes, completing meiosis. When
two haploid gametes are joined together through fertilization, a new diploid child
of the original parent individuals is formed. This child is a member of the popu-
lation of the next generation in the evolutionary system at hand. This life cycle
of individuals that are diploid at maturity, i.e., at the time of fitness evaluation,
is called the diplo-haplont life cycle.

In the life cycle of a haploid individual, two individuals are fused, after which
meiosis takes place to create new haploid individuals. This reproduction scheme
of the haplo-diplont life cycle forms the general principle of reproduction in genetic
algorithms and evolutionary game theory.

Figure 2.2 depicts the haplo-diplont and diplo-haplont life cycles schematically.
Note that both life cycles contain the same elements, i.e., fusion or fertilization
of haploid gametes and meiosis of the diploid zygote to produce daughter hap-
loid gametes. The difference between the two models is the state in which the
individuals are mature, i.e., when fitness is determined.

Diploidy in genetic algorithms. There have been several occurrences of adopt-
ing diploidy in implementations of genetic algorithms, breaking with the haploid
dogma of genetic algorithms. Goldberg & Smith (1987, 1992) suggested domi-
nance and diploidy as a means for dynamical optimization, and reported the first
experimental and theoretical results. Banzhaf (1988) also reports experimental
results and discusses the maintenance of variability in diploid genetic algorithms.
Yoshida & Adachi (1994) and Collingwood et al (1996) discuss empirical results
along the same line. Hillis (1992) utilizes a specific “diploid” genome to evolve
sorting networks in a co-evolutionary environment. Hadad & Eick (1997) study
polyploidy and dominance vectors and discusses empirical results for dynamical
problems. Lewis et al (1998) apply diploidy to non-stationary problems and dis-
cuss their performance. Ryan & Collins (1998) discuss the performance of haploid
and diploid search algorithms.

A couple of formal models were also suggested to study some topics relating
to diploidy in genetic algorithms. Bidwell (1996) and Wright & Bidwell (1996)
have built and discussed models similar to the ones used in population genetics.
Greene (Greene 1999) studies diploidy in deceptive environments using a formal
model which offers some results, but at the cost of using a model with populations
of infinite size.

As can be seen from this literature overview, there have been two main meth-
ods of studying diploidy and dominance in genetic algorithms; (1) either to study
empirical results obtained from diploid implementations and compare these with
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haploid genetic algorithms or (2) to implement a formal, infinite size model and
discuss its behavior. In this thesis, we construct a finite population size model
wherein diploidy and dominance can be studied, and with which exact results can
be obtained, without having to rely on empirical experiments.

2.3.3 Dynamic environments

Note that in the basic form of the Wright and Fischer model, or the Nix and
Vose model, the fitness determination of individuals is static, i.e., the selective
pressure of alleles is constant over time. In practice, genetic algorithms indeed
commonly address optimization problems that do not change over time. Popu-
lation geneticists traditionally study fitness determining environments in which
selection is fixed over time. Many real world applications of optimization tech-
niques, and natural biological environments, however, have characteristics that
change over time while the evolutionary system is trying to optimize for these
changing environments.

Throughout this thesis, we construct models of finite populations in dynami-
cally changing fitness environments by combining finite Markov models of finite
populations in different static fitness environments. Environmental dynamics can
be established in evolutionary models by either explicitly or implicitly forcing
a fitness function’s dependence on time. In the explicit case, we let the fitness
function be dependent on the number of generations, and in the implicit case we
let the selection be dependent on the composition of the population. Since this
population changes over time as a result of the evolutionary forces acting on the
population, it indirectly generates time dependence of the fitness values.

In the explicit case, we let the fitness function change over time by altering the
fitness of individuals over time, independent of the dynamics of the evolutionary
system. In Chapter 5 we develop finite Markov models with dynamic fitness en-
vironments by imposing alternating fitness environments on the selective process
of the evolutionary system. We let a static fitness function govern the evolu-
tionary system for a number of generations, after which another fitness function
takes over the selection process of the evolutionary system. By alternating such
a set of fitness functions over time — either deterministically, or stochastically by
modeling the fitness environment as a Markov chain on its own — we can model
an evolutionary system that assumes a dynamic fitness function, and model this
whole system as a Markov process. We show the conditions for which such sys-
tems are ergodic, and study, in the case of ergodicity, the long run behavior of
the system, by examining the Markov chain’s unique limit behavior.

By defining the fitness evaluation as a function that is dependent on the fre-
quencies of individual types in the population, we can implicitly impose dynamics
on the fitness function. In evolutionary game theory, the fitness, or expected pay-
off, of an individual is dependent on the composition of the population. Similarly,
fitness functions with fitness sharing are dependent on the composition of pop-



2.3. Outline and Methodology 23

ulations, and have been studied extensively by Horn (1997). As the population
changes over time because of evolutionary forces acting upon the population, the
expected payoff received by a strategy also changes over time. We study models
of finite populations with fitness functions according to evolutionary games in
Chapter 6.

Another way to conceive a dynamical fitness environment for a population, is
to let it co-evolve with another population. In co-evolution, two or more popula-
tions evolve simultaneously, and the fitness function of individuals in one popu-
lation is dependent on the composition of the other population. Co-evolution is
thus defined as reciprocal evolutionary change in interacting species. Similarly to
the argument used for frequency dependent fitness, evolutionary change in one
population directly brings changes about in the selection process of the other
population. Consequently, populations are put against each other and govern
each other’s fitness function dynamics. Models of co-evolution that assume finite
population size are developed and studied in Chapter 7.

We have to point out that the term “co-evolution” is disputed over in the
genetic algorithms community. Fitness dependence of an individual on other in-
dividuals in its own population is also considered as co-evolution by some authors,
see e.g., Ficici (2004). In this text, we make the distinction and say that a co-
evolutionary system basically requires more than one population, following the
biological definition, and we do not classify frequency dependent fitness functions
under co-evolution.

Ploidy in dynamic environments. Diploid individuals store redundant in-
formation in the recessive part of their genome. These recessive alleles are not
subject to selective pressure, and the collection of recessive alleles in a population
can consequently serve as a pool of deleterious alleles, remembered by the diploid
population. If a diploid individual is created that contains two such recessive
alleles, this allele is expressed and becomes subject to selection. Diploidy and the
process of dominance thus offer a mechanism to store alleles in the recessive pool
of a population, and these recessive alleles can be retrieved from this pool to test
their fitness.

In dynamic fitness environments, this recessive allele pool can be thought of
as an implicit memory of solutions for previously encountered problems. If the
environment returns to such a previous state, then a diploid population may re-
trieve the solution from its allele pool, if present, by combining recessive alleles.
In contrast, these solutions of previously encountered environments are forgotten
in a haploid population as the alleles in a haploid population are constantly sub-
ject to selective pressure, removing deleterious alleles, and thus solutions from the
past, from the population. Consequently, diploid populations are hypothesized
to perform better than haploid populations in dynamic environments.

Additionally, the storage of redundant information slows down convergence of
a population during optimization, but at the same time it can keep the diversity
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of individuals — and thus the variance of fitness — high. According to Fischer’s
fundamental theorem of population genetics, and Price’s equation of covariance
and selection, the rate of increase in mean fitness of a population is higher as
the variance in fitness in the population is higher. Consequently, a diploid pop-
ulation that maintains a high diversity can be beneficial when constructing an
optimization algorithm.

The use of diploid genetic algorithms in non stationary fitness environments
was first suggested by Goldberg et al (1989) and further investigated by Ng &
Wong (1995). As an example dynamic fitness function, the authors consider a
dynamic version of the 0 — 1 knapsack problem. In a knapsack problem, items of
different size need to be selected from a big list of items, and stored in a limited
amount of space, i.e., a knapsack. The goal of the problem is to find those items
such that the knapsack is as much filled as possible. In the dynamic version of the
knapsack problem, the size of the knapsack is changed over time, as the algorithm
proceeds, and items need to be constantly removed, or added to find the collection
of items that best fits the knapsack at that time. Empirical observations with
haploid and diploid versions of the genetic algorithm have indicated that diploid
populations are useful in periodic environments, i.e., where the size knapsack
is alternating. In these periodic environments, only a few states need to be
remembered by the diploid allele pool and solutions to previously encountered
problems can be retrieved quickly.

For some dynamic problems in this thesis, we test the hypothesis that diploid
populations can perform better in small dynamical problems, by comparing the
performance of haploid and diploid populations in dynamic fitness environments.
In Chapter 7, we let a haploid and diploid population co-evolve, using co-evolution
as a test bed to confront haploid and diploid populations in a dynamical environ-
ment.



Chapter 3
Models of Haploid and Diploid Populations

In this chapter, we develop discrete time Markov models of haploid and diploid
simple genetic algorithms, with finitely and infinitely large populations. We intro-
duce the simple genetic algorithm in its haploid and diploid context. We review
concepts of a search space and population space. We discuss the processes of
selection and reproduction. All of these elements are then combined to define the
transition probabilities between states, or populations, of the SGA. Numerical
methods for finding the limit behavior of the resulting Markov models are dis-
cussed. Methods for computing the steady state and limit behavior of the systems
are discussed. The resulting models act as building blocks for constructing more
complex models to serve the applications in later chapters.

The notation introduced in this chapter is used throughout the whole text
and is based on the notation of Vose (1999b) but has been adapted to deal with
the specific dynamic environments in the later chapters of this thesis.

Parts of this chapter are derived from A.M.L. Liekens, H.M.M. ten Eikelder,
P.A.J. Hilbers, Modeling and Simulating Diploid Simple Genetic Algorithms
(2003e).

3.1 The Simple Genetic Algorithm

The Simple Genetic Algorithm (SGA), or generational genetic algorithm is an
abstraction of the genetic algorithm (GA). In its simplest form, the GA generates
consecutive non-overlapping populations of individuals; the SGA assumes that a
population is constructed from scratch at each generation. All of the individuals
in the current generation’s population are replaced by new individuals through
processes of reproduction and selection, based on the fitness of the individuals in
this population. The quality of individuals in these generations evolves over time
based on the Darwinian principles of variation, selection and heredity of traits.
The discrete time assumption of non-overlapping generations lays at the basis of
our models of evolving populations.

Vose (1999a, 1999b) classifies the SGA as a special case of random heuristic
search. In random heuristic search, the optimization process in a search space €2
is a stochastic chain of consecutive collections of elements in ).

In the SGA, an initial population P(0) of random candidate solutions for the
optimization problem starts the algorithm. With candidate solutions for an opti-
mization problem, we denote solutions that are not necessarily optimal. A popu-
lation P(g + 1) at time step, or generation g + 1 is then stochastically produced

25
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from the previous population P(g). Individuals are selected from the population
according to their fitness. Abstract genetic operators, such as recombination and
mutation are performed on these parent individuals to beget new child individuals.
These children are placed in a new population that makes up the new generation.
This generational process is repeated until some termination condition is fulfilled.
Examples of termination conditions for genetic algorithms are a limiting number
of generations or computational time used, the detection of convergence of the
population, or finding a sufficiently good solution for the optimization problem.
The morphology of the SGA is outlined in pseudo code in Algorithm 3.1.

Algorithm 3.1 (Simple genetic algorithm). Pseudo code of a simple genetic
algorithm.

generation := 0
create initial population P(generation) over §)
repeat
repeat
select mom, dad from P(generation)
child := reproduce(mom, dad)
add child to P(generation + 1)
until P(generation + 1) is filled
generation := generation + 1
until terminated

As the SGA generates a stochastic chain of populations at discrete time inter-
vals, where each new population is only dependent on the state of the previous
population, the resulting model is a finite, discrete time Markov chain. Markov
chain theory can be applied to the model in order to study the SGA’s behavior.

3.2 Search Spaces

Two specific types of search spaces are of particular interest in this thesis. On
one hand, we evolve haploid string individuals, following the genetic algorithm’s
dogma of haplontic life cycles. Secondly, we focus on models with diplontic life
cycles of diploid string individuals. Both interpretations require specific search
spaces. For the purposes of this text, we assume string representations for the
genomes as a sufficient means to study the problems in the following chapters.
Other common genome representations used in the GA community are, e.g.,
graphs, or trees in genetic programming, see (Cramer 1985; Koza 1992; Lang-
don & Poli 2002).

Generally, we use notation {2 to denote the search space of the genetic algo-
rithm. However, we make a distinction between the search space of the heuristic,
which is denoted by €2g, the search space of haploid genomes {2y and the search
space of diploid genomes, {2. We introduce these different search spaces in this
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section, and discuss the mapping used to transform elements from Qg or {2p to
elements of €)g. If notation () is used in the construction of the model of the
genetic algorithm, then both (25 and 2p are meant as possible search spaces for
the genetic algorithm. Only if the distinction between haploid and diploid search
spaces is required, their specific notations are used.

We assume that search space Qg of the heuristic is finite, with size [Qg| = n.
For ease of notation, we let each element s € Q25 correspond with a number, also
denoted by s, with 0 < s < n.

3.2.1 Strings

Let s = (s, $1, ..., Si—1) denote a string of length I. Each of the characters s; is
chosen from an alphabet ;. Search space ()g is the set of all possible strings of
length [, i.e., the Cartesian product g = ¥g x ¥; X ...Y; ;. In many cases, the
alphabet for any of the characters is the same. As an example, we can assign the
set Zo = {0,1} to alphabet ¥; for all 0 < i < [. Each string s with characters in
alphabet Z, then represents a bit string with length [ and search space {25 becomes
the set of all bit strings given by the Cartesian product g = Z}. As another
example, alphabet {A, C, G, U} can be considered to model RNA molecules of
length [, with Qg = {A, C, G, U}.

3.2.2 Haploid genomes

For the search spaces of haploid genomes, we assume that there is no specific
genotype-to-phenotype mapping from haploid individuals to strings in the search
space of the heuristic. As a result, a string, or genome s in the haploid search
space {2 corresponds to the same element s in search space (g, giving Qy = Qg.
The position ¢ in a string is called a locus ¢ in the genome, and alphabet ¥; is
the set of alleles for that locus.

3.2.3 Diploid genomes

In the diploid model, an individual consists of two strings. An individual of the
diploid population is represented by a multiset of two elements of Qg, i.e., {s,t}
with s,t € 05. Note that a multiset is required since s = ¢ is allowed. The set of
all possible diploid genotypes is denoted by Qp = {{s,t}|s,t € Qg}, the search
space of the diploid genetic algorithm. Since the search space is a set of multisets
of cardinality 2 over (g, the size of this search space is equal to

Qp| = ( Q5] +2-1 ) _ 19/ (19 +1)

2 2

The number of multisets of cardinality ¢ over a set of size n can easily be
computed. Consider the notation for multisets of the form ee | ee || o that
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would represent multiset {A, A, B, B, D}, a multiset of cardinality ¢ = 5 over set
{A, B,C, D} of size n = 4. The number of multisets is the number of ways to
arrange ¢ bullets (or n — 1 vertical lines) among ¢+ n — 1 positions, which leads to
the resulting binomial coefficient ( et Z -1 ) = ( C;ﬁ; 1 > denoting the
number of multisets, see e.g., Mathews (1964) pp. 376-377.

If we assume that (g is the search space of bit strings with length [, i.e.,
Qg = 74, then the search space of diploid bit strings 2p contains all multisets of
two bit strings of length [ with

2@ 1)

oi=1
5 +

Qp| =
Mappings from diploid individuals in 25 to elements in {2g are discussed in
the following sections.

3.2.4 Dominance mappings

In order to map diploid genotypes to (haploid) phenotypes we have to define a
dominance mapping, or operator ¢ : 2p — (g to act on the diploid individuals
and which results in an element of the search space. Such a dominance operator
allows us to reuse cost or fitness functions from the optimization problem in the
diploid genetic algorithm.

Properties of dominance mappings. In practice, an operator ® : {2g x Qg —
Qs is chosen as the dominance mapping operator, such that 6({s,t}) can be
computed using this operator with §({s,t}) = s ©® t. In this thesis, we assume
that 2 properties hold for ®. First of all, we want homozygosity of homologous
alleles to produce a consistent phenotypic expression, i.e., the dominance relation
should be neutral with

Vs € Qg :6({s,s}) =sOs=s. (3.1)

More pressing however, is the commutativity of operator ®, since the strings that
are presented to the operator originate from a multiset, whose elements have no
ordering, i.e.,

Vs, t € Qs :6({s,t}) =sOt=t®s. (3.2)
Locus-wise dominance operators. In the case of diploid bit strings, where an
individual is a multiset of 2 bit strings, the dominance mapping operator can be

defined as a bitwise operator. Properties (3.1) and (3.2) hold for bitwise operators
AND (with 6({s,t}) = s At) and OR (with §({s,t}) = sV t);

e (sAs)=s (AND is neutral)
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e (sAt)=(tAs) (AND is commutative)
e (sVs)=s (OR is neutral)

e (sVt)=(tVs) (OR is commutative)

An allele is said to be dominant over another if it is expressed in heterozygos-
ity. An allele is said to be recessive if it is only expressed in homozygosity. In
the case of using the AND operator, allele 0 is dominant over allele 1, and vice
versa for the OR operator.

Obviously, the dominance operator can vary from locus to locus. In the case
that the allele set is larger than {0, 1}, similar dominance relations between alleles
can be assigned. However, such dominance relations are not required for the scope
of this text.

Coefficient of dominance. Instead of strictly choosing a dominant and re-
cessive allele, the concept of a dominance coefficient can be used to introduce
probabilities of dominance and recessiveness. The coefficient of dominance, sym-
bolized by h, is the probability that a recessive allele is dominant in the case of
heterozygosity. Note that, if a dominance coefficient is assumed, § becomes a
probabilistic function. As an example, if allele 1 is dominant over 0 with domi-
nance coefficient h, then

5(10,13) = {(1) with probability J
with probability 1 — h.

In the OR dominance scheme with dominance coefficient h, the heterozygous

genotype {0, 1} has phenotype 0 with probability A, and phenotype 1 with prob-

ability 1—h. The introduction of a dominance coefficient does not affect neutrality

and symmetry properties (3.1) and (3.2).

Other dominance mappings. Other dominance relationships for diploid GAs,
such as dominance determining loci and dominance masks, have been described
in (Bidwell 1996; Collingwood, Corne, & Ross 1996; Greene 1999; Hadad & Eick
1997; Lewis, Hart, & Ritchie 1998; Liekens, ten Eikelder, & Hilbers 2003e; Smith
& Goldberg 1992). Many variations of dominance can be observed in nature,
and can be used in diploid GAs. Note that some of these implementations do not
necessarily assume that a diploid individual is constructed as a multiset, and that
neutrality and commutativity of the dominance schemes in these implementations
may be missing.
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3.3 Population Space

Let P denote a population, or multiset of individuals in 2, and define p; as the
proportion of individuals i € €2 in population P, hence ) ..o p; = 1 and all p;
are positive reals. For a search space 2, let the simplex A denote the set of all
possible populations P, with A the set of stochastic vectors

Q-1
A=< (o, p1-1)" | Z pi=1,p 20
i=0

From now on, we assume that each population P, a multiset over 2, corresponds
with, and can be identified by a population vector p = (po, .. ,p|Q|,1)T e A.
With a given multiset P, we identify a population vector p. Let r = |P| denote
the population size of P. We let P, = rp; denote the number of individuals with
genome 7.

For example, consider a population P = {0,2,2,2,3,3} of size r = 6 over
Q = {0,1,2,3}. This population P has P, = 3 individuals with genome 2,
or proportion p; = 1/2. The corresponding population vector p equals p =
(1/6,0,1/2,1/3)". In the forthcoming equations, either p; or P; might be used,
dependent on which of the two is best suited for the readability of the equations,
but we always assume their relation by P; = rp;.

3.3.1 Infinite population size

A multiset or population P with infinite size over €2 is defined as a |Q2|-dimensional
vector p, where each of the elements p; corresponds to the proportion of individ-
uals of type ¢ in the population. All possible populations correspond to a unique
point in the simplex A, and all points in A correspond to a unique infinitely large
population P.

3.3.2 Finite population size

A finite population P is a multiset of cardinality » € N over 2. We say that
r is the finite population size of P. Let m C A denote the set of all stochastic
population vectors p that correspond with a finite population P of size r over (2.
The set 7 of all possible states, or populations of the model, is a regular, discrete
grid of states in simplex A of the infinite model, as depicted in Figure 3.1. All of
the finite populations P correspond with a population vector p € A, but not all
population vectors p € A correspond with a finite population P of size r. The
state space of the infinite model is thus continuous, where the state space of the
finite model is discrete.
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D2

(a)

Figure 3.1: Three dimensional representation of (a) simplex A, state space of the infinite pop-
ulation model for || = 3, and (b) 7, state space of the finite population model for |2] = 3 and
r = 20.

Population space size. The number of possible multisets (populations) of size
r over a set (search space) of size n = |)| is given by

|W|:<r+7:_1):<rx;1>_ 53

The number of possible populations grows polynomially with the size r of the
population and size n of the search space. We can show this for r by finding a
polynomial upper bound in r on the number of possible populations with

(r—{—n—l) (r+n-—1)!

r ri(n —1)!
1 r+n—1
- (n—1)! H !
1=r+1
1 r+n—1
S o) H r+mn-—1
i=r+1

Similarly, we can find a polynomial upper bound in n for ||, namely

(r+n—1) < (r+n—1)’".

r r!

We want to point out that many authors in the genetic algorithms community
wrongly assume that this growth is exponentially.
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Although polynomially bounded, the number of possible populations for a
reasonable population size or search space easily exceeds our computational ca-
pabilities. Section 3.8 discusses the numerical methods used for studying finite
population models, and goes deeper into the problems faced when large state
spaces are encountered.

Populations can be identified with a number i, 0 < i < |7|. Appendix A details
the enumeration and conversion of populations to their respective numbers.

3.4 Selection

Selection takes a population P € 7 and selects an individual from that population,
based on a fitness function f. Individuals with a higher fitness have a higher
probability of being selected from the population.

3.4.1 Fitness functions

Due to a wide range of applications in the later chapters of this thesis, we give
an abstract definition of a fitness function that can be adapted later to fit the
specific application. For the abstraction in this model, we assume that an indi-
vidual’s fitness is (obviously) dependent on the individual itself, the population
P it resides in, and abstract environment parameters £, other than P. Merely
for notational reasons, we assume that population P is not part of this environ-
ment £. Specific properties of fitness environments can be embedded into this
environment, thus providing a common and versatile notation in the discussion
of the future chapters’ applications. Examples of environment parameters can be
the current generation number in a time dependent fitness function, or another
population for the modeling of co-evolution of populations.

We let f(i, P,€) denote the fitness of an individual i € Qg in its population P,
given an environment £. We assume that fitness maps to the set of nonnegative
reals denoted by R*. In applications where the fitness function is static or only
dependent on the population, but independent of other environment parameters,
we neglect this parameter in our notation, i.e., f(i, P) = f(i, P, @).

Mapping of search spaces. The fitness function f is defined over individuals in
(g, the search space of the optimization problem. In order to be able to determine
the fitness of haploid and diploid individuals, the mapping from individuals in
Qg and Qp to g as discussed previously is exploited.

For determining the fitness fg(i, P,€) of haploid individuals i € Qpg, the
corresponding element ¢ € ()g is used to determine the individual’s fitness, i.e.,

fu(i,P,E) = f(i, P,&)

with ¢ € Qg = Qg and P denoting a population of haploid individuals.
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For determining the fitness of diploid individuals 7 € {2p, a dominance opera-
tor is used to determine the diploid individual’s fitness. We can thus translate a
fitness function f for elements in (g to a fitness function fp for diploid multisets
in a diploid population P through the identification

fD(i,P,S) = f(&(?,),é(P),g)

This enables us to select diploid individuals according to fitness function fp,
which is related to the original fitness function f through the dominance mapping
operator 9. Note that we also use the convention that the mapping operator 4 is
also defined for diploid populations, by mapping all individuals of this population
using dominance operator ¢, with 6(P) = {4(:) | i € P}.

For generality and ease of notation, the mapping of individuals to elements of
the optimization problem’s search space is implicitly used, thus adopting notation
f(@i, P,E) not only for elements i of {25, but also for the fitness of individuals of
in Qg and Qp.

Mean fitness. The mean fitness f(P, £) of the individuals in population P (with
corresponding stochastic population vector p) over €2, given their environment &,
equals

F(PE) = [, P.E)p: (3.5)

1€Q

3.4.2 Fitness proportional selection

According to fitness function f, which maps elements of the search space €2 to
the nonnegative reals R™, we can select an individual ¢ € Q from population P
with selection probability S(i, P, &) where

S(i, P,E) = PJiis selected from P in environment &]

f(i’ P’ g)pz
Zien f(Za P7 g)pz

_ 1GPEp (3.6)

f(P€)

Note that » .., S(i, P,€) = 1 holds. In the case that all individuals 7 € €2 have
fitness 0, and the population thus has a mean fitness 0, all individuals are selected
with a probability independent of their fitness, i.e., with S(i, P,€) = p;. The
fitness proportional selection method thus renders selected genotypes proportional
to their fitness and abundance in population P.

Note that we assume that a higher fitness implies a higher selection probability,
such that selection for minimization problems must be adapted accordingly. All
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of the optimization problems and their fitness functions studied in this text are
maximization problems, such that the definition of fitness proportional selection
is sufficient.

Other selection schemes, such as tournament or ranking selection, are dis-
cussed in Vose (1999b), but are out of scope for the text.

3.5 Genetic Operators

3.5.1 Mutation

Bit strings. Under the assumption that mutation is a bitwise operator, each bit
in the bit string has a small probability ;4 to undergo a “bit flip”. We can write the
probability that a given bit string s € {25 of length [ mutates to become another
bit string ¢ € {2¢ as a product of the mutation probability for each independent
bit, by

-1

P(Mi(s) = 1] = [ ul#(1 = pyls=t. (3.7

1=0

Square bracketed notation [e] represents 1 if boolean expression e is true, and 0
otherwise. If d(s,t) denotes the Hamming distance between bit strings s and ¢,
the probability that s mutates to ¢ is equal to

P[M(s) = ] = (1 — p)l=dd,

Strings. We can generalize the definition of locus-wise mutation for bit strings
to strings where each of the loci i is assigned a different allele set ¥; of size |%;].
An allele at position 7 is mutated to a different allele with probability (|3;| —1)u
and remains the same with probability 1 — (|3;| — 1)u. The probability that a
given string s is mutated to ¢ then becomes

-1

P[M(s) = t] = [ [ 74 (1 = (/2] — 1) )" (3.8)

1=0

which is a more general form of (3.7).

3.5.2 Crossover

Given are two “parent” strings s,t € Qg of length I. We define P [X;(s,t) = u] as
the probability that crossing over of these strings results in string u € {2g. This
probability depends on the crossover function used to create new children.

In the case of uniform crossover, the alleles at a locus of the resulting string u
have a probability 1/2 of being copied from parent s and a probability of 1/2 of
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being copied from string ¢. The probability of s and ¢ generating string u through
uniform crossover is equal to

-1

1=0

We assume this type of crossover throughout this text. For other crossover oper-
ators, such as a 1-point or n-point crossover types, see e.g., Vose (1999b).

3.5.3 Distributivity of crossover and mutation

The following theorem shows that the order of locus-wise mutation and uniform
crossover of strings with length [ is distributive. This theorem is a special case of
Theorem 4.2 in (Vose 1999b).

Theorem 3.1. If, for bit strings, mutation M; is bit-wise and crossover X is
uniform, then

VS,t,U € QS : P[MI(XI(S,t)) = U] = P[Xl(Ml(S), Ml(t)) = U] . (39)

Proof. Since uniform crossover X is assumed and M, is locus-wise, we can rewrite
(3.9) for any s,t,u € Qg as

I PIMi(Xi(sinte) = wi] = [ PIX2(Mi(si), Mi(t:)) = i) (3.10)

0<i<l 0<i<l

For each ith allele s;, t;, u; of strings u,v and ¢, we prove that the order of
mutation and crossover for one locus is distributive, i.e., that for 0 <1 <[

This result can then be inserted into (3.10) to prove the theorem. We use notation
—s; to denote 1 — s;.
The left hand side of (3.11) is expanded as

P[M: (X1 (si,t:)) = ui

= > P[X(si,t;) = p|P[Mi(p) = uy]

= P[Xl(si, tz) = UZ] P[Ml(uz) = U,z] + P[Xl(si,ti) = _|U,i] P [Ml(_'?j,z) = UZ]

= (glsi =+l = ud) (1 - )+ GGl # il + 5t # wi
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(3.12)
and the right hand side can be expanded as follows:

P[X1(Mi(si), Mi(t:)) = ui]
= Y Y P[Xi(pg) = w]P[M(s) = p| P[Mi(t;) = q]
= P[X1(si,t:) = w]P[Mi(s;) = 8] P[Mi(t;) = t;] +

P [Xl (SZ, _|tz) = UZ] P [Ml (Sz) = Si] P [Ml (tz) = _‘tz] =+

P [Xl (_|Si, tz) = UZ] P [Ml (Sz) = _'Si] P [Ml (tz) = tz] =+

]P [Xl (ﬂsz, ﬁtz) = ’U,Z] ]P [Ml (82) = ﬁSi] ]P [M1 (tz) = ﬁti]
— (%[sz =u| + =[t; = u,]) (1—p)’+

(3los =+ glt 2 w1 =) +

(3los 7 w4 glts = w1 =) +

We now make a distinction between two separate cases, i.e., s; # t; and s; = ;.

s Ft
In this case we can fill in (3.12) and (3.13) as follows:
P [Mi(X1(si,ti)) =wi) = 3(1 — p) + s = 5 and
_ 2
P X (M (s0), My (1) = ] = (1 — )+ (1 — o)+ bt = 002 3
This shows that (3.11) holds if s; # ¢;.

[ J Si:ti

We make an extra distinction between s; = t; = u; and s; = t; # u;:

— 5 =1 = U
We can again fill in (3.12) and (3.13):
P[M;(X:(si,t;)) =u;] =1— p and
PIX1(Mi(si), Mi(ti)) =wil = (1 —p)’ + (1 = p)p=1-p,
thus (3.11) holds in this case.
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— 5 =1t; # U
We fill this also in (3.12) and (3.13):
P [M1(X:(si, t:)) = ui] = p and
P[X1(Mi(si) = Mi(ty) = wi] = (1 — p)p + pi = p,
thus (3.11) holds in this case.

The fact that (3.11) holds for all possible combinations of s;, ¢;, u; concludes
the proof of our theorem.
]

We have shown the theorem in the case of bit strings, but it can easily be
extended for general strings by replacing all occurrences of mutation rate u for bits
with the mutation rate (|3;| — 1) u for a locus 7 with |X;| allele types. Notation
—s; is then used to denote any element in 3; \ {s;}, i.e., the alleles in allele set 3;
that are not s;.

3.5.4 Meiosis

Meiosis is a stochastic function 6 : Qp — Q% that combines crossover and muta-
tion and produces d haploid daughter gametes from a diploid zygote. In nature,
meiosis produces d = 4 daughter gametes from one cell. This number is due
to the duplication of the chromosomes, followed by two consecutive splits of the
cell during meiosis. In genetic algorithms and models of natural evolution, it is
commonly assumed that crossover and mutation of two haploid parents result in
one child individual. We will assume d = 1 and therefore 0 : Qp — Q.

Given an individual {s,t} € Qp, meiosis produces a gamete u € Qg with
probability

PIO({s,t}) = u] = P[Xy(M,(s), Mi(t)) = u],

based on the probabilities for mutation and crossover as studied before. Note
that because of Theorem 3.1, this probability can also be written as

P[0({s,t}) = u] = P[My(X;(s, ) = u]. (3.14)

This latter ordering of mutation and crossover is more cost effective if computa-
tional time has to be taken into account when implementing a meiotic operator
in a genetic algorithm.

