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Chapter 1 

Introduction 

A common statement among theorists is "we do not merely want to re­
produce experimental data". However, that will be the main purpose of 
this thesis. When it comes to calculating energy differences to "chemical 
accuracy" (about 1 kcalfmol), a recentreview article of Bauschlicher et 
al. [1] gives a good impression of the state of the art: most of the systems 
considered are two- or three-atom molecules with up to about 14 elec­
trons (e.g., CH2 and N2). For this kind of systems the essentially exact 
so-called "full Configuration Interaction" (FCI) calculations have recently 
become possible (see references in [1]). This thesis will focus on methods 
that are applicable to slightly more complicated systems: excited states 
of poly atomic molecules of a size that prohibits the FCI approach .. 

The idea of this work originates from previous work on photochemical 
cis-trans isomerization of small polyenes [2]. Upon electronic excitation, 
a double bond may start twisting. The system can return to the elec­
tronic ground state via emission of a photon or radiationless, via nonadia­
batic interactions. If the intramolecular vibrational relaxation is slow, the 
molecule can be expected to perform several internal rotations and end up 
in the cis- or the trans-conformation with 50% probability, regardless of 
the initial conformation. If, however, the vibrational relaxation is fast one 
can expect a cis-trans isomerization to occur with a quantum yield higher 
than 0.5. This is what happens in rhodopsin, which absorbs the light in 
the primary step of the vision process [3]. To allow the energy to dissipate 
out of the reaction mode, this mode should be coupled to others, so in 
this work we have chosen problems which involve a few coupled modes. 

The methods developed are of a "first principles nature" and relevant 
to a wide area of applications in photochemistry and spectroscopy, e.g., 
atmospheric chemistry [4], astrophysics [5], and laser technology [6]. A 
rather active field which benefits much from excited state calculations is 
the fundamental study of photodissociation reactions [7]. However, in 
this work we will restrict ourselves to spectroscopic problems, in partic­
ular to UV-absorption spectra, since this allows for the easiest and most 
direct comparison between theory and experiment. Since we are inter­
ested in developing methods that are not merely suitable for equilibrium 
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2 INTRODUCTION 

properties, we selected spectroscopic problems in which the spectra reveal 
large-amplitude excited state motions. 

Before giving a (historical) introduction into the theory of molecular 
spectroscopy, we want to make a few remarks concerning the apparent 
compelling strive for accuracy throughout this work. This is not just a 
matter of keeping supercomputers from idling. One should realize that 
the experimental resolution of gas phase UV-absorption spectra is often 
in the order of wave numbers (cm-1), while the accuracy attainable in 
molecular beam experiments can be many orders of magnitude higher. 
Computationally, however, it is a major job to get excitation energies 
with an accuracy of, say, one thousand wave numbers (2.9 kcalfmol) and 
such an accuracy might be required to an.swer "qualitative questions" such 
as those concerning the ordering of states or the vibrational assignments. 

1.1 Vibrational structure of electronic spectra 

Already in the days of the Old Quantum Theory (before 1926) it was 
noted that a molecule can sometimes absorb a photon of many times its 
dissociation energy, without dissociating. This was explained by assuming 
that "the excitation energy is primarily employed for raising the electron 
system to a higher quantum state". This led Franck [8] to postulate in 
1925 his idea of the "vertical excitation", i.e., the idea that the nuclear 
conformation remains unchanged during an electronic excitation. In 1926 
Condon extended the rule by postulating that not only the positions of 
the nuclei remain unchanged during the electronic excitation, but also 
their momenta [9]. This makes the theory applicable to electronic exci­
tations from vibrationally excited electronic ground states. In the same 
year Schrodinger formulated the theory of Quantum Mechanics [10] and 
very soon after that Condon presented the quantum mechanical version of 
his, theory, which is generally referred to as the Franck-Condon principle 
([11], Figure 1). 

In 1927 Born and Oppenheimer showed, using perturbation theory, 
how the large ratio between the nuclear mass and the electron mass jus­
tifies the separation of motion of the nuclei and the electrons (12]. In fact 
their work gives a general recipe for solving molecular problems. First, 
the Schrodinger equation has to be solved for the motion of the electrons 
at fixed positions of the nuclei. The resulting energy serves as a poten­
tial in the Schrodinger equation for the nuclear motion. The first job is 
usually referred to as the "electronic structure problem" and the second 
as the "dynamical problem". Even in cases where this approximation 
breaks down, because of nonadiabatic interactions, it usually still serves 
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1 E(R) 
1 

~(R) 

R 

Electronic wave function ( r denotes all electronic coordi­
nates rp): 

{Helectronic- EK(R)}'¢K(r; R) = 0 ; K = 0, 1,... (1.1) 

Nuclear wave function: 

{Tnuclear + EK(R) €K,i}xK,;(R) = 0 (1.2) 

Electronic transition dipole moment: 

flK,L(R) =< '1/>KI- e L: rvi'I/>L >r (1.3) 
p 

The intensity of the electronic transition IK, i>-+ IL,j > is 
proportional to: 

Figure 1. The Franck-Condon principle. Usually, the term Franck-Condon 
transition is used if flK,L(R) is assumed to be independent of the R. In that 
case iiK,L(Ro) can be taken out of the integration (Eq. 1.4). 
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as a starting point for the solution. Before we discuss the computational 
methods to solve electronic structure and dynamical problems we will di­
gress in some detail on the physical reality of a "vertical transition". 

1.2 Heller's time-dependent formulation 

In this section we will start with the quantum mechanical description of 
a Franck-Condon spectrum (Figure 1) and try to get back at Franck's 
original classical picture [8]. 

Suppose we have measured an excited state vibrational frequency of 
1000 cm-1 with an accuracy of 1 cm-1• Now Heisenberg's time-energy 
uncertainty relation [13] tells us that our measurement - the time the 
molecule has spent in the field of the photon - must have lasted for at least 
a thousand vibrational periods! So at first sight one might have expected a 
classical picture in which the ground state potential energy surface (PES) 
slowly changes into the excited state PES. However, this would mean that 
the nuclei will not be vibrationally excited by an electronic transition, 
which is not in accordance with the experiment. But why then does 
Franck's "vertical excitation" model work so well? A due can also be 
found in Heller's time-dependent formulation of Franck-Condon spectra 
[14]. 

It is fairly simple to rewrite Condon's time-independent formula for 
the transition intensity (Eq. 1.4) as a Fourier transform: 

(1.5) 

Here ¢0 is the ground-state vibrational wave function times (a component 
of) the electronic transition dipole moment: 

if>o(R) = /1-K,L(R)XK,i(R) (1.6) 

and if>(t) is its time development if it is lifted instantaneously to the excited 
state PES at t = 0: 

if>(t) = E <XL,il</>o> XL.ie-iEL,jt 
j 

(1. 7) 

Equation (1.5) can be verified by substituting Eqs. (1.6) and (1. 7) into 
Eq. (1.5). This gives: 

f(w) = Cw .E I < XK,ii/1-K,L!XL,j > I2S(w- EL,j + EK,i) (1.8) 
j 
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This equation shows that the spectrum t(w) consists of a sum of delta 
functions at w = EL,j- EK,i with a coefficient equal to the Franck-Condon 
factor (Eq. 1.4). The factor w turns the transition proba~ility into an 
energy and Cis a constant [15]. / 

Generally, tf>(t) will not be an eigenstate of the excited state PES, but 
a wave packet, which is moving around on the excited state surface. We 
do not want to duplicate Heller's detailed analysis, but with Heisenberg's 
time-energy uncertainty relation in mind we can imagine how the time 
development of tf>(t) determines the spectrum. The shortest feature in 
time, the initial fall off of < 4>0 14>( t) >, determines the broadest feature in 
energy, the width of the absorption envelope. The recurrences of tf>(t) to 
its origin determine the level spacings of the vibrational bands. Finally 
the disappearance of tf>(t) at large t because of fluorescence, radiationless 
decay or collisions is related to the width of the vibrational bands. 

We can now see why the classical picture of a vertical excitation works 
sow@: Equations (1.5)-(1.7) show that mathematically the spectrum is 
entirely determined by the fate of the vertically lifted wave packet t/>o, al­
though this does not mean that physically the excitation does take place 
instantaneously. The quantum mechanical picture of what "really hap­
pens" is, in Heller's words: "while the laser of frequency w is turned 
on, 'little pieces' of the ground-state wave function are constantly being 
brought upstairs (with phase eiwt) while the pieces already upstairs are 
functionally just tf>(t) at various times t. As these pieces return to their 
birth place, new pieces are still coming up, constructively (or destruc­
tively) interfering with the old pieces and causing absorption maxima (or 
minima)". 

1.3 Electronic structure calculations 

The electronic structure problem has been extensively discussed in the 
literature. Numerous introductory books exist, of which we only mention 
the book by Szabo and Ostlund [16]. In this section we call attention 
to some considerations particularly relevant to the calculation of excited 
states. The starting point will be the restricted Hartree-Fock (HF) ap­
proximation. The main feature of this approximation is that the wave 
function is described by a single spin adapted configuration. Physically 
this can be interpreted as electrons moving in orbitals and "feeling" only 
the average electric field of the other electrons and not their instanta­
neous positions. Therefore, this wave function is said to be uncorrelated 
(in fact the antisymmetry of the wave function imposed by the Pauli prin­
ciple causes electrons of parallel spin to avoid each other; this is called 
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exchange correlation). A single closed shell. (i.e., 2 electrons per orbital) 
configuration can often successfully describe a ground-state equilibrium 
structure. 

Electron correlation can be accounted for by including other configu­
rations. Let us take H2 as an example. The HF wave function consists of 
the lu;l configuration. We can introduce so-called "left-right" correlation 
by including the !uul2 configuration. This gives the wave function the 
flexibility to move the electrons apart. 

If we move the H atoms apart, the energy of the two configurations 
gets closer and the contribution of luul2 steadily increases. At infinite 
separation the configurations become degenerate and their contributions 
to the total wave function become equal. At infinity the two configurations 
do not describe "true" (often called "dynamical") correlation, since the 
two electrons move independently at the separate atoms. In this case the 
two configurations are said to be necessary to solve a "near degeneracy 
problem" or to get a wave function that describes the dissociation properly. 
The absence of dynamical correlation at infinite separation can easily be 
shown by writing the wave function as a single, open shell configuration. 

If we denote a configuration by '1/Ji we can express a general wave func­
tion as a linear combination of configurations as: 

(1.9) 

A calculation in which the coefficients Cj are variationally optimized is 
called a Configuration Interaction ( CI) calculation. If for a given set of 
orbitals all configurations are included (full CI), the result will be invari­
ant under unitary transformations of the orbitals (in fact the FCI wave 
function is invariant under any nonsingular transformation). However, if 
we want to include only a few configurations, e.g., because we merely want 
to ~olve a near degeneracy effect, it can be advantageous to simultaneously 
optimize the orbitals that constitute the configurations. This is called the 
multiconfigurational Self Consistent Field (MCSCF) approach. 

We are now in a position to explain why we want to do better than 
Hartree-Fock for the description of excited states. First of all, one can 
expect near degeneracies to occur more often for higher energies. Fur­
thermore, the correlation energy, although only a small fraction of the 
total energy, can be in the order of the excitation energy. This is of little 
concern if one, for example, wants to optimize a ground state geometry, 
since the correlation energy can be fairly constant for a small part of the 
PES. However, to predict excitation energies one must account properly 
for the difference in correlation energy between two states, which might 
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be considerable because of the different nature of the electronic structure 
of these states. Finally, if one considers large-amplitude motion, it is very 
likely that near degeneracies occur at least at some part of the PES. 

Let us suppose that we have a qualitatively correct MCSCF description 
of some state using, say, one to ten configurations. If we want to assess 
the dynamical correlation energy in a CI calculation we have to select 
configurations in some way, assuming that the time needed for a FCI 
calculation is prohibitive. The simplest form of selection is based on the 
excitation level, i.e., the number of electrons that is promoted from the 
occupied orbitals of some reference configuration to the unoccupied ones. 

Doubly excited configurations (doubles) can be expected to be impor­
tant, because they have a direct interaction with their reference configura­
tion .. Higher excitations contribute only indirectly because the electronic 
Hamiltonian contains at most two-particle interactions. Some singly ex­
cited configurations (singles) [17] do not mix directly with a M CSCF ref­
erence function because of Brillouin's theorem, hut they do account for 
orbital relaxation. If the MCSCF function is not optimized for the state 
in question, Brillouin's theorem does not hold and the singles are more 
important. 

A CI calculation which involves more than one reference configuration 
is called a multireference CI (MRCI) calculation. MRCI calculations that 
include singles and doubles are often referred to as MRSDCI. For the prob­
lems treated in this thesis (12 electrons correlated) the dimension of this 
problem is in the order of 104 - lOS. Such a dimension is prohibitive for a 
conventional CI program, which starts with the construction of the Hamil­
tonian matrix, but it can easily be dealt with by the direct CI method 
[18] which is used in this work. 

In a conventional CI calculation the number of configurations has to 
be reduced further. Usually this is done by selecting those configura­
tions that are expected, on the basis of perturbation theory, to contribute 
more to the wave function (in terms of energy) than a certain thresh­
old. In the MRDCI program package of Buenker and Peyerimhoff [19], 
which is currently probably the most popular package for the calculation 
of excited states, the conventional CI is combined with an extrapolation 
procedure: The effect of inclusion of all singles and doubles is estimated 
by repeating the calculation for several thresholds and extrapolating to a 
zero-threshold. Problems that may arise in this extrapolation were studied 
by Jackels and Shavitt (20]. 

However, whether one calculates or estimates the effect of all singles 
and doubles, the contribution of the higher excitations often appears to 
be non-negligible. In particular, the larger the system (i.e., the number 
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of electrons) the more important the higher excitations will be. In other 
words, a SDCI (singles and doubles CI) calculation gets worse if the size 
of the system increases. This effect will be discussed in more detail in the 
next section since it is the key to the development of corrections to the CI 
method. 

1.3.1 The size consistency problem 

Physically it is clear that the energy of two molecules at infinite separation 
is equal to the sum of the energies of the separate molecules. A method 
that upholds this property is said to be size consistent. A more subtle 
definition of size consistency is that the energy of a many particle system 
must be proportional to the number of noninteracting particles (N) if 
N --+ oo. This definition can also be applied in the case of interacting 
systems. For example, it says that the energy of a crystal is proportional 
to the number of constituent molecules. 

In terms of wave functions, size consistency means that the total wave 
function must be the (anti-symmetrized) product of the wave functions 
of the subsystems. HF, perturbation theory (PT), and full CI fulfil this 
seemingly modest requirement. However, any form of truncated CI, such 
as MRSDCI, does not. This can be illustrated by the DCI (doubles CI) 
calculation of two H2 molecules. The DCI description of a H2 molecule 
contains, by definition, the double excitations. So the product wave func­
tion for two H2 molecules should contain quadruple excitations, which 
are of cause not included in the DCI function. So the somewhat vague 
statement "DCI gets worse if the size of the system increases" can be 
formulated much clearer as "DCI is not size consistent". 

The simplest way to obtain approximately size consistent results from 
a CI calculation is by using a size consistency correction such as the David­
son correction [21]. For a single reference SDCI calculation this formula 
IS: 

LlEoavidson = (1- c5)(Esocr- EscF) (1.10) 

Here Co is the coefficient of the reference configuration in the normalized 
SDCI function. More complicated formulas exist which contain the num­
ber of electron pairs (the Pople correction [22], the Siegbahn correction 
[23], and others [24]). Several multireference analogues are possible ( [19] 
and Chapter 4, Eq. 4.33). 

A rigorous size consistent method is the Coupled Cluster ( CC) method 
[25]. CC is a computationally demanding method, but several approxima­
tions to CC are possible, such as the Coupled Electron Pair Approximation 
(CEPA) [16, 26]. We will shortly discuss CC and show how the CEPA 
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gives rise to a set of equations that are only slightly different from the CI 
equations. A multireference version of this method was recently developed 
and is described in Chapter 4. 

1.3.2 The Coupled Cluster method 

· The size consistency of this method follows directly from the exponential 
ansatz: 

(1.11) 

Here Wo is a (HF) reference configuration and Tis an excitation opera­
tor. The exponential is defined by its Taylor expansion. If T consists of 
only double excitations we arrive at the CCD (Coupled Cluster Doubles) 
method. In that case we can write T as: 

{1.12) 

The coefficients tpq,.11 are called the duster amplitudes and the operators 
Tpq,ra generate all double excitations. In this notation the DCI function is 
written as: 

lliom = (1 + T)llio (1.13) 

The size consistency of the CC wave function follows easily if we local­
ize the orbitals on the fragments A and B of a supermolecule AB. If the 
HF reference function is written as a product and the excitation operators 
(T) are divided into operators (TA) working on fragment A and operators 
(TB) working on fragment B, i.e., the commutator of TA and TB is zero 
([TA, TB] = 0), then we can write the CC function as a product: 

(1.14) 

Variational optimization of the CC function is awfully complicated (26] 
and therefore the CC equations are derived by projecting the following 
expression 

(H- E)eTWo 

to Wo and all double excitations T\llo: 

< \lloi(H- E)eT!llio > = 0 
< \lloiTt(H- E)eTI\llo> = 0, for all T 

{1.15) 

(1.16) 
(1.17) 

Note that the number of unknowns (E, tpqrs) is equal to the number of 
equations. We will not discuss how this set of nonlinear equations can be 
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tackled [25], but rewrite it in a form which allows for certain approxima­
tions. 

By expanding the exponential and taking into account that there are 
at most two-particle interactions we can rewrite Eq. (1.17) as: 

{1.18) 

Here D.Br, the so-called diagonal shift, is given by: 

(1.19) 

where t7 denotes the cluster amplitude for the double excitation r. The 
shifts can now be said to account for all higher excitations that consist 
of combinations of doubles. The calculation of these shifts is rather trou­
blesome, since the interactions between all doubles and all quadruples are 
involved in Eq. (1.19). Several approximations are possible, leading to 
several CEPA versions, referred to as CEPA{O), CEPA(l), CEPA(2) etc. 
[26]. The CEPA(O) is the starting point for our MRCEPA and it involves 
two approximations in the expression for the shifts. 

1.3.3 CEPA{O} 

The first approximation, the direct term approximation, amounts to se­
lecting only those quadruple excitations in Eq. (1.19) that can be written 
as r'rl'lio>, where r is the excitation operator for which the shift D.E7 is 
being calculated. 

The second approximation, referred to as the H-matrix equivalence, is 
that we use: 

(1.20) 

which is strictly correct only if r and r' have no orbital indices in common. 
The result of these approximations is that all double excitations get 

the same shift. The MRCEPA described in Chapter 41 is slightly more 
discriminating in the sense that the excitations are divided into classes and 
that each class gets its own diagonal shift. To define an excitation class, 
the orbitals are divided into inactive, active, and virtual, depending on 
whether they have two, a variable number, or no electrons in the reference 
configurations. The number of electrons a configuration has in each of 
these orbital spaces determines its excitation class. 

1The MRCEPA is developed and implemented in the GAMESS/ATMOL packages 
by P. J. A. Ruttink, J. H. van Lenthe, and R. Zwaans, Rijksuniversiteit Utrecht. 
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Although the CEPA(O) and MRCEPA equations do not represent an 
eigenvalue problem, they can be solved using a CI program, if the shifts 
~ET are applied to the diagonal elements after every (Davidson) iteration. 

1.4 Dynamical methods 

Early developments in the description of the dynamics of molecular sys­
tems are based on the concept of an "equilibrium structure". In 1936 
Wilson and Howard [27} presented a classical Hamiltonian in which a ro­
tating coordinate system is fixed to this equilibrium structure using the 
Eckart conditions [28]. The vibrations are described in normal coordi­
nates, which separates the problem in the harmonic approximation. Four 
years later Darling and Dennison [29] gave the correct quantum mechan­
ical version of this Hamiltonian, which was subsequently rearranged in a 
much simpler form by Watson [30] in 1968. In the traditional approach 
one starts with an approximate solution based on harmonic vibrations and 
rigid rotations. Subsequently, perturbation theory is used to deal with the 
rotation-vibration interactions and anharmonicities [31]. 

In this work we will concentrate on the vibrational structure of the 
spectra, since it is very sensitive to the shape of the PES. If the experi­
mental spectrum exhibits rotational structure it can be used to find the 
experimental equilibrium structure. This kind of calculations is not per­
formed in this work; we will compare the calculated equilibrium structures 
to the experimental values known from the literature. 

· Since we are interested in large amplitude motion, perturbation theory 
may not be the most suitable method [32]. Furthermore, it ha.S been noted 
that rectilinear normal coordinates may not be the best choice for systems 
with coupled large amplitude modes [33]. In particular an expression for 
the PES in internal curvilinear coordinates will be more accurate than an 
expression in rectilinear coordinates with the same number of variables [33-
35]. An alternative for the perturbation theory approach is the variational 
method [32]. The main problem of this method is that the dimension of 
the Hamiltonian exponentially increases with the number of coordinates. 
Another alternative is the use of semiclassical methods. These methods 
are based on quantization of classical trajectories, which are relative easy 
to calculate, even for anharmonic PES's and higher dimensions. 

We will employ both semiclassical and fully quantum mechanical meth­
ods. Here we will introduce those methods and point out the (current) 
limitations of the semiclassical methods. We will also show how for some 
problems a fully quantum mechanical method can be made computation­
ally feasible. Starting point of all the methods used is the classical Hamil-
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tonian and so we start with a short discussion of classical mechanics [36]. 

1.4.1 Classical mechanics 

H we assume that the potential energy function (V) only depends on some 
set of generalized coordinates q (and not on the time derivatives q), we 
have the following recipe to write down the classical Hamiltonian (H). 
First write down the total energy, in terms of q and q: 

H(q,q) = T(q,q) + V(q) (1.21) 

where T is the kinetic energy. Then define the conjugate momenta p; as: 

&T(q, Q) 
Pi= ~· uq; 

(1.22) 

Rewrite the Hamiltonian in terms of q and p: 

H(q,p) = T{q,p) + V(q) (1.23) 

The classical Hamiltonian equations of motion are given by: 

&H 
(1.24) q; = &p; 

Pi 
l}H 

(1.25) = - &q; 

If we have N particles and we take q to be the corresponding 3N cartesian 
coordinates these equations reduce to Newton's equations of motion. How­
ever, in Hamilton's formulation one can always choose the most suitable 
set of coordinates q. Furthermore, the Hamiltonian formulation enables 
one to impose a constraint on the motion that corresponds to fixing some 
coordinate q; by simply dropping the corresponding equation. 

We will now apply this method to a nonlinear molecule with zero total 
linear and angular momentum. Suppose we can express the 3N cartesian 
coordinates x;, i = 1 ... 3N of theN atoms, with masses mi, in terms of 
some set of (3N - 6) internal coordinates q. For the sake of convenience 
we have numbered the coordinates consecutively, so the coordinates of 
the first atom are (x1,x2,x3) and its mass is m1 = m2 = m3, etc. Direct 
application of the chain rule to the expression of the kinetic energy in 
cartesian coordinates gives: 

3N 3N-6 

2T = E m;(x;)2 = E 4iGi,k4k (1.26) 
i j,k 
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where G generally is a. function of q: 

Gi,k =I: m, (ax,) (oxi) 
j oq; oq" 

(1.27) 

The conjugate momenta. can now be defined using Eq. (1.22) and T can 
be written in vector notation as (see e.g. [37]): 

(1.28) 

A quantum mechanical version of this procedure is used in Chapter 
5 for three internal coordinates of ethylene. In that particular case it 
is very simple to define a set of coordinates that leave the total angular 
momentum of the molecule equal to zero. In general it is not possible to 
express the cartesian coordinates in the internal coordinates so that the 
total angular momentum is automatically equal to zero. The reason is that 
the zero total angular momentum requirement does not forbid a. certain 
conformation of a. molecule to assume different orientations in time. This 
problem can also be formulated as: In general it is not possible to separate 
the rotation and the vibration of a. molecule globally. 

Usually, this separation is made approximately using the Eckart con­
ditions [28]. To employ the Eckart conditions one must describe the vi­
brations a.s deviations from an "equilibrium structure". If the Eckart con­
ditions are used to define the G-ma.trix, with the instantaneous positions 
of the atoms as the "equilibrium structure", the classical kinetic energy 
expression given above will be exact for a. molecule with a zero total an­
gular momentum. This has been worked out for many types of internal 
coordinates (such as stretching, bending and torsion coordinates) and ta­
bles exist with formulas for the inverse kinetic energy matrix (37, 38](Note 
that often the G-ma.trix is defined as the inverse of ours). The well known 
Wilson-GF matrix method for the harmonic approximation boils down to 
finding a. linear transformation which diagonalizes G-1 F for the equilib­
rium geometry, where F is the Hessian matrix of the potential: 

F...- (J2V 
•• , - oqioq; (1.29) 

The eigenvalues of G-1 F are the squares of the vibrational frequencies 
and the eigenvectors define the normal coordinates. 