3.5.5 Haploid and diploid reproduction

According to the processes in haplontic and diplontic life cycles, as discussed in
Section 2.3.2, we can now combine our definitions of selection and reproduction
to compute the probabilities of an individual being generated from a given parent
population.
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Reproduction of haploid individuals. The haplontic dogma in the study
and implementation of genetic algorithms is based on the processes of natural
haplontic life cycles. In natural haploid populations, two parents’ genomes are
fused through fertilization to become a diploid individual that undergoes meiosis,
where 4 haploid daughter individuals are created. In genetic algorithms, selected
parents are recombined using crossover and mutation operators to form new child
individuals for the next generation. This is essentially the same interpretation
of the haplontic life cycle in natural populations, but with different numbers of
resulting daughter individuals. By using meiosis operator #, we can model the
generation of new individuals from a haploid parent population in our formal
framework.

A haploid individual ¢ € Qg is generated from a haploid population Py with
probability

G (i, Pu, €)= Y PO k}) =-S5 Pu.€)- S (k, Pu,E) (3.15)

J,kEQy

where S (z, Py, £) denotes the probability that an individual with genome z € Qg
is selected from population Py, in an environment &, as defined in (3.6).

Reproduction of diploid individuals. In diploid populations with diplontic
life cycles, meiosis takes place in selected individuals, and the resulting haploid
gametes are fused through fertilization to become new diploid individuals. The
implementation of a diploid genetic algorithm is also according to this scheme.
The homologous strings that make up a diploid individual are recombined through
crossover and mutation. Gametes, or haploid strings, generated with these oper-
ators from selected parents are then fused to form a new diploid individual for
the next generation. By reusing the definitions of selection and meiosis operator
6, we can easily formalize the process of generating new individuals for our model
of populations with diplontic life cycles.

A diploid individual {i,j} € Qp is generated from a diploid population Pp
with probability

G({i, i}, Pp, €) = > (PO ({k,1}) = - P[0 ({m,n}) = j]+
{k,l},{m,n}€Qp

P[0 ({k,1}) = 51- P[0 ({m,n}) = i])-

S ({k,1}, Pp, &) - S ({m,n}, Pp,€).
(3.16)

Computational equivalence of haploidy and diploidy. In Liekens et al
(2003e), we have demonstrated how a diploid SGA can be transformed into a
haploid SGA with equivalent behavior, and vice versa. We have shown that hap-
loid reproduction can be simulated by diploid individuals, by constructing specific
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representations of haploid individuals in diploid genomes, and by implementing
specific crossover and mutation operators to simulate the haploid reproduction
scheme in diploid individuals, and vice versa.

Consequently, if a diploid SGA is being implemented, there are two possible
ways to design a representation of the genotype and its genetic operators. The
diploid genetic algorithm can be built according to the definition of the diploid
simple genetic algorithm. Secondly, the simulation of the diploid SGA inside a
haploid SGA can also be adopted. If these implementations follow the construc-
tion guidelines given, the resulting behavior of both implementations is the same.
As a result, theorems that apply to genetic algorithms that allow non-specific
limitations to the genetic operators, such as convergence theorems of genetic al-
gorithms (Eiben, Aarts, & Van Hee 1992), also apply to the diploid simple genetic
algorithm. The construction showing this equivalence is, however, out of scope
for this text.

3.6 Constructing New Populations

An instantiation of a SGA is a sequence of random events (in this case, popula-
tions) in time

P(0) —» P(1) » P(2) » P(3) — ... (3.17)

which is governed by a transition rule 7. A population P(g) at time step g
is mapped to a new population P(g + 1) at time step g + 1 with probability
P[r(P(g)) = P(g+ 1)]. We now characterize the transitional mapping rule 7 for
the SGA, based on the probabilities of that an individual 7 is generated through
selection and reproduction according to G(i, P, £).

Let G : A — A denote the heuristic function that maps a stochastic population
vector p to a new vector p’ = G(p) € A in one time step. The heuristic function
combines all elements of one generation. Element p} now denotes the probability
that ¢ € ) is chosen to be in the population at the next iteration of the algorithm.
Any heuristic function G : A — A can be a model of the discrete time dynamics
of a population based algorithm. For the SGA in an environment £, G is defined
by

G:pwp withVie Q:p, = (G (p)), =G, P,E). (3.18)

For a given population p, G(p) thus gives the sampling distribution over the
individual types from which r individuals are sampled to construct the population
of size r at the next generation. In an SGA, the transition from one generation to
the next is thus constructed by collecting r samples from G(p), where p represents
the current population. Transition rule 7 corresponds accordingly to the heuristic
function G.
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3.6.1 Infinite populations

Let p represent an infinite population at one time step. If the distribution over
individual types at the next generation p’ = G(p) is sampled an infinite number
of times, then the resulting infinitely large population is uniquely defined by this
distribution. Consequently, for infinitely large populations, transition rule 7 is a
delta function over A by

1 ifp(g+1)=G(p(9))

) (3.19)
0 otherwise

Pr(P(9)) = P(g+1)] = {

In the case of infinitely large populations, the model of the SGA is determinis-
tic, since the population after a generation is uniquely defined by the heuristic
function G. Hence, the sequence of random events describing the dynamics of
an infinitely large population is deterministic, and uniquely defined for a given
initial population P(0), i.e., the sequence of random events

P(0) —» P(1) > P(2) —» P(3) — ...
is given by
P(0) — G*(P(0)) — G*(P(0)) = G*(P(0)) — ...

in the case of an infinitely large population size.

3.6.2 Finite populations

In the case of populations with a fixed and finite number r of individuals, we
sample the results of reproduction r times to construct a new population for the
next generation. This is according to our assumption of the generational process
in an SGA, where a new non-overlapping population of r individuals is created
at each generation. Along these lines, one may also construct a model of a GA
where only a part of the population is replaced by new individuals.

With the introduction of finite population sizes, the process is no longer de-
terministic and becomes stochastic. The probability that population P(g + 1)
with population size r is generated through sampling in one generation, based on
heuristic G, from population P(g) is equal to

Pr(P(g)) = P(g+1)] = 116G, Plg), £)FeD: (3.20)

7!
[Tica (P(g+1));! )

Recall that (P(g + 1)), denotes the number of individuals with genome ¢ in P(g+
1). The multinomial coefficient Wéﬁl))' computes the number of possible
i€ i’

arrangements for a population P(g + 1) of size r. The other factors denote the
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probability that such an arranged population is sampled from the reproduction
process.

Note that the finite model and the infinite model are closely related, since
the finite model samples the infinite population model r times. The expected
population in one time step of the finite model is equal to the next population in
the corresponding infinite model.

3.7 Transient and Long Run Behavior

We now have all elements in place to model the simple genetic algorithm, and
study its transient, i.e., short time, and limit behavior, both in the case of finitely
and infinitely large populations. In this section, we discuss how the SGA is
initialized and how the subsequent transient and limit behavior can be studied.

3.7.1 Representations

Because of the difference in stochasticity of the finite and infinite population
model, we describe an infinite population model with proportions of individual
types, and a finite population model with distributions over populations.

Infinite populations. An infinite population P is represented by a stochastic
population vector p € A. Each of the entries p; represents the proportion of indi-
vidual 7 € €2 residing in the population. Since the model for infinite populations
is deterministic, we can represent its transient behavior as a discrete time chain
of population vectors, governed by heuristic function §G.

Finite populations. In contrast to the deterministic infinite population model,
the finite model is stochastic. The resulting model is a discrete time, finite Markov
chain (7, 7), over the state space of the populations 7, with transition probability
matrix 7" with entries given by transition rule 7, i.e.,

Tp p = P[r(P) = P']. (3.21)

Numbers of the rows and columns (or states) are given by the population numbers
as discussed in Appendix A. We study the behavior of the finite population
models with probability distributions over all possible population configurations,
by iterating over consecutive generations, given an initial distribution over the
states of the system. A distribution x is a |r|-dimensional vector, whose entries
xp denote the probability of residing in state P. Clearly, all distributions x are
stochastic vectors with VP € 7 :2p >0 and ) p . zp = 1.
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3.7.2 Measures of deviation

In order to study the influence of dropping the assumption of infinitely large
populations, both the infinite and finite models are run side by side, with the
same parameters. In order to quantify the differences among both models, we
need a means to measure how the behavior in the finite model deviates from the
expected behavior of the infinite model.

At any time step, the finite model is represented by a distribution x over a
subset in population space A, where the infinite model’s distribution is represented
as a delta function, with probability 1 at a vector p, in this population space
A and 0 everywhere else. Note that notation p., is used to denote an arbitrary
infinite population, not the population after an infinite number of steps. Thus, an
infinite population p,, and distribution x over finite populations in 7 are given,
and we need a measure between these two distributions which tells us how the
finite population distribution differs from the infinite population, with respect to
their distance in set A. As the finite model’s distribution’s weights are allocated
further away from the infinite population model’s vector, their mutual distance
becomes larger. We should point out that in the limit or steady state behavior, the
expected behavior of the infinite population model may become a more complex
distribution over the population space instead of a simple delta function. We’ll
regard this behavior as exceptional and introduce corrections to the method of
measuring when required.

Since we want to measure how the behavior in the finite model deviates from
the behavior in the infinite model, we need a measure that quantifies how the
probabilities are relocated in between the two models’ distributions. Common dis-
tance measures that quantify differences among distributions, such as the Carte-
sian distance between vectors, or the Kullback-Leibler divergence (Kullback &
Leibler 1951; Kullback 1959; Cover & Thomas 1991; Qian 2001) do not give the
required information, as they do not give any information on how probabilities
are redistributed among states of the systems, with respect to the set on which
the distributions are laid out. Secondly, these distance measures require the prob-
ability distributions to be discrete and be defined over the same domain. This
is not the case for the finite and infinite distributions, as the finite populations
are distributed over a grid which is a subset over A, where the peak of the delta
function describing the infinite population model’s distribution can be anywhere
in A. An option could be to resample the infinite model’s representation to the
grid of the finite model, but this would result in a distance measure that is biased
toward the population size that is used for resampling the infinite model’s delta
function.

The mean E [p] of distribution x and variance E [p — I [p]]* about this mean

Elp] = prp and (3.22)

pen
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Ep-EP]* = ) z,(p—-Ep)’ (3.23)

peET

give an idea of how the finite model deviates from the infinite model. We let
(y)? denote Y. y7. Indeed, the distance between the mean E [p] of the finite
model’s probability distribution (which is a population vector in A) and the pop-
ulation vector ps of the infinite model shows how the average behavior of the
finite population model differs from the infinite population model. The variance
Ep-E [p]]2 of the finite population model gives an indication of the variance
E[p — Poo)’ of the distance between the distribution and the infinite population
model’s state.

We use a slightly modified version of the standard deviation of the finite
population model, which also incorporates the distance between the mean and the
infinite model. We measure the ezpected deviation op,_, (x) of the finite population
model x with respect to the infinite population model py,, with

Ope (X) = /E[P —Poc)’ =  |D_2p (P — P)’ (3.24)

pen

where p represents the stochastic population vector in A that corresponds with
population P.

Note that there indeed exists a close relationship between the central moments
of distribution x and this proposed distance measure, with

0p.. (x) = E[p—po)

= Y 2 (P—Po)’

pEnw

= > 25 (p—E[p] +E[p] - pao)’

pPET

= ) z,(p—E[p)’+

peE™

23 "2, (p —E[p)) (E[p] - Poo) +

pen

> 2, (E[p] - Poo)”

pen

= ) z,(p—E[p)°+

pen

2(E[p] — Poo) Y 7p (P — E[p]) +

peEnw
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(E[p] - Px)® Y 2p

peE™

= E[p-E[P]’+2(E[p] - Px) 0+ (E[p] — Px)’ L,
thus
Elp-px)’ = Elp—E[p]+ (E[p] - px)’,

i.e., the expected variance with respect to the infinite model’s population p is the
sum of the variance around the mean of distribution x and the squared distance
between the mean of this distribution and the population vector of the infinite
model. As such, the expected deviation combines the finite model’s variance
and mean. Of course, we lose information with respect to the original moments
by compressing them into one number, but the expected deviation achieves the
descriptive value we needed for the measure of distance between the two given dis-
tributions. The proposed measure now gives an idea of how the finite population
model deviates from the infinite population’s prediction, on average.

Relation to genetic drift. In Chapter 2, we have defined genetic drift as
the effect of random sampling in finite populations, which causes frequencies of
alleles to diverge from the expected deterministic dynamics of a corresponding
infinite population model. As the expected deviation measures the difference
between a deterministic infinite population model on one hand, and a stochastic
model of finite populations, it allows us to quantify the amount of genetic drift
when dropping the assumption of an infinitely large population. Indeed, as we
run an infinite and finite model side by side, with the same selective pressure
and reproductional parameters, and measure the expected deviation of the finite
model with respect to the infinite model at each time step, we can observe how
genetic drift becomes apparent over time in the finite population model.

Similarly, we can analyze the influences of the selective and reproductive pa-
rameters and a varying population size on genetic drift in the long term. Mea-
suring the expected deviation of the limit behavior of models with differing pa-
rameters with respect to their corresponding infinite population models, allows
us to study how changes in selective pressure, mutation rate and population size
reflect on the amount of genetic drift for the given parameters.

Expected deviation of population properties. The discussion of expected
deviation of a distribution over finite models with respect to an infinite model
has, until now, only focused on the distance in between populations in A. Other
distances, measuring the differences with respect to other properties of the pop-
ulations, may also be of interest.

A measure of expected deviation in which we are also interested, is the ex-
pected deviation of the fitness distribution of a finite population model, with



3.7. 'Transient and Long Run Behavior 45

respect to the fitness in an infinitely large population. Such a measure shows how
the performance of a population is affected by dropping the assumption of in-
finitely large populations. The expected deviation of the mean population fitness
of a distribution x over m with respect to the mean fitness of an infinitely large
population p,, € A, in an environment £ is equal to

> 20 (F(p. ) = F(Ps €)) (3.25)

PET

In this case, f is adopted as a mapping of the population vectors in A to a different
space (in this case RT, the one dimensional space of mean population fitness).
Other mappings, that extract specific properties from the populations, can also
be used to study the deviation of properties between a finite and infinite model.

3.7.3 Initial population

Infinite populations. The SGA with an infinitely large population is started
with an initial population p(0). Upon the construction of an initial population
for the SGA, we assume that each of the elements in {25 has an equal chance of
being assigned to a genome in an individual.

Since the search space of haploid genomes equals the search space of the
optimization problem, with gz = (g, the initial population for studying the
dynamics is assumed to be represented with

1

Vs € QH : (p(O))s = m

(3.26)

p(0) = [N

where 1 represents the vector of size |Qg| of all 1s.

A diploid genome in §2p is a multiset of two elements from search space €1g.
If elements in (2g are distributed uniformly among the two elements in a diploid
individual, then diploid individuals {s, ¢} with s # ¢ have twice the probability
to appear in the population compared to the diploid individuals with a genome
{s,s}. Otherwise stated, drawing the two elements for compositing a diploid
individual which is a multiset causes these drawings not to be independent. The
initial population for a diploid system is thus assumed to be represented with

Vst €9 @O = {570 o, (3.27)
Qg? '
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Finite populations. If the probability g; is given that a genome ¢ € €2 is chosen
to be in the initial population of the SGA, then the probability that a population
P resides in the initial distribution x(0) of the genetic algorithm is given by the
multinomial distribution, i.e.,

x(0)), = H—'P,qu (3.28)

2

The distribution gives the probability that a haploid population is sampled,
with 7 samples, from q(0) which is defined as p(0) in (3.26). This is similar
to the sampling process in the transition rule 7 of the SGA in (3.20). For the
initial distribution x(0) over the states of the haploid model, we assume that
each genome in 2y has an equal probability of being present in the population,
similar to the initialization of infinitely large haploid populations, as in (3.26).
Since the probability ¢; for a haploid individual to be in the initial population is
the same for all haploid genomes s € Qy, i.e., gs = 1/ |Qy|, we can rewrite the
initial distribution (3.28) for the haploid model with

xO0)p = = I 126"

HSEQ'H PS' s€EQp

r

- " .
HSEQH PS' | H|

The formulation of the initial distribution over diploid populations cannot be
simplified in a similar manner.

Example 3.1 (Initial haploid distribution, 1 locus, 2 alleles). As an ex-
ample, consider the haploid model with search space Qy = Qg = {0, 1}, i.e., the
haploid genomes with one locus and 2 alleles. The initial infinitely large popula-
tion for this model is p,(0) = (1/2,1/2)". The corresponding initial distribution
over the states of the finite model, denoted by 7g, with population size r is given
by the binomial distribution xz with

r!

(e ()p = 2" (3.29)

Since the mean E[p| of this distribution is equal to the initial population

vector po, of the infinite population model, the expected deviation 1/E [p — poo]2
of the initial distribution of the infinite model with respect to the initial infinite

population is equal to the standard deviation y/E [p — E [p]]” of the finite model’s

distribution around its mean E [p], which is equal to |/Poo,0Poo,1 = g (Papoulis
& Unnikrishna 2002).

The initial distributions of these models for » = 10 and r = 30 are depicted
in Figure 3.2.
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—t—

0.246 — 0.144 —

Figure 3.2: Initial distributions of haploid model with 1 locus, 2 alleles for (a) r = 10 and
(b) 7 = 30. The horizontal axis represents the proportion of 0 alleles in the population. The
vertical axis represents the probability of residing in the given state. The vertical dashed line
represents the initial infinite population, the error bars denote the expected deviation of the
finite population model with respect to the infinite population model.

Example 3.2 (Initial diploid distribution, 1 locus, 2 alleles). In similarity
with the previous example, consider diploid individuals with one locus and 2
alleles. We let mp denote the search space of finite diploid populations with
genomes in Qp = {{0,0},{0,1},{1,1}}. If we use the ordering of genome types
as in the latter set, the initial infinitely large population for this model is p,(0) =
(1/4,1/2,1/4)7. The corresponding initial distribution over the states of the finite
model, with population size r is given by the multinomial distribution xp with
for all P € mp

r!

(xp(0))p 4P g=Fong=Pun, (3.30)

 Puoy! Py Pay!

We assume a dominance mapping d according to the binary operator A, i.e., we
assume that allele 0 is dominant over recessive allele 1. We can now phenotypically
map distribution xp over 7mp to a distribution §(xp) over 7y representing the
distribution as it is expressed in the selection process with

Per 0 otherwise

(6 xp))g= {(XD)P Q= o(P) (3.31)

for all Q € my. Figure 3.3 depicts the initial probability distributions of the
diploid model, after these have been mapped phenotypically to a distribution over
the possible representative haploid populations, using the above construction,
for r = 10 and r = 30. Note that these phenotypically mapped distributions
are equal to the distributions of the haploid population according to an initial
infinite population (3/4,1/4)". Indeed, peo {00} + Poof0,1} = 1/4 + 1/2 of the
initial individuals (those with diploid genotype {0,0} and {0,1}) are expressed
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0.281 — 0.166 —

Figure 3.3: Initial phenotypically mapped distribution over populations for the diploid model
with 1 locus, 2 alleles for (a) r = 10 and (b) » = 30. Allele 0 is dominant over allele 1. The
horizontal axis represents the proportion of phenotype 0 in the populations.

phenotypically as 0, where the other quarter (peo,1,13) of the initial population
expresses as 1 (individuals with genome {1,1}).

In distribution §(xp), the mean of the distribution is at (3/4,1/4)T and the
standard or expected deviation is equal to \/r(poo,{o,o} + poo,{o,l})poo,{l,1} = ?%,

i.e., the initial expected deviation (after phenotypic mapping) is smaller than the

expected deviation of the haploid model, with a factor @

3.7.4 Transient behavior

Infinite populations. As the heuristic function G is deterministic for infinite
populations, consecutive populations p(g) are computed by iterating G, i.e., p(g)
for g > 0 is determined with

P(9) =G (p(g—1)) or p(g) = G° (p(0)).

This iterative process of heuristic G can then be used to study the transient
behavior of the SGA with an infinite population size.

Finite populations. When the Markov chain is initialized with a distribution
x(0) over the states, we can determine the distribution over the states at gener-
ation g > 0 with

x(g) = Tx(g — 1) or x(g) = T?x(0).

The consecutive distributions of the model can then be used to study the transient
behavior of the SGA, when it is initialized according to distribution x(0).

3.7.5 Limit behavior

Infinite populations. The fixed points Af’ of the heuristic that governs the
infinite population model, with p; = G(i, P,£), or p = G (p) can be computed,
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under the assumption that they exist. A fixed point p of G is stable if the
eigenvalues \ of the Jacobian of G evaluated at P are according to |A| < 1. The
fixed points and their stability properties can be adopted to investigate the long
term behavior of the evolutionary system under selection and variation. The
discovery of attracting fixed points of G in A is often sufficient to describe the
limit behavior of the evolutionary systems.

Vose (1999b) gives an overview of methods to find the fixed points of the
dynamical systems. It is noted that the direct computation of fixed points of the
heuristic is often computationally hard and laborious. Because of the complexity
in the construction of the heuristic, and commonly large number of variables
involved, obtaining closed formula solutions for the fixed points is often hard or
computationally expensive. A successful method used commonly throughout this
thesis is the use of iteration of the infinitely large model, with an appropriately
chosen initial population. This method is feasible, as the evolutionary process
governed by G is usually focused toward states in A that correspond to populations
with high proportions of optimal individuals. However, the discovery of attracting
fixed points in the neighborhood of optimal populations is not always sufficient,
especially in the case of dynamically changing fitnesses. As an example, in Section
6.7 we study an evolutionary model that exhibits cyclic limiting behavior. We
introduce specific methods for specific models at the appropriate places, where
these specific methods are required. These and other methods are discussed in
Vose (1999b).

Finite populations. A Markov model (7,7) with transition matrix 7" has a
unique limit or steady state distribution over its states if the transition matrix is
irreducible and aperiodic (i.e., ergodic). In the case of ergodicity, the stochastic
transition probability matrix has a unique stochastic eigenvector x*, with eigen-
value 1 with

x* = lim T9%(0). (3.32)
g—0o0
This limit distribution is independent of the initial distribution x(0) if transition
matrix 7" is irreducible and aperiodic. This is stated by the Perron-Frobenius
theorem, which is introduced and discussed in detail in Appendix B.
If we want to determine the limit behavior of an SGA, the following theorem
shows that the assumption of a mutation rate p with 0 < g < 1 is a sufficient
prerequisite for the Markov model of the SGA to be irreducible and aperiodic.

Theorem 3.2. If0 < u < 1 holds for mutation rate p of an SGA, then transition
matriz T of the corresponding SGA is irreducible and aperiodic.

Proof. If 0 < p < 1, the probability, in (3.8), that any string in {25 is mutated to
any other string in {2g is always nonzero. As a consequence, the probability that
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any two strings in {2g are recombined to form any daughter string in {2¢ through
meiotic operator € in (3.14) is also nonzero. For both the haploid and diploid
SGA, the probability to generate any new child individual in €2, from (3.15) and
(3.16), is also nonzero since at least one genome in the model has a strict positive
selection probability. As a result, all factors in (3.20) are nonzero. Consequently,
all probabilities, to transit from any population P € 7 to any other population
P’ € 7 is strictly positive, such that the transition probability matrix contains
entries that are all nonzero.

A probability matrix for which all transition probabilities are strictly positive,
is irreducible and aperiodic, thus concluding the proof of this theorem. O

As a corollary to this theorem, the unique limit or steady state distribution
x* of the SGA exists if the mutation probability pu is strict positive and not 1. In
practice, mutation rates are commonly rather small and we generally assume that
the mutation rate for bit strings is within the range 0 < p < 0.5. For mutation
rates © = 0.5 and larger, the mutations in the evolutionary process work against
the progress made by selection in the model, since it causes the majority of fit
alleles to be mutated.

In the case that p = 0, the system becomes reducible. Indeed, if a genome is
lost from the population, it can no longer return to the population as a mutant,
which in its turn means that some states of the system can no longer be reached.
If some states are unreachable from other states, the model is reducible and the
limit behavior is then dependent on the initial distribution over the population.
In the case that p© = 1, the system becomes periodic. Indeed, if a population
consists of individuals of the same genome, all alleles present mutate, generation
after generation, resulting in a periodic behavior for which no limiting behavior
exists.

3.8 Numerical Methods

3.8.1 The power method

We now face the problem of numerically determining the eigenvector with cor-
responding eigenvalue 1 of the transition probability matrix 7". There are many
algorithms for approximating the eigenvectors and eigenvalues of N x N matrices,
see for an overview e.g., (Wilkinson 1965; Parlett 1980; Saad 1992). Algorithms
that are based on factorizations compute the complete eigenpair spectrum of a
matrix. Since the factorization methods cost O(N?) operations, and as we are
only interested in the eigenvector of the matrix with dominating eigenvalue in-
stead of the other unnecessary eigenpairs, they are not convenient for our goal.
We use the power method, based on matrix-vector multiplications since these
operations are cheap, and the power method renders eigenvalue-eigenvector pairs
instead of complete spectra (Kuczynisky & Wozniakowski 1992; Del Corso 1997).
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Because we know beforehand that the dominating eigenvalue of the transition
probability matrix equals 1 (in case of ergodicity), a simple version of the power
method can be implemented, as the eigenvalue is not to be computed. The power
method for an ergodic transition probability matrix 7" is given by the following
algorithm.

Algorithm 3.2 (Power method for stochastic and ergodic matrices).
g:=0
choose x(0) as the initial guess
repeat
g=g+1
x(g) :=Tx(g — 1)
until d(x(g),x(g—1)) <e€
accept x* = x(g) as the eigenvector with dominating eigenvalue 1

In this algorithm, d(x,y) denotes a suitable error measure between two vec-
tors, such that a termination criterion can be implemented in the power method
to recognize numerical convergence of the system. The algorithm is stopped upon
detection of changes smaller than e. Some examples for the power method are
the following, as discussed by van Heeswijk (2004).

e Maximum absolute element-wise change, with

di(x,y) = max |z; — y;|
em
e Maximum relative element-wise change, with

o (3, y) = max Bl
1em Z;

e Maximum relative change with respect to the maximal element, with

d3(x,y) = max M with z,,,, = max z;
1ET Tmax 1ET

e Sum of absolute element-wise change, with

da(x,y) = Z i — yil

1ET

The eigenvector x* of the transition probability matrix can thus be approx-
imated numerically by implementing the iterative process of the power method.
An initial distribution x(0) is chosen, and the consecutive distributions x(g) are
computed by repeatedly multiplying transition probability transition matrix 7°
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with this vector. Because of the Perron-Frobenius theorem, the consecutive dis-
tributions converge to the limit distribution x*. In a numerical approximation, we
keep track of the changes between consecutive distributions, and a stop criterion
is implemented that recognizes the convergence of the numerical iteration.

In the general power method, two problems may arise. If the starting vector
has a zero component in the direction of the eigenspace corresponding to the
largest eigenvalue, there is no convergence to the eigenvector with largest eigen-
value, but to the eigenvector with second largest eigenvalue. However, in the case
of ergodicity in a transition probability matrix, and if the initial vector is stochas-
tic, this problem does not arise as a corollary of the Perron-Frobenius theorem,
see Appendix B. In more general cases, random techniques with multiple start
vectors can be applied to correctly estimate the largest eigenvalue and its corre-
sponding eigenvector, as first proposed by Shub (1986) to improve efficiency, used
by Kostlan (1988) to study performance, and extensively studied by Del Corso
(1996, 1997). In order to increase the efficiency of the power method for finding
the eigenvectors with dominating eigenvalues of transition probability matrices,
similar techniques can be applied.

As a second problem, the speed of convergence depends dramatically on the
second largest eigenvalue of the transition probability matrix. The rate of conver-
gence for estimating the dominant eigenvector and its eigenvalue is |Ay/A;|? for
the gth iteration, with A\; and A\; being the largest and second largest eigenvalues.
As a result, slow convergence is expected when the separation of the eigenvalues
is badly bounded. Note that the convergence of the Markov chain is a reflection
of the rate of convergence of an instantiation of the GA represented by the model,
see e.g., Vitanyi (2000).

3.8.2 Transition matrix size

When implementing the iterative process to determine the eigenvector of the
transition matrix 7', the transition matrix 7T is computed beforehand, and kept
in memory during the iterative process. Since the number of populations grows
quickly with increasing size of search space 2 and population size r, see also (3.4),
the size of the matrix also becomes easily too large to be kept in memory.

Table 3.1 gives the number of possible population configurations, or states of
the Markov chain, for some (small) values of the search space and population
size, as given by (3.3).

If the transition probability matrix is implemented with the double data type,
which commonly consists of 8 bytes, then the Table 3.2 gives the required memory
size in bytes b, with b = 8 % |7|* to contain transition matrix 7" in memory.

As an example from this table, a haploid SGA with small population size
r = 10 and a search space of bit strings with length [ = 3, i.e., with search
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7 [19/=2 [9/=4 [9[=6 2] =8
r=10| 11 286 3,003 19, 448
r=20| 21 1,771 53,130 888,030
r=40| 41 12,341 1,221,759 62,891,499

Table 3.1: State space size of the SGA

b | Q=2 Q| =4 Q| =6 Q| =8
r=10] 968 x2° [639.03 x2%[68.80 x2%¥ | 282 x2%
r=20| 345 x2°| 2393 x2% |21.03 x2% | 574 x2%
r=40|13.13 x2°| 1.13 x2% [10.86 x2% |28.10 x2%°

Table 3.2: Transition matrix of the SGA, size in bytes

space size ()| = 8, already requires 2.82GiB* of memory to contain the transition
probabilities of the SGA. As a result, the size of the transition probability matrices
can easily get out of hand (for computer memories that are currently common to
reside around GiBs), even for small population sizes and small search spaces.

3.8.3 Transition matrix compression

In order to decrease the size of the matrices, various algorithms have been pro-
posed to lump states of the model together, thus reducing the overall size of the
transition matrix. As the size of the matrices is reduced, computing the limit
behavior becomes a more feasible computational task. The resulting behavior
(e.g., the limit behavior of the compressed system) is then unpacked to render an
approximation of the behavior of the system as a whole. Indeed, as the matrix
is compressed by grouping states together, the compression algorithm may intro-
duce an error such that exact computations of the systems’ behavior is no longer
possible. A short overview of existing compression techniques is given.

Exploiting symmetries in the transition matrix. In specific cases, symme-
tries in the probability transition matrix can be found. Because of these symme-
tries, duplicate information is stored in the transition matrix. As an example, if
two genotypes in the search space of the genetic algorithm have the same fitness
values, and their probabilities of being reproduced to become other genotypes are
the same, then populations, or states with N individuals of the first genotype

*According to S.I. standards on prefixes for binary multiples, we use KiB (kibibyte) to
represent 1024 bytes, MiB (mebibyte) to represent 10242 bytes, GiB (gibibyte) to represent
10243 bytes and TiB (tebibyte) to represent 1024* bytes, instead of the common, but confusing
kilo, mega, giga and tera prefixes (Barrow 1997; IEC 2000), which represent powers of 1000,
not of 1024
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have the same behavior as the corresponding populations with N individuals of
the second genotype instead of the first genotype. In such specific cases, the
transition probability matrix contains redundant column vectors which are per-
mutations of each other. By discovering and carefully organizing the structures of
these redundancies, and accounting for their permutations, a transition matrix,
and its computations, can be reduced in a relatively complicated implementation.
Since such a compression technique is very specific with respect to the population
structures, the selection process, and reproduction in the underlying model, the
necessary work on the implementation may not be in relation to the gains of com-
pressing the specific transition probability matrix. This is especially the case if a
multitude of models has to be studied. Note that this compression technique is
lossless and does not introduce an error in the resulting behavior. A more general,
lossy, method of compressing the transition probability matrix is in many cases
an easier and more productive option. Rowe & Vose & Wright (2005) present a
general framework for compression under which aggregation can take place with
no loss of information, and shortly discuss the applications of this framework on
the aggregation of states in a Markov model of a basic genetic algorithm.