1.4.2 Semiclassical methods 

It was the idea. of the Old Quantum Theory that the discrete energy levels 
of bound states can be found by quantization of classical trajectories. 
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In 1913 Bohr [39] postulated that it is the action integral that is to be 
quantized. This led to the Bohr-Sommerfeld quantization rules: 

f d _ { (n + ~)h for vibrations 
p q - nh for rotations (1.30) 

where the integration has to be done for one complete oscillation. It 
can be verified easily that this gives the exact levels of a one-dimensional 
harmonic oscillator. Ideas of Einstein led to the EBK-quantization rules 
[40-42] which constitute a generalization of the rule for nonseparable N­
dimensional systems: 

(1.31) 

where the ~ is appropriate for nondegenerate oscillators but can be re­
placed by other (known) values for other kinds of systems, the so-called 
the Maslov indices [43]. Ci are topologically independent paths on the 
invariant tori. We will explain this concept with a two-dimensional ex­
ample. For a 2D system the phase space (p, q) = (Pl, P2, qt, q2) is four­
dimensional. For a given trajectory the total energy is conserved: 

H(p,q) = E (1.32) 

This makes the energetically accessible region three-dimensional. However, 
under certain conditions more invariants exist. For separable systems 
these are simply the energies per mode, which are evidently conserved. 
This confines the trajectory to a two-dimensional region in phase space 
called an invariant torus. For nonseparable systems the trajectories are 
also confined to invariant tori in the regular region of the phase space. In 
the irregular region, which usually occurs at higher energies, a trajectory 
fills the entire energy accessible region. Such trajectories are called chaotic 
[44] and this will not be further discussed here. 

In Figure 2 we schematically show two topologically independent paths 
on a torus. For EBK quantization considerable freedom exists since the 
paths for which the action integrals are to be quantized need not be along 
actual trajectories. The EBK quantization rules may seem unmanageably 
complicated, even for two-dimensional systems, but in the 1970s the de­
velopment of practical methods began. The freedom in the choice of the 
integration path gave rise to a series of methods. For example, Eastus 
and Marcus [45] presented a method in 1974 in which the integration is 
performed along the caustics, i.e., the multidimensional analogues of the 
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Figure 2. Two topologically independent paths on a torus. 

classical turning points. They claimed that this was the first practical 
method for EBK quantization in a nonseparable system. In 1975 Noid 
and Marcus used integration along the so-called Poincare surfaces of sec­
tion [46). The method we employed to solve a two-dimensional problem in 
Chapter 2 is the method of Sorbie [47), where the integration is performed 
along a trajectory closed in phase space. Some details of this method are 
given in Chapter 2. 

A problem with all of these methods is that they become progressively 
more cumbersome in higher dimensions, although they have also been ap­
plied to three-dimensional cases [48). For instance, in the Sorbie method 
finding trajectories that close in phase space with some specified accuracy 
is the main bottleneck for application to higher dimensions. Another prob­
lem is the calculation of Franck-Condon factors. Although in 1985 Gray 
et al. [49) presented a method based on invariant tori which is suitable for 
the calculation of Franck-Condon factors, it was only worked out for the 
two-dimensional case. However, the development of semiclassical methods 
has not stopped and in recent years several promising alternatives were 
developed [50). Many relevant references can be found in an extensive 
review of Reinhardt [51). 

The development of a rather different set of semiclassical methods, 
which do not rely upon the existence of invariant tori, started with the 
landmark paper of Heller [52] in 1975. In these methods an approximation 
to the solution of the time-dependent Schrodinger equation is found by cal­
culating the time development of Gaussian wave packets. Heller showed 
that if the potential, which may be nonseparable, is approximated har­
monically around the instantaneous position of a wave packet, the center 
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of this wave packet will follow a classical trajectory. First order differ~ntial 
equations are found to govern the time development of other parameters 
of a Gaussian wave packet, such as the width and the phase. 

It is also possible to represent a wave packet by a linear combination 
of Gaussians. In that case one may keep the width of the Gaussians fixed 
in time [53]. This is called the frozen Gaussian approximation (FGA), 
which we employ in Chapter 2. Since in this way one finds an approxima­
tion to the time-dependent wave function, Franck-Condon factors may be 
obtained easily as was explained in Section 1.2. 

1.4.3 Quantum mechanical methods 

The semiclassical methods worked rather satisfactorily for our two-dimen­
sional problem in Chapter 2. Still, in the study on the V +- N band of 
ethylene in Chapter 5, we applied a fully quantum mechanical method for 
several reasons. First of all, it is rather difficult to assess the accuracy of 
semiclassical methods. One has to check a number of parameters, e.g., for 
the frozen Gaussian approximation the number of Gaussians per coordi­
nate, the width of the Gaussians, and the time step, and still one does 
not know the error introduced by the semiclassical approximation an sich. 
Secondly, in the ethylene problem two nonadiabatically interacting elec­
tronic states are involved. This would require the use of other semiclassical 
methods, e.g., surface hopping methods [54], which considerably enlarges 
the problem of assessing the accuracy. This again makes it difficult to 
draw conclusions on the quality of the PES on the basis of comparison 
with experiment. Finally, one might argue that a high quality ab initio 
PES is very expensive and it is simply a waste to loose any accuracy in 
the final step of the calculation of the spectrum. 

Conceptually, a fully quantum mechanical method is perhaps the sim­
plest way to calculate bound state vibrational energy levels. The time­
independent SchrOdinger equation is turned into a matrix eigenvalue prob­
lem by introducing a basis set. In p dimensions one chooses n; one­
dimensional functions per dimension and a p-dimensional basis set can 
be formed by taking the direct or Hartree product of those functions. The 
problem is evidently the size of the resulting Hamiltonian matrix (N), 
which grows rapidly if higher energy levels and/or more dimensions are 
required: N = n1 x n2 x · · · x np. 

If the full Hamiltonian matrix is to be calculated and stored in the 
core memory of a computer, the maximum size that can be handled con­
veniently is in the order of N = 103 . However, for Hamiltonians that 
are sparse, i.e., contain a lot of zero elements, some numerical methods 
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exist that can deal with sizes several orders of magnitude larger. For 
sparse matrices with a special structure, e.g., banded matrices, some so­
called "direct solvers" exist. Otherwise, iterative methods can be used. 
For example, if the Hamiltonian is diagonally dominant and only a few 
eigenvalues are required, the Davidson algorithm [55] is very efficient and 
so this method is favored in electronic structure calculations. In other 
cases [56] the Lanczos algorithm (Chapter 3) is more efficient. Such itera­
tive methods essentially only require a routine that calculates the matrix 
vector product: 

t/J' = Ht/; (1.33) 

and the memory requirements are only a few times the size of t/J, i.e., a 
few times (N), or less. 

The potential energy part of the Hamiltonian can be made sparse by 
choosing a specific form of the potential in combination with a proper 
basis set. For example, one can use a truncated Taylor expansion for 
the potential in combination with a Harmonic oscillator basis set. For 
a large amplitude mode, however, one might prefer more flexibility in 
the choice of the form of the potential, without reducing the sparsity of 
the matrix. With a grid representation the potential is always diagonal 
(Chapter 3). Unfortunately, the kinetic energy operator is only diagonal 
in a Fourier basis. In the Kosloff method [57] the fast Fourier transform 
(FFT) algorithm is used to switch back and forth between the grid and 
the Fourier representation, which results in a very efficient implementation 
of the Hamiltonian. This idea of switching between representations is 
also used in the Discrete Variable Representation (DVR) of Light and 
coworkers [58]. 

In Chapter 3 we present a method which is also based on the grid 
representation and in which the kinetic energy matrix is made sparse (not 
diagonal) by using a high {lOth) order finite difference formula. This gives 
rise to a particularly simple implementation of the Hamiltonian since the 
kinetic energy is represented by only six, problem independent, coeffi­
cients. In Chapter 3 we also show how to calculate Franck-Condon factors 
very efficiently with this method. 

A few methods for the calculation of anharmonic vibrations of moder­
ate amplitude are compared in [59]. 

1.5 Outline of the thesis 

In Chapter 2 we describe an exploratory study for which we choose the 
B 1 Bu ..._. X spectrum of trans-di-imide. The B state is of Rydberg char-
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acter and can be described by a single reference function. We compare 
the spectra calculated with the SDCI, SDCI+ Pople correction, and single 
reference CEPA with the experimental spectrum. We also investigate the 
effect of orbital optimization. Two vibrational modes are included in the 
study and we employ semiclassical methods to calculate the vibrational 
structure of the spectra. 

In Chapters 3 and 4 we describe the Lanczos/grid method and the 
MRCEP A method, respectively, and we show the results of some test 
calculations. 

In Chapter 5 these methods are used to study the V +- N band of 
ethylene. This problem is chosen because the description of the V state 
of ethylene really requires a size consistent multireference method and the 
precise interpretation of the spectrum is still under discussion. 
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Chapter 2 

Semiclassical calculation of the vibrational 
structure of the B 1 Bu Rydberg state of 
trans-di-imide from ab initio CI potential 
energy surfaces1 

Abstract 
The applicability of the SDCI and CEPA methods to the excited 
state of the title molecule is investigated. Two basis sets are used, 
one of triple zeta quality extended with diffuse functions and an­
other which also contains polarization functions. For the subse­
quent CI calculations closed shell as well as open shell, molecular 
orbitals are used. We investigate the Pople correction as a way 
to obtain size consistent results from the SDCI calculation. For 
each method, a two-dimensional potential energy surface of the 
1( 4a9 , 5bu) Rydberg state of trans-di-imide (HNNH) is calculated. 
The vibrational fine structure in the corresponding ii ~ X UV­
absorption spectrum is derived from these surfaces and the result 
is compared with the spectrum measured by Neudorll et al. [P. 
S. Neudorll, R. A. Back, and A. E. Douglas, Can. J. Chern. 59, 
506 (1981)]. A semiclassical method [K. S. Sorbie, Mol. Phys. 32, 
1577 (1976)) is used to obtain the vibrational frequencies. A slightly 
modified version of the Heller frozen Gaussian approximation [E. 
J. Heller, J. Chern. Phys. 75,2923 (1981)] is proposed and used to 
obtain the intensities of the vibrational bands. We conclude that 
it is important to use the open shell molecular orbital basis and 
the SDCI plus Pople correction, or even better, the CEPA. Both 
methods give good results for the vertical transition energy and 
excited state geometry. The error in the vibrational frequencies is 
in the order of 10%, but the NN-stretch mode is best described by 
the CEPA method. 

1G. C. Groenenboom, J. H. van Lenthe, and H. M. Buck, J. Chern. Phys. 91, 3027 
(1989). 
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Figure 1. The structure of trans-di-imide at the ground state geometry ( RNN= 

1.252 A, RNH = 1.028 A and O:NNH = 106.85°). 

2.1 Introduction 

The common way to calculate excited state potential energy surfaces is 
due to Buenker and Peyerimhoff [1]. They developed a multireference 
method in which the choice of the reference space is based on an energy 
criterium. The single and double excitations from this reference space 
generate a subspace from which the most important species are selected 
for inclusion in the final CI expansion. In direct CI methods, all single 
and double excitations relative to a reference space are used. Evidently 
this results in large CI spaces, but with present-day programs such as 
the Saunders-van Lenthe direct CI package [2] calculations involving 105 

configurations can be handled routinely. Furthermore, the costs of these 
calculations are approximately linear with the number of configurations. 
The main drawback of these truncated CI methods is their lack of size 
consistency; the correlation energy does not scale with the number of 
electrons (N) but with N!. Although N does not change in our calcula­
tions, the size consistency error may still vary along the PES. Full CI does 
not suffer from this problem and so increasing the CI space is an effec­
tive, but rather expensive remedy. It is also possible, without additional 
labor, to apply the Davidson or the Pople size consistency correction [3]. 
Another approach is to use a size consistent method such as the Coupled 
Electron Pair Approximation (CEPA). Recently a multireference version 
of the CEPA method became available [4]. In this work we will not exploit 
the multireference character of this program, hut only use the possibility 
to handle open shell reference functions, which enables us to apply this 
method to excited states. We have chosen trans-di-imide (Figure 1) as 
a model compound, because there is accurate experimental data to com­
pare with and the vibrational fine structure of its UV-ahsorption spectrum 
reveals large-amplitude motion in the 1 ( 4a9 , 5bu) state. 
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2.2 Spectroscopy of trans-di-imide 

Several studies have been performed on the excited states of trans-di­
imide. Ab initio SCF and CI calculations were carried out by Vasudevan 
et al. [5] for a large number of excited states of this molecule. The tran­
sition to the first excited singlet state [1Bg{n+,1r*), at 3.6 eV], which is 
symmetry forbidden was studied theoretically by Peric et al. [6, 7] and 
observed experimentally by Back et al. [8, 9]. The first symmetry al­
lowed transitions are to three 3p Rydberg states. Two of these states are 
of Bu symmetry. The spectrum of the first, the 1( 4a9 , 4bu) state at 6.9 
eV, contains only weak and diffuse bands. This paper concentrates on 
the second, the B1Bu(4a9 ,5bu) Rydberg state which has a rotational and 
vibrational resolved UV-absorption spectrum (measured by Neudorfl et 
al. [10]). Trans-di-imide has three totally symmetric vibrations, the NNH 
bend (v2), the NN stretch (v3 ) and the NH stretch (v1 ). The vibrational 
structure of the spectrum consists of three progressions. The first pro­
gression has seven bands resulting from the v2 vibration. The other two 
progressions are assumed to have one and two quanta in v3 and consist 
of, respectively, six and four bands. The first two progressions are about 
equal in strength and the third progression is much weaker. The NH ex­
cited state equilibrium distance is equal to the ground state NH distance 
and so v1 is not excited and will be left out of the calculations. 

2.3 Electronic structure calculations 

The SCF and CI calculations are performed with the GAMESS [11] and 
ATMOL [12] program packages. Two different basis sets are employed 
for the computation of the PES's. The first basis set (labeled TZV +) is 
the triple-zeta basis set due to Dunning [13] with a <5s/3s> contraction 
for hydrogen and a < 10s6pf5s3p > contraction for nitrogen, augmented 
with a set of diffuse s and p functions ( exponent=0.025 bohr-2 ) on each 
nitrogen atom for representing the Rydberg orbitals. The second basis 
set (TZVP+) is the first (TZV +) augmented with polarization functions, 
p on hydrogen and don nitrogen [14]. The TZV+ basis set has 42 ba­
sis functions and the TZVP+ 60. In the SDCI calculations, we use the 
1( 4a9 , 5bu) single excitation as the only reference configuration, because it 
is far dominant for all geometries. All single and double excitations are 
included in the CI list, but the lowest two a orbitals and their comple­
ments are left out, giving the following number of configurations: 11 594 
for the TZV + basis and 27 518 for the TZVP+ basis. 

To investigate the effect of the choice of the one-electron basis, both 
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Table I. The electronic methods used. The code will be used in the other 
tables: Q, Pople correction; P, polarization functions; 0, ROHF. All basis sets 
are of the triple zeta valence type (TZV) with diffuse functions ( +) and some 
include polarization functions (P). The RHF MO's are the ground state MO's 
and the ROHF MO's are 1(4a9 ,4bu) open shell MO's. 

Code Basis set MO's CI 

a TZV+ RHF SDCI 
b Q TZV+ RHF SDCI+Pople 
c p TZVP+ RHF SDCI 
d P,Q TZVP+ RHF SDCI+Pople 
e P,O TZVP+ ROHF SDCI 
f P,O,Q TZVP+ ROHF SDCI+Pople 
g P,O,CEPA TZVP+ ROHF CEPA 

the canonical Hartree-Fock ground state MO's and the 1(4a9 ,4bu) ROHF 
MO's are used. Note that neither of these orbital sets are optimized for 
the state we want to investigate, but an attempt to obtain the 1( 4a9 , 5bu) 
ROHF orbitals again yielded the 1 ( 4a9 , 4bu) orbitals. When using the 
ground state MO's in a calculation with more reference functions and 
in the CEPA calculations, we found that the 1 (4a9 ,4bu) Rydberg state, 
which lies just below the 1( 4a9 , 5bu) Rydberg state, starts mixing in. This 
problem does not occur with the open shell basis. In Table I we give a 
summary of the different methods. 

2.4 The potential energy surface 

Although one needs the full six-dimensional potential energy surface for an 
exact description of the spectrum, we restrict the ab initio calculations to 
the two most important coordinates; aNNH corresponding to v2 and RNN 

corresponding to v3 • The 2D PES is constructed from a 40 point grid 
with aNNH = 90°,100°,1100, ... ,180° and RNN = 1.117, 1.167, 1.217, and 
1.267 A at RNH = 1.028 A. For every value of aNNH the RNN dependence of 
the potential is described by a Morse-oscillator, which fits exactly through 
four points, so we have the following expression for the potential function: 

(2.1) 

The four a-dependent parameters in this function are interpolated by a 
cubic spline [15]. If the two boundary conditions (the derivatives in the 
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end points) are used to minimize the norm of the second derivative one 
obtains the well known minimum energy spline. However, we prefer to 
minimize the norm of the third derivative. A spline obtained in this way 
has the property of fitting a parabola exactly, a very desirable feature for 
the purpose of extracting force constants. Because of symmetry we take 
the first derivative at a= 180° equal to zero. 

The full10 x 4 points grid is calculated only for the first four surfaces 
(Table I). For the other three surfaces only 3 x 4 points are calculated 
( aNNH = 90°, 130°, and 170°) and the difference between each surface and 
surface (c), as a function of aNNH, is fitted with a harmonic function. The 
surface obtained in this way is added to surface (c) again to get the full 
40 point grid to which the original method is applied. 

2.5 Dynamical calculation.s 

To derive the vibrational frequencies from the 2D PES we use the semi­
classical method of Sorhie and the Heller frozen Gaussian approximation 
(FGA). Although the FGA is known to yield somewhat less accurate fre­
quencies, it gives the relative intensities of the absorptions in the spectrum 
which is a very sensitive test of the shape of the PES. The two different 
semiclassical methods are described in detail in the original papers by 
Sorhie [16] and Heller [17], hut we will give a short summary of both 
methods here. In the Sorhie method a classical trajectory, starting at the 
minimum of the PES, is run until it doses on itself (in phase space) with 
some arbitrary accuracy. Along with the trajectory, the classical action 
integrals are evaluated for each dimension. Now the initial conditions (in 
two dimensions the total energy and the initial direction) are adjusted to 
satisfy the semiclassical quantum conditions. for every coordinate i: 

(2.2) 

In this equation n; is the integer quantum number for coordinate i and 
N; is the number of circuits (see Sorhie [16] for an explanation of how to 
count circuits). 

To explain the FGA, we consider a molecule after an electronic excita­
tion. Before (radiative) decay to the ground state has taken place such a 
system can he described, within the Born-Oppenheimer approximation, by 
a time-dependent nuclear wave function, or wave packet (lx(t) >),moving 
around on the excited state potential energy surface. Initially (at t = 0) 
this wave packet is equal to the ground state nuclear wave function at 
the moment of the excitation (in the Franck-Condon approximation and 
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if we assume a constant transition dipole moment). In the FGA, the wave 
packet is described by a linear combination of time-dependent Gaussian 
functions. In one-dimension the Gaussian has the following form: 

(2.3) 

The time-dependent parameters Xt and Pt correspond to the classical po­
sition and momentum of the Gaussian, at determines the width of the 
Gaussian and is kept fixed (or frozen, at = a 0 ) and It is the phase of 
the Gaussian, which is essentially the classical action integral along the 
classical trajectory (xhPt)· We made a modification to this integral (for 
details see the Appendix). 

The absorption spectrum can now be obtained by taking the Fourier 
transform of the autocorrelation function 

l
+oo 

e(w) = -oo eiwt < x(O)Ix(t) > dt (2.4) 

The energies are determined by measuring the positions of the peaks in 
the spectrum e(w). For practical application of this formula, the auto­
correlation is cut off with an exponential function with exponent ( -1/T), 
which results in peaks with a Lorentzian line shape and width (1/T). In 
our calculations, we used 64 Gaussians for the a coordinate and 8 Gaus­
sians for the RNN coordinate (giving 512 trajectories) and the width of 
the peaks is taken to be 0.0002 a.u. 

2.6 Results 

2.6.1 MRSDCI, Pople correction, and CEPA 

To introduce the different methods used to obtain the correlation energy, 
we give the results of a series of calculations of the 1(4a9 ,5b11 ) state done 
at the experimental ground state geometry (Figure 1 ). All these calcula­
tions are based on the same 1( 4a9 , 4bu) ROHF /TZVP+ one electron basis. 
First we do a SDCI 1(4a9 ,5bu) calculation and we order the CI vector on 
decreasing magnitude of the coefficients of the configurations. Now we 
take, respectively, two, three, four, and eight configurations from the top 
of the list and use these as reference configurations in four additional cal­
culations. The energy as a function of the total number of configurations 
is given in Figure 2. In the same figure, the energy obtained with the 
Pople correction is shown. To obtain a Pople correction in the multiref­
erence case, we first perform a small CI calculation between the reference 
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Figure 2. The MRSDCI energy of the 1 ( 4a9 , 5bu) Rydberg state as a function of 
the number of configurations. The number of reference functions is, respectively, 
1, 2, 3, 4, and 8. The MO's of method (e) are used. The major components 
of the corresponding CI vectors are given in Table II. The second curve gives 
the Pople corrected values. The CEPA calculation is based on one reference 
configuration. 

functions, giving an energy Eo and a wave function IIlio >. Now we can 
use the Pople formula ([3], formula 65), but replace LlEso by EMR- Eo 
and ao by < lllollliMR >. 

Finally the energy of a CEP A calculation based on one reference func­
tion is shown. The energy of the MRSDCI calculations decreases slightly 
as a function of the number of configurations, but in a way which does 
not allow for extrapolation. The energy of the MRSDCI+Pople calcula­
tions is close to the result of the single reference CEPA calculation. The 
energy obtained with these methods is much lower, but one should realize 
that these methods are not variational. Figure 3 gives an analysis of the 
contribution of the main components of the CI vector and Table II gives 
the occupation patterns for these configurations. It is clear that the rela­
tive importance of the contributions of the configurations to the CI vector 
strongly depends on the choice of the reference space. The contribution of 
the main configuration slowly decreases. For the CEPA calculation, this 
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Table II. The occupation patterns of the six configurations of Figure 3. The ex­
citations patterns are given relative to the (la~, lb!, 2a~, 26!, 3a~, 3b!, la!, 4a;)­
ground state. 

1 4a9 -+ 5bu 
2 4a9 ,1a! -+ 5bu, 1~ 
3 1au, 3bu -+ 5bu, 1b9 

4 1au, 3bu -+ 5bu, 1b9 

5 4a9 ,1a! -+ 5bu, 1b9 , 3b9 

6 4a9 -+ 6bu 

0.95 
1-.... 

·. 
-···~·-···-·. · .. 

··--. •..•.. 
· .. _ 

0.15 

.... -

: ....... :r·· ... ~--··-' !-"··-····~ .... -

2-: 
0.10 

4~ •••• -

\,. .-····-4··~-· 
5 -··~~c:···:.'_ ...... -, ... _ 0.05 

6-···-··,.··-····-
A 9 c 0 F 

Figure 3. The absolute values of the coefficients of the major configurations 
{Table II); A-E correspond to the five MRSDCI calculations with increasing 
numbers of configurations and F corresponds to the CEPA calculation. 
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Table III. The energies of the ground state (X), the first two Rydberg states 
[lBu = 1( 4a0 , 4b .. ), 2Bu = 1( 4a0 , 5bu)], the vertical excitation energies, and 
the separation of the Rydberg states (A). 

X lBu 2Bu lB .. 2Bu ~ 
(a.u.) (a.u.) (a.u.) (eV) (eV) (eV) 

Experiment 6.90 7.60 0.70 
a -110.20409 -109.93368 -109.92058 7.36 7.71 0.36 
b Q -110.22526 -109.97888 -109.96333 6.70 7.13 0.42 
c p -110.37122 -110.08576 -110.07721 7.77 8.00 0.23 
d P,Q -110.40388 -110.14244 -110.13197 7.11 7.40 0.28 
e P,O -110.37122 -110.11409 -110.08331 7.00 7.83 0.84 
f P,O,Q -110.40388 -110.15105 -110.12033 6.88 7.72 0.84 
g P,O,CEPA -110.41563 -110.16567 -110.13580 6.80 7.61 0.81 

contribution is lower than in the case of the direct CI calculation with 
eight reference configurations. Evidently this is because the CEPA calcu­
lation incorporates the effects of higher excitations. A general rule for the 
choice of the reference space is that it should give a qualitative description 
of the surface and since in these calculations the main configuration is far 
dominant, we see no a priori way to choose more reference configurations 
and all further calculations will be based on one reference function. 

2.6.2 Vertical excitation energies 

The energies of the ground state and the first two B .. Rydberg states are 
given in Table III for the seven different methods (see Table I). The vertical 
excitation energies derived from these data together with the experimental 
values and the separation of the Rydberg states are also given in Table 
III. 

If we first consider the calculations without the Pople correction (a, 
c, and e) we find that the excitation energies, which are too high for 
the TZV + basis set (a), increase upon adding polarization functions (c). 
The calculation using the ROHF one electron basis (e) gives much better 
results. In particular, the separation of the two Rydberg states increases 
from about 0.2 ... 0.4 to 0.84 eV (experimentally 0.7 eV). Although this 
might not be surprising since the open shell orbitals are optimized for the 
lower Rydberg state, note that the Pople correction lowers the excitation 
energies by about 0.6 eV for the RHF basis (d) and only by about 0.1 eV 
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Figure 4. The PES of the 1(4a9 ,5bu) Rydberg state. The energy of the 
equipotential curves is i 2 x0.0002 a.u., relative to the minimum of the surface 
( i = 0). The curve through the minimum of the surface is the RNN equilibrium 
curve. The cross marks the ground state geometry and the rectangle surrounds 
the area from which the trajectories used in the FGA start. Only the results 
of the CEPA calculation [Table I, case (g)] are given here. The results for 
calculations (a) to (f) are available from the Physics Auxiliary Publication 
Service [18]. 

for the ROHF basis (f), for both states. The CEPA result is comparable to 
the ROHF+Pople result and is in very good agreement with experiment 
(errors less then 0.1 eV). 

2.6.3 PES's and spectra 

The PES for the CEPA calculation [Table I, case (g)] is shown in Fig­
ure 4; the PES's for the other electronic methods are available from the 
Physics Auxiliary Publication Service [18]. The energy corresponding to 
the equipotential curve i (start counting from the minimum of the sur­
face) equals i 2 x 0.0002 a. u. The curve through the minimum of the surface 
gives the equilibrium RNN distance as a function of <XNNH· The rectangle 
identifies the area from which the trajectories (used in the FGA) start 
and the cross in the center of the rectangle marks the ground state geom-
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Table IV. The equilibrium geometry a.nd the harmonic frequencies derived 
from the PES's in Figure 4. The experimental values for a (in °), RNN (in A), 
VNNH a.nd liNN (in cm-1 ) are given, together with the deviations of the different 
calculations (in %). RNH is kept fixed at the experimental value of 1.028 A. 
The experimental values are taken from [10]. 

tlNNH RNN IINNH liNN 

Experiment 127.6 1.167 1180.1 1875 
a 0.2 0.8 9.5 3.7 
b Q -0.9 2.3 10.1 -4.3 
c p -2.4 -1.1 10.4 11.8 
d P,Q -3.3 0.3 11.2 4.2 
e P,O -1.9 -0.6 9.6 21.2 
f P,O,Q -2.4 0.3 9.4 14.1 
g P,O,CEPA -2.9 0.9 9.5 7.3 

etry. The excited state equilibrium geometry and corresponding harmonic 
frequencies [19] derived from these surfaces are summarized in Table IV. 

If we compare (a), (c), and (e) with, respectively, (b), (d), and (f) 
in Figure 4 and Table IV, we find that the Pople correction lowers the 
dissociation energy (judged from the number of equipotential curves which 
reach the RNN=1.4 A area), increases the RNN equilibrium distance by 
about 0.9% ... 1.4% and lowers liNN by about 8%. The Pople correction 
has only a small effect on the £¥NNH angle: the surface is tilted a little 
toward a smaller £¥NNH· Considering the CEPA calculation (g), we find 
the same effects, but somewhat more pronounced. The main effects of 
extending the basis set with polarization functions [compare (c) with (a)] 
are: the energy barrier at £¥NNH 180° increases, the equilibrium angle 
£¥NNH decreases (2.6%), the equilibrium distance RNN decreases (1.9%) and 
liNN increases by about 8%. Changing to an open shell basis [compare (e) 
with (c)] partly cancels these effects except for liNN which again increases 
(by about 9%). 

The spectra derived from these surfaces are shown in Figure 5. Only 
the quantum number v2 is used to identify the peaks, with no quote for the 
first progression (va = 0), one quote for the second progression (va = 1) 
and two quotes for the third progression (v3 = 2). 

Comparing the spectra, we find that the main effect of the Pople cor­
rection is to reduce the intensity of the second and - if present at all - the 
third progression. The relative intensity of the progressions is determined 
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Figure 5. The spectra derived from the seven PES's (Table I and Figure 4). 
The peaks are labeled with v2 , with, respectively, 0, 1, or 2 quotes for V3=0, 1, 
or 2. 
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Table V. The excitation of the RNN stretch. This is the vertical distance 
between the cross (marking the ground state geometry) and the equilibrium 
curve in Figure 4. 

~(A) 

a 0.041 
b Q 0.019 
c p 0.077 
d P,Q 0.059 
e P,O 0.072 
f P,O,Q 0.060 
g P,O,CEPA 0.050 

by the excitation of the RNwstretch mode, which in turn is related to the 
vertical distance between the cross (marking the ground state geometry) 
and the equilibrium curve in Figure 4. These distances are given in Table 
v. 

In the experimental spectrum, we find that the intensity of the ab­
sorptions within each progression smoothly increases and decreases as a 
function of 112• This feature is not reproduced bye the first spectrum (a); 
the absorptions in the first progression between 112=5 and 112=9 are relative 
high. Furthermore, the second progression has only four bands and there 
is no third progression visible. Adding polarization functions (c) seems 
to resolve these deficiencies, but if an open shell basis is used (e) the 
spectrum again deteriorates. For the TZV + basis we see that the Pople 
correction (b) "smooths" the first progression and increases the number 
of bands in the second progression, but the aNNwmode excitation is still 
too high (absorptions up to 112=9 are clearly visible) and the intensity of 
the second progression is very weak. In the case of the TZVP+ basis, 
the Pople correction (d) does not improve the spectrum; the main effect 
is to reduce the intensity of the second and third progressions. Only for 
the open shell basis does the Pople correction (f) improve the spectrum; 
the relative high absorption in the first progression at 112 = 5 ... 9 disap­
pears. In the CEPA calculation (g) we find the same effects as in (f), but 
again somewhat more pronounced and as a result the third progression 
completely disappears. 

Now that we have discussed qualitatively the shape of the spectra, we 
will discuss the vibrational frequencies derived from these surfaces by the 
method of Sorbie (Table VI, agai~ only the results for the CEPA calcula-



36 TRANS-DI-IMIDE 

Table VI. The vibrational frequencies (in cin-1) calculated by the Sorbie 
method are labeled by the quantum numbers v2 (the ONNu-bending mode) 
and v3 (the RNN-stretching mode). The differences between the frequencies 
are compared to experiment and the errors are given in % (positive means 
too high). Only the results of the CEPA calculation [Table I, case (g)] are 
given here. The results for calculations (a)-(f) are available from the Physics 
Auxiliary Publication ~ervice [18]. 

V3 = 0 V3 = 1 V3 = 2 

v2 = 0 1641 3% 3570 0% 5408 
8% 10% 11% 

V2 = 1 2920 4% 4845 1% 6697 
9% 10% 10% 

V2 = 2 4177 4% 6103 1% 7955 
10% 11% 12% 

v2 = 3 5416 5% 7348 2% 9218 
9% 9% 

v2 =4 6636 5% 8572 10409 
12% 12% 

v2 = 5 7836 5% 9766 
12% 

v2 = 6 9003 

tion are given, the results for the. other electronic methods are available 
from the Physics Auxiliary Publication Service [18]). The vibrational lev­
els are identified by their quantum numbers v2 and v3 . Absolute energies 
cannot be compared with experiment and so the errors are given (in %) 
for the differences between the energies. 

In most cases, the errors increase slightly as a function of the energy, 
but the variation is always smooth within each mode. In Table VI we find 
that the error for the ONNu-bending mode varies from 8% ... 12% while 
the error for the RNwstretch varies from 0% ... 5%. The error ranges for 
all seven electronic methods are given in Table VII. 

The errors in liNNH are almost independent of the method. In contrast, 
the errors in liNN strongly increase if we add polarization functions to the 
basis set [compare (c) and (a)], or use an open shell basis (e), and now 
the Pople correction [compare (b), (d), and (f)] significantly reduces the 
errors. The CEPA (g) gives the smallest errors for liNN. 

Finally we will compare the frequencies derived directly from the spec-
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Table VII. The error ranges for the llNNn-bending mode and the RNw 
stretching mode in%, derived from Table VI. 

IINNH liNN 

a 8 11 2 5 
b Q 8 12 -6 -4 
c p g 15 11 13 
d P,Q 10 15 3 6 
e P,O 8 11 17 20 
f P,O,Q 8 12 8 12 
g P,O,CEPA 8 12 0 5 

tra computed with the FGA, with the results of the Sorbie method. Since 
the Sorbie method is known to be the more accurate, we use it as a refer­
ence. Table VIII gives the deviations of the FGA. The errors range from 
about +2% in the low energy region to about -2% in the high energy 
region, so the values are most accurate in region of maximum absorption 
(112 = 2 or 3), as one would expect. 

For one spectrum (c) we also applied the FGA using the unmodified 
phase integral (see the Appendix). The errors of the frequencies derived 
from this spectrum are given in Table IX. With this method the errors are 
much higher and range from + 7% in the low energy region to + 1% in the 
high energy region. 

2. 7 Discussion 

Comparing the qualitative shape of the spectra in Figure 5 with exper­
iment, one could draw the conclusion that the SDCI calculation based 
on the closed shell molecular orbitals with TZVP+ basis set and without 
the Pople correction (c) gives the best results. This spectrum has three 
progressions with about the right number of bands and the correct rel­
ative intensities. Still we will argue that considering all results in detail 
reveals that CEPA method, using open shell molecular orbitals and the 
TZVP+ basis set (g), is superior and that also the Pople correction does 
give improved results: 

(i) Turning from a closed (c) to an open shell (e) basis one would 
expect better results. Although this is true for some aspects such as the 
excitation energies, the qualitative shape of the spectrum deteriorates and 
the error in liNN increases considerably. But now the Pople correction (f), 
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Table VIII. The vibrational frequencies derived from the spectra in Figure 5 
(the FGA) compared with the Sorbie method (Table VI). The differences are 
given in%. 

va(a) Va(h) va(c) va(d) 
V2 0 1 0 1 0 1 2 0 1 2 

0 2.4 1.0 2.4 0.8 1.7 0.8 0.2 1.8 0.7 
1 0.6 0.2 0.7 0.3 0.9 0.4 0.0 1.0 0.3 
2 0.0 -0.1 0.3 0.2 0.7 0.4 0.1 0.5 0.4 0.0 
3 0.0 -0.1 -0.1 -0.1 -0.1 -0.1 0.0 0.0 -0.1 -0.1 
4 0.2 -0.8 -0.7 -0.6 -0.5 -0.3 -0.3 -0.3 -0.4 
5 -1.9 -1.6 -1.2 -1.0 -0.7 -0.6 -0.4 -0.3 
6 -2.2 -2.0 -0.3 -0.2 -0.3 
7 -2.5 -0.8 0.0 

va(e) va(f) va(g) 
V2 0 1 2 0 1 2 0 1 

0 1.8 0.5 -0.1 1.5 0.0 -0.2 1.7 -0.2 
1 0.5 0.2 -0.2 0.7 -0.2 -0.3 0.9 -0.1 
2 0.4 0.2 -0.2 0.6 0.1 -0.2 0.5 0.1 
3 -0.1 0.1 -0.2 -0.2 -0.1 -0.1 -0.3 
4 -0.7 -0.8 -0.5 -0.3 -0.4 -0.5 
5 -1.1 -1.3 -0.6 -0.5 
6 -1.2 -0.4 
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Table IX. The same as Table VIII, but now the FGA with the unmodified 
phase integral (see the Appendix) is used. This is done only for calculation (c). 

v3(c) 

112 0 1 2 

0 7.4 3.5 2.2 
1 4.2 2.6 1.8 
2 3.0 2.1 1.5 
3 2.5 1.8 1.5 
4 2.0 1.4 1.2 
5 1.4 1.2 1.0 
6 1.2 
7 1.6 

which did not seem to give much improvement in spectrum (d), does give 
a better spectrum. 

(ii) As pointed out in the Introduction, the size consistency error may 
vary along the PES. From the error ranges for liNN in Table VII, we con­
clude that this is indeed the case for the stretching mode, since the Pople 
correction and the CEP A reduce the errors in liNN considerably. 

(iii) Still remains to be explained why the relative intensity of the 
progressions in spectrum (c) is much better than in spectrum (g). The 
relative intensity of the progressions is determined by the energy in the 
NN-stretch mode which depends on the square of the excitation distance 
as given in Table V. The difference in excitation between (g) and (c) is 
only 0.027 A, but in Table IV we can see that the equilibrium distance 
of (c) is about 0.013 A too short, while the equilibrium distance of (g) 
is about 0.011 A too long, so in a way the correct relative intensity of 
the progressions in (c) is accidental. Furthermore, if we compare (c) and 
(a), we see that extension of the basis set increases the excitation distance 
which would be favorable to the CEPA calculation (g), but not to the 
SDCI calculation (c) (the excitation would become too high). 

(iv) Concluding these arguments, we note that the vertical excitation 
energies obtained from the calculations based on the open shell, one elec­
tron basis are all much better than the ones based on a closed shell, one 
electron basis. 

If we take the CEPA calculation as the final result we can summarize 
the accuracies for the different properties: about 0.1 eV for the vertical 
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excitation energy, 0 ... 5% for liNN, 8 ... 12%for liNNH, +1% for RNN and 
-3% for aNNH· So the errors for the bending mode are higher than for the 
stretching mode and because the errors do not decrease upon improving 
the description of the correlation effects (compare the values for aNNH and 
liNNH in Table IV), we think that inclusion off functions in the basis set 
might be needed to reduce those errors. 

2.8 Conclusion 

Different electronic methods are investigated by comparing the results 
with experiment. We have shown that when investigating the electron 
correlation problem it is essential to perform a series of calculations to 
judge the effect of the basis set incompleteness. The combination with 
semiclassical dynamical methods to obtain the vibrational fine structure 
of the spectra appears to be a very frtii.tful way to test the electronic 
structure calculations. 

We conclude that the direct CI method can be applied successfully 
to the excited state. In this study we only need one reference function, 
probably due to the high contribution of this function. The Pople size con­
sistency correction gives an improvement of the description of the stretch­
ing mode. Using a CEPA approach and orbitals that are optimized for 
a nearby open shell Rydberg state seems a good way to obtain reliable 
results. 
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Appendix: Adaption of the phase integral in the 
frozen Gaussian approximation. 

Heller [17] uses the classical action integral modified by the zero point 
energy of the frozen Gaussian in each point of the trajectory. Since the 
width of the Gaussians depends on the initial state, which is determined 
by the ground state, the vibrational frequencies derived for the excited 
state by this method depend on the ground state, which is physically 
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unrealistic. For this part of the phase integral, we use the zero point 
energy associated with each point of the trajectory and the phase integral 
becomes independent of the width of the Gaussian. 
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Chapter 3 

Solving the discretized time-independent 
Schrodinger equation with the Lanczos 
procedure1 

Abstract 
A new method is presented to find bound state solutions of the one­
' two-, or three-dimensional SchrOd.inger equation. The equation 
is turned into a sparse matrix eigenvalue problem by representing 
the potential energy surface and the wave function on a grid. The 
Laplacian is represented by a high (loth) order finite difference for­
mula. Eigenvalues are found by the Lanczos procedure [J. Cullum 
and R. A. Willoughby, J. Comput. Phys. 44, 329 (1981)] and 
transition probabilities (Franck-Condon factors) are found by the 
recursive residue generation method [A. Nauts and R. E. Wyatt, 
Phys. Rev. Lett. 51, 2238 (1983)]. Examples are given for the 
lD Morse-oscillator and the 2D Henon-Heiles potential. Numeri­
cal convergence can be checked easily and highly accurate results 
can be obtained. The algorithm is fast, easy to implement, and 
vectorizable. 

3.1 Introduction 

In 1983 Kosloff et al. [1, 2] introduced a method to solve the time-depen­
dent Schrodinger equation. This method is based on discretizing space 
and time on a grid. An initial wave function is represented by its values 
at the grid points. To perform a time step, the Hamiltonian has to be 
applied to this wave function. For the potential energy part of the Hamil­
tonian this simply means a pointwise multiplication of the wave function 
by the potential energy at the grid points. For the kinetic energy part, the 
second derivative (or Laplacian) of the wave function at the grid points 
is needed. Kosloff et al. used an N-dimensional fast Fourier transform 
(FFT), followed by a multiplication with the square of the momentum 
and an inverse FFT to do this. Even if the Hamiltonian is not explic-

1G. C. Groenenboom, H. M. Buck, J. Chern. Phys. 92, 4374 (1990). 
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itly time~dependent it can be advantageou~ to use this method, because 
energies and transition probabilities can be computed, without the need 
to compute (and store) eigenfunctions. For example, if the initial wave 
function is taken to be the lowest vibrational eigenfunction of the elec~ 
tronic ground state of a molecule and the Hamiltonian corresponds to an 
electronically excited state of this molecule, then the Fourier transform of 
the autocorrelation function (the overlap between the initial wave func~ 
tion and its time evolution) will give the Franck~Condon spectrum of the 
corresponding transition [3]. 

However, we found that for a time~independent problem, a more effi­
cient method to compute eigenvalues and transition probabilities (and, if 
desired~ eigenfunctions) is possible. The key to this method is the Lanc­
zos procedure, introduced by Lanczos [4] in 1950 as a way to recursively 
generate i).Il orthogonal transformation, which tridiagonalizes a symmetric 
matrix. The matrix (or t.he Hamiltonian) enters the formula only through 
a matrix-vector product, just as in the Kosloff approach. At first the Lanc­
zos procedure seemed to be numerically instable because, due to round-off 
errors, the orthogonality of the transformation is lost very quickly. Paige 
[5-: 7] , however, demonstrated that the spectrum of the tridiagonal matrix 
contains, amongst others, correct eigenvalues (i.e., good approximations 
to eigenvalues of the original matrix). Furthermore, it is possible to iden­
tify those correct eigenvalues with an ingenious device of Cullum et al. [8]. 
Although the Lanczos procedure is used in numerous applications, work 
on a completely black~box Lanczos program is still in progress [9] and we 
will give a short discussion of our implementation in Section 3.3. 

If needed, the transition probabilities can be derived from eigenvec­
tors. However, the computation of one eigenfunction might take as much 
computer time as the computation of all eigenvalues (see Section 3.5). 
Fortunately, in 1983 Nauts et al. [10, 11] presented the so-called recursive 
residue generation method (RRGM), a very efficient procedure to calculate 
transition probabilities, which circumvents the calculation of eigenvectors. 
A somewhat different approach to the RRGM has been given by Wyatt 
et al. [12]. 

Before we start a detailed discussion of our method we note that we do 
not use the Fourier transform technique of Kosloff et al. [1, 2] to evaluate 
the Laplacian, but use a (high-order) finite difference formula instead. 
The advantage of such a formula is that it is very easy to implement and 
that only a few additions and multiplications per grid point are needed. 
Although we did not try the Fourier transform technique, we think that 
it might be particularly advantageous in the case of periodic boundary 
conditions. 
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Finally we note that this method is not variational, i.e., it does not 
give an upper bound to the energy, but convergence can be checked easily, 
so that results can be obtained with any desired accuracy. 

3.2 The Hamiltonian 

3.2.1 The one-dimensional case 

We will consider the following lD Hamiltonian (in atomic units, 1i = 1): 

1 [)2 
H= T+ V= --- + V(x). 

2m{)x2 

The wave function t/J(x) is represented on a grid: 

(3.1) 

For the calculation of the eigenvalues H t/J is needed. For the potential 
energy part we have: 

(3.3) 

So if the components of tP• are arranged as a column vector, then V is a 
square diagonal matrix with diagonal components Vi. 

The simplest finite difference approximation of the Laplacian is the 
second-order three-point formula: 

(3.4) 

So in matrix notation the kinetic energy operator becomes a tridiagonal 
matrix: 

1 1 

2m~x2 

-2 1 
1 -2 1 

1 -2 
(3.5) 

1 

If the diagonal potential energy matrix is added to this, a tridiagonal 
Hamiltonian results, which can be diagonalized directly and no Lanczos 
procedure is needed. This approach can be a convenient tool for one­
dimensional potentials. 
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Table I. The coefficients Cj, used in the 2Nth order approximation of the 
Laplacian (Eq. 6). 

N Ci) C1 c2 C3 C4 C5 

1 -2 1 
2 5 4 1 

-2 3 -12 

3 _ _1!! 3 3 1 
18 2 -20 90 

4 _.!!! 8 1 8 1 
72 5 -5 315 -500 

5 5269 5 5 5 5 1 
-1800 3 -21 126 -1008 3150 

A higher accuracy can be obtained if a higher-order formula. is used 
(with the same grid constant). The general form of a. formula of order 2N 
IS 

(3.6) 

The coefficients Cj a.reobtained by using a Taylor expansion for tPH:i: 

tPi±i = E k11 ¢P:>(±j~x)k 
k=O • 

(3.7) 

where 

(3.8) 

and substituting this into Eq. (3.6). If terms of the same power in ~x a.re 
taken together, a set of linear equations results, from which the coefficients 
Cj can be derived. For example, for N = 3 the equations a.re (after some 
rearrangement): 

(3.9) 

The results for Cj a.re given in Table I for N = 1 ... 5. 
Application of these higher-order formula in the 1D case will lead 

to band matrices and the Lanczos procedure can be used to solve the 
eigenvalue problem. At the boundaries, it is not possible to apply the 
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central difference formula.. we· solved this problem by simply putting 
the wa.ve function equal to zero outside the discretized area., which is a. 
good approximation if the grid is extended far enough into the cla.ssica.lly 
forbidden area. for the solution required. 

3.2.2 The higher-dimensional ca.se 

Extension of this formalism to higher dimensions is very straightforward. 
As an example we ta.ke a. 2D Hamiltonian: 

11)2 11)2 
H = --2- ~ 2--2- !I 2 + V(x,y) 

mxvX myvy 
(3.10) 

The wa.ve function (and the potential energy) ca.n a.ga.in be represented by 
a. single column vector: 

x,=xo+i~x; i=0,1,2, ... ,(nx-1) 
Yi =Yo+ j~y; j = 0, 1, 2, ... , (ny- 1) 

{3.11) 

(3.12) 
(3.13) 

Again the potential energy matrix is diagonal. The kinetic energy matrix 
is found by using Eq. (3.6) for each dimension. The Hamiltonian will now 
become a. block-structured square matrix with dimension n = nx x ny. One 
ca.n try to choose the optimal grid constants (~x,~y) per dimension, but 
if all energy levels up to some energy are needed it is profitable to use 
mass-weighted coordinates (x' = x..;m;, y' = Y.Jfii;), since then the 
sa.me grid constant ca.n be used for every dimension. For the ma.xima.l 
representable momentum (p) we. ha.ve p~x ~ 1r. So if we estimate the 
maximal momentum from E ~ p2/(2m) we find tha.t we should ta.ke ~x 
proportional to 

1r 
~X "' ---=== 

J2mE 
or (3.14) 

So in mass-weighted coordinates we can use one grid constant ~' = 
~x..;m; = ~Y.Jfii;· 

3.3 The Lanczos procedure 

To find the eigenvalues of a. n x n matrix H (we will restrict ourselves 
to rea.l symmetric matrices), the user must supply a. routine to perform 
the matrix vector multiplication H x, and a starting vector q1 . Starting 
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with q11 an orthonormal basis Q = { q11 q2, •.•• , q,} is generated using the 
following recursion relation. (Pt = 0): 

Pi+tqi+t = Hq;- a;q;- /1;q;-t 
a; = (q;, Hq,) 

/1i+t = IIHq;- a;q;- /1;qi-tll 

(3.15) 
(3.16) 
(3.17) 

These equations should not be implemented as given above, but in a 
slightly different way, which is mathematically equivalent, but numeri­
cally favorable [7, 8, 13, 14]. Expressed in the basis Q, His a symmetric 
tridiagonal matrix (T,., after the pth recursion) with diagonal elements a; 

and off-diagonal elements {J;. In exact arithmetic this process would, halt 
after n iterations with Pn+t = 0, and all eigenvalues of the tridiagonal 
matrix Tn would correspond to the eigenvalues of H, but due to round-off 
errors the vectors q; will fail to be orthogonal and /1; usually never even 
becomes small. But if we follow the spectrum ofT,. if p increases we will 
note some remarkable features. The eigenvalues will start converging from 
both ends of the spectrum. If for example n = 10000 (corresponding to 
a 10000 x 10000 matrix) the first eigenvalue may be converged after 50 
iterations (recursion steps). In the next iterations, where other eigenval­
ues start converging, the process seems to "forget" that it has found the 
first one and begins to produce a copy of this first eigenvalue. Converged 
eigenvalues do not disappear if the iterations proceed and so the multiple 
copies are a reliable indicator to detect converged eigenvalues. 