Aggregating states with similar behavior. An initial lossy compression al-
gorithm for models of genetic algorithms was presented by Spears et al. (1996,
1998a, 1998b, 1999). Their algorithm aggregates states with similar behavior
to decrease the size of the transition matrices of Markov models of genetic al-
gorithms. Spears’ algorithm starts out with the complete matrix. Repeatedly,
populations from the state space are aggregated if their distributions at the next
generation are similar, i.e., if their corresponding column vectors in the probabil-
ity transition matrix are close together. This process is repeated until a feasible
matrix, i.e., with a feasible size, has been generated.

A problem with this technique is the fact that the exact transition matrix as a
whole must be computed and placed in memory before the compression algorithm
can start its work. Since the size of the matrix, and the required memory to store
the matrix, is the reason why compression algorithms are designed in the first
place, this algorithm becomes purposeless if huge matrices need to be studied.
Note that instead of storing the original matrix in memory, the implementation
of this aggregation algorithm can also re-generate the columns as they are re-
quired for finding suitable states to aggregate, but this would require an immense
amount of recomputation of the column vectors in order to find a reasonably small
compressed version of the original exact transition matrix. Indeed, if there are
N > 0 states in the uncompressed model, O(N?) columns (each of size N) need
to be computed to find the two states that are most similar, requiring O(N?M)
recomputations of columns if the state space has to be reduced by M states.

Aggregating similar states. An alternative compression technique is intro-
duced by Moey & Rowe (2004a, 2004b). This compression technique looks at
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properties of the populations and decides on similarities between these proper-
ties which states of the state space can be aggregated. As such, the aggregation
of states can be decided upon without generating the original exact probability
transition matrix, undoing Spears’ problem of having to store or recompute the
matrix at every aggregation step. Moey and Rowe adopt similarities in proper-
ties of fitness of the populations (maximal fitness and average fitness), or the fact
that states are near a similar fixed point of heuristic G to cluster similar states to-
gether. Assuming the hypothesis that finite population genetic algorithms spend
most of their time near the fixed points of G (Vose 1999b), allows for a fairly good
compression of the matrices, while introducing relatively small errors.

Small mutation rates introduce large errors. A general, more troublesome
problem with lossy techniques is of concern for the goal of this thesis. Both Spears
& De Jong (1996) and Moey & Rowe (2004a) point out that lossy aggregation
algorithms introduce larger errors for smaller mutation rates. As the focus of this
thesis, genetic drift, forces us to mainly study models with very small mutation
rates, we are consequently forced not to rely on these aggregation algorithms, and
we are required to work with the exact, large transition probability matrices.

3.8.4 Parallel implementation of the power method

Since probability transition matrices can easily grow too large to be analyzed by a
single computer (according to the current common standards of single computers
having a memory of merely 1 or 2 gibibytes), and as we don’t want to be restricted
easily by this limitation, we need a way to parallelize the analysis such that the
power method can be ran as a parallel method.

Our research group for BioModeling and Biolnformatics has access to a Linux
cluster, named Biowulf. This cluster has, besides a master node, 36 slave nodes.
Each of these nodes accommodates two AMD 1800+ processors, 2GiBs of memory,
and two network cards to connect to a main communication bus.

The power method can easily be partitioned to run as a parallel computation.
This section gives a general description of our method of parallelization.

Parallelization of the power method. During his internship at our group,
van Heeswijk (2004) has used the Biowulf cluster to implement a parallel version
of the power method for studying the transient and limit behavior of Markov
models of genetic algorithms. The power method repeatedly multiplies transition
matrix 7" with the current vector denoting the distribution x(g — 1) to become
the distribution x(g) at time step g. Matrix-vector multiplications can easily be
partitioned row- or column-wise, to accommodate a parallel implementation.
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Row-wise partitioning. Let r; denote the ith row in a N x N matrix 7. We
can write the matrix-vector multiplication Tx row-wise with

T T
I‘lr I'er
T T

I'NTA I'NT71X
I'N I‘NX

As a result, we can partition 7T into blocks of rows, and store each block in
the memory of a process of the parallel method. For the repetitive steps in the
power method, we let each of the processes compute their corresponding block of
elements of 7'x. The blocks of the new vector are then merged, and redistributed
among the nodes to compute the new iteration step of the power method. At
each time step, all of the processes in the parallel program receive the new vector
x and can individually decide whether the power method has converged.

Column-wise partitioning. Let c; denote the ith column in a N x N matrix
T. We can write the matrix-vector multiplication Tx column-wise with

N
TXZ(Cl Coy -+ CnN-—1 CN)X:Z.TZ'CZ' (334)
=1

As a result, we can partition 7" into blocks of columns, and store each of these
blocks into the memory of a process in the parallel program. For the repetitive
steps in the power method, we let each of the processes compute its contribution
of T'x. These contributions are then merged, and redistributed among the nodes
to compute the next iteration step of the power method. Similar to the row-wise
partitioning, each of the processes is able to decide whether convergence has been
reached or not.

In the parallel implementation of van Heeswijk (2004), column-wise partition-
ing is chosen, for two reasons. In the first place, the computation of a column
vector of the probability transition matrix can be done quickly within one process.
Indeed, a column vector of the matrix is a multinomial distribution according to
(3.20). Consequently, each of the processes in a column-partitioned parallel pro-
gram can be independently responsible for the computation of its column vectors.
In the row-wise partitioning method each of the processes would need to compute
or communicate G for all of the possible finite populations, which is slower than
restricting the computation of G to only those states that are required for generat-
ing the required column vectors. Secondly, van Heeswijk uses LZO compression
(Oberhumer 2002) to further (lossless) compress the binary data describing a
column to be able to store more data in memory. The compression method is
slow, but the unpacking of the data of column vectors, which is required at each
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iteration of the power method, is very fast. The compression of columns of the
transition matrix has been experimentally observed to be better than that of
rOWS.

Results. As a result of this parallelization of the power method, fairly large
transition matrices (according to current standards) can be analyzed. In his
report, van Heeswijk reports results of genetic algorithms with population size
r = 13 over a search space of |Q2] = 8 genomes. These experiments correspond
to probability transition matrices of 44.77GiB, being compressed with LZO to
24.7GiB. The biggest experiments ran used a transition probability matrix of
118GiB, for analyzing the limit behavior of a population of » = 500 individuals
over |Q)| = 3 individuals. This is far beyond any current standings in the lossless
study of Markov chains of GAs. The computation of this last experiment required
2 full days on the Biowulf cluster to find the converged limit behavior. In the
parallel method, a speedup of about 90% was obtained, i.e., as an example, the
power method runs 18 times faster on 20 processors as compared to running it
on a single processor. More detailed information on these and similar results can
be found in (van Heeswijk 2004).

As aresult, a parallel implementation of the power method allows us to exactly
study fairly large systems (in number of states), without loss of accuracy due to
lossy compression and approximation.






Chapter 4

Static Fitness Environments

We provide expectations of long run behavior of finite and infinite populations
in the evolutionary models we have constructed in the previous chapter, adopt-
ing an experimental mathematics approach. We focus on expectations of the
limit behavior of systems with individuals with one locus and two alleles whose
genotypes have a fixed fitness. These basic models provide a general trend for
the expectations of long run behavior for models with varying selective pressure,
population size and mutation rate. Most of the results supplied in this chapter are
not new, per se, but provide a basis for understanding the observations made in
the applications of dynamically changing environments in the following chapters.

We first study a finite population model with no selection, which is similar
to the model in the original study on genetic drift by Wright (1931). For both
haploid and diploid populations, the influence of mutation rate and population
size is discussed. We provide a correction of one of Wright’s initial results on the
balance between drift and mutation. We then introduce selection into the model,
and review the influences of selective pressure, population size, mutation rate and
ploidy on the long run behavior of finite populations.

4.1 Introduction

Before studying models of finite populations with fitness determining environ-
ments that change over time, we give some results of environments where the
fitness of an individual remains static over time. Models similar to the ones in
this chapter are later combined to create dynamically changing fitness functions.
An overview of the influence of parameters on the long run behavior of static fit-
ness functions is thus in place before moving to models of dynamically changing
fitness environments.

We start off with the simplest possible model of individuals with one locus
and two alleles, where no selection or variation is present, and later drop these
assumptions, by incorporating variation and selection. This allows us to give an
overview of the influence of the different parameters in the models on genetic
drift, and their relation to random sampling.

Similar models are studied in the areas of population genetics and the theory
of genetic algorithms. For overviews of these models and specific applications that
are out of scope for this text, we would like to refer to the population genetics
overview given by Ewens (2004), and an overview of the transient behavior of
finite population Markov models in applications of genetic algorithms in function

29
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optimization, e.g. De Jong et al (1995).

We have to point out that we mainly study the long term behavior of the
systems, and generally do not consider the transient behavior of the systems.
Also, we ignore the time required for these systems to reach their steady state
distributions. We do not discuss convergence time in detail, but nevertheless
recognize the importance thereof for the study of evolutionary systems. We refer
the reader to models that study the time to fixation in models with no selection,
such as the models with diffusion of Kimura & Otha (1969), or the application
of rapidly mixing of the transition probability matrices, required for polynomial
time convergence to populations with a high degree of highly fit individuals in
Vitdnyi (2000).

4.2 One Locus, Two Alleles, No Selection

4.2.1 Model

In this first model, we consider haploid populations of individuals with one locus,
and two alleles. An individual can thus be represented with 1 bit, i.e., Q = {0, 1}.
We also assume that there is no selective pressure among different individuals,
i.e., the fitness of all individuals ¢ € Q is the same constant ¢, with f(i, P) = c.
We adopt this model for control measurements of later applications, and to show
how a population behaves in the absence of selection. The predictions of this
first model give us an idea of how strong genetic drift can become for certain
parameters, as variation with mutation rate p and sampling of the population
are the only processes at work in systems with neutral selection.

Note that predictions of this model correspond to the behavior of a diploid
population, with one locus, two alleles and no selection. Indeed, we have pointed
out in Section 2.3.2 that the only difference between the reproduction scheme of
haploid and diploid populations is the state in which individuals are mature and
when fitness is determined. Since selective pressure is assumed not to be present
in this model, the dynamics of a diploid population of size r thus corresponds
with a haploid population of size 2r, where the mature individuals in the haploid
populations coincide with gametes in the diploid population. The predictions of
this section consequently also relate to diploid models, whose population size is
half that of the haploid models.

Reduced heuristic function. Let p = (py,p1)' represent an infinitely large
haploid population P for this model, which is only subject to mutation. Since
the genotypes of the individuals only consist of one locus with only two possible,
atomic alleles, crossover can be ignored. Accordingly, we can reduce the heuristic
function G, as constructed in the previous chapter considerably, with

Gp) = ( (1 = p)po + pupr ) ppo + (1 — p)p: )"
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= ((p(l—p+0=po)p , A=plu+p(l—p) )’
= ( (@Q-2ppo+p . (Q=2wp+p ). (41)

Since p; = 1—py for any population P, we can thus write a step of this system with
an infinite population size only in proportions of genome 0, with pjy = (1—2u)po+pu
representing the expected proportion of genotype 0 in population P’ at the next
generation for a given population P.

4.2.2 No variation

We first assume that no variation is present, i.e., u = 0.

In this case, all states of the infinite model are fixed points of the system.
Indeed, in this case (4.1) can further be reduced to G(p) = p, indicating that
no change in proportions of types 0 and 1 is expected over time, and that con-
sequently all states are fixed points. None of the fixed points are stable, nor
unstable in the usual sense; a small perturbation from one fixed point does not
die out, it simply gives a different solution.

If the assumption of infinitely large populations is dropped, and a finite pop-
ulation size is assumed, then the populations with py = 0 or py = 1 — the popu-
lations that only contain one allele, either all 1 or all 0, respectively — are steady
states. The probability transition matrix T of this system, as given by (3.21),
is reducible. Indeed, if the system ends up in either of the two states where
po = 1, or p; = 1, then no escape from these states is possible, making the
chain reducible. As a result, there is no unique eigenvector with eigenvalue 1 of
transition probability matrix, that would give the unique limit distribution of the
system at hand. Depending on the initial distribution py(0) and p;(0) of alleles
0 and 1, the system has probability po(0) of ending up in population P* with all
individuals of type 0, i.e., p§ = 1, in the long run, and probability p;(0) to end
up in the state with pj = 0, see, e.g., Wright (1931).

Note that the differences in predictions between the infinite population model
and the finite population model are due to genetic drift, by definition. Where
the deterministic infinite model predicts that the initial distribution among in-
dividuals is expected to be stable, the stochastic, finite model predicts that the
populations drift away from these proportions, to become fixated in a population
that consists either of all 0 or all 1 individuals.

These observations relate to the Hardy-Weinberg equilibrium. If no variation
or selection is present in the model, the frequencies of genotypes in the infinitely
large model remain in their initial frequency ratio pg : p;. For the corresponding
infinitely sized diploid model, diploid individuals with genotypes {0, 0}, {0, 1} and
{1,1} are created through fertilization with ratio p3 : 2pep: : p?, and this ratio
remains the same over time, which is stated by the Hardy-Weinberg principle
(Hardy 1908; Weinberg 1908). In contrast, the ratios of frequencies of the diploid
genotypes in finitely sized population drift away in similarity with the haploid
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Figure 4.1: Graphic representations of transition functions (top) and steady state distributions
(bottom) for the system with no selective pressure for 3 different parameter settings. See the
text for the key of these figures.

model, until their ratio hits either one of the boundaries at 1 : 0: 0O or 0: 0 : 1.
The probability of ending up in the state that is identified by ratio 1 : 0 : 0 is
equal to the initial frequency po(0) of gamete 0, see, i.e., Ewens (2004).

4.2.3 Variation

If a variation operator — which is symmetric for both strategies — with 0 < p < 1/2
is assumed, only the state p* = (1/2,1/2) is a fixed point of the infinite population
model, given by the solution of

po = (G(P"))

= (1—2p)ps + p

which holds for pj = 1/2. This fixed point is also stable, since the derivative of
G in p* is smaller than 1, making the fixed point an attractor of the system. An
infinite model thus predicts that the system ends up in a population that has
an equal amount of individuals with phenotype 0 and those of type 1. We now
contrast this prediction with expectations of finite, stochastic population models.

In Theorem 3.2, we have shown that for 0 < g < 1, the finite population
model is ergodic. Consequently its limit behavior is given by the unique stochastic
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Figure 4.2: Expected proportion of 0 genomes and standard deviation about this expectation
in the limit distribution of the system with no selective pressure, for (a) different population
sizes with p = 0.01 and (b) different mutation rates with » = 20.

eigenvector of the transition probability matrix of the system, with corresponding
eigenvalue 1. This distribution over the states of the system describes the long run
behavior. For the system with finite populations, Figure 4.1 depicts the transition
functions and the limit or fixed point distributions of the finite population model,
for a small set of population sizes and mutation rates.

The top figures represent the transition matrices of the finite population
model. The deterministic map diagram of the infinite population model defined
by G is also shown. The horizontal axis represents the current proportion of the
genomes of type 0 in the population, the vertical axis represents the proportion
at the next generation. Each gray scaled box represents the transition probabil-
ity between states in one generation for the finite model. Darker grays represent
higher probabilities. The gray scale is the same for all three figures. The infinite
model’s mapping function (G) is imposed on each of the figures. The dashed
white line represents the diagonal, i.e. where the proportion of 0 genomes at the
next generation equals the proportion at the current generation.

In the bottom figures, the bars denote the probability of ending up in the
population with the given proportion of 0 genomes. The dashed vertical line
denotes the mean of the distribution, i.e., the expected proportion of individuals of
type 0 according to the distribution. This expected mean is always at 0.5 because
of symmetries in the system, and is thus equal to the fixed point of the infinite
population model. The horizontal error bars denote the expected deviation of
the finite model’s limit behavior with respect to the infinite population’s fixed
point (see Section 3.7.2). Since the fixed point of the infinite model is equal
to the mean of the distribution, it also represents the standard deviation of the
distribution according to the mean of the distribution. Note that there is no
standard deviation in the infinite model as the system is deterministic and has a
unique fixed point.
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Figure 4.3: Standard deviation about the mean of the proportion of 0 genome in the limit
distribution of the system without selective pressure, for different population sizes and mutation
rates. Expected proportions of the 0 genome is always 1/2.

Figure 4.1(a) shows a typical steady state distribution for sufficiently large
population sizes and large mutation rates. In this type, the system is most likely
to end up with highly diverse populations.

Figure 4.1(c) shows a typical limit distribution for systems with a sufficiently
small population size or a relatively small mutation rate. In these cases, a run of
the system will most likely end up in either one of the populations filled exclusively
with either genome 0 or 1. Note that with these parameter settings, the system
prefers extremes of the state space, and avoids the predicted “stable” fixed point of
the infinite population model. Similar behavior has also been observed in models
of simple genetic algorithms (Vitanyi 2000). An evolution, or instantiation of the
model diverges from the expected average behavior of the infinite model, and even
from the finite model’s expected behavior. Once a population becomes fixated
in either all Os or all 1s, chances are small that the population escapes from this
state of fixation to return to the expected average behavior. It is often assumed,
when studying models of infinite populations that perturbations from the infinite
model — as a result of stochastic sampling — fade out after time and return to the
state as predicted by the infinite model. However, since stochastic perturbations
develop continuously in a small population, there is only a very small chance for
the population to return to its expected behavior. As a result, the variance of
the expected average behavior is larger.

Figure 4.1(b) shows a snapshot of the transition from the first type to the
second. Note that the behavior depicted in these distributions is structurally
very different, although the infinite population model predicts the same stable
fixed point for all of these evolutionary systems. These differences in predicted
behavior are due to genetic drift around this stable fixed point. Drift is stronger
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as populations become smaller, since more sampling effects govern the dynamics
of the system. Drift is also stronger as the mutation rate decreases, which results
in a higher probability of fixation of an allele due to slow production of genetic
diversity.

The standard deviation o of the steady state distributions’ means can be em-
ployed to discuss the importance of genetic drift with finite populations, and we
are able to predict how the parameters are influencing the system’s behavior.
Later on, we use similar techniques to discuss genetic drift in evolutionary sys-
tems with selective pressure, and can use the current model — which assumes no
selective pressure — as a control measurement for predictions and expectations in
the presence of selection.

Two forces are at work in the system, and try to keep each other in balance.
On one hand, mutation introduces diversity in the populations, and pushes the
population to a ratio of frequencies 0.5 : 0.5, as in the infinite model. On the
other hand, random sampling in the finite model causes the frequencies of the
genotypes to drift away from the expected equilibrium of the infinite population
model, at ratio 0.5 : 0.5, toward populations in which either allele 0 or 1 is
fixated. Dependent on whether random sampling or variance through mutations
is strongest, higher probabilities are expected at the edges of the limit distribution
— representing a high probability of ending up in populations which fixated on
a specific allele — or near the middle of the limit distribution — representing a
high probability of ending up in a population that is highly diverse — respectively.
We give an overview of the interaction of varying population sizes and mutation
rates.

Population size. Figure 4.2(a) shows the influence of a varying population size
on the standard deviation of the distribution around the mean, for p = 0.01.
Figure 4.3 depicts the influence of the population size for a range of mutation
rates.

Assume a fixed mutation rate g with 0 < g < 1/2. As population size r
increases, the standard deviation ¢ decreases. Indeed, as populations become
larger, the effects of random sampling, and thus genetic drift in the finite popu-
lation, is less apparent, and the system as a whole becomes more deterministic.
Consequently, as the population size becomes larger, the finite population model
behaves more similar to the deterministic infinite population model, where o = 0.
Indeed, if we keep on increasing the population size, then o comes closer to 0, and
the mean of the distribution converges to the fixed point of the infinite population
model. Note that in the current model, the fixed point of the infinite model and
the mean of the finite population are always the same. This statement is thus
trivial, but becomes more important as there will be a difference between these
two predictions as selective pressure is considered.

In the case that the population size goes toward the other extreme, where
r = 1, the system becomes more influenced by genetic drift. As » = 1, the only
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two states of the system are states of fixation, and either state is visited with
probability 1/2 in the long run distribution. As the population size goes toward
this extreme, so does the corresponding system’s behavior, independent of the
mutation rate.

Mutation rate. Figure 4.2(b) shows the influence of a varying mutation rate on
the standard deviation of the distribution around the mean, for » = 20. Figure
4.3 depicts the influence of the mutation rate for a range of population sizes.

Assume a fixed and finite population size r. As the mutation rate in the
evolutionary system is sufficiently decreased, a run of the system most probably
ends up in either one of the populations with only one genome, as the rate of
new mutations being added to the population doesn’t keep up with the rate of
fixation due to random sampling. In the limit, where a mutation rate of 0 is
assumed, the transition matrix of the evolutionary system becomes reducible,
and the steady state distribution of the Markov chain is no longer unique. If y =
0, two linearly independent stochastic eigenvectors of the transition probability
matrix with corresponding eigenvalue 1 exist, and either one of these eigenvectors
represents a distribution where the evolutionary system ends up with a population
containing only one genotype. As the mutation rate is sufficiently decreased
toward 0, the finite population model better resembles the extreme situation
where p = 0.

As the variational pressure is increased, i.e., as y becomes larger, more random
individuals are generated by the reproduction process. In the extreme case, where
i = 1/2, each generation renders a new random population with the probability
of either individual in this population being 1/2. At each step, a distribution over
the state space is constructed that is a binomial distribution. The probability of
encountering a population with n out of r individuals being of type 0 is then

given by ; %T. As this is the case for each of the generations during a run

of the system, it is also the limit or steady state distribution. Consequently, if a
mutation rate of 1/2 is assumed, the expected proportion of either genome is 1/2.
The standard deviation of a binomial distribution of r trials over probabilities p
and ¢ = p—1 about its mean equals /rpg. When scaled down to proportions, the
standard deviation ¢ about our expectation thus becomes ﬁ As the mutation
rate is increased toward 1/2, the finite population model better resembles the
extreme situation where py = 1/2.

With higher mutation rates, the transition probability to go from any par-
ticular population to any other is more evenly distributed over the set of states.
As more variational pressure is available in the model, the time required for the
power method to hit a good approximation of the limit behavior becomes shorter.

Relation between population size and mutation rate. According to the
observations of the previous sections, there seems to be a strong connection be-
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tween the mutation rate and population size of the model. For a given population
size, a sufficiently low mutation rate can be found such that the expected behav-
ior is governed by fixation of alleles in the population. Similarly, a relatively
large mutation rate results in highly diverse populations. At a specific mutation
rate — which is a function of the population size — the behavior transits from
the first behavior pattern to the second. As the population size is increased, the
mutation rate at which this transition takes place is decreased, since the effects
of random sampling are less strong in large populations and can thus more easily
be countered by a low mutation rate.

In the continuous approximation of the model, as studied by Wright (1931)
and given full account by Ewens (2004), a general formula that gives a description
of the limit distribution x* is given by

(x")p = Cpg™ (1 —po)”™ Y, (4.2)

with C a normalization constant given by

é _ Z_; (;)m_l (1 - ;')m_l. (4.3)

Note that this form of the limit distribution depends on the product of population
size r and mutation rate u.

For large values of ru, the approximation of the limit distribution as given by
(4.2) has a maximum at py = 1/2, and minimal values at both py = 0 and py = 1.
This corresponds to a limit behavior that has high probabilities of populations
that are highly diverse, and a low probability of fixation of the population.

For small values of ru, the limit distribution in (4.2) has a minimum at py, =
1/2, and maximal values at both py = 0 and py = 1. In such a distribution,
there is a high probability of populations that are fixated, and a low probability
of being in a state whose population is highly diverse.

If p and r are chosen according to u = 1/2r, (4.2) predicts a uniform limit
distribution.

From this approximation, Wright derives that if p < %, then genetic drift is
stronger than the rate of introducing new mutants in the population, resulting in
a distribution that has its maximal probabilities for the populations with either
po=1and p; = 1. If p > %, the rate of mutation is stronger than the rate
of fixation, and the distribution is predicted to have a maximum probability at

po=1/2.

Wright and Ewens thus predict that the transition between these two possible
situations occurs at u = 1/2r.

Although Wright predicts uniform equilibrium distributions at this point, nu-
merical computations show that the exact equilibrium distribution for y = % is
not really uniform in this case, see also Figure 4.4(a), which we discuss in more
detail later on. Hence, we investigate whether a uniform distribution for specific
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values of r and p is possible. In fact, an equilibrium distribution x* with all com-
ponents x; equal, i.e., x; = 7«4%1 cannot be found. However, a limit distribution

with all components x; approximately equal, except for ¢ very small and very
large, does exist if u = 27,12. We give the derivation of this result.
The equilibrium distribution, or limit distribution x* of the model is the vector

that satisfies

v =Y Tyz} (4.4)
j=0

where the entries of transition probability matrix 7" are given by sampling the
heuristic r times. The heuristic for a population where 5 out of  individuals are
genome 0, as in (4.1), is given by

g((%ﬁ—%)T)=((1—2u)%+u,1—(1—2u)%—u>T. (4.5)

The probability that this model is sampled such that ¢ out of r individuals are
genome 0 gives the transition probability

TJ=<:) ((1—2u)%+u)i(1—(1—2u)%—u>r_i- (4.6)

We want to find the conditions for which this equilibrium distribution x* is uni-
form, i.e., when (4.4) is according to

1:2(2) ((1—2u)%+u>i(1—(1—2u)-%—u>ri. (4.7)

§=0

By introducing z = % and by multiplying both sides with %, the summation can be
replaced by an integral, describing a continuous approximation of the equilibrium
distribution with

1
L= (1) ] a0 02— e (49
for 2 = 0,1,...N. This approximating integral can be obtained by replacing the
states of the finite model by a continuous state space, e.g., by using the trapezium
rule for integration. The error of this approximation is of order O(1/r?) and
mainly affects the correctness of states with 2 =0 and ¢ = r.

By introducing a new variable y = (1 — 2u)z + u, where dy = (1 — 2u)dz we
can rewrite (4.8) as

1 r 1 o r—i
?_(i)l—mfu y'(1—y) " dy. (4.9)
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Figure 4.4: (a) Limit distribution of the model for 7 = 20,y = 52— (solid lines) and for
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r=20,p = 2% (dashed lines) and the uniform distribution (dotted). (b) Euclidean distance
from the limit distribution of the model — for various r and pu = 5 L solid) and p = -
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(dashed) — to the uniform distribution.

Function y*(1 — y)"~* has a sharp peak with maximum at y = %, and tends very
fast to 0 if y moves away from this peak. For values of ¢ that are not close to 0 or
r and for small mutation rates p, the sharp peak is not close to the integration
borders p and 1 — p, and consequently within the integration interval. Replacing
the integration borders with 0 and 1 thus gives a good approximation of the
integral in (4.9), for values of ¢ that are not near 0 and 7, hence

Lo(r)y 2 /1 i(1 — y)rid (4.10)

The integral is the beta integral, or Eulerian integral of the first kind (Whittaker
& Watson 1990), with value 27—9 whose substitution yields

(r+1)!

r r 1 d(r—1d)!
r \i ) 1=2u (r+1)!
7! 1 ad(r—1)!

iNr—ai)!'1—2p (r+1)!

1
- GTaeED (4.11)

Note that all occurrences of i have dissolved. Further simplification of (4.11) gives

1

TS (4.12)

N:

Our derivation thus expects a limit behavior that can be approximated by

the uniform distribution x* with z}' = -5 when the mutation rate u equals
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ST +1), which is only slightly different from Wright’s (1931) prediction of y = -

Because of the approximation in step (4.9-4.10) we expect that these dlstrlbutlon
probabilities x} are fairly good approximations, if ¢ is not close to 0 or 7.

We can verify this prediction by computing the exact limit behavior of the
model for parameters with p = 1 and p = 2(7~1+1) and comparing these distribu—
tions to a uniform distribution x* whose probabilities are all equal to

+1
Figure 4.4(a) shows the limit dlstrlbutlon of the model with no selection for
r = 20 with p = + and p = T, and compares these with a uniform distribu-

tion. Note that the limit distribution of our expectation is “flatter” around the
middle, and is generally closer to the uniform distribution, thus representing a
better expectation of the transition than Wright’s expectation at p = ==

Figure 4.4(b) gives the Euclidean distance 4/(x* — x*)* from the limit distri-

butions x* (of both our and Wright’s predictions of “uniform” limit distributions)
to the uniform distribution x* of d1mens10n r + 1 whose entries are all ? It
is clear that the prediction of y = G +1) gives a limit distribution that is closer
to the uniform distribution as compared to the limit distribution according to
Wright’s prediction with g = o=. The mutation rate y = G +1) thus better repre-
sents the relation between mutatlon rate and population size, for the transition
from the influence of genetic drift through random sampling on one hand and to

mutational pressure on the other hand.

Up until this point, our model did not include selective differences among the
genotypes. In the following model, we drop this assumption. One genotype is set
to be selectively advantageous over the other, and we study how selective pressure
influences the importance of genetic drift.

4.3 One Locus, Two Alleles, Selection

4.3.1 Model

In the following models, we assume static selective pressure. A fitness function f
is adopted that is defined by f(1,P) =1 and f(0,P) =1— L where 0 < L < 1.
As L becomes larger, the selective pressure is also increased. Parameter L thus
represents the amount of selective pressure in the model. In the case that L = 0,
no selective pressure is exerted on the individuals in the population, as discussed
in the previous section. In the model, the mean fitness of a population P equals

= pl+(1-p)1-1L)
= 1-L(L-p).
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Figure 4.5: Distributions of transient behavior in a haploid model at initial generations g =
0,1,2,3 for r = 10 (top) and r = 30 (bottom) with fitness function f(0,P) = 0.5, f(1,P) =1
and mutation rate p = 0.01. The horizontal axis represents states by their proportion of 1
individuals, the vertical axis represents the probability of being in a certain state. The infinite
model is represented by a dash-dotted vertical line and the mean of the distribution of the
finite model is represented with a dashed vertical line. The horizontal error bars represent the
expected deviation of the finite model with respect to the infinite model.

The probabilities that genomes 0 and 1 are selected from the population are given
by

_ wfO,P) _ (A=p)d=1)
S0, F) = f(P) 1-L(1-p)

_ plf(laP) _ b1
S, F) = fpy 1-L-p)

The probability that an individual of type 1 is generated from this selection,
according to a “bit flip” mutation rate u is then equal to

G(,P) = (1—wS(,P)+us(0,P)

(1= wpr + p(l —p)(1 - L)

p1(1=2p+pl) + p(l—L)

The heuristic function G for this model is given by these probabilities with

Gp) = (1-G(1,P),GQ1,P))". (4.13)
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Figure 4.6: Phenotypically mapped distributions of transient behavior in a diploid model at
initial generations g = 0,1,2,3 for » = 30 with fitness function f(0,P) = 0.5, f(1,P) =1
and mutation rate g = 0.01. The horizontal axis represents populations according to their
proportion of phenotype 1. In the top distributions, advantageous allele 1 dominates deleterious
allele 0, and in the bottom distribution, deleterious allele 0 dominates advantageous allele 1.

The fixed points p* of heuristic G are given by their component p}

p = pi(1—2p+pl) +p(l - L)
' 1—L(1 —p})

and pj = 1 — p]. For a given selective pressure L and mutation rate u we can
now determine the fixed point in A of the heuristic G. This fixed point gives the
expected proportion of genome 0 in the limit behavior of the infinite population
model.