Besides those muLtiple copies also some "incorrect eigenvalues" are 
produced. Those eigenvalues, called spurious, can be identified by the 
following procedure [8}: after the eigenvalues Ea of T (we dropped the 

' index p) are computed, a tridiagonal matrix T(u) is formed by removing 
the first row and the first column ofT. The eigenvalues fa ofT and f~u) of 
T(u) should form a so-called Sturm sequence [10]: Ea < f~u) < fa+t < ei't1• 

If, however, a value in one list is equal to a value in the other list, it 
can be labeled as spurious. Some of the remaining values, which neither 
have multiple copies, nor can be labeled as spurious, will be converged 
and some not. These remaining values could of course be checked by 
computing the corresponding eigenvectors 1/Ja and verifying whether the 
residues IIH'I/Ja- fa'I/Jall are small, but this can be a very time-consuming 
job (see Section 3.5). Again there is an easy way around [13]: the residues 
can be estimated as the product of Pt. (of the last iteration) and the last 
component of an eigenvector ofT. This takes little computer time since T 
is tridiagonal and is usually of much lower dimension than H. Since the 
eigenvalues ofT are known accurately, an eigenvector ofT can be found 
by one step of inverse iteration [15]. 
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3.4 RRGM 

Very often not all components of an eigenvector are needed, but just the 
square of the scalar product with some other vector, e.g., Franck-Condon 
factors. With the recursive residue generation method [10-12] we can 
compute the squares of these inner products (called residues, not to be 
confused with the residues in Section 3.3), without the need to compute 
the eigenvectors! First we have to start the Lanczos procedure with the 
vector qh for which we want the residues. Then we have to calculate 
the two lists of eigenvalues fa and fLu), and remove (from both lists) the 
multiple copies and the spurious values. Now we can use the following 
formula to calculate the residues (after p iterations): 

R( ) -I I·'· 12_ (fa:-fl(u))···(fa:-fp-l(u)) a - < Q1 ¥'a > - -:----~--;---'---:-:-'----'---:--'"-:----:-
(fa- ft) • • ·(fa- fa-d( fa- fa:+t) ···(fa- fp) 

(3.18) 
Note that we did not remove the unconverged eigenvalues from the lists. 

3.5 Eigenvectors 

Despite the RRGM it is sometimes desirable to compute the eigenvectors, 
e.g., to check the program, to check the convergence or to make a plot 
of a two-dimensional wave function to unambiguously assign quantum 
numbers. The most obvious way to get an eigenvector of H is to take 
an eigenvector ofT and use the basis Q to transform it back [13, 14]. If 
the basis vectors are too large to be stored (even on a secondary storage 
device) during the Lanczos process, they can be regenerated to do the back 
transformation, for each eigenvector. A disadvantage of this approach is 
that the optimum number of iterations must be determined before the 
regeneration of the basis. This must be done to avoid the regeneration 
of too many basis vectors, which may cause an accumulation of round-off 
errors. An alternative approach is inverse iteration directly on (H-Eal) 
[14], solving 

(3.19) 

This is done using the SYMMLQ routine [16, 17]. This routine is essen­
tially the Lanczos procedure, followed by an LQ decomposition to solve 
the resulting tridiagonal indefinite set of equations. The routine is imple­
mented in such a way that it can be applied iteratively: at every step of 
the Lanczos procedure the LQ decomposition and its solution are updated. 
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3.6 Examples 

3.6.1 The Morse-oscillator; Convergence behavior 

In a numerical example we will show that the order of convergence of the 
method is equal to 2N (Eq. 3.6), a.s it should be. Furthermore,we will 
show the effect of the oehoice of the boundaries of the grid. As a ri1ad:el 
problem we take a 1D Hamiltonian with the Morse potential used by . 
Dagher and Kobeissi [18]: 

iWith 

D = 
a = 

Xo = 
We = 

WeXe = 
k = 

The theoretical eigenvalues are 

w~/4weXe 
(kweXe)2 

2.40873 

48.66888 
0.977888 

1 

(3.20) 

(3.21) 
(3.22) 

(3.23) 
(3.24) 
(3.25) 

(3.26) 

(3.27) 

Note that we use Dagher's units, A and cm-t, and that now in Eq. (3.1) 
m = 0.5. We will consider the v = 10 energy level with E10 = 403.211 088 
cm-1• The classical turning points of this level are 1.81 and 4.12 A. For the 
left boundary of the grid we take a "safe" value of XIeft = 0.8 A throughout 
and for the right boundary we first take a rather tight value of Xright = 4.64 
A. We check the order of convergence for N = 1, N = 3, and N = 5. For 
each value of N the grid constant (~x) is varied between 0.01 and 0.16 
A. The absolute value of the relative error in E10 a.s a function of the grid 
constant is shown in a double logarithmic plot (Figure 1 ). 

Curves A, B, and C correspond to, respectively, N =l, 3, and 5. The 
slopes of those curves are (within a few percent) equal to the order (2N) 
of the method used, as they should, except that the errors become ap­
proximately constant below a critical grid constant (curves B and C). In 
order to show that the choice of the right boundary of the grid causes this 
limited accuracy, we slightly relaxed the right boundary to Xn~t = 4.96 
A and repeated the calculation for N = 5 (curve D). This 0.32 A increase 
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Figure 1. The error in the tenth energy level of the Morse-oscillator (Eq. 3.20), 
as a function of the grid constant dx.. (A) Using the second order approximation 
for the Laplacian, (B) the sixth order, (C) the tenth order, (D) also the tenth 
order, but with an extended grid. It is clear that the limited accuracy for small 
grid constants is caused by the grid size. 

of the grid size already gives a 500 times better accuracy. The "dip" in 
curves B, C, and D is caused by a change of the sign of the error: For 
large grid constants the calculated energy is too low, while for small grid 
constants the energy is "pushed up" at the boundaries. 

3.6.2 The Henon-Heile.s potential 

In this second example we will show the application of our method to 
calculate the energy levels and Franck-Condon (FC) factors in a two­
dimensional system. We use the same potential model as Gray [19) in a 
study to bound-bound FC factors. The masses are m:c = my = 1. The 
lower potential energy surface is given by . 

1 . 2 1 2 Vt(x,y) = 2o.36(x- 2) + '21.96(y- 2) (3.28) 

and the upper potential energy surface is given by 

(3.29) 
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Gray gives the quantum mechanical eigenvalues and FC factors for eight 
vibrational levels. The upper surfaces ha.s also been used by Swimm and 
Delos [20], who report the quantum mechanical eigenvalues (calculated 
by Don Noid) of all (83) levels up to the escape energy. The escape en­
ergy, i.e., the energy of the saddle point of the potential energy surface a.t 
(x,y) = (8.45, 4.47), is)1.46. We usf;ld the analytic expression of the low­
est harmonic oscillator function corresponding to the lower surface to gen­
erate the starting vector for the La.nczos procedure. Convergence wa.s es­
tablished in the following way: on a. grid with Xmin • • • Xmax = -6.8 · · · 10.8 
and 1/min • "1/max = -7.0 .. · 7.0 we did three calculations with a. grid 
constant ~x of, respectively, 0.4, 0.2, and 0.1 (calculations A, B, and 
C), then we repeated the one with ~x=0.1 on an extended grid with 
Xmin • .. Xmax = -7.6· · ·11.6 and 1/min .. '1/max = -7.8· .. 7.8 (calculation 
D). For those four calculations, respectively, 1500, 2000, 3800, a.nd 3800 
La.nczos steps were required. A convergence factor wa.s calculated for each 
energy level with the following formula.: 

E;(A) - Ei(B) 
COnVi = (B) (C) 

Ei -Ei 
(3.30) 

(for the highest energy levels it is of course not always possible to match 
corresponding levels). Theoretically these values should be equal to 1024 
in the convergence area.. We selected all values with conv; > 200. Then 
we estimated the relative error of these energies a.s 

(3.31) 

and 

(3.32) 

for, respectively, the error due to the noninfinitesima.l grid constant and 
the error due to the finite grid size. In Table. II we give all El0 ) with 
convi > 200, Dl; < 10-5 , and D2; < 10-5 • In a. similar analysis of the FC 
factors we found that these are accurate to a.t least seven figures. If we add 
up all the FC factors of the converged levels we find that they cover more 
then 99.98% of the spectrum. Our results are in virtual perfect agreement 
with the energy levels reported by Swimm et al. [20] a.nd the FC factors 
of Gray [19]. 

Finally we calculated the eigenvector corresponding to the 52nd energy 
level [(Nx, N11 ) = (5, 4), E52 = 9.1882]. A contour map of this function is 
shown in Figure 2. For this function the residue IIHf/111/llf/111 is 2.5 x 10-10 
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Table II. Th~ quantum numbers, energy levels, and Fra.nck-Condon factors for 
the Henon-Heiles system. 

n NIIJ Ny En FC conv11 log(D1)0 log(D2)c 

1 0 0 0.~9552 0.023556 766 -8.7 -12.8 
2 1 0 1.68699 0.029224 780 -8.8 -12.9 
3 0 1 2.27813 0.080722 732 -7.9 -14.0 
4 2 0 2.37504 0.019003 802 -8.6 -13.0 
5 1 1 2.95835 0.083551 728 -8.0 -14.0 
6 3 0 3.05955 0.008347 796 -8.2 -11.9 
7 0 2 3.54795 0.127752 698 -7.4 -14.0 
8 2 1 3.63466 0.044951 734 -8.1 -14.0 
9 4 0 3.74044 0.002643 775 -7.8 -10.9 

10 1 2 4.21618 0.104693 692 -7.4 -14.0 
11 3 1 4.30691 0.015994 748 -8.0 -12.5 
12 5 0 4.41758 0.000605 748 -7.4 -10.0 
13 0 3 4.80426 0.122768 663 -6.9 -13.1 
14 2 2 4.87994 0.043927 688 -7.5 -12.9 
15 4 1 4.97493 0.003886 755 -7.8 -11.6 
16 6 0 5.09086 0.000094 718 -7.1 -9.1 
17 1 3 5;45966 0.073642 656 -6.9 -13.5 
18 3 2 5.53899 0.011715 690 -7.5 -12.1 
19 5 1 5.63852 0.000612 745 -7.5 -10.6 
20 7 0 5.76014 0.000008 684 -6.8 -8.4 
21 0 4 6.04627 0.079246 628 -6.5 -13.0 
22 2 3 6.10989 0.021888 650 -7.0 -13.2 
23 4 2 6.19307 0.001890. 698 -7.4 -11.0 
24 6 1 6.297 46 0.000051 723 -7.2 -9.8 
25 8 0 6.42527 0.000000 639 -6.6 -7.6 
26 1 4 6.68782 0.030559 620 -6.5 -13.6 
27 3 3 6.75462 0.003776 647 -7.0 -12.1 
28 5 2 6.84187 0.000145 706 -7.3 -10.1 
29 7 1 6.95149 0.000001 696 -6.9 -9.0 
30 9 0 7.08607 0.000000 572 -6.3 -7.0 
31 0 5 7.27305 0.035905 594 -6.2 -14.0 
32 2 4 7.32337 0.005343 613 -6.5 -12.5 
33 4 3 7.39345 0.000266 647 -7.0 -11.0 
34 6 2 7.48501 0.000001 701 -7.2 -9.2 
35 8 1 7.60029 0.000000 665 -6.7 -8.3 
36 10 0 7.74235 0.000000 471 -6.1 -6.4 
37 1 5 7.89955 0.00~922 586 -6.2 -13.3 
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n N:c N' y En FC conv" log(Dl)" log(D2)c 

38 3 4 7.95240 0.000401 608 -6.6 -11.3 
39 5 3 8.02588 0.000000 650 -7.0 -10.1 
40 7 2 8.12203 0.000001 679 -7.0 -8.4 
41 9 1 8.24347 0.000000 624 -6.5 -7.6 
42 11 0 8.39385 0.000000 343 -5.8 -5.8 
43 0 6 8.48348 0.011598 563 -5.9 -13.5 
44 2 5 8.51897 0.000422 578 -6.2 -12.0 
45 4 4 8.57428 0.000000 605 -6.6 -10.1 
46 6 3 8.65129 0.000003 653 -6.9 -9.2 
47 8 2 8.75236 0.000000 632 -6.7 -7.7 
48 10 1 8.88052 0.000000 565 -6.3 -7.0 
49 12 0 9.04027 0.000000 220 -5.4 -5.3 
50 1 6 9.09344 0.000566 554 -5.9 -11.7 
51 3 5 9.13048 0.000000 572 -6.2 -10.7 
52 5 4 9.18822 0.000008 602 -6.6 -9.1 
53 7 3 9.26890 0.000001 644 -6.8 -8.3 
54 9 2 9.37522 0.000000 546 -6.5 -7.0 
55 11 1 9.51075 0.000000 478 -6.0 -6.4 
56 0 7 9.67624 0.002663 534 -5.6 -12.9 
57 13 0 
58 2 6 9.69481 0.000003 546 -5.9 -9.3 
59. 4 5 9.73306 0.000024 567 -6.2 -11.5 
60 6 4 9.79316 0.000001 592 -6.5 -8.1 
61 8 3 9.87761 0.000000 604 -6.6 -7.7 
62 10 2 9.98953 0.000000 404 -6.2 -6.3 
63 12 1 10.1331 0.000000 362 -5.8 -5.9 
64 1 7 10.2676 0.000005 525 -5.7 -10.1 
65 3 6 10.2861 0.000011 538 -5.9 -9.0 
66 14 0 
67 5 5 10~3253 0.000001 530 -6.2 -8.0 
68 7 4 10.3876 0.000000 279 -6.1 -7.3 

72 0 8 10.8478 0.000017 477 -5.6 -6.6 
73 2 7 10.8493 0.000412 511 -5.5 -7.3 
74 4 6 10.8657 0.000026 296 -5.7 -5.9 

"The convergence factor (Eq. 3.30). 
6Estima.te of the relative error due to the noninfinitesimal grid constant (Eq. 3.31). 
cEstima.te of the relative error due to the finite grid size (Eq. 3.32). 
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Figure 2. A contour map of the vibrational wave function (5,4) for the 
Henon-Heiles system. The contour levels are shown for the following values: 
±0.001, ±0.005, ±0.010, ±0.015, ±0.020, and ±0.025. 

and the energy agrees with the Lanczos value to more then 12 significant 
figures. The FC factor calculated from this eigenfunction agrees with the 
one calculated with the RRGM to I0-12 (seven significant figures). 

3. 7 Conclusion 

We have presented a new method to solve a low-dimensional SchrOdinger 
equation. The method is based on a discrete representation of the prob­
lem and so it can handle arbitrary potential energy surfaces without the 
need to evaluate complicated integrals. In this sense it compares favor­
ably to conventional basis expansion methods. Although our method is 
not variational we have shown that numerical convergence can easily be 
obtained. 

The implementation of the method on a computer is simple, it can be 
split in four separate programs: (1) a program to generate the potential 
energy surface and the starting vector, (2) the Lanczos procedure, to gen­
erate the tridiagonal matrices T and T(u) and to find their eigenvalues, (3) 
a. program to analyze the output of (2) and to remove the spurious values, 
to find the converged ones, and to calculate the residues (the FC factors), 
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and (4) a program to find eigenvectors if required. 
The method is extremely efficient for 1D potentials and a micro­

computer will be sufficient to handle most 1D cases. In fact Turbo Pascal 
on an IBM AT was used to develop and test the programs. 2D problems 
can better be handled by a main frame: a double precision Fortran 77 
version of the program on a VAX 8530 took approximately two hours for 
the Henon-Heiles problem calculation D. 

Since the most time consuming part of the program is the sparse matrix 
vector multiplication H.,P, which is very well suited for vectorization, it 
must be possible to tackle fairly complicated 3D problems on a (mini) 
supercomputer. 
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Chapter 4 

CEP A-type size consistency corrections for 
MRSDCI calculations, MRCEPA1 \ 

Abstract 
A new size consistent extension to the multireference CI method 
is described. The method termed multireference Coupled Elec­
tron Pa.ir Approximation (MRCEPA) is akin to a multireference 
CEPA(O) approach, though nonlinear terms do receive separate at­
tention. We show the performance of the approach in some model 
systems as well as in an application to calculation of ground and 
excited 1nr* states of ethylene. 

4.1 Introduction 

The Coupled Electron Pair Approximation (CEPA) method has the ad­
vantage over the SDCI method (CI with all single and double replace­
ments) that it yields size consistent results with only a. slight increase in 
computational effort. Here size consistency means that the energy of two 
subsystems is additive if the subsystems do not interact. It may be success­
fully applied to both closed [1] and open [2] shell systems, provided that 
a. single Configuration State Function (CSF), e.g., the restricted Hartree­
Fock determinant, is dominant in the correlated wave function. However, 
if there are low lying excitations (in case of multi-bond dissociation, open 
shell systems with high symmetry), more than one CSF is needed for a 
proper zeroth order description of the wave function [3, 4]. 

Fairly accurate results may be obtained using the MRSDCI method. 
However, since any restricted CI calculation suffers from size consistency 
defects, an extension of the CEPA method to Multi Configuration (MC) 
reference sets is called for. In the following a method is proposed, which 
includes size consistency corrections in MRSDCI calculations in a. manner 
analogous to the CEPA(O) method, provided that the reference configu­
ration set is complete in the active orbital space. Thus our starting wave 

1P. J. A. Ruttink, J. H. van Lenthe, It· Zwa.ans, and G. C. Groenenboom, J. Chern. 
Phys. (1991), accepted for publication. 
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function is a second order CI function and the resulting function will ac~ 
cordingly be called the second order CEP A function. 

In practice, our method amounts to shifting the diagonal H~matrix 
elements of the single and double excitations, as in the CI~type implemen~ 
tation of the CEPA method [5]. However, our method differs from the 
straightforward generalization of the CEPA(O) method to MC reference 
sets, which should be identical to the linearized version of the MC ref~ 
erence Coupled Cluster development [6~12]. Since the nonlinear terms in 
our modified MRSDCI equations are potentially important, they should 
receive proper attention when formulating size consistency corrections for 
wave functions based on a MC reference configuration set. 

The results obtained by this method will be compared to results of the 
Averaged Coupled Pair Functional (ACPF) theory, as introduced recently 
by Gdanitz and Ahlrichs [13] and which may also be considered as a gener~ 
alisation of the CEPA (or CPF) philosophy to MC reference configuration 
sets. 

In Section 4.2 the method used for modifying the MRSDCI equations 
will be discussed. Applications to some model systems, including compar~ 
ison with full CI ·and MRACPF (13] results, are reported in Section 4.3 
and the method is applied to' the calculation of ground and excited states 
of ethylene in Section 4.4. Finally conclusions are drawn in Section 4.5. 

4.2 Theory 

In this section the size consistency corrections for 2nd order wave functions 
will be discussed in terms of the spin orbital formalism. Our reasoning is 
analogous to the derivation of the CPA equations by Hurley [14]. 

4.2.1 Wave functions 

The 2nd order wave function to be used is designated by 

llllc>= EcRIR> + Ec;jA;> (4.1) 
R i 

where the reference configuration set { IR >} is assumed to be complete 
within some (small) orbital subset (the active spin orbitals) and the set 
{lA;>} contains all single and double excitations with respect to any IR>. 

The size consistency corrections to be applied to the CI secular equa­
tions for this function will be calculated in the form of diagonal H~matrix 
element shifts. These shifts are calculated by assuming that the 2nd order 
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CEPA function may be approximated by the correspo:O:ding MC reference 
Coupled Cluster function [6-8] with internal contraction [15]: 

(4.2) 

where the reference function IO > is given by: 

(4.3) 

with the same coefficients en as in Eq. ( 4.1 ). The operator T generates 
all single and double excitations with respect to any IR >, 

T = L t I'P T I'P + L t pv,p<r T pv-+p<r (4.4) 
I'P #'llfXT 

where T is an excitation operator, t is the corresponding connected duster 
amplitude, p. and v are inactive or active spin orbital indices, and p and 
0' are active or external spin orbital indices. According to Eq. (4.3), the 
reference function 10 > is normalized. The excitation operators are defined 
such that they yield normalised excited functions TIO>, i.e., we assume 

(4.5) 

We do not need the explicit form ofT, as given by Eq. (4.4). Instead, 
we define excitation classes as follows: The excitation class (k, l) contains 
all excitations with k holes in the inactive orbitals and l particles in the J 

external orbitals. Since the number of electrons in the active orbitals is 
not fixed, k and l may differ from each other. Equation (4.4) is thus 
equivalent to 

T = L T( k, l) ; 0. $ k, l $ 2, except k = I = 0 ( 4.6) 
lei 

We also use the corresponding projection operators P(k, l) and the pro­
jection operators P0 , PrH and Pb defined by: 

Po = P(O,O) 

Pa = LP(k,l); 0$ k,l $2, except k = l = 0 (4.7) 
kl 

pb = L P(k, l); k > 2 or l > 2 
kl 

Thus Po projects to the reference configuration space, Pa projects to the 
interacting space of the reference configurations spanned by the set { IAi >} 
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and Pb projects to the space spanned by all higher excitations. In practice 
Pb may be considered to project to the interacting space of the set {lA; > }. 

In the following we assume that the 2nd order CEP A function may be 
written as 

(4.8) 

This function will be used for calculating the sire consistency corrections 
to be applied to the 2nd order SDCI function in order to obtain the 2nd 
order CEP A function. 

4.2.2 The diagonal H-matrix element shift 

The Coupled Cluster function is assumed to satisfy the following equations 

<OI(H- E)eTIO> = 0 

< Olrt(H- E)eTIO > = 0; for each r 

(4.9) 

(4.10) 

Since the higher excitations in Wee (viz that part of Wee which is given 
by PbWee) do not interact with any reference configuration IR>, Eq. (4.9) 
is identical to the first secular equation for the corresponding CI problem: 

E =<OIHIO> + <OIHTIO>= Eo+ Ecorr (4.11) 

Using Eqs. (4.2), (4.7) and (4.8), Eq. (4.10) maybe rewritten as 

<Oirt(H- E)IWe> + <OirtHHeTIO>= 0 (4.12) 

The second term in Eq. (4.12), which is missing in the secular equations for 
the SDCI function, will be used to obtain the size consistency corrections 
wanted. To this end we note that Eq. (4.12) may be rewritten as: 

<Oirt(H + tl.HT- E)IWe>= 0 (4.13) 

provided that the diagonal shift tl.HT is given by 

tl.HT = <OirtHPbeTIO> 
< Olrtlwe > 

(4.14) 

In the following, Eqs. (4.13) and (4.14) will be taken as the set of equations 
to be satisfied by the 2nd order CEPA function We. These equations 
lead to a pseudo eigenvalue problem, since the shifts tl.HT depend on the 
connected cluster amplitudes in T, or, equivalently, on the configuration 
coefficients Ci in We. 

Note that the coefficients Ci in Eq. ( 4.1) are not identical to the con­
nected cluster amplitudes t in Eq. ( 4.4) since the c; will contain contribu­
tions from disconnected clusters [16, 17]. 

In the following, Eq. (4.14) is simplified using two approximations 
which are analogous to the approximations used in the CEPA(O) method. 
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4.2.3 The direct term approximation 

This approximation was introduced by Kelly and Sessler [18, 19]. In our 
formalism it takes the following form. In the expansion of exp(T)IO > in 
Eq. (4.14) only those terms are retained which contain r. The selection 
of terms thus depends on the excitation r for which the shift is being 
calculated. In order to determine which terms in exp(T) IO > contain the 
excitation riO> and also which terms belong to the interacting space of 
riO>, we divide the excitation operators in T in two groups. The first 
group, TT', contains r and all excitation operators r1 which only contain 
spin orbital indices which are also present in r. The complement of TT' is 
denoted by T;. It contains a.ll other excitation operators. Assuming that 
all excitation operators mutua.lly commute, we then have: 

(4.15) 

The direct term approximation is obtained by projecting the second factor 
in Eq. (4.15) to riO>, after projection by Pb [cf. Eq. (4.14)]. This yields 

(4.16) 

Because of the Pauli exclusion principle we have r'riO >= 0. Therefore, 
T; in Eq. (4.15) may be replaced by T. Moreover, since all excitation 
operators in T; generate excitations which are orthogonal to riO>, TT in 
Eq. (4.16) may also be replaced by T. Therefore we have 

PbeTIO>~ PbeTriO><OirteTIO> 

Further we have from Eqs. (4.2), (4.4), and (4.8): 

<OirteTIO >=< Olrtlwc > 

By substituting Eqs. (4.17) and (4.18) into Eq. (4.14) we then find: 

(4.17) 

(4.18) 

(4.19) 

for the diagonal H~matrix element shift. This is equivalent to taking only 
the first term in Eq. (47) in the evaluation of Eq. (49) of reference [4]. 