For the finite model with population size r, the heuristic function G is sampled
r times. We construct the Markov model with transition probability matrix 7’
according to (3.21). This matrix is used for studying the behavior of the finite
population model.

4.3.2 Transient behavior

Haploid model. The distributions of the transient behavior of the haploid model
for the first few generations for r = 10 and r = 30 are depicted in Figure 4.5, both
with L = 0.5 (i.e., the fitness of individuals of type 1 is twice that of individuals
of type 0) and p = 0.01. The initial distributions at g = 0 are given as in (3.28).

As consecutive generations are formed, the probability of having a population
with higher proportions of 1s increases. The expected deviation with respect
to the infinite model changes over time as evolution progresses. Initially, the
population searches for regions in the search space with high fitness, causing an
increase in the standard deviation of the distribution about the mean of the finite
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Figure 4.7: Expected proportion of 1 genomes and standard deviation in the limit distribution
of the haploid system with selective pressure (a,b) L = 0.1 and (c,d) L = 0.5, for (a,c) different
population sizes and (b,d) different mutation rates. The graph in dashed line type represents
the expected proportion of allele 1 in the corresponding model with infinite population size.

model. Also, as we discuss later on, the search in the finite model progresses
more slowly than the progress made in the infinite model. Since the expected
proportions differ from the proportions in the infinite model, this difference results
in a higher expected deviation of the finite model, as discussed in Section 3.7.2.

In the search process, the system then focuses on populations with high mean
fitness. The population “converges” to states with a high proportion of highly
fit individuals, again becoming more similar to the expectation of the infinite
model, resulting in a gradual decrease of the expected deviation. For generations
g > 0, the mean of the distribution of the finite model differs slightly from the
population in the infinite model. We discuss these deviations among expected
proportions of alleles between the finite and infinite population models, and the
origin thereof in Section 4.3.3.
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Figure 4.8: Expected proportion of phenotype 1 and its standard deviation in the limit distri-
bution of the diploid system with selective pressure L = 0.1 for (a) different population sizes
and (b) different mutation rates. In the top figures, advantageous allele 1 is dominant, in the
bottom figures deleterious allele 0 is dominant.

Diploid model. Figure 4.6 depicts the distributions, after phenotypical mapping
through ¢, as in Example 3.2, of the first generations of the corresponding diploid
model. Similarly to the haploid model, the probability of having a population
with high proportion of phenotype 1 increases over time, but slower.

If the fitter allele is also the dominant allele, the diploid algorithm produces
better proportions of the fit allele in comparison with the haploid model. Vice
versa, if the fit allele is recessive, the results are worse than the haploid model.
If allele 1 is dominant, both homozygous and heterozygous individuals that are
represented by the genotypes {1,1} and {0,1} have a high fitness, with only
the homozygous individuals with genotype {0, 0} receiving a low fitness. In con-
trast, if allele 0 is dominant, the heterozygous individuals also have a lower fitness.
Thus, if the dominant allele has a higher fitness, its phenotypic expression through
the dominance operator gives the population a benefit, resulting in a better per-
formance in the system where the fitter allele is dominant over the other. It’s
thus easier for the population with dominant allele 1 to find the populations with
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high fitness, as compared to the population whose allele 1 is recessive. Another
notable effect of dominance, is that the standard deviation in the model with the
less fit dominant allele is higher than the model where the fit allele dominates.
This is because — in the model where the fit allele is recessive — unfit heterozygous
individuals are generated with a higher probability, even if only a small propor-
tion of the population contains unfit dominant alleles, increasing the diversity
in fitness of the populations in the distribution, which consequently results in a
distribution with a higher standard deviation.

4.3.3 Limit behavior

Figures 4.7 and 4.8 show the influences of population size r, mutation rate pu,
selective pressure L and ploidy on the expected proportions of alleles in the long
run. The limit distribution is the unique eigenvector x* with eigenvalue 1 of the
respective transition matrix.

In contrast with the model without selective pressure, the expected propor-
tions of 0 alleles (or 1 alleles) in the finite model’s limit distribution deviate from
the expectations of the infinite population model. This is due to the stochastic
effects of random sampling, and thus of genetic drift acting upon the systems.
Indeed, the system balances the processes of selection and mutation — as pre-
dicted by the infinite population model — on one hand and the process of random
sampling — which results in genetic drift — on the other hand. The deviation
of expected proportions of alleles in the finite model’s limit behavior with re-
spect to the infinite population model increases as the mutation rate, population
size or selective pressure decreases. These parameters weaken the effectiveness
of selection and mutation processes in comparison with the influence of random
sampling, and thus drift. Genetic drift is a random process, and is not focused
on generating higher proportions of the fitter allele, but works symmetrically for
both alleles. Consequently, the expectations of fitness in a deterministic infinite
population model may serve as an upper bound of the expected fitness of the
finite population model.

We discuss the specific influence of the different parameters in the model
separately in the following paragraphs.

Selective pressure. If selective pressure is less prominent, the deviations of
the finite population with respect to the infinite population model are more sig-
nificant. Indeed, as the selective pressure is decreased, the direction in which
populations evolve toward higher proportions of fit individuals becomes less fo-
cused. This is also the case in the infinite model, where the expected proportion
of advantageous alleles in the limit behavior is lower as the selective pressure is
decreased.

Accordingly, the influence of genetic drift on the finite model becomes more
important, as compared to the influence of selecting individuals with the advan-
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tageous allele. In the extreme, where no selective pressure is present, i.e., when
L = 0, genetic drift and variation are the only processes governing the dynamics
of the system, as in the previous system of Section 4.2.

As the selective pressure is increased, the infinite model is more focused on
acquiring higher proportions of fit individuals. As a result, drift has less effect
on the process in the finite population model, and the expected behavior of the
finite model then also better resembles that of the infinite model.

Population size. Since more stochastic effects of random sampling are expected
in smaller populations, as in the model with no selective pressure, the deviation
between a finite population’s limit distribution and the expected population of
the infinite model grows as the population size in the finite population model
is diminished. Smaller populations tend to perform worse with regard to fitness
than bigger populations, as the sampling allows deleterious alleles to be randomly
produced in the population at the next generation, as compared with the genera-
tions in the infinite model. In the extreme case that r = 1, the limit distribution
of the system has probability 1/2 for either state, with either alleles 0 or 1 being
fixated. This observation can be made independent of the selective pressure, as
in the model where populations only contain one individual, there is no selection.
If » = 1, the selection process can only render the one individual in the popu-
lation, independent of its fitness. Thus, as the population size is decreased to
this extreme where r = 1, the limit distribution converges to this behavior where
either allele has an equal probability of ending up in the limit distribution.

This positive relationship between population size and performance of the sys-
tem has been commonly observed by practitioners of genetic algorithms, where
large populations are said to have more computational power at hand to find a
good solution for an optimization problem. The observed decrease in computa-
tional power of a small population is due to the increased influence of stochastic
effects of random sampling at each generation. Because of random sampling, indi-
viduals with deleterious alleles have a greater probability of invading these small
populations. The loss in computational power of small populations can thus be
explained in terms of genetic drift within the finite population model.

Mutation rate. As the selective pressure is low, the finite model deviates more
from the expected population of the infinite population model as the mutation
rate is decreased. This is also due to the balance between the infinite model’s
dynamics and drift.

We have observed — in the system where no selection is present — that the
standard deviation of the finite model’s limit behavior increased as the mutation
rate becomes smaller, i.e., genetic drift and the fixation of alleles became more
prominent as the rate of mutation was too slow to introduce new alleles to the
population. With a slow mutation rate, alleles thus have a higher probability of
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becoming fixated, and others become lost from the population, as new mutant
alleles have a slow rate of entering and invading the population.

The model with selective pressure finds a balance between two forces. On one
hand, there’s the dynamics of the infinite population model which is governed
by the selective and variational pressure. On the other hand, genetic drift in
the finite model forces the population towards less diverse populations. If the
selective pressure is sufficiently low, the expected population in the finite model
deviates from the expected population in the infinite model as the mutation rate
is decreased. If the selective pressure is sufficiently high, the selection process can
undo the effects of random sampling.

Ploidy and dominance. The influences of the parameters in the previous sec-
tions also apply to the expectations of the diploid model. In coherence with the
observations of the transient behavior of the diploid model, better proportions of
fit individuals are expected if the dominant allele is the fitter one, even better
than the expectations of the haploid model. It should however be pointed out it
may be observed — from simulations and the implementation of the power method
— that the time required to hit the steady state distribution of the diploid model
is longer than the time to reach the steady state for the haploid model. We have
however not studied this observation as our main focus is the long term behavior
of the systems.

Summary

We have adopted the models of the previous chapter to indicate how the param-
eters of the model influence the long term behavior in evolutionary systems in
environments that remain static over time. We have observed that, for sufficiently
small populations, or sufficiently low mutation rates, that the system is mainly
governed by drift. There is, consequently, a higher probability of fixation with
these parameter settings. For sufficiently large population sizes and fast mutation
rates, the long term behavior of the evolutionary system has a higher probabil-
ity to end up in populations whose composition of individuals is highly diverse.
We have provided a correction of Wright’s prediction on the boundary between
drift and mutation. If selection is assumed, these effects are also at work, but
the model finds a balance between the forces of selection and mutation on one
hand, and fixation of alleles because of drift on the other hand. Drift becomes
stronger as the selective pressure in the population is decreased. Dependent on
the dominance of the fit allele, a diploid population may perform better in the
long run as compared to a haploid population.

Relation to genetic algorithms. In genetic algorithms, larger population sizes
do not necessarily result in better run times of implementations of genetic algo-
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rithms, as the fitnesses of the individuals of a genetic algorithm are not computed
in parallel. Instead, a generation in an implementation of a genetic algorithm usu-
ally requires O(r) fitness evaluations, as all of the individuals have to be evaluated
by a — usually costly — fitness function. The results given in this section discuss
the behavior of the genetic algorithms in the long run, so we have ignored these
implementation details in this study. However, even in the long run, the effects
of a population size can be observed, and are thus not only of importance for the
transient behavior of a genetic algorithm. For a specific study of the transient be-
havior of genetic algorithms in function optimization with finite Markov models,
see De Jong (1995).

The observations of choosing a small mutation rate as being optimal in the
long run behavior are also in contrast with the experiences of a practitioner in
genetic algorithms. In the long run, a low mutation rate is preferred as it does
not allow any deleterious mutant alleles to enter the population, if it has a high
proportion of advantageous alleles. When studying the transient behavior of a
genetic algorithm, however, setting the mutation rate too low also refuses to
allow advantageous mutants to enter a population of deleterious alleles. In a
practical implementation of a genetic algorithm, the mutation rate must thus
be chosen such that it balances the exploration of new areas of the search space,
which may contain promising advantageous mutants, and the exploitation of these
advantageous areas of the search space, by not setting the mutation rate too high.
As the mutation rate of a model is higher, the resulting Markov chain mixes more
rapidly. In that case the steady state of the Markov chain is reached more quickly,
i.e., the behavior of the genetic algorithm converges faster to its limit distribution.
However, as we can see from the observations of the long run behavior of the
model, increasing the mutation rate leads to smaller probabilities of obtaining
highly fit individuals in the long run. See Vitanyi (2000) which discusses the
relation of this balance for the design of good genetic algorithms.

In the short run, there is no obvious benefit of adopting diploid populations
over haploid populations for function optimization in genetic algorithms, but
better performance may expected in the long run, dependent on the dominance
scheme. We have not considered models where the dominance of alleles can change
over time, but it is clear that such schemes may be beneficial for the performance
of a diploid genetic algorithm, both in the short and long run.

Inherently with the transient behavior, there is a higher standard deviation
in the limit distribution in the diploid model as compared to the haploid model.
A diploid population thus maintains more diversity throughout its transient evo-
lution, which may turn out to be beneficial once we study dynamically changing
fitness environments in the following chapters.



Chapter 5
Explicitly Dynamic Fitness Environments

We construct Markov models of evolutionary systems in environments whose
fitness function changes over time. Two separate models are presented, with
fitness functions that are alternated deterministically or stochastically over time.
In the case of ergodicity, the limit behavior of these systems can be utilized to
express predictions of expected behavior and measurements of performance for the
algorithm and its parameters. We provide methods to study the limit behavior
and performance of the evolutionary systems in their dynamic environments.
We also show how the stochastic and deterministic environment models can be
applied to study the influence of the system’s parameters — ploidy, mutation rate,
frequency of changes in the environment, population size and selective pressure —
on the long run performance in the respective environments. We compare these
observations to the conclusions of the previous chapter.

We shortly introduce dynamic optimization problems, and construct Markov
models of evolutionary systems in deterministically and stochastically alternating
fitness functions. A study of the expected behavior of the evolutionary system in
an environment with an alternating deleterious allele is provided.

The contents of this chapter is based on two published papers, namely
A M.L. Liekens, H.M.M. ten Eikelder, P.A.J. Hilbers, Finite Population Models
of Dynamic Optimization with Alternating Fitness Functions (2003¢) and A.M.L.
Liekens, H.M.M. ten Eikelder, P.A.J. Hilbers, Finite Population Models of Dy-
namic Optimization with Stochastically Alternating Fitness Functions (2003d).

5.1 Introduction

Genetic algorithms commonly address optimization problems that are static in
time, as in the previous chapter. Similarly, most applications of studies in popula-
tion genetics focus their research on environments in which selection is static over
time. Many real world applications of optimization techniques, and real world
natural environments, have time dependent characteristics. In dynamic opti-
mization, online optimization techniques try to track optima of changing prob-
lems (Branke 2001). Branke (2003) gives an overview of adaptations of genetic
algorithms to better track changes in optimization problems and their optima.

Models of dynamic optimization. Models of populations with infinite pop-
ulation size in dynamical environments have been studied in (Rowe 2001) and
(Ronnewinkel, Wilke, & Martinetz 2001). Dynamics of evolutionary techniques
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for the dynamic bit matching problem have been studied by Droste (2002) and
Branke & Wang (2003). Arnold & Beyer (2002) study the behavior of an Evolu-
tion Strategy tracking the optimum of a moving peak problem.

In this chapter, we extend the models of Chapter 3 for dynamic environments.
Our approach is to combine several probability transition matrices of Markov
models of evolutionary systems, each with a specific static fitness function, into
a new probability transition matrix describing the evolutionary system in its
dynamic environment. Two approaches for the alternation of fitness functions —
a deterministic and a stochastic interpretation of changes in the environment —
are proposed.

Deterministic alternation of fitness functions. We first present a stochas-
tic model with finite populations in a deterministically dynamic environment. In
this model, a fitness function governs the selection of the population for a given
number of generations, after which another fitness function takes over the selec-
tion process. After such a number of fitness functions have governed the selection
for a fixed number of generations each, the alternation is restarted with the first
fitness function. Stochastic transition matrices of consecutive generations, with
their distinct fitness function, are combined into one Markov matrix that gives
the transitions between the states for a complete cycle of the environment. We
can then determine and analyze the limit behavior of these stochastic systems.
In order to find expectations of performance of the evolutionary system toward
the limit, we unfold the combined matrix and its eigenvector to calculate an
expectation of fitness, based on the limit behavior of the combined chain.

The applications of this first model are rather artificial because of determin-
ism in the dynamic environments. Applications of dynamic problems for genetic
algorithms practitioners and dynamic environments for population geneticists are
rather stochastic in nature.

Stochastic alternation of fitness functions. A second model is constructed
that better serves the study of evolving populations in these stochastic dynamic
applications. This second model adopts a Markov chain to model the stochas-
tic environment itself. In this Markov model of the environment, each fitness
function is considered as a state, and transition probabilities among these states
define the stochastic dynamics of the environment. Steps in this changing envi-
ronment and steps in the evolutionary model — according to the current state of
the environment — are alternated. We construct a Markov model that combines
the stochastic changes in the environment and in the population. We adopt such
models to study the limit behavior and performance of the evolutionary model,
with respect to its stochastically changing fitness environment.
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5.2 Deterministically Alternating Fitness Func-
tions

5.2.1 Model

We consider an optimization problem for which the fitness function f(s, P, g) —
for a solution s € (25 and population P — changes with time g. In this first model,
the dynamics of the fitness function is deterministic and periodic with a period
of g1+ generations, i.e., the fitness at time g + g+ is equal to the fitness at time
g. In this cycle, a deterministic chain of fitness functions governs the selection
in the evolutionary system. We let each of the fitness functions be active for a
number of generations, summing up to g;,; generations.

Consider an evolutionary system with its parameters and the set of n static
fitness functions F' = {f1, fo, ..., fn}. Let 7; describe the state transitions of the
evolutionary model, with selection according to fitness function f;. Let T; denote
the Markov matrix of the system according to transitions 7;. We assume that
all other parameters of the model — such as population sizes and parameters of
reproduction — are equal for any of the n evolutionary systems. We assume that
during a run of the model each of the n fitness functions f; governs the selection
alternately for a fixed finite number of generations g;, with g = Z:.L:l gi, such
that the fitness function at time g for a solution s € {25 in a population P is given
by

f(SaPag):fi(SaP) (51)
where 7 satisfies
i—1 i
Zgj < (g mod git) < Zgj (5.2)
j=1 j=1
Consequently, we can construct a probability transition matrix Ty.; with
Tper =T ... TSTY. (5.3)

This transition matrix 7y, gives the composited transition of the evolutionary
system for g;,; generations, starting the initial (Oth) generation with fitness func-
tion fi, and ending with the last generation of fitness function f,. Consequently,
a run of the model repeatedly visits all fitness functions and simulates a dynamic
environment.

5.2.2 Limit behavior

Existence of a unique limit. In Appendix B.3, we show that the combination
of irreducible and aperiodic Markov matrices 11, ...,7},, as defined above, does
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not always result in a transition matrix Ty that is irreducible and aperiodic.
Therefore, we cannot simply assume that the Markov chain based on transition
matrix Ty converges to a unique equilibrium distribution.

We can, however, make the following assumption. If mutation can map any
individual to any other individual in the algorithm’s search space with a strictly
positive probability — i.e., when the mutation rate is according to 0 < p < 1
— then all elements in transition matrices 7; are strictly positive, see Theorem
3.2. Consequently, all transition probabilities of the combined model Ty in
(5.3) are strictly positive. This makes the combined Markov model ergodic, and
hence, due to Perron-Frobenius, there exists a unique stochastic eigenvector of
the matrix with corresponding eigenvalue 1. This eigenvector describes the fixed
point distribution of the system toward the limit. The distribution denotes the
probabilities of being in a state of the system, at the start of a cycle of the fitness
functions.

Interpretation of the limit. Let XZ“O) denote the unique eigenvector, with cor-
responding eigenvalue 1, of the irreducible and aperiodic transition matrix 7ye;.
By definition, x{ = TyerX{;) or more specifically, x{,) = T" .. .Té’sz’lxz‘O). The
eigenvector describes the probability distribution over the states of the system,
at the start of the environment’s cycle. Let Xz“u) denote the distribution over all
states of the system, u generations since eigenvector x?o), with 0 < u < g4, 1-€.,

where u = g1 +¢2+---+¢gy_1+wand 0 < w < g,. All xZ‘u) are vectors describing

the consecutive distributions over the state space with XE‘O) = X’(*gtot).

5.2.3 Expected performance

Since we know the fitness function at each of the generations, we can compute
the expected fitness over all generations, as the system defined by 7.; converges
toward the limit. This mean fitness, derived from the exact eigenvector, gives us
the expected mean fitness of a simulation run of the system.

Let (X’E‘u)) denote the probability of being in state P, at u generations since
P
eigenvector x’(*o). Let f(,) denote the fitness function that is applied at the uth

generation since x’(“o). Let m denote the weighted mean fitness of the populations
according to distribution x’(“u) with

For = (X)) p fa (P) (5.5)

Pen

where f(,)(P) denotes the mean fitness of population P according to fitness func-
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tion f(,). The overall mean fitness f of all f,) with

fw (5.6)

gives the expected fitness over all generations, as the system goes toward the
limit.

5.3 Stochastically Alternating Fitness Func-
tions

5.3.1 Introduction

Similarly to the model with deterministically alternating fitness functions, let
F =A{f, fe,..., fu} denote a set of n fitness functions. Instead of studying an
evolutionary system that is based on selection with a deterministic chain over
these fitness functions, we now stochastically step through this set of fitness func-
tions as the algorithm proceeds. This results in a dynamically changing fitness
environment for the optimizing algorithm. We use a Markov chain to define the
transition probabilities E;; in the environment. If the selection of the system
is currently based on fitness function f;, then E;; denotes the probability that
the fitness function used at the next generation is f;. The stochastic matrix £
with elements F;; gives the Markov matrix defining the dynamical behavior of
our stochastic model of a changing environment. We assume that the environ-
ment’s matrix F is irreducible and aperiodic, such that the environment’s limit
behavior is given by E’s unique stochastic eigenvector with eigenvalue 1, and thus
independent of the initial distribution over the environment’s states.

In the following section, we discuss how this stochastic environment model
can be combined with a stochastic model of the evolutionary systems as in the
previous sections to study the behavior of evolutionary systems in stochastically
dynamic environments.

5.3.2 State space

In order to represent each possible state of the evolutionary system in its stochas-
tic environment, we need to enumerate all states of the evolutionary model,
i.e., the set of possible populations © and the set of possible fitness functions,
F ={f1, f2,---, fa}. The number of possible populations and number of states
is assumed to be finite. The state space of the whole system in its environment
can be represented as the Cartesian product of these two sets, i.e., F' x w. A state
(fi, P) € F x 7 comprises of a population P and fitness function f;.
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Let x represent a stochastic distribution vector over this state space, such
that (s, p) represents the probability of being in state (f;, P). For notational
purposes, we can rewrite x as (X, Xa, . .. ,xn)T where each sub vector x; denotes
the distribution over 7 for fixed fitness function f;. Note that, since x is a
stochastic vector, the elements in sub vectors x; have sum | per T(fi,p) < 1 which
denotes the probability of being in a state with fitness function f;, according to
distribution x.

5.3.3 Transitions

Generation step. Consider matrices 11,75, ...,7T, to be n transition matrices
of a specific evolutionary model and its parameters, with selection proportional
to n different fitness functions fi, fo,..., fn, respectively. We assume that these
transition matrices are irreducible and aperiodic. Let T be the block diagonal
matrix with diagonal elements 73, i.e.,

7y 0 0
0 Ty 0
T = - e (5.7)
0 O T,
We let |7| = |T1| = |T2| = ... = |T,| denote the number of rows or columns of

the transition matrices. Consequently, T is a n|r| x n|r| matrix.

If x denotes a distribution over all states of the system in its dynamic environ-
ment, then Tx denotes the distribution after one generation of the evolutionary
algorithm. Note that this product evaluates the next generation for all evolution-
ary systems in their respective fixed fitness functions.

If the initial distribution vector x only contains states that assume a specific
fitness function f;, then distribution T*x at the kth generation can only have
strictly positive elements if these represent states that also belong to fitness func-
tion f;. There is no path possible from any state with one fitness function, to any
other state with a different fitness function. Hence, matrix T is not irreducible.
Note that this property holds for any block diagonal matrix.

As transition matrix T is not irreducible, there is not a unique fixed point that
can be used to study the limit — or expected — behavior of the system according
to T, due to the Perron-Frobenius theorem. On its own, T doesn’t contain a
dynamic environment, which is introduced in the following section.
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Environment step. Let E be the block matrix with
Byl - Byl
E = S (5.8)
E. Il --- E,,I

where I denotes the |7| x |r| identity matrix. This matrix has, in similarity to
T, n|m| X n|r| elements.

If x denotes a distribution over all states, then Ex denotes the distribution
after one stochastic step in the environment. Distributions over population states
for each fitness function are redistributed according to the transition probabilities
in the environment’s transition matrix F.

Similar to the non-irreducibility argument for matrix T, we can show that the
repeated multiplication of E with an initial vector x does not yield elements with
strictly positive probability, if these states constitute a population that was not
present in the initial distribution x. Indeed, the rows and columns of E can be
rearranged — using simultaneous row and column exchanges only — such that the
resulting matrix E’ of the form

0 E 0
E = | ' (5.9)

is a block diagonal matrix. Since matrix permutations do not have an influence
on the irreducibility of a transition matrix, E' and E are not irreducible.

Combined transitions. The evolutionary system, tracking the dynamic prob-
lem defined by the set of fitness functions F' and transitions E over this set can
now be modeled as a Markov chain with transition matrix

E T -+ E,T
Tyo = TE = : : i (5.10)
En,lTn Tt En,nTn

If x denotes a distribution over all states, then TEx denotes the distribution
after one stochastic step in the environment, followed by a generational step
of the system. We are now interested in the limit and fixed point behavior of
this model, which represents an evolutionary system in a stochastically changing
environment.
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5.3.4 Limit behavior

We assume that 0 < p < 1, such that all elements in matrices 7; are strictly
positive according to Theorem 3.2. Although both T and E are not irreducible
and not aperiodic, we can show that their product Ty, = TE is irreducible and
aperiodic as stated by the following theorem:

Theorem 5.1. Let E represent an irreducible and aperiodic n X n matriz. Let
Ti,...,T, be n equally sized stochastic matrices with strictly positive elements.
Let T and E denote the matrices as defined by (5.7) and (5.8). Matriz product
TE s wrreducible and aperiodic.

Proof. We first show that the matrix is irreducible. We then use a similar argu-
ment to show that the matrix is aperiodic.

For irreducibility, we have to show that any state (f;,Q) can be reached
from any other state (f;, P) by moving through consecutive states according to
strictly positive probabilities in stochastic matrix TE. Starting at state (f;, P)
we can step through different fitness functions, maintaining the same population,
to reach (f;, P), using transition probabilities from E, since E is irreducible and
any diagonal element of any T} is strictly positive. Any such step, e.g., from
(fa, P) to (fp, P) is possible with TE if E, , is strictly positive.

At the same time, we need the population to move from P to (). Since all
transition matrices T} have strictly positive elements, we can, at each one of the
steps from one fitness function to another, also step from one population to any
other. By doing so at one step while moving from f; to f;, we can also switch
from population P to @, and thus reach (f;, Q) from (f;, P). Since this is possible
for any pair of states, TE is irreducible.

Since E is aperiodic, there exists an infinite set S of lengths of paths going
from f; to f; such that ged(S) = 1. Starting in state (f;, P), we can follow any of
these paths as indicated by the irreducibility argument to reach (f;, Q). The set
of path lengths of these possible paths from state (f;, P) to (f;, Q) are represented
by the same S, with ged(S) = 1. As a result, TE is irreducible and aperiodic. O

Because of the Perron-Frobenius theorem, the unique fixed point distribution
of Ty, = TE is represented by the unique eigenvector x*, with corresponding
eigenvalue 1, of matrix Ty, = TE. We now give some computational considera-
tions to simplify the calculation of this eigenvector.

Implementation of the power method. In the power method, see Algorithm
3.2, repetitive multiplication of an initially distributed stochastic vector x(0) with
T, converges to the eigenvector with eigenvalue 1. To simplify the computation
for T,, we apply some algebraic manipulation in the definition of eigenvector
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x* = Tgox* with

] x]
Xp Xp

Eiix] + -+ Eynxg

EnaX] + -+ Enpxy,

T1 (E1,1X}‘ +---+ El,nx;';)
= : (5.12)
Tn (En7]‘x>{ + e + En7nX:)

so we can find the eigenvector with corresponding eigenvalue 1 of Ty, by iterating
according to the system of equations defined by

xy = T (Eyixg+ -+ Eipxy)
: (5.13)
X, = Tn (En,lxl + -+ En,nxn)

Note that because of the algebraic transformation from (5.11) to (5.13) we no
longer need to store big matrix TE in the computer’s memory when running the
power method to find the limit behavior for Ty,,.

Seeding the initial distribution. The fixed point distribution x* of the Markov
chain defined by transition matrix TE is related to eigenvector e with correspond-
ing eigenvalue 1 of F as stated by the following theorem:

Theorem 5.2. Let E represent an irreducible and aperiodic n X n stochastic ma-
triz. Let e = (eq,ea,.. ., en)T denote the unique eigenvector, with corresponding
etgenvalue 1, of E. Let Ty, ..., T, be n equally sized probability transition matri-
ces with strictly positive elements, defined over state space w. Let T and E denote
the matrices as defined by (5.7) and (5.8). If x* denotes the eigenvector of TE,
with corresponding eigenvalue 1, then

Vi,l<i<n:e;=Y» xi p (5.14)

Pern

Proof. Because of (5.12) we know that sub vector x} of eigenvector x* is given by
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for any 1 < ¢ < n. The sum of probabilities of elements in both left and right
hand side of (5.15) gives

Y=Y (L(Biaxi+ -+ EinX;) - (5.16)

Pern Pern

Since all 7; matrices are stochastic, they have no influence on computing the
sum of vector elements, such that the right hand side of (5.16) can be reduced,
before redistributing the summation, to

e; = Eyiel +---+ E, e, (5.17)

with scalars € = Y pc, (X])p = X ope. @{s, p)- We let € denote a vector with

/ !

e = (¢),¢),...,e.)". Equation (5.17) can now be rewritten as ¢’ = Ee', thus

eigenvector e with corresponding eigenvalue 1 of E equals €', with the result that

Pecr
holds for all 1 <7 < n. O

Note that this property of the eigenvector is due to the transitions in £, which
occur independently from the rest of the system as defined by TE.

Since the eigenvector with corresponding eigenvalue 1 of £ can be computed
very easily, as compared with computing the eigenvector of TE, the initial distri-
bution x(0) for iterating system (5.13) can be seeded as indicated by the theorem,
according to vector e. The initial distribution is given by z; p(0) = €;2p(0) where
zp(0) is according to (3.28). Using e for seeding x(0) gives a first unrefined, but
computationally inexpensive approximation of x*.

Environment step after generation step. In the previous sections, we dis-
cussed an evolutionary system residing in an environment defined by transition
matrix E. Before every generation step of the system, we allowed the environ-
ment to change to a new state. We can turn this order around, and make a step
in the state space of the environment after computing a new generation, with

EI,ITI El,nTn
TI

sto

—ET = SRR . (5.18)
En,lTl e En,nTn

Note that this matrix differs from the resulting transition matrix of (5.10) in
the transposed positions of 7; blocks.
We now would like to find eigenvector y*, with corresponding eigenvalue 1,

of T7,, = ET, based on our knowledge that x* is the eigenvector, also with
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corresponding eigenvalue 1, of T, = TE. In the definition of eigenvector x*, i.e.,
x* = TEx*, we can multiply both the left and right hand side with E, such that
Ex* = ETEx* also holds. Combining this with the definition of eigenvector y*
where y* = ETy*, gives y* = Ex*. This gives us the eigenvector of 7},, as a
simple transformation, or a stochastic environment step according to E, of the
eigenvector of Ty,.

Throughout the rest of this chapter we work with transition matrix 7y, = TE
and its eigenvector with corresponding eigenvalue 1 to discuss the limit distribu-
tion of the evolutionary system in the dynamic environment. If we would use ET
as transition matrix, the resulting eigenvector would depict the distribution over
the states of the algorithm after an environment step had been taken. On the
other hand, by studying the eigenvector of TE, we allow the algorithm to step
one more generation after the environment has stochastically changed. Compar-
ing both distributions would allow us to study the performance of one generation
of the algorithm after the environment has changed.

5.3.5 Expected performance

Let x* denote the eigenvector with corresponding eigenvalue 1 of matrix product
TE, for a given stochastic dynamic environment and evolutionary system with
its parameters. Element T p) of x* denotes the probability of ending up in state
(fi, P) of the system. We want to construct a measure of performance to discuss
the evolutionary system’s expected performance in the dynamic environment. In
order to do so, we give the expected mean fitness of a population, where any of
the fitness functions of the dynamic environment can be active, as given by the
fixed point distribution e of matrix E. This allows us to compare the expected
mean fitness for evolutionary systems with different parameters, and the influence
of these parameters on the performance of the optimizing algorithm.