4.2.4 H-matrix element equivalence 

In the spin orbital formalism the matrix element between a. double and 
a quadruple excitation is either zero or it is equal to the matrix element 
between the reference determinant and (another) double excitation [16, 
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17]. If the quadruple excitation IQ > is doubly excited with respect to the 
double excitation ID>= riO>, we have 

IQ>= r'ID>= r'riO> (4.20) 

and in this case the interaction H-matrix elements are related by: 

<DIHIQ>=<OirtHr'riO>=<OIHr'IO>=<OIHID'> (4.21) 

where we have assumed that r and r' do not have orbital indices in com­
mon. In the CEPA method this relation is used in order to avoid the 
explicit calculation of matrix elements involving quadruple excitations. In 
the CEPA (0) variant we use the approximation [9, 10] 

<DIHTID>=<OirtHTriO>:::=:<OIHTIO>; for any r ( 4.22) 

In the case of a single determinant reference function, the configurations in 
Pb exp(T)r IO > interacting with rIO> consist of the quadruple excitations 
TriO>. Therefore we have 

( 4.23) 

For the diagonal shift we thus have for the single reference CEPA(O) vari­
ant: 

t:.HT =< OIHTIO > (4.24) 

For a MC reference set we now consider the analogous relation for the 
reference configurations IR> and IS>: 

(4.25) 

Using Eq. (4.25) directly leads again to Eq. (4.24) for the diagonal shift, 
i.e., we then use Eq. (4.24) with Eq. (4.3). This would be the linearised 
version of the multireference Coupled Cluster method in its simplest form. 

Eq. ( 4.25) only holds for those terms r' in T which satisfy the following 
three conditions: 

(i) The corresponding H-matrix element contains only two-electron 
contributions since in this case the matrix element only depends on the 
orbital replacements relating the two configurations. 

(ii) T and r have no orbital indices in common. 
(iii) r'riO> belongs to excitation class (k,l) with k > 2 or 1 > 2. 
The first two conditions also apply in the case of a single determinant 

reference function; the third condition is then automatically satisfied. Ac­
cording to (i), Eq. ( 4.25) may not be used for the single excitation terms in 
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T. Because of the Generalized Brillouin theorem [20] the shift contribution 
< O!Hr~'PIO > vanishes if the MCSCF values for the reference coefficients 
CR are used. These shift contributions may thus be expected to be small. 
Moreover, the invariance with respect to transformations among the ac­
tiveorbitals can only be preserved by not distinguishing between the single 
and double excitations. Therefore, no attempts will be made to include 
corrections to Eq. (4.25) for the single excitation terms. In analogy to the 
CEPA(O) method the second condition will also be ignored in the present 
formalism. 

Because of these approximations the shifts will only depend on the 
excitation class ofT. Using condition (iii) and Eqs. (4.7) and (4.25) we 
then have for any excitation operator r(k, I) belonging to the excitation 
class (k, 1) the following shift: 

LiH(k,l) = <Oirt(k, l)H PbeT r(k, l)IO> 

= <Oirt(k, l)HL [eT) ,, r(k, l)IO> 
k'l' k l 

= <OIH'E [eT] 
11 

IO> ( 4.26) 
k1l1 It: l 

= <OIH'E P(k', l')IWc > 
k1l1 

where k' > 2 - k or I' > 2 - I. 
The restrictions on k and I follow from the second line of Eq. ( 4.26) 

[k + k' > 2 or I+ 1' > 2, because of the projection with Pb, cf. Eq. (4.7)]. 
The result is, that only those excitation classes ( k', 1') ·contribute to the 
shift, that are complementary to ( k, 1) in the sense that the excitations 
r(k + k', l + 1') do not belong to the interacting space of the reference set. 
This is the essential difference with the single reference determina:nt result 
of Eq~ (4.24). The reason for excluding the excitations with k + k':::;; 2 or 
I + 1' $; 2 is that they are already included in the MRSDCI configuration 
set, so their interaction matrix element already appears in the CI matrix. 
This argument only holds exactly if the reference set is complete with 
respect to the active orbital occupations. 

Ignoring condition (ii) implies the introduction of the so-called EPV 
terms [14]. Further refinements are possible if the EPV terms are con­
sidered in more detail. This, however, spoils for example the invariance 
under transformations within the various orbital subsets. Note that the 
unsatisfactory behaviour of the CEPA(O) method in cases of near degener­
acy will not carry over to the multiconfiguration reference case, provided 
all configurations which are domi~ant in the wave function are included 
in the reference set. 
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4.2.5 The relation between tJ.H(k, I) and the correlation energy 

Equation (4.9) may be used to calculate the energy of '\lie. The reference 
energy is given by 

Eo =<OIHIO> 

Using the projection o~>,erators of Eq. (4.7), we have 

where 

E =<OIHI'\lie>= Eo+ <OIHPal'\lie>= 'EE(k,l) 
kl 

E(k,l) =<OIHP(k,l)l'\lie> 

(4.27) 

(4.28) 

(4.29) 

The shift tJ.H(k, l) may thus be expressed in terms of the correlation 
energy contributions per excitation class 

tJ.H(k, I)= 'EE(k', 1'); k' > 2- k or I'> 2 -I (4.30) 
k'l' 

·Using Eq. (4.30) in Eq. (4.12) we see that the only difference with the 
CEPA(O) method is that the shifts depend on the excitation class of the 
configuration at hand. If our method is applied in the case of a single 
determinant closed shell reference function with· only the double excita­
tions, it is identical to the CEPA(O) method, since then we have only one 
excitation class, i.e., k = I = 2 and thus 

tJ.H(2, 2) = E(2, 2) = E - Eo (4.31) 

Equation (4.11) then reduces to 

<Oirt(2,2)(H- Eo)l'\lie>= 0 (4.32) 

and this equation is linear in the coefficients of the double excitations in 
'\lie, as in the CEPA(O) method [11, 12]. However, if we use Eq. (4.26), we 
have to deal with a nonlinear problem, resulting in a pseudo-eigenvalue 
problem which has to be solved iteratively. This may he done efficiently 
by using the Davidson diagonalization method ( cf. [21 ]). The diagonal el­
ement shifts then only have the effect of slightly slowing down convergence 
compared to a normal MRSDCI calculation. 

4.2.6 The spin-adapted formalism 

The approximations made in the previous section for a wave function based 
on spin orbitals may equally well be used in a spin adapted formalism, 
although it is not quite clear whether they will have the same effect. This 



4.3. TEST CALCULATIONS 67 

is particularly true for the shift contributions of the single excitations if 
the reference set contains open shell configurations. 

The H-matrix element equivalence relation Eq. {4.25) is based on the 
assumption that the matrix elements do not contain contributions from 
the one-electron part of H. However, if IS> is singly excited with respect 
to IR>, the Coulomb integral contributions (pvj pp) to the left hand side 
of Eq. (4.25) depend on the orbital indices in T and therefore Eq. (4.25) 
does not hold for these terms. 

In the spin orbital formalism these terms may be avoided by discard­
ing all single excitation contributions to E(k, l) in Eq. (4.24). For a single 
configuration reference function this problem is also avoided if SCF or­
bitals are used, because these orbitals satisfy the Brillouin theorem. In 
the MC reference case, however, the single excitation contributions may 
be numerically important because of the relaxation of the reference config­
uration coefficients in the 2nd order CEPA function with respect to their 
CASSCF coefficients. 

Therefore, treating the single excitations [(k, 1) with k = 1 or 1 = 1] in 
the same way as the other classes introduces an error in the shift, which 
may be expected to increase with the relaxation of the reference configu­
rations in the MRCEPA calculation. The advantage of this procedure is 
that the CEPA shifts are easily implemented in a direct MRSDCI program 
[22], using the spin-adapted formalism. Also the invariance to transfor­
mations within the inactive, active, and external orbital sets, respectively, 
is retained [23]. 

4.3 Test calculations 

MRCEPA is tested for three different test cases. The results are compared 
with SCF, CASSCF, MRSDCI, Davidson corrected MRSDCI, MRACPF 
[13] and full CI [24, 25]. 

The Davidson correction to the MRSDCI [26] uses the following mul­
tireference version of this formula [27, 28]: 

!::t.E = (EMRSDCI- EMcscF)(1 ~); ~ =<WMasociiWMcscF> (4.33) 

All calculations are done with the GAMESS [29-31] and ATMOL [32, 
33] program packages. The Werner and Knowles second order MCSCF 
program [34] as included in the ATMOL package is used for the CASSCF 
calculations. 

The MRCEPA as derived above assumes that a Complete Active Space, 
even without space or spin symm~try restrictions, is used as reference con­
figuration set. This requirement does not have to be strictly met. The 
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Table I. Size consistency tests [energies in hartree, size consistency error ( .6. = 
Edimer - 2Emonomer) in phartree]. 

monomer dimer a 
He2 SCF -2.8616791 -5.7233582 0.0 

MRS DCI -2.8997195 -5.7988929 546.1 
MRSDCI Dav. -2.9000040 -5.7999940 14.0 
MRCEPA -2.9000018 -5.8000035 0.1 

02 (MC)SCF -74.8021002 -149.6042003 ,0.0 
MRSDCI -74.857013 7 -149.7119019 2125.5 
MRSDCI Dav. -74.8581349 -149.7160232 246.5 
MRCEPA -74.8581756 -149.7163543 3.1 

absence of symmetry restrictions, though, is imperative to obtain size 
consistency for all possible spin-couplings in, e.g., 0 2 • In the test cal­
culations on He2, 0 2 , H20, and BeH2 consequently no such restrictions 
were employed. For the H20 calculations, also results for a C2v restricted 
CAS reference set are shown to illustrate the rather insensitiveness of MR­
CEPA to the actual reference configuration set used. In the calculations 
on ethylene the reference configurations were all screened on symmetry. 

4.3.1 Size consistency of He2 and 0 2 

The size consistency of the MRCEPA results is illustrated by calculations 
on the He dimer using a < 14s, 2p/6s, 2p > basis [35] and on two oxygen 
atoms using a< 9s, 5pf4s, 2p> double zeta basis [36]. For He the reference 
wave function was CAS in the Hartree-Fock ls and 2s orbitals of each 
atom. The oxygen atoms were described by single-configuration Hartree­
Fock wave functions and the dimers employ the corresponding proper 
dissociation function. Table I shows the energies of the monomers and 
of the dimers at large distance and the size consistency errors calculated 
from these numbers. The singlet and quintet couplings for the oxygen 
atoms yield identical results. 

The results in Table I nicely illustrate that the MRCEPA method 
yields size consistent results to within the convergence criterion (3 x 10-5 ) 

used. Note that, unlike in CI, the accuracy of the MRCEPA energy is 
only linear in the accuracy of the CI coefficients. 
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The test calculations involve the cleavage of both OH bonds at a constant 
angle in the water molecule. Geometry and basis set were chosen accord­
ing to Gdanitz and Ahlrichs [13]. The ls orbital was frozen on the SCF 
level, so the MRCEPA results can be compared with full CI results from 
Bauschlicher and Taylor [25] and MRACPF. Two sets of calculations are 
reported, featuring different sizes for the active space, that defines the CAS 
reference space for the MRCEPA and MRACPF calculations. In Table II 
the CAS space consists of the 3at,4a1,1bt, and 2bt orbitals. This active 
space, which is the minimal space required for proper dissociation, yields 
12 symmetry allowed CSF's. For the calculations reported in Table III, 
the active space is extended to the 3at, 4a~, lbt, 1~, 2bt and 2~ orbitals, 
yielding a total of 55 symmetry allowed CSF's in the reference space. 
The equilibrium OH bond ·length /leq is 1.889 726 bohr, the HOH angle 
is fixed at 104.5°. The calculations are performed for the three internu­
clear distances used previously [25]. The calculations employing only the 
symmetry allowed reference configurations are denoted by a suffix "sym". 

The energy difference with full CI is small for all calculations beyond 
the MCSCF level, though both MRCEPA and MRACPF are an order of 
magnitude better than straight MRSDCI. The quality of the MRCEPA 
method seems to follow the quality of the reference wave function, get­
ting better for larger distances and larger reference wave functions. The 
MRACPF method does not show such regular behaviour. 

The symmetry-restricted and complete reference functions yield quite 
comparable results. 

4.3.3 BeH2 

The last comparison with full CI and MRACPF concerns the C2v insertion 
reaction of H2 with Be. Geometry and basis set are taken from Bartlett 
and Laidig [37]. The CAS space in the first set of calculations consists of 
the lb2 and the 3a1 orbitals ( cf. [13]) which provides proper dissociation 
to Be and H2• Since no allowance is made for the near degeneracy in 
Be itself, the MRCEPA wave function may be expected to be of rather 
meagre quality. Therefore, we also performed~ calculation correlating the 
Be-atom better by extending the active space to {2at, 3a1 , 1~, 2b2}. This 
yields a CAS space of 12 symmetry adapted CSF's. The results for this 
CAS space are labeled large. The results are given in Table IV. 

The comparison shows that in this case the MRCEPA and the normal 
and the corrected MRSDCI values are less good than the ones of MRACPF 
[13). For the large CAS space the MRCEPA is better, but the MRSDCI 



MRCEPA 

Table II. Calculation of H20 with a 12 CSF reference (see text), expressed as 
the energy differences with full CI (in mhartree) 

geometry 1.0 Req 1.5 Req 2.0 Req 

full CI energy (hartree) -76.25662 -76.07141 -75.95227 

MCSCF 161.90 146.62 128.59 
MRSDCI 4.81 4.29 3.62 
MRSDCI Dav. -1.61 -1.87 -1.15 
MRCEPA -1.15 -1.10 -0.74 
MRACPF -0.12 -0.22 0.18 

MRSDCI.yni 4.96 4.51 3.75 
MRSDCI Dav.sym -1.43 -1.60 -1.00 
MRCEPAsym -0.97 -0.84 -0.59 

Table III. Calculation of H20 with a 55 CSF reference (see text), expressed 
as the energy differences with full CI (in mhartree) 

geometry l.OReq 1.5Req 2.0 Req 

full CI energy (hartree) -76.25662 -76.07141 -75.95227 

MCSCF 126.74 118.26 112.39 
MRSDCI 2.30 1.72 1.54 
MRSDCI Dav. -1.45 -1.93 -1.75 
MRCEPA -0.85 -0.73 -0.61 
MRACPF -0.40 -0.79 -0.78 

MRSDCisym 2.50 2.04 1.79 
MRSDCI Dav.sym -1.21 -1.57 -1.48 
MRCEPAsym -0.62 -0.39 -0.34 
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Table IV. Energy differences with the full CI energy for Be/H2 (in mhartree). 
The geometries Gl, G2, and G3 are taken from reference [37]. 

geometry Gl G2 G3 

full CI energy (hartree) -15.62288 -15.60292 -15.62496 

MCSCF 53.31 64.35 66.68 
MRSDCI 0.78 1.91 3.05 
MRSDCI Dav. -2.57 -5.02 -4.02 
MRCEPA -1.65 -2.55 -5.88 
MRACPF -0.90 -0.90 -0.53 
MRLCCM -2.62 -2.40 -5.50 

MCSCF-large 9.06 15.97 23.66 
MRSDCI-large 0.04 0.08 0.18 
MRSDCI Dav.-large -0.11 -0.66 -1.07 
MRCEPA-large -0.06 -0.41 -1.16 

itself is even closer to the full CI. This suggests an overcorrection of the 
unlinked cluster contributions in this case. 

4.4 Application to ethylene 

4.4.1 Introduction 

To investigate the behaviour of the MRCEP A in a practical application, 
we applied the method to the ground state (N) and the V1 (1r,1r*) state 
of ethylene in its planar and perpendicular twisted conformation. The 
resulting potential energy surfaces will be used in a calculation of the 
UV-absorption spectrum of the system [38]. We performed calculations 
with different numbers of reference configurations and compared the result 
with those of the MCSCF and MRSDCI approaches. Ethylene provides 
an interesting test problem because. obtaining a proper description of its 
V - N transition has been a major challenge for many years of theoretical 
studies. 

The first problem encountered is the calculation of the vertical transi­
tion energy. Diffuse functions must be included in the basis set to account 
for the diffuse character of the V state, but at the SCF level this results in 
a vertical transition energy which is too low, while the state becomes very 
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diffuse and so the oscillator strength becomes too small (3g, 40]. These 
results can be improved by a SDCI calculation, but several studies have 
shown that for a good description of the V state a MRSDCI calculation 
is needed [41-43] . Furthermore, the inclusion of higher-order excitations, 
e.g. by using the Davidson size consistency correction, does have a signif­
icant effect on the calculated vertical transition energy. Recently it was 
shown by Cave [44] that size inconsistency of CI calculations can also have 
a significant effect on the calculated molecular properties of the V state 
of ethylene. 

The most important geometry change in ethylene upon excitation to 
the V state is the relaxation to a goo twisted conformation, so we included 
this geometry in our test calculations. ' 

4.4.2 Method 

For the calculations on the planar conformation (symmetry D2h) we used 
the experimental ground state geometry reported by Kuchitsu [45]: Rcc= 
1.330 A, RcH=1.076 A, accH = 121.7°. This geometry is also used in 
other theoretical studies, but it is slightly different from the "standard" 
geometry of Herzberg (46]: Rcc=l.33g A, RcH=1.086 A and accH = 
121.2°. These differences are not relevant in this study, since we will 
not compare with experimental data. For the twisted conformation these 
parameters are left unchanged, except for the C-C torsional angle which 
is put to gg,go, forcing the symmetry point group to D2 (a torsional angle 
of goo would give a D2d symmetry which is reduced to C2v by our CI 
program, causing the V state to be of A1 symmetry). 

To define the symmetry labels for the planar conformation we use 
the following axis assignments: The z axis is taken to be along the C-C 
bond and the x axis is perpendicular to the plane of the molecule. For 
the twisted conformation we use the same choice for the z axis. This 
causes the B2 and B3 representation in D2 to correlate with the twofold 
degenerate E representation in D2d. 

The AO basis set employed is the triple-zeta basis set due to Dunning 
[47] with a< 5s/3s > contraction for hydrogen and a < 10s6pf5s3p > con­
traction for carbon, augmented with polarization functions on the carbon 
and the hydrogen [48] and a set of diffuse s and p functions (exponent 
0.02 bohr-2 ) on each carbon atom, giving a total number of 72 functions. 

For both geometries and both states a series of calculations with dif­
ferent sets of configurations is done. First, we do a CASSCF calculation 
for four different sets of active orbitals. Those CAS functions constitute 
the reference space for the subsequent MRSDCI and MRCEPA calcula-
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Table V. Summary of the active orbital spaces (CAS), the number of reference 
configurations (Nrer) and the total number of configurations (Nconr) for the 
calculations on the V 1 ('I!", 1r*) state and the ground state ( N) of ethylene. 

Nconf 
state method CAS Nrer planar twisted 

v A' 1r,1r* 1 22121 38739 
B' 1r' 'I!"*' 21f'' 21f'* 4 78950 129976 
C' 1r, 1r*, u, u* 4 83298 146800 
D' 1r' '1!"*, 21f'' 2'11"*' u, q* 13 294950 507702 

N A 1r,1r* 2 19525 34465 
B 1r' '1!"*, 21f'' 21f'* 6 74142 123468 
c 1r' 7r*, u, u* 7 105674 184612 
D 7r 1 7r*1 27r,27r*,u,u* 19 310236 533280 

tions. So the orbitals entering the MRSDCI and MRCEP A calculations 
are optimized for each state separately in a CASSCF calculation for the 
reference configurations. The SCF ground state configuration is, for the 
planar geometry (D2h), 

(4.34) 

and for the twisted geometry (D2 ) 

The active orbital spaces are summarized in Table V. The smallest set 
(A) consists of just the 7r(1b:Ju/2ba) and 7r*(1~9l2~) orbitals. Set (B) has 
an additional pair of orbitals of 1r and 1r* symmetry, while (C) has an 
additional u(3a9 l3at) I u*(3btul3bt) pair. The largest set (D) has both 
the additional 1r I 1r* and u I u* orbitals. The number of electrons in the 
active space is two for (A) and (B) and four for (C) and (D). 

In the MRSDCI and MRCEPA calculations all single and double ex­
citations relative to the reference configurations are included, but the two 
lowest u orbitals and their complements are kept doubly occupied and un­
occupied, respectively. The resulting numbers of configurations are given 
in Table V. 
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4.4.3 Results and discussion 

The tesults of all the calculations for the planar and the twisted geome­
tries on the N and the V states with the four different sets of reference 
configurations are given in Table VI. 

First, we will show how the results depend on the choice of the reference 
set. For this pmpose we plot in Figure 1 the energy of the CASSCF, 
MRSDC,I and MRCEPA calculations for method (A), (B), and (C) (see 
Table V) relative to the energy of the corresponding calculation with the 
largest number of configurations (D). This is done for both states and 
both geometries. 

The CASSCF and the MRSDCI energies are decreasing as a fum.:tion 
of the number of configurations, which is to be expected because of the 
variational character of these methods. Strictly speaking this argument 
is not valid for comparing (B) and (C), because (C) does not include all 
configurations of (B), but it is correct for the series A-B-D and A-C-D. 
· In contrast, the MRCEPA results are almost independent of the num­
ber of configurations, except for the V state of the planar geometry. In this 
case the MRCEP A calculations based on a reference space which contains 
only one configuration of the 1r1r* type (A' and C') gives energies which 
are far lower than any reasonable full CI estimate. These results suggest 
that increasing the reference space hardly affects the MRCEP A result, as 
soon as the most important configurations are included in the reference 
space. So for the description of the V state at the planar geometry, it is 
essential to include at least two orbitals of 1r* symmetry in the reference 
space. This observation is consistent with the conclusions of several other 
CI studies [41-43). The omission of an important reference configuration 
in a MRCEPA calculation can be identified a posteriori by the inspection 
of the MRCEPA vector: One or more configurations not included in the 
reference space gain a large coefficient, while the sum of the squares of the 
coefficients of the reference configurations 

( 4.36) 

is much smaller than unity. This was also observed by Bauschlicher et al. 
[49] in MRACPF calculations. It is of course not possible to give rock­
solid criteria, but for the aforementioned calculations (A') and (C') we find 
~ =0.38 and 0.50, respectively, while in all other MRCEPA calculations 
~ varies between 0.83 and 0.90. 

The Davidson corrected values are less dependent on the reference set 
than the MRSDCI results, if the calculations (A') and (C') for the V state 
at the planar geometry are discarded, but the results are not as constant 
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Table VI. (a) The energies for the V 1(1r,1r*) and the ground state (N) of 
ethylene at the planar geometry (in hartree ). 

state method4 CASSCF MRCI MRCI+Qb MRCEPA 

v A' -77.788956 -78.048851 -78.072631 -78.105601 
B' -77.789848 -78.052931 -78.083973 -78.088006 
C' -77.803410 -78.057360 -78.080918 -78.103483 
D' -77.819459 -78.061782 -78.089629 -78.090364 

N A -78.088898 -78.360411 -78.383378 -78.387806 
B -78.091346 -78.362727 -78.385928 -78.389365 
c -78.114552 -78.365828 -78.385731 -78.389008 
D -78.120212 -78.368371 -78.388118 -78.390216 

Table VI. (b) idem for the twisted geometry. 

state method4 CASSCF MRCI MRCI+Qb MRCEPA 

v A' -77.840353 -78.137756 -78.167029 -78.175100 
B' -77.847814 -78.141044 -78.169999 -78.175682 
C' -77.861986 -78.144131 -78.171392 -78.175839 
D' -77.875360 -78.148174 -78.174576 -78.176394 

N A -77.968 708 -78.241862 -78.265962 -78.271938 
B -77.969383 -78.243034 -78.267 464 -78.272423 
c -77.983954 -78.245970 -78.268852 -78.272646 
D -77.993097 -78.248223 -78.270489 -78.272600 

4 see Table V 
6the Davidson corrected MRCI 
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Figure 1. Relative energies calculated for the reference sets of Table V. 
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as for the MRCEPA. Furthermore, it would have been difficult to discard 
the results (A') and (C') by inspection of the MRSDCI vector. 

Generally one is interested in relative energies, rather than in absolute 
values, so we extracted from Table VI the vertical transition energies at 
both geometries (Table VII) and the difference between the energies of the 
twisted and the planar geometry, i.e., the torsional barriers in both states 
(Table VIII). 

Although we lack full CI data to compare with, we can draw some 
interesting conclusions from Tables VII and VIII. Considering the verti­
cal transition energy of the planar geometry,· we first note that we .should 
discard the MRCEPA results of methods (A') and (C') because of rea­
sons mentioned above. The remaining MRCEPA values (8.20 and 8.16 
eV) are respectively 0.23 and 0.18 eV lower than the corresponding MR­
SDCI values. Comparable size consistency effects on the vertical transi­
tion energy of ethylene have been found before. For example, Cave [44] 
reports the values 8.35 and 8.17 eV for, respectively, a two-reference CI 
and a quasidegenerate variational perturbation theory (QDVPT) [50, 51] 
calculation (they use the same geometry but a different basis set). The 
Davidson corrected results show the same trend but have a larger spread. 

For the vertical transition energy at the twisted geometry the favorable 
behavior of the MRCEPA is evident; it gives almost constant values. For 
the larger reference spaces the MRSDCI and particularly the Davidson 
corrected values tend to the same results. 

From Table VIII it is clear that the size consistency effects for the 
torsional barriers are rather small: Both the MRCEP A and the Davidson 
correction give a lowering of 0-2 kcalfmol, except again for the calculations 
(A') and (C') for the V state. 

4.5 Conclusion 

We have given the theory for a multireference CEPA approach. It shows 
in test calculations to compare well with full CI. The resulting potential 
curves are seen to converge to the full CI result as the reference configu­
ration set is increased. 

We have demonstrated by a series of calculations on the ground and the 
V 1( 1i, 1i*) state for the planar and the twisted conformation of ethylene 
that the MRCEP A energy depends on the set of reference configurations in 
a very favorable way: If the most important configurations are contained 
in the CAS-space which constitutes the reference space, a result is obtained 
which hardly changes upon incre~ing the reference set. The omission of 
an important reference configuration can easily be identified by inspection 
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Table VII. The vertical excitation energies (in eV). 

geometry method CASSCF MRCI MRCI+Q MRCEPA 

pla.na.r A 8.16 8.48 8.46 7.68 
B 8.20 8.43 8.22 8.20 
c 8.47 8.39 8.29 7.77 
D 8.18 8.34 8.12 8.16 

twisted A 3.49 2.83 2.69 2.63 
B 3.31 2.78 2.65 2.63 
c 3.32 2.77 2.65 2.63 
D 3.20 2.72 2.61 2.62 

Table VIII. The torsio~al barriers (in kcalfmol). 

state method CASSCF MRCI MRCI+Q MRCEPA 

v A' ·32.3 ·55.8 ·59.2 ·43.6 
B' ·36.4 ·55.3 ·54.0 ·55.0 
C' ·36.8 ·54.4 ·56.8 -45.4 
D' -35.1 -54.2 -53.3 -54.0 

N A 75.4 74.4 73.7 72.7 
B 76.5 75.1 74.3 73.4 
c 82.0 75.2 73.3 73.0 
D 79.8 75.4 73.8 73.8 
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of the CEPA vector: The contributions of the reference configurations to 
the CEPA vector (C5} are then far from unity. 

The calculation of the torsional barriers and the vertical transition 
energies in ethylene suggest that the MRCEP A is a promising tool for the 
calculation of both ground and excited state potential energy surfaces. 
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Chapter 5 

Three-dimensional. quantum calculations 
on the ground and excited state vibrations 
of ethylene 

Abstract 
Three-dimensional potential energy surfaces of the ground ( N), 
V 1( 1r, 1r*), and Ry 1( 1r, 3p11) states of ethylene have been calculated 
at the MRCEPA level. The modes included are the torsion, the CC 
stretch, and the symmetric scissors. Full vibrational calculations 
have been performed using the Lanczos/grid method. The avoided 
crossing between the V and the R state has been dealt with in 
a diabatic model. The ground state results agree within 3% up 
to the highest vibrational level known experimentally. The origin 
and the maximum of the V - N band are calculated at 5.68 and 
7.82 eV, respectively, approximately 0.2 eV above the- somewhat 
ambiguous - experimental values. This work considerably dimin­
ishes the existing gap of approximately 0.5 eV between theory [C. 
Petrongolo, R. J. Buenker, and S.D. Peyerimhoff, J. Chern. Phys. 
76, 3655 {1982)] and experiment. 

5.1 Introduction 

The vacuum ultraviolet absorption spectrum of ethylene was measured 
by Stark and Lipp as early as 1913 [1]. Mulliken [2] was the first to 
attribute the strong and very broad band with a maximum at 7.66 eV 
to the V 1('n·, 1r*) - N transition. Its vibrational structure consists of 
a long, somewhat irregular progression of diffuse bands that can not be 
rotationally resolved [3]. Although the progression was first thought to 
originate from a large increase of the CC length [3), it is now generally 
assigned to torsion [4]. 

The main subject of a series of experimental studies has been the 
location of the band origin [4-7). Although the results are far from un­
ambiguous, the isotopic studies suggest a value of approximately 5.4-5.6 
eV, a few tenth of an eV below the lowest observed band at 6.0 eV. Of 
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the numerous ab initiofCI studies on ethylene surprisingly few have fo­
cussed on the location of the band origin. This is the more surprising 
since in the most extensive ab initio/CI study, of Petrongolo, Buenker, 
and Peyerimhoff [8] (PBP), it is claimed that the band origin is 6.0 eV, 
approximately 0.5 eV above what was expected on the basis of the exper­
imental studies. Although part of this difference can be accounted for by 
the constraints imp~ed on the geometric parameters in the PBP study, 
we challenge the accuracy of the calculations that is apparently supposed. 

ln 1 this study we will employ the recently introduced multireference' 
Coupled Electron Pair Approximation (MRCEPA, see Chapter 4) instead 
of the "full CI estimate" used by PBP. Three electronic states are involved 
in the calculations: the ground state (N), the V 1(11",11"*) state, and the 
.Ry 1 (11",3p11 ) Rydberg state. For each state a three-dimensional potential 
energy surface (3D PES) is constructed, based on a series of single point 
MRCEPA calculations. The three vibrational modes are the torsion (v4), 

the C=C stretch (v2) and the symmetric scissors (v3). The 3D PES's 
are constructed in the following way: First, a torsional potential curve 
is calculated with all other coordinates being fixed. Subsequently 2D 
PES's involving the stretching and the scissors mode are calculated for the 
planar and the perpendicular conformation. Finally the 3D PES is formed 
by interpolation. For these three states and three modes we perform fully 
quantum mechanical vibrational calculations with our recently introduced 
La.nczos/grid method f9]. 

The choice of the coordinates is based on data from the resonance 
Raman spectrum of ethylene [10]. A resonance Raman spectrum shows 
ground state vibrational frequencies, just like an off-resonance Raman 
spectrum, but if the exciting radiation is in resonance with an allowed 
electronic transition the intensities of those modes are enhanced whose ex­
cited state potential curves are significantly different from the correspond­
ing ground state curves. For example, the Raman spectrum in resonance 
with the V +- N transition exhibits a. very long (ground state) torsional 
progression, because the V state has a perpendicular conformation while 
the ground state is planar. Since only two quanta are observedin the scis­
sors progression and six in the stretching progression we choose the PES's 
to depend harmonically on the scissors-coordinate, while a. Morse poten­
tial is used for the stretching coordinate. Other transitions that can be 
observed in the resonance Raman spectrum mainly involve single quanta. 
of wagging modes (117 and v12) in combination with the torsion mode (v4). 

In the next section we will give the details of the dynamical methods 
used. We start with the description of the methods applicable to the 
ground state. For the electronically excited states a slight extension of the 
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formalism is necessary because of a nonadiabatic interaction between the 
V and the R state. An exact description of the Franck-Condon spectrum 
would require the nonadiabatic coupling functions (see, e.g., [8]). However, 
at this moment we can not calculate these couplings at the MRCEPA 
level. Fortunately, in this case a rather well-defined avoided crossing exists 
between the states and we were able to create a simple diabatic model in 
which all information needed is extracted directly from the shape of the 
adiabatic surfaces. This diabatic model is given in Section 5.2. 7 

Most of the details of the electronic structure calculations are given 
in the previous chapter. In that study the dependence of th~ MRCEPA 
results on the choice of the reference set was investigated for the planar 
and the perpendicular conformation, and it was found that rather accu­
rate results can be obtained with relative small reference sets: four or 
six configurations for the V and the ground state, respectively. A com­
plication in this study is the relatively sharply avoided crossing between 
the V and the R state. It appears that in the avoided crossing region a 
larger number of reference configurations is needed to get convergence. In 
the previous study (Chapter 4) full orbital optimization for the MCSCF 
function consisting of the reference configuration was simple because the 
states involved were the lowest in energy of a certain symmetry. However, 
the V and the R state are of the same symmetry for all torsion angles 
except the planar and perpendicular conformation and the orbital opti­
mization for the upper state causes problems, in particular in the avoided 
crossing region. This problem had to be solved by using an averaged state 
calculation with suitable weight coefficients. More details of the electronic 
structure calculations are given in Section 5.3. 

In this study we will arrive at a calculated band origin of 5.68 eV. The 
calculated torsional levels of the V state compare quite well with experi­
ment and the ground state results are excellent up to the highest measured 
levels, especially if one takes into account that no scaling whatsoever was 
employed. These results are discussed in Section 5.4. 

5.2 Dynamical methods 

5.2.1 Coordinates 

The three internal coordinates used in the vibrational calculations are 
the symmetric scissors angle (a), the C=C stretch (R), and the torsion 
angle (0). The C-H distance (RcH) is kept fixed at 1.076 A. In fact a 
is the deviation from the experimental ground state equilibrium value 
a 1 = 58.3° [11] (Figure 1). Since the overall rotation of the molecule 
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y 

Figure 1. The internal coordinate system. 

is not considered we can simply express the cartesian coordinates of the 
atoms in the internal coordinates: 

where 

1 
xc = 0; yc = 0; zc = - R 

2 
XH = RcH sin a' sin() 

YH = RcH sin a' cos () 

1R I ·zH = 2 + RcH cos a 

a'= a+at 

(5.1) 

(5.2) 

The cartesian coordinates of all other coordinates are related via. the sym­
metry operations of the D2 point group. Note that in this coordinate 
·system the periodicity of the torsional potential will be 1f /2 so that the 
perpendicular conformation corresponds to () = 1f /4. 

5.2.2 Potential energy surface 

The ground state PES is constructed as follows: For the ground state 
equilibrium values of a = 0 and R = R1 1.330 A a torsional potential 
is calculated at seven equidistant points and interpolated by a Fourier 
expansiOn: 

nt 

Vo(O) = E Ci cos4(i- 1)0; nt = 7 (5.3) 
i=l 
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a1 + Lla • • 
a1 = 58.3° 

a1 • • • • • Lla = so 
Rt = 1.330 A 

a1- Lla • • LlR = o.o5 A 

Rt 
.,.___.... 

6R 

Figure 2. The grid points used to construct the 2D PES's. 

For the planar and for the perpendicular twisted conformation the R­
dependence of the PES is described as a Morse-oscillator: 

The four parameters Ai, Di, f3i1 and R!{ are found by a nonlinear least 
squares fit [12] to five points at a = 0 (Figure 2), followed by a shift of 
the constants Ai such that Vi(R1) = 0. The coupling between() and R is 
chosen to be linear in cos2 2(J (or cos40, cf. Eq. 5.3): 

Vi(O,R) = Vo(O) + Vp(R)cos 2 20+ Vt(R)sin2 20 (5.5) 

The a-dependence of the 3D PES is described as a displaced harmonic 
oscillator in which the force constant ( k) and the displacement (-f / k) 
depend on 0 and R: 

1 
V(a,O,R) = Vi(O,R) + "2k(8,R)a2 + f(O,R)a (5.6) 

k and f are again chosen to be linear in cos22(J: 

k(O, R) = kp(R) cos2 20 + kt(R) sin2 20 
f(O, R) = fp(R) cos2 20 + ft(R) sin2 20 

(5.7) 
(5.8) 

Since we choose the functions ki(R) and fi(R) to be linear in R, another 
eight single point calculations are needed (Figure 2) to finally determine 
the 3D PES. 
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5.2.3 Representation of t/J 

For the Lanczos procedure it is important that the operation of the Hamil~ 
tonian on the wave function ( ii t/J) is programmed most efficiently. Ther& 
fore, we choose a mixed representation of the wave function: The stretch­
ing and torsion coordinate are represented on a grid, while a basis set 
expansion is used for the scissors mode. We will write the vibrational 
wave function as: 

na 

tf;(a,O,R) = L:H;(a)w,(O,R) (5.9) 
i=O 

Here H;(a) are the harmonic oscillator basis functions used to expand the 
sdssors mode: 

(5.10) 

In which N; is the normalisation: 

(5.11) 

and H; are the Hermite polynomials [13). The function Wi(O, R) is ex­
panded on a grid (Oj, Rk) with: 

j = o, ... ,n(J (5.12) 

k = O, ... ,nR (5.13) 

The symmetry properties of the electronic states of ethylene at fixed 
nuclear geometries can be described using the D2.,, D2 , and D2J. point 
groups for, respectively, the planar, the twisted, and the perpendicular 
conformation. However, the internal rotation functions and the total wave 
function must be described with a permutation-inversion group. This was 
done by Merer and Watson [14] (MW) using the G~~ double group. They 
show that there are four possible single valued representations for the 
torsional functions (Table I). As explained by MW there is no need to 
use the double-valued representations and we will not do so. For the 
ground state the At

9 
and the B{g levels are nearly degenerate because of 

the height of the torsional barrier, just like the A1u and B!u levels. In 
the resonance Raman spectrum (10] no tunnel splitting is observed in any 
vibrational level. Furthermore, in the resonance Raman spectrum only 
transitions involving even quanta of the torsion are allowed, e.g. from the 
lowest At

9 
level to the 2nth At

9 
level. The ungerade levels are observed 

only in combination with the wagging modes not considered in this study. 
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Table I. The symmetry species of the torsional functions. 

Q(2) 
16 Torsional 

basis 

At9 cos(4n)O 
A!u sin(4n + 2)0 
B{g cos(4n + 2)6 
Biu sin(4n)O 

We note that care is needed with the normalisation of these torsional 
functions. If we take the normalisation on the full 211" range to be unity: 

Sne 

E14>il2 = 1 (5.14) 
j=O 

we find that, when exploiting the symmetry, we should use the following 
normalisation: 

ne-1 

41¢<>1 2 + 8 L lt/>il2 + 4l¢nel2 = 1 (5.15) 
i=l 

5.2.4 iitfJ 
Now that we have given the representation of 'if;, we will show how to 
operate the vibrational Hamiltonian on it. Let 

where 'if; is given as a set of grid functions 'W;(O,R) (cf. Eq. 5.9) 

'if;= EHi(a)'W;(fJ,R) 
j 

(5.16) 

(5.17) 

The problem is to find the set of grid functions 'W';(O, R) defining 'if;', 
written in the same form: 

t/J' = EH;(a)\f!';(6,R) 
j 

(5.18) 

The basic solution is found by taking the scalar product of Hi( a) with the 
left and the right hand side of Eq. (5.16) and using the orthogonality of 
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the harmonic oscillator basis functions: 

W1i(O,R) = E <Hi(a)!H!H;(a)>a 'I!;(O,R) 
j 

ETHYLENE 

(5.19) 

These expressions are only exact if a complete set of functions H,(a:) is 
used. We will work with a truncated set and the number of functions 
actually used will be given in Section 5.4. 

The Hamiltonian can be written in the following form: 

H = l:Ht = l:Ht(a)Ht(O,R) 
t t 

If we substitute this into Eq. (5.19) and we define 

h!,; =< H•(a)!Ht(a)IH;(a) >a 

t "' t A w.(O,R) = L...;hi,;Ht(O,R)'I!;(O,R) 
j 

we get· 
w~(o, R) = L:w!(o, R) 

t 

(5.20) 

(5.21) 

(5.22) 

(5.23) 

So for all the terms of the Hamiltonian we need the matrix elements ht; 
for the a-dependent part and a procedure to evaluate Ht(O, R)\I!i(fJ, R) 
for the (), R-dependent part. First we will deal with the kinetic energy 
operator T. 

5.2.5 The kinetic energy operator T 
Basically there are two ways to obtain a correct quantum mechanical ki­
netic energy operator in internal coordinates [15-17]. A straightforward 
method is to write down the operator in cartesian coordinates and use 
the chain rule to perform the coordinate transformation [17]. Alterna­
tively one can start with the classical kinetic energy expression and use 
the Podolsky transformation [16]. These methods are equivalent if no 
constraints are imposed on the motion. However, since we want to fix the 
Rcu distance we have a constrained motion problem and so we will use 
the Podolsky transformation method. 

Using the coordinates defined in Section 5.2.1 we introduce the vector 
notation: 

x = {xt, ... ,x4} = {zc,xu,yu,zu} 
q = {q1, ... ,q3} = {a:,O,R} (5.24) 

m = {m~, ... ,m4} = {2mc,4mu,4mu,4mu} 
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The elements of the classical G-Itlatrix (dimension 3 x 3) are given by: 

4 
OXk OXk 

GiJ=Lm~c--
k=l 8qi {}qi 

(5.25) 

Note that the G-matrix elements are functions of the internal coordinates 
a, 0, and R. The kinetic energy operator expressed in internal coordinates 
given by the Podolsky transformation is (in atomic units, son= 1): 

Af 1" 18.1 .. {} T = -- L...Jg-2-g2G'•'-
2 . . oqi oq,· t,J 

(5.26) 

where g is the determinant of G and Gi,j are the matrix elements of the 
inverse G-matrix. The volume element of the integration is: 

1 
dx1 ••• dx4 = g2 dadO dR (5.27) 

To avoid the gl factor in the integration we absorb a factor gt into the 
wave function: 

t/J"(a, 0, R) = gtt/J'(a, 0, R) 

So that the normalisation becomes: 

j j j lt/J"(a,O,R)I2 dadOdR = 1 

The kinetic energy operator associated with this normalisation is: 

(5.28) 

(5.29) 

A 1A 1 1 101••0 1 
T = giT1g-i = -- Eg-i-g"i(}'J-g-1 (5.30) 

2 iJ oqi oq; 

Working out this expression is a very tedious job, but fortunately it can be 
done by computer algebra. The REDUCE program [18] listed in Appendix 
A gives the following result: 

t = 

(5.31) 

where 

h,t(o) = M 
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fs,a(a) = 

ft,a(a) = 

ft(a) = 

ts(a) = 

to( a) = 

and 

2 
ma 
2sina 

maRcH 
Msinacosa 

m!Jll:u 
(M +musin2 a)cosa 

m~Rcu 

ETHYLENE 

(5.32) 

M[4mu(mc- mu cos2 a) sin4 a+ (mif- m~) sin2 a- M 2] 

8m!mu.R{:8 sin2 a 

M = mc+mu 

ma = me + mu cos2 a (5.33) 

The coupling between 0 and the other modes occurs only through the 
factor t2,2(a) in the second term of Eq. (5.31). Terms with only a first 
derivative of 0 do not occur. This can be traced back to the block struc­
ture of the G-matrix (Eq. 5.25), which can be understood from simple 
symmetry considerations. 

For the a-dependent parts of this kinetic energy operator we will need 
the matrix elements (Eq. 5.21 ). However, the expressions are quite com­
plicated and it will not be possible to evaluate them analytically. What 
is even worse is that using all of these matrix elements would ruin the 
sparsity of the Hamiltonian. Therefore, we will use Taylor expansions for 
the factors ti.;(a) and ti(a) and truncate them. This should not cause 
a severe error since the very reason we introduced the harmonic approx­
imation for the scissors-mode is that we do not expect it to be a large 
amplitude mode. 

Utmost care is needed when truncating the Taylor expansions because 
it might cause the operator to become nonsymmetric (non Hermitian), 
and even the slightest deviation in the symmetry of the operator is fatal 
for the Lanczos procedure. The reason for this possibly surprising effect 
of truncating the Taylor expansions is that although the sum of the terms 
is symmetric, some of the separate terms are not. 

From inspection of Eq. (5.31) we can find combinations of terms that 
can easily be shown to be symmetric. First note that 

8tt,t(a) _ t ( ) 
8a - 1 a (5.34) 
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so the :first and the :fifth term of ·Eq. (5.31) can be written as: 

(5.35) 

which is evidently symmetric. Furthermore we can verify that 

unt,3(a) = t ( ) 
2 oa 3 a {5.36) 

so a second symmetric combination is: 

tP 1 ot1,3(a) a 1 { a ( a ) a ( a ) } 
t 1'3(a) oaoR + 2 oa oR= 2 oa t 1'3 (a) oR +oR t1 '3 (a) oa 

If we now introduce the Taylor expansion at a = 0: 

ti,J(a) = t~~ + at~J + ... 
ti(a) = t~o) + atP> + ... 

(5.37) 

(5.38) 

and we substitute this into Eq. (5.31) using Eqs. (5.34) and (5.36) we can 
find the following truncated symmetric kinetic energy operator: 

t = 

(5.39) 

We could of course use different numbers of terms, but we should always 
use one more term in the expansion of lt,1(a) and t 1,3 (a) than for ft(a) 
and t3 (a). 

5.2.6 Implementation of the Hamiltonian 

First we have to add the potential energy and the kinetic energy together. 
The PES, V(a, 0, R), consists of three terms that can each be split into an 
a-and a 6, R-dependent part (Eq. 5.6). The a-matrix elements are given 
in Appendix B. The operation of Yt(O, R), k(O, R), and ](0, R) on a grid 
function is simply a pointwise multiplication. For the operation of the 8~2 
operator on the grid functions we use a lOth order finite difference formula 
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Table II. Possible combinations of the G~~ sy~metry species of the vibrational 
functions. 

[9]. For the :n operator we derive a similar symmetric finite difference 
formula (in the notation of Chapter 3): 

:R.,P(x)lx=x; = 'tci(tPi+i- t/J&-i) + 0(8x)2
N 

J=l 

(5.40) 

for N = 5 we have: 

(5.41) 

In Appendix C we list a small REDUCE program to generate the coeffi­
cients of n-points finite difference formulas for kth order derivatives. For 
the :;2 operator we use the Fourier transform trick of Koslo:ff et al. [19] 
because this is the most efficient procedure for a cyclic coordinate. The 
symmetry of the torsional functions (Table I) is exploited by using the 
"quarter wave" Fourier transform C06 NAGLIB procedures (20] .. 

5.2.7 The diabatic model 

For the twisted geometry the V and the R state have the same B1 symme­
try of the D2 point group. As a result an interaction between these diabatic 
states gives rise to two adiabatic states showing an avoided crossing. How­
ever, the permutation-inversion symmetries of the complete electronic V 
and R states are different ( Bi;. and A2

9
, respectively) and therefore only 

certain combinations of permutation-inversion symmetries of the vibra­
tional wave functions will interact. Since both nearly degenerate ground 
state vibrational levels contribute to the spectrum, two sets of symmetries 
are possible (see Table II). 

To describe the interacting V and R states we will have to extend the 
formalism. We will assume the existence of two diabatic states for which 
we may neglect the kinetic nonadiabatic coupling terms, although this will 
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not be possible exactly in genetal [21, 22]. Such states may be thought 
of as arising from a unitary transformation of adiabatic states in such 
a way that the resulting functions are smoothly varying with the nuclear 
geometry. This unitary transformation, which reduces the kinetic coupling 
between the states, at the same time introduces a potential coupling since 
the electronic Hamiltonian was diagonal for the adiabatic states. Our 
model will be based on estimating this potential coupling function. 

First let us consider the torsional mode (a = 0; R = R1 ). The elec­
tronic Hamiltonian is diagonal in the adiabatic basis: 

(5.42) 

Let the matrix elements in the diabatic basis be given by: 

(5.43) 

II'> and 12' > correspond to, respectively, the R and the V state. Assum­
ing that the diabatic basis is a unitary transform of the adiabatic basis 
we have for every 0: 

(5.44) 

From the symmetry species of the diabatic states we can derive the sym­
metry of the diabatic potential coupling function lli,2: 

r(lli,2) = r(ll' >) x r(fie1
) x r(l2' >) = A29 x Aiu x B;iu = B}... (5.45) 

So the simplest expression we can use for this function is (Table 1): 

lli,2( 0) = h sin 40 (5.46) 

We can now find h, lli,1(0), and V2,2(0) by a nonlinear least squares fit [12] 
to the adiabatic curves E1 (0) and E2(0). In the first step we define our 
adiabatic curves by a cubic spline interpolation [12] to seven calculated 
MRCEPA points on the interval 0 ... 1r /4, the boundary conditions being 
that the first derivatives equal zero in the end points (see Figure 5). A cu­
bic spline function is very suitable since the adiabatic curves show a sharp 
bend in the avoided crossing region. We expect the diabatic curves to be 
much smoother but we still want to be able to reproduce the adiabatic 
curves rather close and therefore we introduce an 18-term Fourier expan­
sions for V.,i(O). We now have to fit Eq. (5.44) in more than 18 points 
because we have one additional variable (h). An 18-term Fourier expan­
sion would fit exactly in 18 points and so to avoid oscillatory behavior we 
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fit Eq. (5.44) in 36 equidistant points. With the diabatic curves we con­
struct the 3D diabatic surfaces Yi(a,O,R) following the same procedure 
as for the ground state. 

To solve the vibrational problem we use two-component vibrational 
wave functions [23]. The vibrational Schr&:linger equation then becomes: 

[ T+ Vt(a,O,R) -E • • Yt,2(0) ] [ tP;(a,O,R)] = [ 0] 
Vi,2(0) T + V2(a,O,R)- E ¢2(a,O,R) 0 

(5.47) 
To solve these equations we only need a slight extension of our ground 
state Lanczos/grid program. For the diagonal blocks we can use the same 
procedures and the potential coupling operator Yt,2 ( 0) can be dealt with 
by a few lines of FORTRAN. 