Let fi(P) denote the average fitness of population P according to fitness func-
tion f;. The weighted mean f of population fitnesses in states (f;, P), according
to fixed point distribution x*, is given by

F= 2 aluniP) (5.19)

(fi,P)EFXTl'

We use f as a measure of performance, denoting the expected mean fitness of a
population in the dynamic environment, in the fixed point of TE.

5.4 Alternating the Deleterious Allele

In order to show how the models and methods can be utilized in practical appli-
cations to study the performance of distinct algorithms and their parameters in
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dynamic optimization, we discuss a dynamic problem that can be expressed sim-
ilarly as a deterministically and stochastically dynamic fitness environment. We
then study the limit behavior of the evolutionary systems for these environments
and review the influence of the model’s parameters on the expected performance
toward the limit of a haploid and diploid evolutionary system tracking the dy-
namic problem. In similarity with the observations of Chapter 4 we compare the
finite population models with their corresponding models with infinitely large
populations.

We construct a small problem in a dynamic environment whose search space
has a single locus and two alleles. In terms of bit strings, this implies that
the algorithms have a bit string of length 1, or 1 bit, as their phenotype. We
use n = 2 different fitness functions for our dynamic problem. Alternately, we
let 0 and 1 be the deleterious allele for g generations, on average. Dependent
on whether the stochastic or deterministic approach is used when modeling the
dynamic fitness environment, this number respectively denotes the expected or
exact number of consecutive generations that either fitness function is alternately
used for selection.

Let fi and fy, with f1(0)=1—L, fi(1) =1, f2(0) =1 and f,(1) =1 — L, be
the alternating fitness functions, with L denoting a measure of selection pressure,
with 0 < L < 1. In fi, allele 1 is advantageous, and in f; it is the deleterious
allele. As L is increased, the selection pressure is also higher. Let 77 and T,
denote the transition matrices for one generation of an evolutionary algorithm
whose selection is proportional to f; and f,, respectively.

5.4.1 Deterministic environment

In the deterministically dynamic environment, we let fitness function f; be active
for g generations, after which fs governs the selection in the evolutionary system
for g consecutive generations. This cycle is then repeated indefinitely and defines
the deterministic model of the environment. Matrix

Tyer = TYTY! (5.20)

represents the transition probabilities of the algorithm for g¢,,; = 2¢ consecutive
generations, starting with the first generation using fitness function f;. Since the
model of the environment is deterministic, each of the fitness functions governs
the selection process for exactly g generations at a time. The unique eigenvector
of Tye:, with corresponding eigenvalue 1, of this transition matrix is used as a
basis for computing the algorithm’s performance for this problem.

5.4.2 Stochastic environment

Analogous to the deterministic environment we construct a stochastic environ-
ment that, on average, behaves similarly. In order to accomplish this, we construct
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the environment as a Markov model defined over the fitness functions, which are
states of the model, with transition probability matrix according to

E:(l_“ @ ) (5.21)

« l—«

Parameter a denotes the probability of switching to the other fitness function in
one generation. For 0 < a < 1, matrix E is irreducible and aperiodic, and has a
unique steady state distribution e = (1/2,1/2)".

The environment remains in a state, or static fitness function for a stochas-
tic number of generations. The distribution over these lengths, or number of
generations, is geometric. The probability that the environment remains static
for k consecutive generations — before switching fitness functions — is given by
(1 — a)*'a. The mean number of generations that the model stays with the
same fitness function is 1/a. The standard deviation of the geometric distribu-
tion about this mean equals @

If & = 1/g then the expected number of generations between changing fitness
functions in the stochastic environment is also g. We refer to « as the rate or
frequency of alternation.

Block matrix T,, with

Ty = TE

- (Y& 10’2)<(1;;1)I (13{1)1)

B ((1 ;gm 1 fﬁm) (5.22)

gives the Markov model implementation of the finite population model in the
stochastic fitness environment as in (5.10), according to fitness functions f; and
f2 and the environment’s Markov matrix E from (5.21).

As a default setting in the observations, we assume a = 0.1, or g = 10, i.e.,
the expected number of generations that a static fitness function is active is 10.
The deviation about this mean is 0 for the deterministic environment, obviously,
and 3v/10 for the stochastic environment. For our example environment, this
default frequency of changes offers the finite population to discover and exploit
advantageous alleles. Later, we vary the rate of changes to observe the impact of
this parameter on the performance of the finite population.

5.5 Results

In this section, we study the limit behavior of the evolutionary system in determin-
istic and stochastic dynamic environments with an alternating deleterious allele,
as defined in the previous section. We discuss the influence of the parameters of
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Figure 5.1: Expected performance of the (a) haploid and (b) diploid algorithm in the determin-
istically dynamic environment with r = 10, 4 = 0.04, L = 0.9, = 0.1, h = 0. Mean fitness and
standard deviation of the distribution are given for each of the 20 generations of the model,
where the first generation is derived from the eigenvector. The graphs in dashed line style
represent the behavior of the corresponding infinitely large population model, as a reference.

the model — ploidy and coefficient of dominance, population size, mutation rate,
rate of alternation and selective pressure — on the performance of the algorithm
in its deterministically and stochastically dynamic fitness environment.

First, we study some of these parameters in the deterministic environment,
as the specific interpretation of its limit behavior allows us to better compre-
hend how a change in a given parameter affects the limit behavior. We then
compare those results in the deterministic environment with their corresponding
predictions in the stochastically dynamic environment. Since the models with de-
terministically and stochastically dynamic environments are similar, predictions
for the evolutionary system with a deterministic environment generally also apply
to the corresponding model with a stochastic environment.

5.5.1 Interpretation of the limit

First, consider the graphs in Figure 5.1. These figures depict the typical limit
behavior of specific instantiations of the haploid and diploid model in the deter-
ministically dynamic environment. The parameters for both models are set to
population size r = 10, mutation rate p = 0.04, selective pressure L = 0.9 and
the rate of alternation is set to o = 0.1, i.e., there is a period of 10 generations
between switching from one fitness function to the other. For the diploid model,
allele 0 is dominant with dominance coefficient h = 0, i.e., allele 0 is dominant
over allele 1 with probability 1.

For each of the generations u, with 0 < u < 2g, the expected mean fitness,
or expected fitness % — and the standard deviation about this expectation — of
the distribution over the populations at u generations from the eigenvector has
been plotted. At generation 0, the eigenvector of the model itself is represented.
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In the first 10 generations of both figures, selection in the model is governed by
f1, where allele 0 is the deleterious allele and 1 is the advantageous allele. In the
latter 10 generations, the second fitness function f; governs the selection process
of the model, with allele 0 being the advantageous allele. At 20 generations from
the eigenvector, we have returned to the eigenvector of the model, by definition,
and the system repeats this behavior indefinitely in the long run of the system.
The 20 consecutive distributions thus represent the limit behavior, as each of the
distributions over the populations for each of the generations is unrolled from the
eigenvector as in (5.4).

As fitness functions switch, i.e., at generations 0, 10, 20, ... since the eigenvec-
tor, the expected mean fitness of populations in the distribution is reduced to
(2— L) — f, and the selection and reproduction in the model proceeds according
to the new fitness function. Since the fitness function changes every 10 genera-
tions, the algorithm is repeatedly restarted. The repetitive behavior in the model
is similar to the transient behavior of an evolutionary system with a static fitness
function, even in the limit. Indeed, as the fitness functions switch, and the ad-
vantageous and deleterious alleles switch, the result of optimizing for the previous
fitness function is lost, and the algorithm has to start over again, searching for
the advantageous allele that was the deleterious allele before the switch. As the
periods in between fitness function alternations become longer, the algorithms are
given more time to collect advantageous alleles in their populations. As the pop-
ulations are given more time to evolve for one static fitness function in between
alternations, they can build up larger proportions of advantageous alleles. But,
as their mean fitness becomes higher, the mean fitness also drops lower when the
fitness function is eventually switched. In the limit behavior of the model, the
behavior has found a balance between such drops and growths in proportions of
advantageous alleles.

In the haploid model, the populations react similarly to either switch of the
fitness functions, as the haploid algorithm behaves the same as genotypes 0 and
1 are treated similarly. This can be observed in the figures, as both halves in
the graph representing the limit behavior of the haploid model are the same. In
contrast, the diploid algorithm reacts differently when the deleterious allele is
changed from 0 to 1 as compared with the reverse switch. This is due to the
fact that the diploid algorithm isn’t symmetrical in its behavior because of the
asymmetric dominance operator, as was already noted in Section 4.3. As in the
model with static selection, the diploid model is able to perform better when the
advantageous allele is also the dominant allele in the dominance scheme, thus
reacting differently when the fitness functions are switched. This behavior can be
observed in Figure 5.1(b), where the diploid evolutionary system better recovers
from the fitness function switch when the dominant allele becomes advantageous,
as compared to the dominant allele becoming deleterious.

Figure 5.2 shows the influence of a varying coefficient of dominance. The het-
erozygous genotype {0, 1} has phenotype 0 with probability A, and phenotype 1
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Figure 5.2: Expected performance of the diploid algorithm in the deterministically dynamic
environment with r = 10, = 0.04,L = 0.9, = 0.1 with varying coefficient of dominance
h = 0.05 and h = 0.5. Mean fitness and standard deviation of the distribution are given for
each of the 20 generations since the eigenvector of the model.

with probability 1 —A. It can be observed that the diploid algorithm gathers more
fitness in the dynamic setup as the dominance degree goes to 0.5. In the dynamic
setup, a diploid population is able to maintain a higher diversity of individuals,
which allows the population to adapt to the changing fitness environment. As
the dominance coefficient is increased, the variance of fitness in the population
is higher. The asymmetry in the graphs that arose as diploidy was introduced,
disappears again as h = 0.5.

5.5.2 Frequency of alternation

Figure 5.3 gives the expected performance of the algorithms in their respective
environments for varying periods in between fitness function switches. It can be
observed that as the frequency of alternations is decreased, i.e., as the period in
between alternations is increased, the algorithm can perform better. The fitness
gained during the optimization in between alternations outweigh the loss of fitness
when switching between fitness functions. Note that this is true except for ex-
tremely high frequencies of alternation, which we discuss later on. For sufficiently
long periods, the finite model also becomes more similar to the infinitely large
population, i.e. it performs better. In the transient behavior of a finite model, it
was noted that the finite model lags behind after the infinite population model.
The effect that a finite model loses some performance over the infinite population
model can also be observed in the model with a dynamic fitness function, as the
long run behavior of the evolutionary system in a dynamically changing fitness
environment behaves as the initial transient behavior of an evolutionary system in
a static fitness function. As the periods between fitness function switches become
longer, the distribution over the populations just before a fitness switch is closer
to the limit distribution of the system in its static environment.
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Figure 5.3: Expected long run performance and standard deviation of the system for different
mean periods between fitness function alternations with r = 10,4 = 0.02, L = 0.9,h = 0. The
graph in dashed line style represents the limit behavior of the corresponding infinitely large
model.

In the extreme case that alternations rapidly proceed each other, some odd
effects of these extreme frequencies can be observed. In the deterministic envi-
ronments, if alternations follow each one another very fast, the algorithm doesn’t
evolve good proportions of advantageous alleles in the short time between alter-
nations, and consequently, the proportions do not drop to extreme low numbers
at a switch. For relatively fast environments, the loss of good proportions at a
fitness function switch may outweigh the gains from evolving good proportions
of advantageous alleles in between fitness function alternations. This effect can
be observed in Figures 5.3(a, b) as there is a small drop in expected performance
for periods of length 2 to about 5, in comparison with periods of length 1.

In comparison, the stochastic model does not show such behavior as the
lengths of periods are smoothed out because of a high variance about the mean
period. Note that the stochastic model with period a = 1 results in an environ-
ment with a transition probability matrix F according to

P=( % )=o)
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which is aperiodic. If combined with the transition probability matrices of the
evolutionary system, the model would also become aperiodic and is thus not
considered as a viable environment for our model. The expectations of the evolu-
tionary system in the stochastic environment with o = 1 is consequently absent
from Figures 5.3(c, d).

5.5.3 Population size

Figure 5.4 shows that the evolutionary system performs better when the popula-
tion size is increased. Indeed, the effect of sampling errors, and thus genetic drift,
become less prominent, and the behavior becomes more similar to the behavior
in the infinite population model. As the population size of the system decreases,
genetic drift becomes more prominent. In the limit case that » = 1, the expected
performance of the system becomes 1 — L/2.

In practical applications of genetic algorithms, larger populations require more
computational effort for making the step to the next generation. This has its effect
on the model when dynamic optimization problems are studied. An implementa-
tion of a genetic algorithm usually requires O(n) computations for a population of
size n to advance one generation. Suppose — for an exemplary online optimization
problem — that a population of 10 individuals experiences a change in the fitness
function every 20 generations. For the same problem, a genetic algorithm with a
population of 20 individuals would encounter a change in the online environment
at every 10th generation. An implementation of a genetic algorithm processes
generations slower as their population is increased. In order to take care of this
difference in the model, one could choose to speed up the dynamic environment
as the population becomes larger. We ignore this as our primary goal is to build
models of biological populations, where no computational effort has to be taken
into account. Indeed, in biological populations, selection and reproduction pro-
ceeds inherently parallel. Consequently, a generation in a biological population
of 10 or 20 individuals requires the same amount of time with respect to the
dynamic environment.

5.5.4 Mutation rate

Figure 5.5 shows the influence of varying the mutation rate on the performance of
the system for the dynamic problem. In similarity with static fitness functions, the
effects of genetic drift — i.e., the difference between the infinitely large population
model and the finite population model because of sampling errors — are more
prominent with smaller mutation rates. The reasoning is the same as before. As
the mutation rate decreases, the system has a higher probability of getting fixated
in the population whose individuals all have the deleterious allele, since the rate
of mutants invading the population is slower than the rate of fixation of alleles.
As a result, the population is stuck at a population with one of either alleles
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Figure 5.4: Expected performance for different population sizes with p = 0.02,L = 0.9, =
0.1,h = 0. (a-b) Mean fitness and standard deviation of the distribution at each of the 20
generations since the eigenvector of the model, for » = 20,40 in the deterministic environment.
(c-f) Expected performance and standard deviation of the exact limit behavior of the system
for population sizes between 1 and 50.

fixated, and can barely escape from this situation, independent of the selective
pressure that is active on the system.

Because of the alternation of the fitness functions, the repetitive behavior in
the limit is similar to the initial transient behavior of the evolutionary system
with a fixed fitness function. As such, in the limit, the choice of the mutation
rate is of importance to react optimally to changes in the environment. In the
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Figure 5.5: Expected performance of the haploid algorithm in the (a-d) deterministically and (e-
f) stochastically dynamic environment for different mutation rates with » = 10, L = 0.9, = 0.1.
The graphs in dashed line style represent the behavior of the corresponding infinitely large
population model, as a reference. (a-b) Mean fitness and standard deviation of the distribution
at each of the 20 generations since the eigenvector of the model for p = 0.08,0.16. (c-f) Expected
performance and standard deviation of the exact limit behavior of the system for mutation rates

between 0.003 and 0.5.
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limit behavior of fixed fitness functions, a smaller mutation rate gives better
performance for the system, where a relatively higher mutation rate is better
suited for the initial transient behavior of the optimization algorithm, if fixed
fitness functions are used.

If the mutation rate is relatively small, the algorithm has no means of changing
the population’s focus from one allele to the other if the deleterious allele changes.
On the other hand, if the mutation rate is sufficiently high, too many deleteri-
ous mutations enter the populations even before the environment has changed.
Note that this is also visible in the standard deviations of the mean fitness. If
the mutation rate is sufficiently small, the standard deviation is very large, in-
dicating that populations get stuck with high proportions of either deleterious
or advantageous alleles. As the fitness function changes the deleterious bit over
time, the standard deviation thus remains high if the mutation rate is low. On
the other hand, if the mutation rate is fairly high, the standard deviation of the
mean fitness is fairly low, indicating that the algorithm mainly generates popula-
tions with the same compositions, i.e., populations that are highly diverse, since
mutation mainly governs the optimization process. This may sound contradictory
at first, as high standard deviations are expected for highly diverse populations.
However, we measure the standard deviation in between populations according
to the distribution over the populations, not the “intra” population standard de-
viation. The low standard deviation arises from the fact that only one type of
population (the most diverse population) is mainly present in the distribution
over the populations.

The mutation rate must thus be balanced according to the speed of changes
in the dynamic environment for the best performance of the algorithm.

As an example, for the haploid system with » = 10, L = 0.9 and a = 0.1, a
bitwise mutation rate of p a2 0.095 gives the best performance, with f ~ 0.835.
The expected performance as the mutation rate approaches yu = 0 or = 0.5 is
% = 0.55. Indeed, in the case that u = 0, the population would become fixated
in one of the alleles. Each individual then receives fitnesses 1 and 1 — L for an
equal amount of time. At generations when the fixated allele of the individual
is advantageous or deleterious it receives fitness 1 or 1 — L, respectively. The
expected fitness as 4 = 0 is thus the average of 1 and 1 — L, i.e., % Similarly,
as the mutation rate equals p = 0.5, the expected proportion of either allele,
at any generation is 0.5. The expected fitness of such a population is also the

2-1L

average of 1 and 1 — L, =5~.

The optimal mutation rate for the infinite population model is lower, as com-
pared to that of a finite population. As populations get smaller, higher mutation
rates are required to perform optimally, to counter for the more prominent effects
of random sampling errors. If the frequency of alternation increases, higher muta-
tion rates perform more optimally as with lower frequencies, as more exploration
is required in these rapidly changing environments.
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Figure 5.6: Expected performance and standard deviation of the algorithm in its dynamic
environment for varying selective pressure with r = 10, 4 = 0.02,a = 0.1,h = 0.

5.5.5 Selective pressure

Figure 5.6 gives the expected proportion of optimally fit individuals in the long
run for different settings of selection pressure L. We have chosen not to compute
and show the expected mean fitness, as it would give a distorted comparison of
the performance of the algorithms as the fitness functions for all data points are
different. Note that these two measures of performance — proportion of optimally
fit individuals and mean fitness — can be converted into each other as the search
space constitutes only two types of individuals.

As the selection pressure is lower, or as the fitness of deleterious individuals is
closer to the fitness of advantageous individuals, the algorithms tend to perform
worse in any of the proposed environments. If more selective pressure is present,
the evolutionary system is more focused on gathering higher proportions of the
advantageous allele.

For static fitness functions, we have observed that the behavior in the finite
population model deviates more from the infinite model for lower selective pres-
sures. This is no longer true in the case of dynamic fitness environments. For
small selective pressures, the behavior of the finite model is somewhat similar to
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the infinite model. For large selective pressures, the deviation of the finite model
with respect to the infinite model is more prominent. This difference is due to
the fact that in the model with dynamically changing fitness, the behavior is
governed by short periods of transient behavior. Finite populations require more
time to gather good proportions of fit alleles, or to escape from a state of fixation
in comparison to the infinite model. The transient behavior of an infinitely large
population performs best under high selective pressure. The infinite model can
generously benefit from the difference in fitnesses between the advantageous and
deleterious alleles. Indeed, if only a small proportion of the fitter allele is present
in the infinite population after a switch of fitness functions, then this proportion
can easily take over the population. The finite model is plagued by the effects of
fixation. We can observe that the effect of fixation is stronger than the selective
force which allows fitter populations to invade the population. As the fitness en-
vironment changes over time, the finite model does not have enough generations
to gather high proportions of the advantageous allele, independent of the selective
pressure, where the infinite model performs best under high selective pressure.

Summary

We have constructed Markov models of evolutionary systems with finite popu-
lations in dynamic environments. These environments assume continuous deter-
ministic or stochastic alternation of a set of fixed fitness functions. The models
allow us to study the influence of different parameter settings on the expected
performance of the system in the long term. The model also offers a possibility
to compare the influences on the behavior for both static and dynamic fitness
environments. An exemplary dynamic environment, where an allele alternates
between being advantageous and deleterious has been studied.

At each switch of the fitness function, the population is required to re-explore
the genotype space from scratch. Finite populations become fixated in the ad-
vantageous allele before a switch which causes the allele to become deleterious.
Since the population is fixated in the deleterious allele at each switch, a high
rate of exploration, and thus of mutation, is required. This is in contrast with
static fitness environments, where a sufficiently low rate of mutation was required
to become fixated in the advantageous allele in the long term. The pressure to
escape from fixated populations is higher with smaller populations. Note that
the difference between finite and infinite populations is thus more prominent in
dynamic environments. As environments change faster, higher rates of mutation
are required to perform best.

Only a slight advantage for diploid populations has been observed, for slow
rates of environmental change. For the 1 bit problem considered in this chapter,
the differences between the expected performance of haploid and diploid popula-
tions is not statistically significant.
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Note that the model with a deterministic environment only details changing
fitness functions that are assumed to be cyclic, since we need it as a prerequisite
to construct our Markov models and to discuss the limit behavior of the model.
Other functions that determine the dynamics of a fitness environment may not
necessarily be cyclic or periodic, but might be of interest to the reader. Gen-
erally, we cannot predict how the population behaves in an arbitrary changing
environment, which is defined as a function over time. Only in the case that the
environment’s state converges to a static environment in the long term, we can
say something about its limit behavior. Indeed, in the long run, the model in
such environments behaves in similarity to the limit behavior of the population
in the static environment that constitutes the environment’s state of convergence
in the long run.



Chapter 6
Frequency Dependent Fitness Environments

For the analysis of the dynamics of game playing populations, it is common prac-
tice to assume infinitely large populations. Infinite models yield predictions of
fixed points and their stability properties. However, these models cannot demon-
strate the influence of genetic drift, caused by stochastic sampling in small popu-
lations. Instead, we propose Markov models of finite populations for the analysis
of genetic drift in games. With these exact models, we can study the stability of
evolutionary stable strategies, and measure the influence of genetic drift in the
long run. We show that genetic drift can introduce significant differences in the
expectations of long term behavior.

We construct models of finite populations whose fitness functions are based on
evolutionary games. We study the behavior of these models in a Neutral game,
the Hawk-Dove game, the Prisoners’ Dilemma, a Cooperation game with Risk
Dominance and Payoff Dominance, and in the Rock-Paper-Scissors game.

Parts of this chapter are derived from A.M.L Liekens, H.M.M. ten Eikelder,
P.A.J. Hilbers, Predicting Genetic Drift in 2 x 2 Games (2004).

6.1 Introduction

An increasing number of authors (Schaffer 1988; Foster & Young 1990; Fogel &
Fogel 1995; Fogel, Fogel, & Andrews 1997; Fogel, Andrews, & Fogel 1998; Ficici
& Pollack 2000a; Miekisz 2005a; Nowak & Sigmund 2004; Nowak, Sasaki, Taylor,
& Fudenberg 2004; Neill 2004; Taylor, Fudenberg, Sasaki, & Nowak 2004) have
stressed the importance of including finite population size and mutation rates in
studies of how populations react in the setting of evolutionary games.

It has been observed that stochastic sampling effects of finite population size
may seriously affect the predictions made by Maynard-Smith’s (1982) concept
of an evolutionary stable strategy (ESS). A strategy is an ESS if a population
playing according to this strategy cannot be invaded by a mutant strategy. This
concept of the ESS only holds under the assumptions of infinite population size
and no variation. Riley (1997) and Vickery (1987) show that a finite population
that constitutes of individuals playing the ESS can be invaded. There is indeed
a small probability that the less optimal mutant strategy in a finite population
takes over the population through an “unlucky” sample that includes this mutant
and none of the more prominent strategies in the population. As a result of this
“unlucky” sample there exists a small non-zero probability that the population
can be invaded. Since this small probability is the result of stochastic sampling,
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and is consequently non-existent in a deterministic infinite population model, the
concept of an ESS thus falls apart once a finite population size is adopted.

A couple of interpretations of the ESS for finite population models have re-
sulted from these observations. Foster & Young (1990) have proposed stochasti-
cally stable equilibriums, which is the equilibrium that is preferred by the system
as stochastic noise goes to 0. Schaffer (1988) computes the deviation from the
ESS as a function of population size, and concludes that the correction can be
neglected in populations that are finite but large enough. Neill (2004) observes
that there are games in which a strategy that meets the ESS criteria is not evo-
lutionarily stable, no matter how big the population, and proposes criteria for a
large population ESS.

While studying a specific game, Miekisz (2005a) concludes that the popula-
tion size and mutation rate have an important effect on the resulting behavior
of the population, such that the specific settings of these parameters must be
included in the predictions of equilibrium behavior. Since this observation is the
focus of this text, we go deeper in understanding the influence of finite popula-
tions in such games. The specific characteristics of the equilibrium behavior of
a system with its parameters cannot always clearly be determined without com-
puting the exact equilibrium behavior of the finite population model. Studying
the equilibrium behavior solely by determining whether the behavior converges
to certain characteristics for extreme values of the mutation rate and population
size is not sufficient to predict the equilibrium behavior of the system with its
specific parameters. These extreme parameter settings have been studied by evo-
lutionary game theorists and in similarity with the previous sections we adopt our
methodology to give predictions for the parameters in between these extremes.

It is thus important to determine the equilibrium behavior of a population in a
game for its specific settings of population size and mutation rate. In this chapter,
we adopt the mathematical modeling approach as in the previous chapters to
study the influence of mutation rates and the population size on the behavior of
finite populations for a selection of well-known symmetric 2 x 2 and 2 x 3 games.
We study the limit behavior of finite populations in a Neutral game, the Hawk-
Dove game and the Prisoners’ Dilemma. We also study a 2 x 2 coordination
game that incorporates payoff and risk dominance. As a last game, we study
the influence of finite population size on the evolutionary dynamics of a well-
known 2 x 3 game, the Rock-Paper-Scissors game. All models assume a limited
number of strategies (2 or 3) that can be employed. As such, the strategies can be
represented as an atomic genotype with 2 or 3 alleles representing either strategy,
which simplifies our analysis. Extended overviews of these games in an infinite
population context can be found in (Weibull 1995; Hofbauer & Sigmund 1998).
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6.2 Frequency Dependent Fitness

6.2.1 Payoff matrices

All games are represented by a set of strategies {2 and a square payoff matrix
A. Each entry A;; in this payoff matrix gives the payoff value for an individual
adopting strategy ¢ when confronted with an individual playing strategy j. We
assume that all payoffs in matrix A are nonnegative.

6.2.2 Fitness

Let the fitness of an individual ¢ € € in its population P be dependent on the
payoff matrix A, and the frequencies of the strategies in the population, with

f(Z, P, g) = ZAi’jpj' (61)

JEQ

We assume there are no further environment variables besides the population P
in which the individuals reside in. The fitness denotes the mean payoff received
when the individual is matched against all individuals in the population, including
itself. As such, the fitness of an individual denotes the expected payoff received
when players are randomly chosen as opponents. Note that the fitness used in
this chapter is structurally different from the fitness functions in the previous
chapters. The fitness of an individual is now dependent on the composition of
the current population, instead of relying only on the individual’s genome. As
evolution is governing the dynamics of the population, the fitness of an individual
— i.e., the expected payoff of its strategy — varies over time according to the
evolutionary changes in the population. Where the populations in the previous
chapters strive towards finding an optimal situation, where their fitness is optimal
according to an external fitness function, games may offer a whole different range
of dynamics. Populations may evolve to find an equilibrium situation in which
the proportion of strategies in the population is evolutionary stable. On the other
hand, proportions of strategies may also oscillate around an equilibrium, which is
the case in the Rock-Paper-Scissors game. We develop a finite population model
of Rock-Paper-Scissors later in this chapter.

6.2.3 Model

We adopt expected payoff as the fitness function in the models of Chapter 3 such
that the behavior of individuals playing games in an evolutionary context can be
modeled. We assume selection proportional to fitness, and mutation dependent
on a rate u. No crossover is assumed as the genomes, or strategies used in the
games are atomic. The results of these models can however be generalized for
more complex games and genotypes.
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The mean fitness of a population P is given by
F(P) =) "pi > Aip;. (6.2)
i€Q jeQ
The probability of selecting a strategy ¢ from that population is then given by
_Di > jeq Aibj
f(P)

According to a mutation rate u, we can determine the probability of producing
strategy ¢ from the population. The probability that ¢ occurs in the population
of the next generation is given by

G(i,P) = (1= (12 =)w)S(i. P)+ Y nS3, P). (6-4)

JEQLIA]

S(i, P) (6.3)

For a 2 x 2 game, i.e., with two players and two strategies 0 and 1, we can
write the heuristic function in terms of the proportions of one strategy, by

G(0,P) = (1 — )S(0, P) + (1 — S(0, P))

where
A A
(0, P) = PoPoAo,0 + PoP1Ao,1 (6.5)
PoPoAoo + pop1 Ao + PipoAip + pPipi1Ais
or
2A 1—1pp)A
S(0,P) = P5 Ao + po(1 — po) Aoy (6.6)

p2Ago + po(l —po)(Ao1 + A1) + (1 — po)?2Aia

denotes the probability that strategy 0 is selected from the population.

6.3 Neutral Game

The first game we consider is without selection, and is adopted for control mea-
surements. We model a Neutral game with two strategies 2 = {0,1} with a
payoff matrix A where all payoffs Agg = Ap1 = A1p = A1 = c are a constant
¢ > 0, i.e., the payoff matrix of the Neutral game is

A:(g ) (6.7)

Note that an evolutionary system according to the Neutral game reduces to the
model with one locus, two alleles and no selection, as considered in Section 4.2,
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since the fitness of individuals adopting either strategy 0 or strategy 1 equals
f(i, P) = Aijopo + Aiip1 = c(po + p1) = c.

In the setting of EGT, no strategy for the Neutral game is an ESS, since all
states of the infinite population model are fixed points of the infinite population
system. Recall that a strategy is an ESS of the game if, in the infinite population
setting, the strategy cannot be invaded by a mutant strategy. A system with an
infinite population has stable fixed points representing a population according to
the ESS. Since both strategies in the Neutral game always have equal fitness, all
(pure or mixed) strategies can be invaded.

If variation is assumed, the fixed point of the infinite model however is always
at the mixed strategy that employs 50% of strategy 0, and vice versa. In the finite
model of the Neutral game, however, the populations have been observed to drift
away from this fixed point, toward higher probabilities of fixation of either of the
two strategies, if relatively small population sizes, or a relatively small mutation
rate is assumed. The Neutral game is used as a control measurement to see how
selective pressure in other games influences these predictions.

6.4 Hawk-Dove

6.4.1 Game

In this game, a bird has the choice between 2 behaviors when a resource needs to
be shared with another bird. It can either choose to act as an aggressive Hawk
or a pacific Dove. If both players choose the Hawk strategy, they fight and injure
each other. If only one of both players chooses Hawk, then this player defeats the
pacific strategy of the Dove. If both players play Dove, there is a tie in profit, but
the profit is lower than the profit of a Hawk defeating a Dove. The Hawk-Dove
game is also known as the snowdrift or chicken game.