To find the vibrational intensities with the recursive residue generation 
method [9, 24] the Lanczos procedure has to be started with a ground state 
vibrational function times the electronic transition dipole function. For 
the two-component wave function we have: 

(5.48) 

The ground st'!-te vibrational function ¢0 is found by inverse iteration 
using the SYMMLQ algorithm [9, 25]. The transition dipole functions for 
the adiabatic states are rather complicated functions of 0. For the diabatic 
states we assume them to be of the simplest form of the given symmetry 
(neglecting the a- and R-dependence): 

1'~,1 ( 0) = 0.4 sin 40 

1'~,2( 0) = 1.3 cos 20 
[A!u] 
[Bfu] 

The coefficients 0.4 and 1.3 are taken from Figure 4 in [8]. 

5.3 Electronic structure calculations 

(5.49) 

The electronic structure calculations are done with the GAMESS and 
ATMOL program packages [26, 27]. The AO basis set employed is of triple­
zeta quality with polarization functions on the carbon and the hydrogen 
and a set of diffuse sand p functions on each carbon atom. Further details 
on the basis set are given in Chapter 4. 
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5.3.1 MRCEPA strategy 

One way to construct a multi configurational wave function which is suit­
able for the description of a global PES is to select all configurations that 
are necessary to get a qualitatively correct wave function at any part of the 
PES. In such an approach all the selected configurations are used, even 
at geometries where they are less important, in order to get a smooth 
surface. By contrast our MRCEPA based strategy (see Chapter 4) will 
be to try and obtain (almost) converged results for each calculated point 
on the PES separately. The basic idea to achieve this is to choose a set 
of orbitals, the active space, to optimize these orbitals in a CASSCF cal­
culation for the state required, and to use all the configurations of this 
CAS function as reference functions in a subsequent MRCEPA calcula­
tion. This procedure is to be repeated for a series of increasing active 
spaces until convergence is reached. If we could only check the conver­
gence by monitoring the energy as a function of the size of the active space 
this procedure would be fairly cumbersome. However, the assumption is 
that ~ [the contribution of the reference configurations to the MRCEPA 
function, see Chapter 4, Eq. (4.36)] is an indicator of the convergence 
process. So if we have found a good reference set for some point of the 
PES, we can use this set for that part of the surface where ~ is larger 
than about 0.8. In some cases certain configurations have a very small 
contribution to the CASSCF-function and a MCSCF reference function 
can be used instead, without affecting the MRCEPA result too seriously. 
Huge savings in computer time can be obtained in this way, at the cost of 
an additional selection to be made by the user. 

Problems can arise when two states of the same symmetry are close 
in energy, for example in an avoided crossing region. In such a case it 
can be difficult to fully optimize the orbitals of the upper state in a two 
state MCSCF calculation and the MRCEPA convergence may slow down. 
We will show that these problems can be dealt with by an averaged state 
calculation with suitable weight coefficients. 

In order to give a better insight in the application of our computational 
strategy to ethylene we will shortly describe the nature of the states in 
the next section. 

5.3.2 The N, R, and V state 

The four types of orbitals relevant to this study are ?T, ?T*, in plane 
(i.p.)?r, and i.p.?r*. These orbitals are drawn for the planar structure in 
Figure 3. Only for the planar structure these orbitals correspond to four 
different irreducible representations (Table III). However, we will find it 
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. * l.p.Ti 

..... ~ ~ .. ·· 

l.p.Ti 

Figure 3. The relevant orbitals. 

convenient to use this nomenclature for the other geometries as well, as 
will be shown below. Starting with the planar structure the three states 
can be characterizes as 1r2 (the ground state, N), 1r1r*(V), and 1r, 2 i.p.1r(R) 
(Table IV). On the basis of their diffuseness the orbitals can be divided 
into valence-like (1r) and Rydberg-like (2i.p.7r), while the 1r* orbital is 
somewhere in between. In fact, the exact diffuseness of the V state has 
been extensively discussed in the literature and the results appear to he 
very sensitive to the details of the CI treatment [28-30]. At the Hartree­
Fock level the diffuseness, calculated as < x2 >, is over 40 a.u. Brooks 
and Schaefer [29] show that a SDCI calculation hardly changes this value, 
hut that natural orbital iteration results in a much compacter state of 
about 25 a.u. They also show that a MRSDCI calculation with two or 
three 1r1r* type reference configurations gives a < x 2 > value of about 28 
a.u., which decreases by less than 1 a.u. upon natural orbital iteration. 
Recently Cave (30] has shown that this value is still too high due to the size 
inconsistency of the 2RSDCI calculation: The quasidegenerate variational 
perturbation theory (QDVPT) method, which is nearly size consistent, 
gives a value of 23.3 a.u. for < x2 >. Furthermore, if the number of 
reference configurations is increased (to 12 and 52) both the MRSDCI 
and the QDVPT converge to a value of approximately 22 a.u. 

We have not calculated < x2 > values, but if we assume a relation 
between the correlation energy and the compactness of the wave function 
we can illustrate the effects by comparing the vertical (V +- N) transi­
tion energy, calculated at the MCSCF, MRCI, and MRCEPA level. The 
ground state, with two electrons in the 1r orbital, is expected to have the 
largest correlation energy, and indeed going from MCSCF to MRCI the 
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Table III. The symmetry species and correlation of the 1r type orbitals for the 
planar (D2h), twisted (D2), and perpendicular (D2d) conformation. The C2v 
symmetry is used instea.d of the D2d by the GAMESS and ATMOL program 
packages. 

D2h D2 D2d C2v 

21r* 2b2g 
21r 2~u 3~ } E 3bt/3~ 1r* l~g 2~ 

2i.p.11" 2b2u 3~ } E 2bt/2~ 1r l~u 2b3 
. * 2~g 3b3 } l.p.11" 

E lbt/lb2 i.p.1r l~u 2b2 

Table IV. The electronic state correlation. 

~2) 
16 D2h D2 D2d C2v C2v 

R(1r,i.p.1r) A2o Btu 2Bt A2 2A2 btf4 + b2bi 
V(11", 1r*) Bi;. Btu Bt B2 2At b2- b2 

1 2 
(11"*)2 Aiu 2A0 2A At At bi + b~ 

N(1r)2 Bfo Au A Bt A2 bt~ + ~bl 

(V +- N) excitation energy increases by about 0.2 eV and the (R +- N) 
excitation energy by about 0.4 eV. However, when taking into account 
the size consistency effects (with the MRCEPA) the correlation energy of 
the V state increases (the V state becomes more compact), so that the 
(V +- N) excitation energy decreases by about 0.2eV, while the (R +- N 
excitation energy is hardly affected. (This example is taken from Chapter 
4, Table VII, method B). 

For the twisted geometry the 1r* and the i.p.11" orbitals are of the same 
symmetry and so are the V and the R state. However, it is still possible 
to distinguish between 1r type MO's consisting of valence p AO's perpen­
dicular on the CH2 fragments and i.p.1r* type MO's, consisting of Rydberg 
p AO's in the planes of the CH2 fragments. 

At the perpendicular geometry (of D2d symmetry) the 1r and the 1r* 
and also the i.p.1r and i.p.1r* orbita!s become degenerate. In C2v symmetry 
(as used by the GAMESS and ATMOL program packages instead of D2d) 
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Table V. Convergence checks for the planar· geometry. The referenc~ sets 
actually used are indicated with an arrow. More convergence checks for theN 
and the V state can be found in Chapter 4. (Energies in hartree ). 

State #refs. CAS orbitals energy ~ 
R 1 -+ 11't 2i.p.11' -78.0990 0.88 

10 i.p.11'*, 11', 2i.p.11', 11'*, 211'* -78.0985 0.89 
v 4 -+ 11'' 11'*' 211'' 211'* -78.0880 0.83 

10 i.p.11'*, 11't 2i.p.11', 11'*t 211'* -78.0889 0.85 
N 6 -+ 11'' 11'*' 211'' 211'* -78.3894 0.90 

these degenerate orbitals have one component (bt) mainly on the first 
CH2 fragment and one component (b2) mainly on the second. The ground 
state can now be characterized as a diradical A2 state (b1~ + b2b1 ) and 
the V state as an ionic A1 state (bi- ~). At this geometry another ionic 
A1 state (bi + bn, which correlates with the (1r*)2 state, lies just below 
the V state and is therefore included in Table IV. The Rydberg state 
has A2 symmetry, just like the ground state and can be characterized as 
b1 b~ + b2bi, where the' indicates in plane Rydberg character. 

After this introduction about the nature of the states we will be able 
to describe the reference sets used in the MRCEPA calculations. In the 
next sections we will give the results of the checks we made to establish 
convergence. 

5.3.3 The planar geometry (D2h) 

The reference sets used for the N and the V state are CAS sets on the 
11', 1r* t 211', and 211'* orbital space with, respectively, six and four configura­
tions (see also Chapter 4, Section 4.4.2, table V, methods B and Bt). For 
the Rydberg state we use the single 11', 2i.p.11' reference function. At small 
twisting angles the i.p.1r* and 2i.p.11' orbitals appear to play an important 
role in the description of the V and the R state and so we performed 
some tests in which these orbitals are included in the active space. Ta­
ble V shows that the energy differences are less than approximately 0.001 
hartree (0.027 eV), which we will consider to be small. Such small devia­
tions are just what we expect because the ~ values are greater than about 
0.8. 



5.3. ELECTRONIC STRUCTURE CALCULATIONS 101 

5.3.4 The twisted geometry (D2) 

For the ground state the same CAS reference set is used. For the V and 
the R state a few complications arise because for this geometry they are 
of the same symmetry. First of all it appears very troublesome to fully 
optimize the orbitals of the upper state at the MCSCF level. The reason 
is that the states are close in energy and optimizing the "upper" state 
causes it to drop below the "lower" state. This prohibits convergence 
of the MCSCF calculation. This problem can be avoided by using an 
averaged state calculation. In most cases it works fine if the upper state 
gets a weight coefficient of 0.9 or 0.95. However, for 20 = 15° (note 
that 20 = 90° corresponds to the perpendicular conformation) we found 
that if the upper state is optimized with a weight coefficient of 0.95 (in 
a SR calculation, Figure 4 ), the subsequent MRCEPA calculation does 
not converge. This problem does not occur if a weight coefficient of 0.5 is 
employed. 

In Table VI we summarize the test calculations for the twisted ge­
ometries. First we note that at the MCSCF level the V and R states 
cross between 20 = 30° and 20 = 45°, while at the (8R)CEPA level the 
crossing occurs between 20 10° and 20 = 15°. For small torsion angles 
(0° < 20 < 30°) the 4R set is dearly insufficient for the description of 
the V state: ~ ~ 0.5. Inspection of the corresponding MRCEPA vector 
reveals that the i.p.1r* and one or more (virtual) 1r* ji.p.1r orbitals must be 
added to the active space, while the 21r orbital does not seem to be very 
important. However, adding only a few orbitals to the active space very 
rapidly increases the size of the CAS based MR-function, while a number 
of reference configuration obviously get a very small coefficient in both 
the MCSCF and the MRCEPA function. Therefore, we used the reference 
sets shown in Figure 4, instead of the CAS references. For 20 = 30° we 
tested the effect of adding "unimportant" reference configurations to the 
set and found that this hardly effects the results indeed (compare the 6R 
and 12R calculations in Table VI). 

The 4R calculations on the R state at 2(} = 15° and 20 = 30° show that 
the choice of the weight coefficients has a very small effect for this state. 
Finally we note that for () > 45° the V and R states are well separated, 
both at the MCSCF and the MRCEPA level and the 4R reference set can 
be used again. 

5.3.5 The perpendicular geometry (D2d) 

At this geometry no extended reference sets are needed. We already 
showed in Table IV that in the C2v symmetry the N and R state are both 
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{ 
2'11'* + + 

4R: 
2'11' + + 
'II'* + + 
1f + + 

2i.p.'ll' + + 
2'11'* + + 

6R: 'II'* + + 
'II' + + + * * * i.p.?r* * * * + + + 

2i.p.'11' + + 
3'11'* + + 

SR: 
2'11'* + + 
'II'* + + 
'II' + + + + * * * * . * l.p.'ll' * -11- -11- * + + + + 

2i.p.'11' + + -11- * + + 
2'11'* + + * + + * 12R: 'II'* + + + + * -11-

1f + + + * -11- * . * l.p.'ll' -11- -11- -11- + + + + + + + + + 

Figure 4. The orbital occupancies of the reference sets used in the convergence 
checks for the twisted geometry (Table VI). Note that the 4R set is the only 
CAS set. The division between i.p.1r and 1r* is somewhat arbitrary since these 
orbitals are of the same symmetry in D2 (Table III). 
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Table VI. Convergence checks for the twisted geometries. The column indi-
cated with weight gives the weight coefficient and the character of the upper 
state at the MCSCF level. The values actually used are underlined (energies in 
hartree). 

v R 
20(0

) #refs ... weight energy ~ energy 

10 4 0.5 v -78.1032 0.65 -78.1006 0.88 
6 0.5 v -78.1152 0.53 -78.1000 0.82 
8 0.5 v -78.0962 0.83 

15 4 0.0 v -78.1006 0.90 
4 0.5 v -78.1186 0.49 -78.1010 0.85 
6 0.5 v -78.1157 0.64 -78.0998 0.87 
8 0.5 v -78.1042 0.81 -78.0993 0.87 

20 4 0.5 v -78.1277 0.47 -78.1017 0.88 
6 0.5 v -78.1184 0.71 -1S.Q~99 0.88 
8 0.5 v -78.1133 0.78 

30 4 0.0 v -78.1017 0.89 
4 0.95 v -78.1402 0.57 -78.1011 0.88 
6 0.95 v -78.1273 0.81 -78.0991 0.89 
12 0.95 v -78.1273 0.82 -78.1000 0.88 

45 4 0.0 R -78.1475 0.88 
4 0.5 R -78.0969 0.89 

60 4 0.0 R -78.1625 0.88 
4 0.9 R -78.0876 0.89 

75 4 0.0 R -78.1723 0.88 
4 0.9 R -78.0700 0.89 

aThe reference sets, labeled by the number of reference configurations, are 
shown in Figure 4. 
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Table VII. Orbital optimization tests for the perpendicular geometry. All 
reference sets are 1r, 1r*, 211', 211"* CAS sets. In the C2v calculations all states 
have a weight coefficient of 0.5 and in the D2 calculations the states are fully 
optimized. The C2v calculations are used for the 2D PES's at the peri)endicular 
geometry, while the D2 calculations are used for the torsional potential curves. 
(Energies in hartree ). 

State symmetry #refs. energy ~ 
R G2v 4 -78.0490 0.74 

D2 4 -78.0476 0.86 
v G2v 6 -78.1782 0.88 

D2 4 -78.1757 0.88 
N G2v 4 -78.2740 0.88 

D2 4 -78.2724 0.88 

of A2 symmetry, while the V state is the second A1 state. Therefore, we 
used averaged state calculations with weight coefficients of 0.5. As a check 
we also performed some calculations in which the orbitals are optimized 
for the states separately. Since this caused some trouble at the MCSCF 
level in G2v symmetry, these calculations are done in D2 symmetry with 
20 = 89°. The results are shown in Table VII. 

A preliminary conclusion concerning the meaning of the ~ values might 
be that it is a valuable indicator to warn against a missing nearly degener­
ate configuration in the reference set, but that it can not be used to show 
whether the orbitals of well separated states have to be optimized. 

5.4 Results and discussion 

5.4.1 Ground state 

Equilibrium properties 

In the calculations the C-H distance is kept fixed at the experimental 
equilibrium value of 1.076 A [11]. The other geometric parameters, found 
for the minimum of the PES, correspond quite well with experiment: 
Rcc=l.342 A (exp.: 1.330 A) and accu = 121.4° (exp.: 121.7°). The 
lowest vibrational frequencies are calculated both in the harmonic ap­
proximation (for the minimum of the PES, with the Wilson GF method 
[16]) and fully quantum mechanically. The results, together with the ex-
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Table VIII. Ground state vibrational frequencies of ethylene (in cm-1) and 
the deviations from experiment (in % ). 

Harmonic 
Full quantum. 
Experiment 

v3 (scissors) 

1393 (+3.6) 
1367 (+1.7) 
1344 

112 (stretch) 

1720 {+5.8) 
1672 ( +2.9) 
1625 

perimental data are given in Table VIII. 

Torsional barrier 

114 (torsion) 

1037 ( +Ll) 
1002 (-2.3) 
1026 

The generally accepted thermal value for the ground state torsional harrier 
is 65 kcal/mol [31]. For a rigid rotation (Rcc=l.330 A, accH = 121.7°) 
we calculate a barrier of 72.4 kcalfmol. However, if we optimize the struc­
tures, the transition state relaxes to Rcc=1.463 A and accH = 121.3° and 
we find a harrier of 64.0 kcalfmol (22385 cm-1). 

Full vibrational calculation 

We have calculated all vibrational levels involving the scissors, stretching, 
and torsional mode that were measured and assigned by Sension et al. 
[10]. Their highest reported level is (va, ve, liR) = (3, 12, 0) at 14556 cm-1• 

We choose the grid size, grid constants, and number of basis functions 
accordingly: 

For the stretch coordinate we have: RA ... RB = 2.0 ... 4.0 bohr and 
nR = 41 (Eq. 5.13). The range is such that the Morse potential is at least 
about 20000 cm-1 at the boundaries. The maximal representable kinetic 
energy on this grid is approximately 34000 cm-1 (the masses are: mc=12 
a.m.u and mH=L007825 a.m.u., 1 a.m.u=1822.88731 a.u.). 

For the scissors mode we take na = 15 (Eq. 5.9) and the exponent in 
the basis functions b=14 bohr-1 (Eq. 5.10). Although only two quanta 
are observed in the scissors prog!:ession this number of basis functions is 
needed because of the strong mixing of the scissors_ and the stretching 
mode. 

For the torsion mode we take ne = 25 (Eq. 5.12) so that the highest 
representable kinetic energy for the corresponding grid is approximately 
50000 cm-1• 

The results are listed in Table IX. The vibrational assignment of the 
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calculated levels was aided by an artificial isotope effect, for which purpose 
all levels were recalculated with a 0.2% increased proton mass. The first 
184 levels had to be assigned before all levels reported by Sension et al. 
were found. To check the convergence, additional calculations were done: 
First na and nR were increased to 25 and 61, respectively, and it was found 
that none of the levels listed in Table IX shifted by more than 1 cm-1• In 
a second test n1.1 was increased from 25 to 40 and all the values reported 
remained unchanged to less than 0.1 cm-1• 

The results of the vibrational calculations can be summarized as fol­
lows: Levels involving mainly the stretching and the scissors mode are ap­
proximately 2-3% too high compared with experiment, while the torsional 
levels are 1-2% too low. The errors of all the other levels are somewhere 
in between. 

5.4.2 Excited states 

The grids and basis functions used to calculate the vibrational levels of 
the electronically excited states are identical to those used for the ground 
state (see above). The most important geometric parameters of the V and 
the R state are given in Table X. From this table it is clear that vertically 
the V state is 0.3 eV above the R state, but that upon relaxing the C=C 
distance, even while keeping the molecule planar, the V state drops below 
the R state. This c'auses the conical intersection between these two states. 
The torsion potential curves are shown in Figure 5. This figure shows the 
diabatic as well ~ the adiabatic state. The minimal separation between 
the adiabatic states is about 0.044 eY_ (0.0016 hartree) at 20 = 12°. 

Franck-Condon spectrum 

Approximately 1400 transitions with frequencies from about 45000 up to 
about 65 000 cm-1 are calculated. The corresponding intensities are found 
by starting the Lanczos procedure with the lowest ground state vibrational 
wave function times the transition dipole functions as described in Section 
5.2. 7 (Eq. 5.48). In Figure 6 the bands are dressed with a Gaussian band 
width of 50 cm-1 and 250-1 for the lower and the upper curve, respec­
tively. Experimentally a band width of approximately 250 cm-1 is found 
[32]. The main progression consists of the torsional bands, the other bands 
being less intense by almost an order of magnitude. The Gaussian line 
shape is somewhat arbitrary, although it should be mentioned that for 
a Lorentzian line shape of comparable width the first six or seven bands 
disappear in the tails of the other bands, while experimentally one expects 
only a few lines to be undetectable (see below). A Lorentzian line shape 
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Table IX. The ground state vibrational levels in cm-1 . 

(vR, vOI, ve) calculated experiment [HI] deviation (%) 

2 (0,1,0) 1367 1344 2 
3 (1,0,0) 1672 1625 3 
4 (0,0,1) 2005 2046 -2 
5 (0,2,0) 2730 2658 3 
6 (1,1,0) 3030 2962 2 
7 (2,0,0) 3334 3237 3 
8 (0,1,1) 3342 3373 -1 
9 (1,0,1) 3654 3660 -0 

14 (2,1,0) 4682 4565 3 
15 (1,1,1) 4980 4990 -0 
16 (3,0,0) 4988 4870 2 
17 (2,0,1) 5294 5241 1 
18 (0,1,2) 5307 5395 -2 
20 (1,0,2) 5627 . 5676 -1 
22 (0,0,3) 5977 6087 -2 
24 (2,2,0) 6025 5905 2 
28 (0,2,2) 6611 6724 -2 
29 ( 4,0,0) 6633 6483 2 
31 (1,1,2) 6925 6992 -1 
34 (2,0,2) 7249 7248 0 
35 (0,1,3) 7263 7405 -2 
38 (1,0,3) 7589 7678 -1 
42 (2,2,1) 7918 7890 0 
43 (0,0,4) 7945 8080 -2 
48 (5,0,0) 8270 8080 2 
51 (0,2,3) 8543 8712 -2 
61 (0,1,4) 9211 9388 -2 
73 (0,0,5) 9899 10062 -2 
74 (6,0,0) 9900 9680 2 
83 (0,2,4) 10469 10676 -2 
99 (0,1,5) 11145 11353 -2 

116 (0,0,6) 11834 11997 -1 
118 (1,2,4) 12043 12313 -2 
148 (0,1,6) 13063 13277 -2 
168 (0,0,7) 13 748 13937 -1 
184 (0,2,6) 14285 14556 -2 
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Figure 5. The torsional potential curves for the V and the R state. 
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Table X. Geometric parameters of the V and the R state. The energy differ-
ences with the ground state equilibrium value are given in eV. 

v R 

Rcc (A) accH( 0
) ~E Rcc (A) accH( 0

) ~E 

Planar 
vertical 1.330 121.7 8.20 1.330 121.7 7.90 
relaxed 1.503 120.0 7.65 1.410 119.8 7.73 
Perpendicular 
rigid rotor 1.330 121.7 5.75 1.330 121.7 9.26 
relaxed 1.382 123.8 5.64 1.402 120.9 9.15 

would have been expected if the line broadening is mainly due to a lim­
ited life time of the excited state, so perhaps other vibrational modes or 
rotational levels must be included to account for the line shape. 

The absorption maximum occurs at level 22 (7.82 eV, 63050 cm-1), 

0.16 eV above the experimental value of 7.66 eV [3]. To check the con­
vergence the spectrum was recalculated on the extended grids, as for the 
ground state, and no deviations were found. 

In Table XI we list our calculated torsional levels together with other 
theoretical [Petrongolo, Buenker, and Peyerimhoff [8] (PBP)] and experi­
mental results [Wilkinson and Mulliken [3] (WM), McDiarmid and Char­
ney [4] (MC), and Foo and Innes [6] (FI)]. The assignments vary con­
siderably between the different studies. Initially WM (1955) incorrectly 
attributed the progression to the stretching mode (v2), so we do not give 
their original assignment. MC (in 1967) were the first to assign the pro­
gression to torsion. On the basis of the isotopic shifts of fully deuterated 
ethylene they concluded that the band origin should be at 5.79 eV, as­
suming two undetected bands below the lowest observed band at 5.99 eV 
(48331 cm-1). Later (1974) FI also measured the spectra of all partially 
deuterated isotopomers of ethylene and placed the band origin at 5.43 eV, 
leaving five bands undetected. In an attempt to experimentally observe 
the band origin MC measured the spectrum of liquid ethylene in 1977 [7]. 
Although they found absorptions below 5.79 eV which supported the FI 
assignment they could not definitely prove it. In 1982 PBP, however, cal­
culated the band origin at 6.00 eV and assumed the previous assignments 
to be all wrong. The current study places the band origin at 5.68 eV, 0.25 
eV above the FI result and 0.32 eV below PBP. 
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Figure 6. The calculated V +- N spectrum of ethylene. The lower and upper 
curve have an artificial Gaussian band width of respectively 50 and 250 cm-1 . 
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Table XI. The torsional levels of the V state of ethylene (in cm-1 ). PBP 
is a theoretical study, MC, WM, and FI are experimental studies. The WM 
assignment is not given since they attributed the progression to the wrong 
mode. 

present work PBP [8] MC [4] WM (3] FI [6] 
origin 45802 48414 46697 43769 
(eV): 5.68 6.00 5.79 5.43 

0 45802 
1 46665 
2 47520 
3 48354 0 48414 2 48331 48333 (5) 
4 49172 1 49139 3 49148 49140 (6) 
5 49981 2 50021 4 49931 49976 7 49976 
6 50789 3 50933 5 50718 50744 8 50758 
7 51593 4 51820 6 51579 51602 9 51604 
8 52394 5 52675 7 52427 52491 10 52466 
9 53186 8 53123 53158 11 53185 

10 53966 9 53941 53974 12 53968 
11 54731 10 54755 54 779 13 54766 
12 55482 11 55514 55542 14 55498 
13 56226 12 56303 56297 
14 56962 

In order to assess the accuracy of the calculated as well as the exper­
imental data we plot the levels in Figure 7. To show more clearly the 
differences we subtracted from all the levels the torsional quantum num­
ber times the average level spacing and shifted the result by -45941 cm-1 

(the lowest calculated level). This figure shows that our results compare 
quite well with experiment, but it also clearly shows the considerable scat­
ter in the experimental data. The model used by FI to derive the band 
origin from their spectra is the linear anharmonic oscillator (e.g., a Morse­
oscillator). For this model to be valid the level spacings should decrease 
monotonically (giving a parabola in our plot). In an attempt to overcome 
the limits of a model based on a very simple potential function Siebrand, 
Zerbetto, and Zgierski [33] (SZZ) very recently worked out a model based 
on a scaled SCF ab initio force field, which also includes the CC stretch 
and the scissors mode. They were able to fit rather accurately a part of 
the FI spectrum of deuterated ethylene (the region between 53 000 and 
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56 000 cm-1 and they put the band origin at .44 300 cm-1 (5.49 eV), which 
basically agrees with the FI assignment (FI give a band origin of 44 056 
cm-1 for ethylene-d4). However the level spacings in the spectrum of 
ethylene-d4 are rather irregular too and SZZ conclude that a shift by one 
or two units in the torsional quantum number is conceivable. 

A possible source of error in our calculation is the neglect of nine 
of the twelve vibrational modes of ethylene; a difference in ground and 
excited state zero point vibrational frequencies in these modes would affect 
the band origin. In particular the pyramidalization (the wagging) modes 
might shift down the band origin [8, 34]. Although the accuracy of the 
MRCEPA results is the most difficult to assess, we expect on the basis of 
the convergence test an uncertainty of approximately 0.1 eV. So if we take 
into account the estimated error ranges for the experimental and current 
studies we expect the band origin of the V +- N transition of ethylene 
to be 5.58±0.1 eV, somewhat below the currently calculated value of 5.68 
eV. 

Interaction between the V and the R state 

In their study on the V +- N band in an adiabatic basis PBP [8] con­
clude that the nonadiabatic coupling between the adiabatic state is very 
important and leads to "a considerable broadening of the overall intensity 
pattern" near the intensity maximum of the V +- N band. This suggests 
that it might be,better to use a diabatic basis, which was tried by PBP 
in a later study [21], but they found that the adiabatic basis gives cou­
plings which are two to four times smaller than in the diabatic basis. To 
check the importance of the coupling in our diabatic basis we recalculated 
the Franck-Condon spectrum with the coupling Vi,2(0) (Eq. 5.47) put to 
zero. The result was very similar to Figure 6: The upper curve remained 
almost unchanged (the maximum shifted up by 44 cm-1). Also the main 
progression of the lower curve (with a band width of 50 cm-1) remained 
almost unaffected: Only the substructure between the torsional level 21 
and 24 slightly weakened. Experimentally their is no evidence for a strong 
interaction between the V and the R state [10]. 

5.5 Conclusion 

In this study we have tried to diminish the existing gap between theory 
and experiment for several features of the V +- N band of ethylene, 
such as the band origin and the band maximum. For this purpose we 
used "state of the art" electronic structure and dynamical methods. We 
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Figure 7. Vibrational levels compared with experiment. The data from Table 
XI are shifted by 797v- 45 941. 
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exploited the feature of the resonance Raman spectrum that it gives a 
large number of ground state vibrational frequencies for those modes that 
can be expected to be important for the electronic state in resonance. 
Mainly as a check of our dynamical method we calculated those ground 
state vibrational frequencies and found that the errors are only 2-3% and 
very consistent over the entire available range of experimental data. This 
suggests that with proper scaling of the PES it must be possible to fit 
the experimental values very closely, which can be used to identify more 
bands in the resonance Raman spectrum. 

The UV-absorption spectrum is dominated by the torsional progres­
sion. We found that transitions involving the scissors and the stretching 
modes are less intense by an order of magnitude. However, in particular 
the stretching mode is strongly coupled to the torsion and should be in­
cluded for a proper description of the V state. We found, in contrast with 
PBP [21], that the interaction between the V and the R state has only a 
minor effect on the calculated spectrum. 

Comparing our results on the V state with those of PBP [8] shows that 
we were able to shift the theoretical band origin 0.32 eV in the direction 
of the experimental result. Approximately 0.11 eV of this difference is 
accounted for by our geometry optimization of the V state. The remaining 
part must result from the different treatment of the electron correlation 
and the basis set (72 functions compared with the 49 in the PBP study). 

Although in this chapter we have described probably the most exten­
sive calculations'on the V +- N system of ethylene to date, there are 
several leads for future work. First of all it might be interesting to calcu­
late the spectra of deuterated ethylene. For ethylene-d4 the same PES's 
and implementation of the vibrational Hamiltonian can be used. The par­
tially deuterated ethylenes however give rise to an interesting problem for 
the dynamical treatment. 

, Earlier theoretical studies [34] as well as the resonance Raman data 
[10] suggest that the wagging modes might be relative important in the V 
state, probably shifting down the band origin. So it might be worthwhile 
to include this mode, even if it is fully decoupled. 

A point which has received little attention in this study is the inten­
sity distribution of the V +- N band. Here, as well as in other theoretical 
studies, the intensity ratio between the lowest torsional bands is a few 
times higher than the experimental value [8, 33]. Furthermore, to our 
knowledge, the diffuseness of the torsional bands has never been repro­
duced in a first-principles calculation. Our calculated band maximum is 
0.16 eV above the experimental value. Actually the band maximum is hid­
den under the R1 ( 1r, 3s) +- N transition [35] and the experimental value 
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is based on the estimated contribution of this transition. So an accurate 
calculation of this Rydberg state, which should not be too difficult, might 
be helpful to get a more reliable "experimental" value. 

The amount of information on the V state contained \n the UV­
absorption spectrum is limited because the bands could not be rotationally 
resolved. However, the resonance Raman spectrum [10] provides a wealth 
of information on this state. It must be possible to extract detailed ge­
ometric information from this spectrum if it is used in combination with 
accurate (first principles) calculations. Our Lanczos/grid method can be 
adopted to calculate (resonance) Raman spectra [36]. An effective imple­
mentation should exploit the special tricks presented by Moiseyev et al. 
[37]. 

Finally we note that we took the electronic transition dipole moments 
from the literature since at present we can not calculate inter state one­
electron properties at the MRCEPA leveL 
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Appendix A: REDUCE program forT 

The listing of the REDUCE [18] program to evaluate the kinetic energy 
operator (Eq. 5.30) is shown in Figure 8. First, at (1), we tell REDUCE 
to try hard to divide out the greatest common divisors (on gcd,ezgcd) and 
we explain REDUCE some basics about goniometric functions. p and n 
are, respectively, the number of internal and cartesian coordinates. At 
(2) we introduce the vector notation for the coordinates and the mass ( cf. 
Eq. 5.24). Gi is the inverse of the G-matrix. The definitions at (4) are 
according to Eq. (5.1). At (5) and (6) the G-matrix is evaluated (Eq. 5.25) 
and (7) gives the desired kinetic energy expression (Eq. 5.30). However, at 
this point REDUCE responds with a very depressing and absolutely giant 
formula. Therefore, we extract at (8) the separate terms that can be 
greatly simplified by REDUCE and at (9) the terms are printed together 
with their derivatives [to check Eqs. (5.34) and (5.36]. To make sure no 
terms were forgotten at (8) we add them together at (10) and compare 
the result with the initial expression kin. 

The memory requirements for this problem were above the capacity 
of a 640Kb IBM AT, but the IBM 4381 main frame solved the problem 
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within a minute. 

Appendix B: Matrix elements 

The matrix elements for the harmonic oscillator basis functions [Eqs. 
(5.10) and (5.11 )]. Let 

In>= Hn(a) (5.50) 

then 

<min> = lim,n 
<mlaln> = [lim,m+l + tS'm,n-t] 2-! b-1 

<mla21n> = [ l 1 {m(m -l)}2/im,n+2 + (m + 2)/im,n+ 

{(m + 1)(m + 2)}hm,n-2] 2-lb-2 

a 
- [m~lim,n+l- (m + 1)!/im,n-1] 2-h <mlaaln> = 

a2 
[ 1 1 <mlaa21n> = {(m(m -l)}2c5m,n+2 + (m + 2)/im,n+ 

4{(m + 1)(m + 2)}!/im,n-2] 2-1b2 

a 1 
- [{m(m -l)}it5m,n+2-<mla aa + 21n> = 

{(m + 1)(m+ 2)}!/im,n-2] 2-1 

a2 a 
[{m(m -1)(m- 2)}!tim,n+3 <mlaaa2 + a)n> = 

-m(m -1)hm,n+l- (m + 1)m!c5m,n-1 + 

{(m + 1)(m + 2)(m + a)}!tim,n-3] 2-~ b 

Appendix C: REDUCE program for kth derivatives 

The following REDUCE [18] program: 

operator f; let f(0)=1; for all n such that n>O let f(n)=n•f(n-1); 
a:=5; n:=2•a+1; matrix l(n,n),B(n,n); 
for i:=l:n do for j:=l:n do l(i,j):=(i-a-1)••(j-1)/f{j-1); 
B:=1/1 ;end; 

generates the coefficients cj = B(k + 1,j + m + 1) that are needed in the 
symmetric n-points finite difference formula for the kth derivative ( n = 
2m+ 1): 
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on gcd,ezgcd; for all x let cos(x)••2=1-sin(x)••2; 
p:=3; n:=4; array x(n),q(p),m(n); matrix B(n,p),G(p,p),Gi(p,p); 
q(1):=R; q(2):=alpha; q(3):=theta; 
m(1):=mC; m(2):=mK; m(3):=mB; m(4):=mB; 
operator Psi; for i:=1:m do depend Psi,q(i); 
x(l):=R/2; 
x(2):=R/2+RCH•cos(alpha); 
x(3):= RCB•sin(alpha)•cos(theta); 
x(4):= RCH•sin(alpha)•sin(theta); 

for i:=1:n do for j:=1:m do B(i,j):=df(x(i),q(j)); 
for i:=1:m do for j:=1:m do G(i,j):=for k:=1:n 

sua massa(k)•B(k,i)•B(k,j); 
Gi:=1/G; d2:=sqrt(det(G)); d4:=1/sqrt(d2); 
kin:=-(d4/2)•for i:=1:m sua for j:=1:m 

sum df(d2*Gi(i,j)•df(d4*Psi,q(j)),q(i)); 
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Y. (1) 
Y. (2) 

Y. (4) 

Y. (5) 

Y. (6) 

%(7) 

numerator:=num(kin); denominator:=den(kin); Y. (8) 
matrix c2(m,m); array c1(m); 
for i:=1:m do for j:=1:i do if lterm(numerator,df(Psi,q(i),q(j))) neq 0 

then c2(i,j):=lcof(numerator,df(Psi,q(i),q(j)))/denominator; 
for i:=1:m do if lterm(numerator,df(Psi,q(i))) neq 0 

then c1(i):=lcof(nnmerator,df(Psi,q(i)))/denominator; 
if lterm(numerator,Psi) neq 0 then cO:=lcof(numerator,Psi)/denominator; 
off exp; for i:=1:m do for j:=1:i do 
« write " term: ",d:f(Psi,q(i) ,q(j)); Y. (9) 

write " coefficient: ",c2(i,j); 
write " derivative :. ",df(c2(i,j),alpha) »; 

for i:=1 :a do << write " term: ",df(Psi,q(i)); 
write " coefficient: ",c1(i) >>; 

on fort; 
write " term: ",Psi; 
write " coefficient: ",cO; 
write " derivative ",df(cO,alpha); 

on exp; off fort; Y. (10) 
check:=:for i:=1:m sum for j:=1:i sum c2(i,j)•df(Psi,q(i),q(j)); 
check:=check+cO•Psi+for i:=1:m sum c1(i)*df(Psi,q(i)); 
if check=kin then write " check OK" else write " check JOT OK" ;end; 

Figure 8. Listing of the REDUCE program to evaluate the kinetic energy 
operator. 
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(5.51) 

The first line of the program eefines the factorial function. Note that 
REDUCE takes n * *0 = 0, also for n = 0. The value of m can be adapted 
to obtain the desired 2m+l point formula. 
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Summary 

The calculation of the vibrational structure in UV-absorption spectra in­
volves the calculation of ground and excited state potential energy sur­
faces and the solution of the dynamical problem. This thesis deals with 
both subjects. Problems are chosen in which the spectra exhibit large­
amplitude vibrational motion in an electronically excited state. The rota­
tional structure has been left out of consideration. 

The main problem of electronic structure calculations is to assess ac­
curately the electron correlation energy. The multireference Singles and 
Doubles Configuration Interaction method (MRSDCI) has become a stan­
dard tool for the calculation of the electron correlation energy. With the 
direct CI method and using supercomputers such calculations can rou­
tinely involve 105 or 106 variational parameters. However, the MRSDCI 
is not size consistent, which means that it becomes progressively worse if 
the size of the system, i.e., the number of electrons, increases. Therefore, 
we also employed in this work the Coupled Electron Pair Approximation 
(CEPA), a size consistent method which is obtained by shifting the diag­
onal elements of a CI matrix by the estimated interactions between the 
double and the higher excitations. In a more approximate way, size con­
sistent results can be obtained from a (MR)SDCI calculation by applying 
for example the Pople correction. 

The single reference CEPA is compared with the SDCI and SDCI plus 
Pople correction in Chapter 2, in an application to the iJ 1 Bu ~ X tran­
sition in trans-di-imide. The CEPA gives the best results. Furthermore, 
it is found in that study that the orbitals of the reference configuration 
should be optimized for a proper single reference description of the iJ 1 Bu 
Rydberg state. Two vibrational modes are involved in these calculations. 
The semiclassical method of Sorbie is used to obtain the vibrational fre­
quencies and Heller's frozen Gaussian approximation is used to find the 
intensities. 

A much more complicated problem is the calculation of the V 1 ( 1r, 1r*) ~ 
N absorption spectrum of ethylene, which is dealt with in Chapter 5. This 
study involves two nonadiabatically interacting states, the V 1 ( 1r, 1r*) va­
lence state and the R 1 ( 1r, 3py) Rydberg state. Three vibrational modes 
are included; the torsion, the CC stretch and the symmetric scissors. Al­
though the semiclassical methods worked satisfactorily for trans-di-imide, 
it would have been difficult to apply them in this case and therefore the 
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fully quantum mechanical Lanczos/grid method, developed in Chapter 3, 
is used. This method is very suitable for one-, two-, or three-dimensional 
nonseparable vibrational problems, which involve large-amplitude modes. 

The ca.lcula.tion of the electronic structure of the V state of ethylene re­
quires a. size consistent multireference method and therefore the MRCEPA 
is used. The MRCEPA is described in Chapter 4, together with some test 
calculations to check its size consistency and a. series of ca.lcula.tio:ns on 
the ground and V state of ethylene in its planar and perpendicular con­
formation. It is shown that if the size of the reference space is increased, 
the MRCEPA tends to converge much faster than the MRSDCI or the 
Davidson corrected MRSDCI. 

In Chapter 5 more convergence checks a.re done for the MRCEP A, in 
·particular in the avoided crossing region. For the first time it was possible 
in an ab initio calculation to obtain reasonable agreement with experiment 
for several features of the V +- N absorption spectrum of ethylene, such 
as the torsional level spacing, the band origin and the band maximum. 
Other features of the spectrum such as the intensity distribution and the 
diffuseness of the torsional bands still demand an explanation. 



Samenvatting 

Voor de berekening van de vibrationele struktuur in UV-absorptiespectra 
moeten in de eerste plaats potentiaaloppervlakken berekend worden voor 
de grondtoestand en de aangeslagen toestanden. Vervolgens moet, uit­
gaande van deze potentiaaloppervlakken, het dynamische probleem opge­
lost worden. In dit proefschrift komen beide onderdelen aan de orde. Er 
zijn problemen gekozen waarbij uit de spectra blijkt dat er in een elek­
tronisch aangeslagen toestand grote-amplitude vibraties voorkomen. De 
rotatie-struktuur van de spectra is buiten beschouwing gelaten. 

Het grootste probleem van de elektronen-struktuur berekeningen is het 
nauwkeurig bepalen van de elektronen-correlatie energie. Een standaard 
methode hiervoor is de zogenaamde "multireferentie Configuratie Inter­
a:ctie methode met aile enkele en dubbele excitaties" (MRSDCI). Met 
de directe-CI methode kunnen, gebruik makend van supercomputers, ge­
makkelijk MRSDCI berekeningen uitgevoerd worden met 105 of 106 varia­
tionele parameters. Een probleem van de MRSDCI methode is echter dat 
ze niet "size-consistent" is. Dit betekent dat de methode naar verhouding 
slechter wordt voor grotere systemen (systemen met meer elektronen). 
Daarom is er ook gebruik gemaakt van een "size-consistente" methode, de 
zogenaamde "Coupled Electron Pair Approximation" (CEPA). Bij deze 
methode wordt, uitgaande van de CI vergelijkingen, een size-consistent 
resultaat verkregen door de diagonaal elementen van de CI-matrix te cor­
rigeren voor de geschatte interactie-energie tussen de dubbele en de hogere 
excitaties. Bij benadering size-consistente resultaten kunnen verkregen 
worden door bijvoorbeeld de Pople-correctie toe te passen op het eindre­
sultaat van een MRSDCI berekening. 

In Hoofdstuk 2 wordt de enkele-referentie CEPA vergeleken met de 
SDCI en de SDCI plus Pople-correctie in een toepassing op de iJ 1 Bu ._ X 
overgang in trans-di-imide. De CEPA methode blijkt het beste resultaat 
te geven. In dit hoofdstuk wordt verder aangetoond dat voor een goede 
"enkele-referentie" beschrijving van de iJ 1 Bu Rydberg toestand de or­
bitalen van de referentie configuratie geoptimaliseerd dienen te worden. 
In de berekeningen worden twee vibratie modes meegenomen. De semi­
klassieke methode van Sorbie wordt gebruikt voor het verkrijgen van de 
vibratie-frequenties en Heller's "frozen Gaussian approximation" wordt 
gebruikt voor de berekening van de intensiteiten. 

Een veel moeilijker probleem, dat behandeld wordt in Hoofdstuk 5, 
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is de berekening van het V 1(1r, 1r*) +- N absorptiespectrum van etheen. 
Hierbij spelen twee aangeslagen toestanden een rol die een niet-adiaba­
tische interactie vertonenen, nl. de V 1 ( 11', 1r*) valentie toestand en de 
R 1 (11',3p31) Rydberg toestand. In deze berekening worden drie vibratie­
modes meegenomen; de torsie-, de CC rek- en de symmetrische schaar­
mode. Hoewel de semi-klassieke methoden goed werkten voor trans-di­
imide, zou het moeilijk geweest zijn om ze in dit geval toe te passen 
en daarom is hier gebruik gemaakt van de volledig quantummechanische 
"Lanczosfgrid" methode die beschreven wordt in Hoofdstuk 3. Deze me­
thode is erg geschikt voor een-, twee- of drie-dimensionale niet-separabele 
vibrationele problemen, waarbij grote-amplitude vibraties voorkomen. 

Voor de berekening van de elektronenstruktuur van de V toestand van 
.etheen is een size-consistente multi-referentie methode nodig en daarom 
is er gebruik gemaakt van de MRCEPA methode. Deze methode wordt 
beschreven in Hoofdstuk 4. In dit hoofdstuk wordt de size-consistentie van 
de MRCEPA geverifieerd in een aantal test-berekeningen. Verder wordt er 
een serie berekeningen beschreven aan de grondtoestand en de V toestand, 
voor de vlakke en de loodrechte conformatie van etheen. Hierbij wordt 
aangetoond dat het vergroten van de referentie-ruimte bij de MRCEPA 
veel sneller tot convergentie leidt dan bij de MRSDCI of de Davidson­
gecorrigeerde MRSDCI. 

In Hoofdstuk 5 worden nog een aantal convergentie testen voor de MR­
CEPA methode gedaan, in het bijzonder in het gebied van de "avoided 
crossing". Voor de eerste keer bleek het mogelijk om in een ab initio 
berekening redelijke overeenstemming met het experiment te verkrijgen 
voor een aantal eigenschappen van het V +- N absorptiespectrum van 
etheen, zoals de ligging van de torsie-niveau's en het begin en het maxi­
mum van de absorptieband. Andere eigenschappen van het spectrum, 
zoals de intensiteitsverdeling en de breedte van de torsiebanden vragen 
nog om een v<:rkla.ring. 
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1. De opmerking van Hawking dat een planeet op de zon zou storten als 
de exponent in de gravitatiewet van Newton groter zou zijn dan twee 
is onjuist. Een planeetbaan is ook stabiel voor alle exponenten tussen 
twee en drie. 

S. W. Hawking, A brief history of time, p. 17 (Bantam, Toronto, 1988). 

2. De conclusie van Giroux et al. dat de energiebarriere voor een uni­
moleculaire isomerisatie gewoonlijk lager (en nooit hoger) zal zijn dan 
de barriere die spectroscopisch bepaald is uit de vibratieniveaus in de 
normaal-mode die het meest geassocieerd is met de isomerisatie is on­
juist. 

L. Giroux, M. H. Back, and R. A. Back, Chern. Phys. Lett. 154, 610 
(1989). 

3. Bij de berekening van de grondtoestands-torsie niveaus van etheen ge­
bruikt Wallace een potentiaaloppervlak waarvoor hij zelf heeft aange­
toond dat de parametrisering op een vergissing berust. 

R. Wallace, Chern. Phys. Lett. 159, 35 (1989) en Chern. Phys. 141, 
241 (1990). 

4. Voor een goed gelokaliseerde avoided crossing, berekend met het MR­
DCI programma van Buenker en Peyerimhoff, zal een schatting van 
de niet-adiabatische koppeling op basis van de vorm van de potenti­
aaloppervlakken beter zijn dan de door datzelfde programma berekende 
waarde. 

P. J. Bruna and S. D. Peyerimhoff, Adv. Chern. Phys. 67, 1 (1987). 

5. In tegenstelling tot de bewering van Killingbeck kunnen de energieni­
veaus van de "spiked harmonic oscillator" ( H = -82 / 8r2 + r 2 + A I r 1-a) 
wel degelijk variationeel berekend worden met behulp van een har­
monische oscillator basisset. 

J. Killingbeck, J. Phys. B. At. Mol. Phys. 15, 829 (1982). 
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V. C. Aguilera-Navarra, G. A. Estevez, and R. Guardiola, J. Math. 
Phys. 31, 99 (1990). 

6. De constructie van de kinetische energie matrix in de Fourier-Grid 
Hamiltoniaan methode van Marsten en Balint-Kurti kan aanzienlijk 
versneld worden door op te merken dat het hier een Toeplitz matrix 
betreft, er hoeft dus slechts een kolom berekend te worden. 

C. C. Marston and G. G. Balint-Kurti, J. Chern. Phys. 91, 3571 (1989). 

7. Werner en Knowles concluderen dat variationele multi-referentie confi­
guratie interactie methoden met interne contractie in de meeste gevallen 
betere spectroscopische constanten voorspellen dan niet-variationele 
versies van deze methoden zoals ACPF, QDVPT en LCPMET. Deze 
conclusie is zorgwekkend, maar waarschijnlijk aileen juist voor bereke­
ningen met grote referentie-sets aan relatief kleine systemen. 

H. J. Werner and P. J. Knowles, Theor. Chim. Acta. 78, 175 (1990). 

8. Heller's formulering van de spectroscopie en misschien ook de term 
"vertikale excitatie" lijken aanleiding gegeven te hebben tot het wijd­
verbreide misverstand dat een optische excitatie normaal gesproken 
aanleiding geeft tot een gelokaliseerd golfpakket in de aangeslagen toe­
stand. 

M. V. RamaKrishna and R. D. Coalson, Chern. Phys. 120, 327 (1988). 

9. Experimenteel blijkt dat de symmetrie van de elektronen-verdeling van 
de radicaal-anionen van sommige gesubstitueerde difosfine disulfides 
verbroken wordt voor kleine P-P afstanden, terwijl Hartree-Fock bere­
keningen hier aileen symmetrische oplossingen lijken te geven. Nader 
theoretisch onderzoek verdient aanbeveling omdat dit probleem tegen­
gesteld is aan het gebruikelijke symmetrie-verbrekingsprobleem. 

0. M. Aagaard, R. A. J. Janssen, B. F. M. de Waal, J. A. Kanters, A. 
Schouten, and H. M. Buck, J. Am. Chern. Soc. 112, 5432 (1990). 

2 