The game can be modeled as a game with two strategies Q = {H, D} (Hawk
and Dove), with a payoff matrix A where Ay g < Ap g < App < Ay p. Both
populations that constitute of either strategy are unstable fixed points of the
game if an infinite population without variation is assumed. There also exists a
mixed strategy that is an ESS of the system, as the fitness of individuals adopting
the Dove and Hawk strategy is equal (Maynard Smith & Price 1973), i.e., when

f(H,P) = f(D, P)
= A upa + An,ppp = Ap upa + Ap,pPD
= (Am.m — Ap u)pE = (App—Aup)(l —pu)
= (Agm+App—Awp—Apm)py = App —Aup (6.8)

The ESS is a population where the proportion of Hawks in the population equals

_ Ap,p — Au,p
App —Aup+Aunw —Apu
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Figure 6.1: Transition matrices and limit or steady state distributions for the Hawk-Dove
game for 3 different parameter settings. The horizontal axis represents the proportion of Hawk
genomes in the population. The vertical dashed line represents the mean of the distribution,
where the dash-dotted line represents the fixed point of the infinite model, as in Figure 4.1.
The horizontal error bars represent the expected deviation of the finite population model with
respect to the fixed point of its corresponding infinite population model.

Since the absolute value of the denominator of this fraction is larger than the
absolute value of the nominator and both have the same sign for the Hawk-Dove
game, this mixed strategy always lays in between 0 and 1.

6.4.2 Results

For the exact measurements of the evolutionary dynamics of the Hawk-Dove
game, the payoffs game have been chosen with Ay y =1 < Apy =2< App =
3 < Ap,p =4, i.e., we use matrix

A:(; g) (6.10)

as the payoff matrix for the Hawk-Dove game. The ESS, or stable fixed point
of the infinite model with no variation, according to (6.9), for these payoffs lies
at 1/2, with 5/2 being the fitness of either strategy. Even more, if variation is
assumed, the stable fixed point remains at 1/2 and no other fixed points exist.
Indeed, if the population P contains proportions py = pp = 1/2 of Hawks and
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Figure 6.2: Expected proportion of Hawks and standard deviation in the limit distribution of
the Hawk-Dove game, for different population sizes with x4 = 0.01 (left) and a range of mutation
rates with » = 20 (right).

Doves, they are both selected with probabilities S(H, P) = S(D, P) = 1/2. The
probability that a Hawk is generated for the next generation equals
l—p w1

G(H,P)= (1= wS(H,P)+p(1-S(HP)=—E+5=2 (611)

which is independent of the value of . Note that this observation is specific for the
values we have chosen for payoff matrix A. It allows us to study the influence of
an increasing mutation rate on the behavior of the finite model without affecting
the fixed point of the infinite model.

Consequently, the evolutionary system with this game is similar to the Neu-
tral game, in only having a stable mixed strategy fixed point at 1/2 if variational
pressure is assumed. When choosing extremely small or large parameters for
population size and mutation rate, the predictions are also similar to those of
the Neutral game. Relatively small population sizes, or relatively small mutation
rates lead to higher influence of drift on the expectations. Under those param-
eters, the effects of random sampling, and thus the forces of genetic drift are
much stronger, than those of selection according to the payoffs in the game. In
the Hawk-Dove game however, selection is asymmetric for either strategy. This
allows a finite population to wander away from the infinite model’s projected
“stable” fixed point, which on its turn may result in drift of the expectations as
compared with the infinite model. We can study this effect, and the balance be-
tween selective and variational pressure, by examining the differences in expected
behavior.

Figure 6.1 represents the transition probability matrices and steady state dis-
tributions of the finite population model for the Hawk-Dove game, for three pa-
rameter settings of the system. Figures 6.1(a) and (b) show how the system
balances between the selection around the fixed point of the infinite model on
one hand, and the influence of genetic drift which forces the system to either ex-
treme of its state space on the other hand. Figure 6.1(c) shows how genetic drift
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Figure 6.3: Expected proportion of Hawks (top) and standard deviation (bottom) in the limit
distribution of the Hawk-Dove game, for different population sizes and mutation rates.

can force the expected behavior of the finite population model relatively far away
from the infinite population’s predicted stable fixed point, toward higher propor-
tions of the Dove strategy. As the fixed points, means and standard deviations
of the systems have been determined by exact techniques, it is clear that genetic
drift can introduce significantly different behavior when finite population sizes
are considered as compared to the predicted ESS at (1/2,1/2). These predictions
lose significance as population size r or mutation rate yu is increased. Figures 6.2
and 6.3 show the influences of varying population size and mutation rate on the
expected proportions of Hawk individuals in the limit distribution, and the stan-
dard deviations thereof. In comparison with Figures 4.2 and 4.3 on pages 63, 64,
it is clear that the selective pressure toward the ESS in the Hawk-Dove game —
selective pressure which is not present in the Neutral game — leads to smaller stan-
dard deviations around the expected proportions. Indeed, the stochastic effects
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of genetic drift are weaker if selective pressure is stronger.

Schaffer (1988) has proposed a correction to the ESS for the Hawk-Dove game.
In this correction, Schaffer concludes that the proportion of Hawks in a finite
population is higher for finite populations as compared with the ESS. This is
clearly in contrast with our exact predictions of the limit behavior of the Hawk-
Dove game. Note that Schaffer studies populations that are not generational,
i.e., only a small part of the population is replaced by offspring individuals. Fogel
et al (Fogel & Fogel 1995; Fogel, Fogel, & Andrews 1997; Fogel, Andrews, &
Fogel 1998) empirically study the influence of finite populations on the stability
of Hawk-Dove, with varying offspring population sizes. From their simulations,
it can be observed that the bias of deviation from the ESS is indeed dependent
on the size of the offspring population. The conclusions made here are thus only
true for generational evolutionary systems, whose offspring population is of size
r. The Markov model may be adapted to include smaller offspring populations,
but this is out of scope for the text.

We need an explanation why small populations drift to higher proportions of
Dove. Consider two finite systems, with the same population size r and mutation
rate p. The first system is initialized with a population with r/2 — k Hawks, the
other is initialized with r/2 + k Hawks, with k strictly positive. The probability
of moving from these initial states to the state with a proportion of 1/2 Hawks in
n steps can be computed. The probability of reaching this state is higher when
starting with r/2 + k Hawks, where the system started with more Doves remains
longer stuck. On average, the overall system thus remains longer in states that
have a higher proportion of Doves. On average, the system is thus pushed to
higher proportions of Doves as compared to the infinite model. The observation
that populations drift toward higher proportions of Dove (and not the other way)
is similar to Ficici and Pollack’s (2000a) observation of this effect in simulation
runs of the Hawk-Dove game.

As a conclusion, we thus expect that in a finite population, with a small mu-
tation rate, we expect more cooperation (Dove strategy is more cooperative in
sharing payoff) in the Hawk-Dove game, as compared with the ESS. By intro-
ducing stochastic elements, such as mutations and a small population size, the
system becomes biased toward a strategy that is not evolutionarily stable, and
thus contradicts the expectations of the infinite population model. With small
populations, the concept of an ESS becomes obsolete.

6.5 Prisoners’ Dilemma

6.5.1 Game

The well-known and broadly studied Prisoners’ Dilemma originated from the
following setting. Two criminals are arrested under the suspicion of a crime
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Figure 6.4: Limit or steady state distributions for the Prisoners’ Dilemma game for 3 different
parameter settings. The horizontal axis represents the proportion of Defect genomes in the
population.

they have committed. The police doesn’t have enough proof to convict them.
The criminals are separately questioned. Both criminals must choose to either
Cooperate with each other or to Defect. If either one of the criminals gives the
police more evidence to convict the other, this Defector is freed. If both players
Cooperate, they receive only a short time in jail. If both players tell out on
each other, then the police has enough evidence to convict both. If one player
Defects her Cooperating opponent, the Defector receives a high payoff, and the
Cooperator spends a long time in jail.

Biological examples of the Prisoners’ Dilemma can be found in the behavior
of bacteriophage ®6 and the evolution of ATP producing pathways (Nowak &
Sigmund 2004).

Consequently, the game can be modeled with two strategies Q = {C, D}
(Cooperate and Defect) with a payoff matrix A where Acp < App < Ace <
Ap,c. Both pure strategies are equilibrium strategies if no variation is assumed.
The fixed point where the whole population adopts Defection is stable and the
ESS of the game. The fixed point where all players Cooperate is unstable. There
is no mixed strategy ESS for this game.
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Figure 6.5: Expected proportion of Defect and standard deviation in the limit distribution
of the Prisoners’ dilemma, for different population sizes with g = 0.01 (left) and a range of
mutation rates with r = 20 (right).

6.5.2 Results

We have assumed payoff values Acp =1 < App =2 < Acec =3 < Apc =4,
with payoff matrix

A:(f g) (6.12)

We expect the populations to contain a lot of the Defect genomes on the long
run, even if variation is assumed. The effects of genetic drift observed in the
previous games are different in the Prisoners’ Dilemma. In the previous games,
selective pressure pulls the populations toward diverse populations, as the stable
ESS of those games is a mixed strategy. At the other end, genetic drift pushes
instantiations of the system to less diverse populations, such that one strategy
becomes prominently abundant in the population. In the Prisoners’ Dilemma,
the behavior in the finite model is expected to concentrate on populations with
one strategy (Defect). Since genetic drift drives populations to become fixated,
we expect that in this game, selection and drift work together and consequently,
that the finite model better resembles the infinite model as compared with the
Hawk-Dove game.

Figure 6.4 depicts steady state distributions of the finite population model
when the individuals are involved in the Prisoners’ Dilemma, for a number of
parameter settings. As predicted by the infinite model, the distributions are
expected to have a large proportion of Defect genomes. Figures 6.5 and 6.6 show
the influence of population size and mutation rate on the expectations of the
finite model and the standard deviation thereof.

As the population size is increased, the expected behavior of the system better
resembles the expected infinite population behavior, and the standard deviation o
around the weighted mean of the expected distribution over the states decreases.
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Figure 6.6: Expected proportion of Defect (top) and standard deviation (bottom) in the limit
distribution of the Prisoners’ dilemma, for different population sizes and mutation rates.

Only for extremely small population sizes, the effects of random sampling are
clearly visible and may lead to noticeable proportions of Cooperating populations.

As we increase the rate of mutation, ¢ increases, as the generation of random
individuals tends to push the populations to more diverse configurations. In the
case of the Prisoners’ Dilemma, selection pushes the population to less diverse
populations. Note that this observation contrasts with the expected behavior in
the previous games, where higher variation resulted in predictions that better
resembled the infinite population model. Of course, in these other games, selec-
tive pressure and a high mutation rate both guide the system to more diverse
populations. The expectations of the Prisoners’ Dilemma game are similar to the
behavior observed with a static fitness function in section 4.3. For small pop-
ulation sizes and small mutation rates, the predictions of the finite population
model are thus more similar to the infinite model for the Prisoners’ Dilemma as
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compared to the influence of genetic drift on the Neutral and Hawk-Dove game.

In the Prisoners’ Dilemma, the Cooperate strategy is rationally the optimal
strategy, if all other players in the game also opt for this strategy. In an evolu-
tionary system, however, this pure strategy is an unstable fixed point. Only for
small population sizes and extremely small mutation rates, the finite population
model predicts a noticeable proportion of Cooperate genomes in the populations.
Figure 6.4(a) gives an example of a small probability of ending up in a population
filled with the Cooperate genome.

6.6 Coordination Game with Risk Dominance

6.6.1 Game

The last 2 x 2 game studied in this chapter is rather artificial by nature, and is
inspired by the notion of risk dominance as studied extensively by Harsanyi &
Selten (1988). We assume that the strategies are given by Q = {0,1}. We assume
that the following properties hold for the payoffs of this game:

o Ao > Aipand A1 > Agy, ie., the game is a coordination game. Players
in the game have to agree on one of the two strategies in order to receive
a high payoff. If the players do not agree, a lower payoff is rewarded. An
example of a coordination game is the setting where two technologies are
available to two firms with compatible products, and they have to elect
a strategy to become the market standard. If both firms agree on the
chosen technology, high sales are expected for both firms. If the firms do
not agree on the standard technology, few sales result. Both strategies are
evolutionarily stable strategies of the game.

o Apo > A, ie., the payoff received when both players are playing strategy
0 is higher than the setting where both players adopt strategy 1. Strategy
0 is said to payoff-dominate strategy 1.

o Apo+Ap1 < A1g+ A, ie., an individual adopting strategy 1 has a higher
expected payoff than an individual adopting strategy 0 when faced with an
individual playing either strategy with probability 0.5. Since Ao > A
and A;; > Ao, strategy 1 is said to risk-dominate strategy 0. The loss in
payoff if the opponent changes its strategy is lower for an individual playing
the strategy that risk dominates the other strategy. The risk dominating
strategy thus has the lowest risk of losing payoff. A risk dominating strategy
is advised if an opponent is known to change its strategy.

Note that, besides the notion of dominance in diploid individuals, two extra
concepts that involve the word “dominance” have been introduced. To make the
difference among these concepts clear, we always use “payoff dominance” and
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“risk dominance” to denote the newly introduced terms, while “dominance” is
used to denote the dominance of one allele over another in diploid individuals.

Players thus must coordinate their strategies, and choose either the risk dom-
inating strategy 1 or the payoff dominating strategy 0. Both strategies are evo-
lutionarily stable strategies of the game, and have their separate advantages. If
the players are unstable in their choices, the risk dominant strategy would be
preferred, and if players can trust each other, they can cooperate with the payoff
dominant strategy.

Observations made by Robson & Vega-Redondo (1996) have shown that, for
the limit where the mutation rate goes to 0, stochastic stability of the payoff
dominating strategy is found. Miekisz (2005a) has studied some models of finite
populations of the Coordination game with a risk dominant and payoff dominant
strategy. By making assumptions to simplify the Markov models, his analysis
shows that for an arbitrarily low mutation rate, populations that are sufficiently
large have a high probability of choosing the risk dominating strategy. Miekisz
concludes that, in order to describe the limit behavior of a population, the muta-
tion rate and population size have an important impact on the expected behavior.
This concurs with the conclusions of previous models and games. We carry out
such a study by performing an experimental analysis of the limit behavior for the
Coordination game, for specific payoffs, mutation rates and population sizes.

6.6.2 Results

Consider the Coordination game with payoff dominance and risk dominance with
payoffs according to matrix A, with

a=(51) (6.13)

Note that these payoffs are according to the properties as itemized above. The
game is a coordination game as Ago =5 > A1p =3 and A1 =4 > Apq = 1.
Strategy 0 payoff dominates strategy 1 as Agp = 5 > A;1 = 4. Strategy 1 risk
dominates strategy 0, since the expected payoff — against an opponent playing
each strategy with probability 0.5 — is 3 for strategy 0 and 3.5 for strategy 1.

Infinite population model. In contrast with the previous games studied in this
chapter, this games constitutes of 2 evolutionarily stable strategies. Dependent
on the mutation rate, the infinite population model has one or two stable fixed
points related to the evolutionary stable strategies. Figure 6.7 depicts heuristic
G for specific values of p and the stable and unstable fixed points of an infinite
model involved in this game.

As the mutation rate increases, the fixed point related to the payoff dominant
strategy dissolves, as is the unstable fixed point. In the limit where 4 — 0, both
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Figure 6.7: Top: Heuristic G of the Coordination game with payoff and risk dominance for
varying mutation rates u. Axes denote proportions of payoff dominance in the current and next
population. The fixed point to which a population started in (1/2,1/2) is attracted is shown.
Bottom: Fixed points of the game for different mutation rates. The vertical axis represents
proportions of payoff dominant strategies in the population. The solid graphs represent stable
fixed points, where the dashed graph represents unstable fixed points.

states whose proportion of payoff dominant strategies equals 0 and 1 are stable
fixed points, and 0.6 is the unstable fixed point of the system. This unstable fixed
point is given, in similarity with the mixed strategy ESS of the Hawk-Dove game,
by (6.9).

Consider a sufficiently small mutation rate, such that the unstable fixed point
exists. If the initial proportion of payoff dominant strategies in the initial infinite
population is high enough (i.e., higher than the proportion of payoff dominant
strategies of the unstable fixed point), the deterministic system is attracted by
the stable fixed point related to payoff dominance. In all other initial cases, the
system moves to the stable fixed point related to risk dominance.

These observations of expected behavior are according to our previous ex-
pectations. The individuals become less stable in their choice of strategy as the
mutation rate increases, and consequently, the population becomes more likely to
opt for the risk dominating strategy. This is also of influence on the behavior in
finite population models.
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Figure 6.8: Transition matrices and limit or steady state distributions for the Coordination
Game with Risk Dominance for 3 different parameter settings. The horizontal axis represents
the proportion of payoff dominant strategies in the population.

Note that in the comparisons of the limit behavior of the finite population
model with that of the infinite model, we only consider the fixed point related
to the risk dominating strategy. This is due to the fact that we assume that
the initial infinite population that starts the deterministic chain is given by the
population whose ratio among the two frequencies equals 1 : 1. The system is
attracted by the fixed point related to the risk dominating strategy if started in
this initial population, independent of the mutation rate, since the proportion of
payoff dominance of the unstable attractor in the infinite model is always higher
than 1: 1.

Finite population model. Figure 6.8 depicts the transition probability matri-
ces and limit distributions for some particular instantiations of the finite popu-
lation model. Figures 6.9 and 6.10 relate population size and mutation rate to
expected proportions, and standard deviations thereof, of the payoff dominating
strategy.

The probability to end up with a population of risk dominating strategies
is generally high, as predicted by the infinite population model. As populations
become very small, the influence of genetic drift overwhelms the selective pressure
in the game, which causes the populations to be in either the state where they
consist of strategy 0 and 1 only, as before in other games.
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Figure 6.9: Expected proportion of payoff dominant strategies and standard deviation in the
limit distribution of the Coordination game, for different population sizes with g = 0.01 (left)
and a range of mutation rates with r = 20 (right).

For large mutation rates, i.e., close to 0.5, the mutation rate is high enough
to, again, overpower the selective pressures present in the game, in similarity
with the predictions of high mutation rates in the infinite population model and
mutation rates.

As expected, in relatively large populations with a small mutation rate, the
individuals are more confident of the stability of their opponents to assume a
slightly larger probability of adopting the payoff dominating strategy. See for an
example the limit distribution with r = 20, x = 0.001 in Figure 6.8(c). As the
population size approaches the limit of infinitely large populations, however, the
limit behavior returns to the predicted, lower, proportions of payoff dominance
in the infinite model.

In between these observations, we are left with systems with a moderate pop-
ulation size in relation to the mutation rate. In this case, the system is not under
large influence of genetic drift, nor of being attracted to highly diverse popula-
tions. On the other hand, the populations are not large enough in relation to the
mutation rates that individuals can take the risk to opt for the payoff dominating
strategy, as the probability that individuals in the population are mutated to the
risk dominating strategy is too high. For these parameter settings, the expected
proportion of risk dominating strategies is thus highest. An example of the steady
state distribution of the system for such parameters is given with » = 10, u = 0.01
in Figure 6.8(b).

For the Coordination game, we can consequently conclude that the size of
the population and the rate of mutations in the evolutionary system have an
important impact on the expected behavior of the population. The individuals
in the population adopt the risk dominating strategy if the stochastic elements
of the evolutionary process are prevalent. Only in the case where the population
may remain sufficiently stable and is free of stochastic distortions, the payoff
dominating strategy has a relatively higher probability of being adopted. The
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Figure 6.10: Expected proportion of payoff dominant strategies (top) and standard deviation
(bottom) in the limit distribution of the Coordination game, for different population sizes and
mutation rates.

amount of stochastic events — caused by the finiteness of the population and the
amount of variation — thus has an important influence on the choice of strategy
that is adopted by the finite population.

6.7 Rock-Paper-Scissors

6.7.1 Game

In the well-known Rock-Paper-Scissors game, two players have the choice of three
strategies, i.e., Q@ = {R, P, S} (denoting strategies Rock, Paper, Scissors, respec-
tively). In this game, Paper beats Rock, Rock beats Scissors, and Scissors in
its turn beats Paper. If both players choose the same strategy, there is a tie in
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(a) p=0.01 (b) p=10.04 (c) p=0.08

Figure 6.11: Transient behavior of the infinite population model for Rock-Paper-Scissors. Each
triangle represents the state space of populations for the Rock-Paper-Scissors game; the top left
corner of the triangle represents a population with all Scissors, the top right corner Rock, and
the bottom corner Paper. Top: Vector fields depicting the mapping of the state space. Bottom:
Example traces of transient behavior and limit cycle of the infinite population model in bold,
if available. In (a), the chain starts with proportions 0.4 Rock and 0.3 Paper, and approaches
a limit cycle from within. In (b), the initial proportions are 0.01 Rock and 0.01 Paper, and
approaches a limit cycle from the exterior. In (¢), the initial proportions of strategies are as in
(b), this chain converges to a stable fixed point at the center of the state space.

payoff. We can write the game’s payoff matrix A with
t I w
A= w t I (6.14)
[ w t

with payoffs according to [ < ¢ < w, denoting the payoffs received in case of a
loss, tie or win, respectively.

6.7.2 Dynamics

For our instantiation of the Rock-Paper-Scissors game, assume that the payoffs
received are according to l = 0 <t =1 < w = 2. Winning a game results in
a payoff of 2, playing a tie results in payoff 1 for each player, and a loser gains
no points. In a population that mainly consists of individuals adopting strat-
egy Paper, the individuals with strategy Scissors receive the highest payoff, and
their proportion in the population increases. Once their proportion has become
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Figure 6.12: Mean distance between the states that constitute the limit cycle, on one hand, and
the fixed point at (1/3,1/3,1/3) T, on the other hand, for different mutation rates.

relatively large, the expected payoff of the Rock strategy becomes highest, and
the proportions of individuals adopting this strategy starts to increase. Once the
population merely consists of Rock, it is again taken over by the Paper strategy.

A population that constitutes only of the Rock strategy, can be invaded by
a mutant Paper strategy, alike for Scissors invading Paper and Rock invading
Scissors. Each of the pure strategies is thus — in the case of infinite population
size and no variation — an unstable fixed point of the model. Since none of the
strategies can persist without being invaded by a mutant strategy, there is no ESS
of the game. A fourth, mixed strategy fixed point in the infinite model exists at
(1/3,1/3,1/3)7 as the game is symmetric for either strategy. The discrete time
behavior of a population engaged in the Rock-Paper-Scissors game cycles around
the center of the state space with proportions (1/3,1/3,1/3)" of the population
state space. Mappings of the state space and example trajectories of an infinite
population in the Rock-Paper-Scissors game are shown in Figure 6.11.

For small mutation rates, the infinite model is attracted to states with high
proportions of either strategy. For higher mutation rates, the population is main-
tained highly diverse, and is attracted to states that are closer to the fixed point
at (1/3,1/3,1/3)7. For small values of j, the infinite model in discrete time ap-
proaches a limit cycle*, i.e., the fixed point at (1/3,1/3,1/3)7 is unstable. For
larger mutation rates, the fixed point at (1/3,1/3,1/3)" is observed to be stable.
Figure 6.12 shows the mean distance of the limit cycle of the infinite model to
the fixed point at (1/3,1/3,1/3)T for varying mutation rates. For very small
mutation rates, the limit cycle is close to the border of the state space. As the
mutation rate is increased, the limit cycle is closer to the center of the state space.
As the mutation rate approaches approximately 0.045, any instantiation of the

*In the case of the discrete time model, we cannot really speak of a limit cycle as the model
takes discrete steps in the state space. The infinite model approaches a set of states and, in the
limit, remains within this cyclic set of states. We thus use the term limit cycle as a figure of
speech to denote this set, which resembles a continuous limit cycle
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infinite model spirals toward the fixed point at the center, thus becoming the
stable fixed point of the system. We can determine the exact value of u where
the stability property of the fixed point at (1/3,1/3,1/3)" changes.

Let (pr,pp,ps) denote a population with its respective proportions of Rock,
Paper and Scissors. Since ps = 1 —pgr—pp, we can write a population as a vector
p = (pr,pp) and the dynamics of the infinite model in proportions of Rock and
Paper only.

The fitness of individuals adopting Rock, Paper and Scissors is given by

f(R,p) = pr+2ps = 2—2pp—pr
f(P,p) = pp+2pr
f(S,p) = ps+2pp = l+pp—pr

and the mean fitness of all individuals in the whole population always equals
f®) = prf(R,p)+ppf(P,p)+(1—-R~-P)f(S,p) = 1.

The probabilities that either strategy is selected from population p is given
by

S(R,p) = pr(2 — 2pp — pr)
S(P,p) pp(pp + 2pr)
SS,p) = (1—pr—pp)(L+pp—pr) = 1+p%—2pr—p5. (6.15)

According to a mutation rate u, we can write the elements of the heuristic
with

G(R,p) = (1-2u)S(R,p)+ u(S(P,p)+S(S,p))
G(P,p) = (1-2u)S(P,p)+ pu(S(R,p)+ S(S,p))
G(S,p) = 1-G(R,p) — G(P,p). (6.16)

which can be expanded to give the dynamics of heuristic G, expressed in propor-
tions of Rock and Paper only, by

Gr(P) = G(R,p) = pr(2—2pp —pr) + u(l — 6pg + 6pppr + 3p%)
Gr(p) = G(P,p) = p+ (1—3u)(ph+ 2prpr) (6.17)

for which p = G(p) = (1/3,1/3)7 is a fixed point. We now want to determine
for which values of p this fixed point is stable. In order to do so, we need to
determine for which values of p the Jacobian of (6.17), evaluated at the fixed
point, has eigenvalues A such that |A| < 1.

The Jacobian of G is equal to

9Gr  9Gr
opr  Opp ( 2—2pp —2pp +6u(=1+pp+pr)  —2pr+6upr )
b

2(1 = 3p)pp 2(1—3u)(pp + pr)

9Gp 9Gp
dpr  Opp
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Figure 6.13: Expected proportions and standard deviations of Rock, Paper and Scissors strate-
gies of first 50 generations, for a finite population with r = 25,4 = 0.04, and respective
proportions in the infinite population (dashed) with g = 0.04. Both models have been seeded
with initial frequencies of Rock, Paper and Scissors strategies 0.1, 0.1 and 0.8, respectively.

which, evaluated at p = (1/3,1/3)" gives
2-2u —2+2u
2 _2u 4 _ 4y :

The eigenvalues A of this matrix are given by the solution of characteristic equa-
tion

N4 (6 —2)A+12p> —8u+4/3=0

with solutions

A= —-3u+1+3i

1
n=3l

The infinite population model’s fixed point at (1/3,1/3)" is stable if [A| < 1.
We compute the value of z for which [A]* =1, i.e., where

1 = A
= (3u+1)>+3(n—1/3)
— 12— 1/3)"

holds, which is the case if mutation rate p equals
1 1
= -+ -3
p=gEgVs

The infinite population model’s fixed point p at (1/3,1/3,1/3)7 is stable if the
mutation rate y is according to £ — £v/3 < p < £ + 14/3, which is approximately
0.0446582 < p < 0.622008. Note that we are mainly interested in mutation rates
that are according to pu < 1/3.
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Figure 6.14: Distributions of first 25 generations, showing the transient behavior of Rock-Paper-
Scissors for a finite population with r = 25, u = 0.04, with initial frequencies of Rock, Paper
and Scissors strategies 0.1, 0.1 and 0.8, respectively. A darker gray scale represents a higher
probability of being in that state. The superimposed dot represents the transient behavior of
the corresponding infinite population model.

6.7.3 Finite model

Transient behavior. Figures 6.13 and 6.14 show the transient behavior of the
infinite model, and distributions of the finite model for the initial generations, if
the model is initialized with initial probabilities (0.1,0.1,0.8)" for the respective
strategies. In the finite population model, a population size of r = 25 was chosen,
and the initial distribution is seeded according to (3.28). Both models assume a
mutation rate of y = 0.04, i.e., the infinite system converges toward a limit cycle
in the long run. We should point out that the gray scale in Figure 6.14 used
for displaying the finite model is different for each of the steps, to better depict
the distribution at each time step. At generation 25 the distribution of the finite
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model already resembles the limit distribution of the model. Thus, even for a
small mutation rate, and rather large population size, the Markov model mixes
relatively rapidly. We discuss the limit behavior of the finite model later.

For the transient behavior, we note that the finite model lags behind in com-
parison with the progress made in the infinite model. That is, if the finite popula-
tion contains a high proportion of one strategy, it tends to become fixated because
of the effects of random sampling. After a number of generations of fixation, the
finite system rapidly moves on to states fixated at the strategy that defeated the
previous prominent strategy. Because of these periods of fixation, the finite model
requires more time to step from one corner of the search space to the next. The
probability of fixation is high in comparison with the rate of mutants entering the
population, which allows the population to escape from one fixated population
and move on to the next. The deterministic model of the infinite population is
not affected by these periods of stochastic fixation. Consequently, the infinite
model is better able to cycle around the state space. Note that for a small search
space of 3 strategies, even a population of 25 individuals would commonly be
considered to be large enough to cope with the stochastic effects of fixation, and
would be expected to resemble the infinite model closely. This is, however, clearly
not the case.

Rapid bursts of innovation, i.e., the rapid evolution from one strategy to an
other, which are intermitted by periods of fixation, as can be observed in the fi-
nite model, are the typical properties of punctuated equilibria, epochal evolution
or metastability. Note that these three names in fact denote the same concept,
where different authors prefer different names. Vose & Liepins (1991) and Van
Nimwegen et al (1997, 1998, 1999) have observed these punctuated equilibria in
the transient behavior of genetic algorithms, e.g., in the dynamics of an algo-
rithm optimizing Royal Road functions (van Nimwegen, Crutchfield, & Mitchell
1999). They have stated that finite population models induce such punctuated
equilibria in the transient behavior of the genetic algorithm. Because of the cyclic
behavior of the Rock-Paper-Scissors game, where the dynamics of the game and
selective pressure are repeated indefinitely, we can thus observe how this constant
generation of metastability weighs in in the long run.

Distance measure. The limit behavior of the infinite model may be cyclic
in a set of states in the long run. More specifically, the limit distribution of
the infinite model is in this case a specific distribution over these states. Since
both the infinite and finite population model now result in a limit distribution,
we cannot simply compute the distance, or deviation of the limit behavior of
a finite population model with respect to the infinite population model. The
difficulty arises as we have to measure the distance between two distributions,
in contrast with measuring the distance between a distribution (of the finite
model) and a point (representing the infinite model) as in Section 3.7.2. Finding
a reallocation of the probabilities from one distribution to the other, such that the
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r =10, = 0.08 r =20, =0.08 r =40, = 0.08

Figure 6.15: Limit distributions of finite and infinite populations involved in the Rock-Paper-
Scissors game, for varying population sizes and mutation rates. In the case of y = 0.02,0.04,
the limit distribution of the infinite model converges to a limit cycle, if 4 = 0.08, the infinite
model converges to the stable fixed point at the center of the state space.

distance over which these probabilities are reallocated is minimal would give us a
suitable distance measure between the two distributions. However, we encounter
some problems with such a measure. First, the distance measure by itself is an
optimization problem, making it a computationally expensive measure. Secondly,
the set that defines the limit cycle is not clearly defined as no proper analytic
description is available. The limit cycles used in our measurements have been
determined through iteration of the model, which provides a sufficiently correct
approximation. In all of the experiments, the deterministic infinite model was
ran for 10000 generations, after which 500 data points were collected to represent
the limit cycle.
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Figure 6.16: Distance of the limit distribution of the finite model to the fixed point at
(1/3,1/3,1/3)T (top figure) and distance to the limit cycle of the infinite model (bottom figure),
for various mutation rates and small population sizes.

We can, however, provide an approximation of this distance measure that can
be computed easily. For each of the populations p € 7 in the finite population
model, we find the closest point p,, in the infinite model’s limit cycle x}_, and
weigh this Euclidean distance by the proportion of population p in the finite
model’s limit distribution x*. More formally, the approximation of the distance
of the finite population model’s limit distribution x* with respect to the infinite
population model’s limit cycle x., is given by

pr min (P— Do)’} (6.18)

P €Xo
pen

Note that, in the case of large y, where the limit behavior of the infinite model
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r =100, = 0.04 r =250, 1 = 0.04 r =500, = 0.04

Figure 6.17: Limit distributions of finite and infinite populations involved in the Rock-Paper-
Scissors game, for mutation rate y = 0.04 and very large population sizes.

=350, 4 =

r =350, = 0.01 r 0.02 r =350, 1= 0.04

Figure 6.18: Limit distributions of finite and infinite populations involved in the Rock-Paper-
Scissors game, for very large population size r = 350 and mutation rates yu = 0.01,0.02,0.04.

does not consist of a limit cycle but of a single point at (1/3,1/3,1/3)7, the
adopted distance is no longer an approximation, but is equal to the distance of
Section 3.7.2.

Limit behavior. Figure 6.15 shows the limit distributions of the finite popula-
tion model for various mutation rates and population sizes, overlaid by the limit
cycle of the infinite population model. As expected from our observations of
the short term behavior of the finite population, the finite models tend to reside
in populations with high proportions of either strategy with a high probability,
also in the long run. This effect is stronger for small population sizes and small
mutation rates.

Figure 6.16 shows the distance from the limit distribution in the finite model
to fixed point at (1/3,1/3,1/3)" and to the limit cycle of the infinite model, as in
Figure 6.18. For very small population sizes, the model has a high probability to
reside in the “corners” of the search space. For small population sizes, and any
mutation rate, the populations tend to become fixated in these corners, which
denote populations with high proportions of one strategy. For larger mutation
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rates, the populations in the finite model become highly diverse, and the model
resides around the infinite model’s fixed point at (1/3,1/3,1/3)T. As mutation
rates are increased and approach 1/3 — 1/3/6, the limit behavior of the infinite
population quite suddenly becomes stable at the fixed point at (1/3,1/3,1/3)7,
where the behavior of the finite model slightly goes toward this point.

Recall Figure 6.12. As the mutation rate approaches 1/3 — /3/6, the limit
cycle of the infinite model rapidly goes toward to the fixed point at the center. In
contrast, the finite model’s predictions show that as the mutation rate is increased,
its distance to the fixed point at the center goes smoothly to 0. This difference
explains the ridge in the bottom figure of 6.16. At the mutation rate where
the infinite model’s fixed point at the center of the state space becomes stable,
the difference between the finite model and the infinite model is largest. As the
population size of the finite model is increased, the limit behavior of the finite
model better resembles the expected behavior of the infinite population model.
We expect that, as the population size of the finite model goes toward infinity,
the finite model’s expectations converge to the infinite population model.

Figures 6.17 and 6.18 show the limit behavior of the finite population model
for large population sizes, and various mutation rates. We want to point out that
the computation of the limit behavior of the model with populations of » = 500
individuals required our parallel implementation of the power method to deter-
mine the eigenvector of a matrix of size 118GiB. It can be observed that for such
large population sizes (relative to the model’s search space of 3 strategies), the
finite model’s limit behavior is still visibly different from the expectations of the
infinite population model. These differences are due to the constant improve-
ment that is required in the changing fitness environment of the finite population
model, and the model experiences — even for r = 500 — constant pressure of the
stochastic sampling effects.

Summary

We have studied models of finite populations evolving strategies in the context of
evolutionary game theory. The fitness functions are adapted from simple games,
and render payoff or fitness dependent on the frequencies of strategies in the
current population. As a result, the fitness of an individual changes over time
as the composition of the evolving population changes. Because of the stochastic
nature of finite population models, we question the stability of evolutionarily
“stable” strategies in such models. We have studied the influence of mutation
rates and finite population sizes on the expected long term behavior.

An infinite population model is attracted toward the evolutionarily stable
strategies of the game, if these exist. The stability of adopting such strategies
in an infinite population model is dependent on the payoffs in the game. For
some games, one pure strategy may be benefecial over other strategies, such that
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adoption of that strategy is preferred. For other games, the population may
want to adopt a mixed strategy as its optimal behavior. Games may also put
forward more complex dynamics in infinite populations, such as limit cycles. By
dropping the assumption of an infinitely large population, we can study how finite
populations behave in the context of these games.

We can categorize two types of evolutionary dynamics in a game’s fitness
function. On one hand, the evolutionary dynamics of the infinite model may
converge to an equilibrium situation in the long term. The population converges
to an evolutionarily stable strategy, and the dynamics of the fitness function
thus also converges to a static situation in the limit. In such cases, the finite
model acts similarly to an evolutionary system in a static fitness environment in
the long run. On the other hand, we have considered the Rock-Paper-Scissors
game, where the population may continuously change because of evolutionary
pressure, even toward the limit. In such perpetually dynamic situations, finite
models behave similarly to models of evolutionary systems in perpetually dynamic
fitness environments, as studied in the previous chapter.

In a finite population, the system balances between the forces put forth by
the infinite model on one hand, and genetic drift on the other hand, which forces
populations to become fixated in specific strategies. If one pure strategy is evolu-
tionarily stable, as in the Prisoners’ Dilemma game, the influence of introducing
a finite population is similar to that of the models with a static selective pressure
as studied in Section 4.3. If a mixed strategy is the evolutionarily stable strat-
egy, as in the Hawk-Dove game, then genetic drift may push the population out
of this mixed strategy. As a result, the population may become biased toward
one strategy in comparison with the infinite model’s dynamics. This allows the
average behavior of the finite population to drift away from the evolutionarily
stable strategy. Similarly, a specific finite population size and mutation rate may
force the finite population to opt for different strategies than the ones expected
in infinite population models, as in the Coordination game with Payoff and Risk
dominance.

For games whose behavior is perpetually dynamic, as in the Rock-Paper-
Scissors game, the effects of introducing a finite population size is most notice-
able. The continuously changing dynamics of the population forces the individu-
als to continuously re-explore the genotype space for advantageous strategies. In
similarity with the results from the previous chapter, finite populations in such
dynamic environments constantly become fixated in a strategy. Because of the
stochastic effect of fixation, which is not present in the infinite model, dissimilar-
ities between the finite and infinite models emerge. A finite population evolving
strategies for the Rock-Paper-Scissors game advances more slowly because of con-
tinuous occurrences of fixation. This is true even for relatively large, but finite
population sizes.






Chapter 7

Co-Evolutionary Fitness Environments

In order to study evolutionary systems in co-evolutionary environments, we con-
struct a Markov model of co-evolution of two populations with fixed, finite pop-
ulation sizes. In this combined Markov model, the behavior toward the limit can
be utilized to study the relative performance of the evolutionary systems. As
an application of the model, we perform an analysis of the relative performance
of haploid and diploid genetic populations in the co-evolutionary setup, under
several parameter settings.

We construct models of co-evolution of two finite populations. These models
are adopted to study the limit behavior of populations involved in a competitive
game, the Matching Pennies game. We provide general results of two competing
haploid populations, and a setting in which a haploid population competes with
a diploid population.

Parts of this chapter are derived from A.M.L. Liekens, H.M.M. ten Eikelder,
P.A.J. Hilbers, Finite Population Models of Co-Evolution and their Application
to Haploidy versus Diploidy (2003b) and A.M.L. Liekens, H.M.M. ten Eikelder,
P.A.J. Hilbers, A Finite Population Model Analysis of Co-FEvolution with Match-
ing Pennies (2003a).

7.1 Introduction

Co-evolution denotes the simultaneous evolution of two or more populations with
interdependent or coupled fitness functions. In competitive co-evolution, just like
competition in nature, individuals of both populations compete with each other
to gather fitness. In cooperative co-evolution, individuals have to cooperate to
achieve higher fitness. In genetic algorithms, cooperative co-evolution may be
used to decompose solutions for optimization problems into separate parts, and
then let co-evolving populations cooperate to find optimal parts of an optimal
solution, see e.g., Wiegand (2004).

The interactions among co-evolving populations have previously been modeled
in the context of Evolutionary Game Theory (EGT), using replicator dynamics
and infinite populations. Similar models have, for example, been used to study
equilibriums (Ficici & Pollack 2000b) and comparisons of selection schemes (Fi-
cici, Melnik, & Pollack 2000). Simulations of competitive co-evolution have previ-
ously been used to evolve solutions and strategies for small two-player games, e.g.,
in (Rosin 1997; Lubberts & Miikkulainen 2001), sorting networks (Hillis 1992),
or competitive robotics (Floreano, Mondada, & Nolfi 1999).

133
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In this chapter, we provide the construction of a Markov model of co-evolution
of two evolutionary systems with finite population sizes. After this construction
we compute the relative performances in such a setup, in which a haploid and
diploid population co-evolve with each other.

In this chapter, co-evolution is used as a “test bed” to test two populations’
relative performance in dynamic environments. Indeed, since the fitness of an
individual in one of the co-evolving populations is based on the configuration of
the opponent population, the fitness landscapes of both populations constantly
change, thereby simulating dynamic environments through both populations’ in-
terdependent fitness functions. Note that the results can only be used to discuss
the populations’ relative performance since the dynamics of one population is
explicitly dependent on the other.

It is assumed that diploid populations react better to changes in their environ-
ment as compared to haploid environments, see Chapter 2. We let haploid and
diploid populations face one another in co-evolution, which allows us to study a
comparable situation in the history of life on Earth: The first diploid organisms to
appear on Earth had to face haploid life forms in a competition for resources. The
dynamics of the co-evolutionary competitive games played by these prehistoric
cells are similar to the presented models. Correct interpretation of the results
may render insights how the earliest diploid life forms were able to compete with
haploid life forms.

7.2 Finite Population Models of Co-Evolution

We consider the combined co-evolutionary process of two evolutionary systems,
respectively defined by population transitions 7y and 75, over population search
spaces m; and 7. We also use the indexing in the notation to define the corre-
sponding phenotype spaces {2; and (2. We assume that the population sizes are
fixed and finite, and their generational transitions are executed at the same rate.
In nature, the progress, as measured in generations, may differ from species to
species. Especially in co-evolution, the number of generations processed by both
co-evolving populations over the same period may differ a lot. In our model-
ing approach, we assume that all individuals, from both co-evolving populations,
simultaneously determine their fitness, and, after that, simultaneously produce
their next generations. Other schemes could, for example, evaluate one popu-
lation and produce a next generation for that population, before evaluating the
second population, thereby alternating their generational progress. See Crombach
(2002) for an overview of possible schemes.

The fitness functions of both populations are interdependent. The fitness
function of an individual in one population is dependent on the composition
of the other population. As the evolution in both population progresses, the
fitness function for either co-evolving population thus changes over time, as the
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composition of the populations evolve. If the co-evolution of two populations is
competitive, e.g., in a predator-prey setting, an improvement in fitness in one of
the populations results in a degradation in the fitness of the other population. In
cooperative co-evolution, improvement of fitness in one population may result in
an improvement of the fitness in the other population.

We write the fitness function of individuals 7 in a population P;, who are
co-evolving with a second population P, as fi(i, P, P,), where P, now takes the
role of the environment £. The fitness of an individual j in population P, is
f2(4, P2, P1), i.e., population P; acts as its environment. As such, the fitness
function of an individual in one population is dependent on the configuration
of the co-evolving population. Consequently, the transition probabilities of both
populations now also depend on the state of the competing population.

The state space 7, of the resulting Markov chain of the co-evolutionary sys-
tem is defined as the Cartesian product of spaces m and mq, i.e., T, = 7 X To.
All (P, Pp), with P, € w1, P, € m, are states of the co-evolutionary system. The
transition 7, : M., — 7, in the co-evolutionary Markov chain of two interdepen-
dent Markov chains is defined by

P [1eo((P1, P2)) = (P], ;)] = P[ri(P1) = P{|P] - P[12(P2) = By|P1]  (7.1)

where populations P; and P, are states of m; and mo, respectively. The dependence
of 71 and 75 on P, and P, respectively, allows for the implementation of a coupled
fitness function for either population. Let T denote the |m.| X |me| transition
matrix of the co-evolutionary system with transition probabilities

T(P{vPé)a(Pl,Pz) =P[ro((P1, P2)) = (P}, P})] (7.2)

as defined by (7.1).

7.2.1 “Matching Pennies” game as fitness function

In order to construct interdependent fitness functions, we borrow ideas of coop-
erative and competitive games from Game Theory. In the previous chapter, we
have focused on symmetric payoff matrices, where all individuals competing in
the games came from the same population. The games adopted for defining the
rules in co-evolutionary systems need not to be symmetric. As such, we can play
a game where the individuals in the first population have a different goal than
the goal imposed on the individuals in the second population.

In the scope of our application, we focus on a family of competitive 2 X 2 games
called “Matching Pennies.” Each of the two players in the game either calls ‘heads’
or ‘tails.” Consider the payoff matrices for the game in Table 7.1. Depending on
the players’ calls and their representative values in the payoff matrices, the players
receive a payoff. More specifically, the first player receives payoff 1 — K if the calls
match, and K otherwise. The second player receives 1 minus the first player’s
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Q1 ‘ heads  tails Q- ‘ heads  tails
heads | 1 — K K heads K 1-K
tails K 1-K tails | 1 — K K

Table 7.1: Payoff matrices of the Matching Pennies game. One population uses payoff matrix
@1, where the other players use payoff matrix ()2. Parameter K denotes the payoff received
when the player loses the game, and can range from 0 to 0.5

payoff. We call K the loser’s payoff. If K ranges between 0 and 0.5, the first
player’s goal therefore is to call the same as the second player, whose goal in turn
is to do the inverse. Hence the notion of competition in the game. Parameter K
can be varied to change the selective pressure in the game. Note that in this case
— in contrast with previous occurrences of a selection pressure parameter L — the
amount of selective pressure decreases as K increases.

If we assume 0 < K < 0.5, it can easily be seen that there exists a unique
Nash equilibrium of this game, where both players call ‘heads’ or ‘tails,” each with
probability 0.5. In this equilibrium, both players receive a mean fitness of 0.5.
No player can benefit by changing her strategy while the other players keep their
strategies unchanged.

Let a population of players denote a finite sized population consisting of indi-
viduals who either call ‘heads’ or ‘tails.” In other words, the phenotype spaces of
both populations is Q = {h,t}. In our co-evolutionary setup, two models evolving
such populations P; and P, are put against each other. The fitness of individu-
als in P, and P, are based on expectations of payoff received when playing the
“Matching Pennies” game against random opponents from the other population.
We thus assume complete mixing among the individuals to determine the fitness
of each individual in either of the populations. Consequently, the fitness of indi-
viduals in population P, and P, are based on payoff matrices (); and @), from
Table 7.1, respectively. Let p; ,, denote the proportion of individuals in population
Py, who call ‘heads,” and p,; the proportion of individuals in P that call ‘heads.’
Define p;1 4 and po similarly for the proportion of ‘tails’ in the populations. The
fitness of an individual ¢ of population P, regarding the constituent strategies of
population P,, can now be defined as

. -(1-K)+ - K if 4 calls ‘heads’
L0, P, Py) = Pan ( )+ Pa 1 z.ca ° . e-a ’s (7.3)
oy (1 — K) +pop- K if 4 calls ‘tails
and that of an individual 7 in population P, as
_ - K+ -(1 = K) if j calls ‘heads’
fo4, Poy P1) = Py P ( ) ) j s (7.4)
Py K+pip-(1—K) if j calls ‘tails’.
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The mean fitness fi(Py, P,) of the individuals in population P; is

f(PL,Py) = Zpl,zﬁ(i, P, P). (7.5)

1€0Q

Note that the mean fitness of the individuals in P, is closely related to the
mean fitness of the individuals in P; because of symmetries in the game, as shown
by

fo(Po, P) = ZfQ(i,PQ,Pl)m,i

i€
= falh, Py, P1)pop + fo(t, P, Pi)pay
= (PaK +p1i(1 = K))pap + (p1aK +pia(l — K))pay
= (P2nK +p2s(1 — K))pip + (P2 K + pan(l — K))pry
= (P2pK +pas(1 = K))(1 = prys) + (P2 K + pon(l — K))(1 = pp)
= ponK +p24(1 = K) + poy K 4+ pop(1 — K) — f1(P1, Py)

= pop+ Do — [1(P1, Po).
Hence, we have shown that
f2(Po,P) = 1— fi(P,Py) (7.6)

always holds for the Mathcing Pennies game.

7.2.2 Limit behavior

In Section B.2.2 of the appendix, we show that the combination of irreducible
and aperiodic interdependent Markov chains, as defined above, does not generally
result in an irreducible and aperiodic Markov chain. Therefore, we cannot simply
assume that the Markov chain that defines the co-evolutionary process converges
to a unique fixed point.

We can, however, make the following assumptions: If mutation can map any
individual — in both of the co-evolving models — to any other individual in the
genotype space with a strictly positive probability, then all elements in the tran-
sition matrices of both co-evolving Markov chains are always nonzero and strictly
positive, see Theorem 3.2. As a result from multiplying the transition probabili-
ties in (7.1), all transition probabilities of the co-evolutionary Markov chain are
then also strictly positive. This makes the combined Markov chain irreducible and
aperiodic, such that the limit behavior of the whole co-evolutionary process can
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be studied by finding the unique eigenvector, with corresponding eigenvalue 1, of
the transition matrix as defined by (7.1), due to the Perron-Frobenius theorem,
see Appendix B.

7.2.3 Expected performance

According to the definition of the co-evolutionary system in (7.1), the transition
matrix for a given set of parameters can be computed. The unique stochastic
eigenvector, with corresponding eigenvalue 1, of this transition matrix can be
found using the power method, through iterated multiplication of the transition
matrix with an initially distributed stochastic vector. We then adopt the resulting
eigenvector to measure the expected relative long term performances of the co-
evolutionary model.

Assuming strictly positive rates of mutation, let x* denote the unique stochas-
tic eigenvector, with corresponding eigenvalue 1, of transition matrix 7" of the
co-evolutionary system. Vector x* denotes the fixed point distribution of states
of the co-evolutionary system, with component a:fph P) denoting the probability

of ending up in state (P;, P,) € 7, in the limit. If f, (P}, P,) gives the mean or ex-
pected fitness of the individuals in population P;, given an opponent population
PQ, then

E[f]= Z T(p,,py) - fi(Py, Py) (7.7)

(Pl 7P2)€7Tco

gives the expected fitness in the long run of the dynamics of the first population
in the limit, in relation to its co-evolving population. Similarly, the expected long
run fitness of the second population can be computed. Because of (7.6) we know
that the expected fitness of one population is always one minus the expected
fitness of the other population, since

Elf] = Z T(py py) - fo(Pa, P1)

(P2;P1)e7rco

- Z Ty py - (1= fi(Pr, P2))

(P2’P1)€7Tca
= Z x?PI;PQ) - Z xikpl,Pz) : E(P17 PZ);
(P2,P1)€mco (P2,P1)ETco
hence,
Elf] = 1-E[f]. (7.8)

We can also compute the variance and standard deviation in order to discuss the
significance of the exact results.
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Given the parameters for fitness determination, selection and reproduction of
both co-evolving populations in the co-evolutionary system, we can now estimate
the mean fitness, and discuss the performance of both evolutionary systems, in
the context of their respective competitors’ performance.

We adopt the expected fitness of a population in the limit as its measure
of performance, in relation to its opponent, co-evolving population. We have
observed earlier on that playing either heads or tails with a probability 0.5 is
the Nash equilibrium strategy of this game. Similarly, the evolutionarily stable
strategy (ESS) of the game is to play either strategy with 50% probability, which
gives all individuals a fitness of 0.5. Taking this again further to the context of
expected performances, it is expected that equally capable evolutionary systems
have an expected performance, or expected fitness of 0.5. Any deviation from this
— because of (7.8) an increase in one population’s expected performance denotes
an equally large decrease in performance for the other population — indicates that
one population is expected to perform better at its co-evolutionary task than its
opponent population.

7.3 Results

7.3.1 Haploid versus haploid

Mutation rate. Figure 7.1 shows the expected performance and standard de-
viation of the system evolving population P;, with K = 0, fixed population sizes
rp, = rp, = 10 and variable mutation rates pup, and pp,. If pup, equals pp,, then
the expected mean fitness of both populations is 0.5, as predicted.

It turns out that, under the given parameter settings, the system with higher
mutation rate performs better in the long run. Indeed, with smaller mutation
rates, populations get more easily fixated in a population, where the other popu-
lation with a higher mutation rate is more able to change the current prominent
strategy. For small mutation rates, the standard deviation is high, since popula-
tions may become more easily fixated in either population that consist of a high
proportion of either strategy. Indeed, in the extreme where the mutation rate
of the population is 0, the population is either in the population with all Os or
all 1s. As both populations have a sufficiently small mutation rate, the system
becomes repeatedly fixated in the situation where either population is fixated,
consequently resulting in a high standard deviation.

Again, the observation that higher mutation rates result in better performance
differs from the observation in static fitness functions, where small mutation rates
are preferred for better convergence, or exploitation of the optimal genotype. In
the dynamics of two co-evolving populations involved in the Matching Pennies
game, the populations must be able to switch quickly from high proportions of
one strategy, to high proportions of the other.
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Figure 7.1: Expected performance (top) and standard deviation about this mean (bottom) of
population P; for various settings of mutation rates up, and up,. The population sizes of both
systems are fixed to 10 individuals. Parameter K has been set to 0

If the strategy adopted by the first population matches that of the second, this
latter population needs to change its strategy to gather more payoff. As a result of
such a change by the second population, the strategies adopted in the populations
differ, giving the second population a benefit in payoff over the first. Now, the
first population has, again, to try and match the calls of the players in the second
population, restarting the dynamical cycle in the Matching Pennies game. As a
consequence, since the fitness of a strategy is dependent on the dynamics of the
competing strategy, and as it needs to adapt to the beneficial strategy dependent
on the strategy of the opponent population, it is required to be more agile than
the opponent strategy in order to acquire high payoffs, and a high performance. A
higher mutation rate offers such agility, and therefore allows the population with
a higher mutation rate an advantage, and thus a higher expected performance.
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Figure 7.2: Optimal setting for pup, if pup, is given, such that population P; performs best

If up, is set and we are given the task to choose pup, such that the performance
of P, is best, or vice versa, then Figure 7.2 gives the optimal mutation rate pp,
for the first population in terms of the mutation rate pp, of the second.

Selective pressure. So far, we only considered a fixed payoff K = 0 for the
experiments. Using this setting of the “Matching Pennies” game puts a high
selective pressure on the populations in the co-evolutionary system.

In Figure 7.3, the performance and standard deviation of P; is depicted for
various settings of pup, and K. For any setting of K, the performance of P, is
higher if its mutation rate pp, is higher than pp, = 0.05, which thus extends our
previous observation that a higher mutation rate than the competing population
provides a higher expected performance. As K comes closer to 0.5, the differences
in performance become less significant.

Population size. Figure 7.4 shows the influence of population sizes rp, and rp,
on the performance of population P;. Mutation rates pup, and pp, have been set
to 0.1, and parameter K equals 0. As rp, equals rp,, the performance of both pop-
ulations is 0.5. In all other cases, the system with the larger population performs
better than its opponent population, although this difference in performance is
only significant as the ratio of population sizes rp, /rp, strongly differs from 1.

In similarity with the previous models, the standard deviation about the ex-
pectations is highest for small population sizes. Again, this is due to the fact that
systems with small population sizes become more easily fixated in populations
with a high proportion of either strategy. These effects of random genetic drift
are most common in populations with a small mutation rate and small population
size.



142 Chapter 7. Co-Evolutionary Fitness Environments

...
D
e
e
e N N A A
et
e N S S
TSR RIRREI A G EIEA ZATS
RRRER RS AT AT
0.5 RIS 7
0.4 S
0.3
0.2
0.1 0.5
.4
0.5

Figure 7.3: Expected performance (top) and standard deviation (bottom) of population P; for
various settings of mutation rate pyp, and variable payoff parameter K. Population sizes rp,
and rp, have been fixed to 10. The mutation rate of Ps, up, is set to 0.05

7.3.2 Haploid versus diploid

For the Matching Pennies game, we construct a co-evolutionary Markov chain
in which a haploid and diploid population compete with each other. With this
construction, and their transition matrices, we can determine the performance of
both populations according to the limit behavior of the Markov chain.

Let 7., be the search space of the co-evolutionary system, defined by the
Cartesian product of the haploid populations’ search space 7z and diploid popu-
lations 7p, such that 7., = mg X mp. Depending on a fixed population size r for
both competing populations, |7, = ((r + 2)(r + 1)?)/2 denotes the size of the
co-evolutionary state space, based on the size of the population spaces of both
models as in (3.3).

For any state (P;, Py) € 7e, with P; a haploid and P, a diploid population,
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Figure 7.4: Expected performance (top) and standard deviation (bottom) of population P; for
various settings of population sizes rp, and rp,

let (7.3) and (7.4) be the respective fitness functions for the individuals in the
haploid and diploid populations. Since we want to compare the populations’
performance under comparable conditions, both populations are assumed to have
the same parameters for their genetic operators.

Pure dominance. Let 1 be the dominant allele, and 0 the recessive allele in
diploid heterozygous individuals. This implies that diploid individuals with geno-
type {0, 1} have phenotype 1. If we would choose 0 as the dominant allele instead
of 1, the co-evolutionary system would yield the exact same performance results,
because of symmetries in the Matching Pennies game. The same holds for ex-
changing fitness functions f; and fs.

Figure 7.5(a,b) shows the expected fitness of the haploid population in the
long run. For large mutation rates, the haploid system generally performs sig-



144 Chapter 7. Co-Evolutionary Fitness Environments

(b) r=15,K =0,h =0

1 1 ,
7] %) i i i i
1] «» |-
5] [} B H : :
: : M
= o : HWWWT'TTTTW e P i
(2] (2] a
(5] (5] i —
S S ‘ ‘
1% ; 1% ; : :
O 1 1 1 1 O 1 1 1 1
Te) — Te) — Lo Te) — Te) — Te)
o o o . (@) (@) (@) .
o . o o o . o o
. o o . o o
o o .
Mutation rate Mutation rate
(c)r=15K=0,h=105 (d) r =15,K = 0,h = 0.01
1 T T 1 Tt T
172 172
wn wn
5] 5]
8 8
= =
= T O S SO U U = L
Q B o I
154 154
5] 5]
=3 =3
I : : I : | |
O 1 1 1 1 O 1 1 1 1
Te) — Te) — Lo Te) — Te) — Lo
O O O . O () O .
O . O O O . O O
. (e} (e} . (e} (e}
(@] (@]
Mutation rate Mutation rate

Figure 7.5: Expected performance and standard deviation of the haploid population in the
co-evolutionary system, for variable mutation rates g and various dominance coefficients. The
mean fitness of the diploid population always equals 1 minus the mean fitness of the haploid
population. The size of both populations is fixed to 5 in (a) and 15 in (b-d).

nificantly better than the diploid model. The small set of parameter settings for
which diploidy performs better, increases as the population size is increased. The
difference in performance, however, is not significant for the performed measure-
ments with pure dominance since the standard deviation about the expectation
is too large.

Partial dominance. Instead of using a pure dominance scheme in the diploid
model, we can also assign a partial dominance scheme to the dominance opera-
tor. In this dominance scheme with coefficient of dominance A, the heterozygous
genotype {0, 1} has phenotype 0 with probability A, and phenotype 1 with prob-
ability 1 — h. The dominance degree is the probability that the recessive allele is
expressed in the case of heterozygosity. Since our model is stochastic, we could
also state that the fitness of an heterozygous individual is an intermediate of the
fitness of both homozygous phenotypes.
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Expected performance of the haploid population for various dominance coef-
ficients are depicted in Figure 7.5(c,d). Even for small coefficients of dominance,
significantly better performance results for the diploid population can be observed
for small mutation rates and high selection pressure (small K), in relation to the
haploid population. Even a small coefficient of dominance allows the recessive
alleles to be expressed in the case of heterozygosity. This allows the diploid pop-
ulation to test either strategy more often than a similar haploid population. Be-
cause of the partial dominance, the diploid population appears as having a larger
population size, which gives the diploid model more agility to adapt to changes
in the haploid population, working in its advantage. For sufficiently large muta-
tion rates (approximately p > 0.1) and low coefficients of dominance, the haploid
population still performs significantly better as compared to the diploid system.

Summary

We have constructed a Markov model of finite populations involved in co-
evolution. The model allows us to study the relative performance of two co-
evolving populations in the long run. We have adopted the Matching Pennies
game for the interdependent fitness function, and studied the performance of two
co-evolving populations with this game. We have shown that having a higher
mutation rate than your opponent renders higher expected payoff in relation to
that opponent. This observation is independent of the selective pressure. Larger
populations render higher expectations of fitness, although the ratio of population
sizes should differ strongly from 1 in order to be significant.

The application of co-evolving a haploid versus a diploid population shows
that, given the Matching Pennies game, and if pure dominance is assumed, the
results are only in favor of diploidy in case of specific parameter settings. Even
then, the results are not significant and subject to a large standard deviation.
A diploid population with partial dominance and a strictly positive dominance
degree can significantly outperform a haploid population, if similar conditions
hold for both populations. These results are expressed best under low mutation
pressure and high selection pressure. Diploidy performs relatively better as the
population size increases.






Chapter 8

Conclusions and Discussion

The size of an evolving population of individuals is an important parameter of
the population’s evolutionary dynamics. In very large populations a vast number
of gene combinations and variations can be tested. Even if deleterious mutants
are introduced into the population, they most probably die out because of the
substantial number of selectively advantageous individuals. The effects of random
events in a large population are negligible.

However, stochastic effects are of great importance in small populations. The
probability that an unlucky sample of alleles is inherited by a child population is
higher if the offspring population is smaller. It is a common fact from statistics
that small samples render unrepresentative descriptions. Similarly, the propor-
tions of alleles in a small child population are usually not representative for the
composition of alleles in the parent population.

During the evolution of a small population, such unlucky samples can build
up generation after generation, and allow the composition of the population to
genetically drift away from the initial configuration. Eventually, some alleles are
lost from the finite population, while others become fixated. It is not necessarily
true that the alleles adopted by the small population are selectively advanta-
geous. Deleterious alleles can more easily take over a population as it has less
individuals. Slow mutation rates and low selective pressure on deleterious alleles
further amplify this effect. A smaller population suffers more from loss of genetic
diversity, and the evolvability of a population is lost as its size is smaller. As a
result, a sufficiently small population may be unable to adapt to its environment.
The population’s environment may change over time, forcing the group to contin-
uously adapt and keep track of these changes. Because of the loss of evolvability,
a small population may become unable to cope with the speed of environmental
changes.

In this thesis, we have constructed mathematical models to study the evolution
of small populations in such dynamically changing environments. We have built
Markov models of finite evolving populations of abstract individuals. Markov
models allow us to compute the limit behavior of the system, which can then be
interpreted as the expected behavior of the population after a large number of
generations. The predictions of a Markov model are exact with respect to the
numerical implementation of the power method. The influence of different param-
eters — such as the population size, the rate of mutation, ploidy of the individuals,
the amount of selective pressure, or the speed of changes in the environment — on
the long run behavior of the models can be studied. By comparing the expecta-
tions of such finite models with the predictions of models that assume infinitely

147



148 Chapter 8. Conclusions and Discussion

large populations, and by comparing models with differing population size, we can
gain insights in what effect the population size has on the evolutionary behavior
of a small population in a dynamic environment.

We have constructed models of finite populations with three types of dynamic
environments to study these effects. In the first model we have constructed dy-
namic environments by implying environmental changes at given time intervals.
As such, we can control the speed of changes in a dynamic environment and
study the impact on the evolutionary dynamics of small populations. In the sec-
ond model we have applied techniques from evolutionary game theory to model
dynamic environments. In these models, an individual’s fitness is dependent on
other members of its population. As the population changes over time, the fitness
of each individual changes as a result. The evolutionary dynamics of the popula-
tion itself thus governs the dynamics of the environment. In the last model, we
have constructed models of co-evolution of interdependent populations. As one
population evolves, the environment of the individuals in the other co-evolving
populations changes.

Because of the modeling approach with Markov models, which requires the
enumeration of all possible states of the system, the populations and their en-
vironments studied in this thesis are limited. Genotype spaces and population
sizes had to be kept relatively small to allow for the numerical computation of the
systems’ limit behavior. The models studied in this thesis are however consider-
ably large. Because of our parallel implementation of the power method, we have
been able to study state spaces surpassing previously established records in the
study of evolutionary systems. For small genotype spaces, we were able to predict
the limit behavior of relatively large populations. As a result, we have a good
idea of how the behavior of simple games and simple genotype spaces scale up
with the population size. In attempts to study small populations of individuals
in genotype spaces that combine multiple genes, population sizes have been very
limited. How such models scale with increasing population sizes and increasing
number of genes remains inconclusive.

Since the focus of this thesis is on dynamic environments, no complex genotype
spaces or genotype-phenotype mappings have been considered, as they would have
only clouded our view of the evolutionary dynamics under study. We however
acknowledge that non-linear genotype-phenotype mappings may have an impor-
tant influence on the dynamics of the population in its dynamic environment.
As future work on this topic, a specific methodology other than Markov models
would be required — e.g., through the usage of a statistical mechanics approach
or lossy compression of the transition-probability matrices — which are not ex-
act but render good approximations of more complex genotype spaces and larger
population sizes. The adopted methodologies in this thesis for defining specific
dynamic environments are however universal and can be adapted upon by other
methods.

In static environments, finite populations are commonly known to become
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fixated in alleles. If the selective pressure exerted on the deleterious alleles is
large enough, and a small, but nonzero rate of mutations is available, a sufficiently
large population contains a high proportion of advantageous alleles with a high
probability in the long run. For very small populations, the stochastic effects
of genetic drift can dominate the behavior of the population, as they become
stronger than the forces of natural selection as the population becomes smaller.

In the setting where the population itself, or co-evolving populations deter-
mine the dynamics of the environment, an infinite population may converge to a
stable situation in the limit. In evolutionary game theory, the population is said
to adopt an evolutionarily stable strategy, i.e., a strategy that cannot be invaded
by a mutant strategy. Since the dynamics converge in the limit, the long run
expectations of a finite population are similar to those of a static fitness envi-
ronment. For finite populations that are sufficiently large, the expected long run
behavior of the system is similar to the infinite model. If a mutant strategy is
introduced in a finite population of individuals adopting an evolutionarily stable
strategy, there is a small probability that an unlucky sample allows the deleteri-
ous mutant to take over the population. Because of stochastic elements, such as
mutations and a small population size, the system may become biased toward a
strategy that is not evolutionarily stable, and thus contradicts the expectations
of the infinite population model. With small populations, the concept of an evo-
lutionarily stable strategy becomes obsolete. For specific games, the parameter
settings of the population size and of the mutation rate can have a significant
effect on the long run behavior of the system.

In dynamic environments that perpetually undergo considerable changes, the
effects of random sampling and genetic drift become more apparent in the long
term behavior of an evolutionary system. During periods where the dynamic en-
vironment remains relatively static, a small population may be able to discover
advantageous alleles and has a chance of becoming fixated on these alleles. As the
period of stasis is longer, the probability of discovering the advantageous alleles is
higher. But as the environment changes dramatically after such a static period,
a fixated finite population does not show the necessary diversity to quickly adapt
to the new environment. A dynamic environment may repetitively change the ad-
vantage of one allele over the others. At each environmental distortion, the finite
population needs to escape from its state of fixation to discover the advantageous
alleles of the new environment. The resulting process of repetitive fixation and
continuing environmental pressure to escape from the state of fixation slows down
the evolutionary progress of a small population in its dynamic environment. Since
smaller populations are more affected by effects of genetic drift and fixation, they
also suffer more from this slowing effect, and consequently perform less well than
larger populations. An infinitely large population is least affected by this slow-
ing effect since it does not become repeatedly fixated in alleles during periods of
environmental stasis. An infinite population generally does not become fixated,
and demonstrates an unbounded amount of diversity, allowing it to more quickly
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adapt to the changes in the environment.

A finite population needs a sufficiently high mutation rate to adapt to envi-
ronmental changes. Mutations induce higher diversity, and thus provide a way to
escape from the repetitive states of fixation. The mutation rate, however, must
not be too high such that the population can exploit newly discovered advanta-
geous alleles within the period of environmental stasis. In order to perform best
in a given dynamic environment, a mutation rate is thus required such that it
balances the exploration and exploitation of advantageous alleles. As the environ-
ment changes more frequently, the rate of mutations must be higher to perform
best. As the size of the population is smaller, the mutation rate must also be
higher since the probability of getting fixated in deleterious alleles is higher.

With models that involve the co-evolution of multiple populations, we have
studied the performance of two competing populations. In competitive co-
evolution, one population’s alleles become deleterious as the opponent population
discovers advantageous alleles. The performance of one population is expressed
with respect to the evolutionary dynamics of the opponent population. If one
population has a higher mutation rate than its opponent, then this former pop-
ulation is able to perform better than its competitor. Indeed, the population
with a higher mutation rate is more diverse and more flexible at adapting its
strategy according to the evolutionary dynamics of the opponent population. If
one of either populations is larger, then this population has also the advantage
of being less affected by genetic drift and fixation, allowing it to perform better
than the smaller population. The difference in population size, however, must be
sufficiently large for the difference in performance to be significant.

It is commonly hypothesized that populations of diploid individuals are better
equipped for coping with environmental changes than populations of haploid in-
dividuals. Firstly, a diploid population of equivalent size demonstrates increased
diversity, which helps overcoming the problems of fixation. Secondly, the process
of dominance, which exists in diploid individuals and not in haploid individuals,
allow an implicit memory of advantageous solutions to previously encountered en-
vironmental situations to develop. Most of the observations in this text, however,
do not show a significant advantage of diploid individuals in dynamic environ-
ments over haploid individuals. Only in the case of a high degree of dominance,
a significant advantage of adopting diploidy was observed. It should however be
noted that the level of abstraction in our models may be too narrow for the ben-
efits of diploidy to come into effect. Possible adaptations to the current model
can include more complex dominance schemes, possibly with dominance of alleles
embedded into the genotype of the individual, or more complex genotype spaces
than the ones considered in this thesis. We, however, remain cautious about the
hypothesis that a population of diploid individuals is indeed better suited for dy-
namically changing fitness environments. The study of larger and more complex
genotype spaces may offer a more accurate analysis of the hypothesis.

The observation that small populations repetitively become fixated in dy-
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namic environments is analogous to the observation that finite populations induce
states of metastability in static environments. In a static environment, finite pop-
ulations become temporarily fixated in genotypes, before moving on to explore
genotypes with higher fitness. These states of temporarily stability, intermitted
by bursts of rapid evolutionary progress are known as punctuated equilibria. In
finite populations, punctuated equilibria are more frequently observed than in
infinite populations, due to the increased probability of fixation in finite popula-
tions. Whereas a population is expected to find an optimal combination of alleles
for a static environment in the long run, the perpetually repetitive changes in a
dynamic environment actively invoke such punctuated equilibria, even in the long
run.

A clear example of this behavior was observed in the evolutionary dynamics
of a finite population playing Rock-Paper-Scissors. Repeatedly, the population
becomes fixated in one strategy, until its dominating strategy suddenly takes
over the population in a rapid burst of evolutionary innovation. As with static
environments, a finite population size encourages this behavior, and forces the
finite population to evolve more slowly from one strategy to the next. In contrast
with the common study of complex genotype spaces to bring forth punctuated
equilibria, simple games with cyclic behavior offer a modeling approach that is
mathematically more accessible. We suggest that evolutionary games with cyclic
behavior may consequently be considered for the future study of punctuated
equilibria.






Appendix A

Enumerating Populations

This appendix details the enumeration of population vectors and conversion to
and from their associated numbers. This computation is required when Markov
models with a very large number of possible populations are implemented, and is
reported on by van Heeswijk (2004).

Population vectors. For a finite population P of size r, let P; = rp; denote the
number of individuals of type ¢ € €2 in this population with »_,_, P = . A pop-
ulation can thus be written as a population vector P = rp = (P, Py, ..., Po_1)".

As an example, assume a population of 7 = 3 individuals over a search space of
n = 4 types of individuals, i.e., 2 corresponds to {0, 1,2, 3}. Consequently, there

-1 4—1 . . .

are [ " + 7; = S+ 3 = 20 possible populations, see Equation 3.3.
Table A.1 gives a sorted list of all possible population vectors for these parameters.

#P (P07 Pl: P2) P3) #P (PO) P17 PZ: P3)
0 | (0, 0, 0, 3) 0 (1, 0, 0 2)
1| (o, 0 1, 2) 1| (1, o0 1, 1)
2 | (o, 0, 2 1) 121 (1, 0 2 0)
3 1 (0o, 0, 3 0) 13 (1, 1, 0 1)
4 | (o, 1, 0, 2) 14 (1, 1, 1, 0)
5 | (o, 1, 1, 1) 15 (L 2 0 0)
6 | (0, 1, 2 0) 6| (2, 0, 0 1)
7| (o, 2 0, 1) 171 (2 0 1, 0)
8 | (0, 2, 1, 0) 18 (2, 1, 0, 0)
9 | (0, 3 0, 0) 19 [ (3 0 0 0)

Table A.1: Sorted list of (transposed) population vectors for r = 3 and n = 4

The population vectors in this table have been sorted increasingly, and num-
bered 0,. .., |r| — 1. Iterating over all possible populations to determine a popu-
lation vector’s population number, or vice versa, to determine the composition of
a population for a given population number is a computationally expensive task,
and would require O ((r + n)") operations, see Equation (3.4). Note that the com-
putational complexity of this computation is expressed in both r and n, as both
parameters may grow very large, and both may have to be taken into account.
Population size r can grow large, as large populations are studied. The size n of
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the search space may also grow very large, e.g., most optimization problems have
very large search spaces.

We use a direct, computationally less expensive method to do conversions
among these two.

Determining the population number of a population vector. We can
determine the number #P of a population vector P recursively. As a basis for
this recursion, we can easily determine the number of a population vector that is
defined over only 2 individual types, i.e.,

#(Py, P)" = P

In the induction step of our recursion, we determine the number of a popula-
tion vector with one more individual type, with

T py Tp—i+n—2
#(PO:PI,"':Pnfl) :Z n—29

>+#GL%,“J%1V(AU
i=0

where rp = ZZ.":_OI P;. The sum of combinations in this formula gives the number
of populations whose first element in their population vector is smaller than F.
Note that #(0, P, Ps,...,Pu_1)" = #(P1, Py, ..., P,_1)". In order to compute
a population vector’s number, we do not need to know the search space’s size or
the population’s since these are implicitly defined by the vector’s dimension (n)
and elements (r = S0 P)).

The algorithm requires O(r) computations of a factorial to determine the
population number of a population vector. Indeed, at the ith iteration of the
algorithm, P; factorials are computed, which gives a total of Py +---+ P, 1 =7
computations of a factorial for the complete algorithm.

Example A.1 (Computing #(2,0,1,0)"). As an example, consider population
vector (2,0,1,0)", with » = 3 and n = 4. Its corresponding number is computed
with

#(2,0,1,0)7 = (3_2f§_2)+<3_ifg_2)+#mJﬁF
10 +6 + #(1,0) " (A.2)
= 16+1
17.

Table A.1 verifies this result. The intermediate results 10 and 6 in step (A.2)
denote the number of populations P (of size r = 3 with n = 4) with Py, = 0 and
Py =1 respectively. ]
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Extracting the population vector from a population number. Going the
other way, we also want to determine population vector P = (Py, Py, ..., P,_1)"
given its population number #P, population size r and search space size n. The
first element of this vector can easily be computed with

k—1 .
PO:maX{k|Z< T_;J:g_Q ) <#P}.
=0

Similar to (A.1), the sum of combinations computes the number of populations
whose first element in their population vector is smaller than P;. All of these
vectors have a population number smaller than #P.

We can determine the following elements of P using recursion of this equation.
Element P; of our vector is equal to the first element P} of population vector P’
with population number

#P'—#P—i r—i+mn—2
- — n—2 ’

with population size ' = r — P, and search space size n' = n — 1.

As the basis for this recursion, we know that a population number #P of
size r over 2 individual types corresponds with population vector (P, P;)" where
P():#P andPlzT—#P.

Similar to the first algorithm, the algorithm for extracting a population vector
from a population requires O(n + r) computations of a factorial. Indeed, at each
1th iteration we compute one too many factorial to find the maximum, i.e., P;+1
factorials at each iteration, giving a total of Pp+1+ P, +1+---+P,,+1=r+n
factorials for the whole algorithm.

Example A.2 (Extracting P from #P = 12,7 = 3,n = 4). As an example,
consider a population of » = 3 individuals over a search space of n = 4 types of
individuals. We want to determine the population vector P that corresponds to
population number #P = 12.

As a first step, we determine P, with

k—1 5
PO:max{k|Z< 2Z)<12}
1=0

For £k =0,1,2, Zf;ol ( g ; ! > equals 0, 10, 16 respectively. The maximum k for

which the in equation holds gives Fy = 1.
Secondly, we can find P; with P; = P being the first element of the population
vector of population P’ with population size r' = r — Py = 2, over search space 2’
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with size n’ = n — 1 = 3, and whose number is #P’ = #P — 10 = 2. Repeating
our first step with this smaller population vector yields

k—1 .
1=0

As a third iteration step, we need to compute the elements of population
vector P" = (P}, P/")7 = (P, P5)" with #P" = 2, " = 2 and n" = 2. From our
recursion basis, we can compute these elements easily with P, = Py = #P" = 2
and Py = P/ =7r" — #P" = 0.

The resulting population vector now equals P = (1,0,2,0)", which can be
verified in Table A.1 as the population vector with corresponding population
number #P = 12. O



Appendix B

Coupling of Finite Markov Models

Some models in this thesis use combinations, or products, of Markov models.
These models — along with their limit behaviors — are then studied by finding
the unique eigenvector, with corresponding eigenvalue 1, of the combined Markov
model. In order to supply a mathematical basis for these combined models,
and to study the existence of their limit distributions, this chapter discusses the
ergodicity of coupled Markov models.

B.1 Properties of Markov Models

Before we can introduce the notion of the combination or product of Markov
models, we give some properties of irreducible and aperiodic Markov models.

B.1.1 Finite, discrete time Markov models

Definition B.1 (Markov model). A Markov model is a tuple (7, 7) with state
space ™ and probabilistic transition function 7 : 7 — 7.

For each state ¢ € m, 7(i) hence gives a distribution over all states in 7.

Definition B.2 (Finite Markov model). Markov model (7, 7) is said to be
finite if |7| is finite.

In this thesis, we assume that the state spaces used for the Markov models
are finite, hence we assume finite Markov models for the rest of this chapter.

The transition matrix 7' of Markov model (7, 7) is an |7| X || matrix that
contains the transition probabilities P;; = P[r(j) =] for all 4,5 € n. We say
that state 7 can be reached in one step from state j if T;; > 0.

Definition B.3 (Nonnegative vector). A vector x is said to be nonnegative
if all vector elements are nonnegative.

Definition B.4 (Stochastic vector). A vector x with n elements is said to be
stochastic if the vector is nonnegative and the sum of its elements equals 1, i.e.,

dimi=1

Definition B.5 (Stochastic matrix). An nxn matrix 7" is said to be stochastic
if its column vectors are stochastic.

A transition matrix of a Markov model is a stochastic matrix.

157
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Theorem B.1. If n X n matriz T and vector x with n elements are stochastic,
then T - x is stochastic.

Proof. Due to multiplication and summation of nonnegative elements in matrix
T and vector x, all elements in 7" - x are nonnegative.
The sum of elements in vector 7" - x is equal to

n

D Txy =) Y Tyzy= a-) Ty=) z-1=1
j=1 i=1 j=1

i=1 i=1 j=1
Hence, T - x is stochastic. O

Assume a Markov model (7, 7) with stochastic transition matrix 7" and the
stochastic vector x; with size |7| denoting the distribution over state space 7 at
a given time t. Stochastic vector x;11 = 7" - x; now gives the distribution at time
t 4+ 1. This equation is known as the Chapman-Kolmogorov equation, see e.g.,
Papoulis & Unnikrishna (2002). Since we assume models with discrete time steps,
the Markov models we focus on here are discrete time Markov models (DTMM).

B.1.2 Properties

We go on with the definitions of irreducibility and aperiodicity, which are impor-
tant and necessary properties of Markov models as we become interested in the
unique limit or fixed point behavior of these models.

Definition B.6 (Irreducibility). A Markov model (7, 7) with transition matrix
T is irreducible if, for each pair of states 7,7 € m, there is a strictly positive
probability of reaching j from ¢ in a finite number of steps, or formally,

Vi,j €m:3n>1:T5; > 0. (B.1)

The set of consecutive steps that have to be taken to go from one state to
another is called a path. Each of these paths (commonly, more than one path
allows to step from one state to another) has a path length, i.e., the number of
steps needed to finish the path.

Definition B.7 (Set of path lengths). For a Markov model (7, 7) with tran-
sition matrix 7', let the set of path lengths D; be the set of integers denoting the
lengths of possible paths from state i to ¢, with

Di={n|T2 > 0}. (B.2)

Definition B.8 (Aperiodicity). An irreducible Markov model (7, 7) is aperi-
odic if ged(D;) =1 for all 7 € 7.
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Theorem B.2. An irreducible Markov model (7,7} with transition probability
matriz T and 31 € 7 :T;; > 0, is aperiodic.

Proof. We show that, for an arbitrary j € =, ged(D;) = 1. Since (m,7) is
irreducible, a path exists from state j to ¢, and back from 7 to j. The length [ of
this complete path from j to j via ¢ is in Dj;. Since Tj; > 0, an extra step can be
taken to go to ¢ from ¢, as we arrived in ¢ starting our path in j. Hence, [ + 1 is
also in D;. Since ged(l,! + 1) = 1 holds for any strictly positive [ € N, ged(D;)
is 1. This holds for any j. Hence, the Markov model is aperiodic. O

B.1.3 The Perron-Frobenius Theorem and its Applica-
tions for DTMMs

In DTMMs, a probability distribution x, at time g over the state space 7 is
multiplied with the n x n transition matrix 7" to find the distribution x,.; = T"-x,
at the next time step g + 1. Given an initial distribution x;, we can compute
the distribution x, at time g with x; = T - x¢. Since T is a stochastic matrix
denoting the transition probabilities, every 7 is stochastic. Hence, any x4 is
stochastic because of Theorem B.1. As we become interested in the long term
behavior of T, or the convergence of x, and existence of lim,_,, x4, we adopt the
following important theorem in Markov chain analysis, which is a specific case of
the Perron-Frobenius theorem (Perron 1907; Frobenius 1912).

Theorem B.3 (Perron-Frobenius). Let T be a stochastic, irreducible and ape-
riodic n X n matriz. Then

1. T has an etgenvalue Ay = 1 with corresponding stochastic eigenvector,
2. for all other eigenvalues Ay # A1 of T, 0 < |Ag| < A1 =1 holds, and
3. eigenvalue A1 has multiplicity 1.

Theorem 1.9.6 in Bapat & Raghavan (1997) proves this theorem. Moreover,
Bapat and Raghavan’s theorem shows the following:

Theorem B.4. Let T be a stochastic, irreducible and aperiodic n X n matriz.
Then limg_,o, T9 = @ ewists. Matriz () has identical columns, each column of Q
s given by the unique stochastic vector u that satisfies Tu = u, i.e. the unique
stochastic eigenvector of T with corresponding eigenvalue 1.

The limit distribution of the Markov chain according to the irreducible and
aperiodic transition probability matrix 7" is given by

(), = ( Jin 750

g—oo

3

= (@x0); = ZQz’j (x0); = u; (B.3)
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since >, (xo); = 1 and all @;; correspond to elements u; of eigenvector u
with corresponding eigenvalue 1 of 7. Consequently, the limit distribution of
an irreducible and aperiodic transition probability matrix is equal to the unique
stochastic eigenvector with corresponding eigenvalue 1, independent of the initial
distribution xq,

lim 79xq = u. (B.4)

g—o0

Throughout this thesis, we have adopted this framework to find the limit or

fixed point behavior of finite Markov models; If the stochastic transition proba-
bility matrix is irreducible and aperiodic, then the Markov model’s limit behavior
can be discussed in terms of its unique stochastic eigenvector with corresponding
eigenvalue 1.

B.2 Combinations of Markov Models

Consider the state space m which is the Cartesian product of n sub state spaces my,
ie,m=m X -+ XxXm,. Let m_; denote the Cartesian product of sub state spaces,
leaving out 7y, i.e. T = My X+ XMp_1 X Tgp1 X -+ XT,. A state s € mis a vector
s = (s1,...,8,)" with each s, € m;. Let sop = (S1,...,8k—1,Skt1s--->50) , i.€.
the vector denoting the elements of sy in 7.

Consider n seperate Markov models (m; X m_g, 7;). Transition function 7y
maps elements from and into 7, and leaves the other states in 7, untouched.
This function 74 is dependent on the state s—, € m_; of the other Markov models.
Let Markov model (7, 7) be the combination of n seperate, interdependent sub
Markov models (7 X 7, 7x) with transition rule

n
P(r(s) == [[Plm(sk) = s | s4]- (B.5)
k=1

Under the assumption that any of the sub Markov models is irreducible and
aperiodic if all other Markov models remain fixed in their state, we now want
to know whether the combined Markov model inherits these properties of irre-
ducibility and aperiodicity.

B.2.1 Combination of Independent Markov models

Sub models (7 X 7, 7%) of (m,7) are independent if P[r(sg) = s} | s—k] =
P [7(sk) = s} holds for all si, s} € 7 and all k.

If all sub models are ergodic, then it is trivial that the combination of these
models is also ergodic. Independent of each other, the limit behavior of each model
exists and is uniquely defined by the stochastic eigenvector xj, of their respective
transition probability matrices. The limit distribution x* of the combined Markov

model has elements 7 = [[;_, (x}),, -
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B.2.2 Combination of Dependent Markov models

When considering the co-evolution of two populations in Chapter 7, the transition
probabilities of either population is dependent on the state of the other popula-
tion. Generally, the combination of such dependent ergodic Markov models is not
always ergodic, which is shown with the following example.

Example B.1. Consider the following 2 dependent systems. The first system has
state space {a, b} and the second has state space {z,y}. Consider the digraphs

(a,2) (b,7) (a,9) (b,y)

SO e

representing the state transitions of the first model, if the second system is in state
x and y respectively. Vertexes represent the states of the system. Directed edges
denote strictly positive transition probabilities. If no directed edge is present, the
transition probability is 0. Similarly, consider

(b, z) (,y)

@) (@)
0 G2

to be the state transitions for the second system, if the first system is in state a
and b respectively. All these separate models are irreducible and aperiodic.

The combination of these models, represented by the transition graph

(a,2) (a,y)

(ba) ()

is however not irreducible. Once the system resides in either state (a,x) or (b,y),
it will not be able to reach states (a,y) and (b,z) again, making the model
irreducible.

O

As a consequence of this example, it is not generally true that the combination
of dependent Markov models with irreducible and aperiodic transition matrices
results in an irreducible and aperiodic Markov model.
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B.2.3 Combination of Semi Dependent Markov models

In Chapter 5 we study populations in an explicitly defined dynamic fitness envi-
ronment. In the models studied in Section 5.3, the population is dependent on
the state of the environment, which is implemented as a Markov chain on its own.
The model that represents the environment is not dependent on the state of the
population. Similar to the previous section, we are interested in knowing whether
such semi dependent combinations of Markov chains — where at least one of the
sub models is independent of the other and at least one is dependent on the other
— is ergodic, if the constituent sub models are ergodic. However, the following
example shows that this is not generally true.

Example B.2. Consider the following 2 semi dependent models, where the sec-
ond model depends on the state of the first system, and the first model is inde-
pendent of the second. The first model has state space {a, b, c} and the second
has state space {z,y, z}. Let

b c
be the digraph that represents transitions in the first model. Let digraphs
(a, ) (b, ) (c,z)
Qé
(@y) (@2, Gy 02 and @y (@2)

describe the transitions of the second model as the first model is in states a, b and
c respectively. All of the above independent models are individually irreducible
and aperiodic.

The combination of these models is represented by the following digraph.

/—> @y [ ®2
\ :______V____
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Note that none of the states above the dashed line can be reached if the system is
started in one of the states below the dashed line. Therefore, the resulting model

is not irreducible.
O

As a result from this example, it is not generally true that the semi dependent
combination of ergodic Markov models results in a combined Markov model that
is ergodic too.

B.3 Alternation of Markov models

Besides constructing combinations of Markov models, we also combine Markov
models — defined over the same state space — by multiplying their transition matri-
ces, as in Section 5.2. This allows the separate sub models to govern the dynamics
of the system alternately. With an example, we show that the multiplication of
ergodic transition probability matrices does not generally result in a transition
probability matrix that is ergodic.

Example B.3. Consider two ergodic Markov models over a state space {q, b, c},
whose transitions are depicted by the digraphs

a a

&)

b ¢ and ¢,

Both of these models are irreducible and aperiodic.

We allow the combined Markov model to take one step in either model alter-
nately. The digraph that represents the combined Markov model that takes one
step in the first, and then a step in the second model can be represented by the
digraph

> @)
M .
This combined model is not irreducible since there is no transition leading away

from state b.
O

As a result, the alternation of ergodic Markov models is not necessarily er-
godic.
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Nederlandse Samenvatting

Een belangrijke parameter van het evolutionaire gedrag van een populatie is zijn
grootte. In grote populaties kunnen een groot aantal gencombinaties en genvari-
aties uitgeprobeerd worden. Zelfs als er nadelige mutaties optreden dan sterven
deze gemakkelijk uit door de grote hoeveelheid individuen met een selectief voor-
deel in de populatie. De nadelige effecten van willekeur in grote populaties zijn
daardoor meestal verwaarloosbaar.

Stochastische effecten zijn echter van belang in kleine populaties. De kans dat
een ongelukkige verzameling allelen worden overgeérfd door een populatie is groter
als de groep nakomelingen kleiner is. Het is een bekend feit van de statistiek dat
kleine samples niet representatief zijn. Gelijkaardig zijn de proporties van allelen
in een kleine populatie nakomelingen niet representatief voor de samenstelling van
de ouderpopulatie. In een kleine populatie kunnen zo’n onregelmatige proporties
zich generatie na generatie opstapelen, zodat allelen verloren kunnen gaan. Dit
verschijnsel heet genetische drift, en leidt tot fixatie van de populatie op een
beperkt aantal allelen. Door minder diversiteit in een kleine populatie gaat het
vermogen om zich aan te passen aan de omgeving achteruit. Meer nog, de omge-
ving van de populatie kan veranderen over de generaties heen. Door het verlies
van diversiteit kan het voor een kleine populatie zeer moeilijk worden zich tijdig
aan te passen aan zo’n veranderende omgeving.

In dit proefschrift beschrijven we wiskundige modellen om de evolutie van
kleine populaties te bestuderen in een waaier van dynamische omgevingen. De
gebruikte Markov modellen beschrijven het gedrag van eindige populaties van
abstracte individuen, en laten zien hoe zo'n populatie zich gedraagt na een groot
aantal generaties. Met de gebruikte modellen kunnen we dan bestuderen welke
invloed de verschillende parameters — zoals de populatiegrootte, mutatiesnelheid,
ploidie, selectieve druk, en de snelheid van veranderingen in de omgeving — hebben
op het evolutionaire gedrag van de populatie.

We hebben modellen van eindige populaties in drie verschillende dynamische
omgevingen bestudeerd. In het eerste model hebben we dynamische omgevingen
gebouwd door actief in te grijpen in de omgeving op gegeven tijdstippen. Op
deze manier kunnen we de snelheid van omgevingsveranderingen zelf bepalen,
en kunnen we de invloed hiervan bestuderen op het evolutionaire gedrag van de
populatie. In het tweede model hebben we technieken van evolutionaire spelthe-
orie gebruikt om dynamische omgevingen te bouwen. Elk van de individuen in
de populatie codeert een strategie voor een spel. De individuen in de populatie
spelen tegen elkaar, en goede spelers hebben een grotere kans hun strategie door
te geven aan de volgende generatie. In dit model is de fitness van een indi-
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vidu dus athankelijk van de aanwezige strategieén in de populatie. Omdat de
samenstelling van de populatie evolueert over de generaties heen bepaalt deze
zelf de veranderingen in de omgeving. In het derde model hebben we co-evolutie
gemodelleerd door meerdere populaties athankelijk van elkaar te maken. Door de
evolutionaire vooruitgang in een populatie van dit model verandert de omgeving
van de andere populaties.

In dynamische omgevingen zijn de effecten van willekeurig samplen en
genetische drift van groter belang dan in omgevingen die statisch zijn. Tijdens
een periode waar de omgeving relatief statisch blijft kan de populatie voordelige
allelen ontdekken, en krijgt de populatie de kans zich te fixeren op deze allelen.
Maar als de omgeving dramatisch gewijzigd wordt na zo’n periode van stasis zal
de kleine populatie niet de benodigde genetische diversiteit vertonen om zich snel
aan de vernieuwde omgeving aan te passen. Bij elke omgevingsverandering zal
de populatie zich opnieuw uit zijn toestand van fixatie moeten bevrijden, om de
voordelige allelen van de nieuwe omgeving te ontdekken. Dit resulterende proces
van steeds wederkerende fixatie en de omgevingsdruk om uit deze toestand te
ontsnappen vertraagt de evolutionaire vooruitgang van de kleine populatie.

Om zich steeds te kunnen blijven aanpassen aan de dynamische omgeving
heeft de kleine populatie een voldoende grote mutatiesnelheid nodig. Mutaties
hebben een grotere diversiteit tot gevolg, en bieden dus een mogelijkheid aan
om uit de fixatie te ontsnappen. Als de omgeving sneller verandert, of als de
populatie kleiner is, is een hogere mutatiesnelheid gewenst.

Er wordt dikwijls de hypothese gesteld dat populaties van diploide individuen
beter voorzien zijn om omgeveningsveranderingen op te vangen in vergelijking
met populaties van haploide individuen. Deze hypothese stoelt op het feit dat
een diploide populatie meer diversiteit kan vertonen, maar ook omdat de systemen
van dominantie en recessiviteit de mogelijkheid bieden een impliciet geheugen op
te bouwen met oplossingen voor vroegere omgevingen. De meeste observaties
in dit proefschrift tonen echter geen significante voordelen van diploidie aan in
de bestudeerde dynamische omgevingen. Er moet wel opgemerkt worden dat
het abstractieniveau in onze modellen te beperkt kan zijn om de voordelen van
diploidie in dynamische omgevingen tot uiting te laten komen. Aanvullingen aan
het huidig model kunnen mogelijk tot betere inzichten in de gestelde hypothese
leiden.

De observatie dat eindige populaties in dynamische omgevingen steeds weer
gefixeerd geraken, en uit deze toestand van fixatie moeten ontsnappen, is analoog
aan de observatie dat eindige populaties toestanden van metastabiliteit uitlokken
in statische omgevingen. In een statische omgeving geraken eindige populaties tij-
delijk gefixeerd in genotypes alvorens genotypes met hogere fitness te ontdekken.
De voortdurende omgevingsveranderingen lokken in een dynamische omgeving
zulke gepunctueerde evenwichten uit. Het is gebleken dat spelen met cyclisch
gedrag een goed werkbaar alternatief kunnen bieden voor het bestuderen van
deze gepunctueerde evenwichten.
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